lume 2
Unilaink FIIE COPY

GULF POWER COMPANY

FOSSIL PLANT DISMANTLING

COST STUDY

VOLUME 2

UPDATED DECEMBER 11, 1996

Prepared by:
Project Support, Fossil/Hydro Southeŕn Company Services, Inc.

GULF POWER COMPANY

 FOSSIL PLANT DISMANTLING
Cost Study

Volume 2 Contents

- Plant Daniel

Summary of 1996 Update
1993 Cost Study (complete)

Plant Scherer Unit 3 and Common Facilities
Summary of 1996 Update
1994 Cost Study (complete)

Gulf Power Company

 Fossil Piant Dismanting St dy (Revision 1)
Plant Danicl

Summary of 1996 Update

The basis of the 1998 update to the Plant Daniel Dismantling Cost Study is the study propared in August 1993 and the 1996 update for the subject plant. For the updats, the following changes and additions have been addressed:

1. Capital improvements through December 1995.
2. Escalation of the base data from January 1993 constant dollars to December 1997 constant dollars.

A table showing the cost calculatione and resulting total is shown on the next page.

Plant Daniel
Fossil Plant Dismantling Cost Study Summary Leval Update for Gulf Power (Revision 1)

	Unit 1	Unit 2	Common	Iotal
August 1993 Study	6,503,000	6,587,000	15,420,000	$28.510,000$
Dismantling Cost of Capital Improvements	31.000	65,000	944.000	1,040.000
Capital improver -Since 1/93		6,652,000	18,364,000	29,550,000
Subtotal	6,534,000	6,652,000	16,304,000	29,550,000
Escalation to 12/97 Dollars 15.1\% increase	986.634	1.004,452	2,470,961	$\frac{4.462,050}{34,012,050}$
Revised Dismanting Cost	$\overline{7,520,634}$	7,656,452	18,834,961	34,012,050
Use (December 1097 Dollars)	7,521,000	7,656,000	18,835,000	34,012,000
Cost to Dismantle at Gulf	Company Ov	arship		
Ownership Percentage	$\begin{gathered} 50 \% \\ 3,760,500 \end{gathered}$	$\begin{gathered} 50 \% \\ 3,828,000 \end{gathered}$	$\begin{gathered} 50 z \\ 9,417,500 \end{gathered}$	$\begin{gathered} 50 Z \\ 17,006,000 \end{gathered}$

(1) $1993=2.2 \%, 1994=3.1 \% ; 1995=3 \%, 1996=3 \%, 1997=3 \%$

TWW

6/17/91 REV 7/15/91 REV 10/5/92 REV 2/24/97
KVWRSYSVEWORTHM2900RJ.doc

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING

COST STUDY

AUGUST 9, 1993

Prepared by:
Cost \& Schedule, Engineering Services
Southern Company Services, Inc.

MISSISSIPPI POWER COMPANY

 FOSSIL PLANT DISMANTLING COST STUDY
ESTIMATING TEAM

Project Supervisor
Ted Wilson
Cost \& Schedule Supervisor

Lead Estimator
Jim Norwood
Senior Cost Engineer

Primary Estimators

Paul Walker
Senior Project Support Analyst
Larry Pugh
Senior Project Support Engineer
Frank Sciarabba
Senior Project Support Engineer

Janice Hamilton
Cost Engineer I
Freddie Watkins
Cost Analyst I

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

INDEX

1.0 Scope of Project

2.0 Summary

3.0 Assumptions

3.1 General Conditions

3.2 Dismantle/Disposal

3.3 Environmental

4.0 Plant Descriptions

4.1 Daniel
4.2 Sweatt
4.3 Eaton
4.4 Watson
5.0 Listing of Essential Systems
6.0 Dismantling Sequence
7.0 Cost Basis
7.1 Scope Definition
7.2 Constant Dollar Basis
7.3 Unit Pricing
7.4 Discussion of Terms
7.5 Discussion of Overhead Costs
7.6 Discussion of Recoverable Costs
7.7 Contingency
7.8 Computerized Cost System
7.9 Supplementary Resources
7.10 Suggested Escalation Rates
8.0 Costs Reports
8.1 Plant Summary Report
8.2 Summary Level Report (by Unit)
8.3 Detail Level Report (by Unit)

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

1.0 SCOPE OF PROJECT

The purpose of this study was to prepare a detailed conceptual cost estimate for the dismantling of all of Mississippi Power Company's fossil-fueled power plants. The units under consideration were Daniel Units 1 and 2, Sweatt Units 1 and 2, Eaton Units 1-3, and Watson Units 1-5. The resulting study should provide the owner a quality estimate to budget for future dismantling of the units. A general definition of dismantling used in the preparation of this estimate was:

The dismantling and disposal of all buildings, structures, equipment, tanks and stacks at the site and restoration of the site to a usable condition. Some structures linked directly to waterways will be removed and the area returned to a natural contour, other areas will have covers of topsoil over base slabs, ash ponds and coal yards with allowances for ground water drainage. Original contours will not necessarily be restored in these inland areas. Dismantling will be in a controlled removal process due to structural and safety considerations. All material with a scrap value will be removed and sold with resulting credits to the job. Non-scrapped material will be buried as fill on site when possible, otherwise will be transported to a dump site. Careful consideration is made in the removal and disposal of hazardous waste. Lastly, this study does not assume an immediate replacement of generating capacity at these sites, but does not preclude future use of the site for that purpose.

This study includes the direct cost of dismantling and disposal of the facility, scrap credits, owner supervision and engineering, liability and worker's compensation insurance and applicable Mississippi Power Company indirect costs.

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

2.0 SUMMARY

The total cost for the scope of the dismantling project as described in Sections 3-7 in January 1, 1993 constant dollars is as follows:

Daniel
Unit 1 \$6,503,000
Unit $2 \quad 6,587,000$
Common $\quad 15.420 .000$
Total 28,510,000

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

3.0 ASSUMPTIONS

3.1 GENERAL CONDITIONS

1. All demolition/dismantling is estimated on a unit and common facility basis without assuming the operation is continuous at any site.
2. All dismantling work is in compliance with OSHA requirements.
3. Scope of reclamation is in compliance with EPA, Corps of Engineers, and State of Mississippi agencies (Department of Environmental Quality and others) based on July, 1993 regulations.
4. All warehouse stores and furniture will be removed at the beginning of the dismantling operation.
5. A security force/plant staff is maintained during dismantling.
6. Estimate does not reflect land value or its sale. Ownership of ell land remains with Mississippi Power.
7. All costs of common facilities will be estimated separately.
8. Rail access for removal of scrap is available at Plant Daniel only. Barge access is available at Plant Watson. Scrap material will be in transportable sizes. The cost of removal from a site storage area will not exceed the value of the material.

3.2 DISMANTLE/DISPOSAL

1. All structures are removed to grade elevation.
2. F.ll solid, non-combustible, non-hazardous, non-toxic materials that are not sold for scrap will be used as fill and deposited onsite where possible, otherwise hauled to dump. Below grade pits will be filled with demolished material. All are subject to possible permit requirements of Mississippi Department of Environmental Quality.
3. Structural steel will be sold as scrap.
4. Powerhouse building foundations will be control blasted to beak concrete in-place to provide ground water drainage.
5. Other foundations will be blasted to provide drainage or removed and the void filled to grade.
6. The chimneys will be blasted to the ground. The liners, if present, will be dismantled and sold as scrap. The chimney foundations will be blasted to provide drainage and rubble deposited on site.
7. Circulating water passages and piping will be excavated and collapsed if concrete, excavated and disposed of if other material.
8. Other underground piping and ductruns will be abandoned in place. Underground tanks will be removed and disposed according to current regulations.
9. Intake and discharge structures will be removed to 5' below ground level and restored to appropriate contour.
10. Intake and discharge channels will not be filled in.
11. Soils for fill not obtainable on site will be purchased off site and trucked in.
12. No landscaping other than grassing and site drainage is included.
13. Piping will be sold as scrap.
14. Equipment has no salvage value, only scrap value of the materials.
15. Electrical cable (copper) will be sold as scrap.
16. Except to separate nonferrous and alloy materials, all piping, conduit and cable tray will be removed in the most cost effective manner. They will be sold as scrap.
17. Excess concrete rubble can be used as breakwaters in the sounds/bays or as fishing reef in the Gulf of Mexico or landfill.
18. Boundary fencing will not be removed.
19. The removal of the switchyard is not included in this estimate.
20. Roads, railroads and parking lots will not be removed.
21. Interim removals are not estimated in this study, only those facilities that are predicted to be in place at the time of dismantlement.

3.3 ENVIRONMENTAL

1. An assessment will be performed to identify regulated hazardous and toxic materials which will be handled and disposed of according to applicable current foderal and state regulations. This includes asbestos, PCB's, residual chemicals, and any soils assessed as being contaminated.
2. Nuclear detectors, if any are present, will be removed and properly disposed.
3. Plant Watson ash pond area will be dewatered and closed in accordance with federal and state regulations.
4. All coal, except unrecoverable base, in the storage area will be burned before dismantling occurs. Unrecoverable base coal will be removed to the ash storage area.
5. The Plant Daniel bottom ash pond wiil be dewatered and closed in accordance with federal and state regulations. The dry ash storage area (90 acres at dismantlement) will also be closed in accordance with federal and state regulations.
6. All fuel oil, acid, caustic and demineralizer tanks will be emptfed, the material properly disposed, and closure assessments conducted according to current regulations.
7. No post-dismantling site monitoring is included in this estimate.

-

MISSISSIPPI POWER COMPANY FOSSIL. PLANT DISMANTLING COST STUDY

4.0 PLANT DESCRIPTIONS

4.1 DANIEL

Plant Daniel is a two-unit coal-fired generating plant located near Escatawpa, Mississippi on a 2657 acre site. The plant also has oil-firing capability. The station is jointly owned by Mississippi Power Company and Gulf Power Company, with each holding a fifty percent (50%) share.

The first unit has a nameplate rating of 500 MW and was completed in September 1977. The second unit also has a nameplate rating of 500 MW and was completed in June 1981. Both units have Westinghouse turbine generators.

The boilers are $\mathbf{2 4 0 0}$ psi units manufactured by Combustion Engineering and are rated at $3,611,242$ pounds of steam per hour each. Air quality control is achieved using electrostatic precipitators and a single 500 foot stack. The boilerhouses are open without siding.

Cooling water is provided by a government owned lake and MPC owned intake and discharge canals. West of the powerhouse is the coalyard, tractor garage, coal unloading and handling facilities (conveyors, crusher houses, etc). A rail loop facilitates train delivery of coal. Three 100,000 barrel fuel oil storage tanks are north of the powerhouse. Upon completion of the ash collection and storage modifications, there will be a 25 acre bottom ash pond with clay and synthetic liner and a dry ash storage area with a $36^{\prime \prime}$ liner of clay and filter material (90 acres to be capped upon dismantiement). Auxiliary ash facilities include a transfer tank at the powerhouse and two concrete silos north of the tractor garage. The service building is on the north end of Unit 1. East of the turbine rooms are the $\mathbf{2 3 0}$ and 500 kV switchyards.

Other outdoor structures include the demineralizer building, condensate storage tanks, filtered water storage tanks, fire protection tanks and pumphouse, lighter oil storage tanks and pumps, waste water treatment facilities, engine generator house, air compressor building, and start-up boiler. There is a single underground petroleum storage tank that meets current regulations.
us

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

5.0 ESSENTIAL AND NON-ESSENTIAL SYSTEMS

5.1 ESSENTIAL SYSTEMS

1. A fire protection system shall be left operational for safety purposes and to meet insurance requirements. Whether this is met through the existing plant system or an external system is left to a more near term cost/benefit decision. Chemical fire extinguishers will be available after start of fire protection system removal.
2. Temporary lighting will be installed to prevent the chance of cross feeding in the electrical circuits.
3. Control room heating, lighting and power will remain operational until removal of fire protection systems.

5.2 NON-ESSENTIAL SYSTEMS

Non-essential systems will be removed as required before boiler removal. Initially these systems will be removed before boiler removal begins.

High Pressure Steam
High \& Low Pressure Extractions
Boiler Feedwater
Condensate
Heater Drips
Auxiliary Steam
Circulating Water
Plant Cooling Water
Water Pretreatment
Makeup Water Supply and Storage
Air Preheat Water
Fuel Oil Storage Supply
Boiler Igniter System
Ash Water Supply
Heater Vents \& Drains
Condenser Air Extraction
Extraction Traps \& Drains
Turbine Seals \& Drains
Turbine Lube Oil
Generator Miscellaneous Piping, Miscellaneous Lube/Hydraunc Oil Chemical Feed
Sampling \& Analysis

Bearing Cooling
 Air Heater Wash Water

These systems may be removed anytime prior to boiler steel removal.
Bottom Ash Handling \& Auxiliaries Economizer Fly Ash Handling
Boiler Vents \& drains
Steam Generator Soot Blowing
Boiler Forced Air
Boiler Flue Gas
Fly Ash Storage
Coal Burner Supply
\bullet
:

MISSISSIPPI POWER COMPANY FOSSIL PLANT DISMANTLING COST STUDY

6.0 DISMANTLING SEQUENCE

PHASED DISMANTLING SEQUENCE OF NON COMMON AREAS

1. This is an engineered sequence of events.
2. Burn all coal in bunkers and all fuels and oils.
3. Removal of all personal property and furnishings is outside the scope of demolition and scraping.
4. Drain all tanks.
5. Cap or by-pass common facilities essential to operations of other units.
6. Deactivate power supply to equipment not required for demolition.
7. Remove all asbestos insulation from piping and equipment.
8. Beginning at base slab, remove all mechanical equipment and associated piping.
A. Boiler feed pumps
B. Coal pulverizes and feeders
C. Bottom ash handling equipment and auxiliaries
D. F.D. Fans
9. Remove piping systems except fire protection and air supply.
A. Main steam
B. Drains
C. Burner supply
D. Soot blowers
E. Coal hoppers and coal feeder piping
10. Remove turbine generator, condenser, and non-essential electrical systems.
11. Remove pedestal concrete.
12. Remove essential piping and electrical.
13. Remove coal supply conveyor outside building.
14. Remove chimney.
15. Remove building siding and concrete to base slab.
16. Pull down remaining powerhous. structure and boiler. Remove building structural steel, boiler, and other piping, equipment, and materials with grapple and hydraulic shears.
17. Fill below grade areas with soil.
18. Remove external structures associated with the unit such as conveyor and transfer houses and ductwork to stack.
19. Drill and blast base slab to allow ground water penetration.

$7.0 \quad$ COST BASIS

7.1 SCOPE DEFINITION

Systems, qualities, and conversions to the appropriate units of measure for removal, disposal, and scrap were derived from a number of sources. They primarily included engineering drawings, purchase orders and associated engineering records, Continuing Property Record reports for each plant, the 500 MW cost models, other dismantling cost estimates and contacts with Mississippi Power engineering and plant operations personnel.

Engineering drawings were the basis for quantity take-offs on all civil, structural, and sitework quantities. Mechanical equipment and piping systems were identified using drawings and a selected number of piping systems were taken-off. Other piping systems were quantified by factoring take-off quantities from other systems by building volumes. The same method was used in some cases to quantify other units when one unit was taken-off. Other factors in addition to building volume were used in this case.

Purchase orders and other engineering records served to identify electrical systerns, components and weights. Factoring by megawatt size was used in some cases when portions of scope were not available. Purchasing records were used to derive cable and conduit quantities and weights. Most mechanical equipment weights were derived by review of engineering records.

The Continuing Property Records reports from each plant were a valuable source for checking for omissions to the estimate. The reports also helped to define what facilities were to be considered common.

The $\mathbf{5 0 0}$ MW fossil cost model developed by SCS Cost \& Schedule, Fossil \& Hydro, was useful in the development of some mechanical equipment and piping quantities.

Other dismantling cost studies were used to determine the weights of pieces of equipment when the plant specific data could not be found.

Differences in scope between units resulting form fuel firing types and dual capabilities have been addressed.

7.2 CONSTANT DOLLAR BASIS

All costs shown in this study are in January 1, 1993 constant dollars. Phasing of the units to be dismantled and application of escalation to the resulting schedule will be determined by others.

7.3 UNIT PRICING

The estimate assumes that two primary contractors will be involved at each site. One for dismantling and one for site restoration. Unit pricing includes all contractor mobilization, equipment, overhead, and profit. Temporary services will be provided by Mississippi Power Company and are estimated separately.

Unit costs for removal are in general tied to cubic yards for concrete, tonnage for structural steel, by pieces for different size ranges of equipment, by tonnage for the boiler, by pound for asbestos and by linear foot for piping. Unit cost estimates were originally derived from other outside dismantling studies (See 7.9.3) with independent unit pricing provided by a consultant (See 7.9.7). Site specific adjustments were made as necessary.

Disposal unit costs typicaily are based on weights of materials. One assumption provided by Mr. T. M. Burgin (see 7.9.7) was that structural steel removal from the site will not exceed its scrap value. Any offsite disposal of non-hazardous waste was estimated at $\$ 8.00 /$ cubic yard for disposal including any tipping fees. It is also assumed that excess concrete rubble can be barged to designated locations in the Gulf of Mexico for creation of fishing reefs or landfilled and is estimated at \$8.00/cubic yard. Asbestos removal is presumed handled according to applicable federal and state regulations and removal is estimated at $\$ 3.50$ /pound plus $\$ 1.50 /$ pound for disposal.

For derivation of scrap credit unit prices, see Section 7.6.
Site reclamation unit cosis were derived from a survey of current and recent historical construction contracts around the Southern electric system. The purchase and hauling on-site topsoil for covering ash ponds is estimated at $\$ 4.27 /$ cubic yard and at $\$ 4.60 /$ cubic yard for clay.

7.4 DISCUSSION OF TERMS

The following definition of terms are applicable to this cost estimate:
dismantle - to take apart the generating unit into transportable parts.
disposal - movement of dismantled materials to on-site fill area, off-site dump or to a laydown area on-site for removal by a salvage/scraper dealer.
scrap - the amount that will be paid to the owner by a salvage dealer to pick up from laydown yard and remove from the site, materials that have value due to their metal content.
essential system - Those systems that must remain operational during dismantling activities until all units served by the system are stopped or until the system is no longer needed for the dismantling process (i.e., control room, fire protection and compressed air).

COA - chart of accounts, Southern electric system-wide work breakdown structure used in construction work in progress ledgers.

RUC - retirement unit codes, Southern electric system-wide coding structure used in continuing property record ledgers to identify additions and deletions to original plant after it begins operation.

7.5 DISCUSSION OF OVERHEAD COSTS

The following overhead cost percentages have been applied to the direct cost estimate of dismantling:

1. Mississippi Power engineering
1.0\%
2. Administrative and General Overhead
3. Temporary construction services
4. Wrap-up and all-risk insurance (contractor) Shown in Common, COA 308.0361
1.0\%
2.0\%
10.0\% of bare labor 5.0\% of total

The following estimates of indirect costs are also included:
a) Mississippi Power, power generation supervision
Eaton - 2 manyears $X \$ 48,000=\$ 96,000$

Sweatt - 2 manyears $X \$ 48,000=\$ 96,000$
Watson - 12 manyears $X \$ 48,000=\$ 576,000$
Daniel - 8 manyears $X \$ 48,000=\$ 384,000$
b) Security Services

Same at each unit - 9 manyears $X \$ 32,000=\$ 288,000$
c) SCS engineering (engineering support and records close-out)

Eaton - 1,000 manhours $X \$ 53.50 /$ manhour $=\$ 53,500$
Sweatt - 1,000 manhours $X \$ 53.50 /$ manhour $=\$ 53,500$
Watson - 2,000 manhours X \$53.50/manhour $=\$ 107,000$
Daniel - 2,000 manhours X \$53.50/manhour $=\$ 107,000$
d)

Cost of permits
Eaton - $\$ 27,000$
Sweatt : $\$ 27,000$
Watson : $\$ 54,000$
Daniel - $\$ 54,000$
e) Demolition contractor mobilization cost

Eaton - \$200,000
Sweatt - \$200,000
Watson - \$500,000
Daniel - \$500,000

7.6 DISCUSSION OF RECOVERABLE COSTS

SCRAP/SALVAGE VALUE

Value of scrap was estimated from current market value published information. The IronAge magazine, the scrap industry standard for estimating scrap prices was used in determining the price of scrap. It was assumed the scrap materials would be removed from their existing locations at the power plants and would be placed in a designated area on the plant site for the purchaser or scrap dealer to remove. The values established in the Iron Age magazine are for ferrous scrap prepared to designated sizes. Adjustment must be made in the market value for the scrap dealer's work involved in transporting to his yard and his cost of preparing the scrap to designate size and rehandling the material for shipment.

The same is true for non-ferrous materials. The price in Iron Age magazine is for cleaned copper. The scrap dealer would have to load the copper wire, motors, etc., and take them to his yard operation. He would have to dismember the motors and strip the insulation to salvage the copper. The wire would have to have the insulation removed so the copper would be clean. The copper wire then would have to be packaged and loaded for shipment.

The adjustments to the pricing data as shown in the Iron Age Magazine could be significant.

1. Ferrous scrap - preparation costs could amount to $\mathbf{\$ 2 0}$ to $\mathbf{\$ 2 5}$ per gross ton.
2. Non-Ferrous Scrap
a) Motors with copper could be valued for the copper content. It is assumed that 12% of the total weight of motors is copper.
b) Copper wire with insulation may be valued at 30 C to 35 C per pound depending on the amount of insulation on the wire.
c) Bus bar which is clean copper would need an adjustment in the selling price for transporting and r andling.

The ferrous scrap is estimated at a scrap value of $\$ 95$ per gross ton. In this estimate, the net scrap value used is $\mathbf{\$ 9 5}$ minus $\mathbf{\$ 2 5}$ per gross ton preparation equals $\$ 70$ per gross ton. Non-Ferrous scrap copper is estimated at an adjusted scrap value of $\$ 0.32$ per pound.

The salvage value of used powerhouse equipment motors, boiler-turbine generators and etc., is generally considered to be minimal because the market for such used equipment is uncertain. For estimating purposes, no value was assumed.

7.7 CONTINGENCY

Contingency has been applied to this detailed conceptual estimate to cover uncertainty in the estimate. A contingency rate of 10% is applied to the total removal, disposal, scrap, and direct cost estimates. The overall factor is comprised of a pricing contingency of 5% and a scope omission contingency of 5%. The level of scope contingency was determined considering the conceptual nature of the estimate and the difficulty in obtaining quantity records son such old units. Pricing contingency should provide confidence that the estimate will not overrun due to pricing error.

The pricing contingency of five percent has been applied to provide a satisfactory level of confidence that the estimate will not overrun due to pricing error. As an example, this study assumes a "reverse construction" methodology in unit pricing because the Southern Company has not dismantled any fossil plants in the recent past. Assumptions made in the factoring of normal construction unit prices to refiect reverse construction will only be proved out when actual firm contractor bids are taken on the first plant to be dismantled.

The scope omission contingency of five percent was determined after considering the conceptual nature of the estimate. Factors influencing this choice include the difficulty in obtaining quantity and weight records on such old units. Also, the effects of any hazardous waste environmental assessments, that can only be performed at the time of dismantling, must be covered in this contingency.

7.8 COMPUTERIZED COST SYSTEM

The estimate to dismantle these plants has been loaded onto the Cost Estimating and Tracking system database software to facilitate calculations and
flexible reporting writing. The reports are rounded to the nearest thousand and reflect the "true" totals of the details. This may result in some report totale differing from manual tabulation or slightly varying from detail to summary schedules. Each plant has an assigned dataset. The basic value record includes:

1. FERC number
2. Retirement unit code
3. Group class number
4. Cost element
a. Unit number or common facility
b. Labor, material, or subcontract identifier
c. Removal, disposal, or scrap identifier
5. Schedule date (01 Jan 89 in all cases)
6. Estimated quantity
7. Estimated unit cost or unit credit (scrap)

The project structure includes the following hierarchy for summarizations and report writing:

1. Total
2. FERC number
3. System Code of Account number
4. Sub-Code of Account number
5. FERC and Retirement Unit Code numbers
6. FERC.RUC and group class number

7.9 SUPPLEMENTARY RESOURCES

The below listed resources have been used in the preparation of this dismantling cost study.

