Ausley \& McMullen

ATTORNEYS AND COUNSELORS AT LAW

> 227 SOUTH CALHOUN STREET
> P.O. BOX 391 (ZIP 32302)
> TALLAHASSEE, FLORIDA 32301
> (904) $224-9115$ FAX $(904) 222-7560$

August 8, 1996

BY HAND DELIVERY

Ms. Blanca S. Bayo, Director Division of Records and Reporting Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Resolution of Petition to Establish Non

ACK | Discriminatory Rates, Terms, and Conditions |
| :--- |
| for Interconnection Involving Local Exchange |
| AFA Companies and Alternative Local Exchange |
| APP |
| Companies pursuant to Section 364.162, |
| Florida Statutes - Docket No. 950985-TP |

CAF \qquad
CMU Dear Ms. Bayo:
CTR Enclosed for filing in the above-styled docket are the EAG original and fifteen (15) copies of United Telephone Company of Florida and Central Telephone Company of. Florida's Request for \longrightarrow Confidential Classification.
LEG
LIN
OPC A copy of Exhibit "B" is not being provided to the parties of
RCH \square record due to its size. Any party wishing to obtain a copy of SEC 1 WAS \qquad the duplicate copy of this letter and returning the same to this OTH all to writer.
Matilda Thank you for your assistance in this matter.
RECEIVED \& FILED

Enclosures

cc: All parties of record (w/o Exhibit "B")
utd $\backslash 950985$. byo

In re: Resolution of Petition to) Establish Non Discriminatory Rates,) Terms, and Conditions for Inter-) connection Involving Local Exchange) Companies and Alternative Local) Exchange Companies pursuant to) Section 364.162, Florida Statutes

DOCKET NO. 950985-TP
Filed: 8/8/96

> UNITED TELEPHONE COMPANY OF FLORIDA AND CENTRAL TELEPHONE COMPANY OF FLORIDA'S REOUEST FOR CONFIDENTIAL CLASSIFICATION

Pursuant to Rule 25-22.006, Florida Administrative Code, UNITED TELEPHONE COMPANY OF FLORIDA and CENTRAL TELEPHONE COMPANY OF FLORIDA (collectively, "Sprint United/Centel" or the "Companies") file this Request for Specified Confidential Classification for certain cost study information provided to the Staff in this docket, and say:

1. This request covers documents submitted to the Division of Records and Reporting under a confidential cover on July 19, 1996. These documents have been Bates stamped numbers 0001 to 121, and represent the interconnection cost study required to be filed as a result of the Final Order in this docket. The document to which this request relates was filed with the Division of Records and Reporting under a separate confidential cover and a Notice of Intent to Request Confidential Classification on July 19, 1996.
2. In accordance with FPSC Rule No. 25-22.006, F.A.C., a copy of the documents with the information the Companies consider to be proprietary has been filed under a separate cover as Exhibit
"A" to this request and has the confidential information highlighted for identification purposes. In accordance with Rule 25-22.006, Florida Administrative Code, the Companies have appended hereto as Exhibit "B" one edited copy of the confidential answers with the confidential information blacked out ("redacted").
3. Commission Rule 25-22.006(4)(a) provides that a utility may satisfy its burden of proving that information is specified confidential material by demonstrating how the information falls under one or more of the available statutory examples. In the alternative, if no statutory example is available, the utility may satisfy its burden by including a justifying statement indicating what penalties or ill effects on the Companies or its ratepayers will result from the disclosure of the information to the public. The Companies have identified this confidential information on a line-by-line basis, and have appended the required line-by-line identification and justifications hereto as Exhibit "C."
4. The information for which confidential treatment is requested has not been disclosed, except pursuant to a protective agreement that provides that the information will not be released to the public.
5. For all the foregoing reasons, Sprint United/Centel respectfully urge the Commission to classify the above-described and discussed document as proprietary confidential business information pursuant to Rule 25-22.006, Florida Administrative Code, and as such exempt from Chapter 119, Florida Statutes.

WHEREFORE, UNITED TELEPHONE COMPANY OF FLORIDA and CENTRAL TELEPHONE COMPANY OF FLORIDA move the Commission to enter an Order declaring the documents claimed to be confidential in this request are proprietary confidential business information pursuant to Section 25-22.006, Florida Administrative Code. DATED this 8th day of August, 1996.

ATTORNEYS FOR UNITED TELEPHONE COMPANY OF FLORIDA AND CENTRAL TELEPHONE COMPANY OF FLORIDA

In re: Resolution of Petition to) DOCKET NO. 950985-TP Establish Non Discriminatory Rates,) Terms, and Conditions for Inter-) connection Involving Local Exchange) Companies and Alternative Local) Exchange Companies pursuant to , Section 364.162, Florida Statutes

EXHIBIT "B" TO SPRINT UNITED/CENTEL'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

Unedited Version
With
Confidential Information Redacted

AUSLEY \& MCMUTLLEN

attorneys and counselors at law

> 227 SOUTH CALHOUN STREET
> P.O. BOX 391 (21p3z30Z)
> TALLAKASSEE. FLORIOA 32301
> (904)2z4.9115 「AX (904) 222.7550

FPSC-RECORDSIREPORTING

BY FAND DELIVERY

> Ms. Blanca S. Bayo, Director Division of Records and Reporting Florida Public Service Commission 25 So Shumard Oak Boulevard Tallahassee, Florida $32399-0850$

Re: Resolution of Petition to Establish Non Discriminatory Rates, Terms, and Conditions for Interconnection Involving Local Exchange Companies and Alternative Local Exchange Companies pursuant to section 364.162 , Florida Statutes - Docket No. 950985 -Tp

CONFIDENTIAI DOCUMENTS XTTACHED
Dear Ms. Bayo:
Enclosed for filing in the above-styled docket is the originei of Sprint-united/Centel's Cost stucy. This is the document referred to in Sprint-United/Centel's Notice of Filing and Notice of Intent to Request Confidential Classification, dated July io, 1996. Please keep the enclosed document confidential pursuant to Rule 25-22.006, Florida Administrative Code, pencing the filing and decision on the Companies' kequest for Confidential Classificaiion, which will be Filed within 21 days as required by the rule.

Dlease acknowledge receipt and filing of the above by stamping the duplicate copy of this letter anc returning the same to this writer.

Thank you for your assistance in this matter.
Yours truly,

Enclosures
cc: All parties of record (w/o encl.) vect1950985.byo

LOCAL INTERCONNECTION COST STUDIES OVERVIEW

The following documents are the results and supporting documentation for Sprint's estimated local interconnection costs.

There are three call termination cost study results representing local interconnection at 1.) an end office (similar to cellular Type 2B interconnection), 2.) at a local tandem and 3.) at an access tandem (similar to cellular Type 2A interconnection). A fourth study provides the cost of intermediary switching where ALECs may route traffic through Sprints' access tandem to terminate calls to other ALECs, ILECs and IXCs.

A diagram is provided with each of the three call termination scenarios which depicts the call paths and identifies the major switch investment components.

CONTENTS

COWFICEETILL

Page(s)
I. Summary of TSLRIC Interconnection Cost Results 1
II. Cost Methodology and Assumptions 1-12
III. Switching Cost Information System Overview 1
A. Discussion of LRIC and TSLRIC 2
B. TSLRIC Investment of Unbundled Elements 2-4
IV. Cost Study Results - Calculations
A. End Office 1
B. Local Tandem 2
C. Access Tandern 3
D. Intermediary Switching 4
V. Explanation of Terms 1-2
VI. Supporting Documentation
A. SCIS Output Page - End Office 1
B. SCIS End Office and Remote Inputs 2-38
C. SCIS Output Page - Access Tandem 39
D. SCIS Access Tandem Inputs 40-42
E. CCSCIS (SS7) Outputs 43-49
F. Transport Cost Support 50-81
G. Annual Charge/Factors Development Land and Building 82
H. Customer Usage Study 83

SECTION I

2 End Office per MOU
3. Access Tandem - per MOU with transport

4 Local Tandem-per MOU with transport
5 Intermediary Tandem

SECTION M

Cost Methodology and Assumptions Costs of Interconnection - Usage Based

For determining the incremental cost of actual usage, costs per call set-up per Minute of Use (MOU) must be calculated.

The Switching Cost Information System (SCIS) model, licensed from Bellcore, identifies two separate components of a call. First is the call set-up function which establishes a connection for the call, including incomplete calls. Call set-up does not include any usage. Second is the usage function which consists of the actual on-line time, including non-conversation time.

The cost of the first MOU is equal to the sei-up cost plus the cost of one MOU.
The process for converting SCIS resultis into costs per billable units involves the following basic processes.

1. Calculate the busy hour investment - SCIS Model Office output gives busy hour investment per processor millisecond, line CCS, trunk CCS, and tandern trunk CCS. These are the basic components for all calling. This may be determined in two ways. First is a manual process illustrated below. Second is to utilize SCIS-IN Features 937 through 942 . The manual process is recommended to assure the analyst understands the underlying switching functions involved in call processing.

The set-up function utilizes the central processor. Vendor (Nortel) specifications state how many milliseconds of processor time are required to complete the call set-up function. Since the Getting Started Investment is per millisecond, multiplying this value by the milliseconds required gives the total investment required for each set-up function during the busy hour.

Each MOU requires the "Cost per line CCS", "Cost per trunk CCS" and/or "Cost per tandem trunk CCS" function. These costs apply to both the originating and terminating function. Determining the MOU requires a conversion factor of 60 since a MOU is only 60% of a CCS (hundred call second). Since this cost applies to office holding time and not conversation time, an additional factor must be included in order to recover the cost of nonconversation time through conversation time. This factor is the ratio of conversation time to holding time. The following pages illustrate this manual process for determining end office interconnection costs, access tandem interconnection costs and local tandem interconnection costs. The numbers used are the actual numbers from the TSLRIC study.
2. Calculate the annual cost - Multiplying the busy hour investment by the annual charge factor provides the annual cost.
3. Convert from busy hour to full day - The cost per busy hour unit must be converted to reflect the entire day's calling by multiplying it by the busy hour to full day ratio. This study assumes 10% of the day's traffic occurs during the busy hour.
4. Convert from full day to entire year - The cost per unit per busy day must be converted to cost per unit by dividing by the number of equivalent business days during the entire year. Since we are not proposing a premium rate to be charged for business days over weekends and holidays, it is appropriate to divide by 365 days.
5. (Optional) These results may need to be adjusted for non-billable units, depending upon the purpose of the study. For example, if the analyst is determining the cost of switched minuies to an IXC or CLEC, the LEC bills the carrier for all minutes, regardless of whether the call was completed to the ultimate end user. There is no need to adjust the cost on these calls and minutes. However, suppose the analyst is determining the cost of providing flat rate service to the end user, and the only known demand is the number of completed calls and actual conversation time. Since incompleted calls and non-conversation time create costs, an adjustment is necessary. The set-up cost must be divided by a completed call ratio, and the MOU cost must be divided by the conversation time ratio.
6. A factor must be applied to account for the investment in land and buildings required to support the switch.

1
2

TSLRIC Costs per End Office Calling

In this instance, illustrated above, the call originates in a CLEC's end office and terminates in the ILEC's end office. The costs incurred by the ILEC are the processor time and SS7 signaling required to set up the call, the incoming trunk CCS, and the terminating line CCS in the terminating office.

1. Cost per End Office Call Set-up (SCIS-IN Features 939 and 941 , Trunk-Line Call Set-up)

2. Cost per End Office MOU (SCIS-IN Features 940 and 942 , Trunk-Line MOU)
3. Cost per SS7 Call Set-up (Included in SCIS-IN Features 939 and 941, TrunkLine Call Set-up)

$$
\begin{aligned}
& =(\mathrm{SSP}+\mathrm{SS} 7) * \mathrm{OCT} * \mathrm{ACF} * \mathrm{BH} / \mathrm{FD} / \mathrm{EBD} / \mathrm{CCR} * \mathrm{LBF} \\
& =
\end{aligned}
$$

5 Information System (SCIS) model licensed from Bellcore; specifically the SCIS

Notes:
(1) Source: SCIS Model Office output
(2) Source: CCSCIS Aggregation Model, Trunk Signaling.

27 (3) Source: SCIS-IN Real Time table, item 937.00 (Nortel proprietary)(6) Source: SCIS-IN Octet Table, items [OC939.00+(0.70*OC939.01)] @
(7) Annual Charge Factor should exclude corporate overheads
32

@ Assumes 70% call completion ratio

TSLRIC Costs per End Office Calling

Assumptions - Most of this information is derived from the Switching Cost Model Office input. This includes the adjustment for both the call completion ratio and the conversation time factor

Getting Started Investments per MS (GSC/MS)
Cost per Line CCS - Orig. \& Term. (LCCS)
Cost per Trunk CCS - Outg. \& Inc. (TCCS)
Cost per SS7 Octet (SSP)
Cost per Octet (SS7)
Processor Utilization - Line to Line (PULL)
Processor Utilization - Line to Trunk (PULT)
Processor Utilization - Trunk to Line (PUTL)
Octets per Originating Call (OCT)
Annual Charge Factor (ACF)
Busy Hour/Full Day Ratio (BHFD)

3 TSLRIC Costs per Trunk Side Local Tandem Terminating Calling

4. Assumptions - Most of this information is derived from the Switching Cost Information System (SCIS) model licensed from Bellcore; specifically the SCIS Model Office output.

7 Getting Started Costs perMS (GSC/MS)
Cost per Line CCS-Orig. \& Term. (LCCS)
Cost per Trunk CCS-Outg. \& Inc. (TCCS)
10 Cost per Tandem Trunk CCS-O \& 1 (TTCCS)
11 Cost per SS7 Octet (SSP)
12 . Cost per Octet (SS7)
13 Processor Utilization - Trunk to Line (PUTL)
14 Processor Utilization - Trunk to Trunk (PUTT)
15 Octets per Originating Call (OCT)
16 Annual Charge Factor (ACF)
17 Call Duration (CD)
18 Land and Building Factor (LBF)

19 Notes:
20 (1) Source: SCIS Model Office output
(2) Source: CCSCIS Aggregation Model, average Links plus Octets costs for Trunk Signaling.
(3) Source: SCIS-IN Real Time table, item 941.00 (Nortel proprietary)

24 (4) Source: SCIS-IN Real Time table, item 975.03 (Nortel proprietary)
25 (5) Source: SCIS-IN Octet Table, items [OC939.00+(0.70*OC939.01)] @
26 (6) Annual Charge Factor should exclude corporate overheads
27 (7) Source: Customer Usage Study
22
(8) Source: General Ledger Accounts

29 @ Assumes 70\% call completion ratio

TSLRIC Costs per Access Tandem Calling
4
4
5
6
7
9
9
10

Access Tandem Office Tandem.

