STAFF'S $1^{\text {ST }}$ REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

DOCUMENT NUMBER-DATE
13670 NOV -5 男

ENTIRE DOCUMENT

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DOCKET NO. 990649-TP

STAFF'S $1^{\text {ST }}$ REQUEST FOR PRODUCTION OF DOCUMENTS

ID N_{0}	Description	Source	Value	
-				
3				
4	NETWORK NTPUTS			
5				
6		Intra-Office Call Set-up:		
7	Percent of Calls Using DTMF	Ntwk Eng	100.0\%	
8	Included AMA (Yes or No)	Ntwk Eng	Yes	
9				
10	Line-Trunk Call Set-up:			
11	Percent of Calls Using DTMF	Ntwk Eng	100.0\%	
12	Percent of Calls Using SS7	Ntwk Eng	100.0\%	
13	Included AMA (Yes or No)	Nowk Eng	Yes	
14	Percent of Calls Using 7 Digits	Nuk Eng	76.4\%	
15	Percent of Calls Which Complete	Niwk Eng	74.1%	
16				
17	Trunk-Line Call Set-up:			
18	Percent of Calls Using SS7	Ntwk Eng	100.0\%	
19	Percent of Calls Which Complete	Suc Eval System	74.1\%	
20				
21	Trunk-Trunk Call Set-up:			
22	Percent of Calis Using MF-MF Signalling	Ntwk Eng	0	
23	Percent of Calls Using MF-SS7 Signalling	Niwk Eng	0	
24	Percent of Calls Using SS7-S57 Signalting	Ntuk Eng	100.0\%	
25	Percent of Calls Using SS7-MF Signalling	Nuk Eng	0	
.	Percent of Calls Whith Complete	Suc Eval Systent	74.1\%	
28	SWITCH SPECIFIC MPUTS			
29				
30	M010 Switching Functionatity:			
31	SESS - \% MO10 Switching Functionality	BellCore	0	
32	DMS - \% MO10 Switching Functionality	BellCore	0	
33				
34	Distribution of Remotes Switch type:			
35	Percent Remotes of 5 ESS Switches	Dind Fac Db	6.83\%	
36	Percent Remotes of DMS Switches	Dind Fac Db	4.63\%	
37				
38	Distribution of End Office:			
39	Percent 5ESS of All Switches	Dmd Fac Db	69.46\%	
40	Percent DMS of All Switches	Dnd Fac Db	30.56\%	
41				
42	Distribution of Tandem:			
43	Percent SESS of All Switches	Trunk Forecast	10.7\%	
44	Percent DMS of All Switches	Trunk Forecast	89.3\%	
45				
46	Distribution of Calls:			
47	Percent Intra-Office Calls	Ntwk Sw DC	25.57\%	
48	Percent Inter-Office Calls	Nowk Sw DC	74.43\%	
49				
50	Percent Tandem Occurtence of Inter-Office Calls	Separations	100.0\%	

USAGE INPUTS

$\underline{\text { ID No }}$	Description	Source	Value
	Marginal Busy Hour Busy Season Traffic Load (CCS)	Ntwk Eng	20.6
3	Busy Hour to Full Day Ratio	Usg \& Dud Anal	9.8\%
56	Ratio of Avg Busy Season Load to Avg Bus. Day Load	Usg \& Dind Anal	1.1
57	Ratio of Avg Business Day Load to Avg Cal. Day Load	Usg \& Dmd Anat	1.177
58	Average Number of Minutes Per Call	Usg \& Dmd Anal	2.3
59	Average Nurnber of Calls Per Line ABS ABD	Usg \& Dmd Anal	28.57
60	Completion Ratio	Usg \& Dmd Anal	0.741
61	Average Number of Non-Conversation Minutes	Sve Eval System	0.2192
62	Equivalent Business Days	Sve Eval System	310
63			
64	FACILITIES INPUTS		
65 (
66	Facilities Investment Per Airline Mile $822 \mathrm{C}-00$	Com Fund Study	\$0.030000000
67	Facilities Investment Per Airline Mile $845 \mathrm{C}-00$	Com Fund Study	\$0.100000000
68	Facilities Investment Per Airline Mile 85C-00	Com Fund Study	\$0.230000000
69			
70	Facilities Termination Investment Per Term 357C-03	Com Fund Study	\$6.350000000
71	Facilities Termination Investment Per Term 357C-06	Com Fund Study	\$39.770000000
72	Facilities Termination Investment Per Term 357C-09	Com Fund Sudy	\$7.540000000
73	Facilities Termination Investment Per Term 357C-15	Com Fund Study	\$0.130000000
74 (74			
75	SS7 INPUTS		
76			
77	STP Investment Per Octet Orig End Office 377C-03	SS7 Fund Study	\$0.010000000
	Link Investment Per Octet Orig End Office 377C-03	SS7 Fund Study	\$0.000000000
	STP Investment Per Octet Termi End Office 377C-03	SS7 Fund Study	\$0.010000000
	Link Investment Per Oitet Temu End Office 377C-03	SS7 Fund Study	\$0.000000000
81 (81			
82	STP Investment Per Octet Orig Fid Office 357C-03	SS7 Fund Study	\$0.000000000
83	Link Investmeat Per Octet Orig End Office 357C-03	SS7 Fund Srudy	\$0.000000000
84	STP Investment Per Octet Term End Office 357C-03	SS7 Fund Study	\$0.000000000
86 退 80			
87	STP Investment Per Octer Orig End Office 357C-06	SS7 Fund Study	\$0.000000000
88	Link Investment Per Octet Orig End Office 357C-06	SS7 Fund Study	\$0.000000000
89	STP Investment Per Octet Term End Office 357C-06	SS7 Fund Study	\$0.000000000
90	Link Investment Per Octet Term. End Offive 357C-06	SS7 Fund Study	\$0.000000000
91 (9 dr			
92	STP Investment Per Octet Orig End Office 357C-09	SS7 Fund Study	\$0.000000000
93	Link Investment Per Octet Orig End Office 357C-09	SS7 Fund Study	\$0.000000000
94	STP Investment Per Octet Term End Office 357C-09	SS7 Fund Study	\$0.000000000
95	Link Investment Per Octet Term End Office 357C-09	SS7 Fund Study	\$0.000000000
96 - 96			
97	STP 1nvestment Per Octet Orig End Office 357C-15	SS7 Fund Study	\$0.000000000
98	Link Investment Per Octet Orig End Office 357C-15	SS7 Fund Study	\$0.000000000
99	STP Investment Per Octet Term End Office 357C-15	SS7 Fund Study	\$0.000000000
100	Link Investment Per Octet Term End Office 357C-15	SS7 Fund Study	\$0.000000000
101 ler			
102	STP Investment Per Octet Orig End Office 822C-00	SS7 Fund Surdy	\$0,000000000
103	Link Investment Per Octet Orig End Office 822 C -00	SS7 Fund Study	\$0.000000000
104	STP Investment Per Octet Terra End Office 822C-00	S57 Fund Study	\$0.000000000
-	Link havestment Per Octet Temm End Office 822C-00	SS7 Fund Study	\$0.000000000