1. Continuing Property Record reports for each plant and unit under study. These were used to help scope the items within the plant to help minimize omissions. They were provided by Mississippi Power Company.
2. The retirement Unit Code Manual is the standard retirement coding manual for use in the Southern electric system.
3. Dismantling cost studies prepared by other utilities were provided by Plant and Depreciation Accounting. Obtained in a data exchange program, they were used to familiarize the estimators with the scope of the job, to provide equipment weights where they were not available and to provide some unit removal costs where they were not available.
4. A site visit to each plant was taken prior to beginning the job. They were escorted by representatives from Mississippi Power Company.
5. A Mississippi Power Company engineering representative was the interface contact with plant operations personnel.
6. The study assumptions were reviewed and comments made by Mississippi Power Company Environmental Affairs and Power Generation Services personnel and SCS Plant and Depreciation Accounting.
7. Three estimators interviewed Mr. T. M. Burgin of T. M. Burgin Demolition Company. He commented on the estimate assumptions and provided valuable insight concerning asbestos removal, the dismantling sequence, and scrap procedures.
8. Mr. Joe Mihalik, a retiree from USX Corporation (formerly United States Steel), was retained to provide scrap pricing information and to generate selected unit cost removal estimates based on crew mixes and equipment requirements. Before retirement, he had managed the dismantling of the U.S. Steel Ensley Works and other steel mills.
9. In 1993, a contract with Invirex Demolition, Inc. was let to cover there providing to the estimators major removal unit pricing information and a review of the study assumptions. The major changes have been incorporated in this study.
10. Plant equipment purchase orders and engineering records were used to scope equipment quantities and to find weights where possible.
11. Plant design drawings were used for all civil and structural take-offs and a large number of mechanical quantities.
12. The 500 MW Fossil Cost Models prepared by SCS Cost \& Schedule, Fossil and Hydro provided some input to the mechanical scope.

Section 8.1

Plant Summary Reports

H!S5!SSIPPI PONta compant

DIsyuntimg stuov

aucust 11. 1993
itacicon

EESCAIPTIOM

COnstauction cleaalng accts 0040 Pmopuctiow costs
0200 TtMeonathy stavices 0220 SNETT \& stcunitt factlities

307 FEAC ACCOUNT TOTAL

308 ENGINEEATMC

0240	EMOINES-1ING SCS
0260	EMOLNEEAIMO-OPEMATtMO COMPAMT
0380	TRuctiom insunume

308 FEAC account total

309 OVEREEADS
0480 GENEAAL OVtREAD

311 SThuctunes s menovememis
2020 IMITIAL SITE PREPARARTIOM
2040 site thenovtients
2003 Pones
2100 PERMANEMT RAILROAS SYSTE
2120 SITE FIRE PAOTECTIOH sTsTEM
2300 Tualime steg
STEAS CEMERATOR BLDG
COWTROL NOCM
malnt. STORAOE HOUSE
stavice autidimg
maten taEatment buildima
2800 EMEACENCT GENERATOA BLDO
2840 PRECIPITATOR COWTROL HOUSE
2850 FIRE photectiom aldo
2380 SERVICE vTA CRLORIME HSE
2900 CIAC waita collonime nouse

PLAMT BAMIEL ALL UWIIS
MLABt sumbuat Repont

jancant 12035 1000

southent coneant sthyicts Cost s sciedule tManctatug seavict pace
conerom
to1at

miSSISSIPPI PONLA CONPANT
Dismantitiag studt
aucust 11, 1993
facicon

Plant banitl all unils PLANT sumast Repont

Janvaar 18338 a 1000
\qquad

UnI! 1
UnIT 2
\qquad
$3: 5$ accessont ElEC EOULPMEMT
3380 STANOAT AC STSTEM - $120 / 205 \mathrm{~V}$

8440 AC STS 480V
8520 ac stsicu - 500 V
8560 AC $5751 E M$ - 2.3 xV
8520 STANDAT AC STSTEM-4KY
8600 AC 575164 - $12 \times \mathrm{Ky}$
5920 AC STSIEM - 500 FV

315 FEDC ACCOUNT TOTAL

315 misC. PLant toulpiemt
1520 IMTRSIIE COMDQUICAIIOM STS
1350 CEMTBAL vacuta system
1580 Pamt suppoat Eoulp

318 FEAC ACCOUNT TOTAL
353 STAT10 Leutphast 2400 TRuMFORISRS
(293)
(283)
\qquad
15.420
20.50

Section 8.2

Summary Level Reports (By Unit)

MIS315SIPPI POW! COMPANT
015mantling stuot
august 11, 1993

renc

coa

0e SCRIPTIOM

311 stauctunes it inpaovenenti
2300 TURAINE BLDC
2340 stEAM CCMERATOA B36
311 ftac account total

312 BOLER PLAMT EOUIPNEM
4800 STEAM CERERATING FRSIEM
4940 coat tiaina ststew
4920 olt hav
4980 LICATEA O1L STSTEW
5040 DRAFT STSTEM
5240 coml mambtima systeas
5380 coal manotima crusnea mse
5440 coal mundimg trangra poimts
5540 vet ass munptima sis
5550 Dat 453 manolima stara
5700 cominol ata ststew
5720 TREATE vaTE STS
5740 sEAVICE vTh \$TS
5400 matM STEAM STSTEM
8440 ExTMACIIOM STEAM stsibe
6520 aux Tunatne stu \& Enimast sTs
eS60 vent ang danim systee
6580 CONDtMSAIE STETEM
6520 FEEDNAIER STETEM
5840 FEEDVIR AUX STS
5700 LUsE OLL STSTEM
7000 otmea wisc motoms

312 FEAC aCCOUNT TOTAL

314 TURBOCEMERATOA UNITS
7520 TURBINE ORNERATOR STSTE

PLAMT DABIEL URII suncuat LEVEL REPOA!

دancuat 19935 : 1000
soulvenil compant stavicts cost 4 soteutt tMcIMEEAMC stavices
scan
valut
totat 8
DISPOSAL
cost

838
1.750
2.697
1.143

40

64
931
354
354
182

822
1.268

(3)
005)
miss1ssIPPI POUER CONPANT
otsmantimg stupt
Aucust 11. 1993

PLAMT BAHEL UWIT I subeunt LEvEL REPOAT

JAMUART 19835 I 1000

souticial compant stivice: cost 5 scietuit EmGNEEAMO statice Pace

7700 cowbensing systeu
1740 cootimg watia sysitu
1900 LUDE OLL STSTEM
314 teac account totat

315 Accessoat ELE EOUIPIEMT
3000 CaBtE
8020 ractuay site
8060 CROUND STSTEM
8100 cex bus $5 T 3$
8140 CEMTRALIZED PLAHI COMTROL STS
3180 RACKS 8 PANELS
3240 D.C. $575154125 / 250$ v
8360 A.C. STSTEM $120 / 200$ V
8440 AC 575480 V
0520 AC STSTEM - 800V
0520 STAMDSY AC system-ery
8500 AC stsitm - 12 KY
8920 AC STSIEM - 500 NY

315 TERC ACCOUMT TOIAL

315 MISC. PLAMI LOUIPNEMT
1520 IMTRSITE COLEANICAIIOM 573
1580 cemtral yaculsa sysita
1580 PLAMT SUPPORT EOUIP

315 feac accoumy total 9400 1RAHSF OREAS
elspasal cost

Renoval

29
37

18

2
1
(1)
\qquad
2

SC2N
vatue
(1)
lotai 5

113
2 E
(9)
(101)
(53)
(73)
(18)

(18)

(6)
(1)
(92)
(279)

atssissippl ponea comeant
scseantilimg stupt
mcast 11. 1933

15aC

2rt structunes a twenovercints
2300 Tenatint slog
2340 STEAM CERERATOM BLDG

211 HEC ACCOUNT TOTAL

4800 sTEASA CRWERATIMG ST3TEM
4840 coal firtmg ststem
4920 OtL muNDING ; © FIRIMG STSTEM
4880 LICMTER OIL STSTEM
5040 BakT STSTEA
5240 cent mandimg sisters
5380 coal wanolimg chusnea nse
5440 coat mandimo thunsfen pormis
5640 asit mandlima ststem
memoval
cost
\qquad
DIsposal
cost
.................
scap
vacue

843
1.682
......
2.524
1.143

38

5560 Bat asM muOLIMG sTSTEM

5720 TREATEO wAIER SY 44
5740 stevice yTh ST3 42
S740 stivice uTa ร1ร
528
184
8440 EITRACTION STEAM STSTEM
6520 aux Tungine sTM \& Emaust 5 Ts
6550 VEMT AND DRATM STSTENS
60
6580 Compensate system 50
SEOD CONDEMSATE AUXILIART STSTEES
6520 FELDMATER STSTEM 36 32
..................
(99)

53
845
537
269
105

6640 FEEDVTR aux 57s
rotal 8

144
southena compant semvices cast a soikbule twatactatme sumicts
(529)

514
(18)
(1)

51
488
450
258
98

6700 Luse olt stsiem
7000 otner misc motors

miss15s1P2I Pook compant OISWMTLING sTuDT
 aucust 11. 1889

sescatpliom

353 stalton coulpuent

plant ganitl vilt 2 sumanat LEVEL REPOAT

Jymaty 1 ga3s x 1000

015posal
 cost

southenm compant stavices
cost s scitbury tnetiteatma seavices pace 3

$\begin{gathered} \text { Renoval } \\ \text { coss } \end{gathered}$	015 P03AL cost

509

M1ss1s31ppl POUt COMPAMT

D1smentlimg stuot
aucust 11. 1923
tiac
descaiption

$\cdots \cdots \cdots \cdots \cdots$

307 COWSTBuCIION CLEARIMC ACCTS
0020 Phoouction costs
0200 temponar seavices
0220 SAFETT B SECUAITT FACILITIES

307 IEAC ACCOUNT TOTAL

30s EmGINEERT?
0240 EMGIMEERIMG SCS
107
291
1.189
1.585
$213 p 034 L$
cost
REMOVAL
cost

384
975
288
1.548

0250 EMatmeEnimg-operatimg compant
0350 comstauction Imsutance

308 FERC ACCOUMT TOTAL

309 OVERIEADS
0480 CEMERAL OVERELAD
230

311 stauctupes s merovtients
2020 IMITIAL STHE PREPAPARTIOM 840
2040 stit thenovegeris
2000 Pones
2100 PERUANERT MALLROAD SYATEM
2120 SITE FIRE PAOTECTIOM STSTEM
2400 contaot noon
2500 malmt. stomace nouse
2800 SERVICE BUILDIMG
2700 waten treatizet builoimo
2000 EREROEMCT cemeraton BLDO
2340 PRECIPITATOA CONTROL MOUSE
2850 FIAE PROTECTIOH BLDG
2850 seavice vTh CROAIME MsE
2900 cInc vatea croonine moust
2920 secuaity mida
12

PLAMT DAMIEL COBADM FACHIITIES
sulaunt LEVEL REPOAT

JMUAAY 19935 I 1000

soutien coneaxy stavicts
cost 5 soepur twatmetaing semvicts
scas
valut
total 5

384
875
268
1.648

101
231
1.183
1.535

3040 UASTE YATEA COMTROL HOUSE

Section 8.3

Detail Level Reports (By Unit)
(8)

FIRCICOA/SuACOA

AUC

DESCRIPTIOM

311 stauctures a menovtients
2300 TURATIE BLD日
2303 CONCAETE wORX-SUBSTRUCTUAE ODO1 FOUMBAITOM CONCNETE COWCRETE

2304 STAUCTURAL STELL 0802 stauctubat steEl STEEL

2305 AACMLTECTURAL NOAX 0802 architectuant uETAL sTDING

0802 ABCNITECTUBAL CRAFIMG

0802 ARCNITECTURAL
masomat vall

2305 SUBCOA ACCOUNI TOTAL
2303 CONCAETE MODX - SUPERSTRUCTURE 0502 COMCRETE

ROOF
0302 COWCRETE
cowcatie

2309 suecon account total
2311 DARIMACE SY5TEA 0923 motos

PUAP mDTOA
copper schap
0023 RUC Account total
2317 FIRE PAOTECTIOM STSTEM 0880 FIRE PROTECTIOM SYSTEM

8" PIPE
$0^{\prime \prime}$ PIPE

$4{ }^{\text {4 }}$ PIPE

44" PIPE
0880 RUC ACCOUNT TOTAL

PLAMT DAMEL unit 1
DETAIL LEVEL REPOMI
jamaat 19935 x 1000
soutilial compant services cost a sciedute EnCInEtiting stmvicts pace 1

3At vace
Quantity
cost
totat 8

Cuลเก17 CosT cuantity cost
6.200 cT 80
$1.560 \mathrm{TM} \quad 17$
$39.200 \mathrm{3F}$

80
$37.500 \mathrm{3F} \quad 80$
$16.000 \mathrm{sF} \quad 17$

181
$320 \mathrm{sF} \quad 128$
$2.180 \mathrm{cr} \quad 33$
\qquad
481

31
1.

1 TII
18 in
1)

ulssissippl powta compant

 otsmanilimg stuot aucust 11 , 1993Fencricon/suncoar
ave
DESCAIPTIOm

312 borten plamt touipuemt 4920 oft mavplima mid fiatigg system 4322 Fuft supply Facititits

OSAS motion
0S45 aUc account total
4350 Ltcatta oll system 4952 FUtL SUPPIT FACILITIES

0535 DRIVE. PLEP
Pute moton
coppen scau
0635 muc account total
4253 FULL stomat FAC
DES1 COWCAETE
COULPMENT FOUNDATIOM
0652 Thax
TMEX
0653 Puap
0565 PIPIMG
g^{-1} PIPE
4- PIPL
0665 RUC ACCOUHT TOTAL
0ses Retalming tuclosunt tast retatmina vall

0687 LESS TMAM 4* DINETE PIPE LESS THAM 4° DINETEA VIPE

4950 COA ACCOUNI TOTAL
5040 DRAFI STSTEM
5041 PRECIPITATOAS
0801 FOUNDATIOM
foumpation
CONCAETE . SUPERSTRUCTURE

PLANT DAKIEL URIT 1 DCTAIL LEVEL azpont
j umaty 19035×1000
soufrema conpant seavices cost 8 sciteute tmatnitetmg senvices pace
©uantity
sal vact

21

1
$5 \mathrm{CT} \quad 1$

110

1 1

250 cr 34

810 LF B

83
84

1.350	cr	172
1.390	cr	213

cost
$1.440^{18} \mathrm{tm}$
(1)

24 1II (2)
(2)

1
.
$\begin{array}{ll}3 & 14 \\ 1 & 18\end{array}$

5
3

3 TH
(2)
(3)

mississippi ponta conemwt

otsmemititna stuot
aucust 11. 1993
renercoa/suecpar
ave
muc

Descatpliom

312 sollea plant toulpuemt
5040 DRAFT STSTEM
5041 PatcIPITATORS
osol rouncation
0001 nuc account total
0802 PaEcIPIzAIOA wITH IMSULATIOM patcipilato with Imsulation chatimg
suppoat strei 0002 anc account total

SOA1 Supcoa account total
3042 fonces danft fail halet buct 0821 Ductuonx

Ducruota
5045 PKECIP IMLET DUCT 0841 DUCTMORA EITH tusulation Ductwoak SO4S PhtcI9 DUTLET DUCT
O8SI Ductuonx vith Insulatiow Ductivonx

5047 10 FAM OUTLET OUCT O851 DUCTMORX vith imsulation DUCTVORE

5040 FD FANS \& DRIVES
0971 FAI
FAM
0873 oalve, ELECTAIC moton fan moton coppen scan

0873 muc account total.
0ats FOUMDATIOM
FOUMDATIOM

PLAET BAHIEL UWIT 1
eEtall Levta Repont
swuagt 18335 : 1000

SOUTIERM COMEAMT SEAVICES cost 3 screpute EMOHEEANG stavicts PACF

380		
TM	(25)	15

80 17
(4)

3
56 im (4) (2)

