Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Don J. Wood, and my business address is 914 Stream Valley Trail, Alpharetta, Georgia 30202. I provide consulting services to the ratepayers and regulators of telecommunications utilities.
Q. PLEASE DESCRIBE YOUR BACKGROUND AND EXPERIENCE.
A. I received a BBA in Finance with distinction from Emory University and an MBA with concentrations in Finance and Microeconomics from the College of William and Mary. My telecommunications experience includes employment at both a Regional Bell Operating Company ("RBOC") and an Interexchange Carrier ("IXC").

I was employed in the local exchange industry by BellSouth Services, Inc. in its Pricing and Economics, Service Cost Division. My responsibilities included performing cost analyses of new and existing services, preparing documentation for filings with state regulatory commissions and the Federal Communications Commission ("FCC"), developing methodology and computer models for use by other analysts, and performing special assembly cost studies. I was employed in the interexchange industry by MCI Telecommunications Corporation, as Manager of Regulatory Analysis for the Southern Division. In this capacity I was responsible for the development and implementation of regulatory policy for operations in the southern U. S. I
then served as a Manager in the Economic Analysis and Regulatory Affairs Organization, where I participated in the development of regulatory policy for national issues.
Q. HAVE YOU PREVIOUSLY PRESENTED TESTIMONY BEFORE STATE REGULATORY COMMISSIONS?
A. Yes. I have testified on telecommunications issues before the regulatory commissions of twenty-three states, the District of Columbia, state courts, and have presented comments to the FCC. A listing of my previous testimony is attached as Exhibit \qquad (DJW-1).

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. I have been asked by MCI Telecommunications Corporation ("MCI") to describe the methodology that MCI believes should be used for accurately determining the relevant costs of unbundled network elements to be provided by General Telephone Company of Florida ("GTEFL") pursuant to the Federal Telecommunications Act of 1996. I will also describe the results of applying this methodology in the state of Florida, and provide an overview of the model used to develop these costs.

My testimony is divided into three sections: Section I introduces the basis for the costs developed by MCI for the unbundled network elements and describes how those costs -- and the underlying methodology used to develop them -- are consistent with sound economic costing principles generally and with the FCC's August 8, 1996 First Report and Order in CC Docket 96-98 specifically. Section II describes how the model used to develop these costs operates, and Section III identifies the inputs used and reports the results of this analysis. I will refer to the methodology used as the Hatfield Model ("HM"), and will discuss the results obtained using Version 2.2, Release 2, of that model.
Q. PLEASE DESCRIBE YOUR EXPERIENCE REVIEWING COST MODELS AND METHODOLOGIES.
A. While employed in the BellSouth Service Cost organization, I had the opportunity to work with a number of cost models and to analyze and review the manner in which these models were used in the cost development process. Since that time, I have reviewed incremental cost studies performed by each of the seven regional Bell Operating Companies ("RBOCs") and a number of Tier 1 Local Exchange Companies ("LECs"). My review has included an evaluation of the methodologies, computer models and spreadsheets, and inputs/assumptions used. I have also been asked by regulators to develop detailed rules to be used by the LECs when performing TSLRIC studies.

Two constant sources of frustration have been present throughout this process: 1) The lack of publicly available information related to the LEC studies, and 2) the lack of independent and objective cost data to be used as a benchmark for the evaluation of the LEC-provided data.

Section I: Description of the Cost Principles Implemented by the Hatfield Model

Q. PLEASE DESCRIBE THE ORIGIN AND PURPOSES OF THE HATFIELD MODEL.

A. The Hatfield Model was developed by Hatfield Associates, Inc. of Boulder, Colorado at the request of AT\&T and MCI. Its purposes are to 1) estimate the costs of the unbundled network elements described in § 252 (d) (1)(A) and (B) of the Telecommunications Act of 1996, and 2) to develop an estimate of the cost of basic exchange telephone service that is the subject of universal service funding mechanisms. Complete documentation describing the operation of the model in detail is being developed and can be made available upon request.

The HM derives some of its inputs and methods from version 1 of the BCM Plus model, a successor to the Benchmark Cost Model ("BCM"), which was originally developed by US WEST, NYNEX, MCI, and the local services operation of Sprint. (On July 3, 1996, US West and Sprint Corporation presented version 2 of the BCM to the FCC. NYNEX and MCI are not sponsors of BCM2. A careful review indicates that the purported enhancements in BCM2 are already present in the Hatfield Model.)

Q. HAS THE HATFIELD MODEL EVOLVED OVER TIME?

A. Yes. Originally, the Model was used to produce estimates of the TSLRIC of basic local exchange service as part of an examination of the cost of universal service. A second version, referred to as the Hatfield Model V.2.2, Release 1
was then developed to estimate costs for unbundled network elements only. Version 2.2, Release 2, used to produce the results in this testimony, considers both unbundled elements and basic local exchange service. It also incorporates a number of enhancements over earlier versions, the ultimate effect of which is to increase the degree of certainty associated with the results it calculates.

Q. WHAT ARE THE KEY PRINCIPLES AND ATTRIBUTES OF THE

 HATFIELD MODEL?A. The model uses sound economic costing principles to estimate the relevant costs. Its operations can be readily scrutinized, and a large number of its inputs can be set, by users. It includes all network elements and associated costs that are necessary to provide the unbundled elements and local exchange service considered by the model.

Q. PLEASE DESCRIBE THE PUBLIC NATURE OF THE MODEL.

A. Version 2.2, Release 1 of the model has been available through the International Transcription Service of Washington, DC, for some time. Release 2 of the model will shortly be available from the same source, and will be made available in this proceeding. The new release will be accompanied by complete documentation that describes the operation of the model. In addition, a considerable effort has been expended to facilitate the setting of many inputs by the user of the model through a graphical interface, and it is anticipated that this interface will be available when the model is released, or shortly thereafter.

The inputs to the model, both those adjustable by the user and those incorporated into the model itself, are readily visible to the user. The model runs as a set of Excel spreadsheets, and those spreadsheets can be examined by the user.

Q.
 WHY IS IT IMPORTANT THAT COST MODELS CAN BE PUBLICLY

 REVIEWED IN THIS FASHION?A. Previously lacking such open cost models, regulators and intervenors have been forced to rely on cost studies produced by the incumbent Local Exchange Carriers (ILECs) as the only available source of cost data. Attempts to review, analyze, and verify the cost data produced by such models have met with, at best, only limited success.

As described above, two constant sources of frustration have been present throughout the process of reviewing such models. First, the lack of publicly available information related to the ILEC studies has often made a meaningful review difficult or impossible. The inputs and assumptions used by the respective ILECs, when made available, have often been subject to proprietary protection. Similarly, the mechanized cost models have often remained "black boxes" because of the inability of intervenors (and often regulators) to test either the accuracy of the algorithms or the sensitivity of the model to inputs and assumptions. The second source of frustration has been the lack of independent and objective cost data to be used as a benchmark for the evaluation of the LEC-provided data. Without such an objective data source, it has been impossible for either regulators or intervenors to ascertain
the reasonableness of ILEC cost estimates.
In contrast to the difficulty often experienced when attempting to evaluate ILEC cost studies and the underlying models, a review of the Hatfield Model can be direct and straight-forward. Complete and detailed documentation of the model is available, including descriptions of both the model algorithms and the inputs and assumptions used. Because the model is publicly available and its inputs can be varied by the user, it possible to directly evaluate the model for accuracy and to ascertain the sensitivity of the model to changes in various inputs. Because this level of review is possible, it is possible for the reviewer to conclude that the model produces both reasonable and verifiable cost data.

In summary, a fundamental issue with any cost study is the integrity of the assumptions, calculations and input values used to develop the ultimate outputs. The only method to test the reliability of the final product is to make all of the data as well as the methodology accessible for independent scrutiny and evaluation. The Hatfield Model uses clearly documented and visible methodologies which are verifiable, and non-proprietary data obtained from publicly-available sources. Both the inputs and outputs to the Hatfield Model are open for inspection and analysis. Inputs can be varied as appropriate, and sensitivity testing can be conducted by varying these inputs. The results are all subject to challenge and verification.
Q. YOU STATED THAT THE HATFIELD MODEL CALCULATES COSTS USING A METHODOLOGY THAT IS CONSISTENT WITH THE

"FORWARD LOOKING ECONOMIC COST"-BASED STANDARD ADOPTED BY THE FCC. PLEASE DESCRIBE THE STATED BASIS FOR THE FCC'S METHODOLOGY.

A. In its August 8, 1996 First Report and Order in CC Docket 96-98 ("Order"), the FCC concluded that because "the prices of interconnection and unbundled elements...are critical terms and conditions of any interconnection agreement," it was necessary to "set forth the methodological principles" to be used when determining relevant costs and rates (para. 618). The FCC outlines in some detail a "cost based pricing methodology based on forward looking economic costs" which it concludes is the approach for setting prices that best furthers the goals of the 1996 Act" (para. 620), and that will "give appropriate signals to producers and consumers and ensure efficient entry and utilization of the telecommunications infrastructure" (para. 630). This methodology is to be used to determine costs and rates for unbundled network elements, interconnection, and collocation (paras. 628, 629).

In order to develop a national standard for the calculation of forward looking economic costs, the FCC identified the following criteria to be used:

Use of a long run assumption. The term long run, in the FCC's methodology, "refers to a period long enough so that all of a firm's costs become variable or avoidable" (para. 677). The HM uses this assumption when identifying relevant investments and expenses.

Definition of increment to be studied total demand. The FCC states that "the increment that forms the basis for a TELRIC study shall be the entire quantity of the network element provided, and that "all costs associated with
providing the element shall be included in the incremental cost" (para. 690). The HM studies an increment equal to the entire quantity of the network element, both as the incumbent uses the network element to provide its own retail services and as it provides that network element to other carriers on an unbundled basis. All costs that an efficient incumbent LEC would incur to provide the network element are included.

Use of a forward-looking methodology. The FCC concluded that the relevant costs should be the costs that "a carrier would incur in the future" (para. 683), and that a "forward-looking economic cost methodology based on the most efficient technology deployed in the incumbent LEC's current wire center locations" (para. 685). The HM utilizes existing wire center locations, and develops investments using the most efficient, currently available technologies for the provision of loop facilities, switching, interoffice transport, and signalling.

The inclusion of a "reasonable profit." The FCC concludes that "the concept of normal profit is embodied in forward looking costs because the forward looking cost of capital...is one of the forward-looking costs of providing the network elements," (para. 700), and that because a normal profit is represented by the LEC's forward looking cost of capital, "no additional profit is justified under the statutory language" (para. 699). The HM includes a forward looking cost of capital in the costs that it calculates, and does not provide an additional "markup" over this level.

Embedded costs should not be included. The FCC concluded that a cost methodology based on embedded costs, or a "markup" to reflect the
difference between forward-looking and embedded costs, "would be procompetitor -- in this case the incumbent LEC -- rather than pro-competition," and went on to state that "we reiterate that the prices for interconnection and network elements critical to the development of a competitive local exchange should be based on the pro-competition, forward looking, economic costs of those elements, which may be higher or lower than historical embedded costs. Such pricing policies will best ensure the efficient investment decisions and competitive entry contemplated by the 1996 Act" (para. 705). The HM is based on forward looking economic costs, and embedded investments are not used.

