Sprint - Florida, Incorporated

Investigation into Pricing of Unbundled Network Elements

Docket 990649-TP
May1, 2000

Volume III
Non-Recurring Charges
Dark Fiber High Capacity Loops

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS NON-RECURRING COST STUDY

Index
Study Overview
Results Summary
Service Order Charges
Installation Charges
Other Charges
Miscellaneous

Introduction

The purpose of this study is to determine the cost of ordering and installing Unbundled Network Elements (UNE's). Non-Recurring Charges (NRC's) are a one-time charge that is based on the amount of time required to complete an activity and its associated labor rates. These charges represent the most current wage rates and time components related to the work activities required to provide UNE's.

Sprint has assumed a "Forward-looking" network as defined by the FCC. It meets the FCC criteria of being "the most efficient, least-cost and reasonable technology currently available for purchase." Specifically, Sprint assumes Next Generation Digital Loop Carriers (NGDLC's) in the development of non-recurring charges for unbundled loops and assumes the availability of an "Electronic" means for the CLEC to submit local switch activation and dispatch.

Again, assuming a "Forward-Looking Network" Sprint's Non-Recurring charges have been developed based on the principle of matching the charges as closely as possible to the actual costs that would be incurred, rather than developing a single "average" charge. This allows the CLEC to pay only for the work that would actually be done and ensures that Sprint neither over, nor under-recovers non-recurring costs.

Methodology

The study consists of four main steps;

1. Identify the activities performed to complete service order, installation, and other related service functions for each unbundled element.
2. Identify the time related with each function performed above.
3. Identify the labor rates for each work group that completes the activity and multiply that amount by the time identified above.
4. Group the costs by appropriate activities to develop a cost by unbundled element.

The various UNE NRC's reflected in this study have been categorized as follows: 1) Service Order Charges; 2) Installation Charges; and, 3) Other charges. Each section contains detailed descriptions of the charges, how they are applied and how they were developed.

Service Order Charges

A service order charge is one that covers the costs of work performed by the company in connection with the receiving, recording and processing of a customer request for service. Four types of service order charges related to the work done at the centralized CLEC order center have been developed as follows:

Service Order Charges, cont'd

1. A primary service order that applies to all initial orders received from CLECs, both manual and electronic.
2. A "listing only" order that applies to a directory listing only request, both manual and electronic.
3. A "change only" order that applies to a change in feature, both manual and electronic.
4. A local number portability order that applies to porting an existing Sprint customer to a CLEC, when the customer desires retention of their existing telephone number.

The service order charges above are applied per end user even though the CLEC may transmit a single Local Service Request (LSR) that includes several end users. The cost was developed based on the time to process an end user.

Installation Charges

An installation charge recovers the cost of work performed for connection or reconnection of each unbundled element. Installation charges have been developed for the following elements and the calculations can be referenced on the appropriate workpaper for each item:

1. Analog Loops
2. Digital Loops
3. High Capacity Loops
4. Dark Fiber Loops
5. Sub-Loops
6. xDSL Capable Loops
7. Loop Conditioning
8. UNE-Platform Combinations
9. Enhanced Extended Link
10. Local Switching
11. Switch Features
12. Customized Routing
13. Operator Services Branding
14. Transport

Other Charges

Non-recurring charges which are categorized as "Other" include:

1. OPC Service. Originating Point Codes are generated to allow Sprints SS7 network to identify the originating point of a call. These charges are billed per each request.
2. Global Title Translations charges apply for each service or application that utiltzes transaction capabilities. This charge is for each GTT service request.
3. Nid installation is charged when a NID is installed as a separate UNE element and not part of a total loop.
4. Digital Pre-Order Loop Qualification Inquiry
5. Digital Data Loop Cooperative Testing
6. The trouble isolation charge is billed when a CLEC reports trouble on a facility and it is found that the cause is outside of Sprint's Telephone's network, as in the case of inside wire. The trouble isolation charge includes two components. The first recovers the cost of conducting tests at the central office and the second recovers the cost of dispatching an outside technician and determining the cause.
7. The trip charge recovers the cost of an I\&R technicians trip to a customers premises.
8. Dark fiber end-to-end testing covers the cost to test dark fiber from end-to-end.

Service Order Charges	NRC
Service Orders	
Manual Service Order	$\$$
Electronic Service Order	22.54
Manual Service Order - Listing Only	$\$.06$
Electronic Service Order - Listing Only	$\$$
Manual Service Order - Change Only	11.88
Electronic Service Order - Change Only	$\$$
LNP Administrative Charge	$\mathbf{0} 33$

Installation Charges		NRC
Loops - Analog		
2-Wire New - First Line	\$	72.98
2-Wire New - Addt'l Line	\$	23.61
2 Wire Re-install (CT/DCOP/Migrate)	\$	14.21
4-Wire New - First Line	\$	94.15
4-Wire New - Addt'l Line	\$	48.42
4 Wire Re-install (CT/DCOP/Migrate)	\$	25.90
Loops - Digital		
2-Wire ISDN, BRI-IDSL Loop, First Line	\$	107.11
2-Wire ISDN, BRI-IDSL Loop, Addt'I Line	\$	59.47
2-Wire ISDN, BRI-IDSL Loop, Re-install (CT,DCOP,Migrate)	\$	22.65
$56,64 \mathrm{kbps}$, DS1, ISDN-PRI Loop - First Line	\$	121.68
$56,64 \mathrm{kbps}$, DS1, ISDN-PRI Loop - Addt'l Line	\$	73.17
$56,64 \mathrm{kbps}$, DS1, ISDN-PRI Loop - Re-install (CT,DCOP,Migrate)	\$	27.40
Loops - High-Capacity		
Add DS3 to existing system	\$	86.28
Add OC3 to existing system	\$	86.28
Add OC12 to existing system	\$	86.28
Loops - Dark Fiber		
Dark Fiber Loop - Initial Patch Cord Installation, Field Location	\$	20.16
Dark Fiber Loop - Additional Patch Cord Installation, Field Location, Same Time, Same Location	\$	7.20
Dark Fiber Loop - Central Office Interconnection, 1-4 Patch Cords, per C.O.	\$	171.50
Dark Fiber Loop - Special Construction for Fiber Pigtail		ICB
Sub-Loops		
Sub-Loop Interconnection (Stub Cable)		ICB
2-Wire First Line	\$	62.36
2-Wire Addt'I Line	\$	12.99
2-Wire Reinstall	\$	29.45
4-Wire First Line	\$	76.22
4-Wire Addt'I Line	\$	20.79
4-Wire Reinstall Line	\$	38.11
2W Disconnect Charge	\$	20.79
4W Disconnect Charge	\$	25.12
Loops - xDSL-Capable		
All Loops Less Than 18,000 Feet: Load Coil Removal; per xDSL-Capable Loop Order	\$	1.44
2-Wire xDSL Loop - First Line	\$	68.84
2-Wire xDSL Loop - Addt'l Line	\$	19.47
2-Wire xDSL Loop - Re-install (CT, DCOP, Migrate)	\$	10.08
4-Wire xDSL Loop - First Line	\$	85.58
4-Wire xDSL Loop - Addt'I Line	\$	37.08
4-Wire xDSL Loop - Re-install (CT,DCOP, Migrate)	\$	12.96

Installation Charges (continued)		NRC	
Switch Features			
Custom Calling Feature Package		\$	3.25
CLASS Feature Package		\$	3.90
Centrex Feature Package		\$	24.86
Direct Connect		\$	15.73
Conference Calling 6-Way Station Control		\$	15.73
Multiline Hunt Service	\pm	\$	15.73
Dial Transfer to Tandem Tie Line		\$	74.54
Meet-Me Conference		\$	22.84
3-Way Conference/Consultation Hold/Transfer		\$	15.73
Customized Routing			
Switch Analysis		\$	86.18
Host Switch Translations		\$	1,723.60
Remote Switch Translations		\$	1,292.70
Host TOPS Translations		\$	344.72
Remote TOPS Translations		\$	172.36
Operator Services Branding			
0 + Ten Digits		\$	3,643.19
411		\$	800.00
Transport			
911 Trunk 2 Wire Analog		\$	116.44
Transport - DS1 Dedicated - Install		\$	79.80
Transport - DS1 Migrate		\$	82.68
Transport - DS3 Dedicated - Install		\$	86.28
Interoffice Transmission - STP Ports		\$	238.81
Interoffice Transmission - STP Link (56 kbps)		\$	151.02
Multiplexing - DS1-DS0		\$	71.61
Multiplexing - DS3-DS1		\$	96.36
Dark Fiber Transport - Initial Installation, 1-4 Patch Cords, per C.O.		\$	171.50

Other Charges	NRC	
Other		
SS7- Originating Point Code Service	\$	21.55
SS7-Global Title Address Translation	\$	10.77
Nid Installation	\$	17.32
Loop Qualification - required for all Digital Loop Orders	\$	23.99
2-Wire Digital Data Loop Cooperative Testing	\$	31.02
4-Wire Digital Data Loop Cooperative Testing.	\$	39.25
Trouble Isolation and Testing	\$	37.48
Trip Charge	\$	15.59
Dark Fiber End-to-End Testing, Initial Strand	\$	47.51
Dark Fiber End-to-End Testing, Subsequent Strands	\$	14.40

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Service Order Charges

Manual and Electronic

Service Order Charges

Sprint has a choice of two electronic interfaces available for receiving industry standard Local Service Requests (LSRs) from Competitive Local Providers. One is an Electronic Data Interface based application. The other is an Internet based offering.

An "Electronic" Service Order charge is available for CLEC's using either electronic interface. CLECs that elect not to use an electronic interface will be charged a "Manual" Service Order charge based on the cost of processing the manual orders. Electronic Service Order Costs are based upon estimated, forward-looking work times.

The Service Order charge applies to each order for an end-user customer at the same address. For instance, if an end-user customer orders two lines at the same home address, a single service order charge would be applied.

There are no service order charges applied for processing disconnect activity.

Service Order - Electronic	Recovers the cost of processing an LSR that is received over either of Sprint's two electronic order platforms. The labor content results from the processing of LSRs that contain CLEC errors.		
Service Order - Manual	Recovers the cost of processing an LSR when the order received via fax, phone or other manual means.		
Listing Only - Electronic	Recovers the cost of processing an LSR received electronically for only a directory listing if the CLEC elects not to use the standard "Bath File Transfer" to provide directory listings. The labor content results from the processing of LSRs that contain CLEC errors.		
Change Order - Electronic	Recovers the cost of manually processing an LSR for only a directory listing if the CLEC elects not to use the standard "Batch File Transfer" to provide directory listings.		
Change Order - Manual	Recovers the cost of processing an LSR for a change in a feature when it is received over the electronic interface. The labor content is for resolution of CLEC errors on the order. Features are being offered as a package. However, some may be mutually exclusive. This charge would apply when a different alternate feature is requested.		
LNP Administrative Charge	Recovers the cost of processing an LSR for a change in a feature when it is received manually. Features are being offered as a package. However, some may be mutually exclusive. This charge would apply when a different alternate feature is requested		Recovers the cost of porting an existing customer to a CLEC when
:---			
the customer requests service from a new service provider and			
desires retention of current telephone number.			

Service Order Work Process Step Definitions:	
The following table defines the work process steps listed on the service order charge calculation pages:	
Process	Description
Validate LSR	Validate the Sprint customer's telephone number and address against information in Sprint's billing system
Correct Errors On LSR	Errors are, but not limited to: telephone number or address on LSR does not match in billing system, no circuit ID appears on LSR, block or PIN number for cross connect is incorrect, Centrex orders do not contain complete information on features desired on each line.
Retrieve Existing Reference Materials	These include S\&E codes, rate tables, central office address tables.
Retrieve Other Reference Materials	Where errors have occurred, various other materials must be obtained before errors can be investigated.
Set Up Major Account for New CLEC	If the order received is from a new CLEC, a new account must be established for that CLEC.
Identify Major Account	Upon receipt of order, compare the CLEC to a listing of CLECs by related major account number.
Set Up Major Account for Existing CLEC	If the type of business being requested on an order differs from type previously ordered (eg. a business customer vs. residential customers), a new major account must be set up for the existing CLEC.
Identify Existing Sprint Customer	For customers transferring service from Sprint to a CLEC, the customer must be validated in Sprint's billing system as a current customer.
Identify Existing CLEC Customer	For customers transferring service from one CLEC to another CLEC, the customer must be validated as an existing CLEC customer.
Determine Disconnect Type	The type of disconnect determines what type of facilities, if any, are held for the end-user. Eg., if the CLEC is a reseller, all facilities are held. If the CLEC purchases loops only, only the loop is held.
Assign Telephone Number	For new service with a CLEC, a number must be assigned.
Assign Circuit ID (Loop Only)	if CLEC buys only our loop, a circuit ID must be set up for the loop.
Select S\&E Codes	Service and Equipment Codes must be assigned to all orders for use in Sprint's billing system.

Service Order Charges

Description and Methodology

Service Order Work Process Step Definitions:	
The following table defines the work process steps listed on the service order charge calculation pages:	
Assign USOC's	Where USOC's are in use, assigning them to services ordered by the CLEC.
Enter Order	After all order information is complete, all orders must be entered in Sprint's Service Order system.
Investigate Working Svc Cause	Where a CLEC orders service for an end-user, and it is discovered that the end-user is already being served by a Sprint number, it must be determined whether the order is for a second line or for a transfer of service from one CLEC to another.
Update Major Accounts (New \& Old CLEC)	For service transfers from one CLEC to another, the end-users service must be removed from the old CLEC's major account and added to the new CLEC's account.
Notity Prior CLEC	For service transfers from one CLEC to another, the old CLEC must be notified that the end-user is changing service.
Return FOC	After the order is entered, a firm order commitment is sent to the CLEC detailing such things as dates of installation, telephone number, and S\&E codes.
Order Completed	When service has been established, a notice is sent to the CLEC.

