BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

DIRECT TESTIMONY OF

RICK BISSELL

ON BEHALF OF

AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC.
AND

MCI TELECOMMUNICATIONS COMPANY

AND

MCI METRO ACCESS TRANSMISSION SERVICES, INC.

DIRECT TESTIMONY OF
RICK BISSELL
ON BEHALF OF
AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC. AND MCI TELECOMMUNICATIONS COMPANY AND

MCI METRO ACCESS TRANSMISSION SERVICES, INC. DOCKET NOs.: 960833-TP/960846-TP/971140-TP
Q. PLEASE STATE YOUR NAME, ADDRESS, AND OCCUPATION.
A. My name is Rick Bissell and my business address is $13-99$ Edgevalley Road, London, Ontario, Canada N5Y 5N1. I am a telecommunications consultant.

Q. PLEASE SUMMARIZE YOUR BACKGROUND IN THE FIELD OF TELECOMMUNICATIONS.

A. I have been employed in the telecommunications field for over 30 years. My career began in 1966 with Nortel (Northern Telecom) as a specifications writer for Central Office (CO) Common Systems Infrastructure (i.e. overhead ironwork, cable racking, equipment supporting details, lighting, grounding, cross-connects and cabling). About the year 1974, I moved to Bell Canada to take a position as a Central Office Building and Main Distribution Frame (MDF) Planner, responsible for the creation of "best practice" space planning sceparios for the integration of
new equipment in existing COs ; cable routes and equipment connectivity; sizing of new buildings and/or access remotes housings; and developing long term plans for the redevelopment of CO space coincident with Switch and/or Transmission modernization.

I also have worked on international assignments in Jamaica (1972), Antigua (1973), Riyadh, Saudi Arabia (1982-85) and Manila, Philippines (1995). My last position prior to leaving Bell Canada was in the Regulatory Planning Group, where I was responsible for developing Infrastructure and Space Planning proposals for physical collocation (i.e., placing competitive equipment in Bell Canada COs).

Since leaving Bell Canada in March, 1996, I have worked as an independent consultant in the area of telecommunications equipment space planning and installation of common systems infrastructure (overhead ironwork, cable routing, cabling, cross-connects, etc.). I have worked for Bell Sygma as Collocation Project Support Manager, where I developed the process flows and documentation to be used for implementing physical collocation in a uniform manner across the Stentor Operating Companies in Canada. Most recently, I have analyzed collocation cost studies and process proposals filed by various incumbent local exchange companies.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY TODAY?

A. I have been retained by MCI Communications Corporation (MCI) and AT\&T Communications of the Southern States, Inc. (AT\&T) to lead a team of subject matter experts to develop technical models of: (1) the physical collocation of competitive local exchange carrier (CLEC) equipment in incumbent local exchange carrier (ILEC) Central Offices (COs); and (2) the "virtual" collocation of CLEC-provided, ILEC-owned equipment in ILEC COs, in order to identify all ILEC investments needed to provide collocation. (Collocation also can occur at other places in the ILEC's network, such as at the "telco closet" in a large office or apartment building. This testimony does not address this form of collocation.) For physical collocation, the team constructed a forward looking model central office layout and a forward looking model collocation area layout based upon the use of best practice CO space-planning strategies, efficient suppliers, and competitive processes, and from these identified all relevant investments. A similar process was used to identify investments for virtual collocation. These investments were provided to the consulting firm of Klick, Kent \& Allen to develop collocation cost estimates in the Cost Model. A white paper describing in detail the model CO and collocation layouts and all the necessary ILEC investments for physical and virtual collocation is attached to this testimony as Exhibit RB-1.

The purpose of this testimony is to provide the conceptual basis for the model CO and collocation layouts and to describe the major components of those layouts. Part One addresses physical collocation and Part Two addresses virtual collocation.

PART ONE: PHYSICAL COLLOCATION

Q. WHAT IS REQUIRED FOR PHYSICAL COLLOCATION?

A. Physical collocation is nothing more than an arrangement that allows a CLEC to locate its own telecommunications relay rack equipment in a segregated portion of the CO. The CLEC then pays the ILEC for the use of that space within the CO and is provided with the ability to enter the CO to install, repair, and maintain its collocated equipment. Figure 1 displays the limited number of elements required to establish CLEC collocation areas in an ILEC building. As shown, the only requirements are for fiber connectivity between the first manhole outside the CO and the CLEC's terminal equipment; -48 V DC power connectivity between the CLEC equipment and a battery distribution fuse bay (BDFB); and optical and copper connectivity (Voice Grade, DS-1, DS-3) between the collocation area and an appropriate ILEC cross-connect. Each of these is discussed in greater detail below. The physical demarcation point between the ILEC and CLEC for all copper connections is at a point of termination (POT) bay, normally placed in close proximity to CLEC equipment.

Figure 1

Q. IS PHYSICAL COLLOCATION A HIGH TECHNOLOGY ACTIVITY?

A. No. Physical collocation is a low technology, nuts and bolts activity within a high technology industry. It primarily consists of setting up metal cages to hold CLEC telecommunications equipment, and providing the following connectivity: fiber from the CLEC coming from the manhole into the cable vault and to the collocation cage; copper and optical connections to the ILEC cross-connects to pick up unbundled loops or connect to the ILEC network; and connectivity to the $-48 V$ DC power source. This requires building the cage, installing cables on racks, and properly grounding the equipment.

Q. WHAT FACTORS DID YOU CONSIDER IN DETERMINING THE BEST PRACTICES FOR IMPLEMENTING COLLOCATION?

A. Best practices assumes the use of cost efficient technology and only as much building space, labor, and materials as needed to properly place all equipment, including the appropriate amount of space for auxiliary equipment. It also assumes that the ILEC's decisions relating to collocation of a CLEC at the ILEC's CO will be made on the same bases as the ILEC's decisions for placing its own equipment.
Q. WHY IS IT IMPORTANT TO IDENTIFY THE INVESTMENTS ASSOCIATED WITH COLLOCATION BASED ON THE USE OF BEST PRACTICE SPACE-PLANNING STRATEGIES?
A. CLEC collocation at an ILEC's CO is essential for the CLEC to provide local service efficiently with unbundled ILEC loops or other elements. Without collocation, there would be no way for the CLEC to concentrate the traffic coming from the unbundled loops in order to transport that traffic efficiently to the CLEC's switch. Thus, collocation is essential for new entrants who plan facilitiesbased entry. At the same time, collocation at the ILEC's CO is largely under the control of the ILEC. In a competitive environment, an ILEC will not have the incentive to minimize the costs to CLECs of being collocated. For example, the ILEC will not have the incentive to make space in its CO available to a CLEC on
the same basis as it uses for making space available for additional equipment of its own. Basing the model CO and model collocation space -- and thus investments -- on best practice space planning will ensure the inclusion only of costs associated with an efficiently located collocation space.

Q. PLEASE DESCRIBE THE FORWARD-LOOKING CO MODEL LAYOUT.

A. The CO model layout assumes a new urban CO designed for up to 150,000 lines, together with associated transport, power, multi-media, and miscellaneous equipment space. Such an office would need approximately 36,000 square feet (sq. ft .) of equipment space -- or three equipment floors of about $12,000 \mathrm{sq} . \mathrm{ft}$. ($100 \mathrm{ft} . \times 120 \mathrm{ft}$.) each -- plus a below-ground cable vault. (See Figures 2 and 3.) The CO model layout also assumes an additional $3,000 \mathrm{sq}$. ft. on each floor and the entire basement (except for the cable vault area) to provide a generous allowance for building support services such as main corridors, elevators, washrooms, lunch rooms, conference facilities, administrative areas, electrical rooms, and mechanical rooms. This results in an overall footprint of $15,000 \mathrm{sq} . \mathrm{ft}$.

The best practice CO planning strategy -- shown in Figure 3 -- provides adequate space for the long-term requirements associated with a forward-looking, urban CO and is representative of central office layouts that would have been constructed in recent years to accommodate growth in a downtown urban environment. New COs designed for areas outside of urban centers would likely
consist of only one or two floors above the cable vault, requiring shorter cable connectivity lengths. Hence, the forward-looking physical central office model layout incorporates conservative assumptions in terms of recent CO telecommunications building deployment and is likely to be significantly larger than the average CO across the ILEC territory.

9 A. The model CO layout contains enough space to house all the equipment needed in
Figure 3
Q. HOW COULD THIS THREE-STORY BUILDING BE USED TO MODEL THE INVESTMENTS NEEDED TO PLACE COLLOCATION AREAS IN EXISTING CENTRAL OFFICES IN URBAN AREAS THAT MAY BE AS MUCH AS EIGHT STORIES? the largest urban COs - and, indeed, is the general layout used over the past five
 years in planning new COs. If the equipment in a particular CO currently is spread out across eight stories, that is because the old analog equipment required lots of space and as that equipment has been replaced by digital equipment, pockets of space have become available throughout the eight stories that can be used for collocation space. If such space is not available, that is due to one of two things: the ILEC has not removed old equipment that it is no longer using or the ILEC is now housing administrative personnel in otherwise available equipment space. If the ILEC needed space for its own equipment, it would not locate its equipment far from the cross-connects, but rather would remove any unused equipment or administrative personnel in convenient spaces in the CO and place its telecommunications equipment there. Thus, use of the model CO layout simply is consistent with the way the ILEC would make space available for itself.

Q. IF THE MODEL CO IS BASED ON A LARGE URBAN SITUATION, CAN IT ALSO BE USED FOR SMALLER URBAN, SUBURBAN AND RURAL COLLOCATION SITUATIONS?

A. Yes. Smaller urban, suburban and rural situations will require less telecommunications equipment, so the CO likely would be only one or two floors plus basement, with approximately the same 15,000 square foot footprint. The connectivity lengths required will be shorter, reducing costs; land costs should be lower; and there may be no costs associated with elevators. Thus, even if there are some structural scale economies in the large urban CO , overall collocation
costs are likely to be lower in smaller urban, suburban and rural locations than in the large urban locations modeled. Thus, the model CO layout provides a conservatively high estimate of collocation investment costs for other areas.

Q. PLEASE DESCRIBE THE MODEL COLLOCATION AREA LAYOUT.

A. The Model Layout assumes a best practice planning strategy that permits more than one collocation area to be assigned in a CO based on available space in close proximity to ILEC cross-connects. This is in contrast to an arbitrary assumption (sometimes made by the ILECs) that the first collocation area in a CO must be sized to accommodate all potential future CLECs, even when that decision results in placement of the collocation area in a remote location far from the crossconnects.

As shown in Figure 4, the collocation area model layout is 550 square feet to take advantage of smaller areas that would be in relatively close proximity to ILEC cross-connects (these pockets of space include those made available by prior replacements of older technologies with more space efficient digital equipment, vacant area, space occupied by administrative staff, or locations occupied by redundant equipment that an efficient ILEC would have removed long ago). This assumption reflects an expectation by the model layout developers that, in terms of placement, the ILEC would employ the same best planning process that it would use when planning efficient equipment space allocations for its own
equipment.

Figure 4
The 550 square feet included in the model collocation layout provides sufficient space to accommodate interface equipment such as point of termination (POT) bays and remote power distribution BDFB equipment, while avoiding the economic disadvantages of exceptionally large collocation areas. For those COs where more than 550 square feet of collocation space is required, a second
collocation area would be selected when necessary. Proceeding in this manner is consistent with the FCC amended Order Part 51.323 (f)(1) (and Paragraph 585), which supports the concept of CLECs obtaining reasonable amounts of space in an ILEC's premises on a first-come, first-served basis.

Within the 550 square foot collocation area, the collocation area model layout assumes the construction of four 100 square foot equipment areas and a common area of 150 square feet (to accommodate ILEC and CLEC point of termination interface equipment bays and a BDFB). The Model anticipates that the cost of the entire common area would be shared by all CLECs (with no contribution from the ILEC) and that CLECs would request collocation space in increments of 100 square feet, without any guarantee of expanding into an adjacent space. If a CLEC requires additional space for expansion, it would have to take the next closest available space in much the same way as an ILEC would. For this type of situation, cage-to-cage cabling for cages occupied by the same CLEC should be permitted.

Q. PLEASE EXPLAIN HOW THE CONNECTIVITY LENGTHS USED TO DETERMINE INVESTMENT NEEDS WERE DERIVED FROM THE MODEL CO AND COLLOCATION LAYOUTS.

A. To ensure efficient connectivity arrangements, similar to those incurred by the ILEC in deploying its equipment, the Model Layout establishes collocation areas
using pockets of existing vacant or administrative space in the $C O$. To be conservative, the Model calculates the average connectivity lengths based on a minimum and maximum scenario. For the maximum cable length, the model uses a worst case scenario with the collocation area located on the top floor (Floor 3) of the CO layout, the cross-connects located on Floor 1, and the collocation area at the extreme opposite corner of the building from where the cross connects are located. Based on this premise, there would be a two-floor distance between the collocation area and the ILEC cross-connects. For the minimum cable length, the model uses a best case scenario and assumes that the collocation area is located on the same floor and in close proximity to the ILEC cross-connects. However, since physical collocation requires the construction of cages, it is unlikely that a new collocation area could be built directly adjacent to ILEC cross-connects. Therefore, the best case scenario includes a 40 foot minimum length between the collocation area and the ILEC cross-connects. Both scenarios include a 15 foot cable drop (i.e., 7'6' on each end). Hence, the forward looking best practice CO model layout generates minimum and maximum copper connectivity lengths of 55 and 275 feet. (These extremes were determined as follows: equipment area width $=100$ feet; equipment area length $=120$ feet; distance between floors $=20$ feet; cable drop to equipment at both ends $=15$ feet. So the maximum two-floor distance would be $100^{\prime}+120^{\prime}+20^{\prime}+20^{\prime}+15^{\prime}=275^{\prime}$, and the minimum samefloor distance would be $20^{\prime}+20^{\prime}+15^{\prime}=55^{\prime}$.) The investment generated therefore is based on an average connectivity length of 165 feet for Voice Grade, DS-1, or DS-3 cabling between the CLEC collocation area and the appropriate

ILEC cross-connect. Cabling investments for optical connectivity are based on 190 feet, since no POT bay is used, and the Model uses 25 feet of cabling in the cage and common area.

Q. HAVING CONSTRUCTED THE MODEL CO AND COLLOCATION SPACE LAYOUTS, WHAT INVESTMENT COMPONENTS DID YOU ESTIMATE?

A. We estimated investments associated with the following:
o overhead common systems infrastructure (cable racks, cable, etc.);
o power delivery, including backup capability; power consumption; equipment grounding;
o entrance fiber (bringing the CLEC's fiber from the manhole to the collocation space); The CLEC should be allowed to perform this function, itself, in which case the ILEC's portion of this investment would be limited to costs associated with providing the rack the cable resides on.
o copper connectivity between the collocation space and the cross-connects at the voice grade level, and at the DS-1 and DS-3 levels (each estimated separately using DSX and DCS technology);
o optical connectivity between the collocation space and the fiber crossconnect using 12 fiber breakout cable;
o. construction elements associated with building the cage and maintaining the environment in the cage (partitioning, floor covering, electrical distribution panel, HVAC, lighting);
o land and building.

- manpower resources to plan both the entire 550 square foot collocation area and each collocation request within that area; and

0 security.

Q. HOW DID YOU ESTIMATE THESE INVESTMENT COMPONENTS?

A. The general methodology used was as follows:

- Identify, end to end, all the specific elements needed to provide the components. (See, for example, the following chart depicting the end-toend requirements for power delivery. Similar charts are provided in the White Paper for each investment component.)
- Obtain quotes (in hours or dollars, as appropriate) for the engineering, furnishing, and installation of these elements.
- Based on the judgment of the subject matter experts, select the quotes to use as input values and calculate the investment costs.

COLLOCATION MODEL - -48V DC POWER DELIVERY

Power Consumption

Power Delivery Elements (-48V DC Option)

Element	Description	Prov. by CLECILEC	Quantity	Remarks
-48V DC Power Panel	Located in Cage	CLEC	--	CLEC installs -48V DC panels in cage and terminates ILEC provided feed
Cable 'B'	4 x \#6 Cable between Cage \& Collo BDFB	ILEC	$35^{\prime}-0^{\prime \prime}$	One time charge for 40 Amps (20 Amp A \& B feeds + return) as requested by CLEC -Includes $20^{\prime}-0^{n}$ drop in cage
Cable 'B'	$4 \times \# 2$ Cable Collo BDFB	ILEC	$35^{2}-0^{n}$	One time charge for 100 Amps ($50 \mathrm{Amps} A \& B$ feeds + return) as requested by CLEC - Includes $20^{\prime}-0^{\prime \prime}$ drop in cage
Cable 'B'	$4 \times 2 / 0$ Cable between Cage \& Collo BDFB	ILEC	$35^{\prime}-0^{n}$	One time charge for 200 Amps (100 Amps A \& B feeds + return) as requested by CLEC - Includes

				$20^{\prime}-0^{\prime \prime}$ drop in cage
Cable Rack	$15^{\prime \prime}$ CLEC specific	ILEC	$5^{\prime}-0^{\prime \prime}$	Included in cage investment
BDFB	Located close to Collocation Cages	ILEC	--	Included in -48V DC Power Consumption Charge
Cable Rack Occupancy	Shared support for Cable ' A ' below	ILEC	--	Included in -48V DC Power Consumption Charge
Cable ' A '	Cable betw - 48 V Power Plant \& DFB	ILEC	--	Included in -48V DC Power Consumption Charge
-48V DC Power Plant	Shared use between CLEC's \& ILEC	ILEC	--	Included in -48V DC Power Consumption Charge
Auto-start Diesel Fuel Tanks, etc.	Required for Battery Back-up	ILEC	--	Included in -48V DC Power Consumption Charge
AC Energy	Required for $A C$ Energy used	ILEC	--	Included in -48V DC Power Consumption Charge

Q. DID YOU USE MAJOR SUPPLIERS, SUCH AS LUCENT AND NORTEL, FOR YOUR QUOTES ON PRICES AND HOURS?

A. No. The common systems infrastructure components and the magnitude of the construction project associated with physical collocation are relatively minor and can be handled by many smaller contractors at competitive rates. Indeed, even if larger suppliers, such as Lucent and Nortel, were price competitive, they are unlikely to be able to meet the short time intervals required for these very small
jobs. For that reason, ILECs typically have various smaller contractors who specialize in ironwork, cabling, etc., authorized to complete short interval installations. The same is true with regard to the construction elements associated with preparing the cage. The use of a telecommunications giant or a major construction company for collocation components is akin to using a Big Eight accounting firm to handle a simple income tax return or using a major law firm in small claims court.

Q. DID YOU ASSUME THAT THE ILEC PROVIDES ALL THE EQUIPMENT?

A. No, it is assumed that the CLEC provides its own equipment wherever possible. This provides another protection against inflated costs to CLECs by providing them the opportunity to purchase their own equipment whenever they believe they can do so more cheaply.
Q. YOU INDICATE THAT YOU INCLUDED AN INVESTMENT

ASSOCIATED WITH BUILDING SPACE AND, SEPARATELY, THE INVESTMENTS ASSOCIATED WITH HVAC, FLOOR COVERING, SECURITY AND OTHER ITEMS THAT OFTEN ARE PROVIDED AS PART OF THE CHARGE FOR SPACE IN A BUILDING. WHY DID YOU DO THIS?
A. We did this to ensure that all investment costs were included, although we believe as a result we provide a conservatively high estimate of investment requirements. The source that we use for the per square foot cost of building space, R.S. Means, is a data sourcebook widely used in the industry. The data provided are compiled from submissions from ILECs who actually have constructed central offices, but there is no explanation of what costs are included in those submissions. It is likely that these estimates include costs associated with sufficient air conditioning, floor covering, etc. to fully support the collocation space, and thus by including these items separately our investments may conservatively overstate investment requirements.

Q. DO THE INVESTMENTS GENERATED BY YOUR MODEL CO AND COLLOCATION LAYOUTS INCLUDE THE COSTS ASSOCIATED WITH BUILDING MODIFICATIONS THAT FREQUENTLY ARE INCLUDED IN ILEC COLLOCATION COST STUDIES?

A. The model layouts generate all investments necessary for the provision of collocation, but not for building modifications an ILEC would have to undertake just to bring space in the CO up to the level needed to house equipment. For example, our model incorporates the appropriate share of costs associated with meeting all regulatory requirements by including in the building cost per square foot used in the investment calculation the costs associated with full regulatory compliance. But it does not add to those costs any special costs associated with
bringing a particular building or portion of a building to compliance. Building modifications to remove unused equipment also are not included as they represent additional costs to make a specific building space up to standard. Also, building modifications allegedly required to provide a "secure environment," such as the addition of costly new external entrances, are not included because they are not part of a cost efficient, forward looking solution to security problems.

Q. WHAT SECURITY REQUIREMENTS DID YOU INCLUDE FOR YOUR MODEL CO AND COLLOCATION LAYOUTS?

A. COs today are constructed with electronic security card systems to monitor access and egress. Each doorway will have an electronic card reader that will only admit the holders of pre-screened cards. These costs are included in the basic per square foot cost of a CO building just as the cost of locks on outside doors are included in the rent for office or apartment space. Thus, our model assumes the cost of the security card system is included in the per square foot cost in R.S. Means. The costs of purchasing individual cards and associated system maintenance, on the other hand, are assumed to be costs that each CLEC should bear.

PART TWO: VIRTUAL COLLOCATION

Q. WHAT IS VIRTUAL COLLOCATION?

A. Virtual collocation is an arrangement that allows a CLEC to place its own equipment in an area of a CO currently used by the ILEC to house its equipment (and not segregated from ILEC equipment). Typically, the CLEC purchases the equipment to be dedicated for its use on the ILEC's premises and sells the equipment to the ILEC for a nominal $\$ 1.00$ sum while maintaining a repurchase option. The equipment is then installed in vacant space beside the ILEC's equipment. Typically, the ILEC handles day-to-day maintenance activities and is reimbursed by the CLEC. The CLEC is permitted to enter the CO upon request, but requires a security escort.

Q. WHY IS VIRTUAL COLLOCATION IMPORTANT?

A. Like physical collocation, virtual collocation provides a means by which new entrants can concentrate traffic from unbundled loops (or other elements) in order to transport that traffic to the CLEC's switch. A CLEC may wish to use virtual collocation if it lacks sufficient market share to justify a physical collocation arrangement, or because physical collocation cage construction costs render that method of collocation too costly. In addition, Section $251 \mathrm{c}(6)$ of the Telecommunications Act of 1996 requires that virtual collocation be provided when physical collocation is not practical for technical reasons or because of space limitations.

Q. DID YOU IDENTIFY INVESTMENT COMPONENTS AND INSTALLERS FOR VIRTUAL COLLOCATION USING THE SAME BEST PRACTICES DESCRIBED ABOVE?

A. Yes, the same approach was used. The investment differences simply reflect the different nature of virtual as opposed to physical collocation. Most significantly, since virtual collocation provides for CLEC equipment to be located within existing ILEC equipment areas and maintained by ILEC personnel, there are no cage construction components. Further, since most of the equipment associated with virtual collocation is provided by the CLEC, the scope and magnitude of initial investments for which the ILEC is responsible is greatly reduced.

Q. DOES THE VIRTUAL COLLOCATION MODEL INCLUDE INVESTMENTS FOR INITIAL CABLING?

A. No. Cabling is an integral part of most telecommunications installations, necessary to ensure continuity prior to (collocator) acceptance. Indeed, collocators typically require completion of systems readiness and operational tests prior to acceptance of a virtual collocation installation. Thus, suppliers normally include the cabling as part of the overall cost of installing telecommunications equipment components. The ILEC will not incur initial cabling costs since the CLEC is responsible to the installer for the invoice associated with the equipment installation. (This includes cabling for connectivity, as well as power and
grounding.)

Q. HOW WERE CONNECTIVITY LENGTHS USED TO DETERMINE INVESTMENT NEEDS FOR THE VIRTUAL COLLOCATION MODEL?

A. Although there is no ILEC investment for initial cabling, investment is included for occupancy of cable racks on which the cables ride (as well as occupancy of ILEC inter-floor cable holes and terminations on ILEC cross-connects). To estimate the investment associated with cable rack occupancy, the Virtual Collocation Model uses the same connectivity lengths used to estimate investments for physical collocation. Since the CLEC-provided, ILEC-owned equipment is placed in the same equipment areas that the ILEC uses for its own equipment, it is likely that connectivity investments for virtual collocation will be less than those required for physical collocation. Thus, using the same connectivity lengths for virtual collocation as those used for physical collocation provides a conservative estimate.

Q. DID YOU INCLUDE INVESTMENTS ASSOCIATED WITH BUILDING SPACE FOR VIRTUAL COLLOCATION?

A. Yes. The overall method of estimating the building space investment for virtual collocation is the same as that used for physical collocation. In contrast to physical collocation, however, virtual collocation merely requires payment to the

ILEC for floor space; there are no additional building-related costs (such as for cage construction).

Q. HOW DID YOU APPROACH ESTIMATING THE BUILDING SPACE INVESTMENT FOR VIRTUAL COLLOCATION?

A. We used a best practice space planning approach to ensure that ILEC equipment space, and hence CO floor space, is used efficiently. ILEC equipment space is comprised of rows (called "lineups") of relay racks that, when installed, resemble empty metal bookcases without shelves. Relay racks are fabricated to permit the installation of equipment shelves on an "as required" basis. Thus, many existing racks in ILEC COs have unused space which can be used to mount CLEC equipment shelves. The telecommunications equipment in use today comes in various sizes (heights) and thus requires varying amounts of vertical "shelf space" on a relay rack. While this conceivably permits relay racks to be administered by the "rack inch," for administrative simplicity, the Virtual Collocation Model develops the investments for building space based on units of $1 / 4$ relay rack. Using units of $1 / 4$ relay rack ensures that ILEC equipment space is used efficiently and allows CLECs to pay only for the space used. In many instances relay racks with empty space will be available. In some cases, however, a new relay rack may need to be installed for a CLEC to place its equipment. The Virtual Collocation Model is designed to accommodate either situation by including the additional investment for a rely rack, if a new installation is required.

Q. HOW DID YOU CALCULATE THE AMOUNT OF BUILDING SPACE INVESTMENT ASSOCIATED WITH ¼ RELAY RACK?

A. The telecommunications relay racks used to house equipment in a CO are typically 2 ' wide, 1 ' deep, and 7' high. The racks are placed in "lineups" (rows) located 2' $6^{\prime \prime}$ to 3^{\prime} apart to provide for aisle space in front and back for maintenance purposes. Including the relay rack footprint (2^{\prime} by 1^{\prime}) plus 50% of the front and rear aisles $\left(1^{\prime} 6^{\prime \prime}+1^{\prime} 6^{\prime \prime}=3^{\prime}\right)$ would require 8 square feet $\left(2^{\prime} \times 4^{\prime}\right)$. The Virtual Collocation Model assumes that each relay rack uses 9 square feet of floor space, which is sufficiently generous to incorporate end guards (which are only used when a relay rack is at the end of a lineup) and 15 " deep frames. Thus, the Virtual Collocation Model develops the investment for floor space based on units of $1 / 4$ relay racks, the equivalent of 2.25 square feet of space.

Q. HOW IS MAINTENANCE HANDLED IN THE VIRTUAL COLLOCATION MODEL?

A. The CLEC is responsible for directing all maintenance activities associated with the virtual equipment. This includes system surveillance, direction of repair activity, and requests to the ILEC for maintenance assistance. The ILEC is responsible for hardware functions such as circuit pack replacement and changing fuses. Work will be performed by the ILEC upon the request of the CLEC, and will be reimbursed using the labor rate for the appropriate qualified technician.

Q. ARE SECURITY REQUIREMENTS NECESSARY FOR VIRTUAL COLLOCATION?

A. Yes. While CLEC personnel will not normally visit virtually collocated equipment for day-to-day operations, there may be instances when it is necessary for CLEC engineering or maintenance personnel to visit the ILEC CO. Since virtual equipment is located in ILEC equipment areas and not segregated from ILEC equipment, it is reasonable to expect that an ILEC security escort be in attendance during the entire time during a CLEC visit.

It is also reasonable to establish maximum response times for the elapsed interval between when a CLEC requests an appropriately qualified ILEC technician at a particular CO, and when a technician arrives and makes contact with the CLEC. The response times and charging increments for both maintenance and security escort requests vary depending on the type of CO . That is, whether a CO is staffed (technicians scheduled to work at the CO), attended (the hours during which technicians are required to be at the CO), and whether the request is during normal business hours (usually Monday to Friday, 8 am to 5 pm) or not. The charts below indicate appropriate response times and charging increments. Note that the ILEC must identify for CLECs which COs staffed, attended and the actual attended hours of any staffed CO.

MAINTENANGE AND ESCORT RESPONSE TIMES	
CENTRAL OFFICE TYPE	RESPONSE TIME
Staffed and Attended	1 hour
Staffed and Unattended	4 hours
Not staffed and NBD	2 hours
Not staffed and non-NBD	
Definitions: Staffed-technicians are scheduled to work in the location. Attended-hours during which technicians are required to be at the CO. NBD (Normal Business Day)-usually Monday to Friday, 0800h to 1700h.	

MAINTENANGE AND ESCORT CHARGING INCREMENTS		
CENTRAL OFFICE TYPE	INTTIAL CHARGE	SUBSEQUENT CHARGE
Staffed and Attended	$1 / 4$ hour	$1 / 4$ hour
Staffed and Unattended	4 hours	$1 / 4$ hour
Not staffed and NBD	$1 / 4$ hour	$1 / 4$ hour
Not staffed and non-NBD	4 hours	$1 / 4$ hour

Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes, at this time.

COLLOCATION WHITE PAPER

Part I - Physical Collocation

Part II - Virtual Collocation

Exhibit

\qquad
Dockets Nos. 960833,960846, and 971140
Rick Bissell - Composite Exhibit RB-1

Part I - Table of Contents

1. Introduction 1
1.1 Purpose of Study 1
1.2 Overview of Physical Collocation 1
2. Collocation Costs Can Easily be Overstated By ILEC 6
3. Central Office Planning 8
3.1 Previous Planning Practices 8
3.2 Best Practice Planning Strategies. 12
4. Overview of Assumptions Used in the Collocation Model 14
4.1 Forward-Looking Central Office Model Layout 14
4.2 Central Office Collocation Area Model 20
4.3 Common Interface Equipment. 22
4.4 Overhead Common Systems Infrastructure. 23
5. DC Power and Grounding Elements 28
5.1 Overview 28
5.2 DC Power Requirements for Collocation Model 35
5.3 Power Distribution Components 36
5.4 Power Consumption Components 39
5.5 Equipment Grounding Components 41
6. Access (Entrance Fiber) Components 43
6.1 Overview. 43
6.2 Fiber Entrance Components 43
7. Copper Connectivity Components 45
7.1 Overview of Connectivity Models. 45
7.2 Voice Grade Model Requirements 47
7.3 DS-1 Model Requirements Using a Manual DSX. 48
7.4 DS-1 Model Requirements Using an Electronic DCS 49
7.5 DS-3 Model Requirements Using a Manual DSX. 50
7.6 DS-3 Model Requirements Using an Electronic DCS 51
8. Land and Building Elements 52
8.1 Overview. 52
8.2 Placement and Security Issues 53
8.3 Collocation Construction Components. 54
8.4 Cost of Floor Space 64
8.5 Real Estate Resources. 65
9. Process Issues 66
9.1 ILEC Manpower Requirements 66
9.2 Implementation Intervals 68

1 INTRODUCTION

1.1 PURPOSE OF STUDY

The purpose of this White Paper is to present a technical model of the physical collocation of competitive local exchange carrier (CLEC) equipment in incumbent local exchange carrier (ILEC) Central Office (CO) buildings. 1 This White Paper presents a bottoms-up approach to implementing physical collocation by creating a forward-looking collocation model layout based upon the use of best practice CO planning strategies, least cost suppliers, and competitive processes. This will provide a clear and concise explanation of the physical requirements for efficient collocation of CLEC equipment at an ILEC CO. In addition, the White Paper provides the technical basis for determining the costs to meet these requirements and identifies the investments necessary for an efficient ILEC to provide physical collocation to CLECs.

1.2 OVERVIEW OF PHYSICAL COLLOCATION

The physical collocation of a CLEC's equipment is necessary for the efficient interconnection of networks, especially when the CLEC is using the ILEC's unbundled loops. Without collocation, there would be no way to concentrate local customer traffic and to efficiently transport the traffic to the CLEC's offices.

Physical collocation is nothing more than an arrangement that allows a CLEC to locate its own telecommunications relay rack equipment in a segregated portion of the $C O$. The CLEC then pays the ILEC for the use of that space within the CO and is provided with the ability to enter the CO to install, repair, and maintain its collocated equipment. Figure 1 A

[^0]Docket No. 960833-TP, 960846-TP
Rick Bissell Exhibit RB-1
displays the limited number of elements required to establish CLEC collocation areas in an ILEC building. As shown, the only requirements are for fiber connectivity between the first manhole outside the CO and the CLEC's terminal equipment in the collocation area: -48V DC power connectivity between the CLEC equipment and a battery distribution fuse bay (BDFB); and copper connectivity (Voice Grade, DS-1, DS-3) between the collocation area and an appropriate ILEC cross-connect. Each of these are discussed in greater detail below. The physical demarcation point between the ILEC and CLEC is at a point of termination (POT) bay, normally placed in close proximity to CLEC equipment. 2

[^1]

Figure 1A

Collocation is a low technology aspect of a high technology industry. It simply requires the placement and connection of CLEC equipment in an ILEC CO. The equipment located in telecommunications COs typically is placed in metal relay racks, sometimes called bays. As shown in Figure 1 B , these relay racks are roughly $2^{\prime}-0^{\prime \prime}$ wide, $12^{\prime \prime}$ deep, and $7^{\prime}-0^{\prime \prime}$ high. Typically, telecommunications relay racks are fabricated with pre-drilled ironwork uprights to permit the installation of equipment shelves on an "as required" basis. Unlike previous vintages of telecommunications equipment, relay racks currently installed in COs are generally $7^{\prime}-0^{\prime \prime}$ high, avoiding any need for complex overhead ironwork arrangements for support. Instead, they are supported directly on the floor slab using anchors appropriately sized for the specific seismic zone in which the equipment is installed. Relay racks are placed adjacent to each other in rows (called "lineups") to simplify cabling arrangements and day-to-day maintenance operations.