Universal Service Subsidies should not be included. The FCC concluded that "funding for any universal service mechanisms adopted in the universal service proceeding may not be included in the rates for interconnection, network elements, and access to network elements" (para. 712). The HM does not include these costs in its calculations.

Access to Cost Data/Burden of Proof. The FCC notes that "the incumbent LECs have greater access to the cost information necessary to calculate the incremental cost of the unbundled elements of the network. Given this asymmetric access to cost data, we find that incumbent LECs must prove to the state commission the nature and magnitude of any forward looking cost that it seeks to recover" (para.680, 696). The HM calculates costs using the best publicly available data that has been identified. The model is designed to permit calculations of cost based on LEC-provided data if the LEC has met the burden of proof that these data will accurately identify
forward looking costs.
Use of generic forward looking cost models. While the FCC stated that it had not had ample time to review the Hatfield Model specifically, it stated that the HM and similar generic models "appear best to comport with the preferred economic cost approach discussed previously" in the Order (para. 834), and that the HM and similar models "appear to offer a method of estimating the cost of network elements on a forward looking basis that is practical to implement and that allows state commissions the ability to examine the assumptions and parameters that go into the cost estimates" (para. 835). Of those models referred to by the FCC in this section, only the Hatfield Model is based on publicly available data and permits scrutiny by both commissions and interested parties.

Inclusion of specific types of cost and application of principle of cost causation. The FCC states that unbundled network elements should be priced at "the forward looking costs that can be attributed directly to the provision of services using that element, plus a reasonable share of the forward looking joint and common costs" (para. 673), and indicates that "costs must be attributed on a cost-causative basis. Costs are causally related to the network element being provided if the costs are incurred as a direct result of providing the network elements, or can be avoided, in the long run, when the company ceases to provide them" (para. 691). The FCC goes on in subsequent paragraphs of the Order to define these terms and to give illustrative examples (See paras. $678,679,682,690,691,694,698$). The HM uses cost-causative principles to identify forward-looking costs with specific network elements. It includes in the cost of network elements all the costs that the FCC specifically discussed in its order as being part of the direct cost of network elements. Specifically, the HM includes all "investment costs and expenses related to primary plant used to provide that element" (para. 682), and attributes "incremental costs of shared facilities and operations...to specific elements to the greatest extent possible" (para. 682). The HM specifically attributes "the costs of conduits shared by both transport and local loops, and the costs of central office facilities shared by both local switched and tandem switching...to specific elements in reasonable proportions" (para. 682). For both dedicated and shared investments, the HM includes "the forward-looking costs of capital (debt and equity) needed to support investments required to produce a given element" (para. 691).

The FCC's rules require that overhead costs be included to the extent that they vary with the output of particular network elements (despite their accounting classification), and thus are part of the TELRIC of those elements. The FCC also requires, to the extent that there are any such overhead costs that are common to several wholesale elements, or to wholesale and other functions, that the prices of of network elements include "a reasonable share of common costs." The procedure of estimating the overhead costs of a wholesale-only carrier, which is what Hatfield does by adding the 10% markup, satisfies the FCC requirements. While statistical evidence and a growing literature on activity-based accounting systems suggest that many of the costs that have traditionally been considered "overhead" costs should actually be considered service-specific or element-specific costs, the Hatfield

Model method for treating overhead costs renders any precise distinction between element-specific and "common" overhead costs unnecessary. Insofar as the 10% markup captures all of the relevant overhead costs, it includes any element-specific costs and a reasonable share of any "common" overhead costs. This approach ensures that each network element recovers at least its "reasonable" share of such common costs, to the extent that they exist. Moreover, if regulators set prices for network elements equal to the costs that the Hatfield Model reports for each element, these prices would allow a firm that is engaged solely in providing network elements on a wholesale basis (with no retail functions) to recover all of its economic costs of doing business, including a reasonable profit, but no more. From this vantage point also, the Hatfield approach lies well within the bounds of reasonableness.

In conclusion, the Hatfield Model complies with the detailed explanation of the cost methodology adopted by the FCC and the results of the Model should be used to establish rates for unbundled network elements in Florida.

Q. HAVE REGULATORS AND ECONOMISTS ENDORSED THE HATFIELD MODEL?

A. Yes. With reference to an earlier version of the model, which lacks a number of the features and enhancements incorporated into Release 2, the Washington Utilities and Transportation Commission concluded the following (See WUTC Docket No. UT-950200, Fifteenth Supplemental Order, page 82): The Commission rejects USWC's cost studies for local
service and the local loop. The most reasonable and accurate measure of incremental cost for these services on this record is provided by the Hatfield model ... We are satisfied that it accurately reflects costs incurred by USWC and that, if it errs, it likely errs on the high side.

Nationally prominent economists have also endorsed the HM. In an affidavit submitted in response to the FCC's April 19, 1996, Notice of Proposed Rulemaking in CC Docket No. 96-98, Professors William J. Baumol, Janusz A. Ordover and Robert D. Willig state in paragraph 38 that: We have reviewed the costing model constructed for AT\&T and MCI by Hatfield Associates, Inc., a telecommunications consulting firm. The object of the current Hatfield model is to estimate the total costs of building and operating a network, using efficient, forward-looking technology, to supply all "basic" narrowband services (essentially all local and intraLATA toll service, including carrier access) currently supplied in the United States. We conclude that the Hatfield Model follows reasonably closely the TSLRIC principles discussed in Section II. Where limitations on the availability of data have forced the designers of the model to use approximations that deviate from the theoretical ideal, the shortcuts adopted tend to
overestimate, not underestimate, true TSLRIC. Further the model is extremely flexible: whenever values are available, they can readily be substituted for the values used currently.

Section II: Constituents and Operation of the Hatfield Model
 Q. PLEASE PROVIDE A SUMMARY DESCRIPTION OF THE HATFIELD MODEL'S OPERATION.

A. The Hatfield Model employs a methodology based upon engineering standards and methods applicable to the local exchange network in order to estimate the costs that would be incurred by an efficient firm to provide the unbundled network functions and basic exchange service that are considered by the model. Specifically, these costs would be incurred by an efficient LEC to provide the specified functions and services using a network designed to provide narrowband, voice-grade telephone services. The Hatfield Model is a table-driven system that is adaptable to any LEC or geographic area, provided the appropriate state-specific and company-specific information is available and input into the model.

Q. HOW DOES THE HATFIELD MODEL RELATE TO THE BCM?

A. A key constituent of the HM is BCM-PLUS, which was derived from the first version of the BCM ("BCM1"). However, BCM-PLUS, and the remaining modules of the HM, use BCM1 only as an initial step in the development of the investment associated with the feeder and distribution components of the
local loop. The Hatfield Model adds network components not included in BCM1. It also applies BCM1 output to its own switching investment module. The switching module in the Hatfield Model contains separate, user-changeable factors for switching investment, construction, installation, floor space and frames. This disaggregation provides for a thorough determination of wire center costs. The same module determines the investment in interoffice call transport and signaling facilities.

BCM-PLUS, together with the Hatfield Model, improve on BCM1 in a number of ways. First, the HM uses a 1995 estimate of households per Census Block Group (CBG), whereas BCM1 used 1990 census data. Second, the HM accounts for multi-line residences, and business, special access, and payphone lines, which were excluded from the loop facilities calculation in the BCM1. In doing so, it uses a database showing the number of employees per CBG that was not identified at the time BCM1 or earlier versions of the HM were written. Third, the HM estimates costs according to the line density -that is, the number of lines served per square mile -- rather than the number of households per square mile. Fourth, the HM increases the amount of distribution cable in the two highest density ranges, and decreases it in lowest density range, consistent with the amount of cable that would actually be required for such a line density. Fifth, the HM estimates structure costs independently of the cost of the cable itself, whereas the BCM1 estimated structure costs as a multiplier of cable costs. In addition, the HM includes cable installation (placement) costs, which tends to increase the per-foot cost of the cable. Sixth, the Hatfield Model includes costs associated with network
elements that were not included in the BCM1, such as the drop wire, network interface device, terminal, and serving area interface portions of the local loop, and the facilities necessary to connect LEC end offices (interoffice facilities). These are perhaps the most significant changes; there are a number of additional minor changes.

As already noted, U S WEST and Sprint recently released a new version of the Benchmark Cost Model ("BCM2"). BCM2 incorporates many, but not all, of the modifications that the Hatfield Model made to BCM1.

Q. PLEASE DESCRIBE THE INPUT DATA USED BY THE HATFIELD

 MODEL.A. The Hatfield Model uses seven primary categories of input data: CBG data, business employee data, cable and installation cost data, wire center data, traffic data, expense data, and ARMIS-reported data on the number of residence and business lines. The CBG data used by the Hatfield Model are: 1) number of households in each CBG; 2) CBG land area; 3) CBG position relative to the nearest wire center; and 4) geological factors including rock depth, rock hardness, water table depth, and surface texture. The business line data provide the number of business employees by CBG; this information is used to distribute the ARMIS-reported number of business, special access, and payphone lines by CBG.

The wire center data provides the location of existing wire centers in each LATA, as well as the location of existing tandem switches and signal transfer points.

Network traffic is estimated using dial equipment minutes and call attempt statistics. These inputs are used to appropriately size investment in switching, signaling, and interoffice facilities, as well as to calculate usagesensitive costs for several of the unbundled network elements.

The information necessary to estimate future recurring expenses associated with operating and maintaining the telephone network comes from two sources. Forward-looking expense information is used if it exists in the public domain. Where no such data is available, selected expense data reported by the LECs in ARMIS is used because it is the best publicly available data.

Q. WHAT ARE THE FUNCTIONAL MODULES THAT COMPRISE THE HATFIELD MODEL?

A. The Hatfield Model contains six functional modules. They are:

- Line Multiplier Module;
- Data Module;
- Loop Module;
- Wire Center Investment Module;
- Convergence Module; and
- Expense Module.

An overview of each of the modules is provided below.
Q. WHAT IS THE PURPOSE OF THE LINE MULTIPLIER MODULE?
A. In order to calculate costs on a per line basis, the HM uses estimates of the
total number of lines (including residential, business, public telephone and special access lines) within each CBG. CBG input data contains the number of households, not number of lines, in each CBG. The line multiplier module determines a ratio of total residential lines reported in ARMIS to total households, and applies this ratio to the number of households in each CBG to estimate the number of residential lines by CBG. It estimates the number of business, special access, and payphone lines by distributing the corresponding ARMIS numbers among CBGs proportionally to the number of employees in each of the CBGs.

Because the network is sized to provide all loops, not just residential loops, and because the total line density may be substantially different than the residential line density, the model subsequently categorizes and reports costs within CBGs according to total line density (i.e., total lines served per square mile) rather than residential line density. Line density is broken into six categories, or density ranges: $0-5,5-200,200-650,650-850,850-2,550$ and greater than 2,550 lines per square mile, respectively.