[^0]| Service Order - Manual | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Step No. | Process | Description | Time (In Minutes) | $\begin{array}{\|c\|} \hline \text { Percent of } \\ \text { Orders } \\ \text { Requiring } \\ \hline \end{array}$ | $\begin{gathered} \text { Weighted } \\ \text { Time } \\ \hline \end{gathered}$ |
| 1 | Receive LSR | Receive LSR via paper, fax, programming sheets | 0 | 100.00\% | 0.000 |
| 2 | Determine if CLEC New | Identify if new CLEC | 0 | 100.00\% | 0.000 |
| 3 | Validate LSR | Validate telephone/address | 2 | 100.00\% | 2.000 |
| 4 | Correct Errors on LSR | Clarify and correct LSR | 20 | 15.00\% | 3.000 |
| 5 | Retrieve Existing Reference Materials | Validate materials exist | 3 | 100.00\% | 3.000 |
| 6 | Retrieve Other Reference Materials | Materials not readily available. | 5 | 5.00\% | 0.250 |
| 7 | Set-Up Major Account for New CLEC | Always required for New CLECS. | 15 | 1.00\% | 0.150 |
| 8 | Identify Major Account | Validate | 2 | 100.00\% | 2.000 |
| 9 | Set-Up Major Account for Existing CLEC | May need new type of account or existing account is fult. | 15 | 5.00\% | 0.750 |
| 10 | Identify Existing Sprint Customer | Majority of activity is Transfer | 1 | 80.00\% | 0.800 |
| 11 | Identify Existing CLEC Customer | Existing CLEC end user | 1 | 10.00\% | 0.100 |
| 12 | Determine Disconnect Type | Corresponds with \% Transfer | 3 | 80.00\% | 2.400 |
| 13 | Assign Telephone Number | Change Number or New Line | 2 | 2.00\% | 0.040 |
| 14 | Assign Circuit ID (Loop Only) | Percent Transfer that is Loop Only | 2 | 98.00\% | 1.960 |
| 15 | Select S\&E Codes | Look up S\&E codes | 10 | 100.00\% | 10.000 |
| 16 | Assign USOC's | USOC's Do Not Exist | 2 | 5.00\% | 0.100 |
| 17 | Enter Order | Order is entered/Add additional services | 10 | 100.00\% | 10.000 |
| 18 | Investigate Working Svc Cause | Number, etc. in use and not a Sprint customer, i.e...; customer of another CLEC. | 30 | 10.00\% | 3.000 |
| 19 | Update Major Accounts (New \& Old CLEC) | Update and remove from old account and add to new | 30 | 10.00\% | 3.000 |
| 20 | Notify Prior CLEC | Send notification | 2 | 10.00\% | 0.200 |
| 21 | Return FOC | FOC sent | 5 | 100.00\% | 5.000 |
| 22 | Order Completed | Complete billing service order \& notification to CLEC of completion | 3 | 100.00\% | 3.000 |
| | | | | | |
| | Total Minutes | | | | 50.750 |
| | Conversion to Hours | | | | 0.846 |
| | Labor Rate | NEAC Associate (Workgroup 900) | | | \$26.65 |
| | | | | | |
| | Charge | | | | \$22.54 |

Service Order - Electronic					
Step No.	Process	Description	Time (In Minutes)	Percent of Orders Requiring	$\begin{gathered} \text { Weighted } \\ \text { Time } \end{gathered}$
\cdots	Receive LSR	Receive LSR via paper, fax, programming sheets	----	- ...-	---*
2	Determine if CLEC New	Identify if new CLEC	----	\cdots	
3	Validate LSR	Validate telephone/address	\cdots	1500\%	
4	Correct Errors on LSA	Clarity and correct LSR	20	15.00\%	3.000
5	Retrieve Existing Reference Materials	Validate materials exist	---	\cdots	
6	Retrieve Other Reference Materials	Materiais not readily available.	---	----	
7	Set-Up Major Account for New CLEC	Aiways required for New CLECS.	15	1.00\%	0.150
8	Identify Major Account	Validate	----	----	
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is full.	15	5.00\%	0.750
10	Identify Existing Sprint Customer	Majority of activity is Transfer	\ldots
11	Identity Existing CLEC Customer	Existing CLEC end user	----		
12	Determine Disconnect Type	Corresponds with \% Transfer	----	----	.-.-
13	Assign Telephone Number	Change Number or New Line	----	.-.-	
14	Assign Circuit ID (Loop Only)	Percent Transfer that is Loop Only	.-..	----	
15	Select S\&E Codes	Look up S\&E codes	---	---	-
16	Assign USOC's	USOC's Do Not Exist	----	
17	Enter Order	Order is entered/Add additional services	\ldots	----	
18	Investigate Working Svc Cause	Number, etc. in use and not a Sprint customer, i.e.., customer of another CLEC	30	10.00\%	3.000
19	Update Major Accounts (New \& Old CLEC)	Update and remove from old account and add to new	\ldots	----	\ldots
20	Notify Prior CLEC	Send notification	----	----	
21	Return FOC	FOC sent	\cdots	----	
22	Order Completed	Complete billing service order \& notification to CLEC of completion	----	-..-	----
	Total Minutes				6.900
	Conversion to Hours				0.115
	Labor Rate	NEAC Associate (Workgroup 900)			\$26.65
	Charge				\$3.06

Service Order - Listing Only - Manual					
Step No.	Process	Description	Time (In Minutes)	Percent of Orders Requiring	Weighted Time
No.	Receive LSR	Receive LSR via paper, fax, programming sheets	-----	100.00\%	----
2	Determine if CLEC New	Identify if new CLEC	----	100.00\%	
3	Validate LSP	Validate telephone/address	2	100.00\%	2.000
4	Correct Errors on LSR	Clarify and correct LSR	15	5.00\%	0.750
5	Retrieve Existing Reference Materials	Validate materials exist	3	100.00\%	3.000
6	Retrieve Other Reference Materials	Materials not readily availabie.	2	5.00\%	0.100
7	Set-Up Major Account for New CLEC	Always required for New CLECS.	15	1.00\%	0.150
8	Identify Major Account	Validate	2	100.00\%	2.000
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is full.	15	5.00\%	0.750
10	Identify Existing Sprint Customer	Majority of activity is Transfer	-	80.00\%	
11	Identify Existing CLEC Customer	Existing CLEC end user	*-.	20.00\%	--.-
12	Determine Disconnect Type	Corresponds with \% Transfer	----	B0.00\%	-.--
13	Assign Telephone Number	Change Number or New Line	----	25.00\%	
14	Assign Circuit ID (Loop Only)	Percent Transfer that is Loop Only-	40.00\%	
15	Select S\&E Codes	Look up S\&E codes	*--*	100.00\%	.-.-
16	Assign USOC's	USOC's Do Not Exist	----	5.00\%	----
17	Enter Order	Order is entered/Add additional services	10	100.00\%	10.000
18	Investigate Working Svc Cause	Number, etc. in use and not a Sprint customer, i.e.., customer of another CLEC.	----	10.00\%	--.*
19	Update Major Accounts (New \& Old CLEC)	Update and remove from old account and add to new	\ldots	10.00\%	-...
20	Notify Prior CLEC	Send notification	----	10.00\%	----
21	Return FOC	FOC sent	5	100.00\%	5.000
22	Order Completed	Complete bitling service order \& notification to CLEC of completion	3	100.00\%	3.000
	Total Minutes				26.750
	Conversion to Hours				0.446
	Labor Rate	NEAC Associate (Workgroup 900)			\$26.65
	Charge				\$11.88

Service Order - Listing Only - Electronic					
Step No.	Process	Description	Time (In Minutes)	Percent of Orders Requiring	Weighted Time
No.	Receive LSR	fleceive LSR via paper, tax, programming sheets	-	------	\cdots
2	Determine if CLEC New	Identity if new CLEC	-..-	----	
3	Validate LSR	Validate telephone/address	\cdots	-	\cdots
4	Correct Errors on LSR	Clarity and correct LSR	15	5.00\%	0.750
5	Retrieve Existing Reference Materials	Validate materiais exist	----	\cdots	
6	Retrieve Other Reference Materials	Materials not readily available.	----	-----	----
7	Set-Up Major Account for New CLEC	Always required for New CLECS.	\cdots	---	\cdots
8	Identify Major Account	Validate	--.	- $\cdot \cdots$	----
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is full.	----	-	---*
10	Identify Existing Sprint Customer	Majority of activity is Transfer	----	----	...
11	Identify Existing CLEC Customer	Existing CLEC end user	.-..	----	--7-
12	Determine Disconnect Type	Corresponds with \% Transfer	----	-...-	-----
13	Assign Telephone Number	Change Number or New Line	.-.-	---*	
14	Assign Circuit ID (Loop Only)	Percent Transfer that is Loop Onty	----	- ----	
15	Select S\&E Codes	Look up S\&E codes	-...	----	----
16	Assign USOC's	USOC's Do Not Exist	----	----	
17	Enter Order	Order is entered/Add additional services	----	- ----	
18	Investigate Working Svc Cause	Number, etc. in use and not a Sprint customer, i.e.., customer of another CLEC.	--.-	----	
19	Update Major Accounts (New \& Old CLEC)	Update and remove from old account and add to new	----	-	---*
20	Notify Prior CLEC	Send notification	----	
21	Return FOC	FOC sent	----	----	...-
22	Order Completed	Complete billing service order \& notification to CLEC of completion	----	--..	
	Total Minutes				0.750
	Conversion to Hours				0.013
	Labor Rate	NEAC Associate (Workgroup 900)			\$26.65
	Charge				\$0.33

Service Order - Change Only - Manual					
Step No.	Process	Description	Time ($\mathbf{I n}$ Minutes)	Percent of Orders Requiring	Weighted Time
N.	Receive LSR	Receive LSR via paper, fax, programming sheets	-...	100.00\%	---
2	Determine if CLEC New	Identify if new CLEC	----	100.00\%	
3	Validate LSR	Validate telephone/address		100.00\%	2.000
4	Correct Errors on LSR	Clarify and correct LSA	25	5.00\%	1.250
5	Retrieve Existing Reference Materials	Validate materials exist	3	100.00\%	3.000
6	Retrieve Other Reference Materials	Materiais not readily available.	5	10.00\%	0.500
7	Set-Up Major Account for New CLEC	Always required for New CLECS.	----	5.00\%	.---
8	identity Major Account	Validate	----	100.00\%	
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is full.	----	5.00\%	\ldots
10	Identify Existing Sprint Customer	Majority of activity is Transfer	----	80.00\%	
11	Identify Existing CLEC Customer	Existing CLEC end user	----	20.00\%	----
12	Determine Disconnect Type	Corresponds with \% Transfer	\ldots	80.00\%	
13	Assign Telephone Number	Change Number or New Line	----	25.00\%	...-
14	Assign Circuit ID (Loop Only)	Percent Transfer that is Loop Only	----	40.00\%	----
15	Select S\&E Codes	Look up S\&E codes	5	100.00\%	5.000
16	Assign USOC's	USOC's Do Not Exist	2	5.00\%	0.100
17	Enter Order	Order is entered/Add additional services	5	100.00\%	5.000
18	Investigate Working Svc Cause	Number, etc. in use and not a Sprint customer, i.e.., customer of another CLEC.-	10.00\%	--.-
19	Update Major Accounts (New \& Old CLEC)	Update and remove from old account and add to new	-...	10.00\%	----
20	Notify Prior CLEC	Send notification	---	10.00\%	\cdots
21	Return FOC	FOC sent	5	100.00\%	5.000
22	Order Completed	Complete billing service order \& notification to CLEC of completion	3	100.00\%	3.000
	Total Minutes				24.850
	Conversion to Hours				0.414
	Labor Rate	NEAC Associate (Workgroup 900)			\$26.65
	Charge				\$11.04

Service Order - Change Only - Electronic					
Step No.	Process	Description	Time (In Minutes)	Percent of Orders Requiring	Weighted Time
No.	Receive LSR	Feceive LSR via paper, tax, programming sheets	-----	-...	----
2	Determine if CLEC New	identify if new CLEC	\cdots	----	
3	Validate LSR	Validate telephone/address	--.*	.-...	\cdots
4	Correct Errors on LSR	Clarify and correct LSR	15	20.00\%	3.000
5	Retrieve Existing Reference Materials	Validate materials exist	.-.-	-...-	----
6	Retrieve Other Reference Materials	Materials not readity available.	----	----	---
7	Set-Up Major Account for New CLEC	Always required for New CLECS.	----	----
8	Identify Major Account	Validate	----	----	----
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is futl.	----	----	---*
10	Identify Existing Sprint Customer	Majority of activity is Transfer	----	---*
11	Identify Existing CLEC Customer	Existing CLEC end user	----	----	...-
12	Determine Disconnect Type	Corresponds with \% Transfer	-..-
13	Assign Telephone Number	Change Number or New Line	----	----	----
14	Assign Circuit ID (Loop Only)	Percent Transfer that is Loop Only	----	----	-..-
15	Select S\&E Codes	Look Up S\&E codes	----	----	
16	Assign USOC's	USOC's Do Not Exist--
17	Enter Order	Order is entered/Add additional services	----	----	----
18	Investigate Working Svc Cause	Number, etc. in use and not a Sprint customer, i.e... customer of another CLEC.	----	----	-.--
19	Update Major Accounts (New \& Oid CLEC)	Update and remove from old account and add to new	----
20	Notify Prior CLEC	Send notification	----	...-	-*.*
21	Return FOC	FOC sent	-...	----	----
22	Order Completed	Complete billing service order \& notification to CLEC of completion	----	----
	Total Minutes				3.000
	Conversion to Hours				0.050
	Labor Rate	NEAC Associate (Workgroup 900)			\$26.65
	Charge				\$1.33