Figure 1C

As shown in Figure 1C, telecommunications equipment line-ups typically can be as short as ten or as long as forty feet, depending on physical constraints such as the availability of space and the length of power feeders. Telecommunications equipment floor layouts typically include both front and rear aisles for maintenance purposes. In addition, floor layouts incorporate battery power distribution fuse bays -- located every third or fourth line-up -- to provide -48 Volt power delivery in the most cost-efficient manner. It is not uncommon to find 1,000 or more equipment relay racks already located in a large urban ILEC CO. The installation of a few additional relay racks of equipment to provide competitive collocation should not be a difficult task, particularly since ILECs commonly install additional relay racks to provide service to their own customers on an ongoing basis.

2
 COLLOCATION COSTS CAN EASILY BE OVERSTATED BY AN ILEC

An ILEC has the ability to artificially raise CLEC costs for physical collocation in numerous ways, including:
\Rightarrow Arbitrary sizing and placement of the collocation area within the CO. ILECs have the incentive to place the collocation space far away from the ILEC crossconnects. Locating collocation space distant from the cross-connects increases CLEC costs because copper connectivity charges (Voice Grade, DS-1, DS-3) are length-sensitive. Similarly, the fiber riser charge is typically length-sensitive, and power delivery charges increase with complexity and distance relative to the shared BDFB and -48V DC power plant.

One common way that ILECs seek to accomplish this is to insist that the collocation spaces for all CLECs be located together in the CO, thus creating a requirement for a very large space that may not be available close to the crossconnects. The efficient approach is to size collocation spaces to fit into readilyavailable, conveniently located space on a first come first served basis, in much the same manner as the ILEC would do for itself when it requires additional equipment space. Indeed, with the deployment of digital equipment -- both in the local access network and to replace existing, less space-efficient analog switches in the CO -- there are many convenient spaces currently available for collocation space in ILEC COs.

Imposing all the costs of government-mandated building code upgrades on the CLEC: ILECs often are required to upgrade buildings to meet requirements such as the Americans with Disabilities Act or to incorporate the latest building code revisions (e.g., asbestos removal, electrical systems upgrades, sprinkler installations). These costs are not attributable to collocators but rather are part of the generic costs of CO space which should be borne by all users of the CO.
\Rightarrow Using non-competitive "contract prices" with "preferred suppliers" for the
procurement and resale of interface equipment to CLECs: ILECs have the incentive to employ these practices to artificially raise CLEC costs. This can be avoided by basing rates on least cost suppliers, competitive quotes, and best practice provisioning principles -- and most effectively by allowing the CLEC to purchase its own equipment wherever possible.
\Rightarrow Requiring CLECs to absorb excessive and inefficient manpower costs for in-house ILEC manpower and the use of non-competitive "preferred" consultants.
\Rightarrow Inclusion of Time and Material (T\&M) or Individual Case Basis (ICB) charges: Charges based on existing inefficient processes and over-engineering practices, especially since these charges are "undefined," can become extremely costly to the CLEC since costs are only quantified on a case by case basis upon implementation of a collocation request. When a CLEC has the business need for a specific collocation space, it is in a vulnerable negotiating position. ILECs can use this leverage to artificially increase CLECs' costs by forcing CLECs to delay their business plans while challenging specific charges. Furthermore, any charge that simply reimburses ILECs for their time and materials on an individual cost basis provides the ILECs with no incentive to pursue efficiencies and improved competitive processes.

The collocation model that is described in this White Paper is based on best practice CO planning strategies and input prices that reflect those charged by competitive suppliers. As a result, both ILEC customers and CLEC customers benefit from the most efficient use of the CO. In addition, the collocation model that has been developed is extremely flexible, providing costs for elements that a CLEC may seek out of a collocation area, i.e., there are no hidden sub-charges. This enables the collocation cost model outputs to be used to construct a flexible tariff that can meet the requirements of an individual collocator at a specific ILEC CO, with an easily defined single end-to-end charge for each element.

3 CENTRAL OFFICE PLANNING

3.1 PREVIOUS PLANNING PRACTICES

Many COs were originally designed and built to accommodate very different technological requirements for equipment space, connectivity, air cooling requirements, etc. Modern switching and transmission equipment presents different requirements. As a result, most ILEC COs, and in particular large urban and suburban COs, 3 currently have the following characteristics.
\Rightarrow Large multi-floor buildings with floors dedicated and reserved for specific equipment
\Rightarrow Various sized "pockets" of space scattered throughout the CO, created by the replacement of analog equipment with more space efficient digital technologies
\Rightarrow These "pockets" currently may be vacant, used by administrative staff, or still have unused analog equipment retired-in-place
\Rightarrow Lengthy and indirect cable routes caused by congestion in the overhead cable racks as a result of removing previous equipment without removing cables
\Rightarrow Multiple voice grade cross-connects using a Main Distribution Frame and various Intermediate Distribution Frames with complex inter-DF tie cable systems resulting in excessive cable lengths and additional points of failure

Most of the above characteristics are the result of ILEC planning strategies that are no longer efficient. For example, when faced with new technologies or modernization requirements in its already large urban COs, ILECs traditionally have responded by either adding floors to the
building or extending the building horizontally (rather than with forward-looking planning strategies that minimize the overall, long-term requirement for building space). As a result, COs throughout the country tend to be larger than necessary. The worst case scenarios, in terms of efficient utilization of equipment space, are usually the large urban, multiple-floor COs, which normally have significant amounts of space previously utilized for equipment now utilized by administrative or support personnel.

The situation is further exacerbated by the fact that many existing COs have congested overhead cable racking and/or blocked inter-floor cable holes, caused by removing equipment without also removing the unused cables that once connected this equipment from overhead racks. These conditions often make direct routing of cable difficult if not impossible -particularly when cables are routed between floors and/or over existing equipment areas. At times, new cables must be routed around congestion or additional cable racking must be installed to alleviate areas of congestion. The result is much longer than necessary cabling lengths. Costs can easily be manipulated according to the placement of a collocation area by the ILEC.

Figure 3A provides an illustrative example of the overhead cable congestion that currently exists in most large urban central office buildings and the resultant excessive fiber, power, and copper cross-connect connectivity lengths created as a result of this embedded ILEC practice.

[^2]

Figure 3A

The deployment of digital switching and transmission technologies that are far more spaceefficient than their analog predecessors, and the advent of distributed remote switching modules in the local access network, have resulted in a requirement for less equipment space
\qquad
in the CO and have reduced cross-connect complexity for voice grade connections. Thus, COs built in the past five years have been and going forward can be designed according to a more "forward looking" space planning scenario that results in smaller buildings, fewer floors, less overall square footage, and shorter and more direct cable routing. Figure 3B provides an illustrative example.

FORMARDLOOKNG CO SPACE PLANNNG DESTGN

Figure 3B

As depicted in Figure 3B, an urban CO built today or in recent years requires only three equipment floors and, unlike many existing urban ILEC COs, has the following connectivity characteristics:
\Rightarrow Shorter and more direct cable routes
\Rightarrow Less cable congestion
\Rightarrow A single Main Distribution Frame for voice grade connections

Thus, even in an urban environment, an efficient, forward-looking collocation area could not be more than two floors from the cross-connects.

3.2 BEST PRACTICE PLANNING STRATEGIES

The methodology used in this Model is to use an efficient, forward-looking CO model layout (such as the one displayed in Figure 3B) and current best practice CO planning strategies to calculate average connectivity lengths for the fiber riser between the cable vault and the collocation area, the power distribution cabling between collocation equipment and the BDFB, and the copper connections between the collocation area and appropriate ILEC cross-connect. These connectivity lengths are used in subsequent stages of the Collocation Model to establish investment levels required for efficient collocation.

The use of forward-looking average connectivity lengths developed from the CO model layout is appropriate because many existing urban CO conditions are simply not reflective of an efficient approach to CO space planning. If collocation charges were based on these existing CO conditions, unnecessary and discriminatory cost penalties would be imposed on CLECs -- costs that the ILEC would not incur to provide for its own going forward customers because it can place its own equipment in a manner that minimizes the deleterious effect of existing CO congestion. Furthermore, a forward-looking approach to determining average
connectivity length ensures that both parties have the incentive to work toward the realization of a best practice and least cost space planning scenario on a case-by-case basis.

Examples of how a forward-looking CO model layout and average connectivity lengths can be employed to promote best planning practices within existing CO environments include:
a) Using more than one vacant pocket of space to create multiple collocation areas on a first come first served basis
b) Relocating existing administrative staff currently located in prime equipment space to make that space available for collocation
c) Removing retired-in-place equipment currently located in prime equipment space to make that space available for collocation

In short, calculating average connectivity lengths based on a forward-looking CO model layout ensures that an ILEC will apply the same type of best practice space planning strategies for collocating CLECs as the ILEC will use for placement of its own equipment within the CO. It minimizes the potential that large, costly collocation areas would be created in remote areas of the CO, and forces both parties to work together, improving the likelihood that both ILEC and CLEC are treated equally.

4.1 FORWARD-LOOKING CENTRAL OFFICE MODEL LAYOUT

As noted above, the Collocation Model relies upon a forward-looking central office model layout to establish efficient collocation requirements. This CO model layout assumes a new urban CO designed for up to 150,000 lines, together with associated transport, power, multimedia, and miscellaneous equipment space. Such an office would need approximately 36,000 square feet (sq. ft.) of equipment space - or three equipment floors of about $12,000 \mathrm{sq}$. ft. (100 $\mathrm{ft} . \times 120 \mathrm{ft}$.) each - - plus a below-ground cable vault. (See Figures 4 A and 4 B .) The CO model layout also assumes an additional $3,000 \mathrm{sq}$. ft. on each floor and the entire basement (except for the cable vault area) to provide a generous allowance for building support services such as main corridors, elevators, washrooms, lunch rooms, conference facilities, administrative areas, electrical rooms, and mechanical rooms. This results in an overall footprint of 15,000 sq. ft.

The best practice CO planning strategy -- shown in Figure 4B -- provides adequate space for the long-term requirements associated with a forward-looking, urban CO and is representative of central office layouts that would have been constructed in recent years to accommodate growth in a downtown urban environment. New COs designed for areas outside of urban centers would likely consist of only one or two floors above the cable vault, requiring shorter cable connectivity lengths. Hence, the forward-looking physical central office model layout incorporates conservative assumptions in terms of recent CO telecommunications building deployment and is likely to be significantly larger than the average CO across the ILEC territory.

The forward-looking CO model layout being relied upon can also be used for COs located outside the downtown core or for situations where the ILEC's primary CO is not
expected to grow to three floors due to demographics. The impact would be minimal, because even a single switch CO in a one floor building is likely to utilize a footprint of approximately 15,000 square feet with all equipment placed on the same floor. Thus the use of this model for COs located in a suburban environment and for ILECs that may not have multi-floor COs in the downtown core, would mean that the average connectivity lengths for fiber, copper and power would be over-stated by about 20-40 feet (i.e the distance between floors). The only other area that would be affected is the land and building calculation. However, because the land and building calculation is based on assignable space, the impact on floor space rental is likely minimal (and, once again, overstated). The land cost used in the cost model is a default value and can be adjusted to suit local conditions.

SUMMARY	
EQUIPMENT SPACE PER FLOOR	$=12,000$ SQ. FT.
TOTAL FOOTPRINT PER FLOOR	$=15,000$ SQ. FT.
NUMBER OF FLOORS	$=3$
TOTAL EQUIPMENT SPACE	$=36,000$ SQ. FT.
TOTAL ABOVE GROUND FLOOR SPACE	$=45,000$ SQ. FT.
CABLE VAULT AND BUILDING SERVICES	$=$ BELOW GROUND

FORWARD LOOKING URBAN CENTRAL OFFICE

Figure 4B

To ensure efficient connectivity arrangements, similar to those incurred by the ILEC in deploying its equipment, the Model establishes collocation areas using pockets of existing vacant or administrative space in the CO . To be conservative, the Model calculates the average connectivity lengths based on a minimum and maximum scenario. For the maximum cable length, the model uses a worst case scenario with the collocation area located on the top floor (Floor 3) of the CO layout, the cross-connects located on Floor 1, and the collocation area at the extreme opposite corner of the building from where the cross connects are located. Based on this premise, there would be a two-floor distance between the collocation area and
the ILEC cross-connects. For the minimum cable length, the model uses a best case scenario and assumes that the collocation area is located on the same floor and in close proximity to the ILEC cross-connects. However, since physical collocation requires the construction of cages, it is unlikely that a new collocation area could be built directly adjacent to ILEC cross-connects. Therefore, the best case scenario includes a 40 foot minimum length between the collocation area and the ILEC cross-connects. Both scenarios include a 15 foot cable drop (i.e., 7 '6" on each end). Hence, the forward looking best practice CO model layout used in the Model generates minimum and maximum copper connectivity lengths of 55 and 275 feet. 4 The Model therefore uses an average connectivity length of 165 feet for Voice Grade, DS-1, or DS3 cabling between the CLEC collocation area and the appropriate ILEC cross-connect.

The average connectivity length of 165 feet is an appropriate assumption because COs built today and in the future would not have the inherent cost penalties associated with cable congestion, blocked cable holes, multiple MDFs, inter-DF tie cable systems and other limitations (which can easily be manipulated to increase the cost of entry for CLECs). As shown in Figure 4C, when ILECs install the same type of multiplexing and fiber terminal equipment for themselves as for the CLECs, the average cable distance tends to be in the 100 to 125 foot range, because equipment would be placed on the same floor and as close as possible to ILEC cross-connects. Thus, the Model conservatively sets connectivity lengths for CLECs that are significantly longer than the equivalent costs for the ILEC.

[^3]

Figure 4C

Using the same forward-looking, three-floor CO model layout and the best practice planning assumptions discussed above, average lengths for all collocation-related cabling and connectivity components have been developed. A summary of all average connectivity lengths used is set forth in Chart 1 below. 5

5 Calculations for all average cable lengths are included in backup documentation for the Collocation Model Layout.

CHART 1			
COLLOCATION MODELCONNECTIVTY COMPONENTS AND AVERAGE DISTANCES			
TYPE OF CONNECTION	$\begin{aligned} & \text { CABLE } \\ & \text { LENGTH } \end{aligned}$	CABLE RACK LENGTH	CABLE HOLES AND SLEEVES
FIBER ENTRANCE CABLE (BY CLEC)	$125^{\prime}-0^{\prime \prime}$	N/A	---
FIBER RISER CABLE (BY CLEC)	$175^{\prime}-0^{\prime \prime}$	$160^{\prime}-0^{\prime \prime}$	3
COPPER (DS-0/DS-1/DS-3)	$165^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime \prime}$	2
-48V DC POWER PLANT TO BDFB	$165^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime \prime}$	2
BDFB TO DC PANELS IN CAGE	$35^{\prime}-0^{\prime \prime}$	$5^{\prime}-0^{*}$	--
FLOOR GROUND BAR TO COMMON AREA GROUND BAR	100'-0'	IN CONDUIT	--
COMMON AREA GROUND BAR TO EQUIPMENT GROUND BAR	$30^{\prime}-0^{\circ}$	CABLE BRACKETS ON COPPER RACK	--

4.2 CENTRAL OFFICE COLLOCATION AREA MODEL

The Collocation Model assumes a best practice planning strategy that permits more than one collocation area to be assigned in a CO based on available space in close proximity to ILEC cross-connects. This is in contrast to an arbitrary assumption (sometimes made by the ILECs) that the first collocation area in a CO must be sized to accommodate all potential future CLECs, even when that decision results in placement of the collocation area in a remote location far from the cross-connects.

As shown in Figure 4D, the Model assumes a collocation area model layout of 550 square feet to take advantage of smaller areas that would be in relatively close proximity to ILEC cross-connects (these pockets of space include those made available by prior replacements of older technologies with more space efficient digital equipment, vacant area, space occupied by administrative staff, or locations occupied by redundant equipment that an efficient ILEC would have removed long ago). This assumption reflects an expectation by the

Model developers that, in terms of placement, the ILEC would employ the same best planning process that it would use when planning efficient equipment space allocations for its own equipment.

Figure 4D
The 550 square feet included in the collocation model layout provides sufficient space to accommodate interface equipment such as point of termination (POT) bays and remote power distribution BDFB equipment, while avoiding the economic disadvantages of exceptionally large collocation areas. For those COs where more than 550 square feet of collocation space is required, a second collocation area would be selected when necessary.

Proceeding in this manner is consistent with the FCC amended Order Part 51.323 (f)(1) (and Paragraph 585), which supports the concept of CLECs, obtaining reasonable amounts of space in an ILEC's premises on a first-come, first-served basis.

Within the 550 square foot collocation area, the collocation area model layout assumes the construction of four 100 square foot equipment areas and a common area of 150 square feet (to accommodate ILEC and CLEC point of termination interface equipment bays and a BDFB). The Model anticipates that the cost of the entire common area would be shared by all CLECs (with no contribution from the ILEC) and that CLECs would request collocation space in increments of 100 square feet, without any guarantee of expanding into an adjacent space. If a CLEC requires additional space for expansion, it would have to take the next closest available space in much the same way as an ILEC would. For this type of situation, cage-tocage cabling for cages occupied by the same CLEC should be permitted.

4.3 COMMON INTERFACE EQUIPMENT

With the exception of the shared BDFB, which is included in the Power Consumption elements discussed in Section 5, the Model assumes that all interface equipment located in the common area will be purchased and installed by the CLEC. This includes POT bays, and all required voice grade, DS-1, and DS-3 interconnection shelves to be placed on the POT bays. 6 Proceeding in this manner permits CLECs to achieve the benefits of a competitive best practice and least cost approach to the provisioning of interface equipment, instead of forcing them to absorb the cost of potentially less-competitive contract prices currently in place between the ILEC and its suppliers.

[^4]
4.4 OVERHEAD COMMON SYSYTEMS INFRASTRUCTURE

Cables are typically routed within the CO environment on overhead cable racks supported from the ceiling. (See Figure $4 E$.)

Figure $4 E$

CO cable racking is readily available in widths between five and thirty inches. Usually, different types of cabling (e.g., fiber, power, copper) are routed on separate cable racks. The bulk of the cabling in a CO is copper, which is typically placed on wider cable racks $\left(15^{n}, 20^{n}\right.$, $25^{\prime \prime}, 30^{\prime \prime}$). Specialty cables, such as fiber and power, are usually placed on narrower $12^{\prime \prime}$ or $15^{\prime \prime}$ cable racks. Although the ILEC has the responsibility to supply copper, fiber, and power
located completely within the secure collocation area, it would pose no potential threat to the ILECs' network security or integrity.

Dockel No. 960833-TP, 960846-TP
Rick Bissell Exhibit RB-1
accessibility to the new collocation area in the most cost efficient manner, 7 Figure 4 F provides the preferred configuration for routing fiber, copper and power cables to each collocation area.

Figure 4F

As shown, an efficient connectivity arrangement provides for pre-placed cable routes installed by the ILEC at the time that the initial collocation area is constructed. The following

7 The model assumes that if necessary the ILEC must place the racks between the collocation area and the cross-connects. Portions of the Cable Racks may already be in place. In either case, the CLEC's pay space
connectivity routes will be required by the CLECs and should be incorporated into the planning process for a new initial collocation area.
\Rightarrow a copper cable route for Voice Grade, DS-1, DS3 cables to ILEC cross-connects
\Rightarrow a fiber cable route for Fiber Riser between the cable vault and the collocation cage
\Rightarrow a power cable route for cabling between the -48 V Power Plant and Collocation $B D F B$

As previously noted, it is the responsibility of the ILEC to provide overhead cable racking to transport cables between various areas of the CO. With the exception of small amounts of cable located within the common area, the vast majority of cabling associated with collocation connectivity will be routed on shared cable racks within the ILEC CO. To account for this, a cable rack occupancy cost (based on the amount of space utilized on a particular shared cable rack) has been incorporated into the Model (for similar reasons, an occupancy cost for the use of ILEC inter-floor cable holes also is incorporated into the Model).

Because cables are many different sizes, the Model develops individual cable rack occupancy costs for the various types of telecommunications cable used in ILEC COs, which are reflected in Chart 2. The top portion of the chart, entitled Cable Rack Capacities, outlines the commonly-used cable rack sizes, together with the estimated number of cables that can be placed on each at various cable pile-up levels (e.g. build-up on the rack). The lower portion of Chart 2 sorts the various types of cabling commonly used for telecommunications equipment according to size, and develops a cable equivalency factor. As shown, DS-1 and DS-3 cables are the benchmark, with an equivalency of one cable. A 100-pair voice grade cable is equivalent to two benchmark cables; a fiber riser cable is equivalent to three benchmark cables; and a large 750 MCM power cable is equivalent to four benchmark cables. 8

CHART 2													
COLLOCATION MODEL - CABLE RACK CAPACITIES													
CABLE RACK WIDTH		CABLE PILE-UP											
$\begin{aligned} & \text { ACTUAL } \\ & \text { SIZE } \end{aligned}$	CABLE SPACE	1"	2"	3"	4"	$5^{\prime \prime}$	$6^{\prime \prime}$	$7^{7 \prime}$	$8^{\prime \prime}$	9"	10"	11"	12"
10°	$8.5{ }^{\text {n }}$	26	51	77	102	128	154	179	204	230			
12^{*}	$10.5{ }^{\circ}$	32	63	94	126	158	189	221	252	283	315		
15°	13.5	41	81	122	162	203	243	284	324	365	405	446	486
20^{\prime}	$18.5^{\prime \prime}$	56	111	167	222	278	333	389	444	500	555	611	666
25^{\prime}	$23.5{ }^{\text { }}$	71	141	212	282	353	423	494	564	635	705	776	846
30°	28.5	86	171	257	342	428	513	599	684	770	855		
CABLE TYPE	$\begin{aligned} & \text { EQUIVALENCY } \\ & \text { FACTOR } \end{aligned}$	OCCUPANCY FACTOR FOR CABLE RACK \& CABLE HOLE USAGE											
Fiber Riser	3	Fiber Riser cables assume $7^{\text { }}$ Pile-up on $12^{\text {" Racks }}$ * Capacity $=74$ Cables $(221 / 3)$ Capacity $=74$ Cables $(221 / 3)$											
$\begin{aligned} & \hline 750 \\ & \text { MCM } \end{aligned}$	4	Power Distribution Cables assume $5^{\prime \prime}$ Pile-up on 15^{7} Racks * Capacity $=51$ Cables (203/4)											
$\begin{aligned} & 100 \text { Pair } \\ & \text { VG/DS-0 } \end{aligned}$	2	Copper DS-0 Voice Grade Cables assume 10^{n} Pile-up on 20^{n} Racks Capacity $=278$ Cables (555/2)											
$\begin{gathered} \hline 28 \text { Pair } \\ \text { DS-1 } \end{gathered}$	1	Copper DS-1 Cables assume 10^{n} Pile-up on 20^{n} RacksCapacity $=555$ Cables **											
$\begin{aligned} & \text { Coax } \\ & \text { DS-3 } \end{aligned}$	1	Coax DS-3 assume 10^{n} Pile-up on 20^{n} Racks Capacity $=555$ Cables **											

*Reduced capacity due to rigidity \& bending radius
*DS-1 \& DS-3 requires 2 cables per circuit

The Occupancy Factors are a function of both pile-up on the rack and the widths of the racks. Although it is possible to find large $25^{\prime \prime}$ and $30^{\prime \prime}$ cable racks being utilized in some areas of certain COs, the occupancy factors used in the Collocation Model have been conservatively calculated assuming that copper connectivity uses 20^{n} cable racks, power cables use 15^{n} cable racks, and fiber riser cables use $12^{\prime \prime}$ cable racks. Although in some COs, existing cable build-up in overhead cable racks may be in excess of 1.5 feet in some areas of the CO (e.g., above cross-connects), the central office model layout develops cable rack occupancy factors using a conservative assumption of only 10° pile-up for copper cabling (voice grade, DS-1, DS3), 7^{n} pile-up for fiber riser cable, and 5^{n} pile-up for the more rigid power cabling. Cable rack fills have therefore been accounted for by using conservative cable rack sizes with best
practice cable pile-up assumptions (i.e., $25^{\prime \prime}$ and $30^{\prime \prime}$ cable racks and 1.5 foot cable build-up situations have not been considered).

Based on the previously-determined average connectivity lengths of 165 feet for copper connectivity and 175 feet for fiber riser cables, the length component to be used for the cable rack occupancy component on shared cable racks has been determined to be 150 feet and 160 feet, respectively, for copper and fiber connectivity. The fifteen foot difference between the average cable lengths of 165 and 175 feet and cable rack occupancy of 150 and 160 feet is accounted for by the cable drops to equipment at each end ($7^{\prime} 6^{\prime \prime}$), where no cable rack is being used.

5 DC POWER AND GROUNDING ELEMENTS

5.1 OVERVIEW

The standard and most cost effective method of delivering -48 V DC between the power plant and telecommunications equipment in a CO environment is to use a remote power distribution bay, such as a BDFB. This is particularly true in a multi-floor installation or in circumstances in which long cable runs are required to reach the power plant. The cost implications of excessive power cable runs back to the power plant could be used as a deterrent to CLEC collocation, because in many cases the cost of power cable increases much faster than the associated increase in distance. The major reason for this disproportionate increase in power cable cost in comparison to distance is that power cable must be sized to provide the correct voltage at the equipment. Therefore, as the length of power cable increases, the voltage loss also increases, creating the need for larger distribution cables, often costing several times more per foot.

For this reason, the accepted best practice power planning is to install a BDFB in close proximity to the equipment it will serve, thus permitting the use of smaller, less-costly cables for power distribution. This also ensures that the -48 V power plant will not become exhausted due to the requirement for many small fuses. Figure 5A provides a schematic depicting the relationship between the -48 V power plant, the BDFB , and the end equipment.

In summary, the use of a remote BDFB located in close proximity to the equipment it will serve has become the norm for providing -48 V DC power to telecommunications equipment, because it postpones the exhaust of the -48 V power plant and is more costeffective than running many large (and costly) power distribution cables all the way back to the power plant for equipment fusing. An overview of the accepted best practice method for the delivery of -48 V DC power in a telecommunications environment is shown in Figure 5B.
\qquad

OPTIMUM -48V DC POWER DELIVERY USING BDFBs \& PDCs

Figure 5B

Figure 5B illustrates the best practice method for delivering power. This configuration minimizes power distribution costs and provides optimum operations flexibility by placing fusing in close proximity to equipment. ILECs regularly utilize a BDFB or some other type of distribution bay (in the Nortel DMS switch, the BDFB is referred to as a power distribution center) placed close to the equipment it will serve. Normally, these BDFBs are strategically located according to the expected fuse requirements of the equipment. In a transmission

Docket No. 960833-TP, 960846-TP
Rick Bissell Exhibit RB-1
environment, a BDFB is located in the first bay position of each third or fourth equipment lineup, depending on line-up length and expected demand for fuses. This standard approach permits short power feeders to equipment and ensures a least-cost approach to power distribution.

Figure 5B also reflects the use of an intermediate fuse bay, such as a BDFB, to distribute power. This has proven to be more cost-effective than running numerous cables to the power plant and has become the norm for distributing power to all types of telecommunications equipment, particularly in large urban COs with multiple floors.

The use of an intermediate distribution bay is the least-cost and best-practice method for delivering -48 V DC power to telecommunications equipment. In a collocation environment however, the delivery of -48 V power is typically divided into two separate charges:

1) a monthly power consumption charge for shared use elements such as the power plant, diesel generator and distribution as far as the BDFB
2) a non-recurring power distribution charge to provide power feeders between the equipment and the closest BDFB

Unless the line of demarcation between power consumption and power distribution is clearly defined, the opportunity for double recovery could be built into a model. To avoid this potential problem requires two basic steps. First, any NRCs related to common systems infrastructure (cable racking/power cables) for the delivery of -48 V power should be based solely on the distance between the collocation equipment and a Collocation BDFB, and NOT between the Collocation Area and the -48V DC power plant. This is necessary because the investments required to deliver power between the -48 V power plant and the BDFB are
included in modeling the power consumption charge.
Second, an average length is used in the calculation of the investment for DC power distribution between the CLEC equipment and a collocation BDFB. This ensures that the ILEC uses the same best practice planning strategies as it would for its own installations by placing the BDFB in close proximity to collocation equipment.

Figure 5BB below superimposes a collocation scenario on the previously presented Figure 5B depicting an optimum telecommunications power delivery arrangement to demonstrate the requirement for a clear line of demarcation between power consumption and power distribution for collocation.

OPTIMUM -48V DC POWER DELIVERY FOR COLLOCATION

Figure 5BB

Proceeding in this manner ensures that -48 V DC power will be delivered to CLECs in the most cost-effective manner by using best practice power planning principles (i.e., using BDFBs) and incorporating adequate checks and balances to ensure that no double-recovery could arise by calculating length sensitive power distribution NRCs in a way that would include portions of the investments already included in the power consumption recurring charge -- a situation that would be very difficult to detect on a case by case basis.

Because BDFBs are normally located within a few line-ups of the equipment to be fused, the best-practice planning scenario for the collocation BDFB is to place it as close as possible to the collocation area cages -- preferably in the collocation common area provided in the collocation area model layout, depicted in Figure 5C. Because this BDFB is simply a remote fuse bay connected to the shared -48 V power plant, it also can be used by any ILEC equipment located near the collocation area.

Figure 5C

Based on the assumption that the collocation BDFB is strategically located in the collocation common area as per the same best practice planning scenario used by the ILEC for the delivery of -48 V DC power to its own equipment, it is unlikely that -48 V DC power distribution cables for fusing collocation equipment would be longer than about 35 feet. Therefore, the Collocation Model assumes an average length of 35 feet for -48 V DC power distribution between the collocation BDFB and the CLEC provided DC power panels placed inside each cage. The 35 feet assumes 15 feet in the common area and a 20 foot drop provided in the cage to allow the CLEC to connect to its $D C$ power panels.

5.2 DC POWER REQUIREMENTS FOR COLLOCATION MODEL

As shown in Figure 5D, each 100 square-foot allocation provided by the collocation area model layout is likely to require 80 to 190 amps DC , depending on the type and amount of equipment instalied by the collocator. Therefore, including the nominal 23 amps of power required in the collocation common area for POTS bays, the estimated average long term - 48 V DC power requirements to serve the proposed overall 550 square-foot collocation area is 563 amps . The use of averages for assessing the long term power requirement in the Model is reasonable, because the Model provides a cost element for power consumption charges that are imposed on a per amp unit. Thus, if one CLEC is a high user of DC power, the Model will determine power consumption costs based on the level of that CLEC's usage. 9

[^5]

SUMMARY OF LONG TERM DC POWER REQUIREMENT	
ITEM	48 V DC POWER
AVERAGE REQUREMENT / 100 SQ. FI. ALLOCATION	135 amps
EXPECTED REQUIREMENT IN COMMON AREA	23 amps
LONG TERM REQUIREMENT IN COLLOCATION AREA	563 amps

COLLOCA TION MODEL - LONG TERM - $48 V D C$ POWER

Figure 5D

5.3 POWER DISTRIBUTION COMPONENTS

The Model includes the delivery of -48 V DC power between the shared -48 V DC power plant and the collocation BDFB in the cost that is developed for the power consumption element. The charge for power distribution between the BDFB and the CLEC-provided DC panels is limited to the previously mentioned 35 feet of power cable. The selection of ILEC-provided power cables will be dependent on the amount of bulk DC power requested by the CLEC.

Similarly, CLEC-provided DC power panels located in the CLEC cage for fusing are a function of individual CLEC fusing requirements and the amount of DC power the CLEC is willing to purchase.

In addition, the Model assumes that the CLEC reimburses the ILEC for the installation of a five foot length of $12^{\prime \prime}$ cable rack to connect between the CLEC cage and the power rack installed over the shared BDFB. Because this rack is only required on the initial installation, it is included as part of the collocation cage investments in the Model. A schematic setting forth the components that are included in the central office model layout as part of the non-recurring cost for -48 V DC Power Distribution is displayed below.
\qquad

COLLOCATION MODEL--48V DC POWER DELIVERY

Rower Dellvery Elements (-48V DC Option)				
Element	Description	$\begin{aligned} & \text { Prov. by } \\ & \text { CLECILEC } \end{aligned}$	Quantity	Remarks
-48 V DC Power Panel	Located in Cage	CLEC	--	CLEC installs -48V DC panels in cage and terminates ILEC provided feed
Cable 'B'	$4 \times$ \# Cable between Cage \& Collo BDFB	ILEC	$35^{\prime}-0^{*}$	One time charge for 40 Amps (20 Amp A \& B feeds + return) as requested by CLEC -Includes $20^{\prime}-0^{\prime \prime}$ drop in cage
Cable ' B^{\prime}	$4 \times$ \#2 Cable between Cage \& Collo BDFB	ILEC	35'-0*	One time charge for 100 Amps ($50 \mathrm{Amps} A \& B$ feeds + return) as requested by CLEC - Includes $20^{\prime}-0^{\circ}$ drop in cage
Cable 'B'	$4 \times 2 / 0$ Cable between Cage \& Collo BDFB	ILEC	$35^{\prime}-0^{\prime \prime}$	One time charge for 200 Amps ($100 \mathrm{Amps} \mathrm{A} \& \mathrm{~B}$ feeds + return) as requested by CLEC - Includes $20^{\prime}-0^{*}$ drop in cage
Cable Rack	$15^{\prime \prime}$ CLEC specific	ILEC	$5^{3}-0^{*}$	Included in cage investment
BDFB	Located close to Collocation Cages	ILEC	--	Included in -48V DC Power Consumption Charge
Cable Rack Occupancy	Shared support for Cable 'A' below	ILEC	-	Included in 48 V DC Power Consumption Charge
Cable ' A '	Cable between 48 V Power Plant \& BDFB	ILEC	--	Included in -48 V DC Power Consumption Charge
 -48V DC Power Plant	Shared use between CLEC's \& ILEC	ILEC	--	Included in -48V DC Power Consumption Charge
Auto-start Diesel Fuel Tanks, \& AC	Required for Battery Back-up	ILEC	--	Included in -48V DC Power Consumption Charge

Switchboard				
AC Energy	Required for AC Energy used	ILEC	-	Included in -48V DC Power Consumption Charge

5.4 POWER CONSUMPTION COMPONENTS

The -48 V DC power consumption components that are modeled to develop the power consumption recurring charge include all ILEC investments necessary to engineer, furnish, and install (EF\&I) a shared -48 V power plant, including the mandatory battery and diesel generator back-up. The Model also includes amounts for fuel tanks, AC entrance, and switchboard equipment. Based on the previously discussed best power practice planning strategy, a BDFB and associated cabling components also are included to ensure the most cost-efficient method of delivering $-48 \mathrm{~V} D C$ power to the collocation area.