Q. WHAT FUNCTION IS PERFORMED IN THE DATA MODULE?

A. The Data Module uses CBG data and line totals to determine the quantity and type of outside loop plant facilities required, based upon density and distance of the CBG from the wire center. In doing so, it basically employs the same methodology as does the BCM1, although there are a few exceptions, such as 1) as already discussed, the length of distribution cable is changed for the highest and lowest line density zones; 2) the fiber-copper breakpoint -- that is,
the feeder length below which copper cable, and above which fiber cable, are used -- becomes a user input; and 3) fiber cable is assumed to have a higher equivalent line capacity than is assumed by BCM1. The HM also separately considers the amounts and costs of underground and buried cable, whereas they were combined in the BCM1. The Data Module also calculates outside plant structure (poles, conduits) costs associated with placing and installing cable under varying terrain and population density conditions.

Q. WHAT FUNCTION IS PERFORMED BY THE LOOP MODULE?

A. The Loop Module, which is also part of BCM1, determines the size and type of cable required to serve each CBG, given loop lengths, fill levels, and population density. The Module then uses the distribution and feeder lengths calculated in the Data Module as well as cable price information to determine the total required loop investment for each CBG including supporting structure investment.

Q. WHAT IS THE PURPOSE OF THE WIRE CENTER MODULE?

A. The Wire Center Module calculates wire center and interoffice facilities investments. This module quantifies investments associated with end office switches, wire centers, trunks, tandems (including operator tandems, and operator positions), signaling links, signal transfer points (STPs), and service control points (SCPs). Some of the elements it considers, such as the cost of the SCPs and operator positions, are relevant only to unbundled network elements; the remainder are germane to both unbundled elements and the cost
of basic local service. The module uses the total number of access lines, the location of wire centers, and network traffic data to determine required switching, trunking, and signaling investments.

The module sizes network facilities sufficient to serve the total demand created by all users and uses of the network. The Hatfield Model derives its switch investment estimates by using both typical per line prices paid for by Bell Operating Companies, GTE and other independents for end office switches (according to a published source), and by using Table 2.10 of the FCC's Statistics of Communications Common Carriers, which provides the average number of access lines served by a LEC switch.

Q. WHAT IS THE PURPOSE OF THE CONVERGENCE MODULE?

A. The Convergence Module modifies the loop investment calculated in the Loop Module to account for network elements omitted from BCM1. It combines the modified loop investment with the wire center, interoffice, and signaling investment calculated in the Wire Center Module. For each of the six density ranges, the convergence module reports the number of lines by type, number of households and investment in categories such as distribution, feeder, end office switching, tandems, and trunks.

Q. PLEASE DESCRIBE THE EXPENSE MODULE.

A. The Expense Module uses the outputs from the Convergence Module to determine annual capital carrying costs, operations and maintenance expenses, and support expenses associated with the investments needed for a local
telecommunications network. This module uses the best publicly available information to estimate future expenses and reports the annual cost for each unbundled network element. The module requires as inputs appropriate assumptions regarding the cost of capital (cost of debt, cost of equity, and debt/equity ratio); the economic lives of various categories of network equipment and facilities, and the relationship between investment and expenses. It produces the appropriate unit cost of various unbundled network elements and of basic exchange service. These units vary by type of element and service: for instance, the cost of unbundled local switching is reported as both cost per port and cost per minute of use; while the SCP cost unit is messages. Basic local exchange service is reported as the cost per line per month for the service, whose elements have been defined previously. The results are reported by line density zone, using the ranges I have defined previously.
Q. YOU PREVIOUSLY REFERRED TO HATFIELD MODEL VERSION 2.2, RELEASE 1. PLEASE SUMMARIZE THE KEY DIFFERENCES BETWEEN HATFIELD MODEL VERSION 2.2 RELEASE 1 AND RELEASE 2.
A. The key differences may be summarized as follows. Compared to Release 1 , Release 2

- estimates the cost of basic local exchange service,
- tentatively provides a graphical user interface to facilitate the setting of user inputs and running the model,
provides an increased set of inputs that can be set by the user, uses a 1995 estimate of households by CBG, rather than 1990 census data, estimates the number of business, special access, and payphone lines per CBG using a database containing employees per CBG, increases the length of distribution cable for the two highestdensity ranges, and decreases it for the least dense range, specifies cable costs on an as-installed basis, generally leading to higher per-foot cable costs, separates structure costs from cable costs, rather than calculating them as a multiplier of cable costs, places each serving area interface (the interface point between feeder and distribution cable) inside the CBG it serves, rather than at the edge of the CBG, refines the treatment of interoffice transport and signaling costs, provides a greater disaggregation of expense factors, for instance, by considering underground and buried cable expenses separately, and adds the estimated cost of local number portability.
in this proceeding are attached as Exhibit DJW-2. As with all data, MCI is continuing to evaluate the accuracy and validity of these inputs in order to ensure the reliability of the cost information produced by the model.
Q. WHAT ARE THE RESULTS OF THE MODEL?
A. In Exhibit DJW-3, I have included the results of running the Hatfield Model to develop costs for use in this proceeding. In summary, the results of MCI's analysis are as follows:

Hatfield Model Unbundled Network Element Summary

Element

1. Network Interface Device
2. Loop Distribution
3. Loop Concentrator
4. Loop Feeder
5. End Office Switching

Port

Usage
6. Signaling Links "A"

Signaling Links "D"
7. Signal Transfer Point
8. Signal Control Point
9. Common Transport
10. Dedicated Transport

Unit Definition
Unit Cost
per line-per month $\$ 0.55$
per line-per month $\$ 6.01$
per line-per month $\$ 2.39$
per line-per month $\$ 2.30$

per line-per month	$\$ 1.12$
per minute	$\$ 0.002$

per minute
$\$ 0.002$
per link-per month $\$ 16.83$
per link-per month $\$ 8.65$
per message $\$ 0.00003$
per message $\$ 0.00103$
per minute
$\$ 0.00086$
per DSO - per month
$\$ 3.60$

1
2
3
4 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
5 A. Yes. However, I would like to reserve the right to update or supplement the
11. Tandem Switching per minute $\$ 0.0007$
12. Operator Systems $\$ 4,232,244$ specific cost numbers in the event that this becomes necessary.

EDUCATION

Emory University, Atlanta, Ga.
BBA in Finance, with Distinction.
College of William and Mary, Williamsburg, Va. MBA, with concentration in Finance and Microeconomics.

CURRENT EMPLOYMENT

Don J. Wood provides economic and regulatory analysis services in telecommunications and related industries. He has been employed in a management capacity at a major Local Exchange Company and an Interexchange Carrier, and has been directly involved in both the development and implementation of regulatory policy. He has presented testimony before the Regulatory Commissions of twenty-three states and the District of Columbia, state courts, and has prepared comments for filing with the Federal Communications Commission.

PREVIOUS EXPERIENCE

BellSouth Services, Inc.

Staff Manager responsible for conducting cost of service studies to be filed for regulatory purposes at State Commissions and FCC. Developed new costing methodologies and models for use by other analysts.

MCI Telecommunications Corporation.

Manager of Regulatory Analysis, Southeast Division. Responsible for development and implementation of regulatory policy for nine state division of the company. Duties included testimony before State Commissions, preparation of related pleadings, settlement negotiations, and development of relationships with Commission Staff and key industry personnel. After company reorganization, responsibilities expanded to new 15 state Southern Division.

Manager, Corporate Economic Analysis and Regulatory Affairs. Responsible for national regulatory policy development. Acted as part of a four person internal consulting team, specifically assigned to new/complex issues. Testimony before State Commissions throughout eastern US and comments/lobbying at FCC.

Exhibit \qquad (DJW-1)
MCI/GTEFL Arbitration
Page 2 of 10

TESTIMONY - STATE REGULATORY COMMISSIONS:

Alabama Public Service Commission

Docket No. 19356, Phase III: Alabama Public Service Commission vs. All Telephone Companies Operating in Alabama, and Docket 21455: AT\&T Communications of the South Central States, Inc., Applicant, Application for a Certificate of Public Convenience and Necessity to Provide Limited IntraLATA Telecommunications Service in the State of Alabama.

Docket No. 20895: In Re: Petition for Approval to Introduce Business Line Termination for MCI's 800 Service.

Docket No. 21071: In Re: Petition by South Central Bell for Introduction of Bidirectional Measured Service.

Docket No. 21067: In Re: Petition by South Central Bell to Offer Dial Back-Up Service and 2400 BPS Central Office Data Set for Use with PulseLink Public Packet Switching Network Service.

Docket No. 21378: In Re: Petition by South Central Bell for Approval of Tariff Revisions to Restructure ESSX and Digital ESSX Service.

Docket No. 21865: In Re: Petition by South Central Bell for Approval of Tariff Revisions to Introduce Network Services to be Offered as a Part of Open Network Architecture.

Arkansas Public Service Commission

Docket No. 92-337-R: In the Matter of the Application for a Rule Limiting Collocation for Special Access to Virtual or Physical Collocation at the Option of the Local Exchange Carrier.

State of Connecticut, Department of Utility Control

Docket 91-12-19: DPUC Review of Intrastate Telecommunications Services Open to Competition (Comments).

Docket No. 94-07-02: Development of the Assumptions, Tests, Analysis, and Review to Govern Telecommunications Service Reclassifications in Light of the Eight Criteria Set Forth in Section 6 of Public Act 94-83 (Comments).

Delaware Public Service Commission

Docket No. 93-31T: In the Matter of the Application of The Diamond State Telephone Company for Establishment of Rules and Rates for the Provision of IntelliLinQ-PRI and IntelliLinQ-BRI.

Docket No. 41: In the Matter of the Development of Regulations for the Implementation of the Telecommunications Technology Investment Act.

Florida Public Service Commission

Docket No. 881257-TL: In Re: Proposed Tariff by Southern Bell to Introduce New Features for Digital ESSX Service, and to Provide Structural Changes for both ESSX Service and Digital ESSX Service.

Docket No. 880812-TP: In Re: Investigation into Equal Access Exchange Areas (EAEAs), Toll Monopoly Areas (TMAs), $1+$ Restriction to the Local Exchange Companies (LECs), and Elimination of the Access Discount.

Docket No. 890183-TL: In Re: Generic Investigation into the Operations of Alternate Access Vendors.

Docket No. 870347-TI: In Re: Petition of AT\&T Communications of the Southern States for Commission Forbearance from Earnings Regulation and Waiver of Rule 254.495(1) and 25-24.480 (1) (b), F.A.C., for a trial period.

Docket No. 900708-TL: In Re: Investigation of Methodology to Account for Access Charges in Local Exchange Company (LEC) Toll Pricing.

Docket No. 900633-TL: In Re: Development of Local Exchange Company Cost of Service Study Methodology.

Docket No. 910757-TP: In Re: Investigation into the Regulatory Safeguards Required to Prevent Cross-Subsidization by Telephone Companies.

Docket No. 920260-TL: In Re: Petition of Southern Bell Telephone and Telegraph Company for Rate Stabilization, Implementation Orders, and Other Relief.