Service Order - LNP					
Step No.	Process	Description	Time in minutes	Percent of Orders Requiring	$\begin{gathered} \text { Weighted } \\ \text { Time } \end{gathered}$
1	Receive LSR	Receive LSR via paper, fax, programming sheets	0	0\%	.
2	Determine it CLEC new	Identity if new CLEC	0	0\%	-
3	Validate LSR	Validate telephone/address	0	0\%	
4	Correct Efrors on LSA	Clarity and correct LSR	20	15\%	3.000
5	Retrieve Existing Reference Materials	Validate materials exist	0	0\%	-
6	Retrieve Other Reference Materials	Materials not readily available	0	0\%	-
7	Set-Up Major Account for New CLEC	Always required for new CLECS.	15	1\%	0.150
B	Ifentity Major Account	Validate	0.	0\%	-
9	Set-Up Major Account for Existing CLEC	May need new type of account or existing account is full	15	5\%	0.750
10	Identity Existing Sprint Customer	Majority of activity is Transfer	0	0\%	-
11	Identify Existing CLEC Customer	Existing CLEC end user	0	0\%	-
12	Determine Disconnect Type	Corresponds with \% transter.	0	0\%	
13	Select S\&E Codes	Look Up S\&E codes	0	0\%	-
14	Assign USOC's	USOC's Do Not Exist	0	0%	-
15	Enter Order	Order is entered/Add additional services	0	0\%	-
16	Conflict Resolution:	Order cannot be completed. Communication needed with CLEC, NPAP or NPAC.			
16a	First Timer	9 hours since service order received by NPAC. One service provider has not sent a service order concurring.	5	15.0\%	0.750
16b	Second Timer	NPAC requests concurrence of service order. 9 more hours to respond.	0	0.0\%	
16c	Final Timer	Both timers have expired. Number can be activated by the new provider.	17.5	11.0\%	1.925
16d	Cancel at NPAP	NPAP rec'd a cancel. Need to find out CLEC's status on order and if it should have been canceled.	10	53.5\%	5.350
16 e	Mismatch due date	Determine which order is correct. Revise other order to match.	12.5	9.8\%	1.225
166	No CLEC order	Call CLEC to verify they requested a number and why order is not written.	10	3.0\%	0.300
16g	TN in conflict	Preventative measure to keep TN from being disconnected.	17.5	5.0\%	0.875
16h	Manually concur	Our order has been completed, CLEC has not completed their order.	12.5	0.6\%	0.075
16i	CLEC not ready	CLEC stops LNP process through assignment channels.	17.5	0.4\%	0.070
16j	CLEC modity	CLEC sends revised due date, but doesn't revise their date.	10	0.8\%	0.080
16k	Pending Order	Original date canceled and reissued.	10.	0.9\%	0.090
17	Update Major Accounts (New and Old CLEC)	Update and remove from old account and add to new	0	0\%	-
18	Notily Prior CLEC	Send Notification	0	0\%	.
19	Aeturn FOC	FOC sent	0	0\%	.
20	Order Completed	Complete billing service order and notification to CLEC of completion.	0	0%	.
	Total Minutes				14.640
	Conversion to Hours				0.244
	Labor Pate	NEAC Associate (Workgroup 900)			$\$ \quad 26.65$
	Charge				\$ 6.50

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
Analog Loops

Installation Charges - Analog Loops

Sprint has assumed a "forward-looking" network as defined by the FCC. That is, network technology that meets the dual test of being "Most Efficient" and "Currently Available". Sprint assumes NGDLC's for all DLC locations Installation charges assume that lines for customers working through NGDLC's can be remotely migrated from the NGDLC to a separate T1 that is physically terminated in the central office.
Sprint also assumes.fully automated processes for "assignment", "switch activation", "order routing" and "dispatching" of UNE orders. Although current flow-through is not 100%, Sprint has assumed no manual intervention costs for UNE orders when automatic flow-through does not occur.

Sprint has developed three "installation Charges" for Analog loops. One for "New" installations, a second for "Second or Additional lines" and a third for "Re-installations". The "New Installation charge is applied if a field visit is required to a cross-connect box, terminal or interface. The "Second or Additional" line charge is applied if an additional line is installed at the time of a new installation. The "Re-install" charge is applied if the installation can be completed without a field visit ${ }^{*}$ - such as a service migration or if the facilities have been previously left in place (CT,DCOP). These charges are based on charging the CLEC only for the "actual" work done.

There is no charge applied for "disconnect" activity, except in the case of a sub-loop when a trip must be made to the SAl to remove a jumper.

* Assumes forward-looking network and 100% NGDLC. If a trip must actually be made solely to physically reprovision a service around a DL.C, it is considered to be a "Re-Installation".

Installation Charge - New

	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o Connections at cross-boxes, terminals and customer interface. o Travel to the beginning of the job.
o Completion Testing	
o Pro-rated NGDLC remote activation	
o Placing and testing an MDF Jumper.	

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
Digital Loops

Installation Charges - 2W IDSN, BRI-IDSL Loop

Sprint has developed three "Installation Charges" for 2 wire Integrated Services Digital Network - Basic Rate Interface capable loops ($2-64 \mathrm{kbps} \mathrm{B}$ channels and $1-16 \mathrm{kbps} \mathrm{D}$ channel). The non-recurring installation charges for these loops are weighted based on the percentage of loops served on copper and small and large DLC's. These charges follow the same format as analog loops with one for "New" installations, a second for "Second or Additional lines" and a third for "Re-installations". The "New" Installation charge is applied if a field visit is required to a cross-connect box, terminal or interface. The "Second or Additional" line charge is applied if an additional line is installed at the time of a new installation. The "Re-install" charge is applied if the installation can be completed without a field visit* - such as a service migration or if the facilities have been previously left in place (CT,DCOP). These charges are based on charging the CLEC only for the "actual" work done. Loop qualification charges are not included in these charges but will apply to these loops, see the "Loop Qualification Inquiry" section for these charges.

* Assumes forward-looking network and 100% NGDLC. If a trip must actually be made solely to physically reprovision a service around a DLC, it is considered to be a "Re-Installation".

Installation Charge - First or New Line	
	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o Connections at cross-boxes, terminals and customer interface. o Travel to the beginning of the job.
	o Completion Testing
o Pro-rated NGDLC remote activation	
o Placing and testing an MDF Jumper.	

Installation Charges - 56, 64kbps, DS1, ISDN-PRI Loop

Sprint has developed three "Installation Charges" for 4 wire Integrated Services Digital Network - Primary Rate Interface capable loops ($23-64 \mathrm{kbjps} B$ channels and $1-64 \mathrm{kbps} \mathrm{D}$ channel). The non-recurring installation charges for these loops are weighted based on the percentage of loops served on copper and small and large DLC's. These charges follow the same format as analog loops with one for "New" installations, a second for "Second or Additional lines" and a third for "Re-installations". The "New Installation charge is applied if a field visit is required to a cross-connect box, terminal or interface. The "Second or Additional" line charge is applied if an additional line is instalied at the time of a new installation. The "Re-install" charge is applied if the installation can be completed without a field visit ${ }^{*}$ - such as a service migration or if the facilities have been previously left in place (CT,DCOP). These charges are based on charging the CLEC only for the "actual" work done. Loop qualification charges are not included in these charges but will apply to these loops, see the "Loop Qualification" section for these charges.

* Assumes forward-looking network and 100% NGDLC. If a trip must actually be made solely to physically reprovision a service around a DLC, it is considered to be a "Re-Installation".

Installation Charge - First or New Line	
	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of:
	o Connections at crosss-boxes, terminals and customer interface.
o Travel to the beginning of the job.	
o Completion Testing	
	o Pro-rated NGDLC remote activation
o Placing and testing an MDF Jumper.	

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges

High Capacity Loops

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
Dark Fiber Loops

Installation Charges - Dark Fiber Loop

Sprint has developed installation charges for Dark Fiber Loop which includes Central Office installation charges and OSP installation charges. Charges will vary depending upon the number of fibers leased.

The Dark Fiber Loop installation charge assumes that the leased dark fiber will be from a Sprint central office to a Sprint DLC site or from a Sprint central office to a customer premise. The CLEC must have either a collocated FPP in the Sprint central office or an appearance on Sprint's FPP at the DLC or customer premise via a fiber pigtail. Fiber pigtail's that are spliced to CLEC fiber will be installed on an ICB basis.

At the time the CLEC orders dark fiber, Sprint will perform end to end testing of the fiber strand. If the CLEC wants a Sprint technician to "stand-by" while the CLEC performs their testing, charges will be billed to the CLEC using established keep cost work order procedures.

Installation Charge - Dark Fiber Loop
These charges are applied for the installation of fiber patch cords to connect a Sprint fiber patch panel with a CLEC FPP at a Sprint Central Office and a DLC or customer premise located FPP. These charges will vary depending upon the number of fibers leased, but the total will be a combination of the following activities:
o Travel to one Central Office.
o Installing one to four patch cords at one office.
o Travel to DLC or customer premise.
o Instatlation of patch cords.

Florida
Sprint
Docket No. 990649 - TP
UNE NRC Study
Page 1 of 1
May 1, 2000

	Installation Charges - Dark Fiber Loop								
			-		¢				
	5	■	$\stackrel{5}{8}$	京旁					
Dark Fiber Central Office Interconnection									
Central Office Interconnection Cost, 1-4 Fiber Patch Cords, per CO				180		180	100\%	180.0	\$155.91
Trip Cost, per CO					18	18	100\%	18	\$15.59
Total								198.0	\$171.50
Dark Fiber Loop Interconnection									
Outside Plant Interconnection Cost, Initial or Subsequent Patch Cord	10					10	100\%	10.0	\$7.20
Trip Cost			18			18	100\%	18	\$12.96
Total								28.0	\$20.16

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges

Installation Charges - Sub Loops
Sprint has developed three "Instaliation Charges" and one "Disconnect Charge" for Sub loops. The installation charges include one for "New" installations, a second for "Second or Additional lines" and a third for "Re- installations". The "New installation charge is applied if a field visit is required to a cross-connect box, terminal or interface and customer premise. The "Second or Additional" line charge is applied if an additional line is installed at the time of a new installation. The "Re-install" charge is applied if the installation can be completed with only a trip to the field cross-connection site - such as in the case of service migration or if the facilities have been previously left in place (CT,DCOP). work done.
These charges are based on charging the CLEC only for the "actual"
A disconnect has been developed to recover the cost of a trip made to the SAl to remove a jumper, in the event a CLEC terminates service for one of their customers. The removal of the jumper must be made to ensure service cannot be continued for future customers without Sprint's knowledge.

	Installation Charges - 2-Wire \& 4 Wire Sub-Loop								
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathbf{U} \\ & 0 \\ & \hline \mathbf{C} \end{aligned}$						Total I\&R Minutes		
	$\underset{\underline{\alpha}}{\underline{\alpha}}$	$\underset{\underline{\sigma}}{\underline{\alpha}}$	$\underset{\underline{\alpha}}{\boldsymbol{\alpha}}$	$\underset{\underline{\Delta}}{\underset{\alpha}{\alpha}}$	$\stackrel{\sim}{\infty}$	$\stackrel{\propto}{\underline{\sim}}$			
2 Wire Analog Loops - First Line									
2W Outside Plant Interconnection Cost	21	5	18	3	5	20	72	100\%	72.0
Total									72.0
2 Wire Analog Loops - Add'l Line									
2W Outside Plant Interconnection Cost	9	4	0	2	0	0	15	100\%	15.0
Total									15.0
2 Wire Re-install (CT/DCOP/Migrate)									
2W Outside Plant Interconnection Cost	6	5	18	0	5	0	34	100\%	34.0
Total									34.0
4 Wire Analog Loops - First Line									
4W Outside Plant Interconnection Cost	30	10	18	5	5	20	88	100\%	88.0
Total									88.0
4 Wire Analog Loops - Addt'l Line									
4W Outside Plant Interconnection Cost	11	9	0	4	0	0	24	100\%	24.0
Total									24.0
4 Wire Re-install (CT/DCOP/Migrate)									
4W Outside Plant Interconnection Cost	11	10	18	0	5	0	44	100\%	44.0
Total									44.0
2 Wire Disconnect Charge									
4W Outside Plant interconnection Cost	6		18				24	100\%	24.0
Total									24.0
4 Wire Disconnect Charge									
4 W Outside Plant Interconnection Cost	11		18				29	100\%	29.0
Total									29.0

Total NRC Cost

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
xDSL Capable Loops

Installation Charges - xDSL Capable Loops

These installation charges are applicable to all 2 and 4-wire DSL capable loops, and Sprint has developed three"Installation Charges." One for "New" installations, a second for "Second or Additional lines" and a third for "Reinstallations". The "New Installation" charge is applied if a field visit is required to a cross-connect box, terminal or interface. The "Second or Additional" line charge is applied if an additional line is installed at the time of a new instaliation. The "Re-install" charge is applied if the installation can be completed without a field visit - such as a service migration or if the facilities have been previously left in place (CT,DCOP). These charges are based on charging the CLEC only for the "actual" work done.

Installation Charge - New	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o Connections at cross-boxes, terminals and customer interface. o Travel to the beginning of the job. o Completion Testing o Placing and testing an MDF Jumper.
Installation Charge - Second or Additional Line	
This charge is applied for the installation of an additional service where a field visit occurs as part of a "New" installation. This charge includes the costs of:	
o Connections at cross-boxes, terminals and customer interface. o Completion Testing o Placing and testing an MDF Jumper.	
Installation Charge - Re-install (CT,DCOP, Migrate)	

Florida

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
Loop Conditioning

Installation Charges - Loop Conditioning

This study calculates the non-recurring costs associated with Digital Subscriber Line ("DSL") Loop Conditioning.

Loop Conditioning is the process that may be used in conjunction with Loop Qualification for the provisioning of an XDSL-capable loop. After receipt of loop make-up data, it is the customer's option to request Loop Conditioning. Loop Conditioning includes the necessary work in the outside plant needed to provide a facility that will allow for transmission of high-speed digital service, such as DSL. This work may include the removal of multiple load coils, repeaters and/or bridged taps.

This study develops the one-time, non-recurring labor expense associated with conditioning an unbundled loop. Applicable when inhibiting network components are present in the loop and the customer still desires a DSL-capable loop. This rate element removes those items.