1. Cost per Trunk Side Tandem Terminating Call Set-up

2. Cost per Trunk Side Tandem Terminating MOU

3. Cost per SS7 Call Set-up

In this instance, illustrated above, the CLEC purchases a trunk port directly at the ILEC's access tandem office. The costs incurred by the ILEC are the processor time and SS7 signaling required to set up the call at both the access tandem and end offices, the incoming and outgoing tandem trunk CCS costs, and the incoming trunk CCS costs at the end office. The costs associated with the end office portion were calculated on a previous page and are added in as a separate unit. The costs on this page are only those associated with the Access

3 TSLRIC Costs per Access Tandem Calling

Assumptions - Most of this information is derived from the Switching Cost Information System (SCIS) model licensed from Bellcore; specifically the SCIS Model Office output.

7 Getting Started Investments per MS (GSC/MS) Cost per Tandem Trunk CCS-O \& I (TTCCS) Cost per SS7 Octet (SSP)
10 Cost per Octet (SS7)
11 Processor Utilization - Trunk to Trunk (PUTT)
12 Octets per Originating Call (OCT)
13 Annual Charge Factor (ACF).
14 Call Duration (CD)

16 Notes:
17 (1) Source: SCIS Model Office output
12 (2) Source: CCSCIS Aggregation Model, average Links plus Octets costs for Trunk Signaling.
20 (3) Source: SCIS-IN Real Time table, item 975.03 (Nortel proprietary)
21 (4) Source: SCIS-IN Octet Table, items [OC939.00 + (0.70*OC939.01)] @
22 (5) Annual Charge Factor should exclude corporate overheads
23 (6) Source: Customer Usage Study
24
(7) Land \& Building Factor

25 @ Assumes 70% call completion ratio

In this instance, illustrated above, the CLEC interconnects with another CLEC through the ILEC's access tandem office. The costs incurred by the ILEC are the processor time and SS7 signaling required to set up the call at the access tandem and the incoming and outgoing tandem trunk CCS costs.

17 1. Cost per Trunk Side Tandem Terminating Call Set-up

Local Interconnection Intermediary Switching

TSLRIC Costs per Intermediary Switching

Access Tandem Office

Local Interconnection Intermediary Switching

TSLRIC Costs per Intermediary Switching

Assumptions - Most of this information is derived from the Switching Cost Information System (SCIS) model licensed from Bellcore; specifically the SCIS Model Office output.

16 Notes:
17 (1) Source: SCIS Model Office output
18 (2) Source: CCSCIS Aggregation Model, average Links plus Octets costs for
(3) Source: SCIS-IN Real Time table, item 975.03 (Nortel proprietary)

21
(4) Source: SCIS-IN Octet Table, items [OC939.00 $\div\left(0.70^{*}\right.$ OC 939.01)] @

22 (5) Annual Charge Factor should exclude corporate overheads
23 (6) Source: Customer Usage Study
(7) Land \& Building Factor

25 @ Assumes 70\% call completion ratio

CONFIDENTIAL

SS7 Investment

- Switching offices which serve as Service Switching Points (SSPs) to provide link access to the SS7 network require an additional resource investment output - "Investment per SS7 Octet".
- The "Investment per SS7 Octet" is developed as a levelized cost which reflects the SS7 investments and demand for signaling octets over the economic life of the SS7 equipment.
- Three calculation options are available based upon Economic Options and Parameters:

1. Capacity Investment of the next link set.
2. Non-exhaust marginal cost equals zero.
3. Long Formula calculated when link sets are added over economic life.

- Input data for "Investment per SS7 Octet" analysis may be provided as:
- Link Only
- Service Only
- Link and Service

2 In lieu of any specific ALEC forecasts or business plans, the average mile per circuit being used as the transport distance associated with the access tandem is 10 miles. Using a distance of 10 miles and the TSLRIC cost of per DS1 fixed and per DS1 mile; the transport cost - Access tandemint

Past experience indicates that the transport distance associated with the local tandem should be something less than the distance associated with the access tandem. Again, given no specific forecasts, an assumption was made that the distance would be half that of the access tandem or 5 miles. Using the distance of 5 miles and the TSLRIC cosi of per DS1 fixed and per DS1 mile, the transport cost-Local tandem is

SECTION III

018 3081

Switching Cost Information System (SCIS) Overview

The Switching Cost Information System (SCIS) is a Bellcore developed system of models which Sprint utilizes for switching investment and cost development. SCIS is the predominently used model in the telecommunications industry within the United States in determining switch related investmentcost. In July, 1992 Arthur Anderson \& Co. completed an independent review of SCIS and found the output is generally reasonable and consistent with principles of cost causation.

The Switching Cost information System consists of three interactive models: SCIS-MO, SCIS-IN, and CCSCIS. SCIS-MO is the Model Office Module and calculates a standard set of basic investment building blocks for offices and remotes. Sprint uses SCIS to calculate investment for Nortel's and AT\&T's (Lucent) switch technologies. The investments can be calculated for a single switch or aggregated to reflect multiple switches and geographic areas. CCSCIS models the Common Channel Signaling investment associated with switching investment. SCIS-IN utilizes switch vendor tables', results of SCIS-MO and CCSCIS studies and feature specific inputs and calculations to determine investment associated with network features and services.

Various cost methodologies can be modeled through SCIS including Average, Marginal-Capacity and Marginal-Long Formula. The terminology Average, Marginal-Capacity and Marginal-Long Formula is Bellcore's labeling and should not be confused with the meaning which those terms might have in economic circles.

Marginal cost, as produced in SCIS, would be representative of LRIC costs as it reflects the additional cost created (or avoioed) by the decision to provide (or not provide) an additiona! block of output. In order to most appropriately reflect TSLRIC, Sprint utilizes the Average Model Office investment in SCIS. The Marginal runs would reflect a theoretical capacity utilization which would result in a cost which is lower than that actually realized. The Average model office investment more accurately reflects the actual costs incurred by the incumbent LEC to provide a network element to an alternative LEC. This methodology is consistent with the language in Order No. PSC-96-0811-FOF-TP at page 13 which states: "These (cost) estimates shall be based on the providers current or prospective network facilities, as opposed to some theoretically optimal network configuration."

[^0]
TSLRIC vS LRIC

Long Run Incremental Cost (LRIC) is the additional cost created (or avoided) by the decision to provide (or not to provide) an additional block of output. If the service is already being provided, LRIC includes only the variable costs of providing the additional block of output.

Total Service Long Run Incremental Cost (TSLRIC) is a variation of LRIC. TSLRIC represents the additional cost created by providing an entire service. Specifically, TSLRIC includes all fixed and volume sensitive costs created by offering the entire service, or avoided by not offering the entire service. In other words, the TSLRIC of a specific service is equal to the difference between (1) the total cost of the company providing all services, and (2) the total cost of the company providing all services except the specific service.

The TSLRIC of a group of services is equal to the TSLRIC of each individual service within the group plus those fixed and volume sensitive costs created by offering the entire service but not affected by any of the individual services within the group.

TSLRIC (or LRIC) should include only current or forward looking technologies. Typically, these studies make some basic assumptions as to the infrastructure to be used. For example, existing central office locations will be used, although the technology may differ from that which currently exists. Existing infrastructure, such as conduit, will also be used.

A so-called "scorched earth" approach is another variation which assumes there is no existing infrastructure, i.e. anything is possible. For example, a central office location may be anywhere the analyst believes is more efficient. Existing outside plant configurations may be replaced by some "leap-frog" technology.

For purposes of network element unbundling, TSLRIC is the appropriate costing standard. In this instance, we are concerned with the cost of providing network. elements associated with telecommunication services, versus not providing those network elements.

TSLRIC Investment of Unbundled Network Elements

Typically, both LRIC and TSLRIC studies determine the incremental investment associated with a specific service, and then apply an appropriate annual charge factor.

For switching and transport, while specific equipment will vary in practice, the following investment items are typically included in the TSLRIC incremental investment. The items marked with an asterisk might not be included in a LRIC study where the existing service already exists. However, there is no absolute rule. Each service and the purpose for which the study is being done must be analyzed to identify specifically what cost elements should or should not be included.

Unbundled Switching:

- Line Termination
- Line Card
- Main Distribution Frame
- Protection
- Central Processing Units *
- Memory
- Line-side traffic sensitive investment
- Trunk-side traffic sensitive investment
- Network matrix
- Remote switches
- Host-remote umbilicals
- Land, building, and power for central offices and remotes*
- Software essential for basic exchange and interexchange switching functions*
- Generic upgrades

Unbundled Transport:

- Fiber cable
- Fiber repeaters
- Fiber tip cable
- Fiber patch panels
- Fiber optic terminals
- DSX3 cross connects
- M1/3 multiplexers
- DSXi cross connects
- Conduit *
- Poles*
- Rights-of-way *

TSLRIC incremental Annual Charge Factor:
The following expense items are typically included in an incremental study.

- Maintenance
- Depreciation
- Customer services
- income taxes
- Property taxes
- Return on investment, including equity

Specifically excluded from an incremental study are corporate overheads and administrative expenses which are not directly attributable to individual services.

SECTION IV

COST STUDY RESULTS
 CALCULATIONS USING SCIS OUTPUTS

Average Minutes per Message
First Minute
Additional Minute
4.9375
3.9375

5 END OFFICE CALCULATIONS

Additional Minute:

14 Cost of Average Call =
15 Per MOU - End Office $=$
16 Per MOU End Office.

17 Footnotes:

18 Setup - Getting Started Investment per Millisecond multiplied by the
19 Processor Utilization Line to Line multiplied by the Annual Charge
20 Factor (.24) multiplied by the Busy Hour/Full Day Ratio (.10) divided by the
21 Equivalent Business Days per year (365) divided by the Call Completion
2 Ratio (.70) multiplied by the Land \& Building factor (1.043).

	MOU - Sum of the Cost per Line CCSmultiplied by the Annual Charge Factor (.24) multiplied by the Busy Hour/Ful
2.4	
25	Day Ratio (.10) divided by the Equivalent Business Days per Year (365)
26	mulbiplied by the CCSMOU Conversion (.60) divided by the Conversation Time Ratio
27	(75) multiplied by the Land \& Building factor (1.043).
28	SS7-Sum of the Cost per SS7 Octet, SSP, and the Cost per Octet
29	multiplied by the Octets per Call multipled by the Annual Charge Factor (.24)
30	multiplied by the Busy Hour/Full Day Ratio (.10) divided by the Equivalent Business
21	Days per year (365) divided by the Call completion Ratio (70) multiplied by the Land
32	\& Building factor (1.043).

33 Average Minutes per Message - Source: See Attachment 8

Average Minutes per Message
4.9375

First Minute
Additional Minute
3.9375

Additional Minute:
MOU
SS7

$13 a$

14 Cost of Average Call =
15 Per MOU-Local Tandem =
16 PerMOU Local Tandem
17 Permou Local Tandem -
18 Per MOU End Office -
19 Total per MOU w/o transport Loc Tom
20 Transport
21 Total per MOU whransport Loc Tdm

22 Footnotes:

23 Setup - Getting Started Investment per Millisecond \square multiplied by the sum of 24 the Processor Utilization-Trunk to Trunk multiplied by the Annual Charge 25 Factor (.24) multiplied by the Busy Hour/Full Day Ratio (.10) divided by the 26 Equivalent Business Days per year (365) multiplied by the Land \& Building factor (1.043).

28 MOU - Multiply the Cost per Trunk CCS-Outgoing \& Incoming \quad by 2,
27 multiplied by the Annual Charge Factor (.24) multiplied by the Busy Hour/Full Day
20 Ratio (10 divided by the Equivalent Business Days per year (365) multiplied by the MOU/CCS Conversion (.60) multiplied by the Land \& Building factor (1.043).

32 SS7 - Sum of the Cost per SS7 Octet, SSP, \square and the Cost per Octet 33 multiplied by the Octets per Call 3 multiplied by the Annual Charge Factor (.24) 34 multiplied by the Busy Hour/Full Day Ra6o (.10) divided by the Equivalent Business 35 Days per year (365) multiplied by the Land \& Building factor (1.043).

36 Transport - Fixed (mulus DS1Mile \longrightarrow mplied by average miles (4.0)
27 mulbplied by Land \& Building factor (1.043).
38 Average Minutes per Message - Source: See Attachmeni 8
2
4

Average Minutes per Message 4.9375

First Minute
Additional Minute

5 ACCESS TANDEM CALCULATIONS

Lo Setup
7 MOU
SS7
9 Transport

Additional Minute:
MOU SS7
3.9375

10 First Minute:
1/ Setup
12 MOU
$1 \Rightarrow$ SS7
17
15
16 Cost of Average Call =
17 Per MOU-Access Tandem =
18 Per MOU Access Tandem -
19 PerMOU End Office -
20 Total per MOU w/o Transport - Access Tdm -
21 Transport
22 Total per MOU w/Transport - Access Tdm -

A
 ß

2. Tandem Switching - per MOU
3. 1 Mile of Transport ($\quad 216,000$)

4 Intermediary Tandem

SECTION V

SWITCHING COST INFORMATION SYSTEM (SCIS)

Explanation of Terms

Cost Per Millisecond/Getting Started Investment

As relates to SCIS, the cost to provide common components that are required by the system before any subscribers may be served. Getting Started investment also includes Breakage. Breakage is the cost attributable to the inevitable underutilization of equipment. Many central office equipment components are purchased in large modules, i.e., frames, modules, units, shelves, etc., which may exceed a particular equipment requirement.

Line Termination Investment

a) Minimum Cost Per Line.

Total of Working Plain Old Telephone Service (POTS) Line Cost and Excess Hundred Call Second (CCS) Capacity Cost.
b) Working POTS Line Cost

The Working POTS Line Termination Cost is the cost associated with the physical appearance of a line on the switch. The primary cost components for analog lines are the Distribution and Protection frame costs and the Line Card. The primary cost component for SLC-96 lines is the DS-1 termination.
c) Excess CCS Capacity Cost

Excess CCS Capacity Cost is that portion of the traffic-sensitive cost components not recovered by actual usage. It occurs when the input Originating + Terminating $(\mathrm{O}+\mathrm{T})$ CCS per Line, which is the actual usage, is less than the adjusted capacity breakpoint CCS per line. This unused CCS is identified as Excess Capacity. It recovers the cost of the unused Line Concentrating Module (LCM) at a Remote Line Concentrating Module (RLCM) and Remote Switching Center (RSC).