To maximize its flexibility, the Model develops investments associated with two different power plant installations, one based on a 2500 amp DC power plant and the other based on a 4000 amp plant. These two sizes were selected to provide a reasonable range of ILEC investments in medium and large sized COs, respectively.

The following components are included in the Model to develop a proposed charge for CLEC -48V power consumption. 10

10 Details regarding -48 V power plant investments and the resultant charge are included in the Collocation Cost Model.

With a shared -48V DC power plant, it is impossible to separately meter (and separately charge for) CLEC AC electric energy usage. Therefore, an AC electric energy component is included in the model to account for the shared -48 V DC power plant. As shown on Chart 3. the $A C$ energy component is developed by restating the cost per $A C$ kilowatt hour usage charge as a an AC energy rate per DC amp used. 11 The rate determined as a result of the above energy calculation is added to the costs per amp for $D C$ power to create the all-inclusive monthly power consumption charge.

[^6]| Chart 3 | |
| :--- | :---: |
| Calculation of AC Electric Energy Component | |
| Quantity of DC Amps | 1 |
| Quantity of Watts per DC Amp | 48 |
| Hours Usage per Day | 24 |
| Days Usage per Month | 30 |
| Total Monthly DC Watts | 34560 |
| AC Equivalent Watts at 85\% Rectifier Efficiency | 40659 |
| Total AC Kilowatt Hours | 40.66 |
| Cost per Kilowatt Hour | $\$$ |
| AC Energy Rate per DC Amp | $\$ 1$ |

5.5 EQUIPMENT GROUNDING COMPONENTS

As shown in the following schematic, the collocation area model layout assumes that each CLEC will furnish and install a cable rack mounted equipment ground bar within its cage. The CLEC also will install a suitable ground cable to connect to the ILEC provided ground bar that should be placed in the collocation common area for use by all CLECs. The following schematic outlines the grounding components assumed in the collocation area model layout (the shaded areas in the chart indicate elements provided by the ILEC for which the Collocation Model develops costs).

COLLOCATION MODEL - EQUIPMENT GROUNDING

Grounding Elements				
Element	Déscription	Provided by CLECILEC	Quantity.	Remarks
Equipment Ground Bar	Attached to CLEC Cable Rack in Cage	CLEC	-	CLEC will provide ground bar and connect to ILEC Ground Bar in Common Area
Cable 'B'	No. 4/0 cable between CLEC Ground Bar and Common Area Bar	CLEC	$30^{\prime}-0^{\prime \prime}$	CLEC installs ground cable to connect to ILEC Common Area Ground Bar using cable brackets attached to ILEC cable racking
New Common Area Ground Bar	Extension of ILEC Building Principal Floor Ground	ILEC	-	ILEC to extend suitable ground to Common Area and place ground bar for all CLECs
Cable 'A'	No. $4 / 0$ cable in conduit between existing CO Floor Ground Bar and new Common Area Bar	ILEC	$100^{\prime}-0^{\prime \prime}$	ILEC extends suitable ground to Common Area for all CLECs

6 ACCESS (ENTRANCE FIBER) COMPONENTS

6.1 OVERVIEW

The collocation of competitive equipment in ILEC central office buildings includes fiber connectivity between the first manhole and the CLEC collocation area, using CLEC-provided, fire-retardant cable for routing cables through the CO. Ideally, the pulling and splicing of fiber cable between the manhole and the cable vault, and the subsequent routing of fiber riser cable between the cable vault and collocation area, would be performed by the CLEC. In the event that this is not permitted, however, the CO model layout incorporates assumptions (which are outlined below) to calculate the costs that an efficient ILEC would incur to perform these functions in a competitive environment.

6.2 FIBER ENTRANCE COMPONENTS

The major elements required to route fiber cable between the first manhole and the Collocation cage using fire retardant cable include:
\Rightarrow Pulling and splicing of cable in the cable vault
\Rightarrow A splice case to change from external to internal fiber cable
\Rightarrow Fire retardant riser cable between the vault splice and collocation area
\Rightarrow Cable rack and cable hole (with occupancy charges based on usage)
The following schematic outlines the elements that have been used in the CO model layout to determine the cost of access connectivity (assuming that it would not be possible for the CLEC to perform the required pulling and splicing in the ILEC CO).
\qquad

COLLOCATION MODEL - ENTRANCE FIBER (Fire Retardant Cable)

Collocation Area

Cable
Rack

Element	Description	Provided by CLECILEC	Quantity	Hours	Remarks
Fiber Patch Panel	Located in cage	CLEC	--	--	Termination to Cage Fiber Patch Panel by CLEC
Cable 'B'	Between cage \& vault splice	CLEC	$175^{\prime}-0^{\prime \prime}$	--	Fire retardant Fiber cable provided by CLEC
Installation of Cable 'B'	Placed on shared cable rack (ILEC + CLECs)	ILEC	- $175^{\prime}-0^{\prime \prime}$	14	One time charge Includes opening / closing of 3 cable holes
Cable Rack Occupancy	12" Rack shared by ILEC + CLECs	ILEC	$135^{\prime}-0^{*}$		Cost per cable
Cable Rack	12" Rack shared by all CLECs	ILEC	$20^{\prime}-0^{\prime \prime}$	-	Included in cage cost modeling
Cable Rack	12^{\prime} CLEC specific Rack	ILEC	$5^{1}-0^{*}$	-	Included in cage cóst modeling
Cable Hole Occupancy	Cable holes shared by CEEC's \& IEEC	ILEC		-	For use of ILEC cable holes
Splice Case	External to fire retardant cable	CLEC	1	--	Approved vault splice case provided by CLEC
Cable 'A'	Between vault splice \& manhole	CLEC	--	--	Fiber cable provided by CLEC
Structure Charge	Between manhole \& cable vault splice	Tariff Item	125'-0'	-	Per existing structures tariff
Cable Pulling	Manhole to cable vault splice	ILEC	$125^{\prime}-0^{\prime}$	4.0	Includes set-up \& takedown
Splicing Activity	External cable to fire retardant cable	ILEC	-	3.0	Set-up \& take-down in vault
Splice Fibers	In Cable Vault	ILEC	-	2.0	For up to 24 Fibers

Note: Access Design Charges included in ILEC Manpower Summary - Section 9

7 COPPER CONNECTIVITY COMPONENTS

7.1 OVERVIEW OF CONNECTIVITY MODELS

This aspect of the collocation area model layout addresses the need to provide connectivity between the collocation area and the ILEC cross-connects. The model assumes that connectivity between the CLEC and ILEC can be provided at three different transmission bandwidths.

1. Voice Grade (VG) is the transmission level of connection used to access the ILEC outside plant loops at a voice grade level. The CLEC will interconnect with voice grade circuits at the ILEC Main Distribution Frame (MDF).
2. Digital Stream 1 (DS-1) is the transmission level of connection containing 24 voice grade circuits ("circuit" is abbreviated as "ckt" in this document and the Collocation Model) at $1.544 \mathrm{Mb} / \mathrm{s}$. This type of connection will be used primarily to provide connectivity between the collocation area and the ILEC access network to interconnect to unbundled DS-1 loops.
3. Digital Stream 3 (DS-3) is the transmission level of connection containing $28 \mathrm{DS}-1$ Systems or 672 equivalent voice grade circuits. DS-3 connections will be used primarily to provide connectivity from the CLEC switch site to the collocation area over leased facilities.

In most ILEC COs, the majority of DS-1 and DS-3 circuits to which CLECs will want to interconnect are currently located on DSX panels. However, in some ILEC COs those higher bandwidth circuits may have already been relocated to an electronic digital cross-connect

Docket No 960833-TP, 960846-TP
system (DCS). The Collocation Model addresses both situations by including all components necessary for end to end connectivity in each case

Depicted in schematic form on the following pages are the best practice and least-cost connectivity arrangements that have been adopted in the Collocation Model for all interconnection between the collocation area and various ILEC central office cross-connects These include the following:
\Rightarrow Distance from the collocation area to the ILEC equipment is 165 feet
\Rightarrow Cable Rack $1 A$ is dedicated to an individual CLEC and included in the cage cost modeling
\Rightarrow Cable Rack 2A is shared by all CLECs and also included in the cage cost modeling
\Rightarrow Cable Rack B and all cable holes are shared between the ILEC and CLECs and reimbursed by a cable rack occupancy charge

7.2 VOICE GRADE MODEL REQUIREMENTS

Copper Connectivity at Voice Grade Level

Co-location Area

	DESCRIPTION	$\begin{gathered} \text { PROVIDED } \\ B Y \end{gathered}$	SIZE/CAPACITY	LENGTH
CLEC Equipment	Voice Grade Equipment	CLEC		
Cable A	Cable from Line Cards to POT Bay	CLEC		<25 feet
Cable Rack 1A	20° Ladder Rack - CLEC specific - in cage cost model	ILEC .		5 feet
Cable Rack $2 A$	20" Ladder Rack - Shared by CLECs - in cage cost model	ILEC		20 feet
POT Bay	Frame to hold Terminal Block for Demarcation Point.	CLEC	$\begin{aligned} & 7^{\prime}-0^{n} \text { high } \times 23^{n} \\ & \text { wide } \times 12^{4} \text { deep } \end{aligned}$	
TS A	66 Type Terminal Block	CLEC		
Cable B	Cable from Pot Bay Terminal Blocks to HMDF	ILEC	100 Pair	$165 \text { feet }$
Cable Hole Occupancy	2 Cable Holes shared by ILEC + CLECs	ILEC		
Cable Rack B Occupancy	ILEC + CLECs	ILEC		150 feet
MDF-H	Horizontal Terminal Block for X-Conn to Access side of DF	ILEC	100 pair	
MDF	MDF Terminal Strip Space	ILEC	1 block space	
$\begin{aligned} & \text { MDF } \\ & \text { X-Connect } \end{aligned}$	Jumper from horizontal to vertical ~ Included in Unbundled Loop	ILEC		
MDF-V	Vertical side terminal strip ~ Included in Unbundled Loop	ILEC		

7.3 DS-1 MODEL REQUIREMENTS USING A MANUAL DSX

Copper Connectivity at DS-1 Level (DSX)

Co-Iocation Area

CONNECTIVITY ELEMENTS FOR DS-1 SERVICE (DSX OPTION)				
ELEMENT	DESCRIPTION	$\begin{gathered} \hline \text { PROVIDED } \\ \text { BY } \end{gathered}$	SIZE/CAPACITY	LENGTH
CLEC Equipment	DS-1Multiplexer	CLEC	28 DS1	
Cable A	2×30 Pair ABAM	CLEC	28 DS1	<25 feet
Cable Rack 1A	20" Ladder Rack - CLEC specific ~ included in cage cost model	ILEC		5 feet
Cable Rack 2A	20" Ladder Rack -Shared by CLECs ~ included in cage cost model	ILEC	555 ABAM	20 feet
POT	Demarcation Point	CLEC	$\begin{gathered} 7^{\prime}-0^{\prime \prime} \text { high } \times 23^{\prime \prime} \text { wide } \\ \times 12^{\text {" }} \text { deep } \\ \hline \end{gathered}$	
DSX-1A	Passive X-Connect Panel	CLEC	56 DS1	
POT X-conn	22 Gauge jumper wire	CLEC	4 feet	
DSX-1B	Passive X-Connect Panel	CLEC	56 DS1	
Cable B	2×30 Pair ABAM	ILEC	28 DS1	165 feet
Cable Rack B Occupancy	20" Ladder Rack - Shared by ILEC + CLECs	ILEC	555 ABAM	150 feet
Cable Hole Occupancy	2 Cable Holes - Shared by ILEC + CLECs	ILEC	555 ABAM per hole	
DSX-1C	Passive X-Connect Panel	ILEC	56 DS1	
DSX	Digital X-Connect Frame shared by ILEC + CLECs	ILEC	560 DS1	

7.4 DS-1 MODEL REQUIREMENTS USING AN ELECTRONIC DCS

Copper Connectivity at DS-1 Level (DCS)

CONNECTIVITY ELEMENTS FOR DS-1 SERVICE (DCS OPTION)				
ELEMENT	DESCRIPTION	$\begin{gathered} \text { PROVIDED } \\ \text { BY } \\ \hline \end{gathered}$	SIZE/CAPACITY	LENGTH
CLEC Equipment	DS-1Multiplexer	CLEC	28 DS1	
Cable A	2×30 Pair ABAM	CLEC	28 DS1	<25 feet
Cable Rack 1A	20" Ladder Rack - CLEC specific ~ included in cage cost model	ILEC		5 feet
Cable Rack 2A	20" Ladder Rack -Shared by CLECs \sim included in cage cost model	ILEC	555 ABAM	20 feet
POT	Demarcation Point	CLEC	$\begin{gathered} 7^{\prime}-0^{n} \text { high } \times 23^{\prime \prime} \text { wide } \\ \times 12^{\text {" }} \text { deep } \\ \hline \end{gathered}$	
DSX-1A	Passive X-Connect Panel	CLEC	56 DS1	
POT X-conn	22 Gauge jumper wire	CLEC	4 feet	
DSX-1B	Passive X-Connect Panel	CLEC	56 DS1	
Cable B	2×30 Pair ABAM	ILEC	28 DS1	165 feet
Cable Rack B Occupancy	20" Ladder Rack - Shared by ILEC + CLECs	ILEC	555 ABAM	150 feet
Cable Hole Occupancy	2 Cable Holes - Shared by ILEC + CLECs	ILEC	555 ABAM per hole	
DCS	Digital X-Connect System shared by ILEC + CLECs	ILEC	7168 DS1	

7.5 DS-3 MODEL REQUIREMENTS USING A MANUAL DSX

Copper Connectivity at DS-3 Level (DSX)

Co-location Area

CONNECTIVITY ELEMENTS FOR DS-3 SERVICE (DSX OPTION)				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE	LENGTH
CLEC Equipment	DS-3 Terminal/Multiplexer	CLEC		
Cable A	734 Shielded	CLEC		<25 feet
Cable Rack 1A	20" Ladder Rack - CLEC specific \sim included in cage cost model	ILEC		5 feet
Cable Rack 2A	20" Ladder Rack - Shared by all CLECs	ILEC	$555-734$ type	20 feet
POT	Demarcation Point	CLEC	$7^{\prime}-0^{\prime \prime}$ high $\times 23^{\prime \prime}$ wide $\times 12$ " deep	
XC-A	Passive X-Connect Panel	CLEC	16 DS3	
POT X-Conn	Shielded X-Connect Wire	CLEC	2 per DS3	3 feet
XC-B	Passive X-Connect Panel	CLEC	16 DS3	
Cable B	734 Shielded (2 cables)	ILEC	2 per DS3	165 feet
Cable Rack B Occupancy	20" Ladder cable rack - Shared ILEC + CLECs		555734 Type	150 feet
Cable Hole Occupancy	2 Cable holes between floors ~ Shared ILEC + CLECs	ILEC	555734 Type	
XC-C	Passive X-Connect Panel	ILEC	16 DS3	
DSX	Digital X-Connect Frame shared by ILEC + CLECs	ILEC	112 DS3	

7.6 DS-3 MODEL REQUIREMENTS USING AN ELECTRONIC DCS

Copper Connectivity at DS-3 Level (DCS)

Co-location Area

CONNECTIVITY ELEMENTS FOR DS-3 SERVICE (DCS OPTION)				
ELEMENT	DESCRIPTION	$\begin{gathered} \text { PROVIDED } \\ B Y \end{gathered}$	SIZE	LENGTH
CLEC Equipment	DS-3 Terminal/Multiplexer	CLEC		
Cable A	734 Shielded	CLEC		<25 feet
Cable Rack 1A	20^{n} Ladder Rack - CLEC specific ~ included in cage cost model	ILEC		5 feet
Cable Rack 2A	$20^{\prime \prime}$ Ladder Rack - Shared by all	ILEC	555-734 type	20 feet
POT	Demarcation Point	CLEC	7'-0" high x $23^{\prime \prime}$ wide x 12 " deep	
XC-A	Passive X-Connect Panel	CLEC	16 DS3	
POT X-Conn	Shielded X-Connect Wire	CLEC	2 per DS3	3 feet
XC-B	Passive X-Connect Panel	CLEC	16 DS3	
Cable B	734 Shielded (2 cables)	ILEC	2 per DS3	165 feet
Cable Rack B Occupancy	$\begin{aligned} & 20^{\prime \prime} \text { Ladder cable rack - Shared } \\ & \text { ILEC }+ \text { CLECs } \end{aligned}$		555734 Type	150 feet
Cable Hole Occupancy	2 Cable holes between floors ~ Shared ILEC + CLECs	ILEC	555734 Type	
Digital X-Connect System	DS-3 Digital Cross-Connect shared by ILEC + CLECs	ILEC	512 DS3	

8 LAND AND BUILDING ELEMENTS

8.1 OVERVIEW

The largest charges that ILECs have proposed for CLEC collocation have been associated with the costs of building modifications -- costs that allegedly are directly related to collocation placement in the CO. Since decisions regarding placement of the collocation area are typically made by the ILEC with no input from CLECs, if the CLEC must pay for all alleged building modification costs, the ILEC -- unless constrained -- has the ability to select a location in the CO that is either difficult to access or requires extensive new construction. ILECs can impose site preparation charges that include costs for demolishing existing walls, removing doors, electrical and mechanical components, etc., even before new construction begins. It is not uncommon for the ILEC to require CLECs to pay for new corridors, hallways, doors, and sometimes even a costly new external entrance to the building, allegedly to provide a"secure environment." (The issue of security as it relates to this Model is addressed in Section 8.2.)

Building renovation charges imposed on CLECs can be prohibitive if the ILEC is allowed to recover from the CLEC all expenses associated with mandated changes in local building codes. These include items such as asbestos removal, building modifications to meet the Americans with Disabilities Act requirements, new sprinklers, fire alarm systems etc. It is unreasonable to expect CLECs to assume the responsibility for upgrading COs that do not meet current standards. The costs attributable to meeting environmental and other regulations should be borne by the primary user of the CO. The appropriate share of these exceptional building costs will then be recovered in the per square foot land and building charge to the CLECs.

ILECs can inflate building rearrangement charges by claiming that major building services (e.g., emergency diesel power, air conditioning, electrical service) are currently at full capacity and that a CLEC collocation request that precipitates additional capacity needs should bear the full costs associated with that additional capacity in upfront nonrecurring charges. Upgrades to major building systems are not the responsibility of the CLEC; rather CLECs should pay their share of the major building systems costs through the rates for collocation elements that include these building systems. Therefore, any additional charge for building rearrangements or upgrades would result in double recovery.

The ILEC, as the primary user of the CO, must be responsible for the long term maintenance and upgrading of its CO buildings. The responsibility for expenditures associated with building codes revisions or upgrades to major building systems cannot be transferred to a particular CLEC simply because the timing of a particular major building component upgrade coincides with a CLEC collocation request. The CLEC's share of these costs are included in the monthly per square foot charge for rent and the cost of investments associated with the various collocation elements.

8.2 PLACEMENT AND SECURITY ISSUES

As noted in Section 3, the primary consideration in the establishment of a collocation area is that it be constructed relatively close to the ILEC cross-connects to minimize ongoing recurring charges for connectivity. From a physical perspective, however, the collocation space should be situated in an area of the CO that provides unrestricted access to the CLEC with the least disruption possible to the ILEC. This could be accomplished by locating the collocation area on an exterior wall or on a corridor. Since existing ILEC equipment rooms within the CO are
typically secure and cannot be entered without a door code or card reader, placement along a corridor allows for uninhibited access by CLECs while at the same time providing security for the ILEC.

The CO model layout incorporates building investments that are directly attributable to the creation and rental of a collocation space by the ILEC. While the ILEC is entitled to ensure its equipment areas are secure, the CLEC should not have to bear the burden of excessive costs of providing extensive building renovations for the alleged purpose of insuring ILEC security. COs today are constructed with electronic security card systems to monitor access and egress. Each doorway has an electronic card reader that will admit only the holders of pre-screened cards. These costs are included in the basic per square foot cost of a CO building, just as the cost of locks on outside doors are included in the rent for office or apartment space. Thus, the model assumes the cost of the security system is included in the per square foot charge for rent. The costs of purchasing individual cards and associated system maintenance, on the other hand, are assumed to be costs each CLEC should bear.

8.3 COLLOCATION CONSTRUCTION COMPONENTS

The components and magnitude of the construction project associated with physical collocation are relatively minor and can be implemented by most smaller contractors at competitive rates. There is no requirement for ILECs to use only large construction companies for collocation related building rearrangements. That sort of requirement is akin to requiring the use of a Big Eight accounting firm to handle a simple income tax return or using a major law firm in small claims court.

The CO model layout assumes that the ILEC arranges and obtains all quotations based on a competitive bidding process. Subsequent to the receipt of the competitive tenders, the bids are analyzed as to content to ensure that all of the work has been included. The succeeding contractor is then permitted to complete the work in the most efficient and expeditious manner. Figure 8A shows the space-efficient collocation area incorporated in the Model. That collocation area is used throughout this section to outline various construction components, quantities, and associated costs.

Figure 8A

Chart 4 includes a list of the common elements required for the construction of a typical collocation area in an ILEC CO. The rationale for including each construction element in the development of this collocation Model follows.

CHART 4			
COLLOCATION MODEL - SUMMARY OF CONSTRUCTION ELEMENTS			
ITEM	QUANTITY	UNIT	REMARKS
PARTITIONING (INCL. POSTS, FABRIC, RAILS, GATES \& INSTALLATION)	155	Lin. Ft.	9 GA. galv. metal fabric $8^{\prime} \cdot 0^{n}$ high and $\mathrm{c} / \mathrm{w} 23 / 8^{\prime \prime}$ posts and $111 / 6^{n}$ top post
FLOOR TILE	550	Sq. Ft.	$1 / 8^{\prime \prime} \times 12 \times 12$ vinyl composite tile
ELECTRONIC CARDS	5	Each	Card reader system in CO
PADLOCKS FOR CAGES	4	Each	Provided by CLEC
PLYWOOD	1	Sheet	$4^{\prime} \times 8^{\prime} \times 3 / 4{ }^{1 /}$ sheet
HVAC	7.7	Tons	Maintain temperature 68-80F
LIGHTING	22	Each	Standard 1'x4' fluorescent fixtures
SWITCHING (MOTION DETECTION TYPE)	5	Each	1 per cage and 1 for Common Area
ELECTRICAL PANEL	1	Each	$225 \mathrm{amp}, 42$ circuit, $120 / 240 \mathrm{volts}$
ELECTRICAL RECEPTACLES	12	Each	20 amp duplex electrical outlets
GROUNDING	1	Each	Pre drilled copper ground bar
4/0 GROUNDING CABLE	140	Lin. Ft.	Unsheathed braided copper cable
MESH GROUNDING	10	Lin. Ft.	Safety and EMI compliant grounding

PARTITIONING

To segregate the CLEC space from the ILEC portion of the central office requires some type of partitioning. The types of partitions typically found in COs include drywall partitioning and masonry, as well as chain link fencing used to secure storage areas.

Cages to house collocators can be constructed of either drywall or chain link fencing. There are inherent advantages and disadvantages to both types of partitioning. Drywall partitioning is constructed of vertical metal studs covered with a layer of paper enclosed gypsum plaster. The butt joints of the boards are then covered with a plaster paste that is sanded smooth after it dries. This type of partitioning offers good security and privacy for the occupants. However, this method of construction creates a great deal of dust that is detrimental to the telecommunications equipment. It also prohibits air flow, which increases the cost of air conditioning.

The collocation area model layout assumes the use of chain link fencing, constructed of metal posts anchored to the floor with a galvanized, coated, 9 gauge metal fabric that is stretched to prevent sagging and that affords adequate security from intrusion. The cage is accessed by way of a sliding gate of similar construction to the partition walls. Many of the collocation installations to date have used this method of partitioning.

The collocation area model layout assumes the use of an 8 foot high chain link metal partitioning because of the ease of construction, economy, and relatively clean installation. Other advantages of an 8 foot high chain link partition include easier provision of air conditioning since the requirement for mechanical work is reduced. Cable racking can be installed more easily and fencing provides increased visibility, resulting in better security, from the ILEC perspective.

FLOOR TILE

Floor covering should be sufficient to support equipment and be easy to maintain. Also it must be free of static electricity that adversely affects the operation of the telecommunications equipment. Therefore, the collocation area model layout requires concrete floors covered with vinyl composite tiles.

A concrete floor slab with a live load of 150 to 300 pounds per square foot live load capacity is adequate to support commonly used telecommunications equipment. Further, the use of concrete permits the installation of expansion shields, allowing the best method of securing the equipment frames to the floor.

Occasionally equipment has been installed on concrete floors that have been painted, but there are drawbacks. First, there is an increased maintenance cycle of repainting. Second, the paint flaking that often occurs can be drawn into the equipment and cause malfunctioning.

Rick Bissell Exhibit RB-1
Thus, a concrete floor slab covered with vinyl composition tile is considered to be the norm for telecommunications buildings.

ELECTRONIC CARDS, PADLOCKS

The Model assumes an electronic card reader system is used throughout the CO as the least cost method of providing security. There is no greater danger of sabotage from a collocator's employees and contractors than from the ILEC's employees and contractors. Thus, providing (and charging) CLECs for cards permits security to be maintained in the collocation area.

It is assumed that each Collocation Cage is provided with a padlock. However, the Model assumes that the CLEC will purchase and install its own padlock. A key or the combination would be provided to the ILEC for emergency situations.

PLYWOOD

Plywood backboards will be used to mount the electrical distribution panel and any other components that cannot readily be attached to the metal cage.

HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

Telecommunications equipment will operate at relatively high and low temperatures. However, sudden fluctuations in temperature can contribute to card failures. Therefore the model assumes a requirement for air conditioning in order to maintain room temperature between 65 and 80 degrees Fahrenheit.

Air conditioning (heating is not required) for the equipment should be based solely on the amount of heat that must be dissipated as a result of projected equipment installations rather than on the capital costs to replace an entire HVAC system. The electrical power used by telecommunications equipment is the indicator of the amount of heat that must be dissipated. As shown on sketch 8 B , the Model assumes an average long term DC power

Exhibit
requirement of about 135 amps for each 100 square foot allocation and an overall expected requirement of 7.7 tons air conditioning for the entire collocation area. The relationship between DC power, heat dissipation, and cooling requirements is shown in Figure 8B. 12

ITEM	-48V DC POWER	HEAT
AVERAGE REQUIREMENT / 100 SQ. FT. ALLOCATION	135 amps	6.5 kw
EXPECTED REQUIREMENT IN COMMON AREA	23 mmps	1.1 kw
LONG TERM REQUIREMENT IN COLLOCATIONAREA	563 amps	27.1 kw
LONG TERM HEAT DISSIPATION	-	92,411 BTU
EXPECTED LONG TERM COOLING REQUIREMENT	-	7.7 TONS

COLLOCATION MODEL
LONG TERM - \&EVDC POWER AND HEAT DISSIPATION

Figure 8B

12 If the CLECs intend to utilize their collocation spaces more intensively than the average situation, and thus require 190 amps at the same time rather than 135 amps , then in addition to greater amperage needs, there will be additional air conditioning needs. The Collocation Model Layout Documentation shows what the additional costs would be for air conditioning if all four 100 square foot collocation spaces in a collocation area were to require 190 amps of power. The CLECs would be charged for the additional air conditioning expenses.

ELECTRICAL

As shown in Figure 8C, the collocation area model layout assumes fluorescent lighting in both the cages and the common area. Each 100 square foot allocation requires four $4^{\prime}-0^{\prime \prime}$ units hung by chains from the slab above. To ensure adequate illumination, each fixture should be equipped with two 40 watt lamps. In addition, the model assumes six identical light fixtures used to illuminate the common area (for the POT bays and BDFB).

Figure 8C

The collocation area model layout also incorporates motion detector light switching that is activated when a technician enters the collocation area. Similarly, entering the cages within the collocation area activates the individual cage lighting. The lights will shut off when the technician leaves the area, thus conserving power and reducing costs. Furthermore, standard duplex electrical receptacles are included in the cages and the common area within the collocation area for operating test equipment and general convenience purposes. Finally, the
\qquad
collocation area model layout includes an AC electric distribution service panel to feed lighting, switching and outlets.

GROUNDING

As shown in Figure 8D, to ensure optimum grounding, the collocation area model layout incorporates the installation of a new common ground bar located in the common area by the ILEC. This ground bar, together with approximately 100 feet of $4 / 0$ ground cable placed in conduit, will be connected to the existing floor ground bar by the ILEC. Each CLEC can then provide its own equipment ground and ground cable to connect to the common area ground as explained in Section 4.

Figure 8D
\qquad

8.4 COST OF FLOOR SPACE

The collocation area model layout recognizes that the ILEC should receive compensation for floor space used by the CLEC and therefore incorporates a cost per square foot land and buildings component. Although actual rates per square foot for land and buildings can be statespecific, the overall basis for calculating monthly rental charges for floor space remains constant. As shown in Chart 5, calculations are based on the forward-looking CO model layout, and assume an 80% factor for assignable space and a land to building ratio of $\mathbf{2 : 1}$ based on the building footprint.

Equipment Space Requirement	12,000
Ancillary Requirement	25\%
Total Footprint per Floor	15,000
Number of Floors (incl. basement)	4
Gross Building Space	60,000
Assignable Space Factor	80\%
Assignable Space	48,000
LAND CALCUEATION 4 cu	
Building Footprint	15000
Building to Land Ratio	2
Land Area Requirement	30,000
Gross Building Space	60,000

8.5 REAL ESTATE RESOURCES

The following ILEC resources are required to implement the CO model layout:

1. Project Manager: reviews requirements of collocator and coordinates the activities of engineering consultants to produce working drawings. Ascertains that funding is in place to proceed with project. Reports to CLEC on progress and reviews the project with the ILEC subsequent to the completion of the collocation area.
2. Architect: produces architectural quality drawings depicting the exact location, dimensions, physical obstructions, and other pertinent information regarding the proposed collocation space. Requests tenders and reviews submissions for accuracy and completeness prior to the issuance of a contract by the Project Manager. In some instances, the Architect may also be the Project Manager.
3. Construction Manager: coordinates and reviews contractors' activities in the collocation space. Resolves on site interference with existing services. Monitors the progress and prepares construction activity reports.

The specific time allocations for each resource and associated project intervals are outlined in Section 9.

9 PROCESS ISSUES

9.1 ILEC MANPOWER REQUIREMENTS

The planning and implementation of a collocation area in an ILEC CO requires manpower effort on the part of the ILEC. To ensure fair and reasonable compensation for ILEC manpower, the CO model layout incorporates a planning component outlining the expected ILEC manpower requirements to implement a CLEC collocation request using best practice processes in a competitive environment. As shown in Chart 6, the ILEC resource requirements have been separated into manpower required to establish the initial collocation area and manpower requirements to implement each CLEC request. The first CLEC request includes both requirements.
\qquad

CHART 6			
FUNCTION	$\begin{aligned} & \text { HOURS TO PLAN } \\ & \text { INITIAL } \\ & \text { COLLOCATION } \\ & \text { AREA } \end{aligned}$	$\begin{gathered} \text { HOURS PER } \\ \text { EACH CLEC } \\ \text { REQUEST } \end{gathered}$	NOTES
OUTSIDE PLANT ACCESS DESIGN	0	6	
BUILDING PLANNING	10	4	
MDF PLANNING	0	4	
REAL ESTATE PROJECT MANAGER	6	,	
REAL ESTATE CONSTRUCTION MANAGER	8	4	
ARCHITECT	22	2	1
POWER ENGINEER	6	4	2
EQUIPMENT ENGINEER	6	4	3
EQUIPMENT INSTALLATION PROJECT MGR.	6	8	4
OPERATIONS GROUP	2	4	
APPLICATION FEE	0	10	5
TOTAL ILEC MANPOWER	66	52	6
NOTES			
1. ASSUMES IN HOUSE ARCHITECT WITH NO EXTERNAL CHARGES FOR ARCHITECTS. 2. DISTRIBUTION ONLY (BDFB TO DC PANEL): -48V DC POWER ASSESSMENTS ARE DEMAND FUNCTIONS COVERED UNDER POWER CONSUMPTION CHARGE. 3. ONLY $5^{\prime} 0^{\prime \prime}$ CLEC-SPECIFIC RACK TO CAGE; OTHER CABLE AND CABLE RACKING IS DEMAND ACTIVITY COVERED UNDER RECURRING CHARGE. 4. SHOULD NOT INCLUDE COORDINATION OF DEMAND PROJECTS. 5. APPLICATION FEE TO COVER ACTIVITIES OF VARIOUS ILEC ADMINISTRATIVE AND BILLING GROUPS. 6. ASSUMES FIRST CLEC REQUEST COINCIDES WITH PLANNING OF INITIAL COLLOCATION AREA.,			

The proposed manpower requirements shown in the preceding chart have been developed assuming the following minimum requirements:

$$
\begin{aligned}
& \Rightarrow \text { Fully trained and competent staff } \\
& \Rightarrow \text { Best practice processes for building modifications } \\
& \Rightarrow \text { Best practice processes for CO Equipment and Power rearrangements } \\
& \Rightarrow \text { Up-to-date and accurate records (e.g., power consumption, equipment } \\
& \text { drawings, wiring fists, etc.) } \\
& \Rightarrow \text { Efficient suppliers/construction interfaces with least cost competitive intervals }
\end{aligned}
$$

The CO model layout also assumes that the ILEC will only be reimbursed for time spent
implementing functions associated with collocation elements covered by a non-recurring charge. Time expended assessing equipment for which the ILEC is reimbursed via a recurring charge (e.g., -48 V power plant, shared cable racking, etc.) is an ongoing ILEC planning requirement, no different than the assessments the ILEC must undertake prior to implementing other demand projects and should therefore not be charged to CLECs. ILEC manpower spent due to existing inefficiencies such as the revisions to inaccurate drawing records, etc., should not be included in ILEC project management time to implement a CLEC collocation request.