Load Coils: Load coils are placed on loop facilities when there is significant signal loss. Load coils ameliorate the loss so that the decibel signal is constant across the length of the facility. For DSL circuits, along with other types of circuits, these coils must be removed.

Bridge Taps: In many situations, a pair of wires is routed to several locations. In order to route the pairs to several locations, the cable must be "branched off" in another cable to the other location. This is; called bridge tap. The increase in length caused by bridge tap can cause interference with signals such as those required for DSL and therefore, bridge tap in excess of 2,500 feet must be removed.

Repeaters: A repeater is generally used to amplify a signal over a copper loop. Without such amplification, the signal will decay over distance. The existence of a repeater will interfere with a DSL signal and therefore it must be removed.

Sprint's loop conditioning costing methodology is based upon actual costs that Sprint pays contractors to perform the work functions necessary to condition loops. This includes separate identified "work unit" costs associated with the removal of load coils, bridged tap and repeaters. For load coil removal on loops over 18,000 feet, all bridged tap and repeater removals, the costs were determined on a per location basis, dependent upon the type of outside plant facilities to be worked on. This methodology enables Sprint to recover costs that vary with the different types of plant conditions (underground-UG, Aerial-Ae, Buried-Bu) encountered when performing loop conditioning activities. For instance, it is more time-consuming to enter a manhole to perform loop conditioning activities than it is to perform the same procedures within aerial or buried outside plant (OSP) facilities. This is largely due to the fact that manhole work must be performed by a minimum of 2 technicians for safety reasons. Additionally, such UG facilities must be ventilated to be purged of potentially dangerous gases and often need to be pumped out for water. Alternatively, these time-consuming activities are not required for Ae and Bu facilities and usually only one technician is required. Sprint's

[^1]
Installation Charges - Loop Conditioning, cont'd

costing methodology accourits for these labor costs differences. To avoid the potential problem with double counting engineering and travel time when multiple "conditioning activities" occur on one cable pair, Sprint calculated a separate, one time per loop charge for "Engineering" and "Travel".

Sprint pays Splicing Contractors on a "work unit" basis that entails a predetermined, negotiated contract rate for various work activities. Sprint's loop conditioning costing methodology began with the actual work units that occur in the Splice Contracts to develop the average costs per work unit activity. When there was a choice between different work units, for example, one unit to cut out a load coil in paper-insulated cable and a different charge to do the same work in plastic insulated cable, a weighted average was developed based on the frequency of occurrence. All the necessary work units were then added together for each work activity. For example, to unload a cable pair in a manhole, work units for "Underground Splice Set Up", "Remove and Replace Underground Splice Closure", and "Cut Out Load Coil" were added together to get the total labor cost. Similar calculations were performed for these splicing activities as required when working in Ae and Bu OSP facilities. This methodology enables Sprint to recover costs that are in line with the varied OSP environments that are encountered when performing loop conditioning work activities.

Sprint offers an alternate, TELRIC-based view of load coil removal for loops under 18,000 feet in length. Because cable pairs are generally loaded in groups of 25 , and are not needed at all on loops less than 18,000' long, separate costs were determined based upon a more efficient load coil removal process. Sprint considers it to be reasonable to spread the fixed costs of accessing the cable pairs across all the pairs that would be unloaded in a 25 pair binder group. The incremental labor costs associated with unloading 24 more cable pairs was added to a single engineering and travel charge and then divided by 25 to determine the cost per pair for the entire binder group. This cost was then adjusted based upon the feeder fill percentage. This resulted in an adjusted cost per loop for each type of OSP environment. Sprint's costs assume that two load point locations would exist for these loops ($<18 \mathrm{kf}$) and are based on the frequency of occurrence of UG, Ae and Bu OSP facilities encountered at these first two load point locations. This enabled the determination of a realistic weighted average cost to deload loops shorter than 18 kf . The weighted average cost was then multiplied by the percentage of loaded loops. This subtotal was then further reduced by the CLEC customer churn factor to arrive at a total NRC to be applied to each xDSL-capable loop (<18kf) service order.

The following workpaper reflects the costing methodology described above. Column " B ", labeled "Source", provides an indication or notes regarding where the data was obtained or derived, for columns D through F where calculations are performed.

The costing methodology utilized by Sprint represents the "least-cost most efficient" standard established by the FCC.

[^2]
LOAD COIL. REMOVAL for LOops SHORTER Than 18,000 feet

Load Coll Removal - via 25 Pair Economies

The following charge applies to all xDSL-capable loop orders that are under 18.000 teet in length. This NRC includes costs for boad coil tabor removal, engineering and travel charges based upon a 25 pair economy.

NRC per each xDSL-cepable loop order
$\$$

LOAD CCHL REMOVAL for Loops 18,000 feet or LONGER

The following single Engineering and Travel charges apply to each xDSL-capable loop order that requires any quantity or combination of load coil, repeater and.or bridge tap removal.

Engineerirg Charge	\$	28.03
Travel Chairge	$\$$	15.59

The following charges apply to each toad coil location for toops that are 18,000 feet or longer.

Costs per Location	Underground		Aerial		Buried	
Remove Load Coll	s	397.39	\$	6.96	\$	6.96
Remove additional Load Coil at same time, location and cable	\$	3.06	\$	1.61	\$	1.61

ERIDGE TAP and REPEATER REMOVAL

The following single Engineering and Travel charges apply to each xDSL-capable loop order that requires any quantity or combination of load coil, repeater and.or bridge tap removal.

Engineering Charge	\$	28.03
Travel Charge	\$	15.59

The following charges apply per toop for each Bridge Tap and/or Repeater location.

Costs per Location	Underground		Aorial		Buried	
Remove Bridge Tap	\$	394.78	5	5.74	5	5.74
Remove additional Bridge Tap ait same time, location and cable	\$	0.45	\$	0.39	\$	0.39
Remove Repeater	\$	394.78	\$	5.74	\$	5.74
Remove additional Repeater at same time, location and cable	\$	0.45	\$	0.39	\$	0.39

Load Coll Removal - via 25 Paiar Economies

Instaliation Charges - Loop Conditioning

Loop Conditioning - Costs Per Location

A	B	C	D	E	F	
1	Source		Underground	Aerial	Buried	
2		Unlond Cable Pair - Loops > 18Kf				
3	p3 - F40, 45, 50	Access the Pair	\$ 394.33	\$ 5.35	\$	5.35
4	p3-F24, 28	Untoad One Pair	\$ 3.06	\$ 1.61	\$	1.61
5		Total	\$ 397.39	\$ 6.96	5	6.96
6						
7		Cost to Rernove One Eridged Tap				
8	p3. F40, 45, 50	Access the Pair	\$ 394.33	\$ 5.35	\$	5.35
9	p3-F16, 20	Remove the Bridged Tap on One Pair	\$ 0.45	\$ 0.39	\$	0.39
10		Total	\$ 394.78	\$ 5.74	\$	5.74
11						
12		Cost per Lcication to Remove Repenter				
13	p3 - F40, 45, 50	Access the Pair . $\because \cdot$	\$ 394.33	\$ 5.35	\$	5.35
14	p3 - F16, 20	Remove Pepeater on One Pair	\$ 0.45	\$ 0.39	\$	0.39
15		Total	\$ 394.78	\$ 5.74	\$	5.74
16						
17						
18	Miscellaneous Charges					
19						
20		One per locy conditioned:	Minutes	Rate	Charge	
21						
22	$30+15$	Engineering Charge	45	\$ 37.37	\$	28.03
23	CSO Staff	Travel Charge	18	\$ 51.97	\$	15.59

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges

UNE-Platform Combinations
Enhanced Extended Link

Installation Charges - UNE-P and Enhanced Extended Links (EEL)'s

Sprint has developed installation charges for 3 variations of UNE-P 2 wire loop and switch combinations and several variations of enhanced extended loops. All of these non-recurring charges represent combinations of previously catculated individual NRC's. For that reason, work times and activities are not shown with the UNE-P NRC combination components and should be referenced in the appropriate element section. Total NRC charges for these various combinations are shown on the NRC Summary page.

UNE-P Installation Charge - First Line, Loop and Port	This charge is applied for the installation of a service where a fiefd visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o 2-Wire Analog Loop installation non-recurring charge. - $\mathbf{1 0 0 \%}$ Flow Through automated systems is assumed. No Installation NRC is applied when ordering a Port.
UNE-P Instalation Charge - Second or Additional Loop and Port	
2-Wire	This charge is applied for the installation of an additional service where a field visit occurs as part of a "New" installation. This charge includes the costs of:
	o 2-Wire Analog Loop Addt'l Line non-recurring charge. - 100\% Flow Through automated systems is assumed. No Installation NRC is applied when ordering a Port.
UNE-P Installation Charge - Migrate Loop and Port	
2-Wire	This charge is applied if the installation can be completed without a field visit, such as in the case of a previous service that had been left in place as a CT or DCOP. It includes the costs of: o 2-Wire Analog Loop Re-install (migrate) non-recurring charge. o $\mathbf{1 0 0 \%}$ Flow Through automated systems is assumed. No Installation NRC is applied when ordering a Port.

EEL. 1 - DSO Loop, DS0/1 Multiplexing, DS1 Transport

2-Wire/4-wire - First line	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o 2-Wire or 4-Wire first line non-recurring installation charge. - DSO/1 Multiplexing non-recurring installation charge. - DS1 Transport non-recurring installation charge.
EEL 1 - DS0 Loop, DS0/1 Multiplexing, DS1 Transport	
2-Wire/4-wire - 2nd through 24th Lines, ordered same time for same location,	This charge is applied for the installation of an additional service where a field visit occurs as part of a "New" installation. This charge includes the costs of: o 2-Wire or 4-Wire 2nd line non-recurring installation charge. o DSO/1 Multiplexing non-recurring installation charge. o Shared DS1 Transport (no incremental cost).
EEL 1 - DS0 Loop, DS0/1 Multiplexing, DS1 Transport	
2-Wire/4-wire - - 2nd through 24th L.ines, ordered different times	This charge is applied for the installation of an additional service where a field visit occurs as part of a an installation not worked at the same time or location as the initial order. This charge includes the costs of: o 2-Wire or 4-Wire first line non-recurring installation charge. o DSO/1 Multiplexing non-recurring installation charge. - Shared DS1 Transport (no incremental cost).

Installation Charges - UNE-P and Enhanced Extended Links (EEL)'s	
EEL 2 - DS1 Loop, DS1 Interoffice Transport	
DS1-new	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: - DS1 Loop first line non-recurring installation charge. - DS1 Interoffice Transport non-recurring installation charge.
EEL 2-DS1 Loop, DS1 Interoffice Transport	
DSt - migrate	This charge is applied if the installation can be completed without a field visit, such as in the case of a previous service that had been left in place as a CT or DCOP. It includes the costs of: o DS1 Loop migrate non-recurring installation charge. - DS1 Transport migrate non-recurring installation charge.
EEL 3 - DS1 Loop, DS1/3 Multiplexing, DS3 Transport	
1st DS1, muxing and 1st DS3	This charge is applied for the installation of a service where a field visit is required to connect the service at a cross-connect, terminal, or NID/Protector. This charge includes the costs of: o DS1 First Line non-recurring installation charge. - DS1/3 Multiplexing non-recurring installation charge. o DS3 Transport non-recurring installation charge.
EEL 3 - DS1 Loop, DS1/3 Multiplexing, DS3 Transport	
DS1's \#2-28 ordered same time for same location	This charge is applied for the installation of an additional service where a field visit occurs as part of a "New" installation. This charge includes the costs of: - DS1 Addt' Line non-recurring installation charge. - DS $1 / 3$ Multiplexing non-recurring installation charge. o Shared DS3 Transport (no incremental cost).
EEL 3 - DS1 Loop, DS1/3 Multiplexing, DS3 Transport	
DS1's \#2-28 ordered different times	This charge is applied for the installation of an additional service where a field visit occurs as part of a an installation not worked at the same time or location as the initial order. This charge includes the costs of: o DS1 Addt'l Line non-recurring installation charge. o DS1/3 Multiplexing non-recurring installation charge. o Shared DS3 Transport (no incremental cost).
EEL 3-DS1 Loop, DS1/3 Multiplexing, DS3 Transport	
Migrate DS1 Transport to CLEC DS3 Transport	This charge assumes the CLEC has already paid for the installation of an EEL3 combination of DS1 Loop, DS $1 / 3$ Multiplexing and DS3 Transport, and that the CLEC wants to migrate a different DS1 Transport to their own DS3 Transport. This charge includes the costs of: - DS1 Transport Migrate non-recurring installation charge. Shared DS3 Transport (no incremental cost).

Installation Charges - UNE-P Combinations and EEL1, EEL2, EEL3		
Note: The total of these NRC's are a combination of previously calculated non-recurring costs. The appropriate loop NRC must be added with the other components for the total NRC cost.		
UNE-P: Loop, Switching, Common Transport		
Loop		
2-Wire New - First Line	\$	72.98
2-Wire New - Addt'l Line	\$	23.61
2-Wire Migrate	\$	14.21
Switching		
EEL 1: Loop, 1/0 Multiplexing, DS1 Transport		
Loop		
2-Wire Analog - First Line	\$	72.98
2-Wire Analog - 2nd through 24th Lines, ordered same time for same location	\$	23.61
2-Wire Analog - 2nd through 24th Lines, ordered different times	\$	72.98
4-Wire Analog - First Line	\$	94.15
4-Wire Analog - 2nd through 24th Lines, ordered same time for same location	\$	48.42
4-Wire Analog - 2nd through 24th Lines, ordered different times	\$	94.15
2-Wire Digital Loop, First Line	\$	107.11
2-Wire Digital, 2nd through 24th Lines, ordered same time for same location	\$	59.47
2-Wire Digital, 2nd through 24th Lines, ordered different times	\$	107.11
4-Wire Digital Loop - First Line	\$	121.68
4-Wire Digital, 2nd through 24th Lines, ordered same time for same location	\$	73.17
4-Wire Digital, 2nd through 24th Lines, ordered different times	\$	121.68
DS0/DS1 Multiplexing	\$	71.61
DS1 Interoffice Transport	\$	79.80
EEL 2: DS1 Loop, DS1 Interoffice Transport		
DS1 Loop - First Line	\$	121.68
DS1 Interoffice Transport	\$	79.80
DS1 Loop, DS1 Transport - Migrate	\$	82.68
EEL 3: DS1 Loop, 3/1 Multiplexing, DS3 Transport		
DS1 Loop - First Line	\$	121.68
DS1 Loop - 2nd through 28th DS1s ordered same time for same location	\$	73.17
DS1 Loop - 2nd through 28th DS1s ordered different times	\$	121.68
DS1 Loop - Migrate DS1 Transport to CLEC DS3	\$	82.68
DS1/DS3 Multiplexing	\$	96.36
DS3 Interoffice Transport	\$	86.28

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS
 NON-RECURRING COST STUDY

Installation Charges
Local Switching

Installation Charges - Local Switching, PBX Trunk Connection

Sprint has developed three different non-recurring charges for PBX Trunks. These charges include the installation activities and work times to install three types of PBX trunks including: Analog, DSO, and DS1. This NRC is a combination of the appropriate loop installation charge as well as additional time for a Translation Engineer to add the trunk group to the switch's translation tables.