1 DNa
104
109
110
111
112
113
114
115
116
117
118
119
120
121
149
150
151
152
153
154
155
156
157
158
24

Description

STP Investment Per Octet Orig End Office 845C-00
Link Investment Per Octet Orig End Office 845C-00
STP Investment Per Octet Term End Office 845C-00
Link Investment Per Octet Term End Office 845C-00
STP Investment Per Octet Orig End Office 85C-00
Link Investment Per Octet Orig End Office 85C-00
STP Investment Per Octet Term End Office 85C-00
Link Investment Per Octet Term End Office 85C-00

SS7 VS Link Expense Per Octet Orig End Office
SS7 VS Link Expense Per Octet Temm End Office
SS7 VI LInk Expense Per Octet Orig End Office
SS7 VI Link Expense Per Octet Temn End Office
ADDITIONAL INPUTS
Gross Receipts Tax
Average Number of Octets Per Attempt
Facility Utilization Factor
Facility Termination Utilization Factor
Average Number of Terminations Per Caill
Average Airline Miles
Holding Time (seconds)
SCIS MODEI OFFICE DATA V2.3

SCIS TABLE DATA

Source	Value
SS7 Fund Study	$\$ 0.000000000$
SS7 Fund Study	$\$ 0.000000000$
SS7 Fund Study	$\$ 0.000000000$
Not Applicable	127.
Ntwk Eng	1
IOF - Fund St	1
IOF - Fund St	2.152
Strat Mgt	22.69
Usg \& Dnd Anal	42
Dircctory Tpt	

ID
311
312
313
314
315
316
317
318
319
320
$32 i$
322
323
324
325
326
327
328
329
330
331
332
333
334
${ }^{-5}$
337
338

339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
-
2

PROPRIETARY - BELLCORE AND AUTHORIZED CIJIFNTS
Page:
t
BELLCORE CONFIDENTIAL - RESTRICTED ACCESS
Source: BellSouth's Switched Network Calculator

Number	Element	Source	Value
		State:	FL
2	UNBUNDLED I.OC SWITCHG - SW FUNC (ULS-SF)		
3	377C-03		
4	ULS-SF (Line-Line or Line-Trunk or Trunk-Line)	LS SUM L37	\$0.00697663
5			
6			
7			
8	UNBUNDLED LOC SWITCHING - TR PORT (ULS-TP)		
9	377C-03		
10	ULS-TP (Line-Trunk or Trunk-Line)	LS SUM L85	\$0.001129563
11 l			
12			
13			
14	UNBUNDLED TDM SWITCHG - SW FUNC (UTS-SF)		
15	$377 \mathrm{C}-03$ (
16	UTS-SF (Trunk-Trunk)	TS SUM L23	\$0.002325356
17			
18			
19			
20	UNBUNDLED TDM SWITCHING - TR PORT UTS-TP)		
21	377C-03		
22	UTS-TP (Trunk-Trunk)	TS SUM L85	\$0.001354046
23 (
24			
25			
	UNBUNDLED INTFROFFICE TRNSPT (LIT-S)		
	Total Facilities Investment Por MOU Per Airline Mile		
28	$822 \mathrm{C}-00$	FAC SUM L25	\$0.000000014
29	$845 \mathrm{C}-00$	FAC SUM L26	\$0.000000048
30	$85 \mathrm{C}-00$	FAC SUM L27	\$0.00000011
31	$357 \mathrm{C}-03$	FAC SUM L28	\$0.00
32	357C-06	FAC SUM L29	50.00
33	357C-09	FAC SUM L30	\$0.00
34	357C-15	FAC SUM L3i	\$0.00
35	377C-03	FAC SUM L32	\$0.000045681
36			
37			
38	Facilites Temmination Investment Per MOU		
39	357C-03	357C-03 L42	\$0.000006297
40	357C-06	357C-06 L42	\$0.000039438
41	357C-09	357C-09 L42	\$0.000007477
42	357C-15	357C-15 L42	\$0.000000129
43 (43 (${ }^{\text {a }}$			
44			
45	SS7 Expense		
46	SS7 VS Expense Per Call	FAC SUM L41	NA
47	SS7 VS Expense Per Call Per Airline Mile	FAC SUM L42	NA
48	SS7 VS Expense Per MOU Per Airline Mile	FAC SUM L43	\$0.00
49	SS7 VI Expense Per Call	FAC SUM L44	NA
50	S57 VI Expense Per Call Per Airline Mile	FAC SUM L45	NA
51	\$\$7 VI Expense Per MOU Per Airline Mile	FAC SUM L46	\$0.00
\cdots			
54	Timestamp: 9:2899 12:36:45 PM		