The cost for ISDN lines is composed of the above components, along with the Getting Started Cost per Basic Rate Interface (BRI), which includes BRI-specific breakage and spares.

Cost Per Line CCS (Originating or Terminating)

The usage cost for the office. It represents the actual use of traffic-sensitive cost components in the office being studied.

Note: The Cost per Line CCS reflects a weighted average of all analog and digital POTS lines in the office. This includes any analog line terminated on Line Concentrating Modules Enhanced Network (LCMEs) entered as ISDN data.

Digitone Increment per Digitone Call

Digital lines require Digitone (DT) receivers, housed in Maintenance Trunk Modules, to process Digitone dialing. The Digitone Increment per Digitone Call represents the incremental costs for Digitone service on digital tines.

Cost per Trunk CCS

The Cost per Trunk CCS Originating/Incoming (O/I) category reflects the cost associated with local trunk usage (analog, digital, and DSO clear channel capability [DSO CCC] digital) for interoffice calls. A weighted average is determined from the analog, digital, and DSO CCC digital trunk mix of the offices being studied. The Cost per Trunk CCS is calculated for end offices (DMS100) and end office/tandern combined switches (DMS100/200).

Cost Per Umbilical CCS

The equipment at each end of the host and the remote. Host includes T1 ferminating card Line Group Controller (LGC) or Line Trunk Controller (LTC), a portion of the LGC and a portion of the Double Shelf Network Equipment (DSNE) or Enhanced Network (ENET). The remote includes the $T 1$ termination card. This does not include the span line connecting the host to the remote. That is covered in the transport mode!.

SECTION YI

The following page (SCIS Model Office - End Office Output page) represents the Switching Cost Information System (SCIS) Model Office investment results. A composite study of five representative end offices were used to develop these investment results.

The following pages are the inputs for the end offices and remotes, provided by the engineers, which are required for the Switching Cost Information System (SCIS). These inputs are used to develop the investment results.

1	DMS100 HOST INPUTS		SECT Page
2	Altamonte Springs		
3	Type:	End Office	
4	Equipped With:	Lines, Trks, SS7, ISDN	
5	High Day/Avg Busy Season CCS Ratio:	1.20	
6	Nelwork Type:	Dual Cabinet Enhanced	
7	Nelwork Modules:	N/A	
8	Year of Switch Cutover:	1988	
9	Peak to Average Busy Hour Factor:		
10	Upgrade CPU Before Sw Replacement:	YES	
11	Upgrade Sequence Type:	Supernode (SN)	
12	Initial Processor Configuration:	Supernode 20 (SN20)	
13	Switch Economic Life:	15	
14	Upgrade within 5 Years:	YES	
15	\% Util At End of Economic Life:	70	
16	Year \%Util	RTUS Mat	
17	SN20: 1988		
18	SN30: 1992 - 55		
19	SN 60: 1995		
20	LPP Type: Single-shelf		
21	Slots Used: 12		
	A	B	
22	Number of Lines:		
23	Administrative Fill Factor:		
24	Avg Busy Season Busy Hour Ouig+Inc CCS Per Line:		
25	Avg Busy Season Busy Hour Outgtinc Calls Per Line:		
26	DS-30As per Line Concentrating Module:		
27	DS-30s per Line Group Controller.	16	
28	Concentration Ratio:	5:4	
29	Number of Trunks:		
	Administralive Fill:		
	Avg Busy Season Busy Hour Ouig+Inc CCS Per Trunk:		
22	Avg Busy Season Busy Hour Outo+lnc Calls Per Trunk:		
	\% of Local Dig Trks that are DSO Clear Channel Capability:	90	
	\% of Outg+inc Calls Using Inband Signaling:	10	
35	SS7 Insiallation:	1990	
$\bigcirc 6$	Economic Life, in Years, of SS7 Equip:	15	
27	S57 Equipment:	LPP	
$=8$	Input Mode:	LINK	
29	Link Pairs Added:	2	
10	Percent Utilized:		
/1	End of Economic Life:	70	

1 DMS100 HOSTINPUTS
2 Lake Brantley
3 Type:
4 Equipped With:
5 High Day/Avg Busy Season CCS Ratio:
6 Network Type:
7 Network Modules:
8 Year of Switch Cutover:
9 Peak to Average Busy Hour Factor:
10 Upgrade CPU Before Sw Replacement:
$1 /$ Upgrade Sequence Type:
12 Initial Processor Configuration:
13 Switch Economic Life:
14 Upgrade within 5 Years:

15%	Util At End of Economic Life:	
16	Year	$\frac{\% \text { Util }}{17}$
18 SN20:	1990	35
19 SN30:		

20 LPP Type:21 Slots Used:
Single-shelf12
End Office
Lines, Trks, Remotes, SS7, LPP1.20
Double Shelf Network Equip.10
1990
YES
Supernode (SN)
Supernode 20 (SN20)15
NO70
RTUS Mat
22 Number of Lines:
23 Administrative Fill Factor:
24 Avg Busy Season Busy Hour Outgilnc C
25 Avg Busy Season Busy Hour Outginc C
26 DS-30As per Line Concentrating Module:
27 DS-30s per Line Group Controller:2.8 Concentration Ratio:
29 Number of Trunks:
30 Administrative Fill:
3) Avg Busy Season Busy Hour Outg+inc C
\#2 Avg Busy Season Busy Hour Outgtinc C
$3 \mathbf{3} \%$ of Local Dig Trks that are DSO Clear C

34% of Outg+inc Calls Using Inband Signali90
165:410
25 SS7 Installation: 1990
36 Economic Life, in Years, of SS7 Equip: 15
37 SS7 Equipment: LPP
38 Input Mode: LINK39 Link Pairs Added:
40 Percent Utilized:
40 Percent Utilized:
/ll. End of Economic Life: 701
1 DMS100 HOSTINPUTSB
2 Maitland
Type:
Equipped With:
5 High Day/Avg Busy Season CCS Ratio:
Network Type:
7 Network Modules:
End Office
Lines, Trks, Rem, SS7, LPP, ISDN1.20
Double Shelf Network Equip.6
3 Year of Switch Cutover: 1990
7
7 7 Peak to Average Busy Hour Factor:
0: Upgrade CPU Before Sw Replacement:
// Upgrade Sequence Type:
12 Initial Processor Configuration:
13 Switch Economic Life:
14 Upgrade within 5 Years:
15 \% Util At End of Economic Life: 70
16 Year
17 SN20: 1990 \% U(i) 35
18 SN3O:
17 SN 60: 1996 35
20 LPP Type: Full
21 Slots Used: 36
22 Number of Lines:
23 Administrative Fill Factor:24 Avg Busy Season Busy Hour Outg \div Inc C25 Avg Busy Season Busy Hour Outg \div Inc C26 DS-30As per Line Concentrating Module:27 DS-30s per Line Group Controller:
YES

YES
Supernode (SN)
Supernode 20 (SN20)15
NO
RTUS MatRTUS Mat

Supernode (SN)
Supernode 20 (SN20)
15
NO
. RTUSMat \qquad

1 DMS100 HOST INPUTS
A2 Winter Park3 Type:4 Equipped With:
5 High Day/Avg Busy Season CCS Ratio:
6 Network Type:7 Network Modules:$\&$ Year of Switch Cutover:
9 Peak to Average Busy Hour Factor:
O Upgrade CPU Before Sw Replacement:
// Upgrade Sequence Type:
12 Initial Processor Configuration:
13 Switch Economic Life:
B
End Office
Lines, Trks, Remotes, SS7, LPP, ISDN1.20
Dual Cabinet Enhanced Network
NA
1988
YES
Supernode (SN)
Supernode 20 (SN20)
14 Upgrade within 5 Years:
14 Upgrade within 5 Years:
15% Util At End of Economic Life: YES 701516 Year $\frac{\%}{35}$
17 SN2O: 1988 35
12 SN30: 1992 55
19 SN 60: 1995 3520 1PP Type:Full
21 Slots Used: 36
22 Number of Lines:
23 Administrative Fill Factor:
24 Avg Busy Season Busy Hour Outgilinc CC
25 Avg Busy Season Busy Hour Ouigilnc Cal
26 DS-30As per Line Concentrating Module:
27 DS-30s per Line Group Controller:
28 Concentration Ratio:
28 Concentalion Ratio. 5:4
RTUS Mal

RTUS MaI
29 Number of Trunks:
30Administrative Fill:3/ Avg Busy Season Busy Hour Outg+Inc CC
32 Avg Busy Season Busy Hour Outg+inc Cal
23 \% of Local Dig Trks that are DSO Clear Ch
16
34% of Outgilnc Calls Using Inband Signalin 10$=$
90
35 SS7 Installation:1990
36 Economic Life, in Years, of SS7 Equip: 15
≥ 7 SS7 Equipment: LPP
38 Inpul Mode:
$\therefore 厅$ Link Pairs Added:
to Percent Utilized:
4. End of Economic Life:LINK$\xrightarrow{2}$70

/ REMOTES

LUNFMWENTMELSECTIO:

2 MTLD-Colonnades \#1
3 Equipped with:

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
iO Hosting Controller Type for Umbilical Links:
Line Group Controller :
11 Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:
17 MTLD - Colonnades \#2
18 Equipped with:
Lines
19 Remote Type:
RLCM

20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% intra-Remole:
25 Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig 4 Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig \div Term Calls Per Line:
3/DS-30As per Line Control Module:

Line Group Controller

NI
/ REMOTES

2 LKBR-Bear Lake

4 Remote Type:
B

Lines

RSC Single RCC

5 General/Umbilical:

6 High Day/Avg Busy Season CCS Ratio:

7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
11 Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:
17 LKBR - Francis Drive
18 Equippea with:
Lines

19 Remote Type:
RLCM

20 General/Umbilical:

21 High DaylAvg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
$24 \mathrm{Net} \%$ Intra-Remote:
:5 Hosting Controller Type for Umbilical Links:

26 Lines:

27 Number of Lines:
28 Admin. Fill Factor (\%):
こ9 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
Avg Busy Season Busy Hour Orig +Term Calls Per Line:
3) DS-30As per Line Control Module:

Line Group Controller

Line Group Controller

1 REMOTES

2 LKBR-Foxwood

 3 Equipped with:
 4 Remote Type:

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
1 OHosting Controller Type for Umbilical Links:
11 Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30A.s per Line Control Module:

17 LKBR - Hunt Club $\# 1$
18 Equipped with:
Lines
19 Remote Type:
RLCM

20 General/Umbilical:

21 High DaylAvg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
$24 \mathrm{Net} \%$ Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig 4 Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
三/ DS-30As per Line Control ivodule:

RLCM

Line Group Controller

Line Group Controller

/ REMOTES
2 LKBR-Hunt Club \#2
3 Equipped with: $\frac{B}{\text { Lines }}$
RLCM 4 Remote Type:2 LKBR-
Gonfluritum
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:Line Group Controller
C
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
11 Lines:
12 Number of Lines:
1.3 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:16 DS-30As per Line Control Module:
17LKBR - Hunt Club $\# 3$
18 Equipped with:
19 Remote Type: RLCM
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:

26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
3) DS-30As per Line Control Module:

1 REMOTES

2 LKBR-Markham Woods
2 A
3 Equipped with:
4 Remote Type:
B
Lines
RSC Single RCC

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:

(/) Lines:

12 Number of Lines:
) 3 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 LKBR - Montgomery Road $\# 1$
18 Equipped with: Lines
19 Remote Type: RLCM
20 General/Umbilical:
2) High Day/Avg Busy Season CCS Ratio:

22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:

- 4 Net \% Intra-Remote:
≥ 5 Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
$\geq /$ DS-30As per Line Control Module:

Line Group Controller

Line Group Controller

N/A
1 REMOTES
2 LKBR - Montgomery Road \# 2
3 Equipped with: Lines
Remote Type: RLCM
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:
17 LKBR-Wekiva Springs
18 Equipped with: Lines
RSC Dual RCC
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Nel \% Intra-Remote:
_ 5 Hosting Controller Type for Umbilical Links:Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig + Term Calls Per Line:

- conflekilal

$$
?
$$

/ REMOTES

- \quad UUNEIDEMTHEL
 SECT
 Page 1

2 WNPK-Glenridge Way

 5 General/Umbilical:

6 High Day/Avg Busy Season CCS Ralio:

// Lines:
12 Number of Lines:
13 Aomin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 WNPK - Lee Road
18 Equipped with:
Lines
19 Remote Type:
RSC Dual RCC

20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
27 Number of Lines:
2. Admin. Fill Factor (\%):

27 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
三o Avg Busy Season Busy Hour Orig + Term Calls Per Line:
三/DS-30As per Line Control Module:
REMOTES
WNPK - Lake Sue

5 General/Umbilical:
6 High DaylAvg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller

/) Lines:

12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 WNPK - Orlando Naval Training Ctr. ${ }^{H} 1$

18 Equipped with:
Lines
19 Remote Type:
RLCM
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
-6 Lines:
$: 7$ Number of Lines:
28 Admin. Fill Factor (\%):
$\because 7$ Avg Busy Season Busy Hour Orig +Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
$3 /$ DS-30As per Line Control Module:

N/A

/ REMOTES

Conficerilik

2 WNPK - Orlando Naval Training Ctr. \#2
Equipped with: $\quad \frac{B}{\text { Lines }}$
4 Remole Type:
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical Ti Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller

// Lines:

12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 WNPK - Temple Trail
18 Equipped with:
Lines
19 Remote Type:
RSC Dual RCC

20 General/Umbilical:

21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical Ty Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
$\because 5$ Hosting Controller Type for Umbilical Links:
Line Group Controller

6 Lines:

7 Number of Lines:
≥ 2 Aomin. Fill Factor (\%):
ๆ Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
-O Avg Busy Season Busy Hour Orig + Term Calls Per Line:
E) DS-30As per Line Control Module:

1 REMOTES

2 WNPK-Victoreen
3 Equipped with:
\underline{E}
4 Remole Type: RSC Dual RCC

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:

7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller
// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

/ REMOTES

ALSP - Big Tree 3 Equipped with:
4 Remole Type:
 RSC Single RCC

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:

11 Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:

17 ALSP-Cassel Creek

18 Equipped with:
) 7 Remoie Type:

Lines
RSC Dual RCC

20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller

26 Lines:

37 Number of Lines:
又 8 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
3 DS-30As per Line Control Module:

1 REMOTES

2 ALSP-Highland St.

3 A

4 Remote Type:
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 - No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller
1/ Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:

/7ALSP-island Lake
18 Equipped with:

Lines

19 Remote Type:
RSC Dual RCC
20 General/Umbilical:
21 High DaylAvg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig - Term Calls Per Line:
3 DS-30As per Line Control Module:

| REMOTES

2
ALSP-Longwood

3 Equipped with:

Lines C
4 Remole Type:
RSC Dual RCC

5 General/Umbilical:

6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller
$1 /$ Lines:
12 Number of Lines:
/ 3 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line: 16 DS-30As per Line Control Module:

/7ALSP - Lake Orienta
18 Equipped with:
Lines
19 Remote Type:
OPM
20General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
$24 \mathrm{Net} \%$ Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
2 9 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig -Term Calls Per Line:
2 IDS-30As per Line Control Module:

/ REMOTES

2 ALSP. Oak Lake \#1
3 A
3 Equipped with: Lines
4 Remote Type: OPM

Confioenilal

- Confile inlal
C
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
Line Group Controller
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Nel \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 ALSP-Oak Lake $\underset{\text { \# }}{7}$
18 Equipped with: Lines
19 Remote Type: OPM
20 General/Umbilical:

2) Hign Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):

- 9 Avg Busy Season Busy Hour Orig + Term CCS Per Line:2 OAvg Busy Season Busy Hour Orig + Term Calls Per Line:DS-30As per Line Control Module:

1 REMOTES

2 ALSP-Oranole \#

2 ALSP-Oranole \#

2 ALSP-Oranole \#
3 Equipped with:
3 Equipped with:
3 Equipped with: \#1 \#1 \#1
3 Equipped with
3 Equipped with
3 Equipped with 3 Equipped with:
4 Remole Type: 3 Equipped with:
4 Remole Type: 3 Equipped with:
4 Remole Type:
e
e
e Lines Lines Lines
OPM
OPM
OPM5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
7 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:Line Group Controller\because
Line Group Controller
// Lines:
12 Number of Lines:
, 2 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:

17 ALSP - Oranole \#2
18 Equipped with: Lines
19 Remote Type: OPM
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
.- Hosting Controller Type for Umbilical Links:Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
7 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
≥ 0 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
E/ DS-30As per Line Control Module:

/ REMOTES

2 ALSP-Short Park
3 Equipped with:
4 Remote Type:

\qquad

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Nel \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:

$1 /$ Lines:
/ 2 Number of Lines:
I Admin. Fill Factor (\%):
; Avg Busy Season Busy Hour Orig + Term CCS Per Line:
$i 5$ Avg Busy Season Busy Hour Orig \div Term Calls Per Line:
16 DS-30As per Line Control Module:

2 APPK - Border Lake \#1

3 Equipped with:
4 Remole Type:
$\frac{\beta}{\text { Lines }}$
RSC Single RCC

5 General/Umbilical:
6 High DaylAvg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilica! CCS:
3 Nel \% Intra-Remote:
10 Hosling Controller Type for Umbilical Links:

// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK - Border Lake ${ }_{\text {Н }}^{\text {H2 }}$

/8 Equipped with:
Lines

19 Remote Type:
RSC Single RCC
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
31 DS-30As per Line Control Module:

Line Group Controller
) REMOTES
$\frac{\beta}{\text { Lines }}$
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
1Ξ Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
I/ DS-30As per Line Control Module:
OPM

- COKFIDERTEL

2 APPK-Belmere
 3 Equipped $\begin{aligned} & \text { Aith: } \\ & 4 \\ & \text { Remole Type: }\end{aligned}$

7 REMOTES
18APPK - Bayhill
19 Eouipped with:
Lines
20 Remote Type:
RSC Single RCC

2/ General/Umbilical:

22 High DaylAvg Busy Season CCS Ratio:
23 No. of Umbilical T1 Links:
24 Total Umbilical CCS:
2 §Net \% Intre-Remote:
26 Hosting Controller Type for Umbilical Links:

27 Lines:
28 Number of Lines:
27 Admin. Fill Factor (\%):
ミo Avg Busy Season Busy Hour Orig +Term CCS Per Line:
ミI fivg Busy Season Busy Hour Orig + Term Calls Per Line:
E2DS-30As per Line Control Module:

$/$ REMOTES

2 APPK-Harper Valley

3 Equipped with:
4 Remote Type:
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
, \because Admin. Fill Factor (\%):
1才 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK - Jones Avenue
18 Equipped with:
Lines
19Remote Type:
OPM

20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
$\geqslant 3$ Total Umbilical CCS:
24 Net \% Intra-Remote:
2 E Hosting Controller Type for Umbilical Links:

26 Lines:

27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
3/ DS-30As per Line Control Module:

/ REMOTES

RSC Dual RCC

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% intra-Remote:
IO Hosting Controller Type for Umbilical Links:
//Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
17 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig \div Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK - Lake Down $\$ 1$
18 Equipped with: Lines
19 Remote Type:
OPM
20 General/Umbilical:
$2 /$ High DaylAvg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Nei \% Intra-Remote:
$\ni \cong$ Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
$\therefore 0$ Avg Busy Season Busy Hour Orig + Term Calls Per Line:
EI DS-30As per Line Control Module:
Line Group Controller

/ REMOTES

2 APPK - Lake Down \#2
A
3 Equipped with:
4 Remole Type:

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7. No. of Umbilical T1 Links:
8. Total Umbilical CCS:

7 Net \% Intra-Remole:
Jo Hosting Controller Type for Umbilical Links:
$1 /$ Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
$1 \neq$ Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calis Per Line:
16 DS-30As per Line Control Module:

17 APPK - Lakeville \#
18 Equipped with: Lines
19 Remote Type: OPM
20 Genera//Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
$\therefore 6$ Lines:
37 Number of Lines:
\geq Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
2/ DS-30As per Line Control Module:

/ REMOTES

2 APPK -Lakeville \#2
3 Equipped with:
4 Remote Type:

Lines
OPM

5 General/Umbilical:

6. High Day/Avg Busy Season CCS Ratio:

7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
11 Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig \div Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK-Lake Lerla
$\begin{array}{ll}\text { iq Equipped with: } & \text { Lines } \\ 19 \text { Remoie Type: } & \text { OPM }\end{array}$

20 General/Umbilical:

21 High Day/Avg Busy Season CCS Ratio:

22 No. of Umbilical T1 Links:
2 こTotal Umbilical CCS:
24 Net \% Intra-Remote:
EHosting Controller Type for Umbilical Links:

26 Lines:

37 Number of Lines:
28 Admin. Fill Factor (\%):
.9 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
O A.vg Busy Season Busy Hour Orig + Term Calls Per Line:
シ/DS-30As per Line Control Module:

Line Group Controller

/ REMOTES

2 APPK-McCormick Road \#1

3 Equipped with: $\frac{B}{\text { Lines }}$

OPM
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
$1 \cong$ Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig $~+$ Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK - McCormick Road \#2
18 Equipped with: Lines
19 Remote Type: PPM
20 General/Umbilical:
21 High Day/Avg Busy Season CCS Ratio:
22 No. oi Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
2.5 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:ミ/ DS-30As per Line Control Module:

1 REMOTES

2 APPK-Plymouth-Sorrento
3 Equipped with: B
4 Remole Type: OPM
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
$1+$ Avg Busy Season Busy Hour Orig +Term CCS Per Line:
Avg Busy Season Busy Hour Orig + Term Calls Per Line:
Ib DS-30As per Line Control Module:
17 APPK - Ponkan Pines
18 Equipped with:19 Remole Type:20 General/Umbilical:
2/ High Day/Avg Busy Season CCS Ratio:
? 2 No. of Umbilical T1 Links:

- 三Total Umbilical CCS:
4 Net \% Inira-Remote:ㄹ. 5 Hosting Controller Type for Umbilical Links:
$\because 6$ Lines:
27 Number of Lines:
78 Admin. Fill Factor (\%):
19 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
\therefore DS-30As per Line Control Module:

Line Group Controller

1 REMOTES

COMFIBEITIGL

2 APPK－Rock Springs
3 Equipped with：
4 Remole Type：$\frac{B}{\text { Lines }}$RSC Single RCC
5 General／Umbilical：
6 High Day／Avg Busy Season CCS Ratio：
7 No．of Umbilical T1 Links：
8 Total Umbilical CCS：
9 Net \％Intra－Remote：
10 Hosting Controller Type for Umbilical Links：
／／Lines：
12 Number of Lines：
13 Aomin．Fill Factor（\％）：
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line：
15 Avg Busy Season Busy Hour Orig＋Term Calls Per Line：
16 DS－30As per Line Control Module：
17 APPK－Reams Road
12 Equipped with： Lines
19 Remote Type： OPM
20 General／Umbilical：
2）High Day／Avg Busy Season CCS Ratio：
22 No．of Umbilical T1 Links：
23 Total Umbilical CCS：
ユー Net \％Intra－Remote：
$Z 5$ Hosting Controller Type for Umbilical Links：
26 Lines：
27 Number of Lines：
28 Admin．Fill Factor（\％）：
29 Avg Busy Season Busy Hour Orig＋Term CCS Per Line：
20 Avg Busy Season Busy Hour Orig＋Term Calls Per Line：
こ／DS－30As per Line Control Module：C
Line Group Controller
1.2
Line Group Controlier

1 REMOTES
2 APPK - Sheeler Road \#1
A
3 Equipped with:
If Remole Type:$\frac{B}{\text { Lines }}$
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
$\&$ Tolal Umbilical CCS:
9 Net \% Intra-Remole:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
13 Aomin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:OPM
C
Line Group Controller

17 APPK - Sheeler Road \#2
18 Equipped with: Lines
OPM
20 General/Umbilical:
$2 /$ High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller
26 Lines:
こ7 Number of Lines:
28 Admin. Fill Fractor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
$3 /$ DS-30As per Line Control Module:

/ REMOTES

2 APPK - Shopke Road

A
 3 Equipped with:
 4 Remole Type:

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7. No. of Umbilical T1 Links:

8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
1/ Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig \uparrow Term Calls Per Line:
16 DS-30As per Line Control Module:

17 APPK - Sunset

18 Equipped with:
Lines
19 Remote Type:
OPM

20General/Umbilical:
2 / High Day/Avg Busy Season CCS Ratio:
≥ 2 No. of Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intre-Remote:
EHosting Controller Type for Umbilical Links:

26 Lines:

27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig +Term CCS Per Line:
30 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
E/ DS-30As per Line Control Module:
1 REMOTES

2 APPK-Tropic Isle
3 Equipped with:
4 Remote Type:

5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:

17 APPK - Windermere

18 Equipped with:

Lines

19 Remote Type:
RSC Single RCC

20General/Umbilical:

21 High Day/Avg Busy Season CCS Ratio:
22 No. of Umbilical Ti Links:
2 Ξ Total Umbilical CCS:
?. Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
26 Lines:
27 Number of Lines:
2て Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig \div Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
2 IDS-30As per Line Control Module:

Line Group Controller

Line Group Controller

REMOTES
2 APPK-Yogi Bear\#1
A B
3 Equipped with: Lines
4 Remole Type: OPM
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7 No. of Umbilical T1 Links:
8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
Line Group Controller
// Lines:
12 Number of Lines:
12 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig +Term Calls Per Line:
16 DS-30As per Line Control Module:
17 APPK - Yogi Bear \#2
18 Equipped with: Lines
19 Remote Type: OPM
20 General/Umbilical:
2. High Day/Avg Busy Season CCS Ratio:
22 No. oi Umbilical T1 Links:
23 Total Umbilical CCS:
24 Net \% Intra-Remote:
25 Hosting Controller Type for Umbilical Links:
Line Group Controller

26 Lines:
27 Number of Lines:
28 Admin. Fill Factor (\%):
29 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
20 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
2/ DS-30A.s per Line Control Module:

/ REMOTES

2 APPK-Zellwood
3 Equipped with:
4 Remole Type:
5 General/Umbilical:
6 High Day/Avg Busy Season CCS Ratio:
7. No. of Umbilical T1 Links:

8 Total Umbilical CCS:
9 Net \% Intra-Remote:
10 Hosting Controller Type for Umbilical Links:
// Lines:
12 Number of Lines:
13 Admin. Fill Factor (\%):
14 Avg Busy Season Busy Hour Orig + Term CCS Per Line:
15 Avg Busy Season Busy Hour Orig + Term Calls Per Line:
16 DS-30As per Line Control Module:

Colfliceitial

Lines

RSC Single RCC

Cuhitictinime

The following page represents the Switching Cost Information System (SCIS) Model Office investment results for the Access Tandem. A composite study of three representative access tandem offices were used to develop these investment results.

Forward Looking Cost of Money: 10.50. Frocessor Utilization Factor: 0. Es ss

18 Inv. Fer Call Type
19 Inv. Fer Incoming Call:
20 Inv. Fer Incoming Tandem Call:
21 Inv. Fer Trunk CCS ($0+1$):
22Inv. Fer Tandem Trunk CCS ($0+1$):
2З inv. Fer SS7 Octet:
24 Unbilical Trunk Inv. Fer CCS ($\mathrm{O}+\mathrm{I}$):

11
/2 Getting Started Inv. Fer MS:
13 Line Termination Inv.
14 Minimum Inv. Fer Line: NA

15 R. Working Line Investment: NA
NA
C. Excess CCS Capacity Investment:
$16 \quad$ C. Excess CCS Capacity
$17 \quad$ Inv. fer Line CCS $(0+T):$
NA
NA

$$
E_{1} F \& I \text { Unit•Investment }
$$

NA

The following pages are the inputs for the access tandem, provided by the engineers, which are required for the Switching Cost Information System (SCIS). These inputs are used to develop the investment results.