Analog PBX Trunk	This charge is applied to install a 4-Wire Analog PBX Trunk. This charges includes: o 4-Wire Analog loop NRC. - Fifteen minute time allowance for a Translations Engineer to access the appropriate central office switch software and add the trunk group to the translation tables.
DSO PBX Trunk	This charge is applied to install a 4-Wire DSO PBX Trunk. This charges includes: o 4-Wire DSO loop NRC. o Fifteen minute time allowance for a Translations Engineer to access the appropriate central office switch software and add the trunk group to the translation tables.
DSt PBX Trunk	This charge is applied to install a 4-Wire DS1 PBX Trunk. This charges includes: - 4-Wire DS1 loop NRC. - Fifteen minute time allowance for a Translations Engineer to access the appropriate central office switch software and add the trunk group to the translation tables.

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges
Switch Features

Installation Charges - Switch Features	
	100% Flow Through automated systems is assumed. No Installation NRC is applied when ordering a Port.
Standard CCF Package	A standard package of features is offered with each port sold. No Installation NRC is applied for features when the port is initially ordered. The package may contain features that are mutually exclusive. Should a change be requested after the initial installation, a change order charge would be applied.
Standard CLASS Package	A standard package of CLASS features is offered with each port sold. No Installation NRC is applied for features when the port is initially ordered. The package may contain features that are mutually exclusive. Should a change be requested after the initial installation, a change order charge would be applied.
Centrex Feature Package	Sprint offers a group of the most frequently used Centrex features as a package. This NRC recovers the cost of provisioning that feature package. This NRC is in addition to the NRC for the port and/or loop.
Centrex: 3-Way Conference / Consultation / Hold / Transfer	Centrex: Conference Calling 6- Way Station Controlled
Centrex: Dial Transfer to Tandem Line	Recovers the cost to program individual Centrex Features that are not a part of the Sprint Centrex package. These features are typically high in labor content to program and may require customer specific information to be input.
Centrex: Direct Connect -	

Switch Features						
Custom Calling Features						
Feature Description		C ature	Total Minutes			
Call Waiting	\$	0.45	1.13	\$	0.45	First Feature
Three-Way Calling	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Speed Calling 2 Digits	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Signalring/Teen Service	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Warm Line	\$	-	0.00	\$	-	1 minutes each additional feature
Call Hold	\$	-	0.00	\$	-	1 minutes each additional feature
Enhanced Call Waiting	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Call Forwarding Variable	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Call Forward Don't Answer	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Call Forward Busy	\$	0.45	1.13	\$	0.40	1 minutes each additional feature
Total CCF Package				\$	3.25	

Total CCF Package

Centrex Features

Feature Description	NRC Per Feature		Total Minutes		$\begin{aligned} & \text { VRC } \\ & \text { Rate } \end{aligned}$	
Automatic Callback	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Basic Business Group	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Basic Business Set	\$	15.73	22.41	\$	15.73	First Feature
Call Forwarding Busy Line	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Call Forwarding Don't Answer	\$	15.73	22.41	\$	-	
Call Forwarding Variable	\$	15.73	22.41	\$	-	
Call Park	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Call Pick-up	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Call Waiting Terminating	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Difected Call Pick-up w/Barge-in	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Directed Call Pick-up w/o Barge-in	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Group Intercom	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Last Number Redial	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Permanent Hold	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Speed Calling 2 Digits - Control Line	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Speed Calling Individual-1 Digit	\$	15.73	22.41	\$	-	
Speed Calling Individual - 2 Digits	\$	15.73	22.41	\$	-	
Toll Restricted Service	\$	15.73	22.41	\$	0.70	1 minutes each additional feature
Total Centrex Package				\$	24.86	

Individual Features

Feature Description	NRC Per Feature		Total Minutes		$\begin{aligned} & \text { VRC } \\ & \text { Rate } \end{aligned}$	
Direct Connect	\$	15.73	22.41	\$	15.73	Per Feature
Conference Calling 6-Way Station Control	\$	15.73	22.41	\$	15.73	Per Feature
Multiline Hunt Service	\$	15.73	22.41	\$	15.73	Per Feature
Dial Transfer to Tandem Tie Line	\$	74.54	104.30	\$	74.54	Per Feature
Meet-Me Conference	\$	22.84	32.30	\$	22.84	Per Feature
3-Way Conference/Consultation Hold/Transfer	\$	15.73	22.41	\$	15.73	Per Feature

May 1, 2000

Florida

Centrex - NRC Rates
Feature Name
Basic Business Set
3-Way Conference/C
3-Way Conference/Consultation Hold/Xfer
Automatic Line
Automatic Route Selection
Automatic Answer Back
Automatic Calliback
Automatic Dial
Automatic Recall
BG Speed Calling - 2 Digits - Control Line
BG Speed Calling 2-Shared
Business Group Automatic Callback
Business Set as a Message Center
Business Set Call Forward All Calls
Business Set Feature Display
Business Set Group Intercom all Calls
Business Set Intercom
Call Forwarding Busy Line
Call Forwarding Don't Answer All Calls
Call Forwarding Variable - BBG
Call Park
Call Pick-Up
Call Waiting Terminating
Cancel Call Waiting
Changeable Speed Calling - 1 Digit
Changeable Speed Calling - 2 Digits
Code Restriction and Diversion
Conference Calling 6.Way Station Contr.
Customer Originated Trace
Delay Ann. Dedicated - Music On Hold
Dial Transfer to Tandem Tie Line

SCIS/IN SCIS Designation
Number Number NTX Package

200	bus set		NTX100AA
39	bus grp	stat	NTX100AA
335	bus set		NTX106AA
110	Pri Fac.		NTX105AA
331	bus set		NTX106AA
99	bus group class		
332	bus set		NTX106AA
10	res bus	class	
50	bus grp	station	NTX100AA
368	bus grp	station	NTX100AA
312	bus grp	station	NTX100AA
219	bus set		NTX822AA
382	bus set		NTX106AA
347	bus set		NTX108AA
239	bus set		NTX878AC
123	bus set		NTX106AA
27	bus grp	station	NTX100AA
29	bus grp	station	NTX100AA
24	bus grp	station	NTX100AA
327	bus grp	station	NTX100AA
61	bus grp	station	NTX100AA
35	bus grp	station	NTX100AA
38	bus grp	station	NTXB24AA
3	res/bus	res/bus	NTX100AA
4	res/bus	res/bus	NTX100AA
322	bus grp	group	
66	bus grp	station	NTX100AA
133	bus grp	class	
98	bus grp	group	NTX101AA
292	bus grp	station	NTX100AA

SCC Technician \#400				Business Customer Rep \#900			
Minutes	Labor Hours	\#400 Labor Rate	Total Labor \$	Minutes	Labor Hours	\#900 Labor Rate	Total Labor \$

8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00
8.10	0.14	43.19	5.83	0.00	0.00	23.96	0.00

Florlda	SCIS/IN	SCIS Designation		NTX Package	Central Plant Office - Wiring *400				Digital Processing Clerk \#900				
Centrex - NRC Rates				Minutes	Labor	Labor	Total	Minutes	Labor	abor	Total		
Feature Name	Number					Hours	Rate	Labor \$		Hours	Rate	Labor \$	
Basic Business Set	200	bus set			NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48
3-Way Conference/Consultation Hold/Xfer	39	bus grp	stat	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Line	335	bus set		NTX106AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Route Selection	110	Prifac.		NTX105AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Answer Back	331	bus set		NTX106AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Callback	99	bus group	class		5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Dial	332	bus set		NTX106AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Automatic Recail	10	res bus	class		5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
BG Speed Calling - 2 Digits - Control Line	50	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
BG Speed Calling 2-Shared	368	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Group Automatic Caliback	312	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Set as a Message Center	219	bus set		NTX822AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Set Call Forward All Calls	382	bus set		NTX106AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Set Feature Display	347	bus set		NTX108AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Set Group Intercom all Calls	239	bus set		NTX878AC	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Business Set Intercom	123	bus set		NTX106AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Forwarding Busy Line	27	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Forwarding Don't Answer All Calls	29	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Forwarding Variable - BBG	24	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Park	327	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Pick-Up	61	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Call Waiting Terminating	35	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Cancel Call Waiting	38	bus grp	station	NTX824AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Changeable Speed Calling - 1 Digit	3	res/bus	res/bus	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Changeable Speed Calling - 2 Digits	4	res/bus	res/bus	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Code Restriction and Diversion	322	bus grp	group		5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Conference Calling 6-Way Station Contr.	66	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Customer Originated Trace	133	bus grp	class		5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Delay Ann. Dedicated - Music On Hold	98	bus grp	group	NTX101AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	
Dial Transfer to Tandem Tie Line	292	bus grp	station	NTX100AA	5.00	0.08	43.19	3.60	1.20	0.02	23.96	0.48	

Florida
Centrex - NRC Rates
Feature Name
Basic Business Set
3-Way Conference/Consultation Hold/Xfer
Automatic Line
Automatic Route Selection
Automatic Answer Back
Automatic Callback
Automatic Dial
Automatic Recall
BG Speed Calling - 2 Digits - Control Line
BG Speed Calling 2-Shared
Business Group Automatic Callback
Business Set as a Message Center
Business Set Call Forward All Calls
Business Set Feature Display
Business Set Group Intercom all Calls
Business Set Intercom
Call Forwarding Busy Line
Call Forwarding Don't Answer All Calls
Call Forwarding Variable - BBG
Call Park
Call Pick-Up
Call Waiting Terminating
Cancel Call Waiting
Changeable Speed Calling - 1 Digit
Changeable Speed Calling - 2 Digits
Code Restriction and Diversion
Conference Calling 6-Way Station Contr.
Customer Originated Trace
Delay Ann. Dedicated - Music On Hold
Dial Transfer to Tandem Tie Line
Ber

SCIS/IN Number	SCIS Designation		NTX Package	Minutes	ngineering Labor Hours	$\begin{aligned} & \text { Central Offic } \\ & \text { \#040 } \\ & \text { Labor } \\ & \text { Rate } \\ & \hline \end{aligned}$	Total Labor \$	Total NRC Charge \$	Total Minutes
200	bus set		NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
39	bus grp	stat	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
335	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
110	Pri Fac.		NTX105AA	240.00	4.00	43.09	172.36	182.27	254.30
331	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
99	bus group	class		8.11	0.14	43.09	5.82	15.73	22.41
332	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
10	res bus	class		8.11	0.14	43.09	5.82	15.73	22.41
50	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
368	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
312	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
219	bus set		NTX822AA	8.11	0.14	43.09	5.82	15.73	22.41
382	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
347	bus set		NTX108AA	8.11	0.14	43.09	5.82	15.73	22.41
239	bus set		NTX878AC	8.11	0.14	43.09	5.82	15.73	22.41
123	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
27	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
29	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
24	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
327	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
61	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
35	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
38	bus grp	station	NTX824AA	8.11	0.14	43.09	5.82	15.73	22.41
3	res/bus	res/bus	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
4	res/bus	res/bus	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
322	bus grp	group		20.00	0.33	43.09	14.36	24.27	34.30
66	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
133	bus grp	class		8.11	0.14	43.09	5.82	15.73	22.41
98	bus grp	group	NTX101AA	120.00	2.00	43.09	86.18	96.09	134.30
292	bus grp	station	NTX100AA	90.00	1.50	43.09	64.64	74.54	104.30

Business Customer Reps - Minutes are for the first feature. Each additional feature is 1 minutes.

Business Customer Reps - Minutes are for the first feature. Each additional feature is $\mathbf{1}$ minutes.