The manpower requirements shown in Chart 6 provide an accurate assessment of the planning time required to efficiently implement a CLEC collocation request in a best practice competitive environment. These times are included in the Collocation Model as a specific component for the planning of a CLEC collocation request rather than permitting the ILEC to arbitrarily establish undefined charges using an ICB for Time and Materials, which can easily be manipulated on a case by case basis

9.2 IMPLEMENTATION INTERVALS

An assessment of the functions and intervals required to implement the first CLEC collocation request in a particular ILEC CO, assuming optimum efficiency, best practice processes and a competitive environment, indicates that the maximum interval from the time a CLEC applies to collocate in an ILEC CO until the collocation area is ready for equipment to be delivered by the CLEC should be 68 working/business days.

The interval for subsequent collocation requests in the same CO is less since some of the planning activities and building modifications would already be completed in response to the initial request. A reasonable interval for subsequent requests is calculated at

56 working/business days.
Rather than permitting the ILEC to establish arbitrary intervals on a case by case basis, the CO model layout adopts the following standard intervals for planning and implementing a CLEC collocation request in an ILEC CO:
\Rightarrow Initial Collocation request in a particular ILEC C.O. $=14$ Calendar Weeks
\Rightarrow Subsequent Collocation requests in the same C.O. $=11$ Calendar Weeks

PHYSICAL COLLOCATION MODEL LAYOUT DOCUMENTATION

MODEL LAYOUT DOCUMENTATION OVERVIEW SECTION ONE: INPUT SHEETS SECTION TWO: BACKUP INDEX SECTION THREE: SUPPLIER QUOTES

PHYSICAL COLLOCATION MODEL LAYOUT DOCUMENTATION

Overview

The Physical Collocation Cost Model (Cost Model) was developed by MCI and AT\&T to estimate the costs that an efficient incumbent local exchange carrier (ILEC) would incur to provide physical collocation to one or more competitive local exchange carriers (CLECS) at a central office (CO). The Cost Model is based upon a Physical Collocation Model Layout (Model Layout) that assumes best practice central office planning strategies, least cost suppliers, and competitive bidding. The Model Layout produces investments associated with an efficient collocation area placed in a segregated location of an ILEC's CO.

The Model Layout recognizes that it is inefficient for an ILEC to require that the collocation areas of all competitive local exchange carriers (CLECs) be located in a contiguous space. Such a large space is not likely to be available in close proximity to the ILEC cross-connect, so imposing such a requirement would unnecessarily raise CLEC costs for power, copper cabling, and cable racking and would impose other costs and inefficiencies.

The investments developed in this Model Layout are used as inputs into the Cost Model, which produces nonrecurring and recurring cost estimates.

This document provides the backup material supporting the engineering assumptions relied upon in the Model Layout, based upon the expertise of the subject matter experts (SMEs) retained by MCI and AT\&T to advise them on physical collocation. Documentation relating to the actual cost calculations performed in the Cost Model is included in a separate document, entitled Physical Collocation Cost Model Description and Users' Guide.

The Physical Collocation Model Layout Engineering Assumptions

The Model Layout and Cost Model are based on a 550 square foot collocation area consisting of four 100 square foot collocation spaces plus a common area of 150 square feet to accornmodate interface equipment. Spaces of this size are generally available in the ILEC COs. Interface equipment (such as point of termination bays) located in the common area paid for by the CLECs can be purchased and installed by the CLECs, and therefore the associated costs are not included in the Cost Model. (An exception is the collocation battery distribution fuse bay, BDFB, which extends fusing from the DC power plant to the collocation space. This is an ILEC responsibility and its costs are included in the power consumption elements of the Model.)

The Model Layout and Cost Model also assume that it is not the responsibility of the collocating CLECs to pay the costs of retrofitting COs to meet asbestos removal or Americans with Disabilities Act or other requirements. The costs associated with constructing buildings that are in compliance with codes and regulatory requirements are included in the recurring per square foot building charges that CLECs pay for their collocation spaces.

Sources for Input Prices

To ensure accurate inputs for the development of the Cost Model, it was necessary to determine the investments that would be incurred by the ILEC. The subject matter experts who developed the Model Layout constructed a list of all necessary equipment and requested quotes from various companies. Suppliers authorized to work within the CO will vary greatly in size, ranging from giant equipment manufacturers, such as Nortel and Lucent, that provide digital switches, to mid-sized firms, such as Alcatel, that provide digital cross-connect systems, to hundreds of smaller companies that supply common systems infrastructure components such as ironwork, relay racks, cable racks, and cable. Typically, the large switch suppliers include a complete line of common systems components to complement their main product line. It is the experience of the SMEs, however, that these large suppliers cannot meet the short lead times needed by ILECs for installation of simple equipment, such as cable racks, in their COs. Nor are their rates for these common systems installations competitive with those of smaller suppliers. As a result, ILECs commonly authorize and use smaller companies to install common systems infrastructure in the CO . These small companies have the flexibility to complete simple infrastructure projects for the ILECs on short notice. Since the majority of collocation components fall within the scope of common systems infrastructure, the SMEs used the quotes from small suppliers to develop their estimates of these collocation investment costs. Where components typically are available only from larger suppliers with a specialized product line, for example, digital cross-connects, the investment costs were based on quotations from a large supplier.

The SMEs sought quotes on prices and/or hours for engineering, furnishing, and installing (EF\&I) a wide array of collocation equipment from two companies Express Intercommunications (Intercomm), a Texas company, and Primal Communications Ltd., which works in Bell Canada switching centers, as well as for other Canadian telephone companies. Express Intercommunications provided quotes only for the installation component. Primal provided more encompassing quotes, providing both furnish and install quotes for most elements, but very limited engineering information. In an effort to provide more complete information, Primal employed a subcontractor, Bob Alers (a former Nortel specification writer and estimator) to provide engineering estimates and a
"sanity check," based on the perspective of a former employee of a large supplier.

When the SMEs reviewed the quotes for installation hours they received from these three sources, they noted two patterns. First, for most items, the Primal quote was the median of the three quotes; in no case did the Primal quotes differ greatly from both other quotes. Second, for several items, the quote from Intercomm or the quote from Alers differed greatly from the other two quotes and, in the judgment of the SMEs, did not appear to be as credible as the Primal quote. The SMEs therefore decided that for installation of all items, they would use the hours quoted by Primal in the Cost Model. (All quotes received are included in the Backup Sheets in Section Two.) Also, since Mr. Alers provided the bulk of the information on engineering, for the one item for which Primal also provided an engineering quote (cable racklladder), the SMEs used the Alers quote, which was the higher quote and thus a conservative choice.

The SMEs asked Alcatel for written price quotes for DS-1 and DS-3 electronic cross-connect equipment. In order to protect proprietary competitive information, Alcatel was asked to provide list prices. In developing the Cost Model, the SMEs assumed a conservative 20% discount from the list price.

The price quotes for -48 V power components were provided by Primal, which uses Nortel, Reliance, and Peco 11 products. Primal provided all-inclusive EF\&I prices for power plants of two different sizes, to permit the use of a blend of two different sizes in the Cost Model.

The price quote to furnish cable racks was obtained from Central Steel Fabricators, a company that provides cable rack to several large local exchange companies.

For cage construction related inputs, written price quotations were obtained from Simpson's Fence Ltd., and verbal estimates were provided by London General Contractors, Ltd., Westminster Electrical Ltd., and Smylie and Crow Associates, Inc., consulting engineers. A verbal estimate was also provided by Warman Security. In addition, the SMEs collected price information provided in the R. S. Means Building Construction Cost Data and Electrical Cost Data publications for 1997, data sources that are widely used in the industry. In most cases, the price quotes and verbal estimates differed from the R.S. Means prices by less than 5 percent; and in no cases by more than about 20 percent, with the R.S. Means prices typically the higher prices. The SMEs therefore chose to use the R.S. Means rates wherever such data existed.

All price quotes presented are in U.S. dollars. Where a quote received was in Canadian dollars, the SMEs converted the price to U.S. dollars by dividing by 1.4.

Labor Rates

The Cost Model uses a default labor rate value of $\$ 55.00$ for all labor rates other than the -48 volt power consumption cost, which is based on a contractor price quote that incorporates 64 hours of contractor labor for engineering at $\$ 65$ per hour. When the Cost Model is used as the basis for estimating state-specific costs, these default values are modified as follows:

For Frame Technicians and Splicers: A state-specific labor rate per hour is calculated based on hourly labor rates found in union contracts. These are fully assigned rates, which include salary and benefits for first-line supervision through third level (middle) management. Since the union contracts identify higher and lower pay zones within a state, where it was not possible to identify the average rate for a labor category, the highest pay zone is used for all rates, thereby assuming that the entire work force is at the maximum rate within their bands. Two publicly available ILEC cost studies - one filed by NYNEX in New York State and one filed by Bell South in Georgia - suggest that benefits generally represent an additional $33 \%-35 \%$ in costs over the contract labor rates. The Cost Study uses a 40% benefits loading to provide a conservatively high cost estimate. The first through third level management salaries and benefits are calculated and loaded on to the labor rates based on a ratio of 15:1 for contract to supervisory personnel, and $5: 1$ for the next two layers of management. These ratios are based on the judgment of SMEs. The salary and benefits for one clerical position also are incorporated. The loaded hourly rates are adjusted upward by 23% to take into account paid nonproductive time, including time off for vacations, holidays, personal days, training, coffee breaks, etc. Miscellaneous expenses are added to cover such items as travel expense, training, and office supplies. Finally, another increment is added to cover premium pay for overtime worked.

For First Level Management: A similar loading methodology is used as for frame technicians and splicers, but with the following differences: (1) there are 10 direct reports to a second level and 5 second-levels report to a third level; (2) there is a second support clerk for the second level in addition to the one for the third level; (3) many of the traditional planning loadings do not apply here since the collocation planning job is only of short duration. Since there are no union contracts on which to base the unloaded hourly rate for first level management, that input value was set by subject matter experts. With the loadings, the default national rate is $\$ 55.03$.

Contractor Labor: Contractors charge hourly rates for their labor that implicitly incorporate all loadings. Primal provided a quote of $\$ 50$ to $\$ 55$ per hour, which is consistent with the experience of the subject matter experts. Since only contractors that have been certified by the ILEC may operate in their COs, there are fewer competitive options for contractor labor, and thus the differential between high-wage rate states and low-wage rate states is not likely to be as
pronounced as for other labor. Thus, the $\$ 55$ hourly rate represents a good, conservative, upper bound estimate (except for the engineering contract labor rate of $\$ 65$ per hour that is incorporated in the -48 volt power consumption cost).

Model Layout Documentation

The Model Layout documentation is divided into three sections. Section One is comprised of input sheets, which contain the data used as inputs to the Cost Model (filed under separate cover). Section Two presents sources and supporting calculations for the figures that appear on the input sheets in Section One. Section Three presents quotes obtained from various suppliers that were used in Section Two.

Section One: Input Sheets

The input sheets contain the data used as inputs to the Cost Model. Most sheets also include a diagram to help illustrate the necessary components used in the relevant aspect of physical collocation (such as power distribution or connectivity). The input sheets also include a brief description of each component, which entity or entities provide and use the component, and the quantity (or size) and cost of the component.

Section Two: Connectivity Matrix and Backup Sheets

Section Two presents sources and supporting calculations for the figures that appear on the input sheets contained in Section One.

The first sheet in Section Two is a matrix supporting the investments for connectivity elements. The matrix (in columns J to M) provides the source data for the investments that appear on the input sheets in Section One. Each element is listed on a row, and a breakdown by component (if applicable or available) appears in corresponding columns (i.e., where applicable, the investment for each element is separated into investment for engineering, furnishing, and installing the element, with data in the form of hours, labor rate, and unit cost. Column N contains the reference to the backup sheet number for the respective elements). The backup sheets (BU \#1 through BU \#19) immediately follow the matrix.

The backup sheets outline the assumptions and costing source detail for the input sheets. Each-backup sheet is labeled in the top right corner with "BU \#xx". The backup sheets contain references to data sources. Where possible, the reference is to a supplier quote contained in Section Three. Where multiple quotes were obtained for an item, all quotes are presented and the quote used in the Cost Study is identified.

Section Three: Supplier Quotes

Section Three contains copies of the quotes supplied by various telecommunications contractors and other companies. These are the sources of the information referred to in the backup sheets in Section Two.

Source Addresses

Alcatel
1225 North Alma Road
Building 407-200
Richardson, Texas 75082
written quotations

Express Intercommunications 308 Banyan Road
Grapevine, Texas 76051
Attn: Percy Davis
written quotations

Simpson's Fence Ltd.
4010 Brech Avenue
London, Ontario, Canada
written quotation
Warman Security
1720 Sacramento Street
San Francisco, California 94111
verbal estimate
London General Contractors Ltd.
163 Chalfont Crescent
London, Ontario, Canada N6H 4 Y3
Attn: Arden Sutherland
verbal estimates

Westminster Electrical Ltd.
4365 Colonel Talbot Road
London, Ontario, Canada
Attn: Steve Johnson
verbal estimates

Smylie and Crow Associates Inc.
Consulting Engineers
93 Dufferin Avenue
London, Ontario, Canada
Attn: Jim Smylie and Charlie Crow
verbal estimates

Primal Communications Ltd.
17 Forbes Road
Scarborough, Ontario, Canada
M1P 1 K8
Attn: Michael McLafferty written quotations

Central Steel Fabricators, Inc.
1843 S. $54^{\text {th }}$ Avenue
Cicero, IL 60680
Attn: Michael Murzanski
(708) 652-2037
written quotation

ADC Telecommunications
2600 Skymark Avenue
Unit 12, Suite 202
Mississagua, Ontario, Canada
Attn: Alpha Dobson
written quotations

SECTION ONE

INPUT SHEETS
ENTRANCE FIBER
CONNECTIVITY: VOICE GRADE SERVICE
CONNECTIVITY: DS-1 SERVICE (DCS)
CONNECTIVITY: DS-1 SERVICE (DSX)
CONNECTIVITY: DS-3 SERVICE (DCS)
CONNECTIVITY: DS-3 SERVICE (DSX)
CONNECTIVITY: OPTICAL
POWER DELIVERY
POWER CONSUMPTION
EQUIPMENT GROUNDING
REALTY (CAGE PREPARATION)
ILEC MANPOWER REQUIREMENTS
LAND AND BUILDING

Element	Description	$\begin{gathered} \text { Provided } \\ \text { by } \\ \text { CLEC/ILEC } \end{gathered}$	$\begin{gathered} \hline \text { Used } \\ B y \end{gathered}$	$\begin{gathered} R \theta- \\ \text { useable } \end{gathered}$	Quantity	Hours	Unit Cost	Total Cost	Remarks
Fiber Patch Panel	Located in cage	CLEC	1 CLEC	N/A	${ }^{--}$	--	-	--	Termination to Cage Fiber Patch Panel by CLEC
Cable 'B'	Between cage \& vault splice	CLEC	1 CLEC	N/A	175'-0"	--	${ }^{---}$	-	Fire retardant Fiber cable provided by CLEC
Installation of Cable 'B'	Placed on shared cable rack	ILEC	1 CLEC	N	175'-0'	14	\$55.00	\$770.00	One time Charge - Includes opening/closing of 3 cable holes
Cable Rack Occupancy	12" Ladder Rack	ILEC	$\begin{gathered} \text { ILEC + } \\ 4 \text { CLECs } \end{gathered}$	Y	135'-0"		0.54/ft.	\$75.60	Cost per cable for cable rack occupancy
Cable Rack	12" Ladder Rack	ILEC	4 CLECs	Y	$20^{\prime}-0^{\prime \prime}$	--	\$39.88/ft.	\$797.60	Only required on first fiber cable installation - Included in cage cost
Cable Rack	12" Ladder Rack	ILEC	1 CLEC	Y	$5^{\prime}-0^{\prime \prime}$	--	\$39.88/ft.	\$199.40	Only required on first fiber cable installation - Included in cage cost
Cable Hole Occupancy	Cable holes between floors	ILEC	$\begin{gathered} \text { ILEC+ } \\ 4 \text { CLECs } \end{gathered}$	Y	3	--	\$9.46 ca.	$\$ 33.39$	Used by ILEC and CLECs for routing fiber. Assumes 85\% fill.
Splice Case	External to fire retardant cable	CLEC	1 CLEC	Y	1	-	--	--	Approved vault splice case provided by CLEC
Cable 'A'	Between vault splice \& manhole	CLEC	1 CLEC	N/A	--	--	--	--	Fiber cable provided by CLEC
Cable Support Charge	Between vault splice \& vault wall	ILEC	1 CLEC	Y	$50^{\prime}-0^{*}$	--	\$0.54/ft	\$27.00	Use same cost as cable rack occupancy
Structure Charge	Between vault wall \& manhole	Tariff Item		N	$75^{\prime}-0^{\prime \prime}$	--	$\stackrel{-}{ }$	--	Per existing structures agreement or use $\$ 0.05$ / foot /month
Cable Pulling	Manhole to cable vault splice	ILEC	1 CLEC	N	$125^{\prime}-0^{\prime \prime}$	4.0	\$55.00	\$220.00	Includes set-up \& take-down
Splicing Activity	External cable to fire retardant cable	ILEC	1 CLEC	N	--	3.0	\$55.00	\$165.00	Set-up \& take-down in vault
Splice Fibers	In Cable Vault	ILEC	1 CLEC	N	--	2.0	\$55.00	\$110.00	For up to 24 Fibers

Collocation Model for Voice Grade Service

Co-location Area
Common Collocation Area

Element	Description	Provided By	Used By	Reusable Y/N	Sizel Capacity	Length	Unit Cost	Total Cost	Cost per 100 VG Cct.
CLEC Equipment	Voice Grade Equipment	CLEC	1 CLEC	NA					-
Cable A	Cable from Line Cards to POT Bay	CLEC	1 CLEC	NA		<25 feet			-
Cable Rack 1A	20" Ladder Rack	ILEC	1 CLEC	Y		5 feet	\$40.52	\$202.60	
Cable Rack 2A	20" Ladder Rack	ILEC	4 CLECs	Y		20 feet	\$40.52	\$810.40	
POT Bay	$7^{\prime} \times 23^{\prime \prime}$ Frame to hold Terminal Blocks	CLEC	1 CLEC	NA					
TS A	66 Type Terminal Block	CLEC	1 CLEC	NA					
Cable B	Cable from Pot Bay terminal block to HMDF	ILEC	1 CLEC	N	100 Pair	165 feet	\$4.01	\$661.65	\$661.65
Cable Hole	2 Cable Holes**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y			$\begin{array}{\|c\|} \hline \$ 700.00 \\ \text { hole } \\ \hline \end{array}$	$\$ 1647.06$	\$5.92
Cable Rack B (Occupancy)	20" Ladder Rack	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y		150 feet	\$40.52	\$6078.00	\$21.86
MDF-H	Horizontal Terminal Block to X-connect to Access side of frame	ILEC	1 CLEC	N	100 Pair		\$95.00	\$95.00	\$95.00
MDF	MDF Terminal Block Space ${ }^{* *}$	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	1 block space		\$178.95	$\$ 210.52$	\$210.52

Collocation Model for DS-1 Service-DCS

Element	Description	Provided By	Used by	Reusable Y/N	Sizel Capacity	Length	Unit Cost	Cost	$\begin{gathered} \text { Cost per } \\ 28 \text { DS-1 } \\ \text { Cct } \\ \hline \end{gathered}$
CLEC Equipment	DS1 Multiplexer	CLEC	1 CLEC	Y					
Cable A	2×30 Pair ABAM	CLEC	1 CLEC	N	28 DS1	<25 feet			
Cable Rack 1A	20" Ladder Rack	ILEC	1 CLEC	Y		5 feet	\$40.52	\$202.60	
$\begin{array}{\|l} \hline \text { Cable Rack } \\ \text { 2A } \\ \hline \end{array}$	20" Ladder Rack	ILEC	4 CLECs	Y	555 ABAM	20 feet	\$40.52	\$810.40	
POT	7' Frame	CLEC	1 CLEC	Y					
DSX1 A	Manual X-conn Panel	CLEC	1 CLEC	Y	56 DS1				
POT X-conn	22 Gauge twisted pair jumper wire	CLEC	1 CLEC	N	4 feet				
DSX1 B	Manual X-conn Panel	CLEC	1 CLEC	Y	56 DS1				
Cable B	2x 30 Pair ABAM	ILEC	1 CLEC	N	28 DS1	165 feet	\$3.48	\$1148.40	\$1148.40
Cable Rack B (Occupancy)	20" Ladder Rack	ILEC	ILEC +4 CLECs	Y	555 ABAM	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable Holes**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	555 ABAM per hole		$\begin{gathered} \$ 700.00 / \\ \text { hole } \end{gathered}$	$\$ 1647.06$	\$5.92
DCS	Digital X-conn**	ILEC	$\begin{gathered} \text { ILEC + 4 } \\ \text { CLECs } \\ \hline \end{gathered}$	Y	7168 DS1		$\begin{aligned} & \$ 329.23 \\ & \text { per DS1 } \\ & \hline \end{aligned}$	\$2,776,377.00	\$10,845.22

Collocation Model for DS-1 Service-DSX

Element	Description	Provided By	Used By	Reusable Y/N	Sizel Capacity	Length	Unit Cost	Cost	Cost per 28 DS-1 Cct
CLEC Equipment	DS1 Multiplexer	CLEC	1 CLEC	Y	28 DS1				
Cable A	2×30 Pair ABAM	CLEC	1 CLEC	N	28 DS1	<25 feet			
Cable Rack 1A	20" Ladder Rack	ILEC	1 CLEC	Y		5 feet	\$40.52	\$202.60	
Cable Rack 2A	20" Ladder Rack	ILEC	4 CLECs	Y	555ABAM	20 feet	\$40.52	\$810.40	
POT	7' Frame	CLEC	1 CLEC	Y					
DSX1A	Manual X-conn Panel	CLEC	1 CLEC	Y	56 DS1				
POT X-conn	22 Gauge twisted pair jumper wire	CLEC	1 CLEC	N	4 ft				
DSX1 B	Manual X-conn Panel	CLEC	1 CLEC	Y	56 DS1				
Cable B	2x 30 Pair ABAM	ILEC	1 CLEC	N	28 DS1	165 ft	$\begin{gathered} \$ 3.48 / \\ \mathrm{ft} \end{gathered}$	\$1148.40	\$1148.40
Cable Rack B (Occupancy)	20" Ladder Rack	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	555ABAM	150 ft	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable Holes**	ILEC	$\begin{aligned} & \text { ILEC }+4 \end{aligned}$	Y			$\$ 700.00$ Ihole	$\$ 1647.06$	\$5.92
DSX1C	Manual X-conn Panel**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	56 DS1		\$824.25	$\$ 969.71$	\$484.86
DSX	$\begin{aligned} & \hline \text { Digital X-conn } \\ & \text { Frame-Manual** } \end{aligned}$	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	560 DS1		\$390.00	$\$ 458.82$	\$22.94

** Indicates 85\% Fill

Element	Description	Provided By	Used by	Reusable YIN	Size	Length	Unit Cost	Cost	$\begin{gathered} \text { Cost } \\ \text { per DS3 } \\ \text { Cct } \\ \hline \end{gathered}$
CLEC Equip	DS3 Terminal/Multiplexer	CLEC	1 CLEC	NA					
Cable A	734 Shielded	CLEC	1 CLEC	NA		<25 feet			
Cable Rack 1A	20"Ladder Rack	ILEC	1 CLEC	Y		5 feet	\$40.52	\$202.60	
Cable Rack 2A	20" Ladder Rack	ILEC	4 CLECs	Y	$\begin{gathered} 555-734 \\ \text { type } \\ \hline \end{gathered}$	20 feet	\$40.52	\$810.40	
POT	7' Frame	CLEC	1 CLEC	NA					
XC-A	Manual X-conn Panel	CLEC	1 CLEC	NA	16 DS3's				
POT X-conn	Shielded X-conn Wire	CLEC	1 CLEC	NA	$\begin{aligned} & \hline 2 \text { per } \\ & \text { DS3 } \\ & \hline \end{aligned}$	3 feet			
XC-B	Manual X-conn Panel	CLEC	1 CLEC	NA	16 DS3's				
Cable B	734 Shielded (2 cables)	ILEC	1 CLEC	N	$\begin{aligned} & 2 \text { per } \\ & \text { DS3 } \end{aligned}$	165 feet	\$0.89/ft	\$293.70	\$293.70
Cable Rack B (Occupancy)	20" Ladder Rack	ILEC	$\begin{gathered} \hline \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	$\begin{gathered} 555734 \\ \text { Type } \\ \hline \end{gathered}$	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable holes between floors**	ILEC	$\text { ILEC + } 4$ CLECs	Y	$\begin{gathered} 555734 \\ \text { Type } \\ \hline \end{gathered}$		\$700.00/ hole	$\$ 1647.06$	\$5.92
DCS	$\begin{aligned} & \text { DS3 Digital Cross } \\ & \text { Connect** } \end{aligned}$	ILEC	$\begin{aligned} & \text { ILEC + } 4 \\ & \text { CLECs } \end{aligned}$	Y	512 DS3		$\begin{gathered} \$ 2293.31 \\ \text { per DS3 } \end{gathered}$	$\underset{\substack{* * \\ * 1,381,382.00}}{ }$	\$2698.01

Collocation Model for DS-3 Service-DSX

Co-location_Area_ . -
 Common Collocation Area

Element	Description	Provided By	Used By	Reusable YIN	Size	Length	Unit Cost	Cost	Cost per DS3 Cct
CLEC Equipment	DS3 Terminal/Multiplexer	CLEC	1 CLEC	NA					
Cable A	734 Shielded	CLEC	1 CLEC	NA		<25 feet			
Cable Rack 1A	20" Ladder Rack	ILEC	1 CLEC	Y		5 feet	\$40.52	\$202.60	
$\begin{aligned} & \text { Cable Rack } \\ & \text { 2A } \end{aligned}$	20" Ladder Rack	ILEC	4 CLECs	Y	$\begin{gathered} 555-734 \\ \text { type } \\ \hline \end{gathered}$	20 feet	\$40.52	\$810.40	
POT	7' Frame	CLEC	1 CLEC	NA					
XC-A	Manual X-conn Panel	CLEC	1 CLEC	NA	$\begin{gathered} 16 \\ \text { DS3's } \end{gathered}$				
POT X-conn	Shielded X-conn Wire	CLEC	1 CLEC	NA	$\begin{aligned} & 2 \text { per } \\ & \text { DS3 } \end{aligned}$	3 feet			
XC-B	Manual X-conn Panel	CLEC	1 CLEC	NA	$\begin{gathered} 16 \\ \text { DS3's } \end{gathered}$				
Cable B	734 Shielded (2 cables)	ILEC	1 CLEC	N	$\begin{aligned} & 2 \text { per } \\ & \text { DS3 } \end{aligned}$	165 feet	\$0.89/ft	\$293.70	\$293.70
Cable Rack B (Occupancy)	20" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } 4 \\ & \text { CLECs } \end{aligned}$	Y	555734 Type	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable holes between floors**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECS } \end{gathered}$	Y	$\begin{gathered} 555734 \\ \text { Type } \end{gathered}$		$\begin{gathered} \$ 700.00 / \\ \text { hole } \end{gathered}$	$\$ 1647.06$	\$5.92
XC-C	Manual X-conn Panel**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \\ \hline \end{gathered}$	Y	$\begin{gathered} 16 \\ \text { DS3's } \end{gathered}$		\$5951.75	$\$ 7002.06$	\$437.63
DSX Frame	7' Frame**	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLEC } \\ \hline \end{gathered}$	Y	$\begin{gathered} 112 \\ \text { DS3's } \end{gathered}$		\$390.00	$\$ 458.82$	\$4.10

** Indicates 85\% Fill

Co-location Model for Optical Service

Element	Description	Provided By	Used By	Reusable Y/N	Size	Length	Unit Cost	Cost	Cost per Optical Cable (12 Fiber)
CLEC Equipment	Fiber Patch Panel	CLEC	1 CLEC	NA					
Cable A	12 Fiber Breakout	ILEC	1 CLEC	N		190 ft .	\$11.16	\$2120.40	\$2120.40
Cable Rack 1A	12" Ladder Rack	ILEC	1 CLEC	Y		5 ft	Note 1	Note 1	
Cable Rack 2A	12" Ladder Rack	ILEC	4 CLECs	Y		20 ft	Note 1	Note 1	
Cable Rack B (Occupancy)	12" Ladder Rack	ILEC	$\begin{gathered} \text { ILEC + } 4 \\ \text { CLECs } \end{gathered}$	Y	$\begin{gathered} 221 \\ \text { Breakout } \\ \hline \end{gathered}$	150 ft	\$39.88	\$5982.00	\$27.07
Cable Hole	2 Cable holes between floors	ILEC	ILEC + 4 CLECs	Y	$\begin{gathered} 221 \\ \text { Breakout } \end{gathered}$		$\begin{aligned} & \$ 700 / \\ & \text { hole } \end{aligned}$	$\underset{* *}{\$ 1647.06}$	\$7.45
FDF	Fiber Distribution Frame	ILEC	ILEC + 4 CLECs	Y	$\begin{gathered} 768 \\ \text { Fibers } \end{gathered}$		$\$ 232.19$ per 12 Fibers	$\$ 273.16$	\$273.16

Note 1-same Rack as Entrance Fiber
**Indicates 85\% Fill

Co-location Area

Power Distribution \qquad Power Consumption
$-$

Element	Description	Provided by CLEC/ILEC	Used By	Reuseable	Quantity	Unit Cost	Total Cost	Remarks
-48V DC Power Panel	Located in Cage	CLEC	1 CLEC	N/A	--	--	\because	CLEC installs -48V DC panels in cage; terminates ILEC feed
Cable 'B'	$4 \times$ \#6 Cable between Cage \& Collo BDFB	ILEC	1 CLEC	N	$35^{\prime}-0^{n}$	\$3.94	\$137.90	2×20 AMP A \& B Cables plus 2 Battery returns
Cable 'B'	$4 X$ \#2 Cable between Cage \& Collo BDFB	ILEC	1 CLEC	N	35 '-0"	\$5.14	\$179.90	2×50 AMP A \& B Cables plus 2 Battery returns
Cable 'B'	$4 \times 2 / 0$ Cable between Cage \& Collo BDFB	ILEC	1 CLEC	N	35'-0"	\$6.70	\$234.50	2×100 AMP A \& B Cables plus 2 Battery returns
Cable Rack	$15^{\prime \prime}$ CLEC specific	ILEC	1CLEC	Y	$5^{\prime}-0^{\prime \prime}$	\$40.12	\$200.60	Only required with first -48 V DC Fower request; Between CLEC \& ILEC BDFB rack
BDFB	Located close to Collocation Cages	ILEC	$\begin{gathered} \text { ILEC + } \\ 4 \text { CLECs } \end{gathered}$	N/A	--	--	-	Included in -48V DC Power Consumption Charge
Cable Rack Occupancy	Shared support for Cable ' A ' below	ILEC		N/A	--	--	--	Included in -48V DC Power Consumption Charge
Cable 'A'	Cable between -48 V Power Plant \& BDFB	ILEC		N/A	--	--	\cdots	Included in -48V DC Power Consumption Charge
$\begin{aligned} & -48 \mathrm{~V} \text { DC } \\ & \text { Power Plant } \end{aligned}$	Shared use between CLEC's \& ILEC	ILEC		N/A	--	--	-	Included in -48V DC Power Consumption Charge
AC Electrical \& Auto-start Diesel	Required for Battery Back-up	ILEC		N/A	--	--	--	Included in -48V DC Power Consumption Charge

Collocation Model - Calculation of -48V DC Power Consumption Capital Investments

Element	Shared 2500 Amp Power Plant						Shared 4000 Amp Power Plant							
	Engineer	Furnish	Install		Total			Engineer	Furnish		Install		Total	
1200 Amp BDFB-A \& B Food. ofw an mheives and fuses	inclused	\% 14.400.00	5	5.600.00	s	20.000 .00			\$	14,400,00	5	5,600.00	\$	20,000.00
750 MCM cable between -48 V DC Power Piani 4 BDFB (4 Bat, Relum)	Included	\$ 9,360.00		Included	\$	9,360.00			\$	9,36000		Above	s	9.36000
Batteriel-sufficiont to provice 4 Hour Reserve	Included	\$ 145.600.00	5	18,666.00	5	164.266.00			5	280,000.00	5	34,666.00	5	314.666 .00
Power Distribution Cantra (Battery Controi Board)	Induded	\$ 7.000.00	3	5,000.00	\$	12.00000			5	10.50000	5	8.000.00	5	18,500.00
Rectriefs - ($\mathbf{N}+1$) 10 carry load plus 1 for Maintenance	Included	\$ 58,80000	5	11.200.00	5	70,000.00			s	115,500.00	s	16,800.00	5	132.300.00
Power Plant 4 BDFB Engineering Charge	$5 \quad 4.160 .00$				\$	4.160.00	s	5,200,00					s	5,200.00
$15^{\prime \prime}$ cable rack occupancy $8 \times$ $750 \mathrm{MCM} \times 150$ feel (Power Plant to BDFE)	Included	Included		Included	\$	94800		Included		Included		luded	\$	948.00
Occupancy for $2 \times$ Fioor Cable Holes	Included	Included		included	\$	54.92		Inchuded		included		luded	*	54.92
Standby Generator (including Fuen Tanks, AC Entrance of Switchboord Eqp ()	Included	Induded		Included	\$	84,000 00		Included		Included		luded	\$	134,400.00
Total Element Investment	\$ 4,160.00	\$ 235,160.00	\$	40,466.00	5	364,788.92	5	5,200.00	5	429,760.00	5	65,066.00	5	635,428.92
Investment Per Amp					5	145.92							5	158.86
Meld of -48V DC Power Consumption Investments					\$	152.39	< Meld of 2500A \& 4000A Power Plant Investments							
Assumed Utilization of Power Plant						80\%								
Actual Investment per -48V DC Amp					\$	190.48								
Equals -48V DC Component per Amp														
AC Energy Component (See Chart 1 Below)					\$	2.03								
Equals Total Monthly DC \& AC Component														