8	THI	(1)	1
24. 800	18	(8)	(8)
		(9)	(1)

5048 SUSCOA ACCOUNT TOTAL

mississippl ponta coneant

 alsuatling stuot```
aucust 11. 1999
```

fencricon/suscoal
Huc
Descalption
312 sollea plant comiputiry
5240 coal mamblting systers
5240 coal mampling systens
5245 cowvents To powtin hse

CONCREIE FOUMDATIOM
COWCRETE - SUPEASTRUCTURE
uETAL stotma
1232 RuC ACCOUst TOTAL
1233 DAIVE, MOTOR
comeryon motom
copper scka
1283 RuC accoumt total
5245 supcoa accoumt total
5245 IRIPPER CONA (EETER/SILO)
1302 convition
cowneros
1303 DaIVE, watos
convetom motoa
5245 suacoa accoust total
5241 causiviss
1321 chumbe on ancacen
chusien on breakea
1322 Daive, wolon
chusack moton
COPPER SCRAP
1322 RUC account total
5247 suacoa account total
5390 coal unmot tima crusien hse
390 coat mandt twa crusien hst
5383 cowcrete womx - substhuctunt
2101 FOUMDATIOH CONCRETE
concaete
plamt bantil vili 1
DETAIL LEVEL REPOAT
soutiera compant senvices cost 8 scieputa

## jamuat 1893s a 1000

|  |  | D15P0sal |  |
| :---: | :---: | :---: | :---: |
| guantily | cost | cuantitt | $\operatorname{cost}$ |




$\qquad$
(3)

| (5) | $\begin{gathered} 1 \\ (5) \end{gathered}$ |
| :---: | :---: |
| (5) | (4) |
| (8) | (3) |
| (34) | 318 |

## 5240 COA ACCOUMT TOTAL <br> 5240 COA ACCOUMT TOTAL

1

## 5

354


2 $\qquad$
2

340 LF

2
23


2
$\qquad$
T:
FEAC/COA/ sumceal
nuc
Dtscaipition
312 botLz plamt eoutpient
5300 coat muvolimg chusition nse
5384 On Chusiver nes sTat STEEL
2102 sThuctukat stefl
sTaUCTUAKL sTEEL
5305 ancontectuma wons
2102 ancnitectuan
cRatImg
2102 COHCRETE
CONCRETE - SUPRASTRUCTUAE
2102 ARCMIIECTURAL
UETAL stisimg
5385 suacoa account total
5380 coa account Total
5440 coal mampt tha thansfen potmis
544 cemchete vona - substhuctune
2401 comeneit wors
cowcatit
5444 STAUCTUBAL sTEEL
2402 sthucturat steel
STEuctuan STEEL
5445 ancuitectural womx
2402 ancnitferual
opatime
2402 AACMITECTUAAL
hetal storing
S44S suecoa accouni total
5440 COA ACCOUNT TOTAL

3841 PTRITE REMOVAL STSTEM
3100 PTRITE REMOVAL STSTEM, CONPLET
nempyal ststel

## masait 19938 z 1000


(5)
(2)

81

1 IM

3 1月

## M15SISSIPPI POULE Cowemint <br> Dismunflimg stept

Ancust 11. 1993

IEAc/coa/suncoar
muc

## otscalpitom

312 bolten plant coutputmi
5840 vET A53 maxbltig s73
5842 BOILEA Botion asin ment sys
3121 Asw ncppeh
asis roppea
stajmiss stect scan
3121 Ruc accouns totat
3124 PIPIMG
PIPIMO STSTEA

SB42 Sulacoa account total
5843 ASM SEPARATOA STSTEM


STA!MLESS STEEL SCRM
3141 muc account total
3143 E.tction
EACCTO
3144 PIPI 16
PIPTAG STSTEM

5843 SUSCOA ACCOUMI TOTA
5844 truaspoat 575
3157 pund. Asin Boosten
Pue. AsM BOOSTER
3168 DRIVE, A5M Boosita punp
baIve, ASn Booster Pump coppen scmap

3168 muc ac ount total

5844 suacoa account total

5840 COA ACCOUNT TOTAL
5650 DRT ASN MANDLINC STSTEM 5663 TAAKSPCAT $\$ 73$

3231 vacuun pune

PLAMT DABIEL Unit I DETAIL REVEL REPORI

Jamant 19038 I 1000
soutien coipant strvicts


## mississippl ponta conpant <br> alsmanflime stuor

 aucust 11. 1993IEACICORI Suscoar
muc sescaipitom

312 mollea plant cowipuent 5050 DAT ASM maNDLING sTBTLM

5653 thanspoat 573
3231 vacuust pute
Vacuub puse ano piping
5700 cominol ala sistem 5701 Aln barta sts

3281 onve
DRyER
5703 A1R DISTRIBUTIOW STSTEK 3920 AlR Distainution ststem
cotepatsson

3320 auc accoumt totat

5700 COA ACCOUNT TOTAL
5720 IREATED WAIER STS 5721 may water supply

334 FOUNATIOM
Foumbation
334 PIP:NG
4* PIPE
+4* PIPE
3343 Ruc account total
3344 PUAP
pusp

5721 SUSCOA ACCOUNT TOTAL
5740 stavict win 573
5742 PLAMT SERVICE vTA STSIEM
3451 Pump
puse
3482 DAIvE, Puse
pusp woton COPPLR SCRAP

3452 AUC ACCOUNT TOTAL
3463 PIPING. MAIM LINE

PLAT BAMEL UMIT 1
DETAAL LEVTL REPORI

## jamuatr 18935 : 1000

southenia compant stavices
cost stateut
thatuktatug stivicts


21 14
(1)
$\begin{array}{cc}30 \mathrm{CY} & 4 \\ 305 \mathrm{LF} & 38\end{array}$
32
3.000 Li

38

2 CA 1

44

1
5 EA 1

2
2

4 Ts

$\qquad$
$\qquad$
(1)


5 TII

42
(1)

42

5 TH

2 TM
(2)
(2)

## MIS31ssippI POUED COMPANT

 0ISmuntiling stuot aucust 11, 1993itacicoal sunconl
nuc
nuc
ot scaiption
312 sollea plant EQuIpient 5740 SERVICE VTR STS

5742 PLAMT stavict vTR sTatce
3463 PIPINC. Matm LINE
$30^{\circ}$ PIPE
2r = PIPE
it* PIPE
10* PIPE
12* PIPE
$10^{*}$ PIPE
o* PIPE
*- pIpt

- PIPE

3453 AUC ACCOUNT TOTAL
3470 sunct tame
sumce tanas
FOUMBATIOM CONCRETE
340 nuc account total
3471 SERVICE WATER COOLER
stavict wate cootea

5742 suscoa account total
6400 MAIM STEAK STSTEM
8401 wati sthean plipe
4001 pIptag
$25.5^{\circ}$ PIPE
20 PIPE
18* PIPE
4001 RuC account total
6402 not REIEAT
4021 PIPIMG
35* PIPE
$30^{*}$ PIPL
$26.5^{\prime \prime}$ PIPE
4021 RUC ACCOUNT TOTAL
$6403 \cot 0$ RUREAT SYSTEM
4041 PIPINO
34* PIPE
20.75= PIPE

PLAT DAMIEL UWIT 1 DETAIL LEVEL REPOAT

## jamant 10sss $x 1000$

southeni cospany semvices cost 8 scitbute
sat yace
Quality
cost
rotal 5


1 m
(4)

37

| 39 | $\mathbf{T M}$ | (3) |  |
| ---: | :--- | ---: | ---: |
| $\mathbf{3}$ | $\mathbf{I H}$ |  |  |
| 42 | $\mathbf{T H}$ |  | (3) |

(8)

120

(1)

1


## M15s1551PPI POut Cospan

 atsuartiting stuby aucust 111393IERCICOA/SuBCOAI
RUC

312 solten plat toutpugnt 8440 EITRACTIEM STEAH STSTEM

3445 DEAERATOA STEAS STSTE
4181 pIptac
4181 RUC ACCOUNT TOTAL
 4201 PIPTMG 4* PIPE
< $4^{\text {P P P P P }}$
4201 muc account total

6440 coa account 10 tal
6520 aux tunatic stu b ExMaust 573 6521 FEEDUT PN Tuhb sTh of EXA 375 4501 PIPI思

14* PIPE
10- PIPE
SN PIPE
<4* PIPE
4501 RUC ACCOUMT TOTAL
504 PIPING
E8" PIPE

6521 suacon account total
6560 VEMT AND BatM STSTEMS 6561 BLR VEDT S DRAIM STSTEM 4601 BOILER VEMT 4* PIPE

4602 SOLLEA DRAIM

4607 BOILEA BLOWOFF TANK
BLOwOFF TANK

6551 SUBCOA ACCOUNT TOTAL
6562 HP HTR VEMT 3 DRAIM STS 4621 HP MEATER VENTS ANO DRAIMS $6^{\prime \prime}$ PIPE

## PLAST BAHIEL UMIT 1 <br> DETAIL LEVE REPOAI

## santuat 19338 I 1000

southem conpant stemices cost a scitpule tmarnterima stavicts PACE 15
sal vact
Quantitt
cost
ouantity
$\cos 1$
(1)

2 TM

3

$\qquad$
$\qquad$

## 184

| 120 | LF |  | 5 |
| ---: | ---: | ---: | ---: |
| 140 | LF |  | 4 |
| 40 | LF |  | 1 |
| 320 | $1 F$ |  | 3 |
|  |  | $\ldots \ldots \ldots \ldots$ |  |

20 LF
5

19
$\qquad$
2 TH ..... 5
$\begin{array}{ll}4 & 18 \\ 3 & 7 n\end{array}$
1 ITM
(1) ..... 13

(8)159
$\qquad$


4

465 LF
5

1 $\qquad$
10


2 IN

2 IM

## mississippi ponen company

 atsmantitinc stuot Aucust 11. 1993
## finc/coa/suacoar

auc
DESCRIPIIOH

312 BOLLE PLAMT EOUIPNEMI
6560 VENT AND DRAIH STSTEMS
8552 te kTR vEMT क BRAIM STI 4521 He reate viwis an bains $4^{\prime \prime}$ PIPE
< 4* PIPE
4521 RUC account total
6563 LP TEAER VEMI B DRATM STSTEM 4641 LP MEATER VEMTS ANO DRATKS

10" PIPE
g" plpt
8* PIPE
4* PIPE

* $4^{\text {m P PIPE }}$

4541 muc account totat

6580 COA ACCOUNT TOTAL
6580 COMOEMSATE STSTEM 6502 Low phessume veaieas

4921 LOU PRESSURE MEATEA
low parssuat neatea
5583 POLISNIMG UWIT 4941 PuIP
puse 4942 Dalve, pune puse laptor 4943 TANX TANK 4244 FOUMDATIOM FOUNOATIOM 4346 POLISMIMG UMIT POLISNING UMIT

6583 suscoa account total 6584 DEAERATOR E STORMCE TANK 4951 DEAERATOR

DEAERATOR
STAIMLESS STEEL SCRAP

## PANT BAIEL UMIT 1 <br> DETAIL LEVEL REPOAT

sMaUATET $19935 \times 1000$
SOUTEEA COMSAMT SERVICES cost st scisout tmanterina senvices PACE 16

(2)

## atssissIppI povth conean DIsauitima stuby

 nucust 11. 1993
## fincicen/subcoa

suc
otscatpition

$$
312 \text { soilea plant touiputent }
$$

$$
\begin{aligned}
& 312 \text { eoilea plant EOUIPu } \\
& \text { esso comptrsatt sysitia }
\end{aligned}
$$

$$
\begin{aligned}
& 1580 \text { COMDEMSATE SYBTEM } \\
& \text { E504 DEAERATOA S STORACE TAMK }
\end{aligned}
$$

$$
4851 \text { DEAEAATOR }
$$

4961 auc account total
4953 dEAERATOA STORACE TAMS tasex

ESB4 suacon account total
eses comptusate puaps s parves 4981 Pune. ConDemsare
puep. conpthate
43s2 saivt. Puse
oatve, Puep
copper scrap
4382 muc account total
ess3 foumpation
fourcation

6505 suecoa account total

3580 coa actount TOTAL
5620 FECOLAIEA STSTEM E525 FEEDNT PtP1ig 521 FLEDNTA
5301 PIPIMG
$10^{*}$ PIPE
$10^{*}$ PIPL
$14^{\circ}$ PIPE
g* PIPE
4 P1PE
$44^{\prime \prime}$ PIPE
5301 Buc account TOTAL 6522 mDCA PRESSURE NEATERS 5321 neatra heatea 6625 FEED mate sT

5381 Puse, FEEDuATER
puse, FEcDEATEA

PLANT DAMEL UNIT 1 DETAIL LEVEL REPORT

## jamath 1893s a 1000

soutichan coseant stavicts cost s scitdute thotmetana stivicts pace 17
sMLVACE
Quantitt cost
1014. 8

4

8

3 ea 2

3 EA 1

1

25
C7 3
8

54


20

32 14

20 TM
(1)
(24)

3 III
(1)

20
(2)
(4)

I

## mississiPpl Poota compant

 olssentiting stuet aucust 11. 1933
## Itacrcoa/suscoal <br> Euc

## Descaiptiom

312 Botlia plant eoulinelit
8520 FEEDVATER ST3TEM
6825 FEED satEa STI
5393 Foundation FOUMCATIOM

S305 Daivt, Tungine Tukatit
s67s suncoa account total

8620 coa account jotal
6540 FELDUTR AUK 573
684 Fecortil mikiane Flow times
3501 PIPTEG
14* PIPE
$8^{\circ}$ PIPL
s 4* PIPE
$\$ 501$ nuc account total
6543 fLEDATEA RECIRCULATIMG LINES 5541 PIPING
s* PIPL 8* PIPt

* $4^{\text {¹ P PIPE }}$

S541 nuc account total
es44 sparmatea stateas 5551 PIPTMG

8* PIPE 4* PIPE \& 4* P1PE

5561 Buc account total.

6540 con account total
8700 LUDE OLL STSTEM
6702 FEEDEATER PMP TUAS OIL STSTEM 6024 parve, pute puse votoa

## PLant Dantil uait 1 <br> DETAIL LEVEL REPOAT

samuart 18938 a 1000
southena compant seavices cost s staveutt tmatutzang stavicts PACE 18

D1sposal

$150 \mathrm{ct} \quad 20$
$2 \quad 2$
2

24

58

| 300 | 17 |
| :---: | :---: |
| 335 | $\underline{4}$ |
| 180 | $1 F$ |


| 200 | LF |  | 5 |
| ---: | ---: | ---: | ---: |
| 175 | LF |  | 3 |
| 175 | 17 |  | 2 |

(4)
(2)
(B)
(11)
(1)
(1)

21
$\begin{array}{ll}3 & 1 a \\ 2 & \text { II }\end{array}$

| 75 | LF |  | 1 |
| ---: | ---: | ---: | ---: |
| 100 | LF |  |  |
| 380 | LF | 1 |  |
|  |  | $\ldots \ldots \ldots \ldots \ldots$ |  |

$\qquad$
$\qquad$

## miss1ss Btsuantick stupt

 aucust 11 . 1993
## atrericon/aiscond

Auc
sescalpitiom
312 soluza fant toulputat
7000 onte wisc motoms
7000 atst moteas
sesp onen mitc motons
utsc metoss
copper scras
seas suc accoumt total

312 finc account lotal

720 rustat utwicalok srat
D0at Fawpartom
foumbation
7322 tulatat
0011 castag on antl with Imsulatio Tunall exichato

7529 Tunatac panim stster
a160 THatit phail ststem, complete pere
7339 ofiesaton coot ing of punos a1at tas, Tunatiet cell sr3. ocuchat tuns

D182 condig unit, cEmERATOA cootimg curting unit

IS30 suecon account total

7520 COA ACCDEAT TOTAL
1700 condenszac systela 7701 combtiata
0321 CASIE condemsima ststel cesond

7702 conotwar conotctions
0361 PIPIE combemsta commections 12* P1PE

1109 vacuun scata
0982 PIPIMC FACUUS STSTEM

1 EA
10

PLATI BAMIEL UMIT 1
DCTAIL LETEL REPDon
jampant 10835 I 1000

$\begin{array}{rr}3 & \text { Th } \\ 393 & 18\end{array}$ (3)
(3)
$\qquad$
$\qquad$

(842)

037 (48) 1.004
2 Th

14 TM
(1)

5 IM
$\qquad$5

## 6

.............. ................... 1.256

558 TM
(39)
(2)

MISsISSIPP! Powes COMPAKY
Dtswanti IMg stuay
aucust 11. 1993

Ferercon/suacoar
noc
DESCRIPTIOM
314 TuAboctutation vilis
7700 cowbersing state
7703 vacuras stsitu
0382 PIPING. VACuUA STSTEM
4* pIpt <4*PIPE

032 nuc account total
0363 PRO, vacurn, vacuus system puip

0354 Datve. PuAP, VACUUA STSTEM puty wotoa coppen sciap

0354 muc account total

7703 supcoa account tolas
7704 conotmst tupe cueamina sys
0380 conpthet Tuat ctenanin sT3TEM PIPIMG

7700 coa account toral
7740 cootima matel system 7741 ceoting wit passacemars

0SO2 PIPIMG, cooting vater passacty PIPIMG. COOLIMG wates passacer

7743 coot 1 mG vTh puges 8 DRIvEs 0SS1 Puap. Cootima waten puses s on Pue

DS52 DAIVE, PuNe, COOLIMG water pun pume noton COPPER ScRAP

0662 mac accouni total
0583 FOUMDATIOM. COOLIMG EATER PUMP FOUMOATIOM COMCRETE

PLANT BAMEL UBIT 1 DETAIL LEVEL REPOAT
jamuant 1893\$ I 1000


2
1

2
$\qquad$
$\qquad$
$\qquad$
4
$\qquad$

1
1
............... $\quad . . . . . . . .$.
1.300 LF

3 III 29
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
1.
$23.180^{8} \mathrm{TH}$

## wisslssippl pouta compart

 DIsuantilimg stuotAucust 11. 1999


314 Iumboctithaton unils
:\% to cootimg vatea ststen
7749 coot tua uth punes os paives O563 FOUNOATIOM. COOLTMG HatEA Pusp

7140 coa account tolat
7900 LUAE O1L STSTEM

1201 FILTERING UHIT. TURBI © OEMERA
FILTERING UBIT

314 FLAC ACCOUNI TOTAL
315 accessony tiec eouiphent tooc cable
8000
2000 caste
poven cable
COPPER SCRAP
IWSTBUEDMT CABLE
Copper sctap
2000 muc account total
te20 RACEVAT SITE 8021 TU月 BLDC TRUNE RAcEmat

CABLE TRAY
ALUATMuA scRap
Allagmua scrap
combult
ALUsimum scrap
0002 RUC ACCOUNI TOTAL
8080 GAOUND STSTEM s0s1 SITE CROUND 0400 SIIE CROUNG SYSIEM, COMPLETE SITE OROUND STSTEM. CONFLETE COPPER SCRAP 0400 muc account total
$30,000 \quad 18$

37.268 LF 41
121.945 LF

75

118

| 100 | Til | (9) |
| ---: | ---: | ---: | ---: |
| 148.228 | 18 | (48) |
| 70.584 | L8 | (23) |

(14)

31,000 18
(18)
(15)
(2)

2 In
(101)
1.222
1.187 .800 if 139
507.000 LF 7

1 LT 1
1.323

17
(8)

### 27.184 (3) (0)

170.859 (55)
(83)

8100 OEH Bus SYS
$\mathbf{8 1 0 2}$ Dus EOUIPNERI a suppoat
0621 Bus. cEMERATOM BUS STS.
Bus. QEMERATOR Bus sys. 1 Ls 7
coppen schap

## PLAMT BAMIEL UMIT 1

 DETAIL LEVEL REPORTjanuant $19935 \times 1000$
southerm conpant stavicts cost 4 scmedute EMGINCEATMG senvices

PACE 21
salvace
Quantitt cosi
rotal $\$$

## mississippl Powt compant

 atsuantitnc stuot Aucust 11. 1993
## TERC/COA/SUBCOM

auc
Descaipliow

315 accessont ELEC EOUIDEAEMT
8100 oEI Bus sTs
8102 EUS EOUIPNEMT A suppont
0621 Bus. crntraton eus s7s.
PLAKT BAMIEL UMIT 1 DETAIL LEVEL REPOAT

## Jamerant $18933 \times 1000$

southena comany semvices
cost a scnidute


0021 muc account total
0523 instausint thass onsen, ctin. Bu
transf onven
coppen scaup
0523 RUC ACCOUNT TOTAL

8102 suecoa accoust total
8140 cEnTRALIEED PLAMY COMTROL STS 8141 METEAMG A RELATIMG

1003 Pantl. CEMTRALIzED PLANT conta
PANEL. CEMTRALIzED PLAMT COITR
3180 mers a panels S180 local racks and pantls 1302 LOCAL Paitl LOCAL PANEL

8240 D.C. STSTEM $125 / 250$ y 8243 antekt ststem
1843 CINROER, sATIEAT
CMACER , BATTERY
3350 A.C. STsten $120 / 209 \mathrm{~V}$ 8351 BISTRIBUTIOM STSTEM

2145 switci
OtsTateutiom cagiket
8440 AC STS 480 V
8441 DISTALEUTION STSTEM
2301 HOTOR COMTROL CEMTER- A.C. SYS $\quad 11$ it
2311 SWITCMOEAR-A.C. STS. 400 V. SIICNCEAR- A.C. CHEAR - A.C. STS. 400 V .
SYT

8441 suscoa account total
8444 TRANSFORIER SYATEM
2321 тиAKsFopuer - A.C. 575.480 V. TRAMSFODER-A.C. 573. 480 v.

3 EA 13
15
15
$\qquad$
$\qquad$


## mississippi pouta compant

olsmantitima stuev
ancust 11. 1993

## Fincicen/suacser <br> muc

```
ecscripitom
```

3:2 accissoat tutc teutpiemi
8440 AC 3 T3 400V
3444 thashration sysitu
2321 taaspomer-A.C. 575.450 v .
Copptir scmp
2321 anc account total
3440 con account total
eszo ac systen - 6000 ES 21 etstatevilion systau
2454 Bus secition. A.c.staten-600 vo
©us stcilion, A.C.systen-800 vo
coppen scrap
2454 auc account total
8520 stacet ac stsitu-axy
0521 env-stias ac sy-DISTRIBUTIOM
26E5 sultch, stander A. C. sTsTbu syitciotan


2 200 thunsfonem
tanisfonsea
coppta scrap
zasi muc account total
aszo ac systen - Soony
0321 ofstaituliom sisten - S00ry
3367 noton comtrol cemier
Moton cominil center
STATMESS STEEL SCRMP
3367 Ruc account rotal

315 Thac account total
318 wisc. PLAMT EQUIPNEMT
1520 THTASITE COMANATCAIION ST3 1521 IELEPMONE ST3

5001 TELEPNone sis
TELEPHONE STS

## plant baniel mit 1 DETAIL LEVEL REPOAT

## januat 1893s 11000

SOUTIERA COBPant SEAVICES cost t senedute EMGINEEAIMG stavicts pace 23

## salvact

QuANTITT cost cos!
tolal 8
18.571 18

1.255 LB 1
........... $\quad 2.324$ is $\ldots \ldots .$. (1)
(1)

2 La
$\qquad$
$\qquad$
$\uparrow$
123
(279)

44



m!ssIssIPPI POutil compant
DIsankitime stubt
aucast 11. 1933

Plant dailll vait 2 DETAIL LEVEL EXPAT

JAMUSAT $18338=1000$
southena compant stavices cost a scieputi tmatnetatio stavicts PACE 2

Ifacticoalsuacoar
nuc
EESCRIPItom
311 stauctunts of INPROVEDEMIS
2300 Tuagrat bloc
2317 FIAE photection swatiu
08so FIAE PROtECTIOM STSTEM
2300 COA ACCOUNT TOTAL
2340 stLay ctitraton BLDQ
2343 CONCNETE WOAK - SU3stmuctukt
1001 FOUNPATIG COWCRETE LESE SLAB

2344 STRUCTUKAL STEEL 1002 STENCTUAL STEEL STEEL

2345 ARCRITECTURAL VOAK 1002 AMCHITECTURAL METAL stDTMG

1002 ABCHITECTUAAL chatima

1002 COUCAETE masomat wall

1002 AACNIECTUAL uscoit vath - stasa thetosune

2345 suncoa account total
2345 coat bungra/silo 1015 coal bunke coal buext Suppont steet STADMLESS STEEL SCRAP

1015 RUC ACCOUMT TOTAL
2349 COWCRETE VOLK - SUPEHSTRUCTURE 1002 AACMITECTURAL
nOOF

1002 COWCRETE COWCRETE

OUA111t

| Rgnoval |  | D1890sal |  |
| :---: | :---: | :---: | :---: |
| Ouxility | cost | Oualitit | Cost |

Ouantity
cost
Quantitt
2atvact
cost
10tat 5
5.200 tex
(384)

227
5,200 17
581

430 T11
(30)

152
$\qquad$
$\qquad$
$\qquad$
(31) 218

(22)
(4) (18) (53) 2
(13) (87)
2503

609

m1s315s1PP1 Pouta coseant
DIsioustitimg sive?
aucust it. 1993
TEAC/COn/suecoar
AUC

Dessenipition
312 BotLta PLANT EOUTPETHT
4090 stLam cemematich stsite
4806 Botlea puct sysitu
0123 cas RECIRCuLA110 Duct
Ductuonk
0124 TAN
Fan
Younaliom comcater
0124 muc accourt otal
0125 belve, FAM
coppea scas
01zs auc account total
4505 suncoa account 1014
4807 soot bloutas
01s0 soot Btoutas
soot Blouths
4309 BOILEA watE CIACULATIOM 3TS
0211 Puse
pue
0212 onive. Puse
Hap motom
coppen scan
0212 muc account total
0213 PIPIMG
4* PIPE
0217 MEAT EXCMWMCER
heat Erciumotn
4809 suBcoa account total
4800 coa account total
4340 COAL FIBING STSTEM
4842 pulvidizeas
042 Pucviriztas
0272 putveaizea

PLAMI DAMEL UnIt ? DETAIL LEVEL EEPCO

## samuant 18238 I 1000

soutiena coment tervicis
cost a sciebute thetuttatim stivicts


31 TH

| 2 | Ea | 2 |
| :---: | :---: | :---: |
| 122 | cr | 10 |
|  |  | 13 |

21 $\qquad$
1
.................. 35

25
95 EA

4 4

4

550 LF

1 .

14
1.143

31 TM (5)

43 II(10)
(3) 10

23 TH (2)

3 In
7

4 III
(30)






## wiss15s!PPI Pouta Comany

 olsmantling sivot aucus 11. 1983
## Itacricoa/suscoal

auc

## otscatpitom

312 sollea plant tquipient
5380 coal mamptimg chusive nse
 2102 sTauctuat steet
staucturat steel
S3ES ABCAITECTURAL NOAX
2102 ancnittctural cantima

2102 COWCREIE
Comcatit . suptasiauctune
2102 AROIITCIUAAL
bTAL Stotng

S385 suscon accuant total
5386 CN CRUSNER RSE APPURT 2161 EItvatom EtEvATOR

5380 COA ACCOUNT TOTAL
5440 coal hanolimg transfte potmis 5443 COWCRETE wORK - SUBSTAUCTURE 2401 conchat IE vonx concaste

5444 STRUCTUMAL STERL 2402 stauctural stet STHUCTURAL STEEL

5445 aschititctuan yonk 2402 AncNitECTUAL craitimg 2402 ABCHIIECIURAL hetal siotwo

5445 SUBCOA ACCOUNT TOTAL

5440 coa account total

## Plant daintl umit ? <br> DETAIL LEVEL REPOM!

JAMUART $19825 \times 1000$
soutitem conman stavicts cost a sciebute twatmetntuc stavicts Pace 10

01 sposal
оианाт!
cost
cost
-...................................
cost
101445


6

800 CT 123

45

112

1 17

289

350 CT
72

95 TM
11
$\begin{array}{lr}2.800 & 37 \\ & 8 \\ 3.20037 & 17\end{array}$
$\qquad$
23 $\qquad$
$\qquad$
(1)

22
4 TH
65 TM
(7)
(1)

5

In
(4)



massissipp: mouta compant
otswasitith stuor
Aucust 11. 1293

Itericon/suecea/
nuc
stscazetson


312 sotle mait tanthent
sago mals stena stares
seg1 wise stather PIFE
4001 prptua
4001 ase accnuat totat
125
4007 salet, sertal on powth optrat vatve. serciat on pouth opthat

Sa0t suacea acenant to1AL
5002 net atveat
4021 PIPING
$35-$ ptet
$30^{-}$ptec

4921 mac accovatr total
sags cas quicar ststru 4041 ptpina

34* PIPE
26.75- Papt

24- Pive
4041 tace acesumt total
$\$ 400$ coa accoumy tosal
seap Eataction stean stsitu
S441 MP itarth stean stitia 4101 viptig
$10^{-6}$ PIPE
g- pIpE
$5 *$ PIPE
4101 enc accoung total
8442 IP REATEA STEAM STSTEM 4121 PIPING

45* PIFE $24^{-}$PIPE 20- Plof

| 70 | LF |  | 11 |
| ---: | ---: | ---: | ---: |
| 45 | LF |  | 4 |
| 15 | LF |  | 14 |
| 40 | $1 F$ |  |  |
|  |  | $\ldots \ldots \ldots \ldots$ |  |

RLant samiti wilt 2 ETTAIL LEVL REPOAT

Jamuak tease x 1000

-vantitt
cest
$\qquad$
128

| 290 | 17 | 77 |
| :---: | :---: | :---: |
| 315 | 1 | 6 |
| 500 | 1 | 111 |

$\qquad$
$\qquad$

| 110 | $\underline{1}$ |
| :---: | :---: |
| 300 | $\underline{7}$ |
| 260 | LF |



Quastity
satwact

sorat 5

1 tw

(10)

(1)

5
7
7
5
$\ldots \ldots \ldots$





M1531531PPI POuta coneant
OISMANILIMG STU0T
Aucus 11. 1993

IERC/COA/suscoal
auc
otscatpition

312 sotici plant teatment
0500 comotmsart sratea
E504 bratratoh s stomact thas
4553 DEAEMATOR stomact tack
6384 subcon accousit totay
SSAS conotisate maes s datves 4931 puas. Conctmante Pue. condermsate

4982 DaIvE, PLaP Dativt, Nase copplin sokas

4932 RUC ACCOUNT TOTAL

6Ses sutcon account total

6580 con account lotat
6600 combtwsate ausitian, sTsteg ESO4 spat yTa 378

5151 PIPING PIPING

5820 FLEDEATE STS1E~
6821 FEEDETR PIPIMC
5301 PIPING
16* PIPE
14* PIPE
8 * PIPE
4* PIPE

* 4* PIPE

5301 RUC ACCOURT TETAL
5822 mica patssunt ieatens 5321 neaten reatea

6825 FEED mate sys 5391 Pung. FEEDEATE pusp, rezenatea

5385 DAIVE, TURATME

PLAMT DANEL UNIT ? BETAIL LEVEL REPOAT

REMoval
cusutity cost
$\qquad$
CuAality cost
$\square$

3 EA
1
$\qquad$
1
$\qquad$
3
$\qquad$
$\qquad$
$14 F$
1 IM

| 220 | $1 F$ | 12 |  |
| :--- | :--- | ---: | ---: |
| 105 | $1 F$ |  | 5 |
| 300 | $1 F$ |  | 5 |
| 485 | $1 F$ |  | 8 |
| 120 | $1 F$ |  | 1 |

$\qquad$

| 7 | $1 m$ |
| :--- | :--- |
| 3 | $7 m$ |
| 3 | $1 m$ |
| 3 | $7 m$ |

62 in
(4)
2 EA 2

20 TM



| DIseantling stuby ancust 11, 1993 |
| :---: |
|  |  |

却

## ofschiplion

## 314 tuagoctmenton units

1100 conptest wis sister
700 comptssima sistem
1704 compensta tuet cleantma sis
1704 combensta tuse citantmg sis
ajso condensea tuse cleantmo sistem PIPING

7100 COA ACCOUBI TOLAL
1740 coot ING maita ststea
7741 COOLIMG UTR PASsacemat3
0502 PIPING, COOLTMG MATEA PASsacty
pIPIMG. cooting vaten passacte
1749 coolimg vin putes a baives
0651 puap, cooting waten puters is on pusp

0662 dRIVE, PUNe, coot INO wAIEA PUA Puse motoa COPPER SCRA

0652 RUC ACCOUNT TOTAL

1749 SUACOA ACCOUMT TOTAL

7740 con account total
1900 LUBE O1L 5751ta
7001 tunaine oen Luat oil sys
1201 FILTEATNG UMIT. TURATME GEDERA FILTEAEN UBIT

314 FERC account total
Its accessoat tLec toulpiznt
3000 Caste

## 00

 2000 CABLEpouta cable
coppen sckap
IMSTRUREMT CASLE
COPPER SCRAP
Soo muc account total

## PLAMT DAMIEL UNIT 2 DETAIL LEVEL REPRT <br> دamunat 10935 a 1000



3 14
(42)

1.227

138
(9)
1.157 .800 LF 139
587.000 LF

2 14
101)

| 27,184 | 18 | (9) |
| ---: | ---: | ---: |
| 170.859 | 18 | (55) |


$\qquad$
1.328
$\qquad$(83)
mIssissippl ponea compant
DISmantitiog stuot
aucust 11. 1993

PLAMT DABIEL UWIT 2 DETAIL LEVEL REPORT

Jawuary 1093 : 1000

- Eacricoa/ suecoar muc
DE SCRIPIt

315 accessont ELEC EOUIPMEMT
3020 Rectian atit
8021 Tus BidO thumet ractway
0002 CABLETRATS, EACH COWtImUOUS mu CABLE tat

0002 RUC ACCOUNT TOTAL
s0s0 cabund stsith
B0s1 SITE CHOUND
0400 SIIE QNOUND STVTM, CONPLETE
sItE caound system, conelett coppta schap

0400 AUC ACCOUNT TOTAL
8100 cen bus sts
0102 sus coulpent s suppoat 0621 Eus, centraton sus 373. sus. ctherato tus sys. COPPER SCRAP

0621 muc account tetal
 tramsF oruen coppen schap

D023 nuc account total
$8 t 02$ suacoa account lotal
8140 CEMTRALIZED PLANT COMIBOL STS 8141 veIERTMG s BELAYING

1003 PAKEL, CEMTHALIZED PLANT CONTR PANCL. CEMTRALIzED PLANT COWTA

3180 RACKS A PANTLS
8180 LDCAL RACKS AND PANELS
1302 LOCAL PANEL
tocal panel

121.845 iF 75

| 70.584 | 18 | (23) | $\begin{gathered} 15 \\ \text { (23) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 100 | 18 | (9) | 31 |
| 145.928 | 18 | (48) | (48) |
|  |  | (73) | 31 |

30.000 L8 14
51.000 t8 $\qquad$
42.440 18 $\qquad$
$r^{*}$

118
$\eta$
$\cdots \cdots \cdots \cdots \cdots$
$\qquad$

$7 E A$
2
$\qquad$
$\qquad$
$\qquad$
$\qquad$

7 L1

7.810 | 2 | 18 |
| ---: | ---: | $\qquad$

2240 0.C. STSTEM $125 / 250 \mathrm{~V}$
8243 BATTEAT SYSTEA
1843 CRAACEA, BATTEAT

mississ1ppI ponta cospant
Disuanilitiva slvot
aucust 11. 1893

Plant bantel uwit 2 Detait tevet mepont

دдNENAT 1933 : 1000


Quantitt
OCSCR1F110m
315 accessoat elec soutpient
8580 AC 5T31ti - 12 xv
sege transfomati sistem - 12 KV
2001 thansfonisa Iransfobata coppta scas

2801 RuC ACCOUNI T01A4
8920 AC STSTEM - 500 m
B221 0istaibution sisttu - S00iry
3387 Moton cominot cturth

339 muc accoumt total

315 FEAC ACCOUNI IO1AL
336 misc. PLART EOMIPREI
1520 Implasite comenitcatiom sis 1521 IFLEPNONE SYS

0001 TELEPNONE TTS TELEPNONE 375

1580 ctirimal vacive ststea 1560 ctwthat vacuun citamimo sTs 0142 แอтоด splon

1500 PLaNT stppoat qouip 1597 vtiatct atpalk teuspatint 2102 battert cuancer satteat councen coppte scas

2102 auc account total

318 TEAC ACCOUNT TOTAL
353 STATIOM EOUIPNEMT
3400 thansfonuers
3401 ponti thursfonsen 0108 powta tannsfotover
$2 \quad 14$

$$
\begin{array}{rr}
1 & 14 \\
1.520 & 18
\end{array}
$$

$\qquad$
$\qquad$
uts31551ppl POnta conpant
DISEANTIING STUDT
Aucust 11. 1983
PLAMT DANEL UHIT 2 DETAIL LEVEL REPOAT
Jamuat 18338 x 1000


Quantity
C031
guantily
cost
soutatis cowent semvicts cost s scitout tectutetimg stavices
pact 25
iEncrcoa/suncoal
nuc
Deschipitom

353 STAItion toutpurmi
2400 1Hassfonetrs
5401 pouth thassfonute
0100 powta teansfobuen
010e muc account torat
0180 poute tanksfoncie pouti 1 Ramsponeta coppea scas

0150 muc account lotal

9401 suscon accoumt totat
(184)

| 104 | 1n | (b) |
| ---: | ---: | ---: |
| 485,100 | 18 | (155) |

(155)
(184)
(234)
(220)
$\qquad$
0.312
(2.339)
5.965

304 COWT LMCEMCT
0000 cowltinctimer
0000 comitnctict 0000 contringtuct CONTIMCEHCT

## mississippl pouta coipant

DIsmantitimg stuby
$\begin{array}{lll}\text { aucust } & 11 & 1993\end{array}$

## ItmC/COA/ SuBCOA/ <br> Ruc

## ofscaipliom <br> otscaipilion

307 CONSTRUCTIOM CLEARIMG ACCIS
0040 Phobuction cosis
0041 SUPLRYISOAT TRAIMIMC SALARIES 0041 LeC CEALRATION SUPGAvision wec centration supeavisiow

0200 15mponabt stavices 0201 trieonant stavices 0201 TEMPOMAT CONSTAUCIIOM SEAVICE

THepoan constauction sthyice ofubtition comtracton mositiza 0201 RUC ACCOUNI tolat

0220 SAFEIT B SECUALIT FACILITIES 0221 CUARO Stivices

0221 secualit semvices
secunitit senvices

307 IIAC ACCOUNT TOTAA
30日 theIneealma
0240 EMCINEERING SCS 0241 DEStoit-sALABIES

0241 SCs ENOINEERING (RECOROS CLOSE
sCS ENGR (RECORDS CLOSEOUT)
0260 ENGINEERIWG-OPERATIMG COWPANT 0261 DESTCM-3At AMIES

0261 Wec emonnetatwo
vec tmotinetatmo
0265 DATA PROCESSIMG-SALARIES
0265 cost of peraits
cost of PEmatis

0260 COA ACCOUNT TOTAL
0350 CONSTAUCTION IMSURANCE 0351 ITAP-UP IMSURANCE

0351 viAp-UP AND ALL AISX IMSURANCE
VIAP-UP AND ALL MISE IMSURANCE
1.189

305 FEAC ACCOUNT TOTAL

PLANT BAHIEL COBDOW FACILITIES DETAIL LEVEL REPORT

## anuanat 19935 a 1000

SOUTHERM COMPIST SRRVICES cost 5 scieteut thotnetaimg stavicts Pact 1

Salvact
OUANIIT cost 10144 8