Docket No. 950985-TP: In Re: Resolution of Petitions to establish 1995 rates, terms, and conditions for interconnection involving local exchange companies and alternative local exchange companies pursuant to Section 364.162, Florida Statutes.
\qquad (DJW-1)
MCI/GTEFL Arbitration Page 4 of 10

Georgia Public Service Commission

Docket No. 3882-U: In Re: Investigation into Incentive Telephone Regulation in Georgia.

Docket No. 3883-U: In Re: Investigation into the Level and Structure of Intrastate Access Charges.

Docket No. 3921-U: In Re: Compliance and Implementation of Senate Bill 524.
Docket No. 3905-U: In Re: Southern Bell Rule Nisi.
Docket No. 3995-U: In Re: IntraLATA Toll Competition.
Docket No. 4018-U: In Re: Review of Open Network Architecture (ONA) (Comments).

Docket No. 5258-U: In Re: Petition of BellSouth Telecommunications for Consideration and Approval of its "Georgians FIRST" (Price Caps) Proposal.

Docket No. 5825-U: In Re: The Creation of a Universal Access Fund as Required by the Telecommunications Competition and Development Act of 1995.

Iowa Utilities Board

Docket No. RPU-95-10.
Docket No. RPU-95-11.

Kentucky Public Service Commission

Administrative Case No. 10321: In the Matter of the Tariff Filing of South Central Bell Telephone Company to Establish and Offer Pulselink Service.

Administrative Case No. 323: In the Matter of An Inquiry into IntraLATA Toll Competition, An Appropriate Compensation Scheme for Completion of IntraLATA Calls by Interexchange Carriers, and WATS Jurisdictionality.

- Phase IA: Determination of whether intraLATA toll competition is in the public

Exhibit

\qquad (DJW-1)
MCL/GTEFL Arbitration
Page 5 of 10
interest.

- Phase IB: Determination of a method of implementing intraLATA competition.
- Rehearing on issue of Imputation.

Administrative Case No. 90-256, Phase II: In the Matter of A Review of the Rates and Charges and Incentive Regulation Plan of South Central Bell Telephone Company.

Administrative Case No. 336: In the Matter of an Investigation into the Elimination of Switched Access Service Discounts and Adoption of Time of Day Switch Access Service Rates.

Administrative Case No. 91-250: In the Matter of South Central Bell Telephone Company's Proposed Area Calling Service Tariff.

Louisiana Public Service Commission

Docket No. 17970: In Re: Investigation of the Revenue Requirements, Rate Structures, Charges, Services, Rate of Return, and Construction Program of AT\&T Communications of the South Central States, Inc., in its Louisiana Operations.

Docket No. U-17949: In the Matter of an Investigation of the Revenue Requirements, Rate Structures, Charges, Services, Rate of Return, and Construction Program of South Central Bell Telephone Company, Its Louisiana Intrastate Operations, The Appropriate Level of Access Charges, and All Matters Relevant to the Rates and Service Rendered by the Company.

- Subdocket A (SCB Earnings Phase)
- Subdocket B (Generic Competition Phase)

Docket No. 18913-U: In Re: South Central Bell's Request for Approval of Tariff Revisions to Restructure ESSX and Digital ESSX Service.

Docket No. U-18851: In Re: Petition for Elimination of Disparity in Access Tariff Rates.

Public Service Commission of Maryland

Case 8584, Phase II: In the Matter of the Application of MFS Intelenet of Maryland, Inc. for Authority to Provide and Resell Local Exchange and Intrastate Telecommunications Services in Areas Served by C\&P Telephone Company of

Maryland.
Case 8715: In the Matter of the Inquiry into Alternative Forms of Regulating Telephone Companies.

Mississippi Public Service Commission

Docket No. U-5086: In Re: MCI Telecommunications Corporation's Metered Use Service Option D (Prism I) and Option E (Prism II).

Docket No. U-5112: In Re: MCI Telecommunications Corporation's Metered Use Option H (800 Service).

Docket No. U-5318: In Re: Petition of MCI for Approval of MCI's Provision of Service to a Specific Commercial Banking Customers for Intrastate Interexchange Telecommunications Service.

Docket 89-UN-5453: In Re: Notice and Application of South Central Bell Telephone Company for Adoption and Implementation of a Rate Stabilization Plan for its Mississippi Operations.

Docket No. 90-UA-0280: In Re: Order of the Mississippi Public Service Commission Initiating Hearings Concerning (1) IntraLATA Competition in the Telecommunications Industry and (2) Payment of Compensation by Interexchange Carriers and Resellers to Local Exchange Companies in Addition to Access Charges.

Docket No. 92-UA-0227: In Re: Order Implementing IntraLATA Competition.

New York Public Service Commission

Case No. 28425: Proceeding on Motion of the Commission as to the Impact of the Modification of Final Judgement and the Federal Communications Commission's Docket 78-72 on the Provision of Toll Service in New York State.

North Carolina Public Utilities Commission

Docket No. P-100, Sub 72: In the Matter of the Petition of AT\&T to Amend Commission Rules Governing Regulation of Interexchange Carriers (Comments).

Docket No. P-141, Sub 19: In the Matter of the Application of MCI Telecommunications Corporation to Provide InterLATA Facilities-Based Telecommunications Services (Comments).

Docket No. P-55, Sub 1013: In the Matter of Application of BellSouth Telecommunications, Inc. for, and Election of, Price Regulation.

Docket Nos. P-7, Sub 825 and P-10, Sub 479: In the Matter of Petition of Carolina Telephone and Telegraph and Central Telephone Company for Approval of a Price Regulation Plan Pursuant to G.S. 62-133.5.

Docket No. P-19, Sub 277: In the Matter of Application of GTE South Incorporated for and Election of, Price Regulation.

Public Utilities Commission of Ohio

Case No. 93-487-TP-ALT: In the Matter of the Application of The Ohio Bell Telephone Company for Approval of an Alternative Form of Regulation.

Oklahoma Corporation Commission

Cause No. PUD 01448: In the Matter of the Application for an Order Limiting Collocation for Special Access to Virtual or Physical Collocation at the Option of the Local Exchange Carrier.

Public Utility Commission of Oregon

Docket No. UT 119: In the Matter of an Investigation into Tariffs Filed by US West Communications, Inc., United Telephone of the Northwest, Pacific Telecom, Inc., and GTE Northwest, Inc. in Accordance with ORS 759.185(4).

Pennsylvania Public Utilities Commission

Docket No. I-00910010: In Re: Generic Investigation into the Current Provision of InterLATA Toll Service.

Docket No. P-00930715: In Re: The Bell Telephone Company of Pennsylvania's Petition and Plan for Alternative Form of Regulation under Chapter 30.

Docket No. R-00943008: In Re: Pennsylvania Public Utility Commission v. Bell Atlantic-Pennsylvania, Inc. (Investigation of Proposed Promotional Offerings Tariff).

Docket No. M-00940587: In Re: Investigation pursuant to Section 3005 of the Public Utility Code, 66 Pa. C. S. $\S 3005$, and the Commission's Opinion and Order at Docket No. P-930715, to establish standards and safeguards for competitive services, with
particular emphasis in the areas of cost allocations, cost studies, unbundling, and imputation, and to consider generic issues for future rulemaking.

South Carolina Public Service Commission

Docket No. 90-626-C: In Re: Generic Proceeding to Consider Intrastate Incentive Regulation.

Docket No. 90-321-C: In Re: Petition of Southern Bell Telephone and Telegraph Company for Revisions to its Access Service Tariff Nos. E2 and E16.

Docket No. 88-472-C: In Re: Petition of AT\&T of the Southern States, Inc., Requesting the Commission to Initiate an Investigation Concerning the Level and Structure of Intrastate Carrier Common Line (CCL) Access Charges.

Docket No. 92-163-C: In Re: Position of Certain Participating South Carolina Local Exchange Companies for Approval of an Expanded Area Calling (EAC) Plan.

Docket No. 92-182-C: In Re: Application of MCI Telecommunications Corporation, AT\&T Communications of the Southern States, Inc., and Sprint Communications Company, L.P., to Provide IntraLATA Telecommunications Services.

Docket No. 95-720-C: In Re: Application of BellSouth Telecommunications, Inc. $\mathrm{d} / \mathrm{b} / \mathrm{a}$ Southern Bell Telephone and Telegraph Company for Approval of an Alternative Regulation Plan.

Tennessee Public Service Commission

Docket No. 90-05953: In Re: Earnings Investigation of South Central Bell Telephone Company.

Docket Nos. 89-11065, 89-11735, 89-12677: AT\&T Communications of the South Central States, MCI Telecommunications Corporation, US Sprint Communications Company -- Application for Limited IntraLATA Telecommunications Certificate of Public Convenience and Necessity.

Docket No. 91-07501: South Central Bell Telephone Company's Application to Reflect Changes in its Switched Access Service Tariff to Limit Use of the 700 Access Code.

Public Utility Commission of Texas

Docket No. 12879: Application of Southwestern Bell Telephone Company for
\qquad (DJW-1) MCI/GTEFL Arbitration Page 9 of 10

Expanded Interconnection for Special Access Services and Switched Transport Services and Unbundling of Special Access DS1 and DS3 Services Pursuant to P. U. C. Subst. R. 23.26.

Virginia State Corporation Commission

Case No. PUC920043: Application of Virginia Metrotel, Inc. for a Certificate of Public Convenience and Necessity to Provide InterLATA Interexchange Telecommunications Services.

Case No. PUC920029: Ex Parte: In the Matter of Evaluating the Experimental Plan for Alternative Regulation of Virginia Telephone Companies.

Case No. PUC930035: Application of Contel of Virginia, Inc. d/b/a GTE Virginia to implement community calling plans in various GTE Virginia exchanges within the Richmond and Lynchburg LATAs.

Case No. PUC930036: Ex Parte: In the Matter of Investigating Telephone Regulatory Methods Pursuant to Virginia Code § 56-235.5, \& Etc.

Washington Utilities and Transportation Commission

Docket Nos. UT-941464, UT-941465, UT-950146, and UT-950265 (Consolidated): Washington Utilities and Transportation Commission, Complainant, vs. US West Communications, Inc., Respondent; TCG Seattle and Digital Direct of Seattle, Inc., Complainant, vs. US West Communications, Inc., Respondent; TCG Seattle, Complainant, vs. GTE Northwest Inc., Respondent; Electric Lightwave, Inc., vs. GTE Northwest, Inc., Respondent.

Docket No. UT-950200: In the Matter of the Request of US West Communications, Inc. for an Increase in its Rates and Charges.

Public Service Commission of Wyoming

Docket No. 70000-TR-95-238: In the Matter of the General Rate/Price Case Application of US West Communications, Inc.

Docket No. PSC-96-32: In the Matter of Proposed Rule Regarding Total Service Long Run Incremental Cost (TSLRIC) Studies.

Public Service Commission of the District of Columbia

\qquad (DJW-1) MCI/GTEFL Arbitration Page 10 of 10

Formal Case No. 814, Phase IV: In the Matter of the Investigation into the Impact of the AT\&T Divestiture and Decisions of the Federal Communications Commission on Bell Atlantic - Washington, D. C. Inc.'s Jurisdictional Rates.

COMMENTS - FEDERAL COMMUNICATIONS COMMISSION

CC Docket No. 92-91: In the Matter of Open Network Architecture Tariffs of Bell Operating Companies.