Notes:

1) All 'material' Investments are calculated as Reuseable.
2) Assumes maximum requirement of 4 hours reserve with auto-stert diesel

Chart 1	
Calculation of AC Component	
Quantity of DC Amps	1
Quantity ol Watts per DC Amp	48
Hours Usage per Day	24
Days Usage per Month	30
Total Monthly DC Watts	34560
AC Equivalent Watts at	
85\% Rectifier Elficiency	
Total AC Kilowatt Hours	40659
Cost per Kilowatt Hour	40.66
AC Energy Rate per DC Amp	$\$$

COLLOCATION MODEL - EQUUIPMENT GROUNDING

Element	Description	Provided by CLECILEC	Used By	$\begin{gathered} R \theta \\ \text { useable } \end{gathered}$	Quantity	$\begin{aligned} & \hline \text { Unit } \\ & \text { Cost } \end{aligned}$	Total Cost	$\begin{aligned} & \hline \operatorname{Cos} t \\ & \text { CLEC } \end{aligned}$	Remarks
Equipment Ground Bar	Attached to CLEC Cable Rack in Cage	CLEC	1 CLEC	N/A	--	--	--	--	CLEC will provide ground bar and connect to ILEC Ground Bar in Common Area
Cable ' B^{\prime}	No. $4 / 0$ cable between CLEC Ground Bar and Common Area Bar	CLEC	1 CLEC	N/A	$30^{\prime}-0^{\prime \prime}$	--	--	--	CLEC installs ground cable to connect to ILEC Common Area Ground Bar using cable brackets attached to ILEC cable racking
New Common Area Ground Bar	Extension of ILEC Building Principal Floor Ground	ILEC	4 CLECs	Y	\cdots	\$107.00	\$107.00	\$26.75	ILEC to extend suitable ground to Common Area and place ground bar for all CLEC's (Includes Furnish \& Install)
Cable 'A'	No. $4 / 0$ cable in conduit between existing C.O. Floor Ground Bar and new Common Area Bar	ILEC	4 CLECs	Y	100'-0"	\$8.65	\$865.00	\$216.25	ILEC extends suitable ground to Common Area for all CLEC's (Includes Furnish \& Install)

COLLOCATION MODEL - SUMMARY OF REALTY COST ELEMENTS								
ITEM	QUANTITY	UNIT	UNIT PRICE		TOTAL COST		COST PER 100 S. F.	
PARTITIONING (INCL. POSTS, FABRIC, RAILS, GATES \& INSTALLATION)	155	Lin. Ft.	\$	20.90	\$	3,239.50	\$	809.88
FLOOR TILE	550	Sq. Ft.	\$	1.71	\$	940.50	\$	235.13
PADLOCKS FOR CAGES	4	Each	\$	50.00	\$	200.00	\$	50.00
PLYWOOD	1	Sheet	\$	250.00	\$	250.00	\$	62.50
HVAC	7.7	Tons	\$	1,785.00	\$	13,744.50	\$	3,436.13
LIGHTING	22	Each	\$	117.00	\$	2,574.00	\$	643.50
SWITCHING (MOTION DETECTION TYPE)	5	Each	\$	214.00	\$	1,070.00	\$	267.50
ELECTRICAL PANEL	1	Each	\$	2,150.00	\$	2,150.00	\$	537.50
ELECTRICAL RECEPTACLES	12	Each	\$	48.32	\$	579.84	\$	144.96
MESH GROUNDING	10	Lin. Ft.	\$	10.80	\$	108.00	\$	27.00
TOTAL COST TO CREATE COLLOCATION AREA					\$	25,406.34		
PROPOSED COST TO CLEC PER 100 SQ. FT. ALLOCATION							\$	6,351.59

ILEC MANPOWER REQUIREMENTS			
FUNCTION	HOURS TO PLAN INITIAL COLLOCATION AREA	HOURS PER EACH CLEC REQUEST	
OUTSIDE PLANT ACCESS DESIGN	0	6	
BUILDING PLANNING	10	4	
MDF PLANNING	0	4	
REAL ESTATE PROJECT MGMT	6	2	
REAL ESTATE CONSTRUCTION MGR	8	4	
ARCHITECURAL	22	2	
POWER ENGINEER	6	4	
EQUIPMENT ENGINEER	6	4	
EQUIPMENT INSTALLATION PROJECT MGR	6	8	
OPERATIONS GROUP	2	4	
APPLICATION FEE	0	10	
SECURITY ESCORTS	AS REQ'D	AS REQ'D	
TOTAL ILEC MANPOWER	66	52	

LAND \& BUILDING COST CALCULATION TABLE	
SPACE CALCULATION	
Equipment Space Requirement	12,000
Ancillary Requirement	25%
Total Footprint per Floor	15,000
Number of Floors (incl. basement)	4
Gross Building Space	60,000
Assignable Space Factor	80%
Assignable Space	48,000
LAND CALCULATION	
Building Footprint	15,000
Building to Land Ratio	2
Land Area Requirement	30,000
Cost of Land / Sq. Ft.	20.00
Total Land Cost	$\mathbf{6 0 0 , 0 0 , 0 0}$
Land Cost per Assignable Space	12.50
BUILDING CALCULATION	$\$$
Gross Building Space	$\$$
Cost per Sq. Ft. (RS Means)	60,000
Total Cost of Building	121.50
Building Cost per Assignable Space	$\$$
Total Land \& Building Cost per	$\$$
Assignable Square Foot	$\$$

SECTION TWO

BACKUP INDEX

CONNECTIVITY ELEMENT MATRIX
BU \# 1 DIGITAL CROSS CONNECTS
BU \# 2 CABLE HOLES
BU \# 3 CABLE AND CABLE RACK LENGTHS
BU \# 4 CABLE RACK/LADDER
BU \# 5 MAIN DISTRIBUTION FRAME
BU \# 6 CABLE - FIBER ENTRANCE
BU \# 7 CABLE -- VOICE GRADE, DS-1, DS-3
BU \# 8 RELAY RACKS
BU \# 9 DSX-1 PANEL, DSX-3 PANEL
BU \# 10 GROUNDING
BU \# 11 POWER CONSUMPTION
BU \# 12 POWER DELIVERY
BU \# 13 ACCESS (FIBER ENTRANCE) ELEMENTS
BU \# 14 PARTITIONING, TILE
BU \# 15 SECURITY, LOCKS, PLYWOOD
BU \# 16 HEATING VENTILATING AND AIR CONDITIONING
BU \# 17 ELECTRICAL COMPONENTS
BU \# 18 LAND AND BUILDINGS
BU \# 19 ILEC MANPOWER
BU \# 20 FIBER DISTRIBUTION FRAME

DIGITAL CROSS CONNECTS

DS3 DCS (Matrix Line 18)

Type used: Alcatel 1633 SX equipped for 512 DS3s.
List price: $\$ 1,467,716$ equipped with all input/output cards.
Of this amount, $\$ 158,154$ or 10.78% is for installation and testing, including engineering.

Source: written quote from Alcatel: Bob Harris, National Account Manager.
Subject matter experts assume a 20% negotiated discount $(\$ 1,174,172$) and assume that E\&I remain the same proportion of the total price:

Assume a 20\% negotiated discount = \$ 1,174,172

E \& I- \$126,575
Furnish \$1,047,597
Cost per DS-3: $\quad \$ 1,174,172 \div 512=\$ 2293.30$

DS1 DCS (Matrix Line 19)

Type used: Alcatel 1631 SMC equipped for 7168 DS1s.
List price: $\$ 2,949,934$ equipped with all input/output cards.
Of this amount, $\$ 128,782$ or $\mathbf{4 . 3 7 \%}$ is for installation and testing, including engineering.
Source: written quote from Alcatel: Bob Harris, National Account Manager.
Subject matter experts assume a 20% negotiated discount $(\$ 2,359,954)$ and assume that E\&I remain the same proportion of the total price:

E\&I \$103,033
FURNISH \$2,256,921
Cost per DS-1: $\$ 2,359,954 \div 7168=\$ 329.23$

CABLE HOLES

(Matrix Lines 23 \& 24)

Cable hole is assumed to be sized to fit the cable rack.
Costs include engineering, cutting and coring.

Source: subject matter expert Ken Bradshaw, based on verbal discussion with Smylie and Crow Associates. Estimate: $\$ 700$

CABLE \& CABLE RACKS LENGTHS

ENTRANCE: (Fiber Cable lengths from manhole to vault splice)

- Manhole
- Manhole
- Vault Wall to Vault Splice
125^{\prime} consisting of: 75^{\prime}
50^{\prime}

Source: subject matter expert Donna Carney, AT\&T.

RISER: (Cable from vault to Collocation Area)
Cable and cable rack lengths are determined by computing an average of two scenarios:

	3 Floors (max)	1 Floor (min)
Length on 1 floor	120^{\prime}	20^{\prime}
Width on 1 floor	100^{\prime}	-
Vertical-between floors	$60^{\prime}(3$ floors)	$20^{\prime}(1$ floor)
Cable Rack to Equip.	$\frac{15^{\prime}}{}$ (drops)	$\frac{15^{\prime}}{}$ (drops)
TOTAL		295^{\prime}

Average Cable Length: $(295+55) \div 2=175^{\prime}$ (includes average 76^{*} cable drop at each end) Rack $=160^{\prime}$ (no drops)

Source: subject matter expert Richard Bissell, based on forward looking central office model layout.

CONNECTIVITY: (Cable from Collocation Area to ILEC equipment) Cable and cable rack lengths are determined by computing an average of two scenarios.

2 Floor (max)
Length on 1 floor
Width on 1 floor
Vertical between floors
Cable Rack to Equip. TOTAL

120'
100^{\prime}
40' (2 floors)
15' (drops)
275'

Same Floor (min) 20' 20^{\prime}
--
15' (drops) 55

Average Cable Length $(275+55) \div 2=165^{\prime}$ (indudes average $76^{\prime \prime}$ cable drop at each end) Rack $=150$ (no drops)

Source: subject matter expert Richard Bissell, based on forward looking central office model layout.

COMMON AREA CABLE RACK/LADDER

ILEC places a $5^{\prime} 0^{\prime \prime}$ between the collocation BDFB and the CLEC cage on initial cage construction.

Source: subject matter expert Richard Bissell, based on forward looking central office model layout.

OPTICAL CONNECTIVITY: (The cable from the collocation area to the ILEC Fiber Distribution Frame.) The cable length is computed using:

$$
\text { Average cable rack length from ILEC equipment to Collo area } 150^{\prime}
$$

Cable rack length in Collocation common area $\quad 20^{\prime}$
Cable rack from Collocation common area to cage 5
Cable Rack to Equipmerit
15^{\prime} (drops) 190'

Source: subject matter expert Richard Bissell, based on forward looking central office model layout.

POWER

Cable and cable racking for the power room to the collocation BDFB are included in the power consumption calculations. Lengths were determined by computing an average of two scenarios.

Length on 1 floor
Width on 1 floor
Vertical between floors
Cable Rack to Equip TOTAL

2 Floor (max)
120'
100'
40' (2 floors)
15' (drops)
275'

Same Floor (min)
20^{\prime}
20^{\prime}
--
15^{\prime} (drops)
55^{\prime}

Average Cable Length: $(275+55) \div 2=165^{\prime}$ (includes $76^{\prime \prime}$ cable drop at each end) Rack $=150^{\prime}$ (no drops)

Source: subject matter expert Richard Bissell, based on forward looking central office model layout.

CABLE FROM BDFB TO CLEC POWER PANEL

15' Common area to BDFB
20' Slack provided for CLEC in cage to connect to the CLEC power panel
35' Overall Length

CHART 1			
COLLOCATION WODELCONNECTIVTY COMPONENTS AND AVERAGE DISTANCES			
TYPE OF CONNECTION	$\begin{aligned} & \text { CABLE } \\ & \text { LENGTH } \end{aligned}$	CABLERACK LENGTH	```CABLE HOLES AND SLEEVES```
FIBER ENTRANCE CABLE (BY CLEC)	$125^{\prime}-0^{\text {a }}$	N/A	--
FIBER RISER CABLE (BY CLEC)	$175{ }^{\prime}-0^{*}$	$160^{\prime}-0^{\prime \prime}$	3
COPPER (DS-0/DS-1/DS-3)	$165{ }^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime \prime}$	2
OPTICAL	$190^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime \prime}$	2
-48V DC POWER PLANT TO BDFB	$165{ }^{\prime}-0^{n}$	$150^{\prime}-0^{\prime \prime}$	2
BDFB TO DC PANELS IN CAGE	35 ${ }^{\prime}-0^{n}$	5'-0"	-
FLOOR GROUND BAR TO COMMON AREA GROUND BAR*	$100^{\prime}-0^{\prime \prime}$	IN CONDUIT	-
COMMON AREA GROUND BAR TO EQUIPMENT GROUND BAR (installed by CLEC)	$30^{\prime}-0^{\prime \prime}$	CABLE BRACKETS ON COPPER RACK	-

* See grounding, BU \# 10.

CABLE RACK/LADDER

FURNISH

Assume placement is of medium to difficult complexity, so supporting "details" are required: for example, hangers, support rods, nuts, attachments to cable holes, etc.

Cable rack cost: $\quad 12^{\prime \prime}$ rack $\quad \$ 58.16$ per 10^{\prime} length
$15^{\prime \prime}$ rack $\quad \$ 60.55$ per 10^{\prime} length
$20^{\prime \prime}$ rack $\quad \$ 64.60$ per 10^{\prime} length
Source: Central Steel Fabricators, Inc.

Cable support assumptions:
\$ 2,000 per 175^{\prime} length
\$ 114.29 per 10^{\prime} length

Source: subject matter expert Richard Bissell based on assumed requirement of approximately $\$ 2000$ of supporting details for 175 ' run of cable racking.

Cable height pileup in the cable rack/ladder is based on the following chart:

CABLE TYPE	CABLE PILEUP USED	MAX PILEUP	\% FILL
VOICE GRADE	$10^{\prime \prime}$	$12^{\prime \prime}$	83\%
DSO	10"	$12^{\prime \prime}$	83\%
DS1	$10^{\prime \prime}$	$12^{\prime \prime}$	83\%
FIBER	$7{ }^{\prime \prime}$	$10^{\prime \prime}$	70\% *
POWER	5 "	$12^{\prime \prime}$	42\%**
BREAKOUT	$7{ }^{\text {" }}$	$10^{\prime \prime}$	70\% *

* Reduced fill due to cable rigidity (bending radius).

ENGINEERING

Quotes received:

Primal $=$	16 hr
Primal (Alers) $=$	24 hr (quote used)

INSTALLATION

Quotes received:

$$
\begin{aligned}
& \text { Primal }=48 \mathrm{hr} \text { (quote used) } \\
& \text { Primal (Alers) }= \\
& \text { Intercomm }= \\
& 72 \mathrm{hr} \\
& 16 \mathrm{hr}
\end{aligned}
$$

MAIN DISTRIBUTING FRAME (MDF)

(Matrix Line 14)

8' 0' FRAME

Planning price $=\$ 3400$ per vertical. One vertical provides 10 levels on the horizontal side of the frame to accommodate terminal blocks, and provides sufficient space for 9 blocks on the vertical side to terminate local exchange cables.

Therefore, cost per terminal strip space is $\$ 3400 \div 19=\$ 179$
Source: subject matter expert Richard Bissell, based on the assumption that the planning price includes MDF ironwork plus all required overhead and supporting material, cable racking, lighting, etc.

66 QC BLOCKS

(Included in voice grade costs.)
(Matrix Line 15)

FURNISH

Source:
Primal
$\$ 84.00$

ENGINEERING

Source:
Primal (Alers) 2 hr
INSTALLATION
Quotes received:
Primal
2 hr (quote used)
Primal (Alers) $\quad 12 \mathrm{hr}$ Intercomm 1 hr

CABLE -- FIBER ENTRANCE

(Matrix Line 10)
(Cable used from Vault to Collocation area)
FURNISH - Supplied by CLEC
ENGINEERING - Included in ILEC Manpower Cost 6 hr
Source: see BU \# 19.
INSTALLATION - Quotes received: Intercomm 8 hr Primal 8 hr (quote used)
Open and close three cable holes. Source: Primal (Alers) 6 hr

Total hours: $14 \mathbf{h r}$

CABLE

(Matrix Lines 6 to 8)

23" RELAY RACKS

FURNISH

Source:
Primal
\$ 170.00
ENGINEERING

Source:
Primal (Alers) $\quad 2.0 \mathrm{hr}$

INSTALLATION

Quotes received:	Primal	2.0 hr (quote used)
	Primal (Alers)	4.0 hr
	Intercomm	2.5 hr

DSX-1 PANEL
(Matrix Line 16)

FURNISH (1ADC Panel)

Source:
ENGINEERINGPrimal\$ 805.00
Source:
Primal (Alers) 2.0 hr
INSTALLATION
Quotes received:
Primal (Alers) 2.5 hr Primal 1.5 hr (quote used)
DSX-3 Panel
(Matrix Line 17)
FURNISH (1ADC Panel)
Source:
Primal$\$ 5,932.50$
ENGINEERING
Source:
INSTALLATION
Quotes received:

Primal (Alers) Primal
2.5 hr 1.5 hr (quote used)

GROUNDING

(Matrix Line 28)
Source: subject matter expert Ken Bradshaw, based on the following assumptions:
CLEC installs ground bar on cable rack in collocation cage.
CLEC installs cable between ground in collocation cage to ILEC ground in collocation common area using cable brackets on ILEC cable rack.

ILEC installs a cable from the floor ground bar to a ground bar located in the common collocation area. Assume the distance for a one floor run is 100^{\prime} if the existing bar is centrally located.

Cost elements:
$11 / 4^{n}$ PVC conduit $\quad \$ 4.60 /$ linear foot or $\$ 460$ per 100 feet
4/0 bare copper wire $\quad \$ 3.30 /$ linear foot or $\$ 330$ per 100 feet $4 / 0 \mathrm{crimp}$ one hole copper lugs, quantity (2) $\$ 75$
Total $\$ 865$ per 100 feet
Cost of $4 / 0$ cable, including PVC conduit: $\$ 8.65 /$ foot
Sources: RS Means Electrical Cost Data (1997), page 103 (PVC conduit) RS Means Construction Cost Data (1997), page 421

COMMON AREA GROUND BAR

 (Matrix Line 27)Located in the collocation cage and connected to the common area ground bar.

FURNISH

Source: verbal quote from Westminster Electrical, Ltd.
\$ 107.00 installed.

-48 VOLT POWER CONSUMPTION

A 1200 amp BDFB is supplied by the ILEC in the common area for distribution to all four cages and is included in the power consumption cost

Power consumption investments were developed based on an average of a medium ($2,500 \mathrm{amp}$) and a large ($4,000 \mathrm{amp}$) power plant and include:

- 1200 amp BDFB, including cabling for two floors (150')
- Rectifiers . $14 \times 200 \mathrm{amp}$ for $2,500 \mathrm{amp}$ $11 \times 400 \mathrm{amp}$ for $4,000 \mathrm{amp}$
- Power distribution center (PDC) as required for power room
- Standby generator, fuel tanks and electrical room equipment
- Batteries: 4 strings Absolyte 100A/81 for 2,500 amp

4 strings Absolyte 100A/99 for 4,000 amp
Rectifiers sized for $(n+1)$ to ensure one spare for maintenance
Source: Primal (written quote attached)

STANDBY GENERATOR AND AC ENTRANCE

400,000 Watt auto start standby diesel generator
Fuel tanks, AC switchboard, etc.
Total
$\$ 280,000.00 / 400,00$ watts $=\$ 0.70$ per watt. Using a conversion factor of 48 watts/DC amp: (\$0.70/watt $\times 48$ watts/amp) $=\$ 33.60$ per -48 V DC amp

2500 amp plant would require $2500 \mathrm{amps} \times \$ 33.60 / \mathrm{amp}=\$ 84,000$ 4000 amp plant would require $4000 \mathrm{amps} \times \$ 33.60 / \mathrm{amp}=\$ 134,400$

Source: Primal

AC ELECTRIC ENERGY

Source: subject matter experts Allen Hobbs and Richard Bissell.
The chart below is used to calculate the cost of AC electricity necessary to convert to 48 V DC. The calculation starts with 1 amp and the steps shown are taken to arrive at the kilowatt-hours required using an 85% efficient rectifier. Note that the rate per kilowatt-hour shown, $\$ 0.05$, is a default value. The kilowatt-hour charge is applied to determine the $A C$ rate per $D C$ amp. The result is used to develop the power consumption charge.

Calculation of AC Electric Energy Component	
Quantity of DC Amps	1
Quantity of Watts per DC Amp	48
Hours Usage per Day	24
Days Usage per Month	30
Total Monthly DC Watts	34560
AC Equivalent Watts at 85\% Rectifier Efficiency	40659
Total AC Kilowatt Hours	40.66
Cost per Kilowatt Hour	$\$$
AC Energy Rate per DC Amp	$\$$

-48 V POWER DELIVERY

(Matrix Line 11 to 13)
Assumes an " A " and a " B " feed and two battery returns for power source diversity (four cables total).

CLEC provides DC panels within collocation cage.
Delivery from power plant to BDFB is included in the power consumption charge.
ILEC provides cabling between collocation BDFB and CLEC DC panel. Length assumes $15^{\prime}-0^{\prime \prime}$ in the common area and $20^{\prime}-0^{\prime \prime}$ slack in the cage - total $35^{\prime}-0^{\prime \prime}$.

FURNISH

Source: Primal (\$/foot):

Cable Size	Price	Per 4 Cables
$2 / 0$	$\$ 0.89$	
$\# 2$	$\$ 0.50$	$\$ 3.56$
$\# 6$	$\$ 0.20$	$\$ 2.00$
$\# 2$		$\$ 0.80$

ENGINEERING

Source:
Primal 1hr

INSTALLATION

Source:
Primal 1 hr

ACCESS (FIBER ENTRANCE) ELEMENTS CABLE PULLING AND SPLICING
 (Matrix Lines 9, 29-31)

Source: subject matter experts Donna Carney, AT\&T, and John Donovan

Cable pulling from manhole to cable vault (125') requires 4 hours, which includes cable pulling and travel time.

Cable splicing requires 5 hours: 3 hours set up and take down (includes 1 hour of travel), and 2 hours for splicing fiber (5 min per fiber $\times 24$ fiber).

Fiber placement in cable rack (175^{\prime}) requires 14 hours (fire retardant cable used).
Splice case (external to inside cable) provided by CLEC.
No charge to enter building - cable vault is the same as manhole.
No splicing in the manhole due to possible moisture.
Fiber cable (external and inside) provided by CLEC.
Cost of design work: 6 hours maximum (working drawings, etc.). These hours are included in the ILEC manpower input for the initial installation. See BU \#19.

For cable support charge in cable vault, used the same as cable rack occupancy charge (\$0.54/foot).

PARTITIONING

Partitioning required for the enclosure and separation of 550 square feet of central office space for the purpose of collocation.

155 lineal feet of partitioning required to enclose four collocation spaces and a common area. Source: subject matter expert Ken Bradshaw.

To supply and install the specified material:
R.S. Means Building Construction Cost Data (1997) \$ 20.90 (quote used)

Written quote from Simpson's Fence, Ltd. (averaged lineal foot price) \$ 16.18
R.S. Means (page 80): material priced $(\$ 13.30)$ is 9 gauge galvanized steel with barbed wire set in concrete, 6 feet high. Subject matter experts assume the cost to install on a concrete slab would be similar, and multiplied by 1.33 to adjust for 8 foot height requirement: $\$ 13.30 \times 1.33=\$ 17.70$ per lineal foot. 155 lineal feet $\times \$ 17.70=\$ 2,742$ plus $\$ 500$ added for gate construction $=$ $\$ 3,242$. Per-foot price: $\$ 3,242 / 155=\$ 20.92$, rounded to $\$ 20.90$.

Simpson's quote: $\$ 3510$ Canadian/1.4 $=\$ 2507.14$ US. Per foot price: \$2507.14/155 = \$16.18.

Total: 155 feet $\times \$ 20.90 / f t=\$ 3,239.50$
Partitioning cost for a 100 square foot collocation area includes one-fourth of the common area, so: $\$ 3,335.50 / 4=\$ 809.88$

FLOOR TILE

550 square feet of floor tile $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 8^{n}$ composite floor tile.
R.S. Means (1997), page 269
\$1.71/sq. ft. (quote used) Verbal estimate by London General Contractors, Ltd. \$1.77/sq. ft

Total: 550 sq. ft. $\times \$ 1.71 /$ sq.ft. $=\$ 940.50$
Floor tile cost for a 100 square foot collocation area includes one-fourth of the common area, so: $\quad \$ 940.50 / 4=\$ 235.13$

SECURITY ACCESS CARDS

Cards for an electronic security card access system.
Source: verbal estimate by Warman Security: \$5-15/card. \$15 per card (quote used)

PADLOCKS FOR CAGES

Brass coded padlock for the collocation cage door(s).
Source: verbal estimate by London General Contractors, Ltd.: $\$ \mathbf{5 0 . 0 0}$

PLYWOOD BACKBOARD

Supply and install a plywood backboard in the collocation common area to support electrical distribution panel.

Source: verbal estimate by London General Contractors, Ltd.: \$ 250.00
Plywood cost for a 100 square foot collocation area includes one-fourth of the common area, so: $\quad \$ 250.00 / 4=\mathbf{6 2 . 5 0}$

HEATING VENTILATING AND AIR CONDITIONING

Source: Charlie Crow of Smylie and Crow Associates.
Heat generated by telecommunications equipment must be dissipated for its continued safe operation. Calculations for the value carried to the model are based on the electrical power consumed by the telecommunications equipment, as follows:

Assuming an average collocator equipment electrical dernand $135 \mathrm{amps}(x 4)=540$ amps and the common area demand to be 23 amps for a total of 563 amps .
$563 \mathrm{amps} \times 48$ volts $=27,024$ watts
The engineering factor to get heat from watts is 3.413 , thus:
27,024 watts $\times 3.413=92,223$ Btu
Cooling calculation $12,000 \mathrm{Btu}=1$ ton of air conditioning, thus:
$92,223 \div 12,000=7.7$ tons
Consultant provided a "rule of thumb" value to calculate the investment for the design and construction of an air conditioning system of approximately $\$ 1,785.00$ per ton of air conditioning, thus:
7.7 tons $\times \$ 1,785.00 /$ ton $=\$ 13,744.50$ for HVAC for the entire collocation area. Average cost for the Collocation Model for HVAC is $\$ 13,744.50$ for HVAC.

HVAC cost for a 100 square foot collocation area includes heat dissipation in the common area, so: $\$ 13,744.50 / 4=\$ 3,436.13$

Note: the maximum cost for HVAC, assuming the maximum amperage of 190 amps per 100 square feet collocation area was attained for all collocators simultaneously, would result in a cost of $\$ 19,080.00$ for HVAC for the entire collocation area.

ELECTRICAL COMPONENTS

LIGHTING

Supply and install 4 fluorescent fixtures per collocation area ($4 \times 4=16$) plus 6 for the common area: total 22 fixtures.
R.S. Means (1997), page 432

Verbal estimate by Westminster Electrical, Ltd.
$\$ 117.00$ per fixture (quote used)
$\$ 113.00$ per fixture

Total cost: 22 fixtures $\times \mathbf{\$ 1 1 7 / f i x t u r e ~}=\mathbf{\$ 2}, 574.00$
Lighting cost for a 100 square foot collocation area includes one-fourth of the comrnon area, so: $\quad \$ 2,574.00 / 4=\$ 643.50$

SWITCHING

Supply and install 5 motion detector switches to control lighting. One per cage and one for the common area.

Verbal estimate by Westminster Electrical, Ltd. $\$ 214.00$ (quote used)
Motion detector switching cost for a 100 square foot collocation area includes onefourth of the common area, so: $\$ 214.00 / 4=\$ 53.50$

ELECTRICAL PANEL

Supply and install one electrical distribution panel required: 42 circuit 225 amp 240/120 volt.
R.S. Means (1997), page 424

Verbal estimate by Westminster Electrical, Ltd.
\$ 2150 / panel (quote used) \$ 2125 / panel

Electrical panel cost for a 100 square foot collocation area includes one-fourth of the common area panel, so: $\$ 2,150 / 4=\$ 537.50$

ELECTRICAL RECEPTACLES

20 amp duplex electrical receptacles
2 outlets per collocation area $4 \times 2=8$
4 outlets for the common area 4
Total: $\quad 12$ receptacles

Quotes received:
R.S. Means (1997), pages 414, 423

12 receptacles at $\$ 19.90 \quad=\$ 238.80$
Assuming 100' conduit and wire at $\$ 3.41 / \mathrm{ft}=\$ 341.00$ Total $\quad \$ 579.80$

Cost per outlet is $\quad \$ 579.80 \div 12=\quad \$ 48.32$ (quote used)
Verbal estimate by Westminster Electrical, Ltd . (per outlet): \$ 50.00

MESH GROUNDING

10 feet of ground cable installed complete with connector lug

Quotes received:
R.S. Means (1997), page 421
cable $\quad \$ 33.00$
2 connectors 75.00
Total $\$ 108.00$ (quote used)
Verbal estimate by Westminster Electrical, Ltd. (per outlet): \$ 105.00

LAND AND BUILDINGS

Source: subject matter experts Richard Bissell and Ken Bradshaw, based on forward looking central office (CO) model layout.

FLOOR SPACE

Assume a forward looking CO floor space of 12,000 square feet. For the building footprint, assume ancillary space for corridors, stairs, service shafts, etc. at 25% over the equipment space: $\quad 12,000 \times 1.25=15,000 \mathrm{sq} . \mathrm{ft}$. Total gross space for four floors: $\quad 15,000 \times 4=60,000 \mathrm{sq}$. ft.
Assume assignable space factor of 80% : $.8 \times 60,000=\mathbf{4 8 , 0 0 0} \mathbf{s q} . \mathrm{ft}$.

LAND COST CALCULATION

Source: subject matter expert Ken Bradshaw, based on experience.
Building to land ratio: 2 times footprint
Thus:
$2 \times 15,000=30,000 \mathrm{sq} . \mathrm{ft}$.
Assume the cost of land is $\$ 20.00$ per square foot. Note that the cost of land per square foot used is a default value. Thus: $\$ 20.00 \times 30,000 \mathrm{sq}$. ft. $=\$ 600,000$ Land cost per assignable square foot is $\$ 600,000 / 48,000=\$ 12.50$

BUILDING COST CALCULATION

Source: subject matter expert Ken Bradshaw, based on experience.
The average cost of building a telephone exchange office is presented in R.S. Means (1997), page 450 , for a 4,500 sq. ft., office is $\$ 135.00$ per sq. ft.

Due to economies of scale, the cost of building a $60,000 \mathrm{sq}$. ft. office (a size factor of greater than 3.5) is calculated by applying a multiplier of 0.90 (R. S. Means, page 548): $\$ 135.00$ per sq. ft. $\times 0.90=\$ 121.50$ per sq. ft.

Thus, the cost of the proposed building in the Collocation Model is:
$60,000 \times \$ 121.50=\$ 7,290,000.00$
Further, the building cost per assignable square foot is:

$$
7,290,000 \div 48,000=\$ 151.88
$$

Total land plus building cost per assignable square foot: is
$\$ 12.50+\$ 151.88=\$ 164.38$

ILEC MANPOWER

The following table lists the ILEC Groups involved in the Collocation Process and the tasks performed in fulfilling an Initial request for Collocation

Function	Tasks	Work Time (hours)
Outside Plant Access Design	Prepares Estimate for Work required	2
	Engineers Details and Tender	2
	Reviews Tenders, Award, and Updates Records	2
Building \& MDF Planning	Selects Building Space	4
	Compiles Estimates and develops Plan	10
	Finalizes Plan	2
	Finalizes Project	2
Real Estate Project Manager	Prepares Estimate for Work required	4
	Engineers Details and Tender	2
	Reviews Tenders and Award	2
Real Estate Construction Manager	Coordinates Construction Activity	12
Architect	Prepares Estimate for Work required	4
	Engineers Details and Tender	20
Power Engineer	Prepares Estimate for work required	3
	Engineers Details and Tender	5
	Reviews Tenders and Award	2
Equipment Engineer	Prepares Estimate for work required	3
	Engineers Details and Tender	5
	Reviews Tenders and Award	2
Equipment Installation Project Manager	Coordinates Equipment Estimates	14
Operations Group	Attends Meetings and Interfaces with Contractors as required	6
ILEC Contact Group	Reviews Request and Forward to Planning	1
	Advises CLEC of Cost of Collocation	1
	Receives Acceptance and advises Planning	1
	Notifies CLEC of Completion	1
Other ILEC Groups	Performs related Tasks (e.g., billing)	6

Source: subject matter experts Richard Bissell, Allen Hobbs and Ken Bradshaw, based on experience.

FIBER DISTRIBUTION FRAME

FURNISH

Type used: ADC Standard Fiber Distribution Frame equipped with 8×96 termination SC connector modules for a total capacity of 768 fibers.

1 Universal Fiber Frame-7 ft		$\$ 1,150$
8 Connector Modules-96 Termination		$\$ 15,400$
1 Inter bay Management Panel		$\$ 650$
	Total list price	$\$ 17,200$

SOURCE: ADC Telecommunications, Inc.
Assume a 20\% negotiated discount $=\$ 13,760.00$

ENGINEERING

Source: Primal 4 hr

INSTALLATION

Source: Primal 16 hr

SECTION THREE SUPPLIER QUOTES

ALCATEL
PRIMAL COMMUNICATIONS
EXPRESS INTERCOMMUNICATIONS
SIMPSON'S FENCE
CENTRAL STEEL FABRICATORS
R. S. MEANS BUILDING CONSTRUCTION COST DATA (1997)
R. S. MEANS ELECTRICAL COST DATA (1997)
ADC TELECOMMUNICATIONS

ALCATEL

Source document for Digital Cross Connects.