Cuminghilal

1 SPRINT
2 SCISIMO
3 ACCESS TANDEM INPUTS
A
4 fort myers

5 Type:
6 Equipped With:
7 Network Type:
8 Yr of Switch Cutover:DMS200 Tandem
Trunks, SS7, LPP
Double Shelf Network Equip.1988
9 Peak to Avg Busy Hour Factor: 1.30
10 Upgro CPU bef Sw Replacemt
// Upord Sequence Type:/1 Upord Sequence Type:Yes
/2 Initial Processor Configuration:
/ 3 Switch Economic Life:
Supernode 20
14 Upgrade within 5 years:
15 Processor Utilization in Fifth Yr:15NO
16% Util At End of Economic Life:
17 Year18 SN20: 1988
19 SN3O: 1993
20 SN 60 : 1996
21 LPP Type:
Full
22 Slots Used: 36
23 No. Trunks:
24 Adm. Fill Factor:
25 Avg Busy Season Busy Hour Outg+Inc CCS/Trk:
26 Avg Busy Season Busy Hour Outg+inc Calls/Trk:27% of Thd Die Trks that are DSO Clear Channel Capability:

22% of $0 \div 1$ Calls Using Inband Signaling:55
70
Supernode (SN)

RTUS Mat

\% Util

35
55
29557 Installation:1990
30 Economic Life, in Years, of SS7 Equip: 15
3 / SS7 Equipment Type: LPP
32 Input Mode: LINK
23 Initial installation: 1990
34 Link Pairs Added: 2- 5 Percent Utilized:
36 Percent Utilized End of Economic Life: 70
/ SPRINT
2 SCISIMO
3 ACCESS TANDEM INPUTS
A
4 WINTER PARK
B

5 Type:
6 Equipped With:7 Network Type:8 Yr of Switch Cutover:9 Peak to Avg BH Factor:DMS200 TandemTrunks, SS7, LPP
Double Shelf Network Equip.19881301.30
10 Upgrd CPU bef Sw Repl:Yes
|/ Upgro Sequence Type:
/2 Initial Processor Configuration:
13 Switch Economic Life:
14 Upgrade within 5 years:
15 Processor Utilization in Fifth Yr:
16% Util Ai End of Economic Life:

17	Year	\% Util
18 SN20:	1988	35
19		
20 SN 60:	1995	55

21 LPP Type:
22 Slots Used:

Full
36

Supernode 20
15
NO
55
70
RTUS Mat
23 No. Trunks:
24 Adm. Fill Factor:
25 Avg Busy Season Busy Hour Outg \div Inc CCS/Trk:
26 Avg Busy Season Busy Hour Outgilnc Calls/Trk:
27% of Tnd Dig Trks that are DSO Clear Channel Capability:
100 0
28% oi $\mathrm{O}+1$ Calls Using Inband Signaling:
29 SS7 Installation:1990
30 Economic Life, in Years, of SS7 Equip: 15
31 SS7 Equipment Type: LPP
22 Input Mode:
LINK
33 Initial Installation: 1990
34 Link Pairs Added:
35 Percent Uiilized:
36 Percent Utilized End of Economic Life: 70
cowiflewilal
1 SPRINT
2 SCISIMO
3 ACCESS TANDEM INPUTS
ABc
5 Type:DMS200 Tandem
6 Equipped With:
7 Network Type:Trunks, SS7, LPP
Double Shelf Network Equip.
8 Yr of Switch Cutover:1988
9 Peak to Avg BH Factor: 1.30
10 Upgro CPU bef Sw Repl Yes
// Upgrd Sequence Type: Supernode (SN)
12 Initial Processor Configuration:
Supernode 20
13 Switch Economic Life:15
14 Upgrade within 5 years: NO
15 Processor Utilization in Fifth Yr: 55
16% Util At End of Economic Life: 70
17
18 SN2O:
Year $\frac{\% \text { Util }}{35}$
19
20 SN 60: 199655
2) LPP Type: Full
22 Slots Used: 36
23 No. Trunks:
24 Adm. Fill Factor:
25 Avg Busy Season Busy Hour Outg+inc CCS/Trk:
26 Avg Busy Season Busy Hour Outg+lnc Calls/Trk:RTUS Niat
27% of Tnd Dig Trks that are DSO Clear Channel Capability
22% of $\mathrm{O}+1$ Calls Using Inband Signaling:100
0
29 SS7 installation:1990
30 Economic Life, in Years, of SS7 Equip: 15
3/ SS7 Equipment Type: LPP
22 Inpuit Mode: LINK
33 Initial Insiallation: 1990
34 Link Pairs Added: 1
35 Percent Utilized:
36 Percent Utilized End of Economic Life: 70

The following pages are the outputs for the Common Channel Signaling Cost Information System (CCSCIS). This is a Bellcore model and is provided by the Corporate office.

confleenilal

COMMON CIIANNEL SIGHALJNG COST INFORHATIOI SYSTEK - version 3.9 AGGREGATE

```
Study Id: FLTSA Mon Ju] 15, 1996 15:24:41
Description: FL CB Avg
    AGGREGATION MOOEL
About Study
    User Name : Randy G. Farrar
    Study Description: FL CB Avg
    Study Identifier : FLTSA Study Date : 12/05/1993
                Valid For : 3/88 - PRES
Assumptions
    Aggregate Unit Investments for: Trunk Signaling
    Aggregate [Average ] Unit Investments
    Is the Service in the Study Area provided using -
            A Regiona) STP?:No
            Local STPs?: Yes
    For Data Base Queries Routed Through the Local and Regional STPs,
    GTTs are Performed in [Not Applicable ]
    Are Local STPs Linked Directly to SPOIs? : Yes
```


COMMON CHANNEL SIGNALING COST INFOPMATION SYSTEM - version 3.9 aggregate

Study Id: FLTSA
Description: FL CB Avg

Mon Jul 15, 1996 15:30:16

Data For Ayeraging Local STP Costs

Use Datz [Calculated by the Model]

STP Name		Percentage of Octets on			Percent cf GTTs	Percent of GYYs
		A Links	D Links	SPOI/SCP Links		
1	Florida	50.000	0.000	0.000	50.000	0.000
2	Florida	50.000	0.000	0.000	50.000	0.000
3	LSTP 3	0.000	0.000	0.000	0.000	0.000
4	LSTP 4	0.000	0.000	0.000	0.000	0.000
5	LSTP 5	0.000	0.000	0.000	0.000	0.000
6	LSTP 6	0.000	0.000	0.000	0.000	0.000
7	LSTP 7	0.000	0.000	0.000	0.000	0.000
8	LSTP 8	0.000	0.000	0.000	0.000	0.000
\bigcirc	LSTP 9	0.000	0.000	0.000	0.000	0.000
10	LSTP10	0.000	0.000	0.000	0.000	0.000
11	LSTPII	0.000	0.000	0.000	0.000	0.000
12	LSTP12	0.000	0.000	0.000	0.000	0.000
13	LSTP13	0.000	0.000	0.000	0.000	0.000
14	LSTP14	0.000	0.000	0.000	0.000	0.000
15	LSTP15	0.000	0.000	0.000	0.000	0.000
16	LSTP16	0.000	0.000	0.000	0.000	0.000
17	LSTP17	0.000	0.000	0.000	0.000	0.000
18	LSTP18	0.000	0.000	0.000	0.000	0.000
19	LSTP19	0.000	0.000	0.000	0.000	0.000
20	LSTP20	0.000	0.000	0.000	0.000	0.000
21	LSTP21	0.000	0.000	0.000	0.000	0.000
22	LSTP22	0.000	0.000	0.000	0.000	0.000
23	LSTP23	0.000	0.000	0.000	0.000	0.000
24	LSIP24	0.000	0.000	0.000	0.000	0.000
27	LSTP25	0.000	0.000	0.000	0.000	0.000
28	LSTP28		0.000	0.000	0.000	0.000
	TOTAL	100.00	0.000	0.000	0.000	0.000
		100.00	0.00	0.00	100.00	0.00

```
    1
    2
        COMMON CHANNEL SIGNALING COST IMFOPMATION SYSTEM - version 3.9
        AGGREGATE
    3 Study 1d: FLTSA CR Avg Mon Jul 25, 1996 15:31:18
    5
    6 Link Input Data Source : From Study
    7 Link Study Identifier : ITD-CB
    8 Fraction of A Links from SSPs Connected to the Local STP : 0.8178
    9 Average Cost per Octet for Links Used for -
    10 Circuit-Based Services
|) IN/I Data Base Services
1 2 \text { End Office or Tandem to STP}
13 Access Tandem or End Office to SPOI
```



```
14 Average Cost per Query for Links to IN/1 SCPS for -
    15 . 800 Data Base Service :0
16 Alternate Billing Service :0
17 Private Packet Sritehed Network Service : 0
```

COMHON CHANMEL SIGNALING COST INFORMATION SYSTEM - version 3.9 AGGREGATE .
2

3 Study Id: FLTSA Description: FL CB Avg
\qquad Link Data - 2
$\begin{array}{lll}6 & \text { Link Input Data Source: } & \text { From Study } \\ 7 & \text { Link Study Identifier: } & \text { LTO-CB }\end{array}$
8 S PER OCTET ON LINKS USED FOR TRUNK SIGNALING SERVICES

$9^{8} \quad A$			Trukk signaling D	ERYICES	F
	EO/TOM	EO/AT	D	EOTTdm	EO/AT
10 line haul accounts	- STP	-SPOI	CIRCUIT ACCOUNTS	- STP	-SPOI
// Analog Eacilities	0	0	Anelog facilities	0	
12 Radio Facilities	0	0	Radio Facilies	0	0
13 Digital Facilities	0	0	Digital Facilities	0	0
14 OSP, Potes	0	0	Other, T]	0	0
15 OSP,Aerial Cable	0	0	Other, 12	0	0
	0	0			
17 OSP, Buried Cable	0	0	Skitching Account	0	0
18 OSP, Sub. Cable	0	0			0
19 OSP, Aerial Wire	0	0	Lease Expense		
$2005 P$, Conduit	0	0			
2 2) Land	0	0			
20 Buildings	0	0	Total $\$$ per Octet	0	0
E Other, M1	0	0			
24 Other, M2	0	0			

7	EO/TDM-STP
8	Regional STP
9	Local STP
10	Links
11	TO:37

COMMON CHANNEL SIGNALING COST INFORMATION SYSTEM - version 3.9

7	A	$\begin{aligned} & \text { sper } \\ & \text { E0/Tm-STP } \\ & \hline \end{aligned}$	OCTET EO/AT-SPOI	D	$\begin{aligned} & \text { SO/Tom-STP } \\ & E \end{aligned}$	$\begin{aligned} & \text { OCTET } \\ & \text { EO/AT-SPOI } \\ & \text { F } \end{aligned}$
8	Regional STP	$0 . \overline{000000}$	$0 . \overline{000000}$	CIRCUIT ACCOUNTS		
19	Locel STP			Analog facil	0.000000	0.000000
10	LINE HAUL ACCT			Radio Facil	0.000000	0.000000
11	Analog Facil	0.000000	0.000000	Digital Facil	0.000000	0.000000
12	Radio Facil	0.000000	0.000000	Other, 11	0.000000	0.000000
13	Digital Facil	0.000000	0.000000.	Other, 72	0.000000	0.000000
14	OSP, Poles	0.000000	0.000000	Skitching Acct	0.000000	0.000000
15	OSP, Aerial Cable	0.000000	0.000000	Lease Expense		
16	OSP, Und. Cable	0.000000	0.000000			
17	OSP, Buried Cable	0.000000	0.000000		5	GIT
18	OSP, Sub. Cable	0.000000	0.000000	RSTP, Outgoing	0.0000	0.0000
19	OSP, Aerial Wire	0.000000	0.000000	PSTP, Incoming	0.0000	0.0000
20	OSP, Conduit	0.000000	0.000000	LSTP, Outgoing	0.0000	0.0000
21	liand	0.000000	0.000000	LSTP, Incoming	0.0000	0.0000
22	Buildings	0.000000	0.000000			
	Other, R1	0.000000	0.000000		5 per	STP-GWY
2	Other, hiz.	0.000000	0.000000	RSTP, Incoming		0.0000
				LSTP, Incoming		0.0000

The following pages are the investments used to deveiop the transport cost. These costs were developed as part of the Local Transport Restructure (LTR) tariff support.

TARIff SECIIOM • SUITCIED ACCESS (ES) SUB 5ECTION - DIRECY-TRUMKED TRAHSDORT - FIXEO/DS.J

SPR1KT/UMITED TELEPROLIE/CERTEL-FLORIOA
shie categoay: suiticheo ranisport
gUI: LONG RUM AVERAGE IHCREMEHIAL COST

PORK 6A-1

ITEH	P(AHY ITEM DESCRIPYIOH	UHIT IHVESTMEHYS			HIVESTMEMT TOR cIRCOII QUABTITY ExCLDIMS UfILI2AIIOM			INVESTHEHT SOR cincoit quantity IHCLVOING UTICIZAIION	
		(0)	(C)	(0)	(E)	(f)	(G)	(H)	(1)
		USOR	CHAN, TERK,	LIME MAUL	Clin. ieяn.	LIME HAUL	fill	CHAM. TERH.	LINE MAUL
		COOE	EOPs.	EOST.	zopt.	EOPS.			EOPT.
1	-	-..*	-.........	-...-.....	-**.....	-...--	-.......	-
2									
3									
4	Direct-Yrunked iranspore								
5									
6	ITs-24,00 0c-40 cot 8isp 2232.3 0.75								
7	0sx $3 / 4$ Cross Connetr Pancl 2232.2 en 0.75								
9									
10									

* Invegtiments from porm GC - 10

STALNT/VIITED TELEPIOME/CENTEL-FLORJOA

TARIFF SEETIDN - SUITCHED ACCESS (EB)

Whie category: switcile irallspont
KIM: LCNG RUN AVEPRGE IKCREMEMTAL COST

SPRIMT/UHITEO TELCPHOME/CEMTEL-TLCRIOA

TARITP SECIIOU - PRIVAIE LIWE	RATE CATEGORY: OS-1 IPRISPORT
SUD Scetion - turerorfice chamme	

SUB SCCIIOH - thierorfice cimamel - translink - fixed 05.1 Services

RUR: LOHG RUN AVERACE iKCREMERTAL COST

$\begin{aligned} & \text { He } \\ & \vdots \end{aligned}$	PLARI ITEM ${ }^{(\lambda)}$ DESCRIPTIOM	LSIT INVESthents			imgesthent for CIRESIT OUNHIITY excluding uitilizarion			IHVESIKEHI TOR circuit quaktity including villizayom	
		(1)	(c)						
		USOA	chan. tern.	LIME mul					
		CCOE	eopt.	Cors.	EOPY.	lac haul. EOPY.	$\underset{\text { raction }}{\text { Fill }}$	CHAll.TERK. EOT.	lise have
Direct-srunked Iranspart									
115-2,00 oc-40 yot atsp									
$\frac{2}{3}$		2232.2				.	0.70		
3	M13 HCYIPLEXER	2232.2					0.70		
5	oski gietral eross coniect pamel.	2232.2					0.70 0.70		
${ }_{7}$									

* Investment is dexived by taking DS-3 investment from Column 11 of Form $6 n-1$ and dividing by 20.
© Investment is derived by taking DS-J investment Erom Column 11 , Form 6n - 1 , dividing by 20 and then multiplying by 2.
* Investments axe derived by caking the DS-3 investments from Form 6C - 10, dividing by 70: Eill Eactor, dividing by 28 osls pex DS3, and then multiplying by 2.