SNC - UNE SUMMARY OF INVESTMENTS
 Florida - FL Docket 990649-TP

Number	Element	Source	Value
		State:	FL
2	LNBUNDLED LOC SWITCHG - SW FINC (ULS-SF)		
3	$377 \mathrm{C}-03$		
4	ULS-SF (Line-Line or Line-Trunk or Trunk-Line)	LS SUM L37	\$0.00697663
5			
6			
7			
8	UNBUNDLED LOC SWITCHING - TR PORT (ULS-TP)		
9	377C-03		
10	ULS-TP (Line-Trunk or Trunk-Line)	LS SUM L85	\$0.001129563
11 le			
12			
13			
14	UNBUNDLED TDM SWITCHG - SW FUNC (UTS-SF)		
15	$377 \mathrm{C}-03$		
16	UTS-SF (Trunk-Trunk)	TS SUM L23	S0.002325356
17 (17			
18			
19			
20	UNBUNDLED TD. ${ }^{\text {SWITCHING - TR PORT UTS-TP) }}$		
21	377C-03		
22	UTS-TP (Trunk-Trunk)	TS SUM L85	S0.001354046
23 (23			
24			
25			
	UnBUNDITD NMtEROFFICE TRNSPT (UTT-S)		
	Total Facilities Investment Per MoU Per Airline Mile		
28	822C-00	FAC SUM L25	\$0.000000014
29	845C-00	FAC SUM L26	S0.000000048
30	85C-00	FAC SUM L27	50.00000011
31	357C-03	FAC SUM L28	S0.00
32	357C-06	FAC SUM L29	\$0.00
33	357C-09	FAC SUM L30	\$0.00
34	$357 \mathrm{C}-15$	FAC SUM L31	50.00
35	377C-03	FAC SUM L32	S0.000045681
36			
37			
38	Facilities Temination Investment Per MOU		
39	357C-03	357C-03 L42	50.000006297
40	357C-06	357C-06 L42	50.000039438
41	357C-09	357C-09 L42	\$0.000007477
42	357C.15	357C-15 L42	\$0.000000129
43			
44			
45	SS7 Expense		
46	SS7 VS Expense Per Call	FAC SUM L41	NA
47	SS7 VS Expense Per Call Per Airline Mile	FAC SUM L42	NA
48	SS7 VS Experse Per MOU Per Airline Mille	FAC SUM L43	\$0.00
49	SS7 VI Expense Per Call	FAC SUM L44	NA
50	SS7 VI Expense Per Call Per Airline Mile	FAC SUM L45	NA
51	SS7 VI Expense Per MOU Per Airline Mile	FAC SUM L46	\$0.00
34	Timestamp: 9 2899 12:36:45 PM		

BELLSOUTH SWITCHED NETWORK CALCULATOR (SNC)

The Switched Network Calculator (SNC) is a stand-alone system that incorporates proprietary fcrmulas and data from the Telcordia Switching Cost Information System (SCIS). SNC produces individual unbundled network element investments on an account specific, MOU basis suitable to be handed off to the TELRIC Calculator, where they are converted to costs. The individual unbundled network element investments are:

1. End Office Switching function, Per MOU
2. End Office Interoffice Trunk Port - Shared, Per MOU
3. Tandem Switching function, Per MOU
4. Tandem Interoffice Trunk Port - Shared, Per MOU
5. Common Transport - Per Mile, Per MOU
6. Common Transport - Facilities Terminations, Per MOU
7. Switched Common Transport, Per DA Access Service, Per Ca!l
8. Switched Common Transport, Per DA Access Service, Per Call, Per Mile
9. Access Tandem Switching, Per DA Access Service, Per Call

SNC is divided into the following categories for detailed explanations for each category:

1. Unbundled Local Switching - Switching Functionality (ULS-SF) Investment per MOU Calculation
2. Unbundled Local Switching - Interoffice Trunk Port (ULS-ITP) Investment per MOU Calculation
III. Unbundled Tandem Switching - Switching Functionality (UTS-SF) Investment per MOU Calculation
IV. Unbundled Tandem Switching - Interoffice Trunk Port (UTS-ITP) Investment per MOU Calculation
V. Unbundled Interoffice Transport - Shared (UIT-S) Facilities Investment Per MOU, per Airline Mile
VI. Unbundled Interoffice Transport - Shared (UIT-S) Facilities Terminations Investment Per MOU
VIl. Directory Transport

The following terminologies are used interchangeably throughout the cost study:
a) ULS-SF - End Office Switching Function
b) ULS-ITP - End Office Interoffice Trunk Port
c) UTS-SF - Tandem Switching Function
d) UTS-ITP - Tandem Interoffice Trunk Port
e) UIT-S - Common Transport

The portion of SNC that is based upon Telcordia switch investment formulas is referred to herein as the Central Office Calculator.