CC Docket No. 93-162: Local Exchange Carriers' Rates, Terms, and Conditions for Expanded Interconnection for Special Access.

CC Docket No. 91-141: Common Carrier Bureau Inquiry into Local Exchange Company Term and Volume Discount Plans for Special Access.

CC Docket No. 94-97: Review of Virtual Expanded Interconnection Service Tariffs.
CC Docket No. 94-128: Open Network Architecture Tariffs of US West Communications, Inc.

CC Docket No. 94-97, Phase II: Investigation of Cost Issues, Virtual Expanded Interconnection Service Tariffs.

Exhibit
MCI/GTE A
Page 1 of $\mathbf{2 5}$

		density rance						
		0.5	5-200	200-650	650-850	050-2550	>2550	totals
	total linest	2,808	139.040	220.599	73,530	692,197	1.033,771	2,161,945
	busineas lines	793	23.549 \|	33,888	15,613	133,986	299,430	507,236
	rasichential bivet	1.712	108,477	173,744	51,940	508,958	819,738	7,460,569
	spacial sacess lines	283	8,407	12,097	5,574	47,820	108,898	181,086
	households	1.467	91,284	148,920	44,519	434.524	531,190	1,251,284
	bumied distribution eablit	\$ $\quad 3,381,001$	\$ 50,103,181	\$ 33,570,895	\% 6,029,032	Now	\$ 4,075,044	\$ 144,682,688
	buried distribution placemem	\$ 5335,280	\$ 7,587,090	\$ 4,100,383	5 1,449,181	*******	HuNumily	\$ 40,016,571
	NID, terminais, splices	\$ 108,240	0,314, 831	5 S-10,230,440	5 3, 3 , 47,453			\% 89, 815,045
	DLC sectronics	3 8-846,181	\$ 21,683,937	8 29,810,089	\$ 7,899,812		Hew	\$ 202, 158,243
	total DLC	2,808	124,119	179,068	48,531	387,119	452,140	
	optice 'SA1"	\$ 20,600	\$ $\quad 509,200$	\$ 5	8 1-141,000	\$ 1,229,800	\$ 1,481,600	\$ 3,818,500
	passive SAI	\$	\$ 32,000	\$ 69.400	8 30,000	\$ 434,500	\$ 854,600	\$ 1,431,100
	distribution conduk, w/placement	3	3 - .	\$	5			3 302,411,115
	distribution pole inv	\$ 804, 150	\$ 11,388,600	\% 6,207.300	8 1,462.060	Wavelutit	-	\% 35,293,300
	aerimel distribution cable	\$ 3,055,455	\$ 45,548,346	\$ 30,518,996	\$ 0,200,211		WNWNTM	\$ 167,465,914
	urderground distritution cable	3	8	5	3	\$ 0.490 .825		\$ 30,728,336
	seriow feeder cable	8 214,232	\$ 3,333,672	S 4 - $4,911.417$	5. 1,802,154	\$ 4,750,769	\$ 3,709, 942	\$ 18,021,90\%
	feeder pole investmert	\$ 200,700	3. 2,184,300	3 1,054,850	8 3 251,700	\$ 900,000	\$ 703,000	3 5,894,550
	enct ofitice switching	\$ 5 S37,303	20,179,988	3 24,585,405	S 7,988,842	*		\$ 230,692,040
	end oftice wirt cemtat	3 114,730	\$ $\quad 3.991,400$	\$ 5 , 081,392	\$ $\quad 1.728,124$	\#	(envownty	\% 55,447,356
	local tandem switching	\$ 4,939	3 \$ 241,619	\$	8-127,802	51,201,043	\$ 1,798,531	\% 3,756,477
	locos tandern wine center	3 1, 1,740	\$ 8 88,470	\$	5 S 45.732	\$ 430,514	\$ 042,958	\$ 1, 344,627
	OS tandem switching	\$ 2,235	\$ 109.012	\$ -	\$ $51.57,549$	\$ 540,950	\$ 809,111	8 \% 1,691,266
	OS tandem wire center	3	\$ 140,383	3 - 222,731	\$ 74,240	\$ 698,806	\$ 1,043,760	8 2,182,936
	Os trunks	\$ 5, 5 ,	\$ 189,339	\$ 272.980	3 77,457	\$ 728,058	- 771.884	8 2, $2,04,931$
	operator position	\$ 3,039	\$ 150,497	5 - 238,778	3 3-79,589	\$ 749,239	\$ 1,148,880	\$ 2,340,102
	cormon transport	\$ 18.975	\$ 673,408	\$	S. 277,652	\$ 2,043,678	\$ 2,773,849	\% 7,336,023
	dedicated transport	\$ 48.	\$ 2,798,148	5 - 4,628,174	\$ 1,790,995	, \%May	, \#numwivin	\$ 52,502,983
	local direct trunking	$3 \ldots \ldots$	\$ 503,576	\$ 9 948,312	310,701	\$ 2.940.510	\$ 4,250,030	
	1ocal tindem turking	5 1, 1,350	\$ 52,022	\$ $\quad 76,723$	5 21,109	\% 202,328	S 208,018	
	STP	$3 \ldots$	3 . 138,707	\$ 210.898	\$ 89,566	\$ 648,553	3983,043	\$ 2,035,210
	SCP	\$ 5.825	\$ 288,443	\$	\$ 152,540	\$ 1,435.893	\$ 2,144,602	$8 \quad 4,485,047$
	signating links	\$ 1,803	\$ 23,948	\$ 18,280	\% 4,905	\$ 37,171	\$ 36,807	\$ 122,883
	foeder conduitmanhow, w/placement	3 270,580	\$ 3, 103,037	3-2.441,488	\$ 9,932,372	\%		\% 320,881,207
	underpround feeder cable	\$ $\quad 30,605$	\$ 428,947	5 5 555,919	3 3 991,863			
	buried foecter placement	3 - 227,012	\$ 2,374,719		5 546,858	- 755,025	\& 3,380,988	
	torel public talephone	\$ 9.723	$3 \quad 893,900$	1,200,153	\$ 530,320	* 4,578,381	\$ 8,542,782	\$ 15,565,239
	total public lines	20	60\%	672	402	3,448	7,708	13,054
	buriad feeder cable	\$ 390,047	\$ 5,108,708	3 3-6.107.569	3 2,358,003	\$5,204,077	\$ 4,182,409	
	NID investmert per line	\$ 30.00						
	termina and splice investment per line	$\$ \ldots 35.00$						
	Iversge linespusinuss location	4						
	local DEMs, trousends	24,817,464		local call attempta	5,507,700,000			
	intristate DEMs, thoutands	3,747,130		celill completion fisctor	0.70			
	interstate DEM ${ }^{\text {a }}$, thousenda	8,498,672		intruLATA cela comploted	78,988,000			
	total DEMs, thoustands	37,063,260		interLATA intrastate calls comp	450,000,000			
	intraLATA tandern fraction	0.20		intar LATA interstate cals comg	970,059,003			
	inter LA TA tandern friction	0.20		frection interomice str shared wi.	0.25			
	interofice tranic fraction	0.65		trunk port investment, per port	$5 \quad 100$			
	totim dedicated access trunks	275,054		signaling port invertment, per al	450			
	total dedieated trensport tunk:	373,168		*ivg 0 link investrment, per link	\$ 319			
	total common trunks	21,868		busiruess holding time muthiptier:	1.00			
	state	FL		res holding time multiplier	1.00			
	company	GTE FLORIDA INC		busires loca DEMs	1.10			
	froction diractrouted local trafle	0.98		bus/res statim DEMs	2.00			
	max trunk usage, CCS	27.5		busires interstele DEMs	3.00			
	average trunk utization	0.3		totil shared foedefio structure	4,258,345			
	locel interritioe tratic fraction	0.300		lo meniol stucture freat of tota	0.30			
	locel DEM friction	0.650						
	ISUP mseghinterómice call	6						
	ISUP map leripth	25						
	TCAP mspatransection	2	.					
	TCAP msolenroti	100						
	friction of cals requiring TCAP	0.10						
	eversee local diruct route distonce	10						
	averege infra UATA difuct routh distene	25.						
	averege direct accass route distance	15						
	total sionaling links	189						
	drop inventrout per lite	40						

	0.5 lines/sq mi		$\begin{gathered} 5-200 \\ \text { lines/sg ml } \\ \hline \end{gathered}$		$200-650$ lines/sq mi		$650-850$ lines/sq mi		850-2550 lines/sq ml		$\begin{gathered} >2550 \\ \text { lines/sq } \mathrm{ml} \end{gathered}$		Totals	
total wire center	\$	17,064	\$	603,281	5	779,630	\$	264,308	\$	2,708,022	\$	4,062,069	\$	8,434,373
total switching, installed	\$	12.003	\$	435.416	\$	507,682	\$	175,541	\$	1,608,999	\$	2,490,624	\$	5,230,264
total interoffice transmission	\$	690	\$	35,490	\$	57,298	\$	21,148	\$	190,963	\$	306,961	\$	612,550
total pole investment	\$	240,551	\$	3,249,213	\$	1,882,070	\$	410,111	\$	2,968,481	\$	5,897,319	\$	14,647,744
total buried cable	\$	144,342	\$	2,124,596	\$	1.526,858	\$	353,547	\$	1,998,984	\$	316,984	\$	6,465,312
total $\mathbf{w g}$ cable	\$	228	\$	3,181	\$	4,141	\$	7,389	\$	346,919	\$	675,086	\$	1,036,944
total conduit	\$	407	\$	4,665	\$	3,669	\$	2.904	\$	213,676	\$	711,655	\$	936,976
total aerial cable	\$	186,818	\$	2,793,048	\$	2,024,360	\$	457,682	\$	2,214,262	\$	2,968,756	\$	10,644,926
total drop cable	\$	496	\$	28,949	\$	46,900	\$	14.429	\$	139,460	\$	180,591	\$	410,826
total muxes and digital termin	\$	8,861	\$	227,213	\$	310,932	\$	82,616	\$	684,608	\$	807.123	\$	2,121,354
total common channel signali	\$	304	\$	12,163	\$	18,470	\$	6,108	\$	57,074	5	84,580	\$	178,700
Totals	\$	611,764	5	9,517.215	\$	7,162,011	\$	1,795,783	\$	13,131,449	\$	18,501.748	\$	50,719,970

Notes:

1) Land \& Building Factor applied to wire center investment
2) CO Switching Factor applied to common channel signaling
3) interoffice transmission factor applied to muxes \& digital terminals