SFRIHT/UMITED TELEPHORE/CEHTEL-FLORIDA

Thalft sectich - privaie lihe
SUO SECYIOH - interoffice chaniel - ieanscink - fixed DS.1 services

Rate Caigcozy: ds-1 TRANSPORT
1024 60-4
RUI: LOMG RUM aVERAGE incremental cost

SPRIHT/UHITED TELERKOHE/CEHIEL-FLORIOA

RATE CATEGORY: SUITCHEO TRANSGORT

RUN: Lons aun average : hcrevehtal cost

TNRITF SECTION - SUITCHEO ACCESS (E6)
SUB SECTIOII - OIRECT-TRUIKED TRAISPORT - PER MILE/OS.J

Direct-irunked transpori par mile:

* Divide those invostments by 20 and corry over to Form $6 n-7$, Column D,

UMOERCRONNO FIDER condull/lirrerderel URTEO FIGER. subduct/buried 14
15
2422.2
2411.1

2:23.2
2461.1

ItraveJ.wkI

SPRTAT/AMT TED ISIEPICRE/CEHIEL-FLOXIDA

RATE CAIEGOSY: SUI TCHEO IRAMSTORT

TARIFF SECTIOL - SUI YCHEO ACCESS (E8
SUB SECTION - DIRECT-YRUYKEO IRA!SPOSI - PER MILE/DS-3

SPRINTNUHITED TELEPIONE/CEIISEL-FLORIOA

RATE CATEGORY: SWITCHED TRAHSPORT

TOAN $6 A-7$

TAXIFF SECTION - SUITCHEO NCCESS (Eb)

sUD SECTION - DIRECT-TRUKXED IRAKSPORT - PER KILE/ES-1

SPRIMT/UKITED TELEPIOISG;CEMTEL-FLORIDA

TAMIFF SECTION - SKIICHEO ACCESS (E6) SUO SECIIOM - DLRECT-TRUNKED :nANSTORT - PER RILE/DS.?

RATE CITEGORY: SUITCIEE TRAHSPORT
run: long ruin average morehehtal cost

LOCAL TRANSPORT RESTRUCTURE FOR SHITCEED ACCESS (EG)

3 Suppotipc Documentation apd/or Back-up
4 Direct-trunked Transport and/or Tanden-Suitched Transport
5 Route Sample -
6 Based on an universe o 172 overall =utes with traffic to IXC pop destinations, a sample o 43 routes were chosen to develop the most typical Dizect-Trunked Transport model carrying DS-3's, DS-2'y and DS-O's to a Service Wire Center-SNC $0=2 n$ Access Tandem Switch.

10 There Will be 85 nodes on 13 zings for an average of 7 rings per node
$1 \mid$ and the above mentioned model produced an average direct-trunk route of
12 four nodes with 50.2 miles to a pOP location. Four was the number of
13 nodes produced by the model for the working path, therefore, the
14 remaining 3 nodes are required to complete the =ing. Since 50.2 miles
IS is the tonal fiber length for the 3 spans connecting the above 4 nodes, ar. average of 16.733 miles per span was determined.

17 Fiber optical Terminal Types -
18 Per Mile - Intermediate Offices -
19 There will be (six) 2-Itibez BiSk's (Bidirectional Line-Switched Rings)
20 and (seven) 4-fibez BISR's for a total of 13 =lings.
21 On a seven nodes ring the re are five intermediate nodes and two End 22 nodes (the End-otyice and the sw C or at.

1 Riv rile ratio derived with a sample of 117 routes $=1.94 \%$

2 Fixed -

3 row investments containing the low -speed shelves required to AdidDrop DS3's at the originating and at the terminating offices.

16 All these investments ave at the DS-3 level and the result of the study
17 will be divided by 28 to determine the DS-I level and additionally by / \& 24 to determine the DS-D level for tiansport cost.

19 The above 43 multiplexer and associated equipment is required for all.
20 the IXC-POP's customers to access the Direct-Irunked transport DS-3 to
21 the IXC POP.
22 The same investments above divided by 28 are required for the Direct-
23 Finned Inaneport at the $D S-1$ level before the entrance facility to the
24 POP.
25 The voice Grade entrance facility will required $1 / 24$ of the DS-1 to 26 DS-0 multiplexing in order to be able to access the Direct-Trunked 27 transport channel.

```
    Multiplex
    There are two options at the Eatrance Facility for IXC-POP's chat do
    not nead to purchase an entire DS-3 access facility:
4 1. DSl to Voice Grade - multiplex
5 This option is for a complete DS-1 output to be multiplexed into 24
6 voice grade chanmels (DS-0'6) at the entrance facility.
7 In addition to th{s, the IXC-POP will need to purchase one DS-1
D Direct-Irunked transpor= Eacility.
7 DSX1 digital crossconnect
|D Ml3 multiplexer unit (1/2E)
1! DSX3/4 crosscornect jacix (1/28)
12 D4-Channel Bank (mux) (1)
| 4-wire voice channel card (24)
14 2. DS3 to DSI - multiplex
15 This option is foz = complete DS-3 output multiphexed into 28 DS-2's
16 at the entrance facility to the por.
17 The equipment inrestment is a= the DS3 level as requested. The
1& entire multiplexer coes not have to be dedicated to one POP.
19 DSXI crossconnect jack pamel
20 ri3 multiplexex unit (1/28)
21 DSX3/4 crossconmect jack (1.28)
```


2. DS3 to DSI - muitipiex

```

```

22 Note: The same investment divided by 28 is appiled to the Dizect23 trunked transpoit DS-I tixed element.

```


SECTIO
Page 62
KEC 1TS-2600 SONET STSTEK TOR 48 DS3'S

2 FJEER RIKC (2F EISR) KCOE FOT I:1 Protect

Bidirectional line Suitehed ging


42 inis imestmen: is for a fully survivable and piotecier DS-5 wime 2 fiber fidirectional line suitcher kins. Ring proiection only. See the 4 F-5LSR for adoitional 5 pan protecifan.
\(14-27\) sites with spares for 25 nodes \(27 / E 5=0.318\)




\section*{cókfoenial}


\section*{Coinficental rom arese}



\section*{COUFIDENTIAL}

\section*{SECTION VI}

Page 70 of 83
Page 1 of 3 SPRIKT/UNITED TELEPHONE - FLORIDX
hORTHERN TELECOK DKT-300 KULTIPLEXER
central office

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\frac{5}{6}\) & (1) & (B) & & (c) & (D) & (E) \\
\hline 7 & & & Ux17 & Unit & unit & (wo) Unit \\
\hline 8 & & & vereor & Installed & DS-3 & Investrent \\
\hline \% & DMT 300 & Part Murber & price & Investment & Capacity & Per 0s-3 \\
\hline & & -........... & & & .... & \\
\hline 10 & Unfinished Alurinum Upr. Kit 8' & A-90638-2 & & Herater & 12 & \\
\hline 11 & Rask Assmbly Kit 23" & 8.10632.2 & & & 12 & \\
\hline 12 & Fuse Panel & 621168-000-003 & & & 12 & \\
\hline 13 & Quad mulsiplex shelf & \$T6K3ina ano & & & 4 & \\
\hline 14 & OKT-300 mutriplexer & MTGRTCAR M13 & & & 1 & \\
\hline 15 & & & & & & al per DS-3 \\
\hline
\end{tabular}


\section*{COFFloEfilith sean 0.022}




UTJ KeIhod
LHERERXUD Average Incrementat - Fiber plant
Inieroffice Fiber Cable Plascd en or before 1995


Sizc of fiber cobles used for Interoffice Iransport

\[
\begin{array}{r}
\text { Pere } \\
\text { cal } \\
n i
\end{array}
\]
\[
\begin{gathered}
\text { ercentage } \\
\text { Euble } \\
\text { cate }
\end{gathered}
\]
\[
\begin{aligned}
& \text { ge of } B \\
& \text { ied }
\end{aligned}
\]
\[
\begin{gathered}
\text { of But } \\
C
\end{gathered}
\]
incle
\[
\underset{\text { single kim }}{C}
\]
A
\[
\begin{aligned}
& \text { versus underground on } 48 \text { sites. } \\
& \frac{E}{\text { verage }} \\
& \text { Nunber } \\
& \text { unjersiound } \\
& \text { coble singie }
\end{aligned}
\]
\[
\underset{\substack{\text { Averose } \\ \text { Nuriver }}}{\mathrm{Co}^{2}}
\]
miles sib.milesfibers

miles Eur／unders
31.5
21.5
20.8
32.1
11.9
\begin{tabular}{rr}
6.1 & 62.5 \\
& 1.0 \\
32.3 & 925.2 \\
& 1.6 \\
& 39.8
\end{tabular}

SiRD
sV5\％
sVS5
SEPS
resy
5554
5700
\(8 \pi 54\)
LSEM
C：RD
LipK
CSLE
ALSP
LKSR
HILD
－ficit

efyr
FTHE
LHAL
NCPC
SFAY
ARCD
LBLL
Mズロ
PTCT
PNGZ
AVPK
oxcs
sone
SPLX
APSE
Hi

STS
LSEG
OR
VRS

VHL
IV
6.0
26.7
5.5
92.4
\(\begin{array}{rr}32.4 & 1 \\ 32.2 & 1,5 \\ 101.7 & 1,59\end{array}\)
\(64.4 \quad 1,2\)
17.1
\(i 6.0\)
－
．
10.8
1.8
17.2
\begin{tabular}{ccc}
18.2 & 434.5 & 23.85 \\
8.0 & 174.8 & 28.83 \\
0.9 & \(i 3.7\) & 15.22
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 44.8 & 972.7 & 22.2 & 28，35\％ \\
\hline 16.3 & 365.9 & 25.6 & 35．67\％ \\
\hline 1.9 & 30.2 & 86.0 & 32．14\％ \\
\hline 4.3 & 38.1 & 8.9 & E8．1ヶ\％ \\
\hline 7.8 & 261.1 & 30.9 & 6：．00\％ \\
\hline 38.1 & 526.7 & 29.1 & 37．80\％ \\
\hline 2.4 & 60.3 & 25.9 & 97．05\％ \\
\hline 7.5 & 58.8 & 39.2 & 91．7：\％ \\
\hline 2.1 & 67.5 & 32.1 & 89．81\％ \\
\hline 0.3 & 6.3 & 21.0 & 98．85 \\
\hline 8.9 & 306.6 & 36.6 & \(79.40 \%\) \\
\hline 90.1 & 273.5 & 29.1 & 80．53\％ \\
\hline 3.6 & 65.0 & 18.9 & 88．08\％ \\
\hline 2.5 & 72.6 & 28.0 & 93．01\％ \\
\hline 10.2 & 201.9 & 19.8 & 57．50\％ \\
\hline 2.7 & 29.9 & 11.8 & 28．115 \\
\hline 10.5 & 168.9 & 16．9 & \(6.53 \%\) \\
\hline
\end{tabular}

\section*{TARITF SECTION - PRIVATE LIME}

SU日 SECTJON - LOCAL CHAMEL - TRANSLIHK
Standard il

SPRLKT/UMITED TELEPHONE/CEMYEL-FLORIDA
RAIE CATECORY: OS-I TRANSPORT
FORH 7A- 2
RUN: LOHG RUN RVERAGE iHCREHEMIAL cost


\section*{(rave].uki}

\section*{SPAIHT/OMITEO TELEPKOHE/CEMYEL-FLORIDA}

TARIIT SECTIOH . MRIVAIE IIME
sud gection - local chamel - transcthk
standard Tl


ARITF SECTIOH - SUITCHED ACCESS (EG) SUI SECTIOK • RIITIFLEXING - DS-3 TO OS-

All \(20 \mathrm{DS}-1 \mathrm{I}\) at the Access suc or Tanden

SRIMT/UHITED TELEPHOME/CENTEL-FLORIDA
RATE CATEGORY: SWITCHEO RRAHSPORI
FORK 7A - 28

INVESTMENT FOR CIACUIT OUANTITY ExCluoill villizaison
(E) (F)
CRAM.TERH. LIME HAIM (G)
EORT. EOPT. rACIOR ........ racior

IHVESIREMI FOR CJRCUIT OUANTITY IMCLUDIIG UTILIzAIIOA
(iI)

CHAR. IEAM (I)
(IUE

EOPI. the havl EOFI.
\(\qquad\)

\section*{Kulliplexing}

DSXI DIFITAL CROSS COHYECT FAHEL
MIS MURTIPIEXER MI3 MULIIPIEXER DSX J/4 CROSS COMECT PAYEL
2232.2
2232.2 2232.2
2232.2


13
14
15
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { ITER } \\
\ldots \\
\cdots
\end{gathered}
\] & Plaht iten \({ }^{(A)}\) Descripiton \\
\hline 1 & -*...- \\
\hline 2 & \\
\hline 3 & \\
\hline 1 & \\
\hline 5 & \\
\hline 6 & - \\
\hline 7 & Kultiplexing \\
\hline 9 & DSXI DIFITAC CROSS \\
\hline 10 & MI3 MUIIPIEXER \\
\hline 12 & DSX J/4 CROSS COMmect payel \\
\hline 13 & \\
\hline 14 & \\
\hline is & \\
\hline
\end{tabular}
(i1)
COOE
(C) (D) CHAN.JERA. LiME HMUL
EOPT. EOPT. EOPT.

\section*{\{trave].ux\}}
ranitt fection - suitched access (eb) sub SEcitoll - multiplexing - os. 3 yo os. 1 All 20 os-1's at the Aecess suC or tandem
sprimiounited telepllone/centel-florion
rate category: suitched trakstort
muli: lohg dum aveage incaemental cost


TARITF SECTIOM - SHITCHED ACCESS (EG) SUR SECIION - KULIIPLEXIKG - DS-i to Voice Gratie All 26 os-0's at the Aecess suC or fandem

SPRIMT/UMITEO TELEPHOME/CENTEL-FLORIDA
RATE ChIEROR: : SWITCHSD TRANSPORT
nGH: LOMG RIM AVERAGE HMCREMSHTAL COST


\footnotetext{
lunve3.nk
}

SECTION
Page 80 of
tariti section - shitcied access (e. 6 )
sub section - hultiplexing - os-1 to voice grade
All 24 DS-0's at the keeess \(3 K C\) or Jandem

SPRIMT/UMITEO TELEMMOME/CENTEL-FLORIOA
RATE CAYEGCRY: SUITCHEO TRABSPORY
RUM: LOHG RUM AVERAGE IMCREHEHTAL COSI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & roral lives & & & toial ahinal & & TOIM HOKIR & cost & & (k) \\
\hline & & & (b) & (c) & (0) & (E) & (f) & (G) & (11) & (1) & (J) &  \\
\hline \[
1 \text { IEH }
\] & \begin{tabular}{l}
(A) \\
PLAHI IIEM
\end{tabular} & & uson tOOE & cliniteri. E091. & line havi & numus cosy racin & CHAH. TERA. cap & (ive yaul & charisemu. & tine havl. & 10 A19 & \[
\text { Cosi } \mathrm{ER}
\] \\
\hline  & rlant liek & & & ens. & ........ & cost racion & ......... & ....... & ropr. & EORI. & antio & hile \\
\hline 1 & & & & & & & & & & & & \\
\hline 3 & & & & & & & & & & & & \\
\hline 4 & & & & & & & & & & & & \\
\hline 6 & Hutciplexing & & & & & & & & & & & \\
\hline 7 & & & & & & & & & & & & \\
\hline \({ }_{8}^{3}\) &  & & 2232.2
2232 & & & \[
\begin{aligned}
& 0.2261208 \\
& 0.226128
\end{aligned}
\] & & - & & & & . \\
\hline 10 & & & & & & & & & & & & \\
\hline 11 & & & & & & & & & & & & \\
\hline 12 & & & & & & & & & & & & \\
\hline 14 & & & & & & & & & & & & , \\
\hline 15 & & & & & & & & & & & & \\
\hline 16 & - & roth & & & - & & & & & . & & \\
\hline
\end{tabular}

3182

\section*{ANNUAL CHARGE FACTOR}

\section*{Diqital Electronic Switch-Other}
\begin{tabular}{|c|c|}
\hline 0.066 & \begin{tabular}{l}
\(\$ 414,684,442.00\) Investment \(10.50 \%\) Cost of Capital 15.15 Depreciation Life (Years) \\
188\% AdValorem Tax
\end{tabular} \\
\hline & \$55,843,704.54 Annual Capital Recovery \\
\hline 0.066000 & \$27,369,173.17 Depreciation Component \\
\hline 0.068666 & \$28,474,531.37 Return Component \\
\hline 0.134666 & Total Capital Components \\
\hline 0.029587 & Tax Factor \\
\hline 0.164253 & Gross Up For Tax \\
\hline 0.059662 & Maintenance \\
\hline 0.223915 & Sub Total \\
\hline 0.01228786197 & Ad Valorem Tax Component \\
\hline \$0.236202 & Annual Carry Charge \\
\hline
\end{tabular}

Land \& Buildings

Total Plant -
Land \& Buildings
Land \& Buildings Factor
\$3,517,094,815
\$ 151,243,983
\(\$ 0.043\)

\section*{UNITED TELEPHONE COMPANY OF FLORIDA CUSTOMER USAGE STUDY POINT-TO-POINT STUDY}

\section*{SUMMARY OF RATE GROUPS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { HOME } \\
& (204,035)
\end{aligned}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { EAS } \\
(883,567)
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { COMBINED } \\
& (1,087,602)
\end{aligned}
\]} & \[
\begin{aligned}
& \text { BUSI } \\
& \text { RES }
\end{aligned}
\] \\
\hline 考 & & Res & Bus & Res & Bus & Res & Bus & Ratio \\
\hline 1. & Access Lines in Study. & 3,121 & 803 & 3,121 & 803 & 3,121 & 803 & \\
\hline 2. & Customers Billed & 3,118 & 605 & 3,118 & 605 & 3,118 & 605 & \\
\hline 3. & \# of Customers Originating 1 or More Calls & 3,872 & 516 & 2,734 & 517 & N/A & N/A & \\
\hline 4. & Originating Messages & 170,874 & 87,335 & 115,343 & 116,855 & 286,217 & 204,190 & \\
\hline 5. & Customer Usage & 92\% & 85\% & 88\% & 85\% & N/A & N/A & \\
\hline 6. & Avg. Msg. per Acc. Line & 54.75 & 108.76 & 36.96 & 145.52 & 91.71 & 254.28 & 2.78 \\
\hline 7. & Message Minutes & 881,518 & 310,291 & 652,766 & 439,922 & 1,534,284 & 750,213 & \\
\hline 8. & Avg. Minutes per Msg. & 5.16 & 3.55 & 5.66 & 3.76 & \(\underline{5.36}\) & 3.67 & \\
\hline 9. & Avg. Minutes per AL & 282 & 386 & 209 & 548 & 492 & 934 & 1.90 \\
\hline
\end{tabular}

\section*{Average Weighted Minutes per Message}
\[
\begin{aligned}
& 5.36 \times 75 \%=4.02 \\
& 3.67 \times 25 \%=\frac{0.9175}{4.9375}
\end{aligned}
\]

Note:
() Number of Callable Access Lines

Customer usage \(=\mathrm{L} 3 / \mathrm{L} 2\)
Avg. Msg. Per Acc. Line \(=\) L4/L1
Avg. Minutes per Msg. \(=\mathrm{L} 7 / \mathrm{L} 4\)
Avg. Minutes per AL \(=L 7 / L 1\)
Large Rate Group \(=\) \# of Callable Access Lines \(>64,000\)
Offices Included:

\section*{Altamonte Springs}

Eustis
North Naples
Ocala
Oklawaha
Reedy Creek

\section*{BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION}
```