BELLSOUTH SWITCHED NETWORK CALCULATOR (SNC)

1. ULS-SF Investment Per MOU Calculation

The ULS-SF investment per MOU is the end office - switching function investment per MOU, per end office switch.

Methodology for calculating ULS-SF investment per MOU for an end office switch:
The ULS-SF investment per MOU for an end office switch is developed by dividing the weighted ULS-SF investment per MOU for intra-office and interoffice calls by the equivalent measured call factor. The weighted ULS-SF investment per MOU for intra-office and inter-office calls is produced by combining the weighted portion of intra-office ULS-SF investment per MOU and the weighted portion of inter-office ULS-SF investment per MOU. The weighted portion of intra-office ULS-SF investment per MOU is derived by multiplying the ULS-SF investment per MOU for intra-office by the percent intra-office calls occurrence. Similarly, the weighted portion of inter-office ULS-SF investment per MOU is derived by multiplying the ULS-SF investment per MOU for inter-office by the percent inter-office calls occurrence. The ULS-SF investment per MOU is divided by the equivalent rneasured call factor in order to account for billing at each end office switch. This step is required because there is one set of minutes of use recorded at the intra-office for an intra-office call; whereas, there are two sets of minutes of use recorded for an interoffice call, one set at each end office. The equivalent measured call factor is developed by summing the percent intraoffice calls and two times the percent inter-office calls.

The ULS-SF investment per MOU for intra-office calls or inter-office calls is a summation of the ULS-SF investments per MOU for set-up and duration. The ULS-SF investment per MOU for set-up is calculated by dividing the melded ULS-SF investment per call for set-up by an average number of minutes per call. Both the melded ULS-SF investment per call for set-up and the meided ULS-SF investment per MOU for duration is based on outputs from the Central Office Calculator (COC). The melded ULS-SF investment is a meld of ULS-SF investments for 5ESS and DMS technologies.

The ULS-SF investment per MOU output from COC is the Busy Hour investment per MOU; it needs to be converted to an investment per MOU for any calendar day because the customer will be billed though-out the day.

The following steps convert the Busy Hour investment to any time, any day:
Step 1. The Busy Hour investment per MOU is muitiplied by the Busy Hour to Full Day ratio.

Step 2. The product of step 1 is divided by the equivalent business days.
Step 3. The result of step 2 is multiplied by the ratio of Busy Season Load to Business Day Load.

BELLSOUTH SWITCHED NETWORK CALCULATOR (SNC)

The Busy Hour to Full Day ratio is the percent of traffic during the busy hour. The ratio of Busy Season Load to Business Day Load represents the relationship between the traffic carried during the busy season to any business day.

II. ULS-ITP Investment Per MOU Calculation

The ULS-ITP investment per MOU is the end office - Interoffice Trunk Port investment per MOU, per end office switch.

Methodology for calculating ULS-ITP investment per MOU for a Interoffice Trunk Port
The ULS-ITP investment per MOU for an Interoffice Trunk Port is calculated by dividing the ULS-ITP investments per MOU for interoffice calls by two because the customer will be billed for both ends of the call. The investment per MOU included both the originating and terminating call investments.

The ULS-ITP investment per MOU is a summation of the ULS-ITP investments per MOU for set-up and duration. The ULS-ITP investment per MOU for set-up is calculated by dividing the melded ULS-ITP investment per call for set-up by an average number of minutes per call. Both the melded ULS-ITP investment per cali for set-up and the melded ULS-ITP investment per MOU for duration is based on outputs from the Central Office Calculator (COC). The melded ULSITP investment is a meld of ULS-ITP investments for 5ESS and DMS technologies.

The ULS-ITP investment per MOU output from COC is the Busy Hour investment per MOU; it needs to be converted to an investment per MOU for any calendar day because the customer will be billed though-out the day.

The following steps convert the Busy Hour investment to any time, any day:
Step 1. The Busy Hour investment per MOU is multiplied by the Busy Hour to Full Day ratio.

Step 2. The product of step 1 is divided by the equivalent business days.
Step 3. The result of step 2 is multiplied by the ratio of Busy Season Load to Business Day Load.

The Busy Hour to Full Day ratio is the percent of traffic during the busy hour. The ratio of Busy Season Load to Business Day Load represents the relationship between the traffic carried during the busy season to any business day.
III. UTS-SF Investment Per MOU Calculation

The UTS-SF investment per MOU is the tandem switching function investment per MOU, per tandem switch.

Methodology for calculating UTS-SF investment per MOU for a tandem switch The UTS-SF investment per MOU for a tandem switch is a summation of the UTS-SF investments per MOU for set-up and duration. The UTS-SF investment per MOU for set-up is calculated by dividing the melded UTS-SF investment per call for set-up by an average number of minutes per call. Both the melded UTSSF investment per call for set-up and the melded UTS-SF investment per MOU for duration is based on outputs from the Central Office Calculator (COC). The melded UTS-SF investment is a meld of UTS-SF investments for 5ESS and DMS technologies.

The UTS-SF investment per MOU output from COC is the Busy Hour investment per MOU; it needs to be converted to an investment per MOU for any calendar day because the customer will be billed though-out the day.

The following steps convert the Busy Hour investment to any time, any day:
Step 1. The Busy Hour investment per MOU is multiplied by the Busy Hour to Full Day ratio.