Florida										
Florlda Centrex - NRC Rates Feature Name	SCIS/IN Number	SCIS Des	ignation	NTX Package	Minutes	ngineering Labor Hours	Central Offic \#040 Labor Rate	e Total Labor \$	Total NRC Charge \$	Total Minutes
Direct Connect - Automatic Line	53	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Directed Call Park	340	bus grp	station	NTX414AA	8.11	0.14	43.09	5.82	15.73	22.41
Directed Call Plck-Up w/Barge-In	62	bus grp	group	NTX435AA	8.11	0.14	43.09	5.82	15.73	22.41
Directed Call Pick-Up w/oBarge-In	63	bus grp	group	NTX435AA	8.11	0.14	43.09	5.82	15.73	22.41
Distinctive Ringing Enhancements	231	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Extension Sets	456	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
Group Intercom	208	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
Indiv Page from Group Intercom	357	bus set		NTX878AB	8.11	0.14	43.09	5.82	15.73	22.41
Last Number Redial	329	bus grp	station	NTX101AA	8.11	0.14	43.09	5.82	15.73	22.41
MADN Ring Forward	349	bus set		NTX108AA	8.11	0.14	43.09	5.82	15.73	22.41
Make Set Busy Except Group Intercom	477	bus set		NTX878AA	8.11	0.14	43.09	5.82	15.73	22.41
Meet-Me Conference	325	bus grp	station	NTX100AA	18.00	0.30	43.09	- 12.93	22.84	32.30
Message Waiting Indication Lamp	393	Misc	mes srs	NTX119AA	8.11	0.14	43.09	5.82	15.73	22.41
Msg. Waiting Indic. - Stutter Dial Tone	130	Misc	mes srs	NTX119AA	8.11	0.14	43.09	5.82	15.73	22.41
Multi Appearance Directory Number Calls	212	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
Multiline Hunt Service	90	bus grp	mhg	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Permanent Hoid	326	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Privacy Release	209	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
Query Busy Station	491	bus set		NTX719AA	8.11	0.14	43.09	5.82	15.73	22.41
Remote Activation of Call Forwarding	32	bus grp	station	NTXA43AA	8.11	0.14	43.09	5.82	15.73	22.41
Repeated Alert for Meridian Bus Set	236	bus set		NTX878AA	8.11	0.14	43.09	5.82	15.73	22.41
Secondary MADN Call Forwarding	472	bus set		NTXA72AA	8.11	0.14	43.09	5.82	15.73	22.41
Short Hunt on Business Set	470	bus set		NTX106AA	8.11	0.14	43.09	5.82	15.73	22.41
Speed Calling Individual - 1 Digit	47	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Speed Calling Individual - 2 Digits	48	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Speed Calling. 1 Digit	398	res/bus	res/bus	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Speed Calling-2 Digits	399	res/bus	res/bus	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Stat Mess Wait Bus Set Lamp - Call Request	404	misc	mes srs	NTX119AA	8.11	0.14	43.09	5.82	15.73	22.41
Toll Restricted Service	60	bus grp	station	NTX100AA	8.11	0.14	43.09	5.82	15.73	22.41
Uniform Call Distribution	94	bus grp	mhg	NTX101AA	30.00	0.50	43.09	21.55	31.45	44.30

[^3]

To put on Centrex Lines sotware package nbxt56aa
Custom Calling Fatures

Florida
Clase Services - NAC Aate
Feature Name

Return Call	Automatic Recaill
Repeat Dialing	Automatic Callback
Call Tracing us	
Solective Cail Ringing	
Selective Call Rejection	
Anonymous Caller Rejection	
Caller iD	
Calling Name/Number Delivery Bla	
Call Tracing Denial	
Caller 10 with Name	
Caii Waiting Jispiay	Cali Waiting io
Call Waiting Options	TR Complianr Call Waiting
Visual Messaga Walting Indicator	
Auto Rocall Blocking	
CLASS Message Waiting	CLASS Visual Message W

To put on Centrex Lines sotware package ntrt56at
Custom Calling Features

Call Forwarding Variablo
Call Forwarding Dan't Answ
Call Forwarding Busy
Throe Way Calling
Gall Wailing
Enhanced Call Waiting
Speed Calling 2 digits
Call Forwarding with Remote Activation Remoto Activation of Call Forwarding Signaining
Remote Call Forwarding
Call Hold
Warm Line
Enhance Call Forwarding
Enhanced Three Way Calling

DN-BR

Basic Rate interface	
Single Line ISDN-Voice	(feature 144 is inherent in 569)
Single Line ISDN-Circuit Switched Data	

SON-PR

O Channel Back-up

2 res	bus	nt $\times 100 \mathrm{aa}$	
507 res	bus	ntx100as	
508 res	bus	$n+100 a 8$	
1 res	bus	n+100as	
5 res	bus	ntx100as	
344 res	bus	ntxa32ae	ntx807ab
4 ras	bus	nb100as	
6 res	bus	nixa43aa	
309 res	bus	ntx219as	
33 res	bus	ntx021as	
314 res	bus	ntxi89aa	
310 res	bus	ntx127at	
2		ntx806ae	
1		ntx808aa	

144
772
191
922

SCISIN
Number
Res/Bus SCIS Designation NTX Package

10 bus 9 bus	class class	ntxp80as		
18 bus	class	ntxa02aa		-
13				
15 bus	class	ntxa96aa		
147 bus	class	ntxpl2aa		
11 bus	class	ntxa01as	nixe27a	ntxp73as
12 bus	class	ntxalias	nixeataa	ntxq29as
19 bus	class	ntxe52aa	ntx95as	
785		ntxn97ab		
990		ntxq91ab		
393		ntx119aa		
		nexnut	na-002	
402		nbjj39aa		
128				

Central Plant Office - Wiring				Digital Processing Ctierk			
Minutes	"400		Total Labor \$				
	Lator Hours	Labor Alate		Minutes	Labor Hours	Labor Rate	Total Labor $\$$
0.00	0.00	43.19	0.00	1.13	0.02	23.98	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.18	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.18	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00
0.00	0.00	43.90	0.00	1.13	0.02	23.96	0.45

0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	1.13	0.02	23.96	0.45
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00
0.00	0.00	43.19	0.00	0.00	0.00	23.96	0.00

5.00	0.08	43.19	3.60	0.00	0.00	23.96	0.00
5.00	0.08	43.19	3.80	0.00	0.00	23.96	0.00
5.00	0.08	43.19	3.60	0.00	0.00	23.96	0.00
15.00	0.25	43.19	10.80	0.00	0.00	23.96	0.00

Florida
Class Services - NRC Rate
Feature Name

To put on Centrox Lines sotware package ntri56aa
Custom Calling Features

Cail Forwarding Variable		2 res	bus	ntx100aa		0.00	0.00	43.09	0.00	0.45	1.13
Call Forwarding Don't Answer		507 res	bus	ntx100aa		0.00	0.00	43.09	0.00	0.45	1.13
Call Forwarding Busy		508 res	bus	$n \times 100 \mathrm{as}$		0.00	0.00	43.09	0.00	0.45	1.13
Three Way Calling		1 res	bus	nix100aa		0.00	0.00	43.09	0.00	0.45	1.13
Call Wating		5 res	bus	ntx100aa		0.00	0.00	43.09	0.00	0.45	1.13
Enhanced Call Waiting	Distinctive Call Watting Ringback	344 res	bus	ntxa32aa	ntx807ab	0.00	0.00	43.09	0.00	0.45	1.13
Speed Calling 2 digits		4 res	bus	$n \mathrm{n} \times 100 \mathrm{aa}$		0.00	0.00	43.09	0.00	0.45	1.13
Call Forwarding with Remote Activation	Remote Activation of Call Forwarding	6 res	bus	ntxa43aa		0.00	0.00	43.09	0.00	0.45	1.13
Signaling	Toen Service	309 res	bus	ntx219aa		0.00	0.00	43.09	0.00	0.45	1.13
Remote Call Forwarding		33 res	bus	ntx021aa		0.00	0.00	43.09	0.00	0.45	1.13
Call Hold		314 tes	bus	ntxi69aa		0.00	0.00	43.09	0.00	0.00	0.00
Warm Line		310 res	bus	ntx127a		0.00	0.00	43.09	0.00	0.00	0.00
Enhance Call Forwarding	(no cost differentiation from feature 2)	2		ntx806aa		0.00	0.00	43.09	0.00	0.00	0.00
Erhanced Three Way Calling	(no cost differentiation from feature 1)	1		nex808aa		0.00	0.00	43.09	0.00	0.00	0.00
ISDN-BAI											
Basic Rate Interface		144				0.00	0.00	43.09	0.00	25.19	35.00
Single Line ISON-Voice	(feature 144 is inherent in 569)	569				0.00	0.00	43.09	0.00	25.19	35.00
Single Line ISDN-Circuit Switched Data		772				0.00	0.00	43.09	0.00	25.19	35.00
ISDN-PRI		191									
D Channel Back-up		922				60.00	1.00	- 43.09	43.09	75.48	105.00

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Installation Charges

Customized Routing

CUSTOMIZED ROUTING

A. Purpose

The purpose of the cost study is to determine the non-recurring charges associated with developing customized routing at a CLEC's request.

B. General Description

Customized routing permits requesting carriers to designate the particular outgoing trunks that will carry certain classes of traffic originating from the competing provider's customers. This permits the carrier to self-provide, or select among other providers of interoffice facilities, operator services and directory assistance. Customized routing is generally technically feasible, but varies from switch to switch based on capacity constraints.

C. Service Description - Customized Routing - OA/DA

Customized Routing is the routing of originating traffic for Operator Assistance and Directory Assistance (OA/DA) to a CLEC or ILEC designated OA/DA provider or to Sprint OAIDA. Activation of the service requires specialized translations to be installed in the host switch and in some instances the remote switch to direct OA/DA originating traffic from the switch to a dedicated outgoing trunk designated by the applicant.

The request for custom routing is received through Account Management and is initiated through a Bona-Fide Request (BFR). The CLEC/ILEC will need to provide in the BFR the specific services requested by end office switch location where activation is required. The Sprint translations engineer will then analyze the switches to determine if capacity exists to fulfill the request. If there is not ampie capacity to install the translations, the applicant will be notified, and is liable for the switch analysis charge. If capacity exists, the analysis charge applies and the carrier will have within 30 days to request the translations be placed in the switch. If during that 30 day period another carrier requests set up of custom routing translations, a subsequent analysis and charge may apply to the original applicant.

D. Non-recurring Charges

1). Switch Analysis Charge - A switch analysis procedure to determine OA/DA branding capacity in a switch has been developed by Sprint engineering. This procedure takes two hours per switch to complete by a translations engineer. The applicant is responsible for these charges whether capacity does or does not exist in the analyzed switch(es). This charge will also apply to remote switches should the applicant request a different dialing plan in the remote than exists in the host switch.
2). Host Switch Translations Charge - The translation engineer will install translations into the host switch that will direct OA/DA originating traffic from the switch to a dedicated trunk designated by the applicant. Custom routing translations require forty (40) hours installation time in each host switch, the subtending remotes will have the same dialing plan as the host switch.
3). Remote Switch Translations Charge - The translation engineer will install translations into the remote switch if separate dialing plans are required from those in the host switch. These translations require thirty (30) hours installation time in the remote switch.
4). TOPS (Toll Operator Position System) Host Translations Charge - The translation engineer will install TOPS translations for the host should the applicant request OA/DA service from Sprint. These translations require eight hours installation time into TOPS.
5). TOPS (Toll Operator Position System) Remote Translations Charge - The translation engineer will install TOPS translations for each remote should the applicant request OADDA service from Sprint. These translations require one (1) hour installation time intoTOPS and are required only if the dialing plan differs from the host TOPS dialing plan.

E. Major Cost Areas and Sources

The analysis and translations are set up by a field translations engineer, with the cost being made up of the following areas:

- Direct Labor and Supervisory Costs
- Labor and Benefits

This loaded labor rate is specific to SPRINT - Florida, Incorporated

F. Cost Development Methodology

The TELRIC cost development for Customized Routing Switch Analysis and Switch Translations is developed by first identifying the work hours for each of the five (5) Nonrecurring elements. The work time for each element is then multiplied by the hourly loaded labor rate for field translations engineers. The hourly loaded labor rate is comprised of the engineer's salary, benefits and supervision.

Installation Charges - Customized Routing				
Cost Element	Work Function	Work Hours	NRC	
Switch Analysis	Translation Engineer		2.0	
Host Switch Translations	Translation Engineer		86.18	
Remote Switch Translations	Translation Engineer		40.0	
	$\$$	$1,723.60$		
Host TOPS Translations	Translation Engineer		30.0	
	$\$ 1,292.70$			
Remote TOPS Translations	Translation Engineer		8.0	
		$\$$	344.72	

Sprint Florida, Inc.
 UNBUNDLED NETWORK ELEMENTS
 NON-RECURRING COST STUDY

Installation Charges

Operator Services Branding

Installation Charges - Operator Services Branding	
0+	Customer dials $0+$ ten digits - applies to credit card, collect and 3rd number billed calls. Fully automated no operator intervention required. Can brand calls at three points front end, point of bitling and back end. One time Nortel charge to make recording of $\$$ 3,600 plus one hour to install @ $\$$ 43.19 This charges applies per each Service Providers I. D. (SPID) Available after Nortel Application Vehicle (NAV) is installed in 8/2000.
$\begin{gathered} \hline \text { DA \& NDA } \\ (411) \end{gathered}$	Branding on DA \& NDA calls. Front end branding is made before recording requesting city and state is played to the caller and at the end of the call. One time charge of $\$ 800.00$ as follows: Note: If both front and back end branding are requested at the same time, the NRC is $\$ 800$. If requested at separate times, the charge would be $\$ 800$ each.
$0-$	No automated branding available at this time. If branding is required, it would have to be manual and based on a cost per call. No costs have been developed for this.

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

 NON-RECURRING COST STUDYInstallation Charges
Transport

Installation Charges - Transport	
9112 -Wire Analog Trunk	Fecovers the cost of provisioning and testing a 911 trunk.
Transport DS1 Dedicated	Fecovers the cost of provisioning and testing a DS1 transmission path.
Transport DS1 Migrate	Recovers the cost of migrating an existing Sprint DS1 transmission path to a CLEC.
Transport DS3 Dedicated	Recovers the cost of provisioning and testing a DS3 transmission path.
IO Transmission STP	Recovers the cost of provisioning and testing an STP port.
IO Transmission STP Links	Recovers the cost of establishing a signaling path between a customer designated point of signaling
Multiplexing DS1/DS0	Recovers the cost of provisioning multiplexing between DS1 and DS0 transmission levels.
Multiplexing DS3/DS1	Recovers the cost of provisioning multiplexing between DS3 and DS1 transmission levels.

Installation Charges - Dark Fiber Transport

The Dark Fiber Transport installation charge is based upon a "per" office charge, assuming the transport route will be between two or more Sprint central offices, and the CLEC has a FPP interconnection (POI) in each end office. Fiber patch cords will join the Sprint FPP to the CLEC FPP in each location. The installation charge includes running from one to four patch cords of up to 50 meters each in length, simultaneously.