In re: Resolution of Petition to) DOCKET NO. 950985-TP
Establish Non Discriminatory Rates,)
Terms, and Conditions for Inter-)
connection Involving Local Exchange)
Companies and Alternative Local
Exchange Companies pursuant to ,
Section 364.162, Florida Statutes

```

EXHIBIT "C" TO SPRINT UNITED/CENTEL'S SECOND REQUEST FOR CONFIDENTIAL CLASSIFICATION Line-by-line Identification and Justification
\begin{tabular}{|c|c|c|c|c|}
\hline Number & Page & Line(s) & Column(s) & Justification \\
\hline 1 & 004 & 2-5 & B & Note 1 \\
\hline 2 & 008 & 5-6,17,21,26 & Data & Note 2 \\
\hline 3 & 008 & 18,22,27 & Data & Note 4 \\
\hline 4 & 009 & 8-16 & B & Note 2 \\
\hline 5 & 010 & 5-6,19,23,27 & Data & Note 2 \\
\hline 6 & 010 & 20,24,28 & Data & Note 4 \\
\hline 7 & 011 & 7-15 & B & Note 2 \\
\hline 8 & 012 & 5-6,21,25,29 & Data & Note 2 \\
\hline 9 & 012 & 22,26,30 & Data & Note 4 \\
\hline 10 & 013 & 7-12 & B & Note 2 \\
\hline 11 & 014 & 6-7,19,23,27 & Data & Note 2 \\
\hline 12 & 014 & 20,24,28 & Data & Note 4 \\
\hline 13 & 015 & 7-12 & B & Note 2 \\
\hline 14 & 017 & 4,5,10,11 & Data & Note 3 \\
\hline 16 & 025 & 6-8,10-13,14-16 & Data & Note 4 \\
\hline 17 & 025 & 6-8,18-19,23,28-29 & Data & Note 2 \\
\hline 18 & 026 & 6-8,10-13a,14-19,21 & Data & Note 4 \\
\hline 19 & 026 & 6-8,23-24,28,32-33 & Data & Note 2 \\
\hline 20 & 026 & 9,20,36-37 & Data & Note 3 \\
\hline 21 & 027 & 6-8,11-15,16-20,22 & Data & Note 4 \\
\hline 22 & 027 & 6-8,24-25,28,32-33 & Data & Note 2 \\
\hline 23 & 027 & 9,21,36-37 & Data & Note 3 \\
\hline 24 & 028 & 2-4 & B & Note 1 \\
\hline 25 & 028 & 3 & A & Note 3 \\
\hline 26 & 034 & 11-23 & Data & Note 6 \\
\hline 27 & 036 & 9,17,22-26,29-32,40 & B & Note 7 \\
\hline 28 & 037 & 9,17,22-26,29-32,40 & B & Note 7 \\
\hline 29 & 038 & 9,17,22-26,29-32,40 & B & Note 7 \\
\hline 30 & 039 & 9,17,22-26,29-32,40 & B & Note 7 \\
\hline 31 & 040 & 9,17,22-26,29-32,40 & B & Note 7 \\
\hline 32 & 041 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 33 & 042 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline 34 & 043 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 35 & 044 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 36 & 045 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Number & Page & Line(s) & Column(s) & Justification \\
\hline 37 & 046 & 7-9,12-15,22-24,27-31 & C & Note 7 \\
\hline 38 & 047 & 7-9,12-15,22-24,27-31 & C & Note 7 \\
\hline 39 & 048 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 40 & 049 & 7-9,12-15,22-24,27-31 & C & Note 7 \\
\hline 41 & 050 & 7-9,12-16 & C & Note 7 \\
\hline 42 & 051 & 7-9,12-16,22-24,27-31 & C & Note 7 \\
\hline 43 & 052 & 7-9,12-15,22-24,27-31 & C & Note 7 \\
\hline 44 & 053 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline 45 & 054 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 46 & 055 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 47 & 056 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 48 & 057 & 7-9,12-16 & C & Note 7 \\
\hline 49 & 058 & 7-9,12-16,22-24,27-31 & C & Note 7 \\
\hline 50 & 059 & 7-9,12-15,23-25,28-32 & C & Note 7 \\
\hline 51 & 060 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 52 & 061 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 53 & 062 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline 54 & 063 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 55 & 064 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 56 & 065 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 57 & 066 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 58 & 067 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline 59 & 068 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 60 & 069 & 7-9,12-16,22-24,27-30 & C & Note 7 \\
\hline 61 & 070 & 7-9,12-15,22-24,27-31 & C & Note 7 \\
\hline 62 & 071 & 7-9,12-15,22-24,27-30 & C & Note 7 \\
\hline 63 & 072 & 7-9,12-16 & C & Note 7 \\
\hline 64 & 074 & 12,20,22-23 & Data & Note 6 \\
\hline 65 & 076 & 18,23-26,35 & C & Note 7 \\
\hline 66 & 077 & 18,23-26,35 & C & Note 7 \\
\hline 67 & 078 & 18,23-26,35 & C & Note 7 \\
\hline 68 & 081 & 14,18 & 1,2 & Note 8 \\
\hline 69 & 083 & 10-13 & B & Note 8 \\
\hline 70 & 084 & 19 & E, F & Note 8 \\
\hline 71 & 085 & 9-11,14-16,19,21 & B & Note 8 \\
\hline 72 & 086 & 9 & B, C & Note 8 \\
\hline 73 & 086 & 15 & E,F1 & Note 8 \\
\hline 74 & 088 & 8-11,15-21,26,29-30 & Data & Note 9 \\
\hline 75 & 089 & 6-7 & C,E,H & Note 10 \\
\hline 76 & 090 & 6-7,16 & C & Note 10 \\
\hline 77 & 090 & 6-7,16 & F,H & Note 11 \\
\hline 78 & 091 & 1-4 & C,E,H & Note 10 \\
\hline 79 & 092 & 1-4,13 & C & Note 10 \\
\hline 80 & 092 & 1-4,13 & C,F,H & Note 11 \\
\hline 81 & 092 & 1-4 & H & Note 11 \\
\hline 82 & 092 & 13 & H & Note 9 \\
\hline 83 & 093 & 2-3,10-15 & D, F, I & Note 10 \\
\hline 84 & 094 & 2-3,10-16 & D & Note 10 \\
\hline 85 & 095 & 2-3,10-16 & G,I,K & Note 11 \\
\hline 86 & 096 & 2-3,10-16 & D & Note 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Number & Page & Line(s) & Column(s) & Justification \\
\hline 87 & 096 & 2-3,10-13 & G,I,K & Note 11 \\
\hline 88 & 096 & 16 & G,I,K & Note 3 \\
\hline 89 & 096 & 17 & Data & Note 3 \\
\hline 90 & 097 & 24,26,27,29,32 & Data & Note 10 \\
\hline 91 & 098 & 6,8,9,10,13-15 & Data & Note 10 \\
\hline 92 & 099 & 9-13,19-21 & Data & Note 10 \\
\hline 93 & 100 & 9-12,14-30,31-41 & B & Note 5 \\
\hline 94 & 100 & 9-12,14-30,31-41 & C,E,G & Note 10 \\
\hline 95 & 101 & \(9-29\) & B & Note 5 \\
\hline 96 & 101 & 9-31,35-39 & E,G & Note10 \\
\hline 97 & 101 & 33,34,40,41 & G & Note 10 \\
\hline 98 & 102 & 10-13,16-30,33-42 & B & Note 5 \\
\hline 99 & 102 & 10-15,16-32,33-43 & C,E,G & Note 10 \\
\hline 100 & 103 & 10-30 & B & Note 5 \\
\hline 101 & 103 & 10-32 & C,E,G & Note 10 \\
\hline 102 & 103 & 36-40 & E & Note 10 \\
\hline 103 & 103 & 36-40 & E & Note 10 \\
\hline 104 & 104 & 10-14 & B & Note 5 \\
\hline 105 & 104 & 10-17 & B & Note 10 \\
\hline 106 & 105 & 8-11 & B & Note 5 \\
\hline 107 & 105 & 8-14 & C,E,G & Note 10 \\
\hline 108 & 106 & 10-14 & B & Note 5 \\
\hline 109 & 106 & 10-15 & C,E,G & Note 10 \\
\hline 110 & 107 & 11-12 & B & Note 5 \\
\hline 111 & 107 & 11-13 & C,E,G & Note 10 \\
\hline 112 & 108 & 10-14 & B & Note 5 \\
\hline 113 & 108 & 10-15 & C,E,G & Note 10 \\
\hline 114 & 109 & 9-15 & B & Note 5 \\
\hline 115 & 109 & 9-16 & C,E.G & Note 10 \\
\hline 116 & 110 & 9,11,12 & B & Note 5 \\
\hline 117 & 110 & 9-12 & C,E,G & Note 10 \\
\hline 118 & 111 & 19-23,25-29 & Data & Note 10 \\
\hline 119 & 112 & 8-13,26-30 & B,D & Note 10 \\
\hline 120 & 112 & 14-17,31-34,36 & Data & Note 10 \\
\hline 121 & 114 & 4-6 & C,E,H & Note 10 \\
\hline 122 & 115 & 4-6,16 & C & Note 10 \\
\hline 123 & 115 & 4-6,16 & C,F,H & Note 11 \\
\hline 124 & 116 & 9-11 & C,E,H & Note 10 \\
\hline 125 & 117 & 9-16 & C,F,H & Note 10 \\
\hline 126 & 117 & 9-16 & F,H & Note 11 \\
\hline 127 & 118 & 8-9 & C,E,H & Note 10 \\
\hline 128 & 119 & 8-9,16 & C & Note 10 \\
\hline 129 & 119 & 8-9,16 & F,H & Note 11 \\
\hline
\end{tabular}

Note 1: This page shows the Total Service Long Run Incremental Costs (TSLRIC) that Sprint-Florida incurs to terminate calls. The disclosure of this information to the public would allow Sprint's competitors to have an unfair advantage in determining how to most effectively compete against Sprint.

Sprint does not have this information on any of their competitors and it would require an effort at significant cost to try to determine these costs of the competitors.

Note 2: This page contains information developed by the Switching Cost Information System (SCIS) regarding the investment costs and processor utilization times specific to Sprint's end offices, local tandems, and access tandems. This information is considered proprietary by both Sprint and Bellcore.

Sprint considers this information proprietary because it spells out the investments in its switches required to provide interconnection as well as the number of milliseconds required by its switches to perform certain functions. This is information which would help Sprint's competitors understand how to most effectively compete with Sprint. It is information that Sprint does not have on its competitors switches.

Bellcore also considers this information to be proprietary as they consider the SCIS model's calculations to be proprietary. Anyone not authorized to have the SCIS model could take the inputs and outputs and determine what calculations Bellcore has used within the model. (See attached letter from Bellcore.)

Note 3: This page contains Sprint-Florida's TSLRIC cost of DS-1 transport. DS-1 transport is already a highly competitive service in Florida. Knowledge of Sprint-Florida's cost by its competitors would allow the competition to undercut Sprint in competitive situations. These costs were developed in the Local Transport Restructure (LTR) filing in 1995 and were filed as confidential.

Note 4: This page contains the costs and investments associated with the set-up, per minute of use (MOU) and signalling system 7 (SS7) required to terminate calls. Knowledge of these costs by Sprint's competitors would allow them to determine how to most effectively compete with Sprint. Also, the investments developed by SCIS are considered proprietary by Bellcore. (See attached letter from Bellcore.)

Note 5: This page contains vendor's discounted prices of equipment provided to Sprint-Florida. The discounted vendor prices are confidential as the vendor does not give the same discount to all purchasers.

Note 6: The SCIS outputs are considered confidential to both Sprint and Bellcore. Sprint considers the investments associated with its end office switches and access tandems to be information which could be used by Sprint's competitors to easily determine Sprint's costs of switching. Sprint does not have access to this information for its competitors switches.

In addition, Bellcore considers both the inputs and outputs of the SCIS model to be proprietary as knowledge of both could allow someone unauthorized to use SCIS to figure out how SCIS models a switch. (See the attached letter from Bellcore.)

Note 7: The SCIS inputs are considered confidential to both Sprint and Bellcore. Sprint considers the capacity information of each switching node to be proprietary as competitors could use this information to help target more attractive Sprint offices for competition or to discover any areas vulnerable to competition. Sprint does not have such information for any of its competitors switch nodes.