Step 2. The product of step 1 is divided by the equivalent business days.
Step 3. The result of step 2 is multiplied by the ratio of Busy Season Load to Business Day Load.

The Busy Hour to Full Day ratio is the percent of traffic during the busy hour. The ratio of Busy Season Load to Business Day Load represents the relationship between the traffic carried during the busy season to any business day.

IV. UTS-ITP Investment Per MOU Calculation

The UTS-ITP investment per MOU is the tandem interoffice Trunk Port investment per MOU, per tandem switch.

Methodology for calculating UTS-ITP investment per MOU for a Interoffice Trunk Port
The UTS-ITP investment per MOU for a Interoffice Trunk Port is calculated by dividing the UTS-ITP investments per MOU for interoffice calls by two because the customer will be billed for both ends of the call. The investment per MOU included both the originating and terminating call investments.

The UTS-ITP investment per MOU is a summation of the UTS-ITP investments per MOU for set-up and duration. The UTS-ITP investment per MOU for set-up is calculated by dividing the melded UTS-ITP investment per call for set-up by an average number of minutes per call. Both the melded UTS-ITP investment per call for set-up and the melded UTS-ITP investment per MOU for duration is based on outputs from the Central Office Calculator (COC). The melded UTSITP investment is a meld of UTS-ITP investments for 5ESS and DMS technologies.

The UTS-ITP investment per MOU output from COC is the Busy Hour investment per MOU; it needs to be converted to an investment per MOU for any calendar day because the customer will be billed though-out the day.

The following steps convert the Busy Hour investment to any time, any day:
Step 1. The Busy Hour investment per MOU is multiplied by the Busy Hour to Full Day ratio.

Step 2. The product of step 1 is divided by the equivalent business days.
Step 3. The result of step 2 is multiplied by the ratio of Busy Season Load to Business Day Load.

The Busy Hour to Full Day ratio is the percent of traffic during the busy hour. The ratio of Busy Season Load to Business Day Load represents the relationship between the traffic carried during the busy season to any business day.

V. UIT-S Facilities Investment Per MOU, Per Airline Mile Calculation

The facilities investment per MOU, per airline mile, is the common transport, facilities investment per MOU. The facilities investment per MOU, per airline mile is a sum of the interoffice facilities investment per MOU, per airline mile at DSO equivalent level and the SS7 investment per MOU, per airline mile.

The interoffice facilities investment per MOU, per airline mile is developed by dividing the interoffice facilities material price per airline mile at DSO equivalent level by the total conversation minutes per year.
A. Methodology for deriving the interoffice facilities material price per airline mile at DSO equivalent level:
The interoffice facilities material price per airline mile at DSO equivalent level is derived by dividing the DS1 interoffice facilities material price per airline mile by 24. The DS1 interoffice facilities material price per airline mile is based on the Fundamental Cost Study fior DS1 Unbundled Interoffice Transport - Dedicated. The facility utilization factor is set as 1 because the facility objective fill factor has already been applied in the Fundamental Cost Study for DS1 Unbundled Interoffice Transport - Dedicated.
B. Methodology for deriving the total conversation minutes per year:

The total conversation minutes per year, per interoffice trunk is produced by multiplying the MOU's for a calendar day, per interoffice trunk, by the percent conversation time and 365 days. The percent conversation time is determine using the two sets of calculations:

Calculation Set 1

The following calculations were used for producing the MOU's for a calendar day, per interoffice trunk:

Step 1: Calculate average busy season, busy hour MOU per interoffice trunk. The average busy season, busy hour MOU is developed by dividing an average busy season, busy hour traffic load for an interoffice trunk by the Busy Season, Busy Hour to Full Day ratio. The average busy season, busy hour traffic load is the maximum load a trunk group is engineered to carry during the hour that has the most traffic at a busy season. The Busy Hour to Full Day ratio is the percent of traffic during the busy hour.

Step 2: Calculate average business day MOU's per interoffice trunk. The average business day MOU's are derived by dividing the average busy season, busy hour MOU's by a ratio of Busy Season Load to Business Day Load. A ratio of busy season load to average business day load represents the relationship between the traffic carried during the busy season to any business day.

Step 3: Calculate average calendar day MOU's per interoffice trunk.

The average calendar day MOU's are derived by dividing the average business day MOU by a ratio of business day load to calendar day load. The ratio of Business Day Load to Calendar Day Load is 1.177, which translates to 17.7 percent more traffic usage on an average business day than on a calendar day. 1.177 is calculated by dividing 365 days by 310 equivalent business days.

Calculation Set 2

The following steps were taken to determine the percent conversation time:
Step 1: Calculate the number of conversation minutes per line for a busy season, business day.
The number of conversation minutes per line for a busy season, business day is obtained by multiplying an average number of conversation minutes per call by the average number of calls per network access line.

Step 2: Calculate the number of attempts per line for a busy season, business day.
The number of attempts per line for a busy season, business day is derived by dividing the average number of calis per network access line, for a busy season, business day by the completion ratio. The completion ratio is an average percent of attempts that are completed.

Step 3: Calculate the non-conversation minutes per line for a busy season, business day.
The non-conversation minutes per line for a busy season, business day is obtained by mutiplying the average non-conversation minutes per attempt by the number of attempts per line for a busy season, business day. The nonconversation minutes is the duration from off-hook to final disposition. Final disposition is time when either someone answers the phone or nobody answers the phone and the called party hangs up.