Subject: Request for Quotation

Date: Thu, 3 Jul 97 16:23:17-0400
From: Harris_Bob/nsih1_RICHARDSON/alcatel/US/Telemail/alcanet@audopen.aud.alcatel.co
To: hobbs.Iondon@sympatico.ca
CC: bob_harris@rockdal.aud.alcatel.com, cgoldfarb@mci.com.
robert.b.may@mci.com

A1,
My sincere aplogies for being late with this information. We had proolems getting into electronic format as it was done from an interna: pricing configurator. This is a different process due to the fact that no discounts were built into the prices. We had our secretary type this up by hand.

I paged you around 1:00 today to try to get your fax *. Please let me know if you have any question.

Regaras,
Bob
PS: This quote DOES include $1 / 0$ modules. If you do not need them, subract the cost of the I / O racks in this quote. Thanks.

```
> Bob,this is further to our telephone conversation concerning the
request
foz prize quotes on 2 pieces of Al:avel equipment.
>
> wouid you ziease provide an insta\ied pri=e(EFsI) for =ne E=:-swing:
>
> 2 Ai=atel 2633 e,w 512 ports (copper arly no Eiber)
```



```
>
> 3 Aiニa=e: : ड3:SM% equiped as a DS: =ross cone=5 (25e equivaien:
DS3's)
> ( & believe that this is a mid sized DCS)
4 ES1 I/O ca=0 5or 163%.
>
>
> If you or any of your staff are unciear about my request please do
not
> nesicate to call me at 519-474-7588 or page me at 1-800-946-1546, ID
142-0858.
>
> If possible to meet the timeframe for the next filing I would like the
> information by Wed afternoon July 3.
>
> Thanks you for your assistance.
```



```
Al Hocbs
>
```

Attachment 2	Name: $54-7041 . d o c$ Type: application/x-openmail-1879 Encoding: base64

1631 SX SMC
Equipped for 7,168 DS1

Product Name	QTY	Price	Extended
1631 SX-APS	1	\$79.439.00	\$79,439.00
1631 SX-TSI-RK	1	\$61.744.00	\$61.744.00
10-RK		\$250.504.00	\$250.504.00
10-RK	1	\$250.504.00	\$250.504.00
10-RK	1	\$250.504.00	\$250.504.00
10-RK	1	\$250.504.00	\$250.504.00
1631 SX-TSI-RK	1	\$58.744.00	\$58,744.00
1631 SX-TSI-RK	1	\$61.744.00	\$61,744.00
1631 SX-TSI-RK	1	\$58.744.00	\$58.744.00
10-RK		\$250.504.00	\$250.504.00
10-RK	1	\$250.504.00	\$250,504.00
10-RK	1	\$250.504.00	\$250.504.00
10-RK	1	\$250.504.00	\$250.504.00
1631 SX-SPARES	1	\$43.896.00	\$43.896.00
1631 SX-DATA-CABL	1	\$156.000.00	\$156,000.00
1631 SX-CONTROL	1	\$14,350.00	\$14.350.00
1631 SX-ASSEMBLY	1	\$21.670.00	\$21.670.00
1631 SX-OEM	1	\$2.875.00	\$2.875.00
1631 SX-ASSEMBLY	1	\$36.00	\$36.00
1631 SX-ASSEMBLY	1	\$1.578.00	\$1.578.00
1631 SX-APS	1	\$23,000.00	\$23.000.00
1631 SX-TSI-RK	1	\$11,679.00	\$11.679.00
IO-RK	1	\$17.708.00	\$17.708.00
IO-RK	1	\$17.708.00	\$17,708.00
IO-RK	1	\$17.708.00	\$17.708.00
IO-RK	1	\$17.708.00	\$17.708.00
1631 SX-TSL-RK	1	\$11,679.00	\$11.679.00
1631 SX-TSI-RK	1	\$11,679.00	\$11.679.00
1631 SX-TSI-RK	1	\$11,679.00	\$11.679.00
10-RK	1	\$17.708.00	\$17.708.00
10-RK	1	\$17.708.00	\$17.708.00
10-RK	1	\$17.708.00	\$17.708.00
10-RK	1	\$17,708.00	\$17.708.00
$16315 X$ SMC	1	\$44.920.00 u. $3^{\text {2 }}$?	\$44,920.00
$1631 \text { SX-18T-In: - llation }$	1	$\$ 128,782.00$	
I-ciedes Engines...:	Grand Total \gg	\$2.949,934.00	$\$ 2.949 .934 .00^{\prime}$ 2.9^{27}
DS1 Module 8 Switch Card	1	\$1.575.09	\$1.575.09

97/07/03
1633 SX
Equipped for 512 DS3's

Product Name	QTY	Price	
$1633 S X-A P S$	1	$\$ 81.223 .00$	Extended
$1633 S X-$ STS-1O	1	$\$ 203.590 .00$	$\$ 21.223 .00$
$16335 X-$ C/S	1	$\$ 63.708 .00$	$\$ 63,708.00$

PRIMAL COMMUNICATIONS

Source documents for Power, Engineering (Alers), Installation, Breakout Cable, Power Load Supplies and Engineering and Installation of Fiber Distribution Bay

PRIMAL COMMUNICATIONS LTD

17 FORBES ROAD
SCARBOROUGH, ONTARIO
M1P 1 K8

Fax Cover Sheet

DATE: July 3, 1997 TIME: $3: 38$ PM

TO: RICHARD BISSELL

FROM: Mike McLafferty
Primal Comm. Ltd.

PHONE: (519) 858-3749
FAX: (519) 858-3757
PHONE: (416) 923-4384
FAX:

RE: Pricing profile
Number of pages including cover sheet: 6

Message

RICK:
QUOTE AS DISCUSSED. THREE SHEETS ACCOMPANY THIS FAX, SHEET 1 OUTLINES EF \& I POWER COSTING, I USED NT, RELTEC AND PECO 11 AS A BASIS FOR THESE PRICES.

SHEET 2 IS PRICING FOR EF \& I. FOR CABLE RACKING AND OVERHEAD IRONWORK. I USED NT. COMPOWER AND PRESTIGE AS A BASIS FOR THESE PRICES.

SHEET 3 FOCUSES ON INSTALLATION COSTS ASSOCIATED WITH VARIOUS TYPES OF EQUIPMENT.

Typical Collocation Model－48V Power Plant Unit Costs（Power Consumption RC）

	2500 Amp				4000 Amp			
								\＃1791：
BDFB－A \＆B Feed，ew all shelves and fuses		\＄10，500．00	\＄5，600．00	\＄16，100．00		810.50000	\＄5，600．00	8 16，100．00
Cable－Power Plant to BDFB． 150 h .2 Bat， 2 Relum		\＄4，600．00	IMCIABOVE	\＄4，680．00		\＄4，800．00	Inc／ABOVE	\％4，600．00
Batteries－sufficient to provide 3 Hour Reserve		\＄ 109.20000	\＄14，000．00	\＄123．200．00		\＄210，000．00	\＄28，000 00	\＄236，000．00
Power Distribution Cenire－ rypical for Pw Reom Distribulian		\＄7，000．00	\＄5，00000	\＄12，00000		\＄10，50000	\＄ 8.000 .00	\＄18．50000
Rectifiers－sufficient to corry load pius 1 resenve for Mamienance purposes		\＄58，800．00	\＄11，20000	\＄70，000 00		\＄115，500．00	\＄16，000．00	\＄132．300．00
Slandtoy Generator－aulostar and transfer		\％84，000．00	inc．	\＄84，000．00		\＄134，400．00	ne	\＄134，400．00
Todal Engineering al \＄85．00／mr	64 hrs.			\＄	80 hrs			8
	74，\％．．＂）			\＄	シ2•9			\＄
				\＄				\＄
				\＄				\＄
Total Element Costs	\＄4，160 00	\＄274，10000	\＄35，000．00	5	\＄5，20000	\＄485，580．00	\＄56，400．00	\＄541，980．00
Cost Per Amp	\＄ 166	\＄ 109.67	\＄ 14.32	\＄	\＄ 1.30	\＄ 121.40	\＄ 14.10	$\$ \quad 13550$

Notes：

1）Please provide details of cabling between－48V Power Plant \＆BDFB
Type：Size： \qquad Diameter： \qquad
2）Please indicate labon rete used for Engineering
3）Please indicate labor rate used for lusialiation
4）Assume＇average＇long run requirement of 563 Watts redundant draw on BOFB with a＇maximurn＇of 725Walts redundant draw．

1	10 RUNS X 175* -26GA. 100 PR. CABLE	20	74
2	10 RUNS X 175' - DS-1 30 PAIR CABLE	10	58
3.	10 RUNS X 175* -DS. 3 I PAIR CABLE	2	9
4	10 RUNS X 175' .8 FIBER BREAKOUT CA.	10	13
5.	1 RUNX 175'.12 FIBER ENTRANCE CA.	1	
6	1 RUN X 150' - 750 MCM PWR CABLE	1	12
7	I RUN X 35- ${ }^{\circ}$ - ${ }^{\text {P PWR CABLE }}$	1	2
8	$1 \times 19{ }^{\prime \prime}$-- RELAY RACK	2	4
9.	$1 \times 23^{\prime \prime}$-. RELAY RACK	2	4
10.	1×10 VERTICAL 8 FT. MDF	2	15
11.	1×10 VERTICAL 11 '- $6^{\prime \prime} \mathrm{MDF}$	2	20
12.	CABLE RACK AND LIGHTS FOR MDF's	2 ca	
13.	10 ADC DSX-1 PANELS (56 in \& 56 Oux)	2	
14.	10 ADC DSX-3 PANELS	2	
	20,66 QC-100 BLOCKS	2	12
16.	20, BIX BLOCKS	2	12
17.	TERMINATETEST BOTH ENDS OF ITEM M		66
18.	TERMNATETEST BOTH ENDS OF ITEM \%		26
19.	TERMNATETEST BOTH ENDS OF ITEM ${ }^{\text {W }}$		
20.	175' OF 30* CA RACK MEDIUM COMPLEXITY'	24	72
21.	175' OF 22' CA RACK	24	72
22.	175' Of 15"CARACK "	24	72
23.	OPEN \& CLOSE CA HOLE-EXISTING		2
24.	OPEN \& CLOSE CA HOLE-- NEW		6

BOB ALERS

Mones:

1) See Alers summary for adtilional Engineering estimates

PRIMAL COMMUNICATIONS LIMITED
 17 PORRES ROAD, SCARBOROUGH, ONTARIO, MIP $1 K$
 TEL: (416) 923-4384, FAX: (410) 923-4677

July 25, 1997

Rick Biacell
306-80 Ridout St 8outh
London Ontrio
N6C $3 \mathrm{H7}$
Rick,
In response wo your revised quotarion request

1. To provide 4 bours instead of 3 hours of Barrery reserve, using Abwolyto Batteries.

- Using 4 strings of $100 \mathrm{~A} / 81$ Batteriea.

4000 Amp. Plam Furnish - $\$ 280,000.00^{*}$ vs. $\mathbf{S 2 1 0 , 0 0 0 . 0 0}$
Install - $34,666.00$ ve $26,000.00$
Eng. - lacluded in power plant (same)
Total - S31466.00 v. ST36.000.4.
-Usiog 4 sriogs of $100 \mathrm{~N} / 99$ Bataries.
2. To provide a 1200 Amp. BDFB infted of a 600 Amp.

3. Cabling for 1200 Amp. F \& I . $\$ 9,360.00$ vis $\$ 4,680.00$ BDFB Eng. - inel. in power plent (ceme)
4. To engineer the various Plants.

$$
\begin{aligned}
& 2500 \text { Amp. Plant }-64 \text { hour t }=\$ 4,160.00 \\
& 4000 \text { Amp. Plant }-80 \text { hours }=\$ 5,200.00
\end{aligned}
$$

5. I confirm our price for $\mathbf{3 0}$ pair DS-1, FT4 rated cable of $\$ 2.10 / \mathrm{t}$.

Sincerely,

PRIMAL COMMUNICATIONS LIMITED 17 FORBES ROAD, SCARBOROLGH, ONTARIO, MIC MKS TEL: (416) 923-4344, FAX: (416) 923-4677

July 25, 1997

Rick Bessel
306-80 Ridout St. South
London, Ontario
NGC 5H7

Rick,

I take this opportunity to clarify some questions you had on our pricing profile.

1. The time required so mount DSX-1 and DSX-3 panels is the same.
2. In our costing quote of June 10 (Bob Ales portion) items 17,18 and 19 are included in items 1,2 and 3 respectively.

Any other questions or clarifications please do not hesitate to call.
Sincerely,

PRIMAL COMMUNICATIONS LIMITED 17 FORBES ROAD, SCARBOROLGH, ONTARIO, MIP IKS TEL: (416) 923-4304, FAX: (416) 923-4677

July 28, 1997

Rick Bissel!

306-80 Ridout St. South
London, Ontario
N6C 5H7
Rick,
The following will clarify our labor rates.

1. Rete for Installer.

- \$50.00-555.00/4s.

2. Rate for Engineering (Co equip.)

- $\$ 30.00-\$ 55.00 / \mathrm{hr}$.

3. Rate for Engineering (Power Plants)

- $\$ 60.00-565.00 \mathrm{mr}$.

The above rates vary depending on the job complexity and its location. The rate for Engineeting of Power plants is higher than the regular Engineering rate due to the unique skills required to fucilitate this function.

Siscerely,

PRIMAL COMMUNICATIONS LIMITED 17 FORBES ROAD, SCARBOROUGH, ONTARIO, MIP IKB TLL: (416) 923-4384, FAX: (416) 923-4677

Aug. 9, 1987

Rick Bissell
306-80 Ridout St. South
London, Ontario
N6C 5H7

Rick,

In response to your queries of Aus. 8/97:

1. The price for 10×175 ' of DS-3, 1 pair cable would be 5402.50 .
2. Installation effor required to rue a 175^{\prime} entrance Fiber Cable of 12 Fibers would be the same as for a 24 Fiber Cable (No splieing).

Sincerely,

Michael Miclafferty

PRIMAL COMMUNICATIONS LIMITED 17 FORBES ROAD, SCARBOROUGH, ONTARIO, MIP $1 K 8$ TEL: (416) 923-4384, FAX: (416) 923-4677

October 18, 1997

Rick Bissell
306-80 Ridout St. South
London, Ontario
N6C 5H7

Re: Costing

Rick;
As requested the following prices are to E,F \& I various power load supplies. We are allowing for 4 lengths of 40 feet of each supply.

0.5 Amp (110 Gauge)	Enginecr-..... One hour Furnish $\$ 24.00$ lostall \ldots One hour	$\begin{aligned} & \text { 5-20 Amp } \\ & \text { (*6 Gauge) } \end{aligned}$	

$\begin{aligned} & 20-30 \text { Aspp } \\ & \text { (*4 Gauge) } \end{aligned}$		30-40 Amp ("2 Gauge)	

The cost to Engineer and lnstall a Fiber distribution bay would be to Engineer - 4 hours and to Install -16 hours.
If you need maything else please do not hesitate to cell.

PRIMAL COMMUNICATIONS LIMITED
 17 FOREES ROAD, SCARBOROUGH, ONTARIO, MIP IK: TEL: (416) 923-4384, FAX: (416) 923-4677

October 24, 1997

Rick Biscell

306-80 Ridout St. South
London. Ontario
N6C 5H7

Re: Costing

Rick;
As requested the following prices are to E,F \& I, 175 A. of Fiber breakout ceble (12 fibers).

- Engineer--- Two hours

Furnish $\$ 962.95$
Install 12 hours

If you need anything else please do not hesitate to call.
Yours truly,

Michael McLafferty

EXPRESS INTERCOMMUNICATIONS

Source document for installation hours.

N. E. AB: a
rxpriss
ENIERCCADUNICATIOHS
+4+++++++++++++++++
VOICE + DATA - SOUND

CUSTOMER: M.C.I.
DATE: 06/06/97
ATT: CHARIIE FINCHER

EXPRESS INTERCONWUICATIONS

PERCY A. DAVIS

$$
\begin{aligned}
& \text { *~~~。 }
\end{aligned}
$$

$$
\begin{aligned}
& -2+(2 \times-19) \\
& \Rightarrow 3+(2 x *<6
\end{aligned}
$$

SIMPSON'S FENCE

Source document for cage costs.

"The Fence People Since 1950"

4010 Breck Avenue
LONDON. ONTARIO NEL 1 BA
(519) 652-3269 Fax (519) 652-9080 G5T : 104668179 RT

```
QUOTATINON:
    Cus:ABar
        BCI INCORPORATED
        309 PALL MALL ST.
        LONDON,ON N6B 2G8
        ATT: KEN BRADSEAW
Re:
```

quotation Date :06/04/97 Quotation Number: \#1437 Reference Number: WORK Order \# : Phone: 439-3924 FAX 439-4825

```
MATERIAL SPECIEICATIONS:
TERMINAL POST: 16 - 2 3/8" 8 8.5' . 100 WALL HDG PIPE TOP RAIL : \(\quad 111 / 16^{\prime \prime} .100\) WALL HDG PIPE COVERAGE : \(\quad 2^{n} \times 9\) ga x 96" G.A.H. 1.2 oz TENSION WIRE : 9 ga BRACE WIRE HDG (PREM. 2 OZ) PER. FT. GATE \# 1-4 : 3'w \(x\) 8'h SINGIE SIIDE GATE GATE \# 2 : 7'6"x 8'h SINGLE SLIDE GATE
```

GATES ARE TO BE INSTALLED USING OVERHEAD BARN DOOR TRACK.

EXPBCTED DELTVERY:
from Date of Confirmation.
F.O.B. -
gOOTATION AHOUNT -
\$3, 28
G.S.T.
P.S.T.

QUOTATION TOTAL -
Incl
\$3,51

TERMS:

CENTRAL STEEL FABRICATORS

Source document for cable rack prices.

CENTRAL STEEL FABRICATORS, INC.

July 30,1997

Mcl Corporation
Rick Bimell Comalting (519)858-3757
$306-90$ Ridour Rond
Loodon, Ontario Caneda NGCSIT

Derr Mr. Binect;

 propran

Prices are groud in US Dollers, FOB Chiouga, II with trime of vot 30 dan.

Chuaral Side Ber

CSF	Price
22012	58.15
22015	60.55
22020	64.60

Prico

$$
57.40
$$

58.10
63.70

Solial Sión Bas
Cas $\%$ Price
$21012 \quad 80.40$
21015 82.30
21020 89.50

The In two diflus of owe per aumber on the ouble rack ropresemt the ounide widh The Chemad

We appreline the opporturity to quete on your requirementis aod look forward wo mivis your seech

Sincortay,
CBNTRAL STEPL EABRCATORE, ime Wuhaol Muwawshe Miched Murzand

ADC TELECOMMUNICATIONS

Source document for Fiber Distribution Frame price.

Subject: Re: Request for Quote for FDF
Dato: Tue, 14 Oct 97 10:12:16-0600
From: alpha_dobsoneladc.com
To: hobbs.Iondon@sympatico.ca

Al here is the revised list with $\$$ US pricing:

QTY	P/N	Description	Price
1	E-501-LB8	UNIVERSAL FIBER ERAME, 7,	$\$ 1150.00 \mathrm{ea}$,
8	$E-501-L 14$	96 termination connector module, SC	$\$ 1925.00$ ea.
1	$E-501-1139$	Interbay management panel, 7,	$\$ 650.00$ ea.
1	$E-501-140$	Cable Clamp	$\$ 35.00$ ea.

If you need anything else, please let me know.
Regards,
Reply Separator
Subject: Request for Quote for FDF
Author: Al Hobbs <hobbs.londonesympatico.ca> at Internet-Mail
Dace: $10 / 10 / 97$ 2:07 PM

Alpha, this is to request a quotation for the standard list price in us\$ for the following equipment. I would appreciate a separate breakdown of Engineer, Furnishand
Install for each.
FIEER DISTRIBUTION ERAME-ADC

As stated in our telephone conversation I am a Consultant currently retained by MCI Metro a ATGT and will use this information in constructing input to a Collocation Cost Model. This data will be included in the cestimony which will e
filed with various State Regulatory Authorities.
Please call if you have any question or wish to clarify this request. I would apprecacie a reply by oct 16 if possible.

R. S. MEANS Building Construction Cost Data (1997) R. S. MEANS Electrical Cost Data (1997)

Source documents for grounding, cage construction components, electrical components, and land and building calculations.

RSMealls

037 I Hariware

160 Receways

$100100 \mid$ cable Trys					UT1	1917 MX 005				$\begin{aligned} & \text { Tote } \\ & \text { vaciou } \end{aligned}$		
		m			Wen	स）	Y4					
$\sqrt{100}\left[\begin{array}{l} 5010 \\ 0,60 \end{array}\right.$	Gansured seet yny											
$\begin{aligned} & 8,10 \\ & 0200 \end{aligned}$	4. ine soucre 6° mot 12 mod	116	$\begin{aligned} & 19 \\ & 43 \end{aligned}$	$\begin{aligned} & .163 \\ & .18 \end{aligned}$	u	70	661 500		$\begin{aligned} & 1261 \\ & 145 \end{aligned}$	1510 1800		
$\begin{gathered} \infty \\ \infty+\infty \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & 15^{\circ} \\ & 20^{\circ} \end{aligned}$		\％ 4	$\begin{aligned} & .18 \\ & .705 \end{aligned}$		10.75 12.3	505		$\begin{aligned} & 1600 \\ & 1850 \end{aligned}$	$\begin{aligned} & 2030 \\ & 23 \end{aligned}$		
$\begin{aligned} & 200 \\ & 3200 \end{aligned}$	17 moe		67 68	$\begin{aligned} & .118 \\ & 128 \end{aligned}$		$\begin{aligned} & 1055 \\ & 110 \end{aligned}$	159 306		$\begin{aligned} & 1816 \\ & 15.65 \end{aligned}$	$\begin{aligned} & 11 \\ & 1180 \end{aligned}$		
$\begin{aligned} & 630 \\ & 200 \end{aligned}$	$\begin{aligned} & 18 \text { wole } \\ & 20^{\circ} \text { mot } \end{aligned}$		$\begin{aligned} & 51 \\ & 53 \end{aligned}$	$\begin{aligned} & .140 \\ & 151 \end{aligned}$	\％	$\begin{aligned} & 1315 \\ & 1650 \end{aligned}$	$\begin{aligned} & 4.52 \\ & 4.90 \end{aligned}$		$\begin{aligned} & 17.37 \\ & 19.14 \end{aligned}$	$\begin{aligned} & 21 \\ & 2 \end{aligned}$		
\＄00												
150	WREWAY 1015 hen 	11 k	15	178	\cup.	13	535		12.0	18.10		
	6.16°		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 200 \\ & 207 \end{aligned}$		110 137	6		$\begin{aligned} & 14.10 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1780 \\ & 21 \end{aligned}$		
	5×7 How．for wrewdy tops．，58 man． 20% max	\dagger	0	4	\downarrow	1960	12		360	550		
$116020 \mid$ cendels												
$\begin{aligned} & \hline 06 \\ & \hline 000 \\ & \hline 0 \end{aligned}$	11 bean dirios see 100 L ．											
$\begin{aligned} & \infty \infty \\ & \infty \infty \\ & \infty \end{aligned}$	Aumbun $1 / 6$ durnter 3／4 dimetion	10 k	$\begin{aligned} & 100 \\ & \infty \end{aligned}$	∞	U．	$\begin{aligned} & 101 \\ & 144 \end{aligned}$	$\begin{aligned} & 240 \\ & 267 \end{aligned}$		$\begin{aligned} & 307 \\ & 4.11 \end{aligned}$	1.89 560		
$\begin{aligned} & 1, \infty \\ & 10 \infty \end{aligned}$	$1 \cdot$ samery 1．V4．ximeser		0	$\begin{aligned} & .100 \\ & .114 \end{aligned}$		1.95 250	3 3.3		4.5 593	656 7.50		
1900 1050	1－1／6 diveter 7 oimeter		65 60	$\begin{aligned} & .123 \\ & .133 \end{aligned}$		310	3.0 1.01		680	180 1050		
$\begin{aligned} & 20 \pi \\ & 10 \infty \end{aligned}$	$\begin{aligned} & 21 / \pi \text { damelar } \\ & 3 \text { dismeter } \end{aligned}$		40	$\begin{aligned} & 160 \\ & 1 \pi \end{aligned}$		${ }_{6} 6.5$	181 5.8		1150 14.5	168 1750		
$\begin{aligned} & 1.30 \\ & 1 . \\ & \hline \end{aligned}$	$31 / 2$ 相 10 dimatre		10	$\begin{aligned} & 20 \\ & 2 \times 9 \end{aligned}$		$\begin{aligned} & 11.10 \\ & 1300 \end{aligned}$	$\begin{aligned} & 6 \\ & 6.86 \end{aligned}$		17.10	$\begin{aligned} & 21 \\ & 26 \end{aligned}$		
$\begin{aligned} & 1750 \\ & 1770 \end{aligned}$	 		0	$.100$		150 150	2.61		3.97 1.58	56 68		
$\begin{aligned} & 1 \times 0 \\ & 1 \$ 00 \end{aligned}$	$1 \cdot$ dimeter $1.1 / 4^{\circ}$ demeter		0	$\begin{aligned} & 123 \\ & 133 \end{aligned}$		220	370 401		5×8 6.8	厂㕃		
1150	$1-1 / 2$ derneter 2 duntio		4	$\begin{aligned} & 10 \\ & 1 \pi \end{aligned}$		130 18	4.37 53		167 9.0	10%		
$\begin{aligned} & 1500 \\ & 1930 \end{aligned}$	$2.1 / 2$ apratif 3 dienter		3 5 5	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		750	680		$\begin{aligned} & 10.5 \\ & 19.85 \end{aligned}$	$\begin{aligned} & 1155 \\ & 5 \end{aligned}$		
$\begin{aligned} & 1950 \\ & 1970 \end{aligned}$	$31 / 2$ armeler 4．σ amer		3	3×1		1215 1640	1095 12		2310 500	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		
$\begin{aligned} & 200 \\ & 2900 \end{aligned}$	3／4 dernew		100	∞		105	2.0 2.6		3.45 3.92	4% 34		
$\begin{aligned} & 250 \\ & 2500 \end{aligned}$	$\begin{aligned} & 1.0 \text { owetr } \\ & 1.1 / 4 \text { dimanter } \end{aligned}$		¢ 6	$\begin{aligned} & .114 \\ & 123 \end{aligned}$		1.0	363 30		5.13 550	1．8．		
$\begin{aligned} & 200 \\ & 2000 \end{aligned}$	$1.1 / \overline{6}$ anner τ donete		50	$\begin{aligned} & 133 \\ & .160 \end{aligned}$		2018	4.01		$6 . \%$ 1.6	9世5		
$\begin{aligned} & 240 \\ & 2000 \\ & 20 \end{aligned}$	$2 \cdot 1 / 6$ dmeat 3 owneter		40	$\begin{aligned} & 200 \\ & 267 \end{aligned}$		5.88 7.8	1		$\begin{aligned} & 11.95 \\ & 15.85 \end{aligned}$	185 205		
$\begin{aligned} & 250 \\ & 2700 \end{aligned}$	$31 / 2$ demer 40 derneter		21	$\begin{aligned} & 20 \\ & >0 \end{aligned}$		1060 1258	190 960		1950 2215	8		
$\begin{aligned} & 3000 \\ & 5000 \end{aligned}$	 3／4＇diarneter CN		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 001 \\ & 010 \\ & 0 \end{aligned}$		$\begin{aligned} & 163 \\ & \hline 11 \\ & 35 \end{aligned}$		－n	$\begin{array}{r} 12 \\ 12 \\ 10 \sin 20 \end{array}$	$\frac{23}{23}$		
3010 5010			$\begin{aligned} & 115 \\ & 100 \end{aligned}$	0	，	1．2	209 200		$\begin{array}{r}3.24 \\ \hline 2.4\end{array}$	1.5 1.5		

1611 Conductors a Groundins

1621 Boxes a Wiring Devices

5	162500 ／Minfic Dovices		Perm	$\begin{aligned} & \text { ouy juce } \\ & \text { ount nans } \end{aligned}$		UNT					$\begin{gathered} \text { rou } \\ \text { nal } \end{gathered}$		
			M			WM	K（1）．	7018					
	300	Putcter wit recepace		T16	$\overline{7}$		3 m	to	88	1085		192	

163 ｜Motors，Sharters，Boards \＆Switches

$103100 \mid$ Emifors at contrals			$\begin{aligned} & \text { ouy } \\ & \text { ounn } \end{aligned}$	unon	Un	1977 mex cosis				$\begin{aligned} & 100 \\ & \text { mat } \end{aligned}$	
		MT				UnOM	Ep	rout			
	MOTOR STMTIERS 6 COHTROLS 										
$\begin{aligned} & 01 \infty \\ & \infty<\infty \end{aligned}$	3H．see 0 10 HP．see ：	1thx	$\begin{aligned} & 280 \\ & 160 \end{aligned}$	$\begin{gathered} 3.678 \\ 5 \end{gathered}$	${ }^{1}$	128	105 150		23 38		
$\begin{aligned} & 0,00 \\ & 0+\infty \end{aligned}$	25 He．we？ SOHP，ure 3		1.10 90	$\begin{array}{\|l\|} \hline 7873 \\ 8809 \end{array}$		110 670	219 68		629 931	1	
$\begin{aligned} & 0500 \\ & 0 \times \infty \end{aligned}$	$100 \mathrm{NP}, \sec 4$ 200 战．we 5.		40	$\begin{array}{\|l\|} 13333 \\ 17 \pi 8 \\ \hline \end{array}$		$\begin{aligned} & 1.67 \\ & 3.4 \pi \end{aligned}$	$\begin{aligned} & 400 \\ & 235 \end{aligned}$		$\begin{aligned} & 1.879 \\ & 4.010 \end{aligned}$	＇	
$\begin{aligned} & 0,00 \\ & 0 \times \infty \end{aligned}$			$\begin{aligned} & 1.80 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 6.41 \\ & 6.54 \end{aligned}$			134		719 790		
$\begin{aligned} & 0500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 25 \mathrm{HP}, \mathrm{wR} ? \\ & 50 \mathrm{P}, \text { sur } 3 \end{aligned}$		1	$\begin{array}{\|c\|} \hline 8 \\ 12.121 \end{array}$		600 1.258	300		$\begin{aligned} & 1.090 \\ & 1.500 \end{aligned}$		
$\begin{array}{\|l\|} 1200 \\ 1000 \end{array}$			10	$\begin{array}{\|c\|} \hline \infty \\ 144 \\ \hline \end{array}$		2.675 468	600 134		3.775 379	．	
$\begin{array}{\|l\|} \hline 1600 \\ 1800 \end{array}$	$\begin{aligned} & 10+P . \operatorname{see} 1 \\ & 25 \mathrm{fP}, \text { spe? } \end{aligned}$		130 1	6．19		170 78	185 200		65		
$\begin{aligned} & 200 \\ & 2200 \end{aligned}$	$\begin{aligned} & 5010 . \operatorname{sere} 3 \\ & 10019 . \operatorname{sen} 4 \end{aligned}$	\square	$\begin{aligned} & \hline 66 \\ & .40 \end{aligned}$	$\begin{gathered} 12.123 \\ 0 \end{gathered}$	\square	$\begin{aligned} & 1.800 \\ & 2.23 \end{aligned}$	30 600		1．565		
13201 Donds											
20	and Encosed NEMA IL 600 rat 3 pole． 30 mmp	1 1吹	3．00	2.500	1	300	75		3%		
0,00 0,000	6030 10080 14		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	287 3478		100 35	\％		30 40		
$\begin{aligned} & 0 \times 10 \\ & 0 \times 00 \end{aligned}$	$\begin{aligned} & 225 \\ & 400 \end{aligned}$		150 00	5313 10		1．30	160 300		1．000	،	
$\begin{aligned} & 1080 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \text { aा0 } \\ & 800 \text { या0 } \end{aligned}$	1	$\begin{aligned} & 60 \\ & 47 \end{aligned}$	$\begin{array}{\|l\|} 13.33 \\ 17 \\ \hline 101 \end{array}$	$\underline{1}$	$\begin{aligned} & 2.175 \\ & 2255 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 510 \end{aligned}$		$\begin{aligned} & 2.575 \\ & 3155 \end{aligned}$	！	
23	PNECDOAOS ICOMmertivi usel 										
	$\begin{aligned} & 3 \text { wre. } 120 \text { 240 vode } 100 \text { ato min tess } \\ & 10 \text { cinculs } \end{aligned}$	1 the	1	1	4	330	240		65		
			$\begin{aligned} & 80 \\ & .80 \end{aligned}$	$\begin{array}{\|l\|} \hline 9.091 \\ 10.567 \end{array}$		18 500	273 380		7\％1		
			． 6	$\begin{aligned} & 12.308 \\ & 13333 \end{aligned}$		560	380 400		90 1.038		
			$\frac{15}{10}$	$\begin{gathered} 177 \pi \\ 0 \end{gathered}$		140 80	583 600		1.275 1.45		
	3 Cranos 42 crevis		36	$\left\lvert\, \begin{array}{l\|} 22 . n 2 \\ 21.242 \end{array}\right.$		910 90	600 730		1.50 1.600	＇	
	a mre． 120208 rots． 100 amp nan Les． 12 craus 16 crous		19	10．607		40	200 50		100 05		
$\begin{array}{\|c\|c\|} \hline 100 \\ 0>0 \\ \hline \end{array}$	$\begin{aligned} & \text { Xo cruas } \\ & 24 \text { crans } \end{aligned}$		$\begin{gathered} 6 \\ 6 \end{gathered}$	$\begin{array}{\|l\|} \hline 12.306 \\ 13.303 \\ \hline \end{array}$	I	30	30 400		5080	\cdots	