Bellcore considers the inputs to be proprietary as stated in Note 6.
The RTU Material fee would be considered proprietary by Nortel as well given that Nortel negotiates different discount levels with each of its customers.

Note 8: These pages contain the inputs and outputs from the Common Channel Signaling Cost Information System (CCSCIS) which is another Bellcore proprietary model. Bellcore considers both the inputs and outputs to be proprietary as stated in previous notes. (See attached letter from Bellcore.)

Sprint considers these inputs and outputs to be proprietary because they contain the costs and investments associated with the SS7 network as it is required to terminate calls. This is information which Sprint does not have for its competitors networks.

Note 9: These are the TSLRIC costs associated with transport and have previously been filed as confidential in the Local Transport Restructure (LTR) filing in 1995. Transport is already a highly competitive service in Florida. Knowledge of Sprint-Florida's cost by its competitors would allow the competition to undercut Sprint in competitive situations.

Note 10: These are the investments associated with the equipment required to provide transport. These numbers are confidential as the negotiated price Sprint has with its vendors may be different than the price other companies have negotiated with the same vendor. Also, knowledge of the investments by Sprint's competitors would allow them to know Sprint's costs associated with transport, a highly competitive service.

Note 11: These are the costs associated with the equipment required to provide transport. Knowledge of the costs associated with the piece parts of transport would allow Sprint's competitors to know Sprint's cost of transport.

\title{
Privilesed_ and Conforentin
}

January 26, 1993
semeer 8 en
Encaine Enecter
\(15 c \mid 2-29\)
200 ween man Rueson Aremp
bingeren, Nem domey orces usa
201-749-410
201.740-483

FAX No. 291-749-9.07y

Mr. Paul Leslie Kinmill
United Telecommunicaricas, Ine. 2330 Shawnee Mission Pakwny
Westwood KS 66205
Dear Mr. Herrell:
During the part six ( 0 ) mooths, Bellocre has soticed an epprociable increase in Public Uvility Compission interest in the Swirching Con Informpion Sytem (SCTS) and the Common Chanmel Siganling Cosp frimeson Sysem (CCSCNS). Clerty, this interent has been generated by the FCC Review of the ONA and LIDB con support, and SCIS and CCSCTS in parricular. If is also tighly bikely that the FOC state PUCs and the Ioint Bomd are ancicipating the nse of both syriecos in the peading 800 Dam Bese titiag
In addition to the above, we have ciso mep a marked ingrane in the use of cunside
 attliste clieat bese. Egacifanlly, lona and Young, Inderee and Arturr Andersen. This phenomens, when coupled wish the regulacery procmene increases the probability of unwaranted and inappropriste dimalosure of poprietery end confidentin information contrined within each of the aformemioned models if also poses a powentinly serious problew for Bellcore inaspaych as, troad disciosure of the model, a model thar constivmes a trade secret of Bellcore, withour the requisite protection could advemaly effor our sevenve prospects during a priod when external sales are gowing due to the increasing need for sophisticated nerwork cost models.

In order to ensure that the conficentisity of SCISNCOSCH is matinnined, the followiag procedures are reiterated and/or established. Firx apd forteooer, FUC ar other government agency requests for access to the docompatation or softwere shouid be pat in writiog and forwarded to my atrention. Genently speating, if the govermeat agency enters inmo Nondisclosure Agrement with Bellocre, and yi state sumshing lawe do not compromise ithe basic tenets of nondisclosure, Belloese will anow in minnt govenment acous to unredacted versions of all material relevant to a pericolyr filmg Bellecre will provide the Nondisclosure Agreement upoa regpert
The same procedures apply to independeat consultants hired by chients to perform cost of service studies. I must erphasize, bowever, that all consuhants mus siga a Nondisclosere Agreement and execute Access Agreererms for each engageoment The former must be signed by Bellecre, the consulkant and the telephope cocupany retaining the consultants while the laver must be executed by each individual conguhent afreaded secess wo the SCIS/CCSCLS material. Belleore will provide both Atremante upoe rectiving, in writing, request for aime. Providing aceest to the models absens fully execured Agreements is a contract violation.

Providing intevenors direat acsens to unpedacted documentation and software is nox perniked Intiverpors who expente she aforemantioned Agreemepts ean be provided
 expedite this proeess, Belleeve will, benceforth, provice the SCNSMCOCIS disterte coordinators (ar others, if specifice) with fully sedacted versions of SCIS and COSCTS documentation upon request. Requests should be fowwerded to Mr. Joel Comprion on (201) 740-3298.

Redacted documentation availability will triil the issuncee of formal documentation by, epproximately, two wecks This is reascaable sinee the chernative would be to dalay. full relesse which would no be socepable to you, ar Bellocir. The frst full set of SEDD MS reducred documentacion from retate 52 wo the present will be eviliable is, approximetuly. ehirty (30) days" Once a requer for material has been seceived, Bellewe will provide same within 24 houss. Redneted sotiware will also be provided apon request, but could
require up to three (3) weeks potice.

Ireiterate, Bellcare must be filly informed of all requests for access to the models, as well as panding requers. We will adroinister the procedural aspects of the seview process relating to the modis to both proper our collective inturats and to temove the sebd for you m undertake additican reapensilitity.

If you have any questions reguding the above, you may consect Mr. Compton who is responsible for all maters relating to documentation redacioas, Mr. Francis Chou (2017404775) ruy docurontation Direator, or the undersigned In advance, my thanles for
your continued eooperation in this manes.

Sincerely,

R. Aitrea
W. S. Bums
T. Cox
S. Day
R. Donakue
B. Moye
D. Thomas
F. Chon-Belleore
1. Compton - Betloore

\footnotetext{
 redicied versions of the above mus be afpreved by Ericssoa, Siemens and Surouberg Cerlico, reqpeaively. price wo release. This will rescik ti a setcy of vodetrmined duretions
}

\section*{CERTIFICATE OF SERVICE}

I HEREBY CERTIFY that a true and correct copy of the foregoing has been furnished by U. S. Mail or hand delivery (*) or overnight express (**) this 8th day of August, 1996, to the following:

Donna Canzano *
Division of Legal Services Florida Public Service Comm.
2540 Shumard Oak Blvd., Rm 370
Tallahassee, FL 32399-0850
Donald L. Crosby
Continental Cablevision, Inc. Southeastern Region
7800 Belfort Parkway, Suite 270
Jacksonville, FL 32256-6925
Anthony P. Gillman
Kimberly Caswell
GTE Florida Incorporated
Post Office Box 110, FLTC0007
Tampa, FL 31601-0110
Steven D. Shannon
MCI Metro Access Transmission Sves., Inc.
2250 Lakeside Blvd.
Richardson, TX 75082
Leslie Carter
Digital Media Partners
1 Prestige Place, Suite 255
2600 McCormack Drive
Clearwater, FL 34619-1098
Rich Rindler
Swidler \& Berlin, Chartered 3000 K Street, N.W., Suite 300
Washington, DC 20007
David Erwin
Young Van Assenderp et al.
Post Office Box 1833
Tallahassee, FL 32302-1833
Richard A. Gerstemeier
Time Warner AxS of FL, L.P.
2251 Lucien Way, Suite 320
Maitland, FL 32751-7023

Leo I. George
Lonestar Wireless of FL , Inc. 1146 19th Street, NW, Suite 200
Washington, DC 20036
Robert S. Cohen
Pennington Law Firm
Post Office Box 10095
Tallahassee, FL 32302
Patrick K. Wiggins
Wiggins \& Villacorta, P.A.
Post Office Drawer 1657
Tallahassee, FL 32302
Andrew D. Lipman
Metropolitan Fiber Systems of FL, Inc.
One Tower Lane, Suite 1600 Oakbrook Terrace, IL 601814630

Richard D. Melson
Hopping Boyd Green et al.
Post Office Box 6526
Tallahassee, FL 32314
J. Phillip Carver
c/o Nancy H. Sims
BellSouth Telecommunications
150 S. Monroe Street, Suite 400
Tallahassee, FL 32301
John Murray
Payphone Consultants, Inc.
3431 NW 55th Street
Ft. Lauderdale, FL 33309-6308
Patricia Kurlin
Intermedia Communications of FL 3625 Queen Palm Drive
Tampa, FL 33619

Gary T. Lawrence
City of Lakeland
501 East Lemon Street
Lakeland, FL 33801-5079
Jill Butler
Digital Media Partners/
Time Warner Communications
2773 Red Maple Ridge
Tallahassee, FL 32301
Graham A. Taylor
TCG South Florida
1001 W. Cypress Creek Rd., Suite 209
Ft. Lauderdale, FL 33309-1949
Clay Phillips
Utilities \& Telecommunications
Room 410
House Office Building
Tallahassee, FL 32399
Greg Krasovsky
Commerce \& Economic Opportunities
Room 4265
Senate Office Building
Tallahassee, FL 32399
Charles Beck
Office of Public Counsel
111 West Madison Street Room 812
Tallahassee, FL 32399-1400
Nels Roseland
Executive Office of the Governor
Office of Planning \& Budget
The Capitol, Room 1502
Tallahassee, FL 32399
Paul Kouroupas
Director, Regulatory Affairs
Teleport Communications Group Two Teleport Drive, Suite 300 Staten Island, NY 10311

Floyd R. Self
Messer, Caparello, et al. Post Office Box 1876 Tallahassee, FL 32302

Michael W. Tye
AT\&T
101 N. Monroe Street
Suite 700
Tallahassee, FL 32301
Robin D. Dunson
1200 Peachtree Street, NE
Promenade I, Room 4038
Atlanta, GA 30309
Sue E. Weiske
Time Warner Communications
160 Inverness Drive West
Englewood, CO 80112
Laura L. Wilson
FCTA
310 North Monroe Street
Tallahassee, FL 32301
Ken Hoffman
Rutledge, Ecenia, et. al
215 S. Monroe Street, Suite 420
Tallahassee, FL 32301-1841
Jodie Donovan-May
Eastern Region Counsel
Teleport Communications Group
1133 21st Street, NW, Suite 400
Washington, DC 20036
Mark K. Logan
Bryant, Miller and Olive
201 S. Monroe Street, Suite 500
Tallahassee, FL 32301
Timothy Devine
Metropolitan Fiber Systems
6 Concourse Pkwy., Suite 2100
Atlanta, GA 30328
```


[^0]: 'Switch vendor tables contain input data provided by the vendor for its switch types. This data is used in the algorithms for calculating investments. Examples of vendor tables are: Capacity. Table, SS7 Capacity Table, Assumption Table, Real Time Table, etc.