```
MISSISSIPPI POWER CONPANT
DISMAMTLING STUDT
```

aucust 11, 1993
Ifacicoa/ sullcoal
nuc
DESCRIPIIO
309 ovtaictacs
0480 GEMEAL overiead
0481 ctweral abuinisiraitiom
0481 AOMIM 8 GEM OVEDOEAO
ADMIE क of M OVEREA
230

| 60.000 | c | 384 |
| :--- | :--- | :--- |
| 80.000 | ct | 258 |

D001 BUC ACCOUNT IOTAL
 0044 RUC ACCOUNT TOTAL 0045 TANK (TARD SAMITAAT BATER) tank

2044 Subcoa account toral

## 2080 PONDS

 2034 ASM DISPOSAL POND 0230 ASM DISPOSAL PONDDEMATERING
CLAY PLACING
CLAT PURCMASE
DITCi 8 MATTING
LANOSCAPE
COWCRETE - SPILLWAT
TOPSOIL PLACING
topsoll puncrust
0230 RUC ACCOUNT TOTAL
0231 LANDF ILL AREA DEMAIERJNG Clat plactma CLAT PuRChase
DITCHES 8 matilmo TOPSOIL PIACING IOPSOII PURCHASE

PLANT DAMIEL COBDON FACILIIIES
DETAIL LEVEL REPRAT

## jamuant $18935 \times 1000$

# soutienir cospant stavices 

 cost 8 sciepute EMOINEEANG sekvictsPACE 2

311 Sthuctures a imphovenenis
2020 IWITIAL SITE PREPABURIIOM
2021 DEMOLITIOM IWITIAC SITE PREPAA 0001 IMIIIAL SITE PPRPARATIOW topsolt PLacing topsolt pupcruse SIIE TMEROVEMENTS 044 TARD SAMITART EAIER SY 0044 WELL (TARD SANTTARY EATEA) puse tue motoa

1 $\qquad$ 15 tm
(1)

| 1 | LT | 53 |
| ---: | ---: | ---: |
| 60.000 | cr | 413 |
| 60.000 | CT | 275 |
| 1 | LT | 30 |
| 25 | AC | 32 |
| 340 | cr | 44 |
| 20.000 | cr |  |
| 20.000 | cr |  |
|  |  | $\ldots \ldots \ldots \ldots$ |

1. 062
$\qquad$


| 1 | LT | 100 |
| ---: | :---: | ---: |
| 180.000 | cr | 1.298 |
| 180.000 | cr | 828 |
| 1 | LT | 50 |
| 50.000 | cr | 413 |
| 60.000 | cr | 278 |



## missIssippl powta conpant

DIseantilmg stuat
Aucust 11. 1993
ifacicoa/suscoa
nue

## pe scatpitiom

311 STRUCTUAES \& ImPROVEIETS
2400 comirot moon
2404 STRUCTUNAL STEEL
1392 STRuctuan steet
STRUCTURAL STEEL
2409 COMCRE TE MORX SUPERSTBUCTURE 1302 CONCREIE NORK - SUPERSTRUCTURE noof

1302 COWCRETE wORE - SUPLRSTAUCTURE
CONCAETE

2409 Suacoa accoumt total

2400 COA ACCOUNI TOTAL
2500 maint toulp stomace nouse 2503 cONCRETE VORX - SUASTRUCTURE 1801 comcatit
cowcatie
2504 STBUCTULAL STEE:
1802 STRUCTURAL STEEL structural stien

250S ARCAIIECTURAL VORX 1802 Suptasthuctuke 1983 sTuDt adolitiom-24 x 48 ca

1802 ABCMITECTURAL statwe

1802 ARCNIIECIURAL masowny wall

1802 CONCRETE
COWCAEIE GOAX - SUPERSTRUCTURE

PLANT DABIEL CONOON FACILITIES DETAIL LEVEL REPOT

JNWUAT 18935 : 1000
southeini coupant simvices cost s scitbut EMCIMEEAMG semvices PACE 4


20 Tm
(1)
$\qquad$
$\qquad$

| $8.000-5 F$ |  |
| :---: | :---: |
| $800 ~ 5 F$ | 2 |

300 ct
$\qquad$
$\qquad$
$\qquad$

2600 SEAVICE BLDG
2603 CONCMETE WORK - SUASTRUCTURE
2301 FOUNDAItOM CONCRETF

## 

of smantiting stuot
aucusi 11 1933

## iencicoa/subcea <br> Auc

## of schtpltom

11 stauctures is impagveatints
2600 SENvict BLDQ
2603 CONCRETE vORA - SUASTRUCTURE
2301 FOUNDATIOM CONCRETE CONCRETE

2604 STRUCTURAL STEEL 2302 sThuctunal sTEE

STEEL
1993 STuDT ADOITION-SEAVICE Bu nop

2302 muc account lotal
2609 COUCRETE NORE - SUPERSTRUCTUNE 2302 superathuctuat cowcatit SUPCRSTRUCTURE COWCRETE

2600 coa account total
2720. waith theatignt gullding 2703 cowchete womx - substiuctuae 2601 FOUNDATIOM COMCRETE
comenete
2704 STRUCTURAL STEEL 2602 STRyCTURAL STEEL STEEL

2705 ARCNITECTURAL VORK $2 E 02$ ARCMITECTURAL SIDING 2002 ARCHITECIURAL masonkt matt

2802 ARCAIIECIURAL
noof

2705 SUBCOA ACCOUNT TOTAL

2100 COA ACCOUNT TOIAL
2800 EMERCEWCT CENERATOR BLDG
2803 COMCRETE WORK. SUBSTBUCTUAE
303 COMCRETE WORK - SUEST
CONCAETE

| 400 | In | 45 |
| ---: | ---: | ---: | ---: |
| 1 | 17 | 150 |
| 450 | 57 | 71 |

soutivens compant sekvices
cost 8 soiedute EMGINEEATM stavicts
(20)
(28)

230
(28)

## et 23155 IPPI POwL

 atsuantilich stuot alust 11. 1993
## FIac/coa/sulecoa. <br> auc

## otscaiptiom

121 S1Ructunes it thenocturnis
2300 Evenctinct ofntrato eloc
2404 STRuctuaal STEEL
3302 STRUCTUAAL STEFL
STEEL
2BUS ARCNLIECTURAL vORE J302 ancallitctupal stotma

2800 cesa account toral
2340 PRECIPITATOR COMTROL HOUSE 2843 COWCRETE wonk - SUBSTRUCTURE 3501 COHCAETE

COncREIE yOAK
2644 SIRUCTUAAL STEEL 3502 STRuctual STEEL sThuctual steEl

2845 ARCHITECTUAAL VORK 3502 AmCNIECTURAL stoting 3302 ARCHIIECTURAL masomint mall
$23 a 5$ SuACOA ACCOUMT TOTAL

2840 COA ACCOUNT TOIAL
2850 FIRE PROIECTIOM BLDG
2 263 CONCRETE vORK - SUESTRUCTURE 3801 FOUNDAIION CONCRETE concatie

2854 STMUCTURAL STELL 3802 STRUCTURAL STEEL sTRUCTURAL STEEL

2850 coa account tolat
2800 SEAVICE WTR COLORIME HSE 2333 CONCRETE WORK-SUBSTR 3701 CONCRETE


DETAIL LEVEL REPORT
januast 19335 : 1000
cost s scitbute tEGIMETRING stavicts
sal vact
Quantity
cost
loral 5

5 II

1 14
$\qquad$

13 \%
(1)

1
20 14
(1)
114

1 TH
2
(1)

TII
$\qquad$

13 TII 1

20

## aississirpi powen compant

 etsmantiling stuet autust 11. 1993
## I Lacicoa/sulteas

auc

## ofrcalpition

311 stauctures is thenovicisnis 2000 stavict via catonine mse
2833 conchete wonx-substh
3701 COWCREIE
cowcatit
2884 STM STEEt
3702 sthuctuan steti stauctuhat stet

2880 COA ACCOUNI TOTAL
2900 CIBC water collonime nouse
2904 STBUCTURAL STEEL
3802 STAUCTURAL STEEL
STEEL
2920 stcualty BLDG
2923 COHCRETE YORK - SUASTAUCTURE
3901 CONCRETE
COWCRETE
2924 STRUCTUAAL STEEL
3902 STAUCTUKAL STEFL
sthuctuan steel

2920 COA ACCOUNI TORAL
3040 waste waita comirol mouse 3043 cowcaete nons - susstructune 4301 CONCAETE

COMCREIE
3044 STAUCTURAL STEEL
4302 sTRuctual steEl
sthuctulal sTEEL

3040 con account total
3060 FIRE PMOIECTION TRUNSFOREA KS 3063 CONCRETE wOAK - SUBSTRUCTURE 4401 CONCAETE

COMCRETE womx
3064 STRUCTURAL STEEL
4402 sTmuctural steel

PLAMT DAWEL CUFDON FACILItIES OETAIL LEVEL REPONT

## دanualt 19935 : 1000

|  |  | 01sposat |  |
| :---: | :---: | :---: | :---: |
| QuAMIIT | cost | Quantit | cost |

102 ct
13

22 In
2

15
22 14
(2)
(2)

05 c
11

12 IH
(1)
(1)

12
1 IM

7

4 TM
4 IM
$\ldots$
7
$\qquad$


DISNamtitimg stuot

Aucust 111993
ifncricoa/suecoal
DESCRIPIIOM
1 StRuctumes I Inenovticmis
O60 FIRE PROIECTIOH TRANSFOMEA MS
3054 STRUCTUTAL STEEL
4402 STRuctural sTEEL
1



soutiena company semvices
cost a scitbute
cacintratuo servicts
pace 8

|  |  | Disposal |  |
| :---: | :---: | :---: | :---: |
| ©uantity | cost | Quantilt | cost |

    3043 COWCRETE YORK - SUUSTRUCTUAE
    
        4501 COWCAETE
            concre IE monx
        004 SIRucturat STEEL
            thuctulat STEL
    - con accoun foral
3143 CONCRETE MORK - SUASTRUCTURE
4701 conchete
CONCRETE WORX
44 STRUCTURAL STEEL
structural sicel
STAUCTURLL STEEL
semage tagatient faciliti
al CotLECTION sTSTEM
coll.sys.-sewas text.
02 UIR IREATMET FACILIIT
5321 TAMK, sEDINENT. FACIt.-styact 1R

35 T5
(2)
(2)
(3)
(3)

3300 COA ACCOUNT TOTAL

50 UIItITT PIP
6101 TRERON, CONP., UTILITT TRENCN TREWCH

```
sISSISSIPPI PONt: CONPANT
DISMuntIING STuDY
```

aucust 11. 1992
IERCICOA/SUBCOAI
muc
DESCRIPIIOW
311 struciunes is inporitignts
3400 waste vaita theatient sisicm
3402 stDinditailiom FACIItites
6321 Concaste
COMCAETE . CIEM MASM BASIM
311 FtaC accouml total
312 bollea plawt Equiphent
4000 contaithay 10 m REMOVAL
4000 CONTAMIRATION REMNYAL
0000 contamtisation fereya
Cofarcal efsidut
CoEMICAL RESIDUE
costampated soil
Costhuimated
TAMes SLUDCt
0000 RUC ACCOUNT TOTAL
4920 OIL mambling and firing ststex
\$922 FUEL SUPPLY FACILIIIES
0541 CONCRETE
ECuIP FOUNDATIOM
otisa foumbation
us 41 muc accoumt lotal

0542 RUC account total
0544 Puse
CS45 moton
м мотои
OS48 PIPING
LESS Thum $4^{\prime \prime}$ DIANETER PIPE
strainea
Cos 48 muc account total

| 45 | de |  |
| ---: | ---: | ---: |
| 2.700 | cy |  |
| 600 | cy |  |
|  |  | $\ldots \ldots \ldots \ldots \ldots$ |
|  |  | 2 |


| 45 |
| :---: |
| 2. 100 |
| 800 |


| 1.110 cr | 144 |
| ---: | ---: |
|  | $\ldots \ldots \ldots$ |

## 6. 531

(340)
................

| $\cdots \cdots \cdots$ | $(340)$ |
| ---: | ---: |
|  | 6,341 |

southeni compary seavices cost 8 sciutputt EMGINEA!Mg stavices PACE 9

Removal
OUAMTITT
cost
 fotal 8

| 75 | cy |  |
| ---: | ---: | ---: |
| 290 |  | 10 |
| cr |  | 38 |
|  | $\ldots \ldots \ldots \ldots$ |  |

$\qquad$18
7
8
33

2
1
$\qquad$$\begin{array}{rr}10 & 1 \\ 4 & 1\end{array}$
(1)

1 In

1 TM

4 TM
(2)
(2)

| 850 LF | 10 |  |
| ---: | ---: | ---: |
| 4 |  | 12 |
|  |  | $\ldots \ldots \ldots \ldots$ |

$\qquad$ 23 IM
(3)

M15S15SIPPI POUER COMPANT
otsiuntilimg stuby
aucust 11. 1993

## IEACRCOA/SUACDAI

auc

## DESCRIPIJOM

312 BolLE PLANT EOUIPNEMT
 4923 FUKL stomace Facilities 0511 COwCRI TE

TAMA FOUMgation
COUIPIEAT FOUMDAIIOM
tank foumpaition - ney tank
$05 / 1$ muc acconest total
0512 1ank
TANE
1993 sTu0t apOITIOM-wASTE O1L wEy Fith tank

0S 12 RUC ACCOUNT TOTAL

| 0st3 | pula Pusp |
| :---: | :---: |
| 0575 | PIPIMG |
|  | 12* PIPE |
|  | \%* PIPE |
|  | 6* PIPE |
|  | 4* PIPE |
|  | < $4^{-1}$ PIPE |

0S75 RUC account totat
DST 75 RETAIMTME EwCLOSURE RETATMING EwClosuaE

4923 Subcoa account total

1920 con account lotal
4960 LIGIIER OSL STSTEM
4562 FUEL SUPPLT FACILIIIES
0631 FOumbatiom
FOUMDATIOM
calitig
CONCRETE - TREMCM
0631 RUC ACCOUNT IOTAL
0632 PIPIMG $\begin{aligned} & \text { taench gratimg }\end{aligned}$
6* PIPE

PLANT BAMIEL COIDNOM FACILItIES DETAIL LEVEL REPOAT

JANUARY 18938 I 1000
cost s scuepus TNGInEERING stavices pace 10

rolat 8

| $\begin{array}{r} 675 \\ 31 \\ 325 \end{array}$ | CT <br> CT <br> CT | $\begin{array}{r} 36 \\ 42 \\ 42 \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 134 |  |  |  |
| 2 | 41 | $\begin{array}{r} 86 \\ 5 \end{array}$ | 380 | IVI | 8 |
| 1 | 1 | 43 | 380 | 18 | 8 |
|  |  | 134 |  |  | 15 |

28 I6
(1)
(18
4 TII
4 TM
2 III
IH
$\qquad$
$\qquad$
39

11 Cr
1

312

405

(3)
(7)

415
15s15strpi povta compant

DISMAMIIIGG STuDT

$$
\text { AUCUST 11. } 1933
$$

IERCICOA/SUACOAImuc
0tscatiptionHant coutpu
312 Boilta plant coutpuen
4960 LIGATEA OtL STSTEM
4952 FUEL SUPPLT FACILIIIS
0532 PIPIEC
4* P1PE
0632 nuc account total
0634 Puap
puse
0638 PIPIMG
© 4* PIPL
4962 suecon account total
4963 FUtL stomace fac
0671 FOumbation
Founcation
0672 TANK
RETAIMING valt
4963 Suscoa Account total
4960 COA ACCOUBT TOTAL
SOCO AUXILIARY BOILER
5001 BOILEA
010: FOUMDATIOM
rodmbation
0 O2 BOILEA Pacrace
BOILER PACKGCE
S001 SUBCOA ACCOUNT total
5002 FEED vatea
0711 Pute
pise
$0 / 12$ onive, pure
onive. Pusp
0713 FOUNDATIOM
F مumbation

PLAMT DAHIEL COMDOO FACILITIES DETAAL LEVEL REPOAT
jamuaty $18935 \times 1000$


14
111
6

1sposa4
Quantilt cost

2 TM 5 425 17 5

## 11

4 LA 3

185 LF
0

47
$\square$

220 cr

## 29

43
soutitim company stavices cost a scatputt tmoneralmo stavices
Ouantitt

## totat 8