	165100\| Lyintin	Can	amy unonannul rans		UnT	1977 mex cosis				$\begin{gathered} \text { Tow } \\ \text { na } 04 \end{gathered}$	
					ml	U'0,	Epl	9044			
115	2 mms	110	1	11		la					243
	3 mmo		530	1509		200	1550		TS5 50	30	
	4 mma	\downarrow	50	1588	\downarrow	360	15.50		40550	465	
	nepowre ind curectons										
$\begin{aligned} & p 100 \\ & 0 \times \infty \end{aligned}$	fiarescent C.W. bros botio. mass monked in grd. RS 	1 me	5.00	1.404	4	4	4		${ }^{6}$	113	
2010	2W:27. nouno wam		$\begin{aligned} & 300 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 141 \\ & 1400 \end{aligned}$		37	4.50		101.50 98	18 122	
$\begin{aligned} & x \infty \\ & p s \infty \\ & p \infty \end{aligned}$	2Wa41. No 40 wad 2Wx 12. tree 10 man		3.0 5	$\begin{aligned} & 1509 \\ & 1600 \end{aligned}$		$\begin{aligned} & 22 \\ & 51 \\ & 61 \end{aligned}$	$\begin{aligned} & 65.50 \\ & 4 \end{aligned}$		$\begin{gathered} 9750 \\ 108 \end{gathered}$	$\begin{aligned} & 18 \\ & 189 \end{aligned}$	
$\begin{aligned} & 6600 \\ & 6700 \end{aligned}$	2Wach tor 40 wath 4 W s A'l. hour 40 war		$\begin{aligned} & 4.0 \\ & 320 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 2.500 \end{aligned}$		$\begin{gathered} \infty \\ 2 \infty \end{gathered}$	$\begin{aligned} & 51 \\ & 75 \end{aligned}$		$\begin{aligned} & 116 \\ & 315 \end{aligned}$	$\begin{aligned} & 169 \\ & 3 \sqrt{5} \end{aligned}$	
$\begin{aligned} & 6800 \\ & 6 \times 00 \end{aligned}$		t	$\begin{aligned} & 310 \\ & 2.50 \end{aligned}$	$\begin{array}{\|l\|} \hline 2501 \\ 2758 \end{array}$	\downarrow	$\begin{aligned} & 850 \\ & x 0 \end{aligned}$	$\begin{aligned} & 1750 \\ & 83 \end{aligned}$		$\begin{aligned} & 32150 \\ & 33 \end{aligned}$	$\begin{aligned} & 80 \\ & 110 \end{aligned}$	
$\begin{aligned} & \infty \infty \\ & 030 \end{aligned}$	Sulace mound 18 Acytic wers mintinged 8 inated door krone										
100	 IW a cl. trive 40 wat	1En	$\begin{gathered} 1 \\ 6.7 \end{gathered}$	$\begin{aligned} & 1.143 \\ & 1191 \end{aligned}$	4	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 36 \end{aligned}$		$\begin{aligned} & 100.50 \\ & 114 \end{aligned}$	$\begin{aligned} & 121 \\ & 100 \end{aligned}$	
1200	 2W a 42. 800 com		7	$\begin{array}{\|l\|} \hline 1.163 \\ 1.200 \end{array}$		$\begin{aligned} & 90.50 \\ & 13 \end{aligned}$	345 39		$\begin{aligned} & 18 \\ & 112 \end{aligned}$	$\begin{aligned} & \hline 191 \\ & 199 \end{aligned}$	
$\begin{aligned} & 1 \times \infty \\ & 1+\infty \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 2 W \times 12 . \text { tree } 40 \text { wate } \\ & 2 W \times 12 \text { tore } 40 \text { want } \end{aligned}$		$\begin{aligned} & 510 \\ & 500 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.604 \\ 1.509 \end{array}$		$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & 42 \\ & 4550 \end{aligned}$		$\begin{aligned} & 129 \\ & 1850 \end{aligned}$	$\begin{aligned} & 159 \\ & 10 \end{aligned}$	
$\begin{aligned} & 1+\infty 0 \\ & 1 p \infty 0 \end{aligned}$	$\begin{aligned} & 4 W \times 41 . \text { to } 40 \text { mat } \\ & 4 W=1 L \text { \& } 40 \text { wal } \end{aligned}$		$\begin{aligned} & 360 \\ & 300 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.222 \\ 2424 \end{array}$		$\begin{aligned} & 20 \\ & 300 \end{aligned}$	$\begin{aligned} & 67 \\ & 13 \end{aligned}$		351 393	120	
$\begin{aligned} & 1100 \\ & 10 \infty \end{aligned}$	4Wa42 शुल 40 Wat 2W a bl. tou 40 wat		$\begin{aligned} & 310 \\ & 320 \end{aligned}$	$\begin{aligned} & 2581 \\ & 2.500 \end{aligned}$		330 150	$\begin{aligned} & 1750 \\ & 75 \end{aligned}$		401.50 275	$\begin{aligned} & 400 \\ & 2 \pi \end{aligned}$	
$\begin{aligned} & 2000 \\ & 21 \infty 0 \end{aligned}$	 Stoo latur	\downarrow	310	2581	\checkmark	170	1150		261.50	$\overline{0}$	
$\begin{aligned} & 2130 \\ & 2500 \end{aligned}$	Sultace manted 		150	91	¢	28	2250		565	73.3	
$\begin{aligned} & 2100 \\ & 2400 \end{aligned}$	-10r mo 40 with $\text { S' bog one } 40 \text { wat } \Omega$		8	1		10 4	30		60 n	18 91	
$\begin{aligned} & 200 \\ & 200 \end{aligned}$	 8 bre on 75 wat 5		$\begin{gathered} 6 \\ \hline 6.0 \end{gathered}$	$\begin{array}{\|l\|} \hline 1143 \\ 1.190 \end{array}$		51	3450 36		9150 78	116 100	
$\begin{aligned} & 38 \\ & 2 \times \infty \end{aligned}$	8 ' bre 		6\%	$\begin{aligned} & 1.250 \\ & 1.190 \end{aligned}$		$\begin{aligned} & 4 \\ & 7 \end{aligned}$	3		67 114	111 10	
$\begin{aligned} & 280 \\ & 300 \end{aligned}$	8. Gere Mo 110 math 10 Pendet mantid. ndustrat, what porceton movel	\dagger	5.30	1.509	\downarrow	\cdots	6550		18.80	161	
$\begin{aligned} & 3100 \\ & 3600 \end{aligned}$		11 lac	$\begin{gathered} 5.10 \\ 5 \end{gathered}$	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$	Et	4	$\begin{aligned} & \hline \mathbf{4} \\ & 4 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 111 \\ & 150 \end{aligned}$	
$\begin{aligned} & 380 \\ & 3400 \end{aligned}$			$\begin{gathered} 140 \\ 1 \end{gathered}$	$\begin{gathered} 1818 \\ 2 \\ \hline \end{gathered}$		$\begin{array}{r} 90 \\ 118 \\ \hline \end{array}$	5150 0		$\begin{aligned} & 14.50 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 200 \end{aligned}$	
300 340 300	2W 127 wh no U40 wan RS		550	$\begin{gathered} 2 \\ 145 \\ \hline \end{gathered}$		$\begin{array}{r} 110 \\ 90 \end{array}$	60 4.50		$\begin{aligned} & 170 \\ & 13350 \end{aligned}$	$\begin{aligned} & 211 \\ & 165 \end{aligned}$	
$\begin{array}{\|l\|} 340 \\ 350 \\ 3507 \end{array}$	Ar correitor nusubud. 9 demetio 6° dentim	\downarrow	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$+\infty$		$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & 60 \\ & 66 \end{aligned}$	5 765	
$\begin{aligned} & 3540 \\ & 3500 \end{aligned}$	 										
$\begin{aligned} & 3300 \\ & 3700 \end{aligned}$		$\begin{gathered} 16 \\ \hline \end{gathered}$	$\begin{aligned} & 3.80 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2.759 \end{aligned}$		$\begin{aligned} & \text { 㖼 } \\ & 275 \end{aligned}$	$\begin{aligned} & \overline{15} \\ & 13 \end{aligned}$		$\begin{aligned} & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & \hline 08 \\ & 400 \end{aligned}$	
$\begin{array}{\|c\|} 380 \\ 3300 \\ \hline 400 \end{array}$	2W $\times 27.400 \mathrm{man}$ 碞 mpo Moin oeg, ximinn reficior		$\begin{aligned} & 2.00 \\ & 200 \end{aligned}$	$\begin{aligned} & 2.833 \\ & 3333 \end{aligned}$		$\begin{aligned} & 215 \\ & 245 \end{aligned}$	18		$\begin{aligned} & 334 \\ & 365 \end{aligned}$	$\begin{aligned} & 480 \\ & 408 \\ & 40 \end{aligned}$	
coso	Srele unt. 100 wit 0×8	1 Br	23	347	E	28	10.		30	40	

171 S.B̈, G.B and $\%$ a Tofll Costs

S.E. 2 C.E. Cosfs

R171 Information

R171-100 symere Poet Project Stes Monlior

One factor thas aftects the 5.8 . cose of a pariculas building is the size in ernerd. for beuldinges buile to the sume specifications in the same localiky, the latere buiding wil heve the bower S.F. core The of due mainly to the decreasons conorbution of the emenor wats plus the economy of acele usually xchievable in tarer buiding: The Aes Conversion scak shown betow will ene a facior to conven costs for une rpical sure buiding to an adiuned con for the particular procer

Exeopice Determine the cos pet S.F. for a 100.000 S.F Midrase apantment buiding.

Fropored building area $=100,000$ S.F. Typieal sure from below as 30.000 5.F.

Enser arca Conversion xcile a 2.0, inkersed curve. read horzonaly the approprase coss multiplier of 9 d . Size adjusted cost becomes. 94 I $86435=\$ 6030$ based on natrons average coses

Nore: For Size Factors kws than 50. the Cor Mukipler is 1.1
 our accumulated data and the range in ene of the propers.
The sise factor for pour propect a decmuned by dinding you profe in S.F. by the npres procet sux lor the paricular Buiding tipe Wi the factor. enter the Ave Converson scaic al the sppropriace sure fa and detemane the approprtate cosm muluplet for your buides suse
For 3exe Fartors graer than 3.5, the Cow Muriplier is. 90

Spun Fur Pem Sed							
$\begin{aligned} & \text { Briche } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Meste Com } \\ & \text { per \&F. } \end{aligned}$	$\begin{aligned} & \text { Yyoled giese } \\ & \text { Gow } \$ 5 . \end{aligned}$	$\begin{aligned} & \text { Tyided Rys. } \\ & \text { Gom 3. } \end{aligned}$	Iry		$\begin{aligned} & \text { Tprad Sex } \\ & \text { Oow } 3 . \end{aligned}$	$\begin{aligned} & \text { Toped } 0 \\ & \text { Gous } \end{aligned}$
	551.00	21.000	9,700.00 - 37,200	53	513500	13700	7500.
Anstriets Mid Re	64.35	50.000	32,000 • 100,000	Leries	9.90	12,000	1,000.
Agortmerts, High fse	73.50	310.000	100,000 - 650,000	Moder Cris	86.95	7,000	4,300.
Audtuins	85.60	25.000	7,600 - 39,000	Medeal Oices	81.0	6.000	41000.
Ano Stes	52.20	20,000	10.500 - 28.500	Motes	62.60	27.000	15800.
Bats	11300	4.200	$2500 \cdot 1,500$	Nryseltas	10.0	23,000	15.000.
Ourches	76.35	9.000	$5.300 \cdot 13,200$	Ofices low fise	68.30	8.600	4.700
Cuts, County	76.00	6,500	4.500 - 15,000	Ofices Md fise	72.35	52.000	31,300.
Dios, Socal	73.95	10,00	$6.000 \cdot 13.500$		91.60	260.000	151.000.
Cuts, nuca	77.75	28.300	12,800 . 39,400	Price Sitos	11400	10.500	4.00
Colerges (Cass)	99.60	50.800	23,500 - 98.500	Pox Culces	6140	12.600	6.800
Coleges (Scenct (ab)	145.00	45,600	18.670 - 80,000	Powe Pats	645.00	7,500	1.000.
Colege isudert Unios	111.00	33,400	16,000 - 85,000	Rutpas [duction	7.70	9.000	6.000 .
Communy Centir	79.45	9,400	$5.300 \cdot 16,700$	Reserch	11900	19.000	6,300
Cout Houses	1000	32,400	17,800 - 105,000	Resturats	108.00	4,000	2.000.
Deat Stores	47.15	90,000	$4.000 \cdot 122.000$	Rete Sours	30.10	7,200	(,000.
Dormiones Lowne	81.45	24.500	13,400. 40,00	Scooks Emmery	7300	41,000	24.500.
Domitries, Mid Ase	106.00	55,600	36.100 - 90.000	Schook 1. Hidn	75.00	9,000	52.000.
Factries	45.70	26.400	12,500 - 50,000	Screos S. Min	75.65	101.000	50,500
Fre Slecors	2.00	5,000	4,000 . 8,700	Schoos Vactiond	75.30	37.000	20,500 .
Fratily louses	765	12,500	8,200 - 11,80	Sports Mrisis	62.10	15.00	5,000.
Funeres formes	81.75	7,800	4.500 - 11:000	Spamerios	5030	20,00	$12,000$.
Geges Commeria	58.75	9,300	$5.000 \cdot 13.600$	Siminty Peats	9253	13000	7800.
Guage Mriciod	71.30	8.300	$4.500 \cdot 12.600$	Tripare Efan	1380	4,500	1200.
Grace Potin!	29.25	163.000	76,400 - 225,300	heeres	73.30	10,500	8,000
Gymisyms	73.75	19.200	11.600 - 41.000	Tomites	81.85	10.50	4,00.
Hospets	141.00	55,000	$21.200 \cdot 125.000$	Wratases	3375	25.000	0.000.
Mouse (Erbety	69.25	37,000	$21.000 \cdot 66,000$	Wentase 60 ice	3900	25.000	8,000.
Housing Rotel Ke Rerks	63.50 72.20	36.000 29.000	$14,400 \cdot$ $27,200,400$				

160 ／Receways

Part II - Table of Contents

1. Introduction 1
1.1 Purpose of Study. 1
1.2 Overview of Virtual Collocation 1
2. Land and Buildings 2
2.1 Cost of Floor Space 2
3. Connectivity 3
3.1 Overview of Connectivity Length Assumptions. 3
3.2 Overhead Common Systems Infrastructure Components.. 6
4. Copper and Optical Connectivity Components 8
4.1 Overview of Connectivity Models 8
4.2 Virtual Voice Grade Model Requirements 10
4.3 Virtual DS-1 Model Requirements Using a Manual DSX 11
4.4 Virtual DS-1 Model Requirements Using an Electronic DCS 12
4.5 Virtual DS-3 Model Requirements Using a Manual DSX 13
4.6 Virtual DS-3 Model Requirements Using an Electronic DCS 14
4.7 Virtual Optical Model Requirements Using Fiber Frame 15
4.8 Intra-CLEC Virtual Copper and Optical Model Requirements 16
5. DC Power and Grounding Elements 17
5.1 Overview 17
5.2 Power Distribution Components 19
5.3 Power Consumption Components 19
5.4 Equipment Grounding 20
6. Access (Entrance Fiber) Components 20
6.1 Overview 20
6.2 Fiber Entrance Components. 21
7. Process Issues 23
7.1 ILEC Manpower Requirements and Implementation Intervals 23
8. Operational Issues 24
8.1 Maintenance Activity 24
8.2 Security Escorts 25
8.3 Response Times and Charging Increments 25
8.4 Circuit Packs 26
8.5 Training of ILEC Technicians 26

1 INTRODUCTION

1.1 PURPOSE

The purpose of part II of this White Paper is to present a technical model for the virtual collocation of CLEC equipment in ILEC CO buildings (the Virtual Collocation Model). As with the technical model for physical collocation, the Virtual Collocation Model is presented using a bottoms-up approach to implementing virtual collocation based on forward-looking collocation model layouts, the use of best practice CO planning strategies, least cost suppliers, and competitive processes. This will provide a clear and concise explanation of the requirements for efficient virtual collocation of CLEC equipment at an ILEC CO. In addition, part II provides the technical basis for determining the costs to meet these requirements and identifies the investments necessary for an efficient ILEC to provide virtual collocation to CLECs.

As with physical collocation, virtual collocation provides a means by which new entrants can concentrate traffic from unbundled loops (or other elements) in order to transport that traffic to the CLEC's switch. A CLEC may wish to use virtual collocation if it lacks sufficient market share to justify a physical collocation arrangement, or because physical collocation cage construction costs render that method of collocation too costly. In addition, Section 251c(6) of the Telecommunications Act of 1996 requires that virtual collocation be provided when physical collocation is not practical for technical reasons or because of space limitations.

1.2 OVERVIEW OF VIRTUAL COLLOCATION

Virtual collocation is nothing more than an arrangement that allows a CLEC to place its own telecommunications equipment in an area of the CO currently used by the ILEC for its own equipment. Typically, the CLEC purchases the necessary equipment, sells it to the ILEC for a nominal sum ($\$ 1.00$) and then the equipment is installed in vacant space along with ILEC
equipment. The ILEC performs day-to-day maintenance activities upon the request of the CLEC and is reimbursed by the CLEC. The CLEC is provided with the ability to enter the CO on request but requires a security escort. The elements required to establish CLEC collocation in an ILEC CO are depicted in Figure 1A (above). With virtual collocation, however, there is no separate cage; the CLEC's equipment is not segregated from the ILEC's equipment, and is instead placed in the same lineups that house the ILEC's equipment. In addition, the demarcation point between the ILEC and CLEC for virtual collocation is at the closest appropriate ILEC cross-connect, and there is no need to use POT bays for this purpose.

2 LAND AND BUILDINGS

2.1 COST OF FLOOR SPACE

Since virtual collocation provides for CLEC equipment to be located within existing ILEC equipment areas, there are no building related costs associated with a virtual collocation arrangement other than payment to the ILEC for floor space. The necessary building investment in a virtual collocation environment is directly related to the space used in the $C O$.

For the efficient use of equipment space, and hence floor space, in ILEC COs, the Virtual Collocation Model develops the investments for building space based on units of $1 / 4$ relay rack. Relay racks, which resemble empty metal bookcase without shelves, are fabricated to permit the installation of equipment shelves on an "as required" basis. Thus, many existing racks in ILEC COs have unused space which can be used to mount CLEC equipment shelves. The telecommunications equipment that CLECs may install come in various sizes (heights) and thus require varying amounts of vertical "shelf space" on a relay rack. While this conceivably permits relay racks to be administered by the "rack inch," for administrative simplicity the Virtual Collocation Model develops the investments for building space based on units of $1 / 4$ relay rack. Using units of $1 / 4$ relay rack ensures that ILEC equipment space is used
efficiently and allows CLECs to pay only for the space used. In many instances relay racks with empty space will be available. In some cases, however, a new relay rack may need to be installed for a CLEC to place its equipment. The Virtual Collocation Model is designed to accommodate either situation by including the additional investment for a relay rack if a new installation is required.

Relay racks are roughly $2^{\prime}-0^{\prime \prime}$ wide, $12^{\prime \prime}$ deep, and $7^{\prime}-0^{\prime \prime}$ high and placed in lineups to simplify cabling and day-to-day maintenance operations. Equipment lineups are typically located with $2^{\prime}-6^{\prime \prime}$ to $3^{\prime}-0^{\prime \prime}$ front and rear aisles for maintenance purposes. For the purpose of this White Paper, it will be assumed that each relay rack utilizes nine (9) square feet of floor space. 1 (Using increments of $1 / 4$ relay racks is the equivalent of 2.25 square feet of space.)

The overall method of calculating monthly rental charges remains the same as for physical collocation. As shown in Chart 5 (above), calculations are based on the three floor forward-looking CO layout model developed in Part I of this White Paper and assume generous factors of 80% assignable space and a $2: 1$ land to building ratio based on the building footprint.

3 CONNECTIVITY

3.1 OVERVIEW OF CONNECTIVITY LENGTH ASSUMPTIONS

As explained in Section 4 of Part I, best practice planning strategies dictate that ILEC equipment is placed as close as possible to the appropriate cross-connect to minimize cable lengths. Figure 4C (above) provides an illustrative example of the average cable lengths for ILEC equipment. As shown, the average connectivity lengths between existing ILEC
equipment areas and ILEC cross-connects are between 100-125 feet.
Since virtual CLEC equipment is placed in the same equipment areas that the ILEC uses for its own equipment (and is not segregated from the ILEC equipment), it is likely that connectivity investments for virtual collocation will be in the 100-125 foot range (i.e., less than that required for physical collocation). Thus, using the same connectivity lengths for virtual collocation as those used for physical collocation provides a conservative estimate.

There are two connectivity lengths required for virtual collocation that are developed using the same worse case/best case method described above in Section 4 of the physical collocation model. First, connecting the BDFB to CLEC Virtual Equipment assuming relay rack lineups of 40 feet, with a BDFB located in the first relay rack of every other line-up, results in a connectivity length of 40 feet. Second, connecting aCLEC's virtual equipment, assuming that the equipment will be within 12 lineups, results in a connectivity length of 65 feet. 2

Cabling is an integral part of most telecommunications installations, necessary to ensure continuity prior to acceptance. Installers normally include the cabling (and terminating) as part of the overall cost of installing telecommunications equipment components. Because the CLEC is responsible to the installer for the invoice associated with equipment installation, the ILEC will not incur initial cabling costs for connectivity, power or grounding.

The purpose in developing connectivity lengths for virtual collocation is two-fold:
\Rightarrow First, to ensure that the ILEC obtains remuneration for the use of its cable racks.
\Rightarrow Second, to propose maximum reasonable connectivity lengths, assuming a forwardlooking CO using best practice planning principles.

The model assumes that the CLEC should be charged for cable and cable rack occupancy based on best practice planning principles. If an ILEC requires an installer to place

1 Includes the relay rack footprint plus 50% of front and rear aisles. The 9 square feet is sufficiently generous to incorporate end guards and $15^{\prime \prime}$ deep frames.
virtual equipment in a location that does not reflect best practice planning principles, the ILEC could successfully impose higher than necessary costs on the CLEC - costs the ILEC would likely not pay to have its own equipment installed. This should not be permitted. A summary of the average connectivity lengths to be used for virtual installations is set forth in Chart 7 .

2 Calculations for all cable lengths are included in the backup documentation.

CHART 7			
VIRTUAL COLLOCATION MODEL CONNECTIVITY COMPONENTS AND AVERAGE DISTANCES			
TYPE OF CONNECTION	$\begin{aligned} & \text { CABLE } \\ & \text { LENGTH } \end{aligned}$	CABLE RACK LENGTH	
FIBER ENTRANCE CABLE (BY CLEC)	$125^{\prime}-0^{n}$	N/A	---
FIBER RISER CABLE (BY CLEC)	$175^{\prime}-0^{n}$	$160^{\prime}-0^{\prime \prime}$	3
COPPER (DS-0/DS-1/DS-3)	$165^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime}$	2
OPTICAL (FIBER BREAKOUT CABLES)	$165{ }^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{\prime \prime}$	2
-48V DC POWER PLANT TO BDFB	$165^{\prime}-0^{\prime \prime}$	$150^{\prime}-0^{n}$	2
BDFB TO FUSE PANEL ON VIRTUAL EQUIPMENT	$40^{\prime}-0^{\prime \prime}$	$25^{\prime}-0^{\prime \prime}$	--
CONNECTIONS BETWEEN CLEC VIRTUAL EQUIPMENT	$65^{\prime} \cdot 0^{n}$	$50^{\prime}-0^{\prime \prime}$	-
TIMING LEADS FOR CLEC VIRTUAL EQUIPMENT	$135{ }^{\prime}-0^{\prime \prime}$	120'-0"	--

3.2 OVERHEAD COMMON SYSTEMS INFRASTRUCTURE COMPONENTS

As explained in paragraph 4.4 of Part 1, cables are routed within the CO environment on overhead cable racks hung from the ceiling. The following cable routes will be required for CLEC virtual collocation, but because virtual equipment installations will be in existing ILEC equipment areas these cable routes are likely to already be in place for ILEC equipment. 3
\Rightarrow copper and optical cable routes between virtual equipment and ILEC cross-connects
\Rightarrow fiber cable route for riser cable between the cable vault and Fiber Distribution Frame
\Rightarrow a power cable route to the closest $B D F B$
\Rightarrow copper and fiber cable routes between virtual CLEC equipment
Generous occupancy factors which incorporate cable rack fills using best practice

[^7]cable pileup assumptions are used to develop investments for the use of ILEC cable racks and inter-floor cable holes. 4 Because cables are many different sizes, the Model develops individual cable rack occupancy costs for the various types of telecommunications cable used in ILEC COs, which are reflected in Chart 8 . The top portion of the chart, entitled Cable Rack Capacities, outlines the commonly-used cable rack sizes. together with the estimated number of cables that can be placed on each at various cable pile-up levels (e.g. build-up on the rack). The lower portion of Chart 8 sorts the various types of cabling commonly used for telecommunications equipment according to size, and develops a cable equivalency factor. As shown, copper DS-1 cables and 12 Fiber Optical Breakout cables are the benchmark, with an equivalency of one cable. All cables smaller than the benchmark, such as DS-3 cables and smaller power distribution cables have also been assigned a one cable equivalency. A 100pair voice grade cable is equivalent to two benchmark cables; a fiber riser cable is equivalent to three benchmark cables; and a large 750 MCM power cable is equivalent to four benchmark cables.

[^8]| CHART 8 | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COLLOCATION MODEL - CABLE RACK CAPACITIES | | | | | | | | | | | | | |
| CABLE RACK WIDTH | | CABLE PILE-UP | | | | | | | | | | | |
| $\begin{gathered} \hline \text { ACTUAL } \\ \text { SIZE } \end{gathered}$ | CABLE SPACE | 1" | 2" | 3' | 4" | 5" | $6^{\prime \prime}$ | 7" | 8" | 9" | 10" | 11" | 12" |
| $10^{\prime \prime}$ | 8.5" | 26 | 51 | 77 | 102 | 128 | 154 | 179 | 204 | 230 | | | |
| $12^{\prime \prime}$ | $10.5{ }^{\prime \prime}$ | 32 | 63 | 94 | 126 | 158 | 189 | 221 | 252 | 283 | 315 | | |
| $15^{\prime \prime}$ | $13.5{ }^{\text {n }}$ | 41 | 81 | 122 | 162 | 203 | 243 | 284 | 324 | 365 | 405 | 446 | 486 |
| $20^{\prime \prime}$ | 18.5" | 56 | 111 | 167 | 222 | 278 | 333 | 389 | 444 | 500 | 555 | 611 | 666 |
| $25 "$ | 23.5" | 71 | 141 | 212 | 282 | 353 | 423 | 494 | 564 | 635 | 705 | 776 | 846 |
| $30^{\prime \prime}$ | $28.5^{\prime \prime}$ | 86 | 171 | 257 | 342 | 428 | 513 | 599 | 684 | 770 | 855 | | |
| CABLE TYPE | $\begin{aligned} & \text { EQUIVALENCY } \\ & \text { FACTOR } \end{aligned}$ | \qquad | | | | | | | | | | | |
| Fiber Riser | 3 | Fiber Riser cables assume 7" Pile-up on 12" Racks * Capacity $=74$ Cables (221/3) | | | | | | | | | | | |
| Breakout Cable (12 Fibers) | 1 | Fiber Breakout cables assume 7" Pile-up on 12" Racks* Capacity $=221$ Cables | | | | | | | | | | | |
| $\begin{aligned} & \hline 750 \\ & \text { MCM } \end{aligned}$ | 4 | Power Delivery Cables assume 5" Pile-up on 15" Racks *Capacity $=51$ Cables (203/4) | | | | | | | | | | | |
| 100 Pair VG/DS-0 | 2 | Copper DS-0 Voice Grade Cables assume 10" Pile-up on 20" Racks Capacity $=278$ Cables (555/2) | | | | | | | | | | | |
| $\begin{gathered} 28 \text { Pair DS- } \\ 1 \\ \hline \end{gathered}$ | 1 | Copper DS-1 Cables assume 10" Pile-up on 20" Racks Capacity $=555$ Cables ** | | | | | | | | | | | |
| $\begin{aligned} & \text { Coax } \\ & \text { DS-3 } \end{aligned}$ | 1 | Coax DS-3 assume $10^{\prime \prime}$ Pile-up on 20" RacksCapacity $=555$ Cables ** | | | | | | | | | | | |
| Power Distribution Cable | 1 | Power Distribution for fusing CLEC Virtual Equipment to the BDFB assume 7" Pile-up on 15" Racks Capacity $=284$ Cables | | | | | | | | | | | |

4 COPPER AND OPTICAL CONNECTIVITY COMPONENTS

4.1 OVERVIEW OF CONNECTIVITY MODELS

Virtual collocation requires connectivity between the CLEC's equipment and the ILEC crossconnects, as well as between various CLEC virtual components. The model assumes that connectivity between the CLEC and II-EC can be provided at different transmission
bandwidths: voice grade, DS-1, DS-3 and OC-x (optical connections used to connect to "dark fiber" in the access network).

In most ILEC COs, the majority of DS-1 and DS-3 circuits to which CLECs will want to interconnect are currently located on DSX panels. However, in some ILEC COs those higher bandwidth circuits may have already been relocated to an electronic digital cross-connect system (DCS) or may appear at a Fiber Distribution Frame. The Collocation Model includes all components necessary for end to end connectivity in all cases.

Depicted in schematic form on the following pages are the best practice and least-cost connectivity arrangements that have been adopted in the Virtual Collocation Model for all interconnection between CLEC virtual equipment and to the various ILEC central office crossconnects.

4.2 VIRTUAL VOICE GRADE MODEL REQUIREMENTS

Copper Connectivity at Voice Grade Level

Cable

	CONNECTIVITY ELEMENTS FOR VOICE GRADE SERVICE			
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE/CAPACITY	LENGTH
Virtual CLEC Equipment	Voice Grade Equipment	CLEC		
Cable A *	Cable from Line Cards to Horizontal side of MDF	CLEC	100 pair cable	165 feet
Cable Hole Occupancy	2 Cable Holes shared by lLEC + CLECs	ILEC		
Cable Rack A Occupancy	20" Ladder Rack - Shared by ILEC + CLECs	ILEC	555 cables	150 feet
MDF-H*	Horizontal Terminal Block for X-Conn to Access side of DF	CLEC	100 pair	
MDF	MDF Terminal Strip Space	ILEC	1 block space	
MDF X-Connect	Jumper from horizontal to vertical ~ Included in Unbundied Loop	ILEC		
MDF-V	Vertical side terminal strip ~ Included in Unbundled Loop	ILEC		

[^9]
4.3 VIRTUAL DS-1 MODEL REQUIREMENTS USING A MANUAL DSX

Copper Connectivity at DS-1 Level (DSX)

CONNECTIVITY ELEMENTS FOR DS-1 SERVICE (DSX OPTION)				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE/CAPACITY	LENGTH
Virtual CLEC Equipment	DS-1Multiplexer	CLEC	28 DS1	
Cable A*	2×30 Pair ABAM	CLEC	28 DS1	165 feet
Cable Rack A Occupancy	20^{n} Ladder Rack -Shared by ILEC + CLECs	ILEC	555 cables	150 feet
Cable Hole Occupancy	2 Cable Holes - Shared by ILEC + CLECs	ILEC	555 cables	
DSX-1C	Passive X-Connect Panel	ILEC	56 DS1	
DSX	Digital X-Connect Frame shared by ILEC + CLECs	ILEC	560 DS1	

* Supplied as part of the virtual equipment installation and paid for by CLEC

4.4 VIRTUAL DS-1 MODEL REQUIREMENTS USING AN ELECTRONIC DCS

Copper Connectivity at DS-1 Level (DCS)

| CONNECTIVITY ELEMENTS FOR DS-1 SERVICE (DCS OPTION) | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| ELEMENT | DESCRIPTION | PROVIDED
 $B Y$ | SIZE/CAPACITY | LENGTH |
| CLEC Virtual
 Equipment | DS-1Multiplexer | CLEC | 28 DS1 | |
| Cable A * | 2×30 Pair ABAM | CLEC | 28 DS1 | 165 feet |
| Cable Rack A
 Occupancy | 20^{n} Ladder Rack - Shared
 by ILEC + CLECs | ILEC | 555 cables | 150 feet |
| Cable Hole
 Occupancy | 2 Cable Holes -Shared by
 ILEC + CLECs | ILEC | 555 cables | |
| DCS | Digital X-Connect System
 shared by ILEC + CLECs | ILEC | 7168 DS1 | |

* Supplied as part of the virtual equipment installation and paid for by CLEC

4.5 VIRTUAL DS-3 MODEL REQUIREMENTS USING A MANUAL DSX

Copper Connectivity at DS-3 Level (DSX)

CONNECTIVITY ELEMENTS FOR DS-3 SERVICE (DSX OPTION)				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE	LENGTH
CLEC Virtual Equipment	DS-3 Terminal/Multiplexer	CLEC		
Cable A*	734 Shielded (2 cables)	CLEC	2 per DS3	165 feet
Cable Rack A Occupancy	20" Ladder cable rack - Shared ILEC + CLECs		555 cables	150 feet
Cable Hole Occupancy	2 Cable holes between floors ~ Shared ILEC + CLECs	ILEC	555 cables	
XC-C	Passive X-Connect Panel	ILEC	16 DS3	
DSX	Digital X-Connect Frame shared by ILEC + CLECs	ILEC	112 DS3	

* Supplied as part of the virtual equipment installation and paid for by CLEC

4.6 VIRTUAL DS-3 MODEL REQUIREMENTS USING AN ELECTRONIC DCS

Copper Connectivity at DS-3 Level (DCS)

CONNECTIVITY ELEMENTS FOR DS-3 SERVICE (DCS OPTION)				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE	LENGTH
CLEC Virtual Equipment	DS-3 Terminal/Multiplexer	CLEC		
Cable A *	734 Shielded (2 cables)	CLEC	2 per DS3	165 feet
Cable Rack A Occupancy	20n Ladder cable rack - Shared ILEC + CLECs		555 cables	150 feet
Cable Hole Occupancy	2 Cable holes between floors \sim Shared ILEC + CLECs	ILEC	555 cables	
Digital X-Connect System	DS-3 Digital Cross-Connect shared by ILEC + CLECs	ILEC	512 DS3	

* Supplied as part of the virtual equipment installation and paid for by CLEC

4.7 VIRTUAL OPTICAL MODEL REQUIREMENTS USING FIBER FRAME

Fiber Connectivity at DS-3 Level

CONNECTIVITY ELEMENTS FOR OPTICAL SERVICE				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE	LENGTH
CLEC Virtual Equipment	Optical Terminal	CLEC		
Cable A*	Fiber breakout cable	CLEC	12 Fibers	165 feet
Cable Rack A Occupancy	12^{n} Ladder cable rack - Shared ILEC + CLECs		221 cables	150 feet
Cable Hole Occupancy	2 Cable holes between floors ~ Shared ILEC + CLECs	ILEC	221 cables	
FDF	Fiber Distribution Frame	ILEC	768 Fibers	

* Supplied as part of the virtual equipment installation and paid for by CLEC

4.8 INTRA-CLEC VIRTUAL COPPER AND OPTICAL MODEL REQUIREMENTS

Virtual to Virtual Copper and Optical Connectivity

CONNECTIVITY ELEMENTS FOR INTRA-CLEC SERVICE				
ELEMENT	DESCRIPTION	PROVIDED BY	SIZE	LENGTH
CLEC Virtual Equipment	Optical and/or multiplexing equipment	CLEC		
Cable A *	Connects two equipment virtually located CLEC equipment shelves	CLEC	DS1 DS3 Fiber	65 feet
Cable Rack A Occupancy (for Fiber connection)	12^{2} Ladder cable rack - Shared ILEC + CLECs		221 cables	50 feet
Cable Rack A Occupancy (for DS1 and DS3 connections)	20" Ladder cable rack - Shared ILEC + CLECs		555 cables	50 feet

5 DC POWER AND GROUNDING ELEMENTS

5.1 OVERVIEW

As explained in detail in Section 5 of Part I, the standard and most cost effective method of delivering -48 V DC between the power plant and telecommunications equipment in a CO is to use a remote power distribution bay, such as a BDFB. Using a BDFB located close to the equipment it will serve will postpones the exhaust of the -48 V power plant and is more costeffective than running many large (and costly) power distribution cables to the power plant for equipment fusing. An overview of the accepted best practice method for the delivery of -48 V DC power in a telecommunications environment is shown in Figure 5B (above).