At the time the CLEC orders dark fiber, Sprint will perform end to end testing of the fiber strand. If the CLEC wants a Sprint technician to "stand-by" while the CLEC performs their testing, charges will be billed to the CLEC using established keep cost work order procedures.

Installation Charge - Central Office Interconnection
This charge is applied for the installation of fiber patch cords to connect a Sprint fiber patch panel with a CLEC fiber patch panel, in one central office location. This charge includes the costs of:
o Installing one to four patch cords at one office.
o Travel to one Central Office.

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY

Other ChargesSS7NID
Digital Pre-Order Loop Qualification Inquiry
Cooperative Testing
Trouble Isolation and TestingTripDark Fiber End-to-End Test
-

	Other Charges
Originating Point Code Service	Originating Point Codes (OPC) are generated to allow Sprint's SS7 network to identify the originating point of a call, and is a manual process that requires routing information to be input into a terminal as part of the Table Maintenance Process. This non- recurring charge is per each OPC Service request.
Global Title Address Translation	Global Title Translations (GTT) charges apply for each service or application (excluding LIDB access service and TFC database service) that utilizes Transaction Capabilities Application Part (TCAP) messages. These charges also apply for each service (excluding LIDB access service and TFC database service) added or changed subsequent to the initial establishment of STP access. The service provides translations to the network for routing purposes, and is a part of the manual process that requires information to be input into a terminal as part of the Table Maintenance Process. This non-recurring charge is per each GTT Service request.
Nid Installation	Recover the cost of installing the Network Interface Device at the customer premises and bonding the NID to the power company ground rod.
Digital Loop Pre-Order Qualification Inquiry	Recovers cost associated with preparing loop make-up.and researching electrical parameters.
Trouble Isolation and Testing	Reoper
Trip Charge	Recovers costs to test digital data loops in conjunction with CLEC personnel.
Dark Fiber End-to-End Testing	Recovers the cost of trouble isolation when a CLEC reports trouble on an UNE and the cause is found to be outside of Sprint's network. This would include trouble in the Customer Premise Wiring or in the CLEC's Network. This charge is applied when a dispatch is required to isolate the trouble.
Recovers the individual cost of an I\&R trip to a customers	
premises.	

Other Charges - SS7			
\cdots			Total NRC Cost
Originating Point Code, per entry	30	30	\$ 21.55
Global Title Address Translation, per entry	15	15	\$ 10.77

Page 1 of 1
May 1, 2000

Other Charges - Trip and NID			
		$\begin{aligned} & \text { ㅁ } \\ & \overline{\bar{U}} \\ & \text { NU } \\ & \text { N } \\ & \hline \end{aligned}$	Minutes Converted to Hours
	$\underset{\underset{\sim}{\alpha}}{\underline{\infty}}$	$\underset{\underline{\infty}}{\underline{\alpha}}$	
Trip Charge	18		0.30
Nid Installation		20	0.33

Installation Charges - Digital Pre-Order Loop Qualification Inquiry

In response to the FCC's Third Report and Order to unbundle the OSS, Sprint has developed an efficient interim process to provide CLEC's with loop makeup and electrical parameter data. This data will enable the CLEC to determine the type(s) of service(s) they can sell on specific loops.

Pre-Order Loop Inquiry
The following activities are included in the pre-order loop inquiry process and cost:

- Service order generation
o Loop make-up research.:
o Electrical parameter research.
o Information is electronically routed to the CLEC.

| Installation Charges - Digital Pre-Order Loop |
| :--- | :---: |
| Pre-Order Loop Inquiry Process - Total |
| Department Cost per
 Order
 NEAC $\$ 10.66$
 Field Team $\$ 13.33$
 Total $\$ 23.99$ |

Pre-Order Loop Inquiry Process - NEAC

(A)
(B)
(C)
(D)
(E)
(F)
(G)
()$^{*}(G)$

Step \#	Step Description	Position Title	Time Estimate (Minutes)	Loaded Labor Rate	Cost	Probability	Weighted Cost
Order Faxed							
1	Faxed order is date and time stamped.	NEAC Analyst	5	\$26.65	\$2.22		
Send back receipt confirmatiorı to CLEC.							
2	Key into Carrier Access Tracking System (CATS).	NEAC Analyst	5	\$26.65	\$2.22		
3	The request is validated.	NEAC Analyst	5	\$26.65	\$2.22		
4	Service order is generated in the Service Order Entry (SOE) system.	NEAC Analyst	15	\$26.65	\$6.66		
			30		\$13.33	40.00\%	\$5.33
Order Sent through IRES							
1	The request is validated.	NEAC Analyst	5	\$26.65	\$2.22		
2	Service order is generated in the Service Order Entry (SOE) system.	NEAC Analyst	15	\$26.65	\$6.66	60.00\%	
			20		\$8.88		\$5.33
*	Probability based on mix of how CLEC orders are received today.						\$10.66

Installation Charges - Digital Pre-Order Loop Qualification Inquiry

Supporting Calculation for NRC Development

Electrical Parameter Data Availability Calculation

(milions)
(A) $7.8 \begin{aligned} & \text { Total accessi lines (source: Station Data Report - } \\ & \text { yearend 1999) }\end{aligned}$
(A) 7.8 Estimd
(B) 5.9 Estimated lines with test equipment (source: Customer-Service Organization)
(C) $=(82 \% *$ B) 4.8 Estimated lines which can currently be accessed (1)

Estimated lines for which Sprint may not be able to
(D) 2.3 provide accurate electrical parameters (source: Station Data Report - yearend 1999)
(E)=(C)-(D) $2.5 \quad$ Estimated lines for which accurate electrical parameter data is available (2)
$(\mathrm{F})=(\mathrm{E}) /(\mathrm{A}) \quad 32.05 \%$ Probability of availabillty of Electrical Parameter data.

Notes: (1) Estimate from Customer Service Organization.
(2) Current technology only allows extraction of electrical parameters on B1 lines only. Multiline business lines have been deducted from this calculation.

		Subtotal Bus. Lines other than	
Sprint Local Telephone Companies	Dec-99	81	Millions
Residential - Primary	4,930,639		
Residential - Non Primary	753,656		
Residential - Frimary w/o Lifeline	4,869,113		
Single Line Business	262991		
Multiline Business	1,335,595		
ISDN - BRI	20,212		
ISDN - PRI (*5)	36,940		
Centrex	453,100		
Centrex > 9 Lines	360,879		
Centrex < 9 Lines	92,222		
Centrex < 9 Line Users	29,113	2,328,061	2.3
Lifeline	61.526		
Total Lines	7,793,133		

Installation Charges - Cooperative Testing

Sprint has developed optional cooperative testing procedures for loops ordered by a CLEC for the purpose of provisioning digital data service. For a loop to be capable of digital data service it must be free of impediments, i.e. load coils or bridge tap. Sprint follows a standardized set of procedures to determine whether the loop has acceptable loop limits before the CLEC participates in the test. If the loop fails Sprint's initial test, the NEAC will provide the CLEC the calculated charges to condition the loop*. If the loop passes the inital test, the CLEC will be able to cooperatively test the loop and will be charged the cooperative test NRC.

* Charges to condition the loop are based on the Loop Conditioning charges listed seperately in this study.

Installation Charge - Cooperative Testing

The following activities are included in the cooperative testing procedure for digital data loops which are found to be free of impediments:
o Field Completion Test.
o Connect MDF jumper from the CLEC DSLAM to the UNE Loop (if applicable).
o Calling CLEC Test Center and Cooperative Test.