```
mISSISSIPPI PONta compant
AucusT 11, 1993
IERCICOA/SuNCON/
 auc
 bt Scatpitiom
312 BOLLEA PLANT EOUIPNEMT
 S000 AUXILIART BOILEA
 5002 FEED waIER
 0714 P1PING
 g* PIPE
 0714 RuC accoumt TOTAL
 0717 PIPING
 * 4* PIPE
```


## 5002 suscoa accoumt total

``` SOOS STEAM DIST STS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{0745 PIP1RG}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
of 45 RUC account latal
```



```
PIPING
```


## soos suncoa accouni toral

```
5000 coa Account total
SDE0 Stack
SOA3 cowcnett wonx - substauctune
0921 FOUNBAITOM, CONPLETE
Foundation
```

$\begin{array}{cccc}120 & \text { Lf } & & 2 \\ 200 & \text { LF } & & 3 \\ & & \ldots \ldots \ldots \ldots & 3\end{array}$

385 1F 4

10


830 1F 7

23

53
5.060 ct

81

1 IT
10)

8,000 11
171

110 TM
12

200


D15P05A6
sat vace

Ounalitt	cost	10144

2
2


1 III 5

1 In
4

10
$\begin{array}{ll}5 & 14 \\ 3 & 1117\end{array}$
TII

15$I$

M15sIS5IPPI POUt COMPANT
DISMANTLIMC Sluot
august 11. 1993

## IERCICOA/SUSCOA.

auc

> Descarpitiom

112 BOILE PLANT ECJIPMEMT
12 sotlit plant cejipmemt
5240 coal manditha systens 5241 unioading comverons 1201 converon

COWCAETE - BASESLAB COwvETOR COWCRETE - TAIPPER HOUSIMO

1201 auc account totat 1202 Daive, moton conve voa molon

5241 suecoa accound IOtAL
5242 stocxout sis
1221 sthuctupal metal
CRAItw
stotma
SUPPORI STEEL
1221 RUC ACCOUNT IOTAL
1222 FOUNDAIIOM
FOUNOATIOM CONCRETE
1223 conveyon
CONVEYOR
COMCRETE - SUPERSTRUCTURE

1223 muc account total
1224 DAIVE, MOIOA
COWYE TOR MOIOR
1227 DAIVE, REDUCTIOH GEAR DAIVE, REDUCTIOA GEAR

5242 SUBCOA ACCOUMT TOTAL
5243 TRAMSFER CONVETOR. COAL MAMDLI
1243 DAIVE, tyOTOA
CONYEYOA HOIOR COPPER SCRAP

RUC ACCOUNT TOTAL

PLAMT DAMIEL COTONON FACILIIIES DETAIL LEVEL REPOAT

JNNUART 18935 I 1000 cost I SCutoute EnCIMERING SERVICES

PAGE 13

$\begin{array}{rrrr}1.080 & \text { cr } & & 141 \\ 400 & \text { LF } & & 27 \\ 40 & \text { cr } & & 5\end{array}$
$\qquad$

4
$\qquad$

1	$s F$		1
1	$s F$		57
90	T		10
		$\ldots \ldots \ldots \ldots$	

$80 \mathrm{CY} \quad 10$


| 27 | Tm |  |
| :--- | :--- | :--- | :--- |
| 90 | Tin | $(2)$ |
|  |  | $\ldots \ldots \ldots \ldots$ |

## 2

2

$\qquad$
(8)

1 TH
(1)