Basic Local Service			
5001 Basic Area	\$	431,231	37.41\%
5002 Optional Extended Area	\$	(11)	0.00\%
5003 Cellular Mobile	\$	-	0.00\%
5004 Other Mobile Svcs	\$	605	0.05\%
Total Basic Local Service	\$	431,825	37.47\%
Public Telephone Revenue			
5010 Local Public Msgs	\$	-	0.00\%
Universal Public Phone	\$	-	0.00\%
Public Exchange - IX Carrier	\$	-	0.00\%
Credit Card Coinless	\$	-	0.00\%
Public Exchange - CPE	\$	-	0.00\%
Semi-Public Msgs	\$	-	0.00\%
Other Public Phone Revenue	\$	-	0.00\%
Total Public Phone Revenue	\$	14,468	1.26\%
Local Private Line Revenue			
5040 Interstate	\$	-	0.00\%
Intrastate	\$	-	0.00\%
Total Private Line	\$	17,852	1.55\%
Customer Premises Revenue			
5050 Station Apparatus	\$	-	0.00\%
Customer Premises Wiring	\$	-	0.00\%
Total Customer Premises	\$	323	0.03\%
Other Local Exchange Revenue			
5060 Central Office Features	\$	-	0.00\%
Information Transport	\$	-	0.00\%
Directory Assistance	\$	-	0.00\%
Intercept Services	\$	-	0.00\%
Other Loc Exchg	\$	-	0.00\%
Total Other	\$	151,178	13.12\%
Total Local Network Service Revenue			
Interstate	\$	-	0.00\%
Intrastate	\$	615,646	53.41\%
Total Revenue	\$	1,152,593	100.00\%

Actual 1995 Revenue

			of total
Interstate Access			
5081 End User	\$	94,026	8.16\%
5082 Switched Access	\$	177,079	15.36\%
5083 Special Access	\$	30,353	2.63\%
Total Inter Access	\$	301,458	26.15\%
State Access Revenue			
5084 End User	\$	-	0.00\%
5084 Switched Access	\$	-	0.00\%
5084 Special Access	\$	154,594	13.41\%
Total State Access	\$	154,594	13.41\%
Total Access Revenue	\$	456,052	39.57\%
Long Distance Network Revenue			
5100 Interstate Message	\$	-	0.00\%
5100 Intrastate Message	\$	-	0.00\%
5100 Interstate Calling Plan	\$	-	0.00\%
5100 Intrastate Calling Plan	\$	-	0.00\%
Total LD Msg Revenue	\$	58,580	5.08\%
Unidirectional LD Revenue			
5110 Interstate	\$	-	0.00\%
Intrastate	\$	-	0.00\%
Total	\$	2,005	0.17\%
LD Private Network Revenue			
5120 Interstate	\$	-	0.00\%
Intrastate	\$	-	0.00\%
Total	\$	18,045	1.57\%
Other Long Distance Revenue			
5160 Interstate	\$	-	0.00\%
Intrastate	\$	-	0.00\%
Total	\$	2,265	0.20\%
Total Long Distance Network Rev			
Interstate	\$	-	0.00\%
Intrastate	\$	-	0.00\%
Total	\$	80,895	7.02\%

Calculation of Investment in General Support Items

Calculated Investment (\$)
 (from sheet '95 Actuals)

2122 Furniture		$4,851,236$
2123 Office Equipment		$35,028,376$
2124 General Purpose Comp		$36,865,191$
	$\$$	$76,744,803$

Retum, Depreciation, \& Income Tax

		Year	1	2	3	4	5	6	7	8
Total Investment	\$	76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803
Accumulated Depreciation			10,963,543	21,927,087	32,890,630	43,854,173	54,817,716	65,781,260	76,744,803	87,708,346
Net Plant			65,781,260	54,817,716	43,854,173	32,890,630	21,927,087	10,963,543	0	-10,963,543
Depreciable Life		7								
Rate of Return		0.100								
Return Amount			6,584,704	5,487,253	4,389,803	3,292,352	2,194,901	1,097,451	0	-1,097,451
Income Tax Rate		0.40								
Income Tax Gross-Up			2,633,882	2,194,901	1,755,921	1,316,941	877,961	438,980	0	-438,980
Total Return			20,182,129	18,645,698	17,109,267	15,572,836	14,036,405	12,499,974	10,963,543	0
Discount Rate		0.100								
Present Value			78,622,176							
Present Value Factor			4.867							
Levelized Capital Cost			(16,154,745							

CapCost \% of Investment 21.05\%

9	10	11	12	13	14	15	16	17	18	19
\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803
98,671,890	109,635,433	120,598,976	131,562,520	142,526,063	153,489,606	164,453,149	175,416,693	186,380,236	197,343,779	208,307,323
-21,927,087	-32,890,630	-43,854,173	$-54,817,716$	-65,781,260	-76,744,803	-87,708,346	-98,671,890	-109,635,433	-120,598,976	-131,562,520
-2,194,901	-3,292,352	-4,389,803	-5,487,253	-6,584,704	-7,682,155	-8,779,605	-9,877,056	-10,974,507	-12,071,958	-13,169,408
-877,961	-1,316,941	-1,755,921	-2,194,901	-2,633,882	-3,072,862	-3,511,842	-3,950,822	-4,389,803	-4,828,783	-5,267,763
0	0	0	0	0	0	0	0	0	0	0

20	21	22	23	24	25	26	27	28	29	30
\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803
219,270,866	230,234,409	241,197,953	252,161,496	263,125,039	274,088,582	285,052,126	296,015,669	306,979,212	317,942,756	328,906,299
-142,526,063	-153,489,606	-164,453,149	-175,416,693	-186,380,236	-197,343,779	-208,307,323	-219,270,866	-230,234,409	-241,197,953	-252,161,496
-14,266,859	-15,364,310	-16,461,760	-17,559,211	-18,656,662	-19,754,112	-20,851,563	-21,949,014	-23,046,464	-24,143,915	-25,241,366
-5,706,744	-6,145,724	-6,584,704	-7,023,684	-7,462,665	-7,901,645	-8,340,625	-8,779,605	-9,218,586	-9,657,566	-10,096,546
0	0	0	0	0	0	0	0	0	0	0

31	32	33	34	35	36	37	38	39	40	41	42
\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803
339,869,842	350,833,386	361,796,929	372,760,472	383,724,015	394,687,559	405,651,102	416,614,645	427,578,189	438,541,732	449,505,275	460,468,819
-263,125,039	-274,088,582	-285,052,126	-296,015,669	-306,979,212	-317,942,756	-328,906,299	-339,869,842	-350,833,386	-361,796,929	$-372,760,472$	-383,724,015
-26,338,816	-27,436,267	-28,533,718	-29,631,168	-30,728,619	-31,826,070	-32,923,521	-34,020,971	-35,118,422	-36,215,873	-37,313,323	-38,410,774
-10,535,527	-10,974,507	-11,413,487	-11,852,467	-12,291,448	-12,730,428	-13,169,408	-13,608,388	-14,047,369	-14,486,349	-14,925,329	-15,364,310
0	0	0	0	0	0	0	0	0	-	0	0

43	44	45	46	47	48	49	50
\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803	\$76,744,803
471,432,362	482,395,905	493,359,448	504,322,992	515,286,535	526,250,078	537,213,622	548,177,165
-394,687,559	-405,651,102	-416,614,645	-427,578,189	-438,541,732	-449,505,275	$-460,468,819$	-471,432,362
-39,508,225	-40,605,675	-41,703,126	-42,800,577	-43,898,027	-44,995,478	-46,092,929	-47,190,379
-15,803,290	-16,242,270	-16,681,250	-17,120,231	-17,559,211	-17,998,191	-18,437.171	-18,876,152
0	0	0	0	0	0	0	0

\qquad
Network－Related Expenses

Distribution																
Annual Capital Cost	\＄	952，762	5	15，186，596	5	11，381，726	s	2．584，969	s	21，841，725	s	31，891，801	s	83，839，579		
Network Expenses	5	356，720	5	5．537，791	5	3，926．027	5	860.872	\＄	5，968，208	s	6，903，717	\＄	23．553，334		
Dirsct expense	\＄	1，309，482	\＄	20，724，386	\＄	15，307，753	\＄	3，445．840	\＄	27，809，933	\＄	38，795，517	\＄	107．392，912	42．42\％	
Investment	\＄	7．033，311	\＄	112，107，785	5	84，020，156	\＄	19，082，297	s	181，236，099	s	235．425．881	3	618．905．629		
Support expenses	S	422，907	5	7．755，380	s	6，551，527	s	1，580，536	s	12，800，367	5	18，256，375	s	47，376，102		
Sublotal，with misc spt	5	1．732．389	5	28，479，777	\＄	21，859，280	\＄	5，028，376	5	40，819，300	5	57，051，893	\＄	154，769，014		
Total，with ver overhead	s	1，905，627	5	31，327．754	5	24，045，208	5	5．529，014	\＄	44，881，230	s	B2，757，082	s	170．245，915		
Concentrator																
Annual Capital Cost	s	149，233	5	3，828，544	，	5，236，465	，	1，381，355	\＄	11，529，632	\＄	13，592，931	\＄	35，726，161		
Notwork Expenses	5	13，262	8	339.798	，	464，805		123，332	s	1，021，194	，	1，201，255	5	3．163，644		
Direct expense	5	162，495	5	4．168．342	\＄	5，701，270	\＄	1，514，686	\＄	12．550，826	\＄	14，794，188	s	38，889，805	15．36\％	
investrient	\＄	868.791	5	22，225，737	\＄	30，414，889	\＄	8，081，412	8	66，967．623	s	78，951，891	5	207，500，443		
Support expenses	\＄	52，479	\＄	1，558，111	s	2，440，072	5	694，755	s	5，780，961	5	6，981，841	5	17，489，219		
Sublotal，with misce spt	s	214，974	s	5，725，453	s	8，141，342	s	2．209，441	s	18，331，787	s	21，756，027	s	58，379．024		
Total，with var overnead	\＄	236，471	\＄	6，287，990	－	8，955，476	5	2，430，368	\＄	20，184，968	\＄	23，831，830	\＄	82，018，928		
Foeder																
Anrual Captal Cost	s	111.013	5	1，476．301	5	1，774，657	\＄	810.341	\＄	10，838，299	s	19，830，118	s	34，840，729		
Natwork Expenses	5	32.715	5	443，897	S	551，208	，	193，495	\＄	578，765	5	481，893	5	2，289，972		
Direct expense	\＄	143，728	s	1．920，197	s	2，325，665	5	1，003，836	5	11，415．063	\＄	20，322，011	5	37．130，700	14．67\％	
Investment	5	818.500	，	10，898，088	＋	13．100，559	s	5，981，858	\％	80，008，581	\＄	148，388，389	s	257，195，032		
Support expenses	\＄	46，418	\＄	718，569	5	995，441	\＄	460，439	\＄	5，257，824	\＄	9，563，122	\＄	17，041，812		
Sublotal，with misc spt	5	180，146	s	2，636，765	5	3，321，307	5	1．484．275	\＄	16，872，887	\＄	29，885，132	s	54，172，512		
Total，with var overthed	s	208.180	\＄	2，902，642	5	3，653，437	\＄	1．810，702	\＄	18，340，176	\＄	32，873，645	s	59，589．763		
End Omice Swhtering																
Anmual Capital Cost	5	79，365	\＄	2．841．635	\＄	3，355，035	5	1，156，360	\＄	10．874．785	\＄	16，724，953	\＄	35，032，133		
Network Expensos	\＄	28，219	\＄	996，820	s	1．220，900	\＄	417，703	\＄	4，108，638	\＄	6，241，319	\＄	13，013．607		
Direct expense	\＄	107.584	s	3，838，455	5	4，575，943	\＄	1，574，063	\＄	14，983，423	\＄	22，966，272	\＄	48，045，749	18．98\％	
Itrestrinent	\＄	553．762	\＄	19，827，226	5	23，409，423	\＄	6，068，387	\＄	75，877，728	5	116，696，691	\＄	244，433，214		
Support expenses	\＄	49.813	5	2，149，357	s	3，031，358	\＄	1．075，891	s	10．284，775	\＄	15，785，733	s	32，368．928		
Subtotal，with misc spt	5	157，397	5	5，987，012	s	7，607，301	\＄	2．849，055	，	25，248，190	s	38，762，005	s	80，412．669		
Total，with ver overhead	5	173，137	s	6，588，594	s	8，360，031	s	2，914．950	s	27．773，018	\＄	42，638，208	s	88，453，936		
Signaling																
Anrual Capital Cosi	5	1，693	s	67.670	s	102，760	\＄	33，983	s	317.534	\＄	470，565	s	994，205		
Network Expenses	5	308	\＄	12，218	s	18.511	\＄	8，119	5	57，157	\＄	84,682	\＄	178，973		
Drect expense	s	2，001	\＄	79，888	s	121.271	s	40，102	\＄	374，690	s	555.227	s	1，173，177	0．46\％	
Invostriont	s	11.311	\＄	452.159	5	606，629	5	227.07	\＄	2，121，718	s	3，444，252	\＄	6，643，140		
Suppor expensos	\＄	927	s	44，732	5	80，337	\＄	27.411	\＄	258．691	5	301，874	\＄	791．971		
Subtotal，with misc spt	s	2，928	\＄	124，818	5	201，607	s	67，513	\＄	631，382	s	937，100	\＄	1．965，148		
Total，with ver overhead	s	3，221	s	137，080	\＄	221.788	\＄	74，264	s	694，520	s	1，030，010	s	2，161，663		
Dedicated Transport																
Annual Captel Cost	\＄	6.852	5	303.319	5	633.742	5	245，349	\＄	2，200，805	\＄	3，733，400	5	7，203，368		
Network Expenses	5	1，414	5	81,472	5	134，698	，	52，148	5	467.790	5	793，513	s	1，531，035		\％
Direct expense	\＄	8，085	5	464，792	5	768，440	\＄	297，497	\＄	2，688，695	\＄	4，528，014	\％	8，734，404	3．45\％	昭岺爻
Investment	\＄	48，555	\＄	2，798．146	s	4．826，174	s	1，790，895	\＄	16．086，113	\＄	27，252，980	s	52，582，963		\％
Support expenses	5	3.734	s	280.262	s	509，057	\＄	203，343	5	1，828，258	5	3．113，519	5	5，918，173		－$\square^{\text {a }}$
Subtotal，with misc spt	\＄	11，800	5	725，054	5	1，277，498	\＄	500，040	5	4，486，853	\＄	7，840，432	\＄	14，652，577		$\omega{ }^{\circ}$
Total，with ver overhesd	\＄	12，800	\＄	797，559	5	1，405，248	，	550，824	，	4，046，649	\＄	8，404，475	s	16，117，834		O m
Common Transport																䋑