Step 4: Calculate the total MOU's per line for a busy season, business day. The total MOU's per line for a busy season, business day are produced by adding the conversation minutes and non-conversation minutes per line for a busy season, business day.

Step 5: Calculate the percent conversation time.
The percent conversation time is obtained by dividing the conversation minutes per line for a busy season, business day by the total MOU's per line for a busy season, business day.

Methodology for deriving.SS7 Investment per MOU, per Airline Mile
The SS7 investment per MOU, per airline mile is developed by dividing the SS7 investment per MOU by the average airline mile.

The SS7 investment per MOU is a summation of the SS7 Signaling Transfer Point (STP) investment per MOU and SS7 A Link investment per MOU that incurred at the originating end office and terminating end office, and the SS7 STP investment per MOU and SS7 A Link investment per MOU that incurred at the tandem.

The following calculations were used for deriving the SS7 STP and A Link investments per MOU:

Step 1: Calculate the SS7 STP and A Link investments per attempt. The SS7 STP and A Link investments per attempt is derived from multiplying the SS7 STP and Link investments per octet by the average number of octets per attempt. The SS7 STP and A Link investments per octet is based on the Fundamental Cost Study for SS7.

Step 2: Calculate the SS7 STP and A Link investments per MOU incurred at the originating end office and terminating end office.
The SS7 STP and A Link investments per attempt is the Busy Hour investment per MOU; therefore, it needs to be converted to an investment per MOU for a calendar day because the customer will be billed through-out the day. The SS7 STP and A Link investments per attempt is converted to SS7 STP and A Link investments per MOU by multiplying the SS7 STP and A Link investments per attempt by the Busy Hour to Full Day ratio; dividing the product by equivalent business days; and finally multiplying the result by the ratio of Busy Season Load to Business Day Load.

Step 3: Calculate the SS7 STP and A Link investments per MOU incurred at a tandem.
The same calculation in Step 2 is applied and then multiplied by a percent tandem occurrence factor because not all traffic is routed through a tandem.

BELLSOUTH SWITCHED NETWORK CALCULATOR (SNC)

VI. UIT-S - Facilities Terminations Investment Per MOU

The facilities terminations investment per MOU is the common transport, facilities terminations investment per MOU, per interoffice trunk.

The facility investment per MOU, per termination is developed by dividing facility investment per termination by the total conversation minutes per year per interoffice trunk. The Facilities Terminations investment per MOU is calculated by multiplying the facility investment per MOU, per termination by two because there are two terminations per interoffice trunk.

Methodology for developing Facility Investment per Termination

The material price for the facility terminations at a DSO equivalent level is developed by dividing the weighted material price for the DS1 facility terminations by 24 . The weighted material price for the DS1 facility terminations is based on the Fundamental Cost Study for DS1 Unbundled Interoffice Transport - Dedicated. The faciity utilization factor is set as 1 because the facility objective fill factor has already been applied in the Fundamental Cost Study for DS1 Unbundled Interoffice Transport - Dedicated. The facility investment per termination is derived by dividing the material price for the facility terminations, at a DSO equivalent level, by two.

The same methodology used in the Common Transport - Facilities Investment per MOU, per airline mile is also used to determine the total conversation minutes per year, per interoffice trunk.

BELLSOUTH SWITCHED NETWORK CALCULATOR (SNC)

VII. Directory Transport Calculation

Directory Transport has the following cost elements:

- Access Tandem Switching Investment per DA Access Service Per Cali
- Switched Common Transport Investment per DA Access Service Per Cail, Per Airline Mile
- Switched Common Transport Investment per DA Access Service Per Call

The Access Tandem Switching Investment per DA Access Service Per Call is developed by multiplying the tandem switching investment per MOU by the holding time of an operator call. The tandem switching investment per MOU is a summation of the UTS-SF investment per MOU and two times the UTS-ITP investment per MOU.

The Switched Common Transport Investment per DA Access Service Per Call Per Airline Mile is derived by multiplying the UTS-S facilities investment per MOU, per airline mile by the holding time of an operator call.

The Switched Common Transport Investment per DA Access Service Per Call is calculated by multiplying the UTS-S facilities terminations investment per MOU by the holding time of an cperator call.

SNC Glossary of Inputs

SESS - NOIO SWITCIHNG FLNCTIONALITY
The proportion of a 5ESS Digital Trunk Temination Investment in SCISMO that is attributable to the switch network. This proportion is determined by using the ratio of the Spare SM Term. Inv. Per Trunk to the Total Non-Traffic Sensitive Inv. These investments are found on the 5ESS Grand Weighted Trunk Termination Report. The \% MO10 Switching Functionality is used to split the Investment per Trunk CCS into the switch network investment and trunk port investment.

DMS - \% MO10 SWITCHING FUIVCTIONALITY

The proportion of a DMS-100F Digital Trunk Termination Investment in SCISMO that is attributable to the switch network, which is based on 64 Kbps CCC trunks and the DSNE network option. This proportion is provided by Bellcore. The \% MO 10 Switching Functionality is used to split the Investment per Trunk CCS into the switch network investment and trunk port investment.

INTRA-OFFICE CALL SET-LP - IPI PERCENT OF CALLS USING DTMF
The proportion of Dual Tone Multi-Frequency network control signal that is used in an intra-office call set-up. Input provided by Network Engineering Department.