```
/ Eac/con/suacoal
```

nuc

## DEsCALPITOM

…..........
312 BOILER PLANT ECUIPIEMT
5240 coat mavoting sisita
5249 coal stomace anea
1362 COAL STORAOE TARD
cOAL STORACE YARO EECAVATIOM
FILL Mareatal puncrust
Backfill placement
1362 RUC ACCOUNI TOTAL
5250 umi oapting retoen
1381 vietatimg unit
1993 STuDt apotitiom-vienat tma
5253 CAA untone stauctune
1441 FOUNDATIOM
FOUMOATIOM CONCAEIE
1442 STRUCTURAL IETAL
cRaitimg
rail
SUPPOAI STEEL
1442 RUC ACCOUNT TOTAL

5253 SUBCOA account total
5258 atclatm STSTEM
1541 RECLALM HOPPER a TUNNEL STBuct COHCRETE - NOPPER/TUNNEL

1546 stauctiual detal
suppont steet

## 5258 suecoa account lotal

5240 COA ACCOUNI TOIAL
5280 COAL HWDLING SERVICE BLDG
5283 COMCARTE NOAK - SUASTRUCTURE
1801 CONCRETE cOWCRETE

5284 STRUCTRUAL STEEL
1602 STRUCTURAL STEEL STAUCTURAL STEEL

PLAMI DABIEL Cosenom FACILIIIES DETAIL LEVEL REPOAT
damant 19935 X 1000

REmoval		Disposal	
Quantity	cost	Quantit	cost

southina coweant stavices cost s scitbute thGimetatna seavicts PACE 14

35.000	CT	224
43, 000	ct	184
43,000	CT	275

$\begin{array}{lll}35.000 & \text { ct } & 224 \\ 43.000 & \mathrm{ct} & 184\end{array}$ 275

883

152
1.422

851 cy
80
salvact
cuantitt cos
total 8
$1.365 \mathrm{ct} \quad 154$

11.700	$9 F$	25
115	Tm	13



154

302
1.130 CT

147
40 TM
5

19 EA 10 -

(3)
(26)
sussISSIPPI POUER CONPANT ot sieantlimg stuot
Aucust 11, 1993

## IEACICOA/SUACOAI <br> Ruc

## DESCRIPIIOM

312 BOLLEA PLAMT EOUIPNEMT
5280 COAL MUDLIMG SERVICE BLDO
52 as anchitictural wonk
1602 Aacilttctual
masonk matl
1602 ARCMITECTURAL
slatmg

S2es suncoa account total

5280 COA ACCOUNT TOTAL
$\$ 300$ COAL MANDLIMG COMTROL HSE
5303 COWCRETE vORE - SUBSTAUCTUAE 1701 CONCREIE
cowcatie
5304 STURCTURAL STEEL 1702 STUACTUAAL STEEL

STRUCTURAL STEEL
5305 anciltectumal vorx 1702 ARCMITECTURAL sto1nc

5300 COA ACCOUNT TOTAL
5320 COML MANOL ING CARAOE 5324 STAUCTUMAL STEEL 1802 STRUCTURAL STEEL STRUCTURAL STEEL

5340 COAL MANDLIMG SMITCHCEAR HSE 5343 COMCRETE vomx - Sussthuctuar 1901 FOUMOAIIOM CONCRETE comcate

5344 STRUCTURAL STEEL 1902 STAUCTURAL STEEL STRUCTURAL STEEL

5345 ARCHIIECTURAL WORK 1902 ARCNITECTURAL sidimg

PLAMT DAMIEL COBmOM FACHIIIIES DETAIL LEVEL REPOAT

## Januaat 19935 I 1000

SOUTHREA COMONT SEAVICES
cost 8 sciedule CNGIMERAIMG SENVICES PACE 15

10.90058

7 In

38

124

35 ct
5


13

140 cr
11
(2)

1

1 Ti


## ocscaipitiom

(hercoa/ suacoa/
BUC

312 BOILEA PIANT COUIPMEMT
5340 coal mavolimg switcictan mst 5345 ARCAITECTURAL wORX

1902 AnCMITECTURAL
5340 COA ACCOUMT IOTAL
$\$ 520$ FULL MANBL 1 WG RAILROAD 5622 TALSTLES. FUFL HADCLIMG RAILBO

3080 TRESTLE, CONPLETE
stauctulal sifet
stauctulal stefl
foundatiom conchete
RAIL
3080 muc account total
5640 ut1 ASM RaNDLINC STS 5544 TMAKSPCRT STS

## 3151 suppoats

FOUNDATIOM COMCRETE
SUPPOAT STEEL
3161 RUC account total
3153 PIPING

$\quad 12^{\prime \prime}$ PIPE
CONCRETE - TRENCA

3153 muc Accoumt total
3154 Puse, ASM suulce

> Puse, ASM suvice Puse, ASH suetce

3165 DRIVE, ASM SLUICE PUSP Pute moton copper sceup

3155 mUC ACCOUNT TOTAL

5644 SUACOA ACCOUNT TOTAL
5650 DRT ASM HANDLING STETEH
5661 SCALES
3181 SCALE
1953 sluor hoolition-CN TRUCK 5
5664 DAY ASM STORACE FACILITIES. DR
3241 TANK, STORACE
tank strancif
atsstsstppl pouta conpant
DIswuntiting stupt
aucust 11. 1993
iercicoalsubcear
auc
DESCRIPItIOM
312 BOHEA PLAMI EOUIPMEMT
5860 OIT AsM WNOLING STSTEM
5654 DAT 2.34 STOMCE FACILITIES, DR
3241 TANX, STORACE
stanetess stet scan
3241 nuc accoumt total
3242 FOUNDAItion
FOUNDAIION COMCAETE
3243 atour
stover
S654 suscon account total
S6so con account total
5700 cowtrot aln sTSTEM
5702 COMPRESSOAS AND ORIVES, COWTBO
3301 comphesson
CONPRESSOR
3302 DatvE, compresson
cotenesson toton
copper sclup
3302 RUC ACCOUNT TOIAL
3303 TANEK
TAME
3304 FOUMDATIOM
FOURDATIOM CONCAETE
5702 SUBCOA ACCOUHT TOTAL
5720 TREATED MATER STS
5722 BAIE TREATMEMT MISC
3351 CLARIFIER
CLARIFIER
23
STAIMLESS SIEEL SCRA
3351 RUC ACCOUNT TOTAL
3362 TAMK



## LIS515S1PPI POUtR COMPART

0ISmantiling stuor AUGust 11. 1993

## Itacicoa/suacoa/

RUC

## Ot SCRIPIIOM

.............
312 BOILER PLANI EOUIPMEMT
5760 FILTERED vith STS
5762 FILTEACD wate stomact sys 3583 taNx

5752 SUACOA ACCOUNT TOTAL

5760 coa account Iotal
6580 conotmsate stsicm
6SEI CONDERSAIE PIPING STSTLM
4901 PIPING
$18^{\prime \prime}$ PIPL
14* PIPE
12" PIPE
$10^{-}$PIPE
6* PIPE
4* PIPL

* 4* PIPL

4901 RUC ACCOUMT TOTAL
6000 condensate auxiliany sysitus 8601 CIEM FEED SYSTEM
5101 Pue
Puse
FCUMDALIOM CONCRETE
5101 RUC ACCOUMT TOTAL
5104 CRIMICAL FEED PIPIWQ STSTEA, C CNEMTCAL FEED PIPING STSTEM. C

6601 Suscoa account total

5740 NIIROGEN STSIEM
5741 NITROCEK SUPPLY SYSTEM
ESO1 HITROCER SUPPLT PIPIWG STSTEM PIPINC

6742 WITROCRM STORAGE FACILITIES
6521 TANX
tanx

5740 COL ACCOUNT TOTAL

PLAMT DASILL COSDOM FACILIIIES
DETAIL LEVEL REPOAT
jamuar 18935 a 1000
southerll compant seavices cost s scitbutt EMGIMEEAING semvicts PACE 20

		-1spasal	
Quantily	cost	cuamtity	cost

cost
$\qquad$
(5)

6


81
(1)
cos 1
rotat $\$$
ouantity

## sal vact

Cantity
$\qquad$
6
11

11

新

salssissipl powta company

## DESCH1P110\%

312 botita plant EQuipusmy
8750 COIMICAL wasin system 5751 PIPING STSTEM 6501 PIPING

* 4* PIPE
312 FLAC ACCOUNT TOTAL
ReMoval
DISP03AL


Quantity
cost

SALVACE
$\square$
Quantiti cost
torat 5
114 TUREOCEEDATOR UnITS
1740 cootivg water ststem
7741 coctima min passactwats
OSO1 Tuwels, cooting waita passuct
TUNOELS, coot ThG water Passice
2.460 CT
39
7742 coolimg maten twiake lauctuag
0521 Co0ting matei imfaxt sthuctuet
COwCRETE
0523 Pae. coot Ing waite tmiake sia
OS24 DRIVE, PURP, COOL IMG WATER IMI
Fusp motol
copper scmap
Nap woton
copper scrap
0524 muc account tolat
1142 sutcoa account total

7742 coolimg waten tmiake lauctuak
0521 cooling mate timtake sthuctuke COwCRETE

0523 Pae, coot ImG waite tntake sia OS24 DAIVE, PUP, COOL IMG MATER IMI COPPER SCOM mae woton copper scmap

0524 Auc accoumt tolat

1142 sutcoa account total
7743 coolthe maien disciuhce stauct 0540 Discrasce sthoctuat
concerte

1140 coa account lotal
7800 LIFTING STSTEM 7502 OVERHEAS CRNMES

1021 CRNE, TURBINE OVERHEAD CRAME CRAME. TUABINE OVERMEAD CRAME 1900 LUBE OIL STSTLM 7903 01L STORACE I TRUWFEA FAC 1241 TAKH, of storlice ह IRAMSFER $F$

TAMK, OIL STORACE \& TRAMAFER $F$

12 tm
(1)

1 TM
$\begin{array}{rr}3.050 & 18 \\ 2 & 18 \\ 5.400 & 18\end{array}$
(1)
(2)
(3)
(4)

810 ct
75
$\stackrel{248}{7}$

1 2A
2
25
In
(2)


# Gulf Power Company Fossil Plant Dismantling Study 

## Plant Scherer Unit 3 and Common Facilities

## Summary of 1996 Update

The basis of the 1996 update to the Plant Scherer Unit 3 and Common Facilities Dismantling Cost Study is the study prepared January 1994 for the subject plant. For the update, the 1994 Study has been escalated to reflect December 1997 constant dollars.

A table showing the cost calculation and resulting total is shown on the next page.

## Gulf Power Company Fossil Plant Dismantling Study <br> Summary of 1996 Update

Plant Scherer Unit 3 and Common Facilities

	Unit 3	Common	Total
Total Cost To Dismantle			
January 1994 Study	$12,969,000$	$46,061,000$	$59,030,000$
Escalation to 12/97 Dollars   $12.7 \%$ Increase (1)	$\overline{14,647,063}$	$5,849,747$	$7,496,810$
Revised Dismantling Cost	$14,616,000$	$51,911,000$	$\mathbf{6 6 , 5 2 7 , 0 0 0}$
Use (December 1997 Dollars)			

## Cost To Dismantle At Gulf Power Company Ownership

Ownership Percentage	$25.00 \%$	$6.25 \%$	
Cost At Ownership	$3,654.000$	$3,244,438$	$6,898,438$
Use (December 1997 Dollars)	$3,654,000$	$3,244,000$	$6,898,000$

(1) $1994=3.1 \%, 1995=3 \%, 1996=3 \%, 1997=3 \%$

TWW
6/17/91 Rev 7/10/91 Rev 10/5/92 Rev 11/13/96

# Georgia Power Company 

## Fossil Plant Dismantling Cost Siudy

January 24, 1994

Prepared by:
Southern Company Services, Inc.
Engineering Services
Cost \& Schedule

## Estinating Team

## Lead Estimators

Jim Norwood

Paul Walker
Primary Estimators
Ron Camp
Joe Eiland
Larry Pugh
Frank Sciarabba

## Cost \& Schedule Supervisor

Ted Wilson

## Contents

Paoe

1. Scope of Project ..... 1
2. Summary ..... 3
2.1 Units in Detailed Study Atkinson ..... 3
Hammond ..... 3
McDonough ..... 3
Mitchell ..... 3
Scherer ..... 4
Wansley ..... 4
2.2 Units in Nondetailed Study Arkwright ..... 4
Bowen ..... 4
Branch ..... 5
McManus ..... 5
Yates ..... 5
3. Assumptions
3.1 General Conditions ..... 6
3.2 Dismantle/Disposal ..... 6
3.3 Environmental ..... 8
4. Plant Descriptions
4.1 Arkwright ..... 9
4.2 Atkinson ..... 9
4.3 Bowen ..... 10
4.4 Branch ..... 11
4.5 Hammond ..... 12
4.6 McDonough ..... 13
4.7 McManus ..... 13
4.8 Mitchell ..... 14
4.9 Scherer ..... 15
4.10 Wansley ..... 16
4.11 Yates ..... 16
5. Essential and Nonessential Systems
5.1 Essential Systems ..... 18
5.2 Nonessential Systems ..... 18
6. Dismantling Sequence ..... 20
Page
7. Cost Basis
7.1 Scope Definition ..... 22
7.2 Constant Dollar Basis ..... 23
7.3 Unit Pricing ..... 23
7.4 Discussion of Terms ..... 24
7.5 Discussion of Overhead Costs ..... 25
7.6 Discussion of Recoverable Costs ..... 26
7.7 Contingency ..... 27
7.8 Computerized Cost System ..... 27
7.9 Supplementary Resources ..... 28
7.10 Development of Nondetailed Cost Studies ..... 29
8. Cost Reports
8.1 Plant Summary Reports
Arkwright (Nondetailed Study)Atkinson (Detailed Study)
Bowen (Nondetailed Study)
Branch (Nondetailed Study)
Hammond (Detailed Study)
McDonough (Detailed Study)
McManus (Nondetailed Study)
Mitchell (Detailed Study)
Scherer (Detailed Study)
Wansley (Detailed Study)
Yates (Nondetailed Study)
8.2 Summary Level Reports (by Unit)AtkinsonHammond
McDonough
Mitchell
Scherer
Wansley
8.3 Detail Level Reports (by Unit)
Atkinson
Hammond
McDonough
Mitchell
Scherer
Wansley

## 1. SCOPE OF PRQJECT

The purpose of this study was to prepare cost estimates for the work at a site following the decommissioning of Georgia Power Company's (GPC) fossil-fueled power plants. This study was prepared by Southern Company Services (SCS) Cost and Schedule to support the SCS Plant and Depreciation Accounting study for GPC. The resulting studies should provide the owner a quality estimate to budget for future dismantling work at the plants. A general definition of the tasks assumed in the preparation of this estimate was:

> The dismantling and disposal of all buildings, structures, equipment, tanks and stacks which would not have a useful purpose in the preparation of the site for the construction of new generation facilities. Structures linked directly to waterways will be removed or capped and the area returned to a natural contour; other areas will have covers of topsoil over base slabs, ash ponds and coal yards with allowances for ground water drainage. Original contours will not necessarily be restored in these inland areas. Dismantling will be, typically, a controlled removal process and not an explosive or wrecking ball process due to structural and safety considerations. Explosive processes may be used on stacks, natural draft cooling towers, base slabs, and other suitable applications.

All material with a scrap value will be removed and sold with resulting credits to the job. Non-scrapped material will be buried as fill on site when possible, otherwise it will be transported to a dump site. Careful consideration is made in the removal and disposal of hazardous waste.

Lastly, this study does not assume an immediate replacement of generation capacity at these sites.

This study includes a detailed estimate of the direct cost of dismantling and disposing of facilities, scrap credit, owner supervision and engineering, liability and worker's compensation insurance and applicable GPC indirect costs for six of the company's fossil-fueled plant sites. A summary of these estimates can be found in Sec 2.1 Further data about the detailed estimates are in Section 8.1, 8.2, and 8.3.

This document also includes a nondetalled cost study of the work at the other five GPC fossil-fueled plant sites. These estimates are included in the summary Section
2.2, and a Plant Summary Report for each site is included in Section 8.1. Further description of the development of these in Section 7.11.

Requirements for dismantling are included in the Georgia State Building Code with the classification of abandoned generation facilities as unsafe buildings:

### 102.4 Unsafe Buildings

All buildings or structures whicn are unsafe, unsanitary, or do not provide adequate egress, or which constitute a fire hazard, or are otherwise dangerous to human life, or which in relation to existing use, constitute a hazard to safety or health, are considered unsafe buildings. All such unsafe buildings are hereby declared illegal and shall be abated by repair and rehabilitation or by demolition in accordance with the provisions of the Standard Unsafe Building Abatement Code.

The "repair and rehabilitation" of the generation facility has been determined an unacceptable course of action since the major plant equipment will not have a remaining useful life. Demolition is the chosen direction for abatement of the structures, and according to "Appendix I, Standard for Demolition" of this same code, the definition of demolition is a given below:

102 Definition
Demolition. The act of demolishing or razing of building or structure, or portion thereof to the ground level.

N

## 2. SUMMARY

The total cost for the scope of the dismantling project as described in Section 3-7 in December 31, 1993 constant dollars is as follows:

### 2.1 UNITS IN DETAILED STUDY

(Year of commercial operation and megawatt rating is given for each unit).

Scherer

Unit 1	$(1982)$	818 MW	$\$ 14,061,000$
Unit 2	$(1984)$	818 MW	$13,881,000$
Unit 3	$(1987)$	818 MW	$12,969,000$
Unit 4	$(1989)$	818 MW	$13,159,000$
Common			$46,061.000$
		$\$ 100,131,000$	

$0^{\circ} \varepsilon$

## 3. ASSUMPTIONS

### 3.1 GENERAL CONDITIONS

1. All demolition/dismantling is estimated on a unit and common facility basis without assuming the operation $\dot{r}$ continuous at any site.
2. All costs of common facilities are estimated separately.
3. All dismantling work is in compliance with OSHA requirements.
4. The scope of reclamation is in compliance with EPA, Corps of Engineers, and State of Georgia agencies based on January, 1994 regulations.
5. A minimal security force and plant staff is maintained during dismantling.
6. The estimate does not reflect land value or its sale. Ownership of all land remains with Georgia Power.
7. Rail access for removal of scrap is available at all plants. Scrap material will be in transportable-sizes. The cost of removal from a site storage area will not exceed the value of the material, unless it is a hazardous material.
8. No landscaping other than grassing, grading, and site drainage is included. Upon completion, the site will have been graded to eliminate point sources of water.
9. The removal of the switchyard is not included in this estimate.

### 3.2 DISMANTLE/DISPOSAL

1. All structures except the powerhouse, service buildings, and major warehouses will be removed to grade elevation. Powerhouse rooms and all power generating equipment will be removed.
2. All solid, noncombustible, nonhazardous, nontoxic material that are not sold for scrap will be used as fill and deposited onsite where possible, otherwise hauled to a dump. Below-grade pits will be filled with
demolished material.
3. Structural steel will be sold as scrap.
4. Foundations of demolished structures will be blasted to provide drainage or removed and the void filled to grade.
5. The chimney will be blasted to the ground. The metal liner, if present, will be dismantled and sold as scrap. The chimney foundation will be blasted to provide drainage and rubble deposited onsite.
6. Circulating water passages will be excavated and collapsed if concrete, excavated and disposed of if other material.
7. Other underground piping and ductruns will be abandoned in place.
8. Concrete intake and discharge structures will be left in place witha concrete cap placed to eliminate entry into the tunnels. Backfill behind sheet pile cells will be excavated, piling removed and disposed, and the slope graded to prevent possible deterioration and sliding into the channels.
9. Intake and discharge channels will not be filled in.
10. Soils for fill not obtainable onsite will be purchased offsite and trucked in.
11. Piping will be sold as scrap.
12. Equipment will have no salvage value, only scrap value of the metals.
13. Electrical cable (copper) will be sold as scrap.
14. Except to separate nonferrous and alloy materials, all conduit, and cable tray will be removed in the most cost-effective manner. They will be sold as scrap.
15. Boundary fencing will not be removed.
16. Roads and parking lots will not be removed.
17. All warehouse stores and furniture will be removed at the beginning of the dismantling operation. Their removal is not included in this estimate.

### 3.3 ENVIRONMENTAL

1. Hazardous and toxic material will be handled accordiņ to applicable current federal and state regulations.
2. PCB-contaminated material will be assessed and handled according to applicable current federal and state regulations. This includes any soils assessed as being contaminated.
3. Nuclear datectors will be removed and properly disposed.
4. All coal including the unrecoverable base in the storage area will be burned before dismantling occurs.
5. Ash pond areas will be dewatered, a liner and/or clay barrier installed on top, covered with 6 inches topsoil, and grassed.
6. Soil sampling and testing will be conducted during the coal pile and ash pond excavation process to ensure complete removal.
7. All fuel oil, acid, caustic and demineralizer tanks will be emptied and the material disposed and closure assessments conducted according to current regulations. This disposal will be before the dismantling contractors begin work and is not included in this estimate.
8. No postdismantling site monitoring is included in this estimate.
$\stackrel{+}{0}$
temperatures. One concrete stack with a metal liner serves the units. Air quality control is achieved by one cold-side precipitator on each unit.

The once-through cooling system is served by intake and discharge structures. The coal storage yard is served by a coal unloading system. Other coal-handling structures include a stockout and reclaim conveyor, conveyors to the powerhouse, a transfer house, and a track hopper service building. The ash system consists of a 1,940 -linear foot ash disposal piping trench, ash pond No. 1 ( 44 acres), and ash pond No. 2 ( 43 acres). There are a $46-\mathrm{kV}$ switchyard and a $115-\mathrm{kV}$ switchyard at the plant.

On site structures include a machine shop, lighter oll pumphouse and tank, warehouse, condensate storage tank, construction warehouse, tractor house, fire protection pumphouse and tank, and an office annex.

### 4.9 SCHERER

The Scherer Steam Plant is a four-unit coal-fired electric generating plant located near Macon, Georgia. The facility is jointly owned by GPC, Gulf Power Company, Florida Power \& Light, Jacksonville Electric Authority, and several Georgia electric cooperatives.

Each unit has a nameplate rating of 818 MW with Unit 1 completed in March 1982, Unit 2 completed in February 1984, Unit 3 completed in January 1987, and Unit 4 completed in February 1989. All units have General Electric turbine generators.

The boilers are 2,400-psi units manufactured by Combustion Engineering and are rated at $5,789,914$ pounds of steam per hour. All units operate with 1,000 -degree-Fahrenheit superheat and reheat steam temperatures. Air quality control is achieved using outdoor electrostatic precipitators.

A storage water pond of 48,000 acre-feet was created to provide adequate cooling water and make-up water needs. A service water intake structure supplies that water to the plant. All units are on a closed-cycle cooling system with one hyperbolic natural draft tower per unit. Coal is delivered to the site by rail with a coal-handling system for stockout and reclaim. The coal storage area is south of the powerhouse.

On the north side of the powerhouse are the 230 kV and 115 kV
switchyards. The switchyards are not to be dismantled in this study. The ash pond ( 490 acres) and setting pond are located to the east of the plant. October outdoor facilities include a coal handling service building and tractor garage; water treatment buildings; acid, caustic, ammonia, nitrogen, water, and lighter oil tanks; and engine generator house; and other buildings.

### 4.10 WANSLEY

The Wansley Steam Plant is a two-unit coal-fired electric generating plant located near Roopville, Georgia. The plant is jointly owned by GPC and several Georgia electric cooperatives.

Units 1 and 2 have a nameplate rating of 865 MW each and were completed in 1976 and 1978, respectively. Both units have General Electric turbine generators.

The boilers for both units are 3,500-psi units manufactured by Combustion Engineering and are rated at $6,269,267$ pounds of steam per hour. Both boilers operate with 1,000 degree-Fahrenheit superheat and reheat steam temperatures. One concrete stack with two metal liners sorves the units. Air quality control is achieved by using cold-side precipitators.

The cooling system consists of two mechanical draft cooling towers for each unit, a river pumping station (make-up water), a storage pond, and an emergency overflow spillway. The coal-handling facilities include a coal storage yard, an unloading trestle, stockout and reclaim conveyors, conveyors to the powerhouse, a crusher house, and a coal-handling service building. The ash system includes a 2,033-linear foot ash disposal piping trench, two ash ponds with a total area of 330 acres, and an overflow discharge structure. The plant has a $500-\mathrm{kV}$ switchyard.

Other site structures include warehouses and shops, a tractor garage, chemical storage tanks and buildings, and emergency generator building, a water treatment building, and a construction building. There is also a waste water basin on the site.

### 4.11 YATES

The Yates Steam Plant is a seven-unit electric generating plant located near Newnan, Georgia.
o's

## 5. ESSENTIAL AND NONESSENTIAL SYSTEMS

### 5.1 ESSENTIAL SYSTEMS

1. All fire protection systems shall be left intact and operational for safety purposes and to meet insurance requirements. Whether this is met through the existling plant system or an external system is left to a more near term cost/benefit decision. Chemical fire extinguishers will be available after start of fire protection system removal.
2. Temporary lighting will be installed to prevent the chance of cross feeding in the electrical circuits.
3. Control room heating, lighting and powar will remain operational unit removal of fire protection systems.

### 5.2 NONESSENTIAL SYSTEMS

Nonessential systems will be removed as required before boiler removal. Initially these systems will be removed before boiler removal begins.

High Pressure Steam
High \& Low Pressure Extractions
Boiler Feedwater
Condensate
Heat Drips
Auxiliary Steam
Circulating Water
Plant Cooling Water
Water Pretreatment
Makeup Water Supply and Storage
Air Preheat Water
Fuel Oll Storage \& Supply
Boiler Igniter System
Ash Water Supply
Heater Vents \& Drains
Condensar Alr Extraction
Extraction Traps \& Drains
Turbine Seals \& Drains
Turbine Lube Oll
Generator Miscellaneous Piping, Miscellaneous Lube/Hydraulic OilChemical FeedSampling \& Analysis
Bearing Cooling
Alr Heater Wash Water
These systems may be removed anytime prior to boiler steel removalBottom Ash Handling \& AuxiliariesEconomizer Fly Ash HandlingBoiler Vents \& DrainsSteam Generator Soot Blowing

Boiler Forced Air Boiler Flue Gas Fly Ash Storage Coal Burner Supply
-
:

## 6. DISMANTLING SEQUENCE

## Phased Dismantling Sequence of Non Common Areas

This is an engineered sequence of events.

1. Burn or remove all coal in junkers and all iuel and oils.
2. Removal of all personal property and furnishings is outside the scepe of demolition and scraping.
3. Drain all tanks.
4. Cap or by-pass common facilities essential to operations of other units.
5. Deactivate power supply to equipment not required for demolition.
6. Remove any asbestos insulation from piping and equipment.
7. Beginning at base slab, remove all mechanical equipment and associated piping.
A. Boiler feed pumps.
B. Coal pulverizers and feeders.
C. Bottom ash handling equipment and auxiliaries.
D. Forced draft fans.
8. Remove piping systems except fire protection and air supply.
A. Main steam.
B. Drains.
C. Burner supply.
D. Soot blowers.
E. Coal hoppers and coal feeder piping.
9. Remove turbine generator, condenser, and nonessential electrical systems.
10. Begin boiler removal and ductwork.
11. Remove pedestal concrete.
12. Remove essential piping and electrical.
13. Remove boiler support steal, floor grating, platforms, ladders and coal supply conveyor outside building.
14. Remove chimney.
15. Fill below grade areas with soil or other nonhazardous materials.
16. Remove external structures associated with the unit such as conveyor and transfer houses and ductwork to stack.
(ases

## 7. COST BASIS

### 7.1 SCOPE DEFINITION

Systems, quantities and conversions to the appropriate units of measure for removal, disposal and scrap were derived from a number of sources. They primarily included engineering drawings, purchase orders and associated engineering records, Continuing Property Record reports for each plant, the 500 MW cost models, other dismantling cost estimates and contracts with GPC Power Generation personnel.

Engineering drawings were the basis for quantity take-offs on all civil, structural and sitework quantities. Mechanical equipment and piping systems were identified using drawings and a selected number of piping systems were taken-off. Other piping systems were quantified by factoring take-off quantities from other systems by building volumes. The same method was used in some cases to quantify other units when one unit was taken-off. Other factors in addition to building volume were used in this case.

Purchased orders and other engineering records served to identify electrical systems, components, and weights. Factoring by megawatt size was used in some cases when portions of scope were not available. Purchasing records were used to derive cable and conduit quantities and weights. Most mechanical equipment weights were derived by review of engineering records.

The Continuing Property Records reports from each plant were a valuable source for checking for omissions to the estimate. The reports also helped to define what facilities ware to be considered common.

The fossil cost models developed by SCS Cost \& Schedule, Fossil \& Hydro, were useful in the development of some mechanical equipment and piping quantities.

Other dismantling cost studies were used to determine the weights of pieces of equipment when the plant specific data could not be found.

Differences in scope between units resulting from fuel firing types and dual capabilities have been addressed.

### 7.2 CONSTANT DOLLAR BASIS

All costs shown in this study are in December 31, 1993 constant dollars. Phasing of the units to be dismantled and application of escalation to the resulting schedule will be calculated by SCS Plant and Depreciation Accounting.

### 7.3 UNIT PRICING

The estimate assumes that two primary contractors will be involved at each site, one for dismantling and one for site restoration. Unit pricing includes all contractor equipment, overhead, and profit. Temporary services will be provided by GPC and are estimated separately (see Section 7.5).

Unit costs for removal are in general tied to cubic yards for concrete, tonnage for structural steel, by piece for different size ranges of equipment, by lump sum for the boiler, by pound for asbestos and by linear foot for piping. Unit cost estimates were derived from other outside dismantling studies (see Section 7.9 , resource 3) with independent verification by a consultant (see Section 7.9, resource 7). Site specific adjustments were made as a necessary.

Disposal unit costs typically are based on weights of materials. One assumption provided by Mr. T. M. Burgin (see Section 7.9, resource 7) was that structural steel removal from the site will not exceed its scrap value. Any offsite disposal of nonhazardous waste was estimated at $\$ 8.29 / \mathrm{cubic}$ yard for disposal including any tipping fees. Asbestos removal is presumed handled according to applicable Federal and State regulations, and removal is estimated at $\$ 5.39$ pound plus $\$ 2.59 /$ pound for disposal including transportation to a disposal site.

For derivation of scrap credit unit prices, see Section 7.6.
Site reclamation unit costs were derived from a survey of current and recent historical construction contracts around the Southern electric system. The purchase and hauling onsite of topsoil and clay for closing ash ponds is estimated at \$4.15/cubic yard.

### 7.4 DISCUSSION OF TERMS

The following definition of terms are applicable to this cost estimate:
COA - chart of account. Southern Company work breakdown structure uced in construction work in progress ledgers.
dismantle - to make apar. the generating unit into transportable parts.
disposal - movement of dismantled materials to onsite fill area, offsite dump or to a laydown area onsite for removal by a salvage/scrap dealer.
essential system - those systems that must remain operational during dismantling activities until all unit served by the system are retired or until the system is no longer needed for the dismantling process (i.e., control room, fire protection and compressed air).

RUC - retirement unit codes. Southern Company coding structure used in continuing property record ledgers to identify additions and deletions to original plant after it begins operation.
scrap - the amount that will be paid to the owner by a salvage dealer to pick up from laydown yard and remove from the site, materials that have value due to their metal content.

### 7.5 DISCUSSION OF OVERHEAD COST

The following overhead cost percentages have been applied to the direct cost estimate of dismantling:

1. Georgia Power home office supervision $1.0 \%$
2. Administrative and General Overhead 1.0\%
3. Temporary cor,struction services $2.0 \%$
4. Wrap-up and all-risk insurance 5.0\%

The following estimates of indirect costs are also included:
a) Georgia Power onsite supervision

Arkwright	-2 manyears	Atkinson	-2 manyears
Bowen	-6 manyears	Branch	-4 manyears
Hammond	-3 manyears	McDonough- 2 manyears	
McManus	-2 manyears	Mitchell	-2 manyears
Scherer	-6 manyears	Wansley	-5 manyears
Yates	-4 manyears		

b) Security Services

Same at each unit - 8 manyears
c) SCS engineering (engineering support and records close-out)

Arkwright - 1,000 mhrs Atkinson $-1,000 \mathrm{mhrs}$
Bowen $\quad-2,000 \mathrm{mhrs}$ Branch $-2,000 \mathrm{mhrs}$
McDonough - 1,000 mhrs McManus - 1,000 mhrs
Mitchell - 1,000 mhrs Hammond - 1,000 mhrs
Scherer $\quad-2,000 \mathrm{mhrs}$ Wansley $-2,000 \mathrm{mhrs}$
Yates $\quad-2,000 \mathrm{mhrs}$
d) Cost of permits

Arkwright - \$25,000 McManus - \$25,000
Atkinson

- \$25,000

Bowen

- \$50,000

Branch

- \$50,000
- \$25,000

McDonough - \$25,000

Mitchell - \$25,000
Scherer - \$50,000
Wansley - \$50,000
Yates - \$50,000
e) Cost of site environmental closure plan each unit - \$1,000,000
f) Contractor mobilization costs

Arkwright	$-\$ 200,000$	McManus	$-\$ 200,000$
Atkinson	$-\$ 200,000$	Mitchell	$-\$ 200,000$
Bowen	$-\$ 500,000$	Scherer	$-\$ 500,000$
Branch	$-\$ 500,000$	Wansley	$-\$ 500,000$
Hammond	$-\$ 500,000$	Yates	$-\$ 500,000$
McDonough	$-\$ 200,000$		

### 7.6 DISCUSSION OF RECOVERABLE COSTS

## SCRAP/SALVAGE VALUE

Value of scrap was estimated from current market value published information. The Ifon Age magazine, the scrap industry standard for estimating scrap prices was used in determining the price of scrap. It was assumed the scrap materials would be removed from their existing locations at the power plants and would be placed in a designated area on the plant site for the purchaser or scrap dealer to remove. The values established in the Iron Age magazine are for ferrous scrap prepared to designated sizes. Adjustment must be made in the market value for the scrap dealer's work involved in loading, transporting to his yard, and his cost of preparing the scrap to designated size and rehandling the material for shipment.

The same is true for nonferrous materials. The price in Ifon Age magazine is for cleaned copper. The scrap dealer would have to load the copper wire, motors and etc., and take them to his yard operation. He would have to dismember the motors and strip the insulation to salvage the copper. The wire would have to have the insulation removed so the copper would be clean. The copper wire then would have to be packaged and loaded for shipment.

The adjustments to the pricing data as shown in the Iren Age magazine could be significant.

1. Ferrous scrap - preparation costs could amount to $\$ 20$ to $\$ 25$ per ton.
2. Nonferrous Scrap -
(a) Motors with copper could be valued for the copper content. It is assumed that $12 \%$ of the total weight of motors is copper.
(b) Copper wire with insulation may be valued at $\$ 0.54$ to $\$ 0.65$ per pound depending on the amount of insulation on the wire.
(c) Bus bar which is clean copper would need an adjustment in the selling price for transporting and handling.

The ferrous scrap is estimated at a scrap value of $\$ 109$ per ton. In this estimate, the net scrap value used is $\$ 109$ minus $\$ 23$ per ton preparation equals $\$ 86$ per gross ton. Nonferrous scrap copper is estimated at an adjusted scrap value of $\$ 0.54$ per pound.

The salvage value of used powerhouse equipment motors, turbine generators, etc., is generally considered to be minimal because the market for such used equipment is uncertain. For estimating purposes, no value was assumed.

### 7.7 CONTINGENCY

Contingency has been applied to this detailed conceptual estimate to cover uncertainty in the estimate. A contingency rate of $10 \%$ is applied to the total removal, disposal, scrap and indirect cost estimates. The overall factor is comprised of a pricing contingency of 5\% and a scope omission and error contingency of $5 \%$. The level of scope contingency was determined considering the conceptual nature of the estimate and the difficulty in obtaining quantity records on such old units. Pricing contingency should provide confidence that the estimate will not overrun due to pricing error.

### 7.8 COMPUTERIZED COST SYSTEM

The estimate to dismantie these plants has been loaded onto the Cost Estimating and Tracking system database software to facilitate calculations and flexible report writing. The reports are rounded to the nearest thousand and reflect the "true" totals of the details. This may result in some report
totals differing from manual tabulation or slightly varying from detail to summary schedules. Each plant has an assigned file. The basic value record includes:

1. FERC number
2. Retirement Unit Code
3. Group class number
4. Cost element
a. Unit number or common facility
b. Labor, material or subcontract identifier
c. Removal, disposal or scrap identifier
5. Schedule date (01 Jan 89 in all cases)
6. Estimated quantity
7. Estimated unit cost or unit credit (scrap)

The project structure includes the following hierarchy for summarizations and report writing:

1. Total
2. FERC number
3. Code of Account number.
4. Sub-Code of Account number.
5. FERC and Retirement Unit Code numbers.
6. FERC.RUC and group class number.

### 7.9 SUPPLEMENTARY RESOURCES

The below listed resources have been used in the preparation of this dismantling cost study.

1. Continuing Property Record report for each plant and unit under study. These were used to help scope the items within the plant to help minimize omissions. They were provided by Georgia Power Company.
2. The Retirement Unit Code Manual is the standard retirement coding manual for use in the Southern electric system.
3. Dismantling cost studies prepared by SCS for the other Southern Company operating companies were used to provide equipment weights
where they were not available and to provide some unit removal costs where they were not available.
4. A site visit to each plant was taken prior to beginning the job. They were escorted by representatives from Georgia Power Company.
5. A Georgia Power Company home office Power Generation Services representative was the interface contact with plant operations personnel.
6. The study assumptions were reviewed and comments made by Georgia Power Company Environmental Affairs personnel, and SCS Plant and Depreciation Accounting.
7. Three estimators interviewed Mr. T.M. Burgin of T.M. Burgin Demolition Company. He commented on the estimate assumptions and provided valuable insight concerning asbestos removal, the dismantling sequence and scrap procedures.
8. Mr. Joe Mihalik, a retiree from USX Corporation (formerly United States Steel), was retained to provide scrap pricing information and to generate selected unit cost removal estimates based on crew mixes and equipment requirements. Before retirement, he had managed the dismantling of the U.S. Steel Ensley Works and other steel mills.
9. In 1993, a contract with Invirex Demolition, Inc. was let to cover their providing typical major removal unit pricing information and a review of the generic study assumptions. Some information could not be used in this study due to the assumption of not removing the powerhouse structure.
10. Plant equipment purchase orders and engineering records were used to scope equipment quantities and to find weights where possible.
11. Plant design drawings were used for all civil and structural take-offs and a large number of mechanical quantities.

### 7.10 DEVELOPMENT OF NONDETAILED COST STUDIES

Since there are similarities in design and construction between plant sites within the GPC service territory, the FERC/COA level estimates developed
from the detailed cost studies can be used to project the dismantling costs of other power plants. With modifications that incorporate site-specific characteristics, data from the appropriate detailed cost study can be applied to other sites in a nondetailed, or factored, study.

Included in Section 2.0 are unit totals of the dismantling costs at each plant site within Georgia Power Company. Section 8.1 includes plant summary reports for each site and unit broken down to the FERC level of detail.

The methodology for preparing factored conceptual unit (without common facilities) estimates began with the Atkinson, Hammond, McDonough, Mitchell, Scherer, and Wansley Plant Summary Reports broken down by FERC/COA. Next, FERC account level factors were developed to ratio the appropriate FERC totals. The results of this analysis was to factor as below:
$\left.\begin{array}{c|l}\text { EERC } & \begin{array}{l}\text { DESCRIPTION } \\ \text { Indirects and Overheads }\end{array} \\ \begin{array}{lll}\text { EACTOR } \\ \text { not applicable for unit specific } \\ \text { estimates, only common. }\end{array} \\ 311 & \text { Powerhouse Structures }\end{array} \begin{array}{l}\text { main boiler heating surface area } \\ \text { square footage. }\end{array}\right\}$

The cost capacity factor (c) is defined as:

$$
C x=C b \cdot\left(\frac{M W x}{M W b}\right)^{c}
$$

where: CX is the desired cost of capacity MWx.
Cb is the appropriate detalled estimate for that plant's MWb. MW is the megawatt capacity.

For each unit, after factoring the appropriate FERC estimates according to the above, the resulting FERC level estimate represented a "factored" estimate for the unit under study. The plant system descriptions were reviewed and site/unit specific adjustments made to the factored estimates. Major reasons to adjust included the following:

1. Type of fuel and its impact on the boiler and auxiliaries.
2. Type of pollution control equipment, such as precipitators, and associated ductwork.

## 3. Balanced draft operation.

These adjustments would be priced using previous dismantling estimates prepared by SCS Cost and Schedule.

Next, conceptual common facility estimates were prepared for each site. This basically includes the outdoor structures and equipment. Utilizing general arrangement drawings and plant systems descriptions, the list of systems and facilities is determined. Using "system level" dismantling pricing information, FERC/COA level estimates were prepared. The major items of variation in the common facilities estimate can include the following:

1. Miscellaneous buildings.
2. Type of turbine condenser cooling water supply and cooling towers.
3. Stacks.
4. Disposal ponds (ash, etc.) and holding ponds.
5. Oil unloading and storage facilities.
6. Coal unloading, storage and handling facilities.
7. Water treatment facilities.

The result is a site-specific estimate at a level below the FERC account structure based on the detailed studies. With the inclusion of the proposed contingency factors, the cost estimates for the plants are of a quality by
which Georgia Power Company can realistically budget for the task of dismantling.

## K:ICOSTIDISMANTLIGPCOIGPCO93INARRAT.WP5

## Section 8.1

Plant Summary Reports

Section 8.2

## Summary Level Reports (By Unit)

ctongra pouth conenat
Dtseartitna stuot
دamaky 24. 1994
frac

plant scienta unit 3 suamat LEVEL mepont

## sectanta 31, 18a2s $x$ 1000

21
78

41

142
0.548

## ${ }^{118}$

1
110
2.237

11
14
033
125
7
153
331
257
2
538

278
113
17

22
...
ater 3aclina dno ahalrsis
southery compary semvicer cost a scredute EMOIMERTMA sekvicts

Pace 1

DIsposal
cost

$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
sclup
valut

Total
(33)

108

(1.001)	4.347
(205)	808
$(12)$	31
$(7)$	$(5)$
$(5)$	100
$(594)$	1.843

(15)
(1)
(13)

$(31)$	131
(82)	249

(13) 245
(24) 516
(77) 211
(13) 265
(37)

76
(1)

15
(2)
cegmata poser coupant
or smantitima stuot
jamuaar 24. 1924
tac
coa

## etscaiption

312 sotlea plast eouipinit
312 Fenc account total
314 tunaootienaton units 7520 tuange oziemion sтมten
7700 Conockstma sтTEM
7740 COOLIMG yatiz siz
1760 cooltime toven
7800 Luet ofl stster

314 PERC ACCOUNT TOTAL

315 ACcEssont ELECTAIC EQUIDEMT


3100 Otuchatok bus arsitu
3240 D.c. sTsTEM - $125 / 250 V$
8280 Eienotict cen stsiem - 4180V
8350 A.C. systel - $120 / 205 \mathrm{~V}$
sYMDET A.C. sTs - 120/209Y
840 A.C. sTsTEM - 480\%
3500 A.C. ST3TEM - AKY
3540 A.C. system - $\mathbf{8 . 5 0 \mathrm { mV }}$
315 FEBC ACCOUNT TOTAL
removal
cost
$\qquad$
DIsposal
cost
scrap
valut
total $\$$
12.571

1,878
84
290
785
28
2.803

293

387
plant somert unit 3
sumant LEVEL REPOMT
pecevet 31. $10925 \times 1000$

# soutnem compant othvices 

cost a scievule thanderimo senvices Pact 2
$\qquad$
3.787

1,544
(89)

265
751
21.
2.490

(888)
(281)
(4)

88

318 miscellantous plant couineant 1580 CENTRAL VACUTA STSTEM 0
(485)


ateracta pontr ccicait
olswantiting stuay
демusat 24. 1994

cos

## ofscaiption

.......


30 FERC ACCOUNT TOTAL
303 emotmeeang

0350 Constructiom tmsurance

308 Fenc account total

309 ovenienas o4so cemeral overuend

311 stauctuaes a therovenemis
2020 SITE PAEPARATION

2040 SHE Neaovements
2000 Pones
2120 SITE FIRE PROTECTION ST:
2360 sERVICE BAY
COITROL BOOM
maintemunce sto
senvice builoing
constauctiom waneuse

## mater treatuent aldo

visitors cemter
thainimg suiloing
2740 thainima suiloimg
2820 hTDAOOEM HOUSE

2840 PRECIPITATOR CONTROL HOUSE
2860 FIRE PROTECTION BUILOING

4
PLAMT SCOERER COMOM FACLLITIES
suoway LEvEL REPORT

DECEDEER 31, $19925 \times 1000$
nenaval
cost
$013 p 03 M$
cost

205
2.160

254
2.699

105
1,882
4.150
6. 13 a

830

1
(1)
(19)
(1)



## Section 8.3

## Detail Level Reports (By Unit)




## FEACrCoa/suscon

muc
etscaption
311 staucruass s inphovelemis


310 COA acconat total

 susstructure
comorete

311 FERC ACcDant TOTAL
312
4800
4801
BOILE PLANT EOUTPIEMT


STEAN CRKERATING EYSTEM eotlen biclosune sThuctural metal ang thuss stauc
netuen
4003 aIa neaters
0031 AIR NEATER
AIR NEATER
0033 veton
ueron

4803 subcoa account total
4804 EOTLER PENTMOUsE

0061 FAM
Fax

## PLAMT SCIERER UMIT 3 BETAIL LEVEL REPORT DECEEER 31, 18335 a 1000 <br> PLAMT SCIERER UMIT 3 <br> becteen 31. 1893s a 1000

orsposal	
cuantity	cost


-uantity cost
cuantity cost
$\qquad$
(32)
14.508 TM (1.24) 3.858
$1.122 \mathrm{TM} \quad$ (98) 307

186 TM
$325 \mathrm{Cr} \quad 41$
142
$\qquad$
$\qquad$


1 EA

403
(27)

1

PLAMT SCIERER UMIT 3 DETAIL LEVEL REPOAT
pecteren 31. $18938 \times 1000$
souncian compart semvices
cost a sciesule Emanterima stavices phat


FFic/coa/suscon
Descaiption
evantity
cost
cort
euant ITY $\qquad$ Total 5
(5)
(68)

209
(73)

220
(70)

213 DUCTVOENK

0124 FAN FAM

0124 RUC ACCOUXT TOTAL
0125 moton coppea scrap notor

2 EA $\quad 2 \cdot \begin{array}{r}2 \\ \\ \end{array}$
$\begin{array}{rr}37.200 & 48 \\ 12 & \mathrm{TM}\end{array}$
(20)
(22)
(15)
$\qquad$
4 stis suegoa account Total
073
(237)
$182 \mathrm{CA} \quad 45$
(3)

4809 BOLLER MATER CIACULATIOM 3 8211 pute plap

124 TM
(11)
(8)

PLAMT sCIEREN unit 3 getail Levt mepoas

DECEMDER 31. 18P38 ะ 1000
FERC/COA/SuBCOAI

DESCRIPTIOM

312
4800 SOILER PLANT EOUIPNEMT
4809 BOILER EATEA CIACULAFIOM 3

4800 COA ACCOUNT TOTAL
480 Putveatzed coal Finima sTs 4841 botlea zumuers gunsers supuers
8 EA $\quad . \ldots \ldots .$.
$\qquad$
0273 RUC ACCOUNT TOTAL
0275 FOUNDATIOM cowchete

208 67
69
$\qquad$
$\qquad$

89

0 EA
45 Tm

345 TII

132 TM
45.000 L8
soutivenin concurt semycts cost s screpule EMOIMEETMO SEMvices PACE 5
$\qquad$
Quartity $\qquad$ TOTAL 8
$\qquad$
(41)
(73)
(25)

## strawitita stuat zawat 24. 1894

## Fiac/coa/suncoa/ tuc

## oescalptiom

## 202 bollea playt toutpacsi

434 c putviatita cont Flation ara 4344 putamat ald ststea yotos
notor
319 muc account total
0334 FONDOATIOM
Concette

4844 suscon account total
4845 COAL FIRTMO STSTEM
0360 PIPINA pIPIMG

4848 LIFTIMG STSTEA 0391 nots7 notst

4340 coa account totat
4360 LICATEA OLL STSTE

## 4251

0800 toxitons
tarito 10intron

4062 FUEL SUPPLT FACILITIES voton yoton

0838
PIPING
1" PIPE

0638 RUC ACCOUNT TOTAL

PLAMT sCVEREA UWIT 3
DETAIL LEVEL REPORI
Deceneen 31. $19938 \times 1000$


2 EA $\quad \ldots \ldots \ldots{ }^{3}$

05 CT 32

30
$\qquad$
, ..............
(110)

32

15 TII	(1)	2
	(20)	(24)

8.700 it 385

17 Tm
(8)

377

494 TII $\qquad$
(42)
(37)

608

6 TII
(1)
$1,512 \mathrm{TM}$
(1)
1.000 LF
$\begin{array}{rr}\text { F } & \begin{array}{l}11 \\ 10\end{array} \\ \ldots & \ldots \ldots \ldots \ldots\end{array}$
soutilen compant gravices
cost a scicpule chotnientua seavices PACE


2
(24)

120

32 2a
4

1
$\qquad$11
15(i)
$\qquad$
(4)

25

PLART SCOERER Unit 3 detail level mepoat

DECEDEER 31. 18338 i 1000
DISMANTITMO STuPT
JANUARY 24. 1994

FERC/COA/ Suscoal
RUC
RUC
Deschiptiom
312 BotLea PLant EOUIPNEMT
$4960 \quad$ LICMTEM OIL STSTEM
4962 FUEL SUPPLY FACILITIES


4862 SuBCOA ACCOUNT TOTAL
4963 FUtL sToquct FACILITIES 0012 TANE tajex

0673 Puse
0579 PIPIMG

4353 suscoa account TOTAL

4980 COA ACCOUAT TOTAL
5000 AUSILIAST EOILEA STSTEM 5002 FREDNATER STSTEA 0712 moton copper scRap ngtot

0712 RUC ACCDUNT TOTAL
5020 BLONOON ST3TE 5021 Taness 0752 TAME TANK

5022 PIPING 0751 PIPING 4" PIPE 8* PIPE 10" PIPE

1 EA

15	$L F$
155	$L F$
10	$L F$

12

2 EA
1

830 LF
7
$\qquad$
$\theta$
$\qquad$
$\qquad$
57 Th
(5)

3 TM

3 TH
(1)
$\qquad$
$\qquad$
$11.700 \frac{18}{4} \frac{18}{11}$
(5)

1 EA $\qquad$


## at swantling stuvt د Iutuart 24. 1994

## PLANT somexea unit 3 <br> DETAIL LEVEL REPOAT

## pectere 31, 19835 I 1000

soutneia compart semvices
cost a sciepute Encutzatia stavict: PACE
sal vact
.........................................
ewantiti Cost TOTAL $\$$
3ic solles plamt EOUIPNENT
5040 BRAT STSTEM
$\begin{array}{ll}040 & \text { BRAFT SYSTEM } \\ 5043 & \text { FD FNH OUTLET DUCT }\end{array}$
0332 FOUMDATIOM
os32 muc accoumt totas
sons suscon account total
SOES pasctpitatoa mmet ouct
Soss Pascipitaion imLer ouct
Ductiont
0842 Foumbation
concarte
STRUCTUAAL STEEL
Osh2 auc account total
Soes subcea account total
5045 FECIPITATOR OUTLET DUCT
DUCTVORK WITM IMsULATIO
euctions
0es3 FOUDDTIO
COHCRETE
CONCRETE
STRUCTURAL STEEL
oes3 ruc account total
5045 SUBCOA ACCOUNT TOTAL
5047 ID FAH OUTLET DUCT
DUCTVORK VITH IMSULATIOM
ouctwors

55

82
$733 \mathrm{TH} \quad 272$
$\begin{array}{ll}200 & \mathrm{CY} \\ 200 \mathrm{TM}\end{array}$ ..... 25
6984

386

| 427 | TH |  |
| ---: | ---: | ---: | ---: |
|  |  | 140 |
| 100 | cr | 12 |
| 400 | TH | 139 |
|  |  | $\ldots \ldots \ldots \ldots \ldots$ |
|  |  | 151 |

299
(13)
(20)

427 TM (37) 111

400 TM


## DISMAKILING Stuat jamuant 24, 1294

## FEacrcoa/suecon

Ruc
312 BOILEA PLANT COUIPUEMI
5040 DAKF STsTu
$\begin{array}{ll}5040 & \text { DNAT STSTLM } \\ \text { SOA } & \text { TO FAN OUTLET DUCT }\end{array}$ 0852 Founcarion concatie
comcrete
sTRuctuel sTEEL
Des2 muc account total

5047 SUBCOA ACCOUNT TOTAL
S048 FD FANS 8 onives FAN AS 0873 moron copper scaup Motom 0873 anc account total. 0475 FOUMDATIOM cowchete

5048 suncoa Account total

FAM $3032 \begin{gathered}\text { Motor } \\ \text { copper scan }\end{gathered}$ votom

0332 muc account total
0393 FOUNDATIOM concerte

PLAMT SCNERER EWIT 3 DETAIL LEVEL REPOAT

## DEccuet 31. $19935 \times 1000$

sounchan company seavices
cost 8 scitaule thanctatug semicts



3

125 Tm (11)


33
114 cr
38
$\qquad$
43

4 EA 5
$\qquad$

70 cr
57