Other costs

	0.8 Mnes/sq mi		$\begin{gathered} 5.200 \\ \text { Unessisq mill } \end{gathered}$		$200-660$ linesisg ml		650-850 llneasg mil		160-2560 lines/eq ml		$\begin{gathered} >2550 \\ \text { Inesjsg mi } \end{gathered}$		Totals	
Operating taxes and uncollectibles	\$	135,341	5	2,565,220	\$	2,500,085	\$	707,948	5	6.285,887	s	9,298,178	\$	21,492.757
USF calculations														
Capital cost	\$	1,262,482	\$	22,285,140	\$	20.551,789	\$	5,527.552	\$	51,179,417	5	75,979,128	\$	176,785,506
Notwork expenses	\$	419,830	s	6,936,100	\$	5,701,945	S	1,437.119	s	10,114,194	s	12,458,198	s	37,067,487
untundied network expensea	\$	437,577	s	7.702,369	\$	6,789,566	s	1,847,341	\$	13,013,722	\$	18,683,605	s	49,384,180
USFhunbundted expensea		96.0\%		90.1\%		83.9\%		77.8\%		72.7\%		66.7\%		75.1\%
USFAnbundled capital cost		66.5\%		82.2\%		89.0\%		85.9\%		85.9\%		85.1\%		86.8\%
Capitar cost - gen apt	\$	91,075	\$	1,487.360	\$	1,263.228	\$	342,569	\$	3,778,546	\$	7,010,038	\$	13,972.815
$100 p$	\$	87,602	8	1,389,009	\$	1.129,450	\$	296,245	5	3,262,428	\$	6,033,328	\$	12,178.060
EO switching	8	3,321	5	111,556	\$	123.741	5	43,043	\%	479,393	5	812,059	\$	1,673,112
signeling	*	20	\$	573	\$	753	\$	247	5	2.695	\$	4,860	\$	9,150
tramport	\$	132	\$	6,223	\$	9,282	5	3,034	\$	34,032	\$	59,791	s	112.493
	\$	72,458	\$	3,366,637	,	4,974,084	s	1.538,064	\$	13,529,597	*	18,534,711	s	42,015,549
	3	69,694	\$	3.098,748	\$	4,447,330	\$	1,330,078	\$	11,681,559	\$	15,952,265	\$	36,579,673
	5	2,642	\$	252,507	\$	487.242	\$	193,252	\$	1,716,531	\$	2,411,507	5	5,063,681
	\$	16	5	1,297	\$	2.885	\$	1.111	\$	9,651	\$	12,851	5	27,891
	\$	105	\$	14,085	\$	38.547	s	13.624	\$	121.858	\$	158,088	\$	344,305
Network support $\begin{array}{r}\text { lor } \\ \text { EO switcting } \\ \text { signeling } \\ \text { transport }\end{array}$	5	(943)	\$	(17.301)	\$	(17.171)	\$	(4,825)	\$	$(41,599)$	\$	$(80,483)$	\$	(142.123)
	\$	(907)	\$	(15.825)	5	$(15,353)$	5	$(3,999)$	5	$(35,917)$	5	$(52,056)$	5	(124.157)
	\$	(34)	5	$(1,298)$	\$	(1,682)	\$	(581)	5	(5,278)	5	$(7,869)$	\$	$(16,742)$
	,	(0)	5	(7)	5	(10)	\$	(3)	5	(30)	5	(42)	+	(92)
	s	(1)	\$	(72)	\$	(126)	\$	(4)	s	(375)	\%	(518)	5	(1.131)
Misc expenses	\$	265.593	\$	4,388,670	\$	3,608,305	\$	908,934	\$	8,396,917	5	7.879,428	5	23,444,047
100p	\$	255.465	s	4,037,789	5	3,224,399	\$	786,023	5	5,523.148	\$	6,781,585	\$	20,608,418
EO swilching	\$	9,684	\$	329.027	5	353.260	s	114.204	\$	811,592	s	1,025.474	\$	2,842,940
signaling	\$	60	\$	1,690	\$	2.150	\$	656	s	4.563	5	5.463	s	14,582
ransport	\$	364	s	18,353	\$	28.497	5	8.051	\$	57,615	5	67.208	\$	178,107
USF investment ratios														
$100 p$		96.2\%		92.0\%		89.4\%		86.5\%		86.3\%		86.1\%		
EO swliching		3.6\%		7.5\%		8.8\%		12.6\%		12.7\%		13.0\%		
signaling		0.0\%		0.0\%		0.1\%		0.1\%		0.1\%		0.1\%		
tramport		0.1\%		0.4\%		0.7\%		0.9\%		0.9\%		0.9\%		
total USF investment	\$	9,065,285	\$	157,786.994	s	142,641,388	\$	38,328,697	\$	356,971,865	\$	535,355,479		

	$\begin{gathered} 0.8 \\ \text { Mnesyang } \end{gathered}$		$\begin{gathered} 5-200 \\ \text { Uneas } / \mathrm{sq} \mathrm{mi} \\ \hline \end{gathered}$		$\begin{gathered} 200-650 \\ \text { ilnesisq } \mathrm{mi} \\ \hline \end{gathered}$		$650-850$Ilnea/aq ml		850-2550 llnes/ag mi		$\begin{gathered} >2550 \\ \text { Illoesisg mi } \\ \hline \end{gathered}$		Totals	
Network Expenses														
total wire center	\$	-	\$	-	\$	-	\$	-	\$	-	5	-	\$	-
lotal swilching. installed	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
total interafica transmission	\$	-	5	-	\$	-	s	-	s	-	5	-	\$	-
total poie investment	\$	63,527	5	899.684	\$	490,368	s	115.500	s	908.500	5	1,890,516	\$	4,388,094
total Duried cable	\$	113,124	5	1,715,243	\$	1,172.844	\$	230,962	\$	1,536,611	s	107.818	5	4.876,602
total ug cable	s	-	\$	-	s	.	s	-	\$	15,622	s	26,601	s	42,223
lotal condint	\$	-	\$	-	\$.	s	-	s	21,605	s	128.391	\%	149,998
total aeriel cable	5	174,577	\$	2.802,461	\$	1,743,740	s	354.714	\$	1.942,363	s	2,751,658	s	9,569,514
total drop cable	5	486	\$	28,949	\$	46,000	\$	14,429	\$	139.460	\$	180,591	\$	410,828
total muxes and digital terminals	5	-	\$	-	5	-	\$	-	\$	1,404	\$	-	5	
totat NID	\$	4,996	\$	291.454	\$	472,174	s	145,267	5	1,404,046	\$	1,818,142	s	4,138,079
Expense Summary														
Annual Capital Cost	s	952.762	\%	15,186,596	\$	11,381,728	\$	2,584,969	s	21,841,725	5	31,891,801	s	83,838,579
Network Expenses	\$	356.720	\$	5,537,781	\$	3,826,027	s	860.872	\$	5,968,208	\$	6,903,717	\$	23,553,334
Total	\$	1,309,482	s	20,724,366	\$	15,307,753	s	3,445,840	\$	27,809,933	\$	38.795,517	\$	107,392,912

Network Expenses tolal wire conter	s	-	\$	-	5	-	\$	-	\$	-	\$	-	\$	-
total switching, instailed	\$	-	\$.	\$	-	\$	-	\$	-	\$	-	\$	-
total intercfice transmission	s	-	\$		\$		5	-	\$	-		-	\$	-
total pole investmert	\$	-	\$	-	\$		\$	-	\$	-	s	-	5	-
total buried cable	\$	-	\$	-	\$	-	s	-	5	-	\$	-	s	\bullet
total Ug cable	\$	-	\$	-	\$	-	5	-	\$	-	\$	-	\$	-
totat conctuit	\$	-	\$	-	\$		5		5		5	-	5	-
total aerial cable	5	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
total drop cable													\$	-
total muxes and digital terminals	\$	13,262	5	339,798	\$	464,805	\$	123,332	\$	1,021,194	\$	1,201,255	\$	3,163,644
total common channel signaling	\$.	\$	-	\$	-	5	-	\$	-	\$	-	\$	-
Expense Summary														
Anrual Capital Cost	\$	149,233	5	3,826,544	\$	5,236,465	s	1,391,355	\$	11,529,632	\$	13,592,931	\$	35,726,161
Network Expenses	5	13,262	\$	339,798	s	464,805	\$	123,332	\$	1,021,194	\$	1,201,255	\$	3,163,644
Total	\$	162,495	\$	4,166,342	5	5,701,270	\$	1,514,686	\$	12,550,826	\$	14,794,186	\$	38,899,805