The delivery of -48 V power in a virtual collocation is divided into two separate charges in a similar manner as physical collocation: (1) a monthly power consumption charge for shared use elements such as the power plant, diesel generator and distribution as far as the BDFB (that is, between the power plant and the BDFB); and (2) a monthly recurring charge for distribution associated with occupancy of the cable rack between the BDFB and the CLEC's virtual equipment. A schematic depicting the components included in the Virtual Collocation Model for -48V DC power appears below.

48V Power Delivery for Virtual Equipment Installation

[^10]
5.2 POWER DISTRIBUTION COMPONENTS

Assuming that a BDFB is located close to ILEC equipment, it is unlikely that -48 V DC power distribution cables for fusing collocation equipment would be longer than about 40 feet. The Virtual Collocation Model assumes a cable length of 40 feet for -48 V DC power distribution cabling between the collocation BDFB and the CLEC provided virtual equipment. 5 As noted in Section 4 above, the cabling will be included in the cost of the equipment installation paid for immediately by the CLEC. The investment associated with the 40 feet of cabling calculation simply ensures remuneration to the ILEC for its cable racks and to ensure that the cost of power cable reflects best practice planning principles. As with connectivity, if the ILEC requires an installer to place virtual equipment in a location that does not reflect best practice planning principles, the ILEC could successfully impose higher than necessary costs on the CLEC -costs the ILEC would likely not face if it were installing equipment for itself. This should not be permitted.

5.3 POWER CONSUMPTION COMPONENTS

Investments for -48 V DC power consumption for the Virtual Collocation Model are based on the same approach used for physical collocation: all ILEC investments necessary to engineer, furnish, and install (EF\&I) a shared -48 V power plant (using a 2500 amp and a 4000 amp plant), including the mandatory battery and diesel generator back-up are identified. A BDFB and associated cabling components are also included to ensure the most cost-efficient method of delivering -48V DC power to the collocation area. However, the BDFB investment for virtual collocation is sized at 600 amps to more closely reflect BDFB sizes typically used in ILEC equipment areas.

As with physical collocation, a charge is developed for CLEC AC electric energy usage by restating the usage charge per $A C$ kilowatt hour as an $A C$ energy rate per $D C$ amp used. (See Chart 3 above.) 6 The rate from that calculation is added to the costs per amp for DC power to create the all-inclusive monthly power consumption charge.

5.4 EQUIPMENT GROUNDING

Unlike the physical collocation model outlined in Part I, the grounding of CLEC virtual equipment installations must adhere to the same method of grounding as adjacent ILEC equipment to ensure optimum performance of both carriers' equipment. The installer will ensure a grounding arrangement consistent with adjacent ILEC equipment when installing the CLEC virtual equipment. Since the CLEC is responsible for payment of that installation invoice, grounding investments are not modeled for virtual collocation.

6 ACCESS (ENTRANCE FIBER) COMPONENTS

6.1 OVERVIEW

Unlike physical collocation where the CLEC performs day-to-day maintenance operations a virtual scenario requires that the ILEC assume responsibility for ongoing maintenance of the entrance fiber. The best practice arrangement is therefore to terminate all CLEC entrance fibers at a centralized ILEC cross-connect, typically called a Fiber Distribution Frame (FDF). As with the physical collocation model layout outlined in Part I, the ideal arrangement is for the CLEC to perform the pulling and splicing of fiber cable between the manhole and the cable

5 The 40 feet includes 25 feet in cable racks and $7^{\prime}-6^{\prime \prime}$ drops at each end. Assumptions are included in backup documentation.
6 The example uses a rate of $\$ 0.05$ per Kilowatt hour for electric power. The Model allows the actual rate per Kilowatt hour used in the cost calculations to be state-specific.
vault, and the subsequent routing of fiber riser cable between the cable vault and the FDF. In the event that this is not permitted, however, the Virtual Collocation Model incorporates assumptions (outlined below) to calculate the costs that an efficient ILEC would incur to perform these functions in a competitive environment.

6.2 FIBER ENTRANCE COMPONENTS

The major elements required to route fiber cable between the first manhole and the Fiber Distribution Frame using fire retardant cable include:
\Rightarrow Pulling and splicing of cable in the cable vault
\Rightarrow A splice case to change from external to internal fiber cable
\Rightarrow Fire retardant riser cable between the vault splice and FDF
\Rightarrow Cable rack and cable hole (with occupancy charges based on usage)
The following schematic outlines the elements that have been used in the CO model layout to determine the cost of access connectivity (assuming that it would not be possible for the CLEC to perform the required pulling and splicing in the ILEC CO).

Access Elements - Cable Pulling and Splicing

Note: Access Design Charges included in ILEC Manpower Summary in section 7.

7 PROCESS ISSUES

7.1 ILEC MANPOWER REQUIREMENTS AND IMPLEMENTATION INTERVALS

The planning and implementation of virtual collocation in an ILEC CO requires manpower effort on the part of the ILEC. To ensure fair and reasonable compensation for ILEC manpower, the Virtual Collocation Model incorporates a planning component outlining the necessary ILEC manpower requirements to implement a CLEC collocation request using best practice processes in a competitive environment. Chart 9 provides the ILEC resource requirements required for each virtual collocation request.

CHART 9	
ILEC MANPOWER REQUIREMENTS	
FUNCTION	HOURS TO PLAN \& IMPLEMENT
	EACH VIRTUAL COLLOCATION REQUEST
EUTSIDE PLANT ACCESS DESIGN	6
BUILDING PLANNING	10
MDF PLANNING	4
POWER ENGINEER	8
EQUIPMENT ENGINEER	12
EQUIPMENT INSTALLATION PROJECT MGR	10
OPERATIONS GROUP	6
APPLICATION FEE (ADMINISTRATION)	10
SECURITY ESCORTS	AS REQ'D
TOTALILEC MANPOWER	66

NOTES:

1. ILEC ACTIVITIES SHOULD NOT INCLUDE COORDINATION OF DEMAND PROJECTS COVERED UNDER RECURRING CHARGE IN COST MODEL (EG. -48V POWER PLANT EXPANSIONS)
2. APPLICATION FEE TO COVER MARKETING CONTACT GROUP AND VARIOUS ADMINISTRATIVE AND BILLING GROUP ACTIVITIES.

The proposed manpower requirements assume the same minimum requirements as those listed for the physical model layout contained in Part I. For example, ILEC staff is assumed to be fully trained and competent, and the ILEC will only be reimbursed for time spent
implementing functions associated with virtual collocation elements covered by a non-recurring charge.

The manpower requirements shown in Chart 9 provide an accurate assessment of the planning time required to efficiently implement a CLEC virtual collocation request in a best practice competitive environment. The intervals are included as a specific component to plan and implement a CLEC virtual collocation request so that the ILEC cannot arbitrarily establish undefined charges using an "individual case basis" for time and materials, which can easily be manipulated on a case by case basis.

An assessment of internal ILEC functions and intervals required to implement a CLEC virtual collocation request, assuming optimum efficiency, best practice processes and a competitive environment, indicates that the maximum interval from the time a CLEC applies for virtual collocation in an ILEC CO until the project is ready for installation work to commence is 22 working/business days.

8 OPERATIONAL ISSUES

8.1 MAINTENANCE ACTIVITY

The CLEC will be responsible for directing all maintenance activities associated with the virtual collocation equipment. This includes system surveillance, direction of repair activity, requests to the ILEC for maintenance activity/assistance. The ILEC is responsible for hardware functions such as circuit pack replacement and changing fuses. Work will be performed by the ILEC upon the request of the CLEC, and will be reimbursed using the labor rate for the appropriate qualified technician.

8.2 SECURITY ESCORTS

CLEC personnel will not normally be required to visit the virtually collocated equipment for day-to-day operations. However there may be instances when it is necessary for CLEC engineering and/or maintenance personnel to visit the ILEC CO. Because virtual installations will be in existing ILEC equipment areas it is reasonable to expect that an ILEC escort be in attendance for the entire time.

8.3 RESPONSE TIMES AND CHARGING INCREMENTS

Response time is defined as the total elapsed interval between the time of a CLEC request for an appropriately qualified technician at a particular CO until the technician arrives and makes contact with the CLEC. The response times listed in Chart 10 apply to both maintenance and security escort requests. Chart 11 depicts the method proposed to assess CLECs for time charged by ILEC Technicians.

MAINTENANCEAND ESCORTRESPONSE TIMES	
CENTRAL OFFICE TYPE	RESPONSETIME
Staffed and Attended	1 hour
Staffed and Unattended	4 hours
Not staffed and NBD	2 hours
Not staffed and non-NBD	4 hours
Definitions:	
Staffed-technicians are scheduled to work in the location.	
Attended-hours during which technicians are required to be at the CO.	
NBD (Normal Business Day)-usually Monday to Friday, 0800h to 1700h.	

CGENTEALOFFICETYPE	INITIALCHARGE	W SUBSEQUENT CHARGE
Staffed and Attended	1/4 hour	1/4 hour
Staffed and Unattended	4 hours	1/4 hour
Not staffed and NBD	1/4 hour	$1 / 4$ hour
Not staffed and non-NBD	4 hours	1/4 hour

NOTE: It is essential that the ILEC provide the CLEC with a detailed explanation as to the actual attended hours of any manned CO as part of the collocation agreement.

8.4 CIRCUIT PACKS

A flat rate of 1 hour will be reimbursed to the ILEC for time spent packing and shipping defective circuit packs or time spent receiving and unpacking repaired circuit packs.

8.5 TRAINING OF ILEC TECHNICIANS

If CLEC's virtual equipment is not already deployed in a CO, it is reasonable to expect the CLEC to train ILEC technicians. The CLEC will reimburse the ILEC for costs associated with the initial training of a maximum of two technicians when the virtually installed equipment does not already exist in the CO. Rather than a complete product maintenance course, however, the training provided need only be an introductory course consisting of a product overview; hardware configurations; and hardware change procedures. The ILEC technicians being trained are assumed to be familiar with general precautions and procedures for maintenance of CO equipment. Any subsequent training of ILEC staff due to staff turnover, transfers, etc. is the responsibility of the ILEC.

VIRTUAL COLLOCATION MODEL DOCUMENTATION

MODEL DOCUMENTATION OVERVIEW

SECTION ONE: INPUT SHEETS

SECTION TWO: BACKUP INDEX
SECTION THREE: SUPPLIER QUOTE

Overview

The Virtual Collocation Cost model was developed by MCl and AT\&T to estimate the costs that an efficient ILEC would incur to provide virtual collocation to one or more CLECs at a central office. The Virtual Collocation Model is based upon the Physical Collocation Model. The same sources of input prices were used where applicable. Where the investment differs from that of the Physical Collocation Model, the differences are explained in the following pages.

SECTION ONE

INPUT SHEETS

ENTRANCE FIBER
CONNECTIVITY: VOICE GRADE SERVICE
CONNECTIVITY: DS-1 SERVICE (DCS)
CONNECTIVITY: DS-1 SERVICE (DSX)
CONNECTIVITY: DS-3 SERVICE (DCS)
CONNECTIVITY: DS-3 SERVICE (DSX)
CONNECTIVITY: OPTICAL
VIRTUAL TO VIRTUAL
POWER DELIVERY
MANPOWER REQUIREMENTS

Virtual Collocation Model - Entrance Fiber

Element	Description	Provided by CLECILEC	Used By	Reuseable	Quantity	Hours	Unit Cost	Total Cost	Remarks
Virtual Equipment	Located in ILEC Lineup	CLEC	1 CLEC	NA					Included in Optical Service
Cable Hole Occupancy	Cable Hole between Floors	ILEC	1 CLEC	NA					Included in Optical Service
Cable C	12 Fiber Breakout	CLEC	1 CLEC	NA					Included in Optical Service
Cable Rack Occupancy	12" Ladder Rack	ILEC	1 CLEC	NA					Included in Optical Service
Fiber Distribution Frame B	Located in ILEC Area	ILEC	1 CLEC	NA					Included in Optical Service
Optic Patch Cord	Between ILEC FDFs	ILEC	1 CLEC	Y	6		\$63.50	\$381.00	1 required per fiber pair
Fiber Distribution Frame A	Located in ILEC Area	ILEC	ILEC + CLECs	Y	12 Fibers		\$232.19	$\$ 273.16$	Frame Capacity is 768 Fibers. Assumes an 85\% Fill
Cable 'B'	Between FDF \& vault splice	CLEC	1 CLEC	N/A	$175^{\prime} 0^{\prime \prime}$	--	\cdots	"*	Fire retardant Fiber cable provided by CLEC
Installation of Cable 'B'	Placed on shared cable rack	ILEC	1 CLEC	N	175-0"	14	\$55.00	\$770.00	One time Charge - Includes opening/closing of 3 cable holes
Cable Rack Occupancy	12" Ladder Rack	ILEC	ILEC + CLECs	Y	$160^{\prime}-0^{\prime \prime}$		\$0.54/ft.	\$86.40	Cost per Riser cable for cable rack occupancy
Cable Hole Occupancy	Cable holes between floors	ILEC	$\begin{aligned} & \text { ILEC+ } \\ & \text { CLECs } \end{aligned}$	Y	3	--	\$9.46 ca.	$\$ 33.39$	Used by ILEC and CLECs for routing fiber. Assumes 85% fill.
Splice Case	External to fire retardant cable	CLEC	1 CLEC	Y	1	--	-	\cdots	Approved vault splice case provided by CLEC
Cable ' ${ }^{\text {' }}$	Between vault splice \& manhole	CLEC	1 CLEC	N/A	-*	-*	--	--	Fiber cable provided by CLEC
Cable Support Charge	Between vault splice \& vault wall	ILEC	1 CLEC	Y	$50^{\prime}-0^{\prime \prime}$	*	\$0.54/ft	\$27.00	Use same cost as cable rack occupancy for Riser Cable
Structure Charge	Between vault wall \& manhole	Tariff Item		N	75'-0'	--	--	--	Per existing structures agreement or use $\$ 0.05$ / foot /month
Cable Pulling	Manhole to cable vault splice	ILEC	1 CLEC	N	$125^{\prime}-0^{\prime \prime}$	4.0	\$55.00	\$220.00	Includes set-up \& take-down (Contract Labor)
Splicing Activity	External cable to fire retardant cable	ILEC	1 CLEC	N	--	3.0	\$55.00	\$165.00	Set-up \& take-down in vault (Contract Labor)
Splice Fibers	In Cabie Vault	ILEC	1 CLEC	N	--	2.0	\$55.00	\$110.00	For up to 24 Fibers (Contract Labor)

Virtual Collocation Model for Voice Grade Service

Element	Description	Provided By	Used By	Reusable Y/N	Sizel Capacity	Length	Unit Cost	Total Cost	Cost per $\mathbf{1 0 0 ~ V G ~}$ Cct.
Virtual Equipment*									

*Cable and Terminal Strip are supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC
** Indicates 85\% Fill

Virtual Collocation Model for DS-1 Service-DCS

Element	Description	Provided By	Used by	Reusable Y/N	Size/ Capacity	Length	Unit Cost	Cost	Cost per 28 DS-1 Cct
Virtual Equipment*	DS1 Multiplexer	CLEC	1 CLEC	NA					
Cable A*	2×30 Pair ABAM	CLEC	1 CLEC	NA	28 DS1	165 feet			
Cable Rack A (Occupancy)	20" Ladder Rack	ILEC	$\begin{gathered} \text { ILEC +4 } \\ \text { CLEC } \\ \hline \end{gathered}$	Y	555 ABAM	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable Holes**	ILEC	$\begin{gathered} \hline \text { ILEC + } 4 \\ \text { CLEC } \\ \hline \end{gathered}$	Y	555 ABAM per hole		$\begin{gathered} \$ 700.001 \\ \text { hole } \end{gathered}$	$\$ 1647.06$	\$5.92
DCS	Digital X-conn**	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	7168 DS1		$\begin{aligned} & \$ 329.23 \\ & \text { per DS1 } \\ & \hline \end{aligned}$	$\underset{\substack{* * \\ * \\ \$ 2,776,377.00}}{ }$	\$10,845.22

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC
** Indicates 85\% Fill

Virtual Collocation Model for DS-1 Service-DSX

Element	Description	Provided By	Used By	Reusable Y/N	Sizel Capacity	Length	Unit Cost	Cost	$\begin{gathered} \text { Cost per } \\ 28 \text { DS-1 } \\ \text { Cct } \end{gathered}$
Virtual Equipment*	DS1 Multiplexer	CLEC	1 CLEC	NA	28 DS1				
Cable A*	2×30 Pair ABAM	CLEC	1 CLEC	NA	28 DS1	165 ft			
Cable Rack A (Occupancy)	20" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	555ABAM	150 ft	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable Holes**	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y			$\begin{array}{\|c\|} \hline \$ 700.00 \\ \text { hole } \\ \hline \end{array}$	$\$ 1647.06$	\$5.92
DSX1 C	Manual X-conn Panel**	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	56 DS1		\$824.25	$\$ 969.71$	\$484.86
DSX	Digital X-conn Frame-Manua\|**	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \\ & \hline \end{aligned}$	Y	560 DS1		\$390.00	$\underset{\star *}{\$ 458.82}$	\$22.94

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC

Virtual Collocation Model for DS-3 Service-DCS

Element	Description	Provided By	Used by	$\begin{array}{\|c} \hline \text { Reusab } \\ \text { le } \\ \text { YIN } \\ \hline \end{array}$	Size	Length	Unit Cost	Cost	$\begin{array}{\|c} \hline \text { Cost } \\ \text { per DS3 } \\ \text { Cct } \end{array}$
Virtual Equipment*	DS3 Terminal/Multiplexer	CLEC	1 CLEC	NA					
Cable A*	734 Shielded (2 cables)	CLEC	1 CLEC	NA	$\begin{aligned} & \hline 2 \text { per } \\ & \text { DS3 } \end{aligned}$	165 feet			
Cable Rack A (Occupancy)	20" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	$\begin{gathered} 555734 \\ \text { Type } \\ \hline \end{gathered}$	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable holes between floors**	ILEC	ILEC + CLECs	Y	$\begin{gathered} 555734 \\ \text { Type } \\ \hline \end{gathered}$		$\begin{gathered} \$ 700.001 \\ \text { hole } \end{gathered}$	$\$ 1647.06$	\$5.92
DCS	$\begin{aligned} & \text { DS3 Digital Cross } \\ & \text { Connect** } \\ & \hline \end{aligned}$	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLEC } \end{aligned}$	Y	512 DS3		$\begin{aligned} & \$ 2293.30 \\ & 1 \text { per DS3 } \end{aligned}$	$\$ 1,381,382.00$	\$2698.01

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC
** Indicates 85\% Fill

Virtual Collocation Model for DS-3 Service-DSX

Element	Description	Provided By	Used By	Reusable YIN	Size	Length	Unit Cost	Cost	Cost per DS3 Cct.
Virtual Equipment*	DS3 Terminal/Multiplexer	CLEC	1 CLEC	NA					
Cable A*	734 Shielded (2 cables)	CLEC	1 CLEC	NA	$\begin{aligned} & 2 \text { per } \\ & \text { DS3 } \end{aligned}$	165 feet			
Cable Rack A (Occupancy)	20" Ladder Rack	ILEC	ILEC + CLECs	Y	$\begin{gathered} 555734 \\ \text { Type } \\ \hline \end{gathered}$	150 feet	\$40.52	\$6078.00	\$21.86
Cable Hole	2 Cable holes between floors**	ILEC	ILEC + CLECs	Y	$\begin{gathered} 555734 \\ \text { Type } \end{gathered}$		$\begin{gathered} \$ 700.00 / \\ \text { hole } \end{gathered}$	$\$ 1647.06$	\$5.92
XC-C	Manual X-conn Panel**	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	$\begin{gathered} 16 \\ \text { DS3's } \end{gathered}$		\$5951.75	$\$ 7002.06$	\$437.63
DSX Frame	$7{ }^{\prime}$ Frame**	ILEC	$\begin{gathered} \text { ILEC }+4 \\ \text { CLEC } \end{gathered}$	Y	$\begin{gathered} 112 \\ \text { DS3's } \end{gathered}$		\$390.00	$\underset{* *}{\$ 458.82}$	\$4.10

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC
** Indicates 85\% Fill

Virtual Collocation Model for Optical Service

Element	Description	Provided By	Used By	Reusable YIN	Size	Length	Unit Cost	Cost	Cost per Optical Cable (12 Fiber)
Virtual Equipment*	Located in ILEC Lineup	CLEC	1 CLEC	NA					
Cable A*	12 Fiber Breakout	CLEC	1 CLEC	NA		165 ft .			
Cable Rack A (Occupancy)	12" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	221 Breakout	150 ft	\$39.88	\$5982.00	\$27.07
Cable Hole	2 Cable holes between floors	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	221 Breakout		$\begin{aligned} & \hline \$ 7001 \\ & \text { hole } \end{aligned}$	$\begin{array}{\|l} \$ * \\ \$ 1647.06 \\ \hline \end{array}$	\$7.45
FDF	Fiber Distribution Frame	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	$\begin{gathered} \hline 768 \\ \text { Fibers } \end{gathered}$		\$232.19 per 12 fibers	273.16	\$273.16

Virtual Collocation Virtual to Virtual

Element	Description	Provided By	Used By	Reusable Y/N	Size	Length	Unit Cost	Cost	Cost per Cable
Virtual Equipment*	Located in ILEC Lineup	CLEC	1 CLEC	NA					
Cable A*	Connects 2 bays on Virtually located equipment	CLEC	1 CLEC	NA	$\begin{aligned} & \text { DS1, } \\ & \text { DS3 or } \\ & \text { Fiber } \end{aligned}$	65 ft .			
Cable Rack A (Occupancy) for Optical 12 fiber cable	12" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	$\begin{gathered} 221 \\ \text { Breakout } \end{gathered}$	50 ft	\$39.88	\$1994.00	\$9.02
Cable Rack A (Occupancy) for DS1 or DS3 Circuit	20" Ladder Rack	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	Y	734 Type or ABAM	50 ft	\$40.52	\$2026.00	\$7.29

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC

VIRTUAL COLLOCATION MODEL - -48V DC Power Delivery

Element	Description	Provided by CLECILEC	Used By	$\begin{gathered} \mathrm{Re}- \\ \text { useable } \end{gathered}$	$\begin{gathered} \text { Quantit } \\ y \end{gathered}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Cost } \end{aligned}$	Total Cost	Remarks
Virtual Equipment*	Located in ILEC Line Up	CLEC	1 CLEC	NA				
$\begin{aligned} & \text { Cable A } \\ & 2 \times 0 \text { to } 5 \text { Amp } \\ & \text { Feeds } \\ & \hline \end{aligned}$	4 X \#10 Cables between Virtual and ILEC BDFB	CLEC	1 CLEC	NA				Included in Virtual Equipment Installation
$\begin{aligned} & \hline \text { Cable A } \\ & 2 \times 6 \text { to } 20 \text { Amp } \\ & \text { Feeds* } \end{aligned}$	4 X \#6 Cables between Virtual and ILEC BDFB	CLEC	1 CLEC	NA				Included in Virtual Equipment Installation
$\begin{aligned} & \text { Cable A } \\ & 2 \times 21 \text { to } 30 \text { Amp } \\ & \text { Feeds } \end{aligned}$	4 X\#4 Cables between Virtual and ILEC BDFB	CLEC	1 CLEC	NA				Included in Virtual Equipment Installation
$\begin{aligned} & \hline \text { Cable A } \\ & 2 \times 31 \text { to } 50 \text { Amp } \\ & \text { Feeds } \\ & \hline \end{aligned}$	4X\#2 Cables between Virtual and ILEC BDFB	CLEC	1 CLEC	NA				Included in Virtual Equipment Installation
$\begin{array}{\|l\|} \hline \text { Cable A } \\ 2 \times 51 \text { to } 60 \text { Amp } \\ \text { Feeds* } \\ \hline \end{array}$	4 X \#1 Cable between Virtual and ILEC BDFB	CLEC	1 CLEC	NA				Included in Virtual Equipment Installation
Cable Rack A	15" Existing Cable Rack	ILEC	$\begin{aligned} & \text { ILEC }+ \\ & \text { CLECs } \end{aligned}$	Y	$25^{\prime \prime}{ }^{\prime \prime}$	\$0.14	\$3.50	Power Delivery Rack for all Bays in Lineup
BDFB	Located within 1 aisle of Virtual Equipment	ILEC	$\begin{aligned} & \text { ILEC + } \\ & \text { CLECs } \end{aligned}$	N/A	--	--	--	Included in -48V DC Power Consumption Charge
Cable Rack Occupancy	Shared support for Cable 'B' below	ILEC		N/A	-	--	--	Included in -48V DC Power Consumption Charge
Cable B	Cable between - 48 V Power Plant \& BDFB	ILEC		N/A	-	--	--	Included in -48V DC Power Consumption Charge
-48 V DC Power Plant	Shared use between CLEC's \& ILEC	ILEC		N/A	--	--	--	Included in -48V DC Power Consumption Charge
AC Electrical \& Auto-start Diesel	Required for Battery Back-up	ILEC		N/A	--	-	-	Included in -48V DC Power Consumption Charge

*Cable is supplied and terminated as part of Virtual Equipment Installation and paid for by CLEC

ILEC MANPOWER

Function	Work Time (hours)
Outside Plant Access Design	6
Building \& MDF Planning	14
Power Engineer	8
Equipment Engineer	12
Equipment Installation Project Manager	10
Operations Group	6
ILEC Contact Group	4
Other ILEC Groups	6

SECTION TWO

BACKUP INDEX

VBU \# 1 CABLE AND CABLE RACK LENGTHS VBU \# 2 VBU \# 3 OPTIC PATCH CORDS ILEC MANPOWER (VIRTUAL)

VBU \#1

CABLE \& CABLE RACK LENGTHS

POWER (Cable from the Battery Distribution Fuse Bay to the Virtual equipment)

Length from BDFB to Adjacent Bay	$\frac{\text { MIN }}{5^{\prime}}$	MAX
Length from BDFB to end of aisle 40^{\prime} Length across aisle 5^{\prime} Cable Rack to equipment(drops) TOTAL $\frac{15^{\prime}}{20^{\prime}}$$\quad \frac{15^{\prime}}{60^{\prime}}$		

Average Cable Length $(60+20) / 2=40^{\prime}$ (includes average $7^{\prime \prime} 6^{\prime \prime}$ cable drop at each end) Rack $=25^{\prime}$ (no drops)

VOICE GRADE, DS1 AND DS3

Cable lengths used are 165^{\prime} from BU\#3, computed based on an average of a maximum and minimum scenario. Cable racks are 150^{\prime} (15^{\prime} less than the cable, which allows for two $7^{\prime} 6^{\prime \prime}$ drops from the cable rack to the equipment)

VIRTUAL TO VIRTUAL

	$\frac{\text { MIN }}{}$	MAX	
Length from Bay to Adjacent Bay	5^{\prime}		
Length from Bay to end of aisle		40^{\prime}	
Length across 12 aisles	$\frac{15^{\prime}}{}$	55^{\prime}	
Cable Rack to equipment(drops)	TOTAL	20^{\prime}	110^{\prime}

Average Cable Length $(110+20) / 2=65^{\prime}$ (includes average $7^{\prime} 6^{n}$ cable drop at each end) Rack $=50$ (no drops)

VBU \#2

OPTIC PATCH CORD

	10 BAY (max)	1 BAY (min)
From top connector to cable tray	7	$7{ }^{\prime}$
Horizontal in cable tray	26^{\prime}	2^{\prime}
From cable tray to connector	$\underline{7}$	$1{ }^{\prime}$
Total	40	10

Average Cable Length: $\left(40^{\prime}+10^{\prime}\right) / 2=25^{\prime}$ or 7.6 meters
Since fiber patch cords are available in standard lengths of $3,6,7,10,12$, and 15 meters, a 10 meter length cord was selected.

10 Meter Fiber Patch Cord equipped with SC connectors $=\$ 63.50$ each
Source: ADC Telecommunications

ILEC MANPOWER

The following table lists the ILEC Groups involved in the Virtual Collocation Process and the tasks performed in fulfilling a request for Collocation

Function	Tasks	Work Time (hours)
Outside Plant Access Design	Prepares Estimate for Work required	2
	Engineers Details and Tender	2
	Reviews Tenders and Awards	2
Building \& MDF Planning	Selects Building Space	2
	Compiles Estimates and develops Plan	8
	Finalizes Plan and advise	2
	Finalizes Project	2
Power Engineer	Prepares Estimate for work required	3
	Engineers Details \& Prepares Estimate	5
Equipment Engineer	Prepares Estimate for work required	4
	Engineers Details \& Prepares Estimate	8
Equipment Installation Project Manager	Coordinates Equipment Estimates	10
Operations Group	Attends Meetings and Interfaces with Contractors as required	6
ILEC Contact Group	Reviews Request and Forward to Planning	1
	Advises CLEC of Collocation details	1
	Receives Acceptance of details and advises Planning	1
	Notifies CLEC of Completion	1
Other ILEC Groups	Performs related Tasks (e.g., billing)	6
	TOT	66

Source: subject matter experts Richard Bissell and Allen Hobbs, based on experience.

[^0]: 1 Physical collocation also can occur at other places in an ILEC network, such as in the "telco closet" in a large office or residential building. In addition, virtual collocation is possible. This white paper does not address these.

[^1]: 2 While the long-term direction with regard to ILEC/CLEC interconnection may be to eliminate POT bays by moving this "physical demarcation" over to the ILEC cross-connect, in the near term it is advantageous to ensure an easily identifiable line of demarcation in close proximity to the CLEC equipment for ease of trouble shooting. Furthermore, the inclusion of a POT bay in the collocation area provides CLEC maintenance staff with uninhibited access for testing and repair without the requirement for a security escort, which might be required if the demarcation were moved to the ILEC cross-connect.

[^2]: 3 As discussed below in Section 4.1, although the collocation model reflected in this white paper was developed assuming that the collocation space would be located in a large, urban ILEC CO, the collocation model is also applicable in non-urban COs.

[^3]: 4 These extremes were determined as follows: equipment area width $=100$ feet; equipment area length $=120$ feet; distance between floors $=20$ feet; cable drop to equipment at both ends $=15$ feet. So the maximum twofloor distance would be $100^{\prime}+120^{\prime}+20^{\prime}+20^{\prime}+15^{\prime}=275^{\prime}$, and the minimum same-floor distance would be 20^{\prime} $+20^{\prime}+15^{\prime}=55^{\prime}$.

[^4]: 6 All CLEC-provided POT bays and interconnection panels should conform to appropriate standards and be acceptable for use in telecommunications COs. Because this would be passive cross-connect equipment

[^5]: 9 If all CLECs simultaneously fill up their collocation spaces with equipment that requires the maximum 190 amps, rather than the average 135 amps , the only additional expenses that the ILEC will face (in addition to the power cost that is reimbursed in per amp charges) are those associated with additional air conditioning requirements. That additional cost is addressed in Section 8.3.

[^6]: 11 The example uses a rate of $\$ 0.05$ per Kilowatt hour for electric power. The Model allows the actual rate per Kilowatt hour used in the cost calculations to be state-specific.

[^7]: 3 The model assumes that, if necessary, the ILEC must place cable racks between the virtual collocation equipment and cross-connects. Portions of the cable racks are likely to be already in place since the equipment is placed adjacent to ILEC equipment. In either case, the CLECs pay space rental to the ILEC for cable rack occupancy.

[^8]: 4 Supporting data for cable rack occupancy calculations and an explanation of cable rack capacity table can be found in Paragraph 4.4 of Part I.

[^9]: * Supplied as part of the virtual equipment installation and paid for by CLEC

[^10]: * Supplied as part of the virtual equipment installation and paid for by CLEC