```
lolsmanti Ima stuat
FEncrcoa/suscoa/
 mac
 0escamption
312 BOILER PLANT EOUTPNEMT
 S800 WET ASM MWNDLINO STSTEM
 S041 PTATTE RELOVAL STSTEM
 J101 PTWIIE HOPPER
 ncppem
 3183 cIPING
 3103 RUC Account TOTAL
 seat suncon account total
```


$\qquad$
22 Til
(2)


9 TH
(1)


2 TH
newoval

OuATITT
DESCRIPTIOM
Fencrcoa/suacoal


3165 motom COPPER SCAN motol

3165 nuc account total

S844 SuBCOA ACCOUMT TOTAL
S645 Stutce maten system 0873 PIPIMG 4" PIPE
$6^{\circ}$ PIPE
** PIPE
10" PIPE
12" PIPE
LESS THAN 4" PIPE
8573 RUC Account total.
$58 A D$ COA ACCOUBT TOTAL
Sepo LifTtwa srsici
5581 STLAM QERERATOA HOIST 3251 NoIST

HOIST
3302 moton Motor

S6E1 SUACOA ACCOUNT TOTAL

PLant gocient uait 3 betalt Levt mepoat

Dectuber 31. 1ss98 $\times 1000$
soutuesu compart services cost a scritdute EMOLIEREMA stavicts
salvage

Quastitt
Cost
(2)
(14)
(14)
(15)

7	Tm
8	TM
13	mm
5	TM
8	TH


(1)	18
(1)	14
(1)	1
(1)	17
$\cdots \cdots$	
(3)	20
	75

$\qquad$
(38)

1 EA
1
18 m
(2)
(1)

2 EA
2.180 TM
(1)


## DIsmaitt isa stuay Jamakt 24. 1934

## FERC/COA/SUBCOA/

## RDC <br> RUC oescarption

312 soriea plant eoulpigit
$\begin{array}{cc}5740 & \text { SEAVICE WAIER STSTEM } \\ 5742 & \text { PLAMT SERVICE WATER STSTEM }\end{array}$ 3482 แคtom

3462 muc account tolal


4* PIPE
$8^{*}$ PIPE
$\mathbf{g}^{*}$ PIPE
10- PIPL
12* PIPE
18" PIPE
$20^{-1}$ PIPE
3483 RUC ACCOUMI TOTAL
3469 PIPIMG

5742 suncoa account total


5746 SUPCOA ACCOUNT TOTAL

5740 con accotni total
6400 malm turatie stean statem 8401 MAIM STEAM PIPIMG PIPING $8^{\prime \prime}$ PIPE

PLaHT scieren unit 3 detall level repont

```
soutienan compant athvices
cost a soitsute Enoncentim selvices
Soutienu compant sthvices
 pace 1

\begin{tabular}{rrr}
385 & \(L F\) & 13 \\
1.735 & \(L F\) & 31 \\
120 & \(L F\) & 3 \\
545 & \(\mathcal{F}\) & 16 \\
190 & LF & 7 \\
740 & LF & 40 \\
340 & LF & 24 \\
& & \(\ldots \ldots \ldots \ldots\)
\end{tabular}

4271

144
1.405 L
\(1 F\)
18

15
1
\(\ldots \ldots \ldots \ldots \ldots\)

19

183

45 LF
(19)
\(\begin{array}{rr}12 & \text { TII } \\ 4 & \text { TIII }\end{array}\)\(\begin{array}{rr}4 & 1 \\ 23 \\ 14\end{array}\)
(2)
:7)
128
\(\qquad\)
\(\qquad\)
(1)
(1)
(31)

131

\begin{tabular}{|c|c|}
\hline & atscatpitom \\
\hline & -6........ \\
\hline 312 & BOLES PLAMT EOUIPNEMT \\
\hline Eeno & ats tunatme stean sisten \\
\hline \(8+01\) 4001 & \\
\hline 4001 & \(22^{*}\) PIPE \\
\hline & 2** PIPE \\
\hline
\end{tabular}
4001 nee account total
\begin{tabular}{cc}
5402 & MOT REREAT \\
4021 & PIPING \\
& \(32^{*}\) PIPE \\
& \(42 *\) PIPE
\end{tabular}
4021 nuc acconnt total
3403 COLD RELEAT SYSTEM
PIPINa

4041 muc account total
8405 HALE STEN EYPASS ETSTEM PIPING PIPING
12" PIPE \(^{\text {P }}\) \(24^{\prime \prime}\) PIPE \(40 E 1\) RUC ACCOUMT TOTAL 40 PIPTMO LESS THWH 4" PIPE
suOS suscon account total

5400 EA ACCOUNT TOTAL
\begin{tabular}{|c|}
\hline PLant sciekta uilt 3 detafl LIEL Reppoat \\
\hline peceuter 31. \(10038 \pm 1000\) \\
\hline
\end{tabular}
sounena compart seavices
cost a scitbute emanteang selivices PAOE 17

\(\ldots \ldots \ldots \ldots\)
\begin{tabular}{|c|c|c|}
\hline 845 & 1 & 75 \\
\hline 385 & 17 & 58 \\
\hline & & 131 \\
\hline
\end{tabular}
\(\qquad\)
\(\square\)
84

80 LF 1
\(\qquad\)
...............
\(\qquad\)
331
\begin{tabular}{|c|c|c|c|}
\hline 105 & THI & (8) & 14 \\
\hline 202 & THI & (17) & 18 \\
\hline & & (27) & 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 224 & III & (13) & 50 \\
\hline 183 & TM & (17) & 41 \\
\hline & & (38) & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 00 & TM & (5) & 35 \\
\hline 78 & It & (7) & 37 \\
\hline & & 12) & 12 \\
\hline
\end{tabular}

1

PLant scresen uait 3 detall level nepont
cecemaen 31. \(19935 \times 1000\) jancant 24. 1984
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{FEac/COA/ Suacon/ nuc} \\
\hline & DESCALPTIOM \\
\hline & -1........... \\
\hline 312 & Botlen mant coutheint \\
\hline 6440 & ExTMAction stek state \\
\hline \[
\begin{aligned}
& 5441 \\
& 4101
\end{aligned}
\] & \[
\begin{aligned}
& \text { W IEATEA STEM SYSTEM } \\
& \text { PIPIMG }
\end{aligned}
\] \\
\hline & - PIPE \\
\hline & 10 P PIPE \\
\hline & 12* PIPE \\
\hline
\end{tabular}

4101 RUC account TOTAL
3442
LP heaiki stean sistem PIPIM 8* PIPE
10 PIPE
\(10 *\) PIPE
\(24^{\prime \prime}\) PIPE
250 PIPE
\(30^{*}\) PIPE
30* PIPE
42* PIPE
54" PIPE
4121 Euc account total
8443 soot blouch steni statei 4141 PIPING 4 - PIPE 6* PIPE

4141 auc account TOTAL
4143 PIPIMA LFIs Than 4* PIPE

8443 sumcon accourt total
6444 AIR IEATER STEMM STSTEA 4161 PIPIMG 8" PIPE
8* PIPE
\begin{tabular}{rrrr}
200 & \(1 F\) & & 5 \\
35 & \(1 \%\) & 1 \\
350 & \(1 F\) & 13 \\
& & \(\ldots \ldots \ldots \ldots\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 12 & \(\underline{4}\) & \\
\hline 12 & \(\underline{F}\) & \\
\hline 105 & 1 & 7 \\
\hline 105 & 17 & 13 \\
\hline 87 & \(1 F\) & 8 \\
\hline 165 & 1 & 15 \\
\hline 145 & \(\underline{1}\) & 17 \\
\hline 107 & \(1 F\) & 17 \\
\hline 70 & LF & 11 \\
\hline
\end{tabular}
\(\qquad\)
\[
09
\]
\begin{tabular}{rrr}
3.700 & LF & 47 \\
880 & IF & 12 \\
& & \(\ldots \ldots \ldots \ldots \ldots\)
\end{tabular}

480 LF
5
3 TM
\(8 \quad 14\) \(\qquad\)
(5)
\begin{tabular}{rrrr}
21 & TII & (2) \\
7 & TII & (1)
\end{tabular}

2 m
\(\qquad\)
sountian compart seavices cost 8 scitevute Enaneratma seviltes PACE 18
\begin{tabular}{|c|c|}
\hline Rempral & 218P034 \\
\hline
\end{tabular}

OUaIITT
cost
Quartity
cost
cuantity
cost
totat \(\%\)
\begin{tabular}{|c|c|c|c|}
\hline 4 & TM & & 7 \\
\hline - & TM & (1) & 13 \\
\hline 5 & TM & & 7 \\
\hline 11 & T11 & (1) & 15 \\
\hline 12 & TIII & (1) & 18 \\
\hline 12 & T11 & (1) & 18 \\
\hline 10 & TH & (1) & 10 \\
\hline
\end{tabular} 84
45
12
\(\ldots \ldots \ldots \ldots \ldots\)

\section*{DIseatitich stuoy دیmuat 24 . 1594}

\section*{FERC/COA/SUECOA/}

RUC DESCMIPTIOM
\begin{tabular}{|c|c|}
\hline 12 & Hen Mar ccuinter \\
\hline 6520 & Aux tumalige stu a exmuust \\
\hline 6521 & Fiedort me ture stu is ex \\
\hline 4501 & PIPIMC \\
\hline & Sm PIPE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 6580 \\
& \text { 0S51 } \\
& 4601
\end{aligned}
\] & ```
VENT ANO DRAIM STSTENS
 BOILER VEMT S BRAIM STSTEM
 DOILEA vEMT
 4* PIPE
 6* PIPE
 ** PIPE
 10* PIPE
 12* PIPE
 14" PIPE
 10" PIPE
 18* PIPE
 20* PIPE
 30* PIPE
``` \\
\hline
\end{tabular}
4601 RUC ACCOUMT TOTAL
4802 SOILER DRAIM
LESS THAN 4* PIPE
eses subcoa account total
6562 He HEATER VEMT 5 DMAIM ST3 4621 H IEATER VEMTS AMO DRAIMS g* PIPE

4624 PUNP

6562 subcoa account total
ES63 LP MEATER VEMT A DRAIM SYS LP HEATER YEMTS ANO DRAIMS LESS THAN 4" PIPE

PLANT scienta uwit 3
DETAIL LEVLL REPORT
southeray coneary sigyices
cost \(\$\) sciepule moncerima semvices

PACE 20


TOTAL 5
10542

240

41 T1
(4)
(18)
(1)

12
7 III
1
(1)

13

27 TM
(2)

PLANT SCMERER UNIT 3 dETAIL LEVEL REPOAT
peceser 31. 18035 x 1000
soutnemin compant senvices cost a scuzpure emonezatma senvices
Dtsunitita stupy دамuat 24, 1894

FERCICOA/Susconal nuc
descaipticy
euantity
cost
\(\qquad\)
cuantity
cost
\begin{tabular}{rrrr}
10 & LF & \\
385 & LF & \\
205 & LF & 7 \\
170 & IF & 5 \\
140 & IF & 5 \\
15 & LF & 28 \\
10 & LF & 1 \\
& & \(\ldots \ldots \ldots \ldots\)
\end{tabular}
\(\qquad\)
4541 nuc account total
6565 STEAA VEMT B DAAIM STSTEM
4881 STENA vEAT LESS THM \(4^{*}\) PIPE

6366 CONDEMSATE VEAT B DRAIM SY 4701 CONPCMSATE VEMT 6* PIPE
18" PIPE
4701 muc account total
4702 CONOEMSATE DRAIM LESS THWK 4" PIPE

6556 SUBCOA ACCOUMT TOTAL

8560 COA ACCOUNT TOTAL
6580
COMDEMSATE SYSTEM 6501 condensate piping statea 4901

121
4.480 LF

50
18 TM
(2)

7 TR \(\qquad\)
(1)
(1)

3 TM
\(\qquad\)
(1)
\(\qquad\)
(24) 518

11 TII
(1)

32 TH
\(\qquad\)

PIPING
LESS ThuI \(4^{\prime \prime}\) PIPE
\(4{ }^{4 \prime}\) PIPE
6" PIPE
8* PIPE

\section*{DEswitlimg stupt} Jamaaht 24. 1094

PLAIT scNERER UMIT 3
DETAIL LEVEL REPOAT
prcenera 31. \(1093 \$\) ב 1000
sounizen company semvices
COST I s scrioute tugratedimg stavices
```