0.5 Inea/sg mi	$\begin{gathered} 5-200 \\ \text { linew/eg mil } \end{gathered}$	$\begin{gathered} 200-650 \\ \text { Hnea/2g } \mathrm{mm} \end{gathered}$	$\begin{gathered} 650-850 \\ \text { lines/sy mol } \end{gathered}$	$\begin{array}{r} 850-2550 \\ \text { Ilnes/sq } \mathrm{mil} \\ \hline \end{array}$	$\begin{gathered} >2550 \\ \text { lines/sg mi } \end{gathered}$	ala

Network Expenses													
lotal wire center												\$	-
lotal switching, installed total interoffice transmission												\$	-
												\$	-
tolal pole invostment $\$$	5,447	\$	59,284	5	44,909	\$	6,815	\$	24,427	\$	19,102	\$	159,984
total buried cable	14,874	\$	192,144	s	223.735	\$	80,274	\$	162,927	\$	70,383	\$	744,336
total $\mathrm{W}_{\text {comble }}$	23	\$	385	\$	768	\$	2,506	\$	69,979	\$	81,850	5	155,511
total condurit	130	\$	1,496	\$	1,177	\$	931	\$	47,532	\$	103,464	\$	154,728
tolat serial cabie s	12,240	\$	190,588	\$	280,620	\$	102,968	s	271,899	\$	217,097	\$	1.075,413
tolal drop cable	.	\$	-	s	-	\$	-	\$	-	\$	-	5	-
total muxes and digital terminals total common channel signaling												\$	-
												\$	-
Expense Summary													
Annual Capital Cost \$	111,013	\$	1,476,301	\$	1,774,657	\$	810,341	\$	10,838,299	\$	19,830,118	\$	34,840,729
Network Expenses \$	32,715	\$	443,897	\$	551,208	\$	193,495	\$	576,765	\$	491,893	\$	2,289,972
Total s	143,728	\$	1,920,197	\$	2,325,865	5	1,003,836	5	11,415,063	\$	20,322.011	\$	37,130,700

	$\begin{gathered} 0-5 \\ \text { IInes/sq mi } \\ \hline \end{gathered}$		$\begin{gathered} 5-200 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		200-650 lines/sq mi		$\begin{gathered} 650-850 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$850-2550$ tines/sq mi		$\begin{gathered} >2550 \\ \text { IInes/sq mi } \end{gathered}$		Totals		
Signaling Investment															
total STP	\$	3,582	\$	139,767	\$	210,698	\$	69,566	\$	648,553	\$	963,043	\$	2,035,210	
total links	\$	1,903	\$	23,949	\$	18,288	\$	4,965	\$	37,171	\$	36,607	\$	122,883	
total SCP	\$	5,825	\$	288,443	\$	457,643	\$	152,540	\$	1,435,993	\$	2,144,602	\$	4,485,047	
rotal	\$	11,311	\$	452,159	\$	686,629	\$	227,071	\$	2,121,718	\$	3,144,252	\$	6,643,140	
		0.17\%		6.81\%		10.34\%		3.42\%		31.94\%		47.33\%		100.00\%	
Cost of Capital				1		2									
		Year							3		4		5	6	
Total Investment	\$	6,643,140		\$6,643,140		\$6,643,140		\$6,643,140		\$6,643,140		\$6,643,140		\$6,643,140	
Accumulated Depreciation				474,510		949,020		1,423,530		1,898,040		2,372,550		2,847,060	
Net Plant				6,168,630		5,694,120		5,219,610		4,745,100		4,270,590		3,796,080	
Depreciable Life		14													
Rate of Return		0.100													
Return Amount				617,480		569,981		522,483		474,985		427,486		379,988	
Income Tax Rate		0.40													
Income Tax Gross-Up				226,409		208,993		191,577		174,161		156,745		139,329	
Total Return				1,318,399		1,253,485		1,188,570		1,123,656		1,058,741		993,826	
Discount Rate		0.100													
Present Value				7,320,004											
Present Value Factor				7.363											
Levelized Capital Cost			\$	994,205		0.149658824									
		$\begin{aligned} & 5 \\ & \text { sq mi } \end{aligned}$		$\begin{gathered} 5-200 \\ \text { linesisq mi } \end{gathered}$		$\begin{gathered} 200-650 \\ \text { lines/sq } \mathrm{mi} \\ \hline \end{gathered}$		$\begin{gathered} 650-850 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$\begin{array}{r} 850-2550 \\ \text { lines/sq mi } \\ \hline \end{array}$		$\begin{gathered} >2550 \\ \text { lines/sq mi } \end{gathered}$		Totals	

Network Expenses

total interoffice transmiss	\$	552	\$	19,607	\$	28,495	\$	8,084	\$	76,101	\$	80,759	\$	213,600
Expense Summary														
Annual Capital Cost	\$	2.599	\$	92,250	\$	134,068	\$	38,036	\$	358,049	\$	379,964	\$	1,004,966
Network Expenses	\$	552	\$	19,607	\$	28,495	\$	8,084	\$	76,101	\$	80,759	\$	213,600
Total	\$	3,152	\$	111,858	\$	162,563	\$	46,120	\$	434,150	\$	460,723	\$	1,218,566

	$\begin{gathered} 0-5 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$\begin{gathered} \text { 5-200 } \\ \text { lines/sq mi } \end{gathered}$		$\begin{gathered} 200-650 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$\begin{gathered} 650-850 \\ \text { lines/sq } \mathrm{mi} \\ \hline \end{gathered}$		850-2550 IInes/sq mi		$\begin{gathered} >2550 \\ \text { Ilnes/sq mi } \end{gathered}$		Totals	
Tandem Switching Investment														
total wire center	\$	1,746	\$	86,476	\$	137,202	\$	45,732	\$	430,514	\$	642,956	\$	1,344,627
total switching	\$	4,939	\$	241,619	\$	382,483	\$	127,862	\$	1,201,043	\$	1,798,531	\$	3,756,477
TOTAL	\$	6,685	\$	328,095	\$	519,686	\$	173,594	\$	1,631,557	\$	2,441,487	\$	5,101,104
		0.13\%		6.43\%		10.19\%		3.40\%		31.98\%		47.86\%		100.00\%
Cost of Capital														
	Year			1		2		3		4		5		6
Total investment	\$	5,101,104		\$5,101,104		\$5,101,104		\$5,101,104		\$5,101,104		\$5,101,104		\$5,101,104
Accumulated Depreciation				300,065		600,130		900,195		1,200,260		1,500,325		1,800,390
Net Plant				4,801,039		4,500,974		4,200,909		3,900,844		3,600,780		3,300,715
Depreciable Life		17												
Rate of Retum 0.100														
Return Amount				480,584		450,548		420,511		390,475		360,438		330,402
Income Tax Rate		0.40												
Income Tax Gross-Up				176,214		165,201		154,187		143,174		132,161		121,147
Total Return				956,863		915,813		874,763		833,713		792,664		751,614
Discount Rate		0.100												
Present Value				5,760,413										
Present Value Factor				8.017										
Levelized Capital Cost			\$	718,561		0.14086388								

0.5 lines/sq mi	$5-200$ lines/sa mi	200-650 lines/sq mi	$650-850$ lines/sq mi	$850-2550$ lines/sq mi	>2550 lines/sq mi	otals

estment	$\begin{gathered} 0.5 \\ \text { lines/sq ml } \\ \hline \end{gathered}$	$\begin{gathered} \text { 5-200 } \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$\begin{gathered} 200-650 \\ \text { lines/sq mi } \\ \hline \end{gathered}$		$\begin{gathered} 650-850 \\ \text { lines } / \mathrm{sq} \mathrm{mi} \\ \hline \end{gathered}$		850-2550 lines/sq mi		$\begin{gathered} >2550 \\ \text { lines } / \mathrm{sq} \mathrm{mi} \end{gathered}$		Totals	
\$	2,835	\$	140,383	\$	222,731	\$	74,240	\$	698,886	\$	1,043,760	\$	2,182,836
\$	2,235	\$	109,012	\$	172,423	\$	57,549	\$	540,956	\$	809,111	\$	1,691,286
\$	5,426	\$	189,339	\$	272,986	\$	77,457	\$	728,058	\$	771,664	\$	2,044,931
\$	3,039	\$	150,497	\$	238,778	\$	79,589	\$	749,239	\$	1,118,960	\$	2,340,102
\$	13,536	\$	589,231	\$	906,918	\$	288,835	\$	2,717,139	\$	3,743,495	\$	8,259,154
	0.16\%		7.13\%		10.98\%		3.50\%		32.90\%		45.33\%		100.00\%

Cost of Capital

	5-200	200-650	650-850	850-2550	> 2550	
lines/sq mi	lines/sq mi	lines/sq mi	lines/sg mi	lines/sq mi	Ilines/sq mi	Totals

$\begin{gathered} 0.5 \\ \text { Ilnesisg mul } \end{gathered}$	$\begin{gathered} 5-200 \\ \text { Hneasg mil } \end{gathered}$	$\begin{gathered} 200-850 \\ \text { Hines/sg mi } \\ \hline \end{gathered}$	$\begin{gathered} 650-850 \\ \text { lines/sq mi } \\ \hline \end{gathered}$	$850 \cdot 2550$ Hines/sq mil	>2550 Ilnewhemin	Totals

COST OF NETWORK ELEMENTS

Florida GTE FLORIDA INC

A. Loop elements

Loop Distribution (including NID) Annual Cost Unil Cost/month

Loop Concentration Annual Cost
Unit Costmonth

Annual Cost
Unit Costimonth
Toralloop
Unit Costmonth
Total lines
Total hines served by DLC

End office switching

1. Port
2. Usage

Signalling natwork olemments

1. Links
2. STP
3. SCP

Transport network alamenta

1. Dedicated $\begin{gathered} \\ \\ \\ \\ \\ \\ \\ \text { Swithered } \\ \text { Special }\end{gathered}$
2. Common
3. Tandern switch

Intrastate Toll DEMs
Interstate Toll DEME
3,747,129,748
8,498,672,303

Calculation of EO Usage

Local DEMs, inci OS

 Intraoffice Local DEMsIntraoffice Local Actual Min Interoffice Locil Actual Min Intrastate Toll Actued Min Interstate Toll Actual Min

Tandem Switch MOU

24,817,463,605
13,371,533,333
6,605,768,668 Dedicated Transport MOU
11,445,930,473 per ond 3,747,129,748 1,498,672,303 30,377,499,180
ocal, wlo OS intralata tol intorlata Toll

Dedicated Trunk-SW

5,440,987,165 215,423,269 1,814,955,513 17,471,365,947

144,951