INTRA-OFFICE CALL SET-UP - IP2 INCIUDED AMA

An option of either $Y E S$ or $N O$ for includine $A M A$ imestment in the intra-office call set-up cost calculation. Baph prowided by Network Enginecring Department.
I.NE-TRLNK CNLLSET-LP - IP1 PERCENT OF CNLLS USING DTAT

The proportion of Dual Tone Aulti-frequency nework control signal that is used in a line-tirnk call set-up. Input provided by Network Engineering Department.

LINE-TRLNK CALL SET-LP - IP2 PERCENT OF CALLS USING SS7

The proportion of SS7 signaling that is used in a line-trunk call set-up. Input provided by Network Engincering Deparment.

ILNE-TRUN'K CALL SET-UP - IP3 INCLUDE AMA INVESTMENT

An option of either YES or NO for including ANA imestment in the line-trunk call set-up cost calculation. Input provided by Network Engineering Department.

LINE-TRUNK CALL SET-UP - IP4 PERCENT OF CALLS USNNG 7 DIGITS

The proportion of calls dialed using 7 digits. Input provided by Network Engineering Department.

LINE-TRUNK CALL SET-UP - IP5 PERCENT OF CALLS WHICH COMPLETE

The completion ratio of a call.

SNC Glossary of Inputs

TRLふK-INE CALL SET-LP - IP 1 PERCENT OF CALLS LSING SS7

The proportion of SS7 signaling that is used in a truk-line call set-up. Input provided by Network Engincerine Department.

TRUNK-LTNE CALL SET-UP - IP2 PERCENT OF CALLS WHICH COMPLETE

The completion ratio of a call.

TRUNK-TRUNK CALL SET-UP - IP 1 PERCENT OF CALLS USING MF-MF SIGNALING

The proportion of multifrequency - multifrequency signaling used in trunk-trunk call set-up. Input provided by Nework Engineering Department.

TRUNK-TRUNK CALL SET-UT - IP 2 PERCENT OF CALLS USING MF-SS7 SIGNALING
The proportion of multifrequency - SS7 signaling used in trunk-trunk call set-up. Input provided by入ework Enginecring Department.

TRUNK-TRUNK CALI SET-LP - IP3 PERCENT OF CALLS USING SS7-SS7 SIGNALING
The proportion of SS7-SS7 signalit:g used in trunk-trunk call sct-up. Input provided by Network lingineering Department.

TRUNK-TRUNK CALL SIET-LP - IP + PERCENT OF CALLS USING SS7-MF SIGNALING
The proporion of SS7 - mutifrequancy signaling used in truak-trumk call set-up. Input provided by
Neworl: Frainering Deparment.
TRENK-TRUNK CALL SET-UP - IP5 PERCENI OF CAILS WHICH COMPLETE

The completion ratio of a call.

PERCENY OF SESS REMOTES

The proportion of 5 ESS remotes to total 5 ESS end offices and remotes. This proportion is determined by using the gatio of the threc ycars of projected number of access lines from the SESS remotes to the three yars of projected number of access lines from the total 5ESS end offices and remotes. The access lines data is derived from the Demand \& Facility Database.

PERCENT OF DNS REMOTES

The proportion of DMS remotes to total DMS end offices and remotes. This proportion is detemined by using the ratio of the tluee y ears of projected number of access lines from the DMS remotes to the three years of projected number of access lines from the total DMS end offices and remotes. The access lines data is derived from the Demand \& Facility Database.

SNC Glossary of Inputs

PFRCENT SESS END OFFICE DISTRIBUTION

The proportion of 5 ESS end offices to total end offices. This proportion is determined by using the ratio of the three years of projected number of access lines from the SESS end offices to the three years of projected number of access lines from the total end offices. The access lines data is derived from the Demand $\&$ Facility Database.

PERCENT DMS END OFFICE DISTRIBUTION

The proportion of DMS end offices to total end offices. This proportion is determined by using the ratio of the three years of projected number of access lines from the DMS end offices to the three years of projected number of access lines from the total end offices. The access lines data is derived from the Demand $\&$ Facility Database.

PERCENT 5ESS TANDEM DISTRIBUTION

The proportion of 5 ESS tandem offices to total tandem offices. This proportion is determined by using the ratio of the Carried CCS from the 5ESS tandem offices to the carried CCS from the total tandem offices. The Carried CCS data is derived from the General Trunk Forecast.

PERCENT DMS TANDEM DISTRIBUTION

The proportion of DMS tandem offices to total tandem offices. This proportion is determined by using the ratio of the carried CCS from the DMS tandem offiees to the carried CCS from the total tandem offices. The Catried CCS data is derived from the General Trunk Forecast.

SCIS SESS MO1 LNVESTMENT PER MILLISECOND
It is the Total Getting Started Investment component for a Standalone Host oflice or a Remote Per Millisecond based on call processing capacity. MO1 input is derived from the SCIS 5ESS Grand Weighted Investment Report.

SCIS SESS MO2 INVESTAENT PER EPHC

It is the Switching Modute Investment Per Equivalent POTS Half Calls (EPHC), which represents the capacity unit investment of Swithing Module equipment based on the realtime capacity of the Switching Nodule processor, MO2 input is darived from the SCIS 5 ESS Grand Weighted Investment Report.

SCIS 5ESS MO4 INVESTMENT PER LNE CCS

The Investment Per Line CCS (Originating + Terminating) recovers the Line Unit Termination Investment through the usage Investment Per CCS on a Conventional SM and/or Switching Module-2000. MO4 input is derived from the SCIS SESS Grand Weighted Investment Report.