Enc/coa/suecoa

```
    Ruc
DESCAIPTIOM
312 BOILER PLAKT EQUIPIEMT
    6s*o Conotmsate systea

                \(10^{\circ}\) PIPE
                14* PIPE
                \(10^{*}\) - PIPE
                18* PIPE
                20- P1PE
                20* PIPE
                30* PIPE
        4901 RUC ACCOUNT TOTAL

                neatea
    6533 POLISNIMA UNIT
            POLISMING UWIT
        6584 DEAERATOA 8 sTomace tank
            DEAERATOR
            DEAERATOA
STAFMLESS STEEL SCRMP
        4351 RUC ACCOUNT TOTAL
        4963 DEAEMATOA STOMAE TAKK
            STAIALESS STEEL SCRP
            tack
        4963 RUC ACCOUNT TOTAL
        6S84 sutcoa account TOTAL
        6Se5 COnDERSATE Pumps is Datves
        498
            COMDERSATE Punes s Datves
pulp
                pule
157 Th (14)
tif (7) 1

\begin{tabular}{|c|c|}
\hline 0 In & (4) \\
\hline 70 TI & (5) \\
\hline & (10) \\
\hline
\end{tabular}

33 Tm
(3)


\section*{greantilimg stuoy
}

\section*{FERC/COA/suscoal}
Ruc aescaiption
 3804 SPIAT vaice sisity spIAT LaI
PIPIMG \(\mathrm{g}^{\circ}\) PIPIPE 80 PIPE \(10^{\circ}\) - PIPE \(12 *\) PIPE \(12^{*}\) PIPE
\(14^{*}\) PIPE

5151 RUC ACCOUNI TOTAL

8500 con account total
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 6620 \\
& 6821 \\
& 5301
\end{aligned}
\] & \begin{tabular}{l}
FEEDNate system \\
FEEDUATER PIPIMG ST3TEA \\
pIpIna \\
4* PIPE \\
** PIPE \\
8* PIPE \\
12* PIPE \\
18* PIPE \\
18* PIPE \\
20* PIPE \\
24" PIPL \\
\(25^{*}\) PIPE
\end{tabular} \\
\hline 5301 & auc account tetal \\
\hline 6522 5321 & HICH PRESSURE IEATEAS MEATEA iEATER \\
\hline 6625 5381 & \begin{tabular}{l}
feepuater punps and daives puse \\
pute
\end{tabular} \\
\hline 5385 & TURBINE TURGTVE DAIVE \\
\hline
\end{tabular}

\section*{PLANT SCNERER UNIT 3 \\ BETAfL LEVEL REPOAT}
nectugen 31, 19338 : 1000
souticias compant sefirices cost a sovedule Eishetinig senvices
phot 24

satvace
evartiti
QuMIITT COST
total 4


273
220 111
(18)


\section*{DI swantilig stuet JAMJART 24. 1994}

\section*{FERCICON/Suscoa/}

RERCR
Descalption
312 sotlen plant equipient

\section*{3820 FEEDUATER STSTEM 8825 FEEDSATER PISOS AND DaIves TURBIME}

0625 suacoa account iotal

6620 con account total
6840 FEEDNATEA AUXILIAAT SYSTEM 6841 FEEEATER Milimas FLOU LIM SS01 PIPIMG

4" PIPE
-
" PIPE
5501 aUC ACCOUNT TOTAL
3643 FELDUATER RECIRCULATIMG LI PIPIIG
PIPING
\(\mathbf{4}^{\text {* }}\) PIPE
\(\mathbf{g}^{*}\) PIPE
5541 RUC ACCOUNT TOTAL
5544 PIPIMA
LESS than \(4^{\circ}\) PIPE

6843 suacoa account T0TA

5340 COA ACCOUEST TOTAL
E560 WATER SMPLING AND AUALYBI \(8 s 60\) waten suplina mo nulys 5701 ark suglina ano aulys NuLTSIS EOUIPMENT aultsis EOUIPIENT

5702 PIPIMG 1" PIPE

PLant scieren unit 3
DETAIL LEVEL REPORT
becemper 31. 19938 1000
soutien compant seavices cost a scuepule EMCDEEATMG stavicts PADE 25
satyace cuantitt

TOTAL 8
\(\qquad\)
\(\qquad\)
(13)
..................
(37)

76


\begin{tabular}{rrrr}
40 & LF & & 1 \\
80 & LF & & 2 \\
& & \(\ldots \ldots \ldots \ldots \ldots \ldots\)
\end{tabular}
\(\qquad\)
\(\qquad\)

3

\section*{5}

17

2 LT
TM






\section*{phat scickez unit 3} detall levt mepont
otcenet 31, \(19835 \times 1000\)
southem compart senvicts
cost a scispute
Enanezuta stavicts PAGE 31
```

gismatlima sruay
jawcakT 24. 1994

```
```

FEar/cea/suacoa/
ENC cescaiption
SITE RACEMA
Actways
casleta, cot
*ay1 suecoa account total

8100	Gcieratoh mus ststem
8132 0621	cotienton bus and suppoats sus
	critaton mus

```
0240 D.C. sTsTeM - \(125 / 250 \mathrm{~V}\)
    8243 BATTEAT SYรTEM
        1603 satteay cruncen
            battery cuncer
8200 EERCENCT OEM STSTEM - 418
    821 ceicraton
        1tol cel efmenation
            oenteato
    3380 A.C. STSTEM - \(120 / 208 v\)
        8351 DistatBution ststeit
            2148 Panct
                PANEL
8380 stamidet A.C. 872 - \(120 / 200\)
    8381 Distatisution srsitu
        DISTAItuTion
            suitcinceah
suticrotar
840 a.c. STSTEM - 480V
    844 UISTATBUTIOM STSTEM
        2307 MoTOR CONTHOL CEMTE
            aton comthol cemten
        2311 SMITCREEAR
        SWITCMCEAR

\section*{PLant scieger unit 3 DETAIL LEVEL REPOAT}
otceuer 31. \(19938 \times 1000\)
Tounder comart semvices cost a screpute emotnetatma services
satvact


CBNTITT Cost
TOTAL 5
82.000 18 (20)
(114)
18.300 L8 (10)


Dismantilina stuar
jamuat 24. 1994

FERE/COA/Suscoal
Ruc
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Ruc vizcripition} \\
\hline & \\
\hline 315 & acesssont electaic eoulp \\
\hline 8540 & A.c. STSTEM - 6.9 \%ry \\
\hline 8541 & etstaisutiom ststem \\
\hline 2711 & 1 suttcicear \\
\hline \multicolumn{2}{|l|}{SSA1 Suscoa account total} \\
\hline \multirow[t]{3}{*}{0644
\[
2721
\]} & TRUNSFOMER STSTEM TRANSFODSR \\
\hline & copper scrap \\
\hline & TRUKSFOMES \\
\hline
\end{tabular}

2721 muc account total

8340 COA ACCOUNT TOTAL

315 FERC ACCOURT TOTAL
316 MASCELLANEOUS PLNUT EOUIPN
1560 CEMTRAL VACUTH STSTEA
1580 CEMTRAL vacuma cleanima or 3141 pule PUNP

0145 PIPIMG LESS THW 4* PIPE
4" PIPE
5" PIPE
\(8^{\circ \prime}\) PIPE
g" PIPE
0145 RUC ACCOUNT TOTAL

1560 SUECOA ACCOUNT TOTAL

PLAMT scieker unit 3 DETAIL LEVEL REFOAT
pecenaca 31, \(18338 \times 1000\)
soutnern compant seavices cost 1 solesule


\(\qquad\)
ovart ITT
cost
cuantity
cost
cuantity
cost
total 8

1 EA
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\(\qquad\)
12
\(\qquad\)
337
\(\qquad\)
\begin{tabular}{rrr}
2 EA & 2 \\
& & \\
1.158 & LF & 13 \\
4.072 & LF & 52 \\
158 & LF & 3 \\
170 & LF & 3 \\
681 & \(L F\) & \(\ldots \ldots \ldots \ldots\)
\end{tabular} 88
\(\qquad\)
\(\qquad\)
\(\qquad\)

7 In
(1)
\(\begin{array}{rr}5 & \mathrm{TH} \\ 23 & \mathrm{III}\end{array}\)

10 TM
(1)
\(\qquad\)
\(\qquad\)
(883)
\[
15
\]
\(\qquad\)
(4)

\section*{alsmuntima stuay juruatt 24, 1204}

\section*{FERC/CON/ suscon/ \\ nue}
pescargition
353 STATIOM EQUIPLEMT

pouta tmanspobsen COPPER SCRAP thanspomita

0160 nuc account total

12. 859


```

DIsmuntlima stuay
jumuant 24, 1924

```
auc otscatpito
```

FERCICOA/Suecoa/

```
FERCICOA/Suecoa/
    muc
    muc
        Descatptiom
        Descatptiom
307 constauction ClEaming acco
307 constauction ClEaming acco
0040 pacouction costs
0040 pacouction costs
    0041 Pacouction cosis
    0041 Pacouction cosis
        OpC ctucaulion suptavistem
        OpC ctucaulion suptavistem
            opc c&itRatiom surgavisices
            opc c&itRatiom surgavisices
    0200 TEMPomury services
        03n+ Thmonamy staytces
            0201 TEMPORARY comstauctiom zes
            TEMporary comstauctiom
            consthuction semvices
            0201 Ruc accounf T0TaL
    0220 SMFTT & secunitT FACILITI
        0221 cuang senvices
            stcuatT! stsv
            secumiTT semvices
307 FEAC account TOTAL
305 ENGFMEE!ma
    0240 CNatNEERING scs 
```



```
            ses EMOTNEERTMG
        0260 LMGtiterinc-optmatiss cone
        0261 DESTOM - SALAATES
            OPC fuatutzatha
            OPC EMOHNERING
        02ss EMYINomamutal - EMPLises
            0268 ExPtuses
            Exptises
```

 PEkEITs
    ```
```

```
                    PEkEITs
```

```
```

 0258 muc accounT TOTAL
    ```

\section*{plant agreata comaiom facilitila} betall level atpoat

\section*{dectieta 31, 19035 I 1000}
\begin{tabular}{|c|c|}
\hline PLAMT & acoraen conaiom facilitits DETAIL LEVEL sepoat \\
\hline & pecesen 31. \(19938 \times 1000\) \\
\hline
\end{tabular}

soutnean compair seavices cost s scitoute twanceatiog seavices PACE 1

UIT 285
1.050
21.060 500
2,180
2,160

10r 254
\(\qquad\)
\(\qquad\) 2.899
\(\qquad\) 1.000
1.052


311 STRuctungs a tiphovereits
311 strucruncs a inemovien
2080
2084 ASN otsposal pond
            0230 ASM DISPOSAL PONP
BORROE HATERLAL - TOPSOIL
                    comozete
                otwattaimg
                DCwateaing
CRNE ANO FILL - TOP301L
                LNWDCAPIMO (GMSsIma)
        2086
                    settitia pomg
        ozer settlima Pomo
            BOAROE MATERIAL - TOPSOIL
                comcrete
                DREATERIMO
                chape Ang FILL - TOPSOLL
                LAMOSCAPIND (CRASSIMC)
        0240 BUC ACCOUNT TOTAL
    2000 COA ACCOUNT TOTAL
    2120 SITE FIRE PROTECTIOM STS
        2123 baren sranace FACILITIES
        0371 FOUNDAT10
            concarte
        \(50 \quad\) ct
        155 EA
            18
                155 TII
                TII
                            (13)
4.810 cr
    830 T14





\section*{0: smantilma stuav} дахиант 24, 1994

\section*{reacicon/subcoal \\ nuc}

\section*{pescaiptiom}

311 structuars is inpaovtuents
2820 mrbnocen House
2325 AACNITECTURAL wORX
SUPEASTRUCTURE
PRECAST CONCRETE WALL PANEL
3402 muc account total

2820 ma Account TOTAL
 CONCRETE

2050 FIRE PAOTECIIOW EUILDIMG 2553 comchete voixs - suasthuctu 3801 suestauctune
013 P03at




29

811 6T
76

2500 cOA ACCOUNT TOTAL
concrete
315 cr
71

2005 AACHITECTURAL VORE SUPERSTRUCTURE wSONAT - COWCRETE BLOCK PRECAST COMCRETE ROOF DECKIMO

3002 muc account total

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{85}
    sas stavice eate chachace hou CONCRETE MONK - SUBSTRUCTU SUBSTRUCTURE comcrete

105 cr
23
syRuctupal steel
suptastauctunt sTauctuat sTEEL

PLANT SCREREA COMODM FACILITIES DETALL LEVEL REPOAT
guthema compart senvicts cost I scvepult EGOINEERIM semvices pact
-•••••

\begin{tabular}{|c|c|}
\hline PLANT SCIERER cosemb facIlities
DETAIL LEVEL REPORT & soutiena compant stavices cost is sciedute EMGINEERING Stinvices \\
\hline Dectera 31, 19938 1000 & pace \\
\hline
\end{tabular}



DIE'atlima stuat

\[
\text { JAMJATT } 24 \text {. } 1994
\]

FERCICOA/suscoal


        4602 RUC ACCOUMI TOTAL
    3100 COA ACCOUNT TOTAL
    3120 M1Tmocen stomot pas
        3123 CONCRETE sons - Susstauctu
                SUsSTBUCTURE
            concrete
    3300 SEBACE TREATMEMT FACHLITY
        3301 coutectiom sTsTEM
            collectio
PIPTNG
            PIPING
COUCRETE
            CONCRETE
    3300 UTILITY IRENCH
        3960 UTHLTTY TRENCH
            6101 TRENCH
            COMCRETE
    3400 waste wate theatient syst
        \begin{tabular}{l}
300 \\
3402 \\
saste mate tazanzut syst \\
\hline
\end{tabular}
            \(\begin{array}{cc}302 & \text { S2DLIENT } \\ \mathbf{8 3 2 1} & \text { TANK } \\ & \text { CONCNETE }\end{array}\)
            8321 TNAK
        3404 PLANT EFF CIEA TREAT TANX
            Foumpation
            COMCRETE
            FILL
        6355 nuc account total

\section*{PLAIT sCIEREA CONODM FACILITIES} DETAIL LEVEL REPOHT
decenetr 31, \(10335 \times 1000\)

\section*{soutnena conpant senvices}
cost 8 savipute
Luctiteand stavices FAcE 12



4 cr
\(24 \mathrm{Cr} \quad 3\)
\(103 \mathrm{cy} \quad 13\)

440 cr 55



3980 coa account TOTAL

311 FERC ACCOUNT TOTAL
312 BOILEA PLANT EQUIPNEMT
4000 ENVIROINENTAL CLEANUP
4000 ENVIRONEMTAL CLEANUP 0000 ENVIROINEMTAL CLEANUP

PLAMT SCIERER cospod FACHLITLES dETAIL LEVEL REPORT decemer 31. \(12935 \times 1000\)
souncem compair senvices cost is sometute twalmetatia senvices PACE 13

\section*{REIEVVAL}
-........... \(\cos 1\)
ovantitt cost

D15posal
cuantity cost
satvace


GUNTITT Cकst
\begin{tabular}{|c|c|}
\hline alswarit Ima javuatt 24. & \begin{tabular}{l}
atuat \\
4. 1284
\end{tabular} \\
\hline \multicolumn{2}{|l|}{FERC/COA/Suncon/ ave} \\
\hline \multicolumn{2}{|r|}{DESCRIPTEA} \\
\hline 312 - & \multirow[t]{2}{*}{\begin{tabular}{l}
ECHER PLAET EOUTPIEMT \\
Eyytaomemtat eleazup
\end{tabular}} \\
\hline 312 4000 & \\
\hline 4000 0000 & ENVIRONAEMTAL CLEANUP Envisonatial cIEAMOP \\
\hline \multicolumn{2}{|r|}{Contral anstoue comtaitnated solt} \\
\hline \multicolumn{2}{|r|}{tanx} \\
\hline \multicolumn{2}{|r|}{D000 muc account total} \\
\hline \multicolumn{2}{|l|}{L00 LIGRER ORL SYSTEM} \\
\hline \[
\begin{gathered}
4352 \\
0531
\end{gathered}
\] & \begin{tabular}{l}
FUEL SMPLT FACILIIES \\
poungation
\end{tabular} \\
\hline \multicolumn{2}{|l|}{0831 comcnete} \\
\hline \multicolumn{2}{|r|}{FUEL STOMCE FACLLITIES} \\
\hline \multicolumn{2}{|r|}{conciete} \\
\hline \multicolumn{2}{|r|}{0678 metainimg enclosume} \\
\hline \multicolumn{2}{|l|}{4853 subcoa account total} \\
\hline \multicolumn{2}{|l|}{4960 COA ACCONAT TOTAL} \\
\hline \multicolumn{2}{|l|}{S000 AUSTLIART BOTLER STATEM} \\
\hline \multicolumn{2}{|l|}{5001 BOILER} \\
\hline \multicolumn{2}{|r|}{0701 FOUMDATIOM CONCRETE} \\
\hline \multicolumn{2}{|r|}{BOILER PACKAGE
BOILER} \\
\hline \multicolumn{2}{|l|}{SOOI SuEcoa account total} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{S002 FEEDEATER STSTEM
0711}} \\
\hline & \\
\hline
\end{tabular}


\section*{}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TEREICOA/suncon苗} \\
\hline \multicolumn{2}{|r|}{} \\
\hline 312 - & \multirow[t]{2}{*}{Botles mamt zoutpucist} \\
\hline Supe & \\
\hline \multirow{3}{*}{5002 0711} & Fieseater stifu \\
\hline & Puep \\
\hline & Hup \\
\hline \multirow[t]{5}{*}{3 Se 14} & F2PIm \\
\hline & Less than 4* PIPE \\
\hline & 4* PRE \\
\hline & \(0^{\circ} \mathrm{mat}\) \\
\hline & - P3\% \\
\hline
\end{tabular}

0714 Ruc actaart total

5002 suecoa actanat total
soos steam atstateution sratea
PIFIK
4* P1F
30 p1
gi PIA



\(14^{\prime \prime}\) PI辟
\(18^{\circ}\) PIPI
20" PIF
0745 Ruc account total
0745

\section*{PIPIMG}

LES3 thas er PIPE

5005 sacoa account rotal

3000 coa account tota

PLAMT sClenes coserom FACILITIES DETAIL LEVEL REPOAT
decenera 31. 19935 I 1000
SOUTERM COMPATY semvices cost a sciesule Emankeatma semvicts pace is

3 EA
3
\begin{tabular}{rrrr}
200 & LF & & 3 \\
220 & LF & & 3 \\
235 & LF & & 4 \\
50 & LF & & 1
\end{tabular}

23 Tm
(2)

1

2 Th

\section*{3
3
4}
\(\qquad\)
(2)

12
\begin{tabular}{rrr}
150 & LF & 2 \\
00 & LF & 2 \\
300 & LF & 8 \\
375 & LF & 20 \\
10 & LF & \\
2.225 & LF & 130 \\
140 & LF & 8 \\
20 & LF & \\
& & \(\ldots \ldots \ldots \ldots\)
\end{tabular}
\(\left[\begin{array}{rl}5 & \mathrm{TM} \\ 14 & \mathrm{TH}\end{array}\right.\)
(1)
(2)

3 TM
\(\theta\)
85
4
4
(1)
\(\qquad\)

025 1F
9 179

213
(10)
(40)



\section*{alsenititma stuoy دANUATT 24. 1994}

\section*{FENC/COA/SUBCOA/ \\ muc}
bescalption
312 sotien ruai touipuent
5240 COAL HuNDLIMO SYSTEM 5253 CAR unLOADIMG AREA staucturat meTal antima

5253 Suncoa Account TOTAL
5258
1541
RECLALM STSTEA
NOPPER NKD TUNOLL STRUCTUR
CONCRETE
1545 STAUCTAMAL IETAL
STRUCTUAAL STEEL

1547 RECLATH COWVEYOR
cowveroa
1551
vetok

5258 SUBCOA ACCOUNT TOTAL

5240 COA ACCOUNT TOIAL
5230 COAL muNDting seivice bloo \(52 a 3\) CONCRETE WONK - SUBSTMUCTU
1601 SUBSTRUCTUNE cowchete
\begin{tabular}{cc}
5284 & STRUCTRUAL STEEL \\
SUPERSTRUCTURE \\
1602 & STRUCTURAL STEEL
\end{tabular}
\begin{tabular}{ll}
5285 & ARCRITECTURAL NORK \\
1802 & SUPERSTRUCTURE \\
CONCRETE \\
PRECAST COMCRETE ROOF DECKIMO
\end{tabular}

\section*{PLAMT sCRERER comom factlitits DETAIL LEVEL REPOAT}

\section*{Dtcemeta 31. \(18938 \times 1000\)}

souncien company services cost 8 sciepure EMGINEREING seavices PACE 18
 TOTAL \(\$\)
10.100 FF .... 148
4.307 cy 54

21 IM I

2324
5

2 EA

8

819
3.528 ct

440

181 TH
50

220 cr
31
17

50 Tm
17
(4)

15

142

21 TM
(2)
\(2,040 \mathrm{TM}\)
(1)
(1)
\(\qquad\)
\(\qquad\)
(3)
(32)


161 14
(14)


PLAMT SCNERER Conerom FACILITLES
IETARL LEVEL REPOAT
Decemen 31, 19335 : 1000
DI smantlima stubt Jamart 24, 1994
souTneza conpart semvices cost s sovetute Lugheratio senvicts PACE 20


\section*{DIswastitima stuoy
samaty 24, 1894 \\ FERC/CEA/Suscoal}
\begin{tabular}{|c|c|}
\hline anc & 0escalptiom \\
\hline 312 & botlea plait equipucht \\
\hline 57.3 & TREAIED waite sys \\
\hline 5722 & bate theatnent ststea \\
\hline 3387 & Thas \\
\hline & Taxa \\
\hline
\end{tabular}
3385 PIPIMA

3305 ComTaOL IESTALLATIOM
PaNEL
3370 Conetcat stoance conckete

393 PIPIM LESS TMuN 4* PIPL

5722 subcoa acceunt total
5723 conplesate stomior, a tRans tase conclete
TAES
3381 RUC account TOTAL
3332 paptag
cowcerte
3353 Pusp

5723 suacon account total 5725 vatea taEangemt 3421 Pue

PLAMT SCIRRER COINOM FACILITIES
DETAIL LEVEL REPOAT
Decruers 31, \(10938 \times 1000\)
sounican conpury services
cost s screbute EMGIEERTNG stavices

```

gismanti ING sTvot
FEncrcon/sumena/
RUC
DESCRIPTIOM

```

```

 $720 TREATED warEi sys
 5725 watE| TALANEMT
 catEa TREATMEMT
 tawx
 taus
    ```
        5725 SUBCOA ACCOUNT TOTAL
    5720 COA ACCOUMT TOTAL
    5740 SEAVICE NATER SYSTEM
        \(\begin{array}{ll}5741 \\ 3441 & \text { service vin putelig stauct } \\ \text { suastauctune }\end{array}\)
        3441 susstructune
            conchete
        3442 SUPERSTRUCTURE
            msonat - Comcrete blocx
            pasclast concrete moor decxima
        3442 auc account total
        5741 suscon account total
        5742 PLANT SERYICE MAIER SYSTEM
            3463 PIPING. WHIM LIME
                4" PIPE
                    \(\mathrm{S}^{\text {Bi P PIPE }}\)
                    E* PIPE
                    12" PIPE
                    18* PIPE
    3463 ruc account total
    3469
            PIPIMO
            Less tiun 4" PIPE
        \(458 \mathrm{cr} \quad 57\)
souTnemm company selvices
cost a soletule Guatitentua senvices


2 EA

\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline 8 & IT & (1) & 15 \\
\hline 40 & TIII & (3) & 69 \\
\hline 50 & TM & (4) & 80 \\
\hline 14 & ITI & (1) & 22 \\
\hline 5 & TM & & 8 \\
\hline & & (10) & 185 \\
\hline
\end{tabular}

12 TM
(1)



```