SCIS 5ESS MO7 INVESTMENT PER TERMNNATNG CALL

The Imcstment Per Terminating Call represents the investment associated with the High Level Service Circuit (HLSC) used to provide power ringing to the terminating party on completed calls and to perform False Cross and Ground, Power Cross and Continuity test for calls anaIog lines. MO7 input is derived from the SCIS 5ESS Grand Weighted Investment Report.

SNC Glossary of Inputs

SCIS 5ESS MO10 NNVESTMENT PER TRUNK CCS
The Investment Per Trunk CCS (Outgoing or Incoming) represents the weighted average of Analog Thunk CCS, DLTU Digital Trunks CCS, and DNU-Sonet Tunk CCS Investments, and Excess Switching Module Processor (EPHC) Capacity Adjustment per trunk. MO10 input is derived from the SCIS 5ESS Grand Weighted Investment Report.

SCIS 5ESS MO17 INVESTMENT PER SS7 OCTET
It is the unit resource investment for $\$ \$ 7$ signaling equipment in an SSP. MO17 input is derived from the SCIS SESS Grand Weighted Investment Report.

SCIS 5ESS MO21 AMA INVESTMENT PER CALL
It is the Average Busy Season Busy Hour Automatic Message Accounting (AMA) Storage Investment Per Call. NO21 input is derived from the SCIS 5ESS Grand Weighted Investment Report.

SCIS 5ESS NOI UMBIIJCAL TRLNK INVESTMENT PER CCS
The Umbilical Trunk Investment Per CCS (Outgoing or Incoming) represents the investment associated with temmating the T umbilical links connecting for all Remote Switching Modules Remotes. MO19 input is derived from the SCIS 5ESS Grand Weighted Investment Report.

SCIS DMS MOI [.NVESTMENT F'ER MILLISECOND

It is the Getheng Started Invesment Per Millisecond - the expenditure required to establish a new DMS100 F office, independent of the carred traftic or the line-tunk size of the swith hing system based on call processing camacily' MOl input is derived from the SCIS DMIS-100F Grand Weighted Investment Report.

SCIS DNS NOH INVESTMENT FER LINE CCS

The Itwestment Per Line CCS is the usage investment for the office. It represents the actual use of trafficsensitive investment components of serving lines in the office(s) being studied. MO4 input is derived from the SCIS DMS-100F Grand Weiglned Imestment Report.

SCIS DMIS MOIO INVESTMENT PER TRUNK CCS

The Investment Per Trunk CCS category reflects the cost associated with local trunk usage (analog, digital, and DSO CCC digital) for interoffice calls. The Investment Per trunk CCS is calculated for end offices (DMS-100s) and cnd officeftandem combined switches (DNS-100/200s).

TRAFFIC LOAD

It is the usage capacity per circuit for the Interoffice Trunk Group at the busy hour. The average busy hour traffic load per circuit is derived from trunks which are actually installed and in-service.

BUSY HOUR TO FULL DAY RATIO

The ratio of usage at the busy hour to usage for a full day. The busy hour is the hour when a conmunication switching sy'stem carries the most traffic (load). Defined as the busiest hour of the day of a nomal week, excluding holidays, week-ends and special event days.

RITIO OF AVERAGE BUSY SEASON LOAD TO AVERAGE BUSINESS DAY
The ratio of usage at the busy season, business day to usage at the average business day.

SNC Glossary of Inputs

RATIO OF AVERAGE BUSINESS DAY LOAD TO AVERAGE CALENDAR DAY

The ratio of usage at the average business day to usage at the average calendar day.
A VERAGE NUMBER OF MINUTES PER CALL
The average number of minutes per call during the busy season, business day.
AVERAGE NUMBER OF CALLS PER LNE, BUSY SEASON, BUSNESS DAY
The average number of calls per line at the busy season, business day.
COMPIETION RATIO
The proportion of call attempts that result in the calling party being engaged in conversation with the party at the called number.

AVERAGE NUNBER OF NON-CONVERSATION MINUTES

The average non-conversation time is the period from the conclusion of dialing, on the originating end, until the telephone goes off-hook on the esminating end.

EQUIVALENT BUSINESS DAY'S

The number of cquivalent business days in a calendar year.

PERCENT INTRA-OFFICE CALLS

The proportion of intra-office calls :o all calls
PERCENT INTER-OFFICECALLS
The proportion of inter-oflice calls :o all calls.
AVERAGE AIRLINE MILES PER CALL

The average number of airline miles per call.
PERCEST TANDEM OCCURRENCE
The proportion of inter-office usage that routes through the tandem.

AVERAGE NUMBER OF TERMINATIONS

This is a variable number depending on the cost study. Two temmations per link are used in the UNE cost studies. In a serice specific cost study, the number of terminations depends on the average number of facility links for that service.

FACILITY' INVESTMENT PER AIRLINE MILE

It is the equivalent DS0 level facility investment per airline mile for the $822 \mathrm{C}, 85 \mathrm{C}$, and 845 C plant accounts. The equivalent DSO level facility investment per airline mile is derived by dividing the DSI facility investment per airline mile by 24.

SNC Glossary of Inputs

FACILITY' TERMINATION INVESTMENT PER TERMNATION

It is the equivalent DSO level facility termination insestment per ternination for 357 C plant account. The equivalent DSO level facility termi:ation insestment per ternunation is derived by dividing the DS1 facility termination investment by 48 .

SS7 INVESTMENT PER OCTET
It is the Signaling System 7 (Network) Investment per octet for the links and STP.