- Tagging Loop and Confirmation of Test.


```
) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Other Charges - Trouble Isolation and Testing} & \\
\hline & प
0
0
0
0
0
0
0
0
0
0
0
2 &  &  & \[
\begin{aligned}
& \text { @ } \\
& \stackrel{0}{E} \\
& \text { 足 } \\
& \text { 安 }
\end{aligned}
\] &  &  &  &  &  &  &  &  \\
\hline & &  & \[
\begin{aligned}
& \stackrel{\otimes}{E} \\
& \stackrel{W}{L}
\end{aligned}
\] & \(\stackrel{\alpha}{\otimes}\) & \(\stackrel{\text { ® }}{\otimes}\) & \(\stackrel{\sim}{\infty}\) & \(\stackrel{\text { ¢0, }}{\underline{8}}\) & & & & & \\
\hline Central Office Testing & & 4 & 6 & & & & & 10 & & 100\% & 10 & \$7.20 \\
\hline Field Testing & & & & 18 & 5 & 10 & 5 & & 38 & 92\% & 35 & \$30.28 \\
\hline Total & & & & & & & & 10 & 38 & & & \$37.48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{;} & \multicolumn{8}{|c|}{Other Charges - Dark Fiber Testing} & \\
\hline &  &  &  &  & ¢ & seınu!w deכ!!ds əqeo ןetol & n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 &  & \[
\begin{aligned}
& \text { 苟 } \\
& 0 \\
& 0 \\
& 0 \\
& \frac{\tilde{x}}{2} \\
& \frac{0}{0} \\
& 0
\end{aligned}
\] \\
\hline & \[
\stackrel{\vdash}{\circ}
\] & \[
\stackrel{\vdash}{8}
\] & \(\stackrel{5}{8}\) &  &  & & & & \\
\hline \multicolumn{9}{|l|}{Dark Fiber Testing} & \multirow[b]{2}{*}{\$21.60} \\
\hline Set-up. Test \& Record Results - initial fiber strand & & 30 & & & & 30 & 100\% & 30.0 & \\
\hline Trip Cost & & & 36 & & & 36 & 100\% & 36 & \$25.91 \\
\hline Total & & & & & & & & 66.0 & \$47.51 \\
\hline Test \& Record Results - additional fiber strand & & 20 & & & & 20 & 100\% & 20 & \$14.40 \\
\hline
\end{tabular}

Sprint Florida, Inc.

UNBUNDLED NETWORK ELEMENTS

NON-RECURRING COST STUDY
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\[
)
\] \\
Florida
\end{tabular} & \begin{tabular}{l}
Docket No. 990649 - TP \\
UNE NRC Study \\
Page 1 of 1 \\
May 1, 2000
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Installation Charges - Work Unit Descriptions} \\
\hline Work Unit & Description \\
\hline Connect OSP & Includes XB Jumper, travel from XB to Customer location, customer contact time, connection at terminal. \\
\hline Field Completion Test & Time for Technician to perform completion testing (Current, C-Noise, Metallic Noise, Circuit Loss, Ring Back) \\
\hline Avg. Trip Time & Average travel time from dispatch to beginning of job \\
\hline Terminate at NID or Protector & Average time to terminate drop at NID or Protector \\
\hline Close Order & Time for Technician connect HHT, Dial into 800\#, Key Completion Data, Upload completion \\
\hline Install NID & Time to install a Network Interface Device, includes bonding to Ground \\
\hline MDF Jumper & Time to place a Jumper on a Main Distribution Frame \\
\hline CO Completion Test & Time to Perform continuity testing, ring back \\
\hline Remote Provisioning (est.) & Time to Access the remote NGDLC and reassign line to \(T 1\) \\
\hline & \\
\hline NGDLC Factor & *NGDLC Factor is the percentage of lines that the model projects to work through a Digital Loop Carrier \\
\hline
\end{tabular}

\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ Labor Inputs } \\
\hline \multicolumn{1}{|c|}{ Labor Rates } & Labor Group & FL \\
\hline OSP Technician (I\&R) & 300 & \(\$ 51.97\) \\
CO Technician & 400 & \(\$ 43.19\) \\
CO Engineering & 40 & \(\$ 43.09\) \\
NEAC & 900 & \(\$ 26.65\) \\
Frame Tech & 400 & \(\$ 43.19\) \\
OSP Eng & 30 & \(\$ 37.37\) \\
Translations Eng. & 40 & \(\$ 43.09\) \\
Facility Coordinator & 950 & \(\$ 30.07\) \\
\hline
\end{tabular}

\title{
Dark Fiber Documentation Sprint Loop Cost Model (SLCM) Cost Study - Methods
}

Sprint Florida, Inc.

\title{
Dark Fiber Loops Cost Study - Methods
}

\section*{Table of Contents}
A. Purpose
B. Scope
C. Assumptions
D. Methodology
E. Results

\section*{A. PURPOSE}

This document describes the process used to develop dark fiber costs for Sprint Florida, Inc. (Sprint). The Sprint Loop Cost Model (SLCM) is used to develop dark fiber costs for each wire center. These costs are used to develop dark fiber rates for CLECs that request those facilities.

\section*{B. SCOPE}

This study develops the cost of Feeder, Distribution, and Interoffice (IX) fibers. The SLCM builds a network of optimized facilities within each of Sprint's actual wire centers. The model utilizes actual exchange boundaries and central office switch locations. Each interoffice route is merged with the appropriate local loop plant to maximize efficiency of sheath sizing and structure sharing. The wire center costs reflect actual distance, density, and terrain characteristic variations within each wire center.

\section*{C. ASSUMPTIONS}
1. All Voice Grade through DS1 loops over 12,000 feet are served with fiber optic-based plant. All less than 12,000 feet are served with all copper facilities.
2. All DS3 facilities are served with fiber regardless of distance from the central office.
3. Actual central office line quantities including DS3s are utilized in the model.
4. All existing DS3 service locations are geo-coded to determine the appropriate facility segments to be used in the network modeling.
5. The most cost efficient optical terminal(s) is used to serve all DS3s at a single location.
6. Fiber quantities assume an active link and hot spare at each terminal location.
7. All Next Generation Digital Loop Carrier (NGDLC) systems, where possible, share fiber bandwidth up to manufacturer constrained fiber capacity.
8. IX fibers are embedded in feeder cable quantities and share structure for the appropriate main feeder distances between offices.
9. Additional monthly recurring charges relative to dark fiber (fiber patch panels and fiber patch cords) are developed outside of the SLCM on a separate Excel spreadsheet.

\section*{D. Methodology}

\section*{1. General}

The SLCM is a modified version of the Benchmark Cost Proxy Model used by Sprint in earlier proceedings. Refer to the SLCM Model Methodology, filed as an exhibit to Sprint witness Dunbar's testimony, for the detailed model description.

Some of the major changes incorporated into the SLCM are:
a.) IX fibers are included in the loop facility composition and are a part of the main feeder facilities to the end of the main feeder that points most closely at the distant wire center. From there, an IX fiber cable is constructed to the nearest feeder emanating from the distant wire center. It then becomes a part of that feeder until it reaches the distant office.
b.) The number of fibers and feet are tracked for each fiber cable segment so that an investment per fiber or fiber feet is produced.
c.) DS3 customer senvice locations were geo-coded to the appropriate Customer Serving Area (CSA)/grid. Fiber cable is placed in the distribution area for grids that contain DS3 customers.
d.) The SLCM produces investment per fiber or per fiber foot, which are then passed to an external worksheet for application of annual charge factors and final cost development.

\section*{2. Customer Data}

The wire center lines input table adds specific inputs for switched or non-switched DS1s, DS3s, and other non-voice grade services, as well as the voice grade residence, business single, and business multi-line units. The geo-coded DS3s are entered via a separate input table that shows the wire center, grid identifier, and quantity. A separate input is provided as a toggle to use the DS3 wire center quantities if the geo-code table is not available.
****Note: Sprint has filed a Proprietary worksheet with a populated DS3 input table. These wire center-specific DS3s must be input into the "Miscellaneous Inputs" worksheet, and the model must be reprocessed in order to replicate any results filed by Sprint.

All CSA voice grade unit quantities are wire center actuals that are distributed to the CSAs using census unit data.

\section*{3. NGDLC Sizing}

Each NGDLC is sized to the total bandwidth capacity of services provided in the CSA up to and including DS1 sevvices. The bandwidth required for each service times the service quantity is used to calculate the total bandwidth requirements at the terminal. The appropriate terminal size or sizes are placed to serve the CSA. In cases of high bandwidth or unit quantities, multiple terninals may be required. For this particular study, only voice grade and DS1 quantities are used at the NGDLC. All other services show zero units.

\section*{4. Fiber Counts}

Large and small NGDLCs that are not at capacity are tested along the feeder routes to determine if multiple like units can share fiber capacity (subject to vender equipment limitations). For example, Sprint's vendor-specific small NGDLCs have a backplane capacity of 672 voice grade channels. If three system are along the same subfeeder and each is serving 100 channels, all three systems will ride the same four fibers to the central office. Shared fibers appear as a collapsed ring for the NGDLCs sharing the fibers. Fiber capacity is capped at the backplane capacity times a fill factor input.

Separate fibers are provided in the feeder counts to serve locations with DS3s. A DS3 system table is populated with the number of DS3s per location; the least cost terminal type configured to serve that quantity; the quantity of terminals of that type required; and the number of fibers including "hot spares" to serve those terminals. The number of fibers required for the terminal(s) at the location are added to the NGDLC fiber quantities, are accumulated along the feeders, and segment cable sizes are set to serve each segment. The DS3 terminal fibers are also placed in a separate cable from the NGDLC into the appropriate quadrant. The separate cable is placed from the NGDLC to the quadrant centroid and half of the distribution cable distance. If DS3s are required in a grid served with copper, the needed fibers ride any fiber feeder for as long as possible. They then break off as a separate fiber cable sized to the terminal fiber count and share the same structure as the copper.

IX fiber counts are input into a table that shows the wire center CLLI, the direction from the central office, and the working fibers required for each route. Sprint's Florida Network Planners conducted a study of interoffice routes to determine the number of working fibers in the "middle section" of the IX routes. The "middle section" can be defined as the portion of the route that is no longer sharing the sheath with loop fibers. In other words, it is the fiber that extends from the last DLC in a wire center to the first DLC in the adjacent wire center. All IX routes were then placed into one of three categories based on working DS3 demand, and the working fibers for each route within each of the three categories were averaged. The input table contains the average working fibers for every IX route associated with each wire center. Utilizing interoffice facility maps provided by Network Planning and Mapinfo., the actual direction of each route was determined. SLCM adds the number of fibers from the input table to the feeder route fibers in the designated direction(s). All IX, DS3, and NGDLC fibers along a route are included in the sheath sizing for each cable section. Since feeder cables stop short of the wire center boundary, a separate cable is placed to the wire center boundary. Comparable facilities are built in the reverse direction from the connecting wire center.

5. Structure Sharing

Any facility segment that contains both fiber and copper cables shares all structure costs between the fiber and copper. An input table sets the sharing percentages. The structure costs are then allocated to the CSAs served by copper or fiber on the basis of the number of pairs or fiber used in each CSA. Structure costs reflect the density and terrain characteristics for each CSA, through which it passes or serves.

\section*{6. Fiber Patch Panels/Fiber Patch Cords}

In addition to the monthly recurring charges related to fiber itself, additional monthly recurring charges exist for the use of Sprint's fiber patch panels and fiber patch cords. The monthly recurring cost for a 72 position patch panel has been developed on a per position basis and the cost for a 50 meter patch cord has been developed on a per fiber basis. The total patch panel cost includes two patch panel positions at every intermediate office through which the fiber passes, as well as one patch panel position at both the originating and terminating office when the CLEC is collocated. The total patch cord cost includes a per fiber patch cord cost at every collocated office, as well as every intermediate office the fiber passes through. At the time of order, the total price relative to the patch panels and patch cords will be developed according to the number of intermediate offices the fiber passes through.


\section*{E. Results}

Dark Fiber Feeder - Central office to DLC site
The average feeder investment per fiber is produced by the SLCM on the "Allocations, Statistics, \& Costs" worksheet and extracted into an Excel spreadsheet by wire center. Based on the total investment of aerial fiber, buried fiber, underground fiber, poles and conduit, an annual charge factor is developed and applied to the per fiber investment to calculate the monthly cost per fiber of dark fiber feeder for each wire center. Common costs were also applied to determine the total cost per fiber for each wire center.

\section*{Dark Fiber Distribution - DLC to customer premise}

The average distribution investment per fiber is produced by the SLCM on the "Allocations, Statistics, \& Costs" worksheet and extracted into an Excel spreadsheet by wire center. Based on the total investment of aerial fiber, buried fiber, underground fiber, poles and conduit, an annual charge factor is developed and applied to the per fiber investment to calculate the monthly cost per fiber of dark fiber distribution for each wire
center with DS3 demand. Common costs were also applied to determine the total cost per fiber.

Dark Fiber Interoffice (IX)
The average IX investment per foot per fiber is produced by the SLCM on the "Allocations, Statistics, \& Costs" worksheet and extracted into an Excel spreadsheet by wire center. Based on the total investment of aerial fiber, buried fiber, underground fiber, poles and conduit, an annual charge factor is developed and applied to the per foot per fiber investment to calculate the monthly cost per foot per fiber of IX dark fiber for each wire center. Common costs were also applied to determine the total cost per foot per fiber for each wire center.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{LOOP} & \multicolumn{7}{|c|}{Interoftice} \\
\hline & \multicolumn{3}{|r|}{Investment Per Fiber} & & & & & & & \begin{tabular}{l}
nent Per \\
or Fiber
\end{tabular} & & & & & \\
\hline 家維, contits & & Feeder & Distribution & Aerial Fiber & Burled Fiber & Ugrd, Flber & Poles & Condult & & EX & \[
\begin{aligned}
& \text { Aeriar } \\
& \text { Fiber }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Buried } \\
& \text { Fiber }
\end{aligned}
\] & Urd. Fiber & Poles & Condutit \\
\hline GVLDFLXARSO & \$ & 11,699 & & 10,888 & 729,663 & 139,320 & 66,808 & 441,974 & \$ & 0.4268 & 4,600 & 177,405 & 31,706 & 1,446 & 64,880 \\
\hline HMSPFLXARSO & \$ & 9,808 & & 6,470 & 405,609 & 110,788 & 108,722 & 437,422 & \$ & 0.8120 & 6,892 & 237,398 & 58,789 & 2,494 & 121,218 \\
\hline HOWYFLXARSO & \$ & 9,155 & & 1,812 & 113,739 & 27,623 & 20,474 & 97,283 & \$ & 0.6628 & 1,736 & 71,626 & 12,503 & 569 & 26,099 \\
\hline IMKLFLXARSO & \$ & 13,683 & & 30,527 & 2,321,042 & 307,267 & 89,209 & 940,119 & \$ & 0.3559 & 6,829 & 371,602 & 56,696 & 1,454 & 103,708 \\
\hline INVRFLXADSO & \$ & 13,552 & & 28,040 & 1,620,249 & 452,254 & 256,626 & 1,415,865 & \$ & 0.4315 & 10,347 & 408,528 & 95,654 & 3,438 & 160,157 \\
\hline KGLKFLXARSO & \$ & 5,770 & & 1,706 & 122,669 & 18,513 & 10,791 & 54,673 & \$ & 0.7892 & 1,860 & 65,659 & 9,947 & 702 & 21,417 \\
\hline KNVLFLXARSO & \$ & 12,868 & & 22,662 & 1,769,606 & 209,753 & 36,486 & 573,527 & \$ & 0.3351 & 9,061 & 523,222 & 71,062 & 1,441 & 135,368 \\
\hline KSSMFLXADSO & \$ & 11,450 & \$ 1,574 & 26,822 & 1,431,577 & 475,150 & 235,225 & 1,508,183 & \$ & 0.4191 & 8,002 & 300,147 & 106,009 & 2,492 & 173,354 \\
\hline KSSMFLXBDS 1 & \$ & 14,625 & \$ 2,963 & 16,489 & 925,708 & 287,586 & 81,570 & 842,542 & \$ & 0.5029 & 4,549 & 118,096 & 36,402 & 2,134 & 68,072 \\
\hline KSSMFLXDRSO & \$ & 8,092 & & 3,802 & 187,294 & 72,094 & 54,269 & 332,203 & \$ & 0.7920 & 1,282 & 28,985 & 13,907 & 655 & 24,094 \\
\hline LBLLFLXADSO & \$ & 13,487 & & 27,391 & 1,955,994 & 312,188 & 105,417 & 926,076 & \$ & 0.3948 & 6,954 & 343,357 & 63,778 & 1,476 & 122,331 \\
\hline LDLEFLKADSO & \$ & 12,232 & & 3,370 & 555,331 & 168,363 & 20,053 & 621,682 & \$ & 0.8150 & 4,287 & 118,342 & 35,997 & 2,003 & 66,280 \\
\hline LEE FLXARSO & \$ & 10,010 & & 8,790 & 641,723 & 97,058 & 37,937 & 281,251 & \$ & 0.7741 & 1,780 & 56,972 & 7,534 & 724 & 16,282 \\
\hline LHACFLXADSO & \$ & 9,959 & & 12,308 & 783,708 & 175,127 & 138,896 & 682,747 & \$ & 0.4561 & 7,146 & 360,593 & 59,339 & 1,845 & 118,889 \\
\hline LKBRFLXADS 1 & \$ & 8,955 & \$ 1,120 & 10,890 & 490,618 & 237,861 & 173,709 & 1,074,728 & \$ & 0.5493 & 2,589 & 69,447 & 33,155 & 2,169 & 63,364 \\
\hline LKHLFLXARSO & \$ & 10,114 & & 1,380 & 98,074 & 16,174 & 22,171 & 97,646 & \$ & 0.9924 & 1,597 & 30,515 & 5,642 & 654 & 14,291 \\
\hline LKPCFLXARSO & \$ & 14,195 & & 39,264 & 2,819,670 & 453,611 & 155,510 & 1,383,954 & \$ & 0.6409 & 3,110 & 176,675 & 27,809 & 584 & 52,666 \\
\hline LSBGFLXADS1 & \$ & 11,105 & & 22,821 & 1,300,877 & 374,921 & 201,190 & 1,231,896 & \$ & 0.4510 & 11,848 & 457,135 & 128,528 & 4,304 & 225,738 \\
\hline LWTYFLXARSO & \$ & 8,405 & & 3,154 & 224,339 & 36,330 & 21,057 & 108,660 & \$ & 0.7887 & 1,583 & 65,370 & 11,708 & 613 & 25,157 \\
\hline MALNFLXARSO & \$ & 8,341 & & 6,896 & 478,982 & 83,046 & 36,444 & 235,002 & \$ & 0.6872 & 2,274 & 104,734 & 20,808 & 607 & 41,677 \\
\hline MDSNFLXADSO & \$ & 9,017 & & 9,406 & 673,263 & 105,653 & 69,944 & 381,033 & \$ & 0.6562 & 7,818 & 387,672 & 60,738 & 1,890 & 119,586 \\
\hline MNTIFLXADSO & \$ & 13,064 & & 43,053 & 3,177,929 & 465,208 & 147,471 & 1,361,573 & \$ & 0.5889 & 6,758 & 371,576 & 50,292 & 1,273 & 94,291 \\
\hline MOISFLXADSO & \$ & 8,855 & & 10,084 & 584,500 & 168,132 & 102,248 & 692,770 & \$ & 0.1963 & 1,937 & 68,153 & 18,729 & 579 & 32,934 \\
\hline MRHNFLXARSO & \$ & 13,749 & & 11,263 & 839,164 & 113,230 & 37,681 & 336,382 & \$ & 0.3679 & 8,052 & 408,708 & 51,685 & 1,874 & 97,647 \\
\hline MRNNFLXADSO & \$ & 12,349 & & 17,345 & 1,156,635 & 223,422 & 113,627 & 744,868 & \$ & 0.5289 & 7,735 & 330,592 & 66,863 & 2,192 & 132,484 \\
\hline MTDRFLXADSO & \$ & 9,963 & & 10,277 & 583,028 & 166,659 & 117,629 & 629,195 & \$ & 0.4794 & 4,957 & 196,914 & 55,394 & 1,737 & 110,405 \\
\hline MTLDFLXADS1 & \$ & 3,180 & \$ 526 & 130 & 3,936 & 3,104 & 19,717 & 161,096 & \$ & 0.5985 & 2,319 & 43,462 & 20,646 & 1,103 & 37,591 \\
\hline MTVRFLXARSO & \$ & 9,165 & & 918 & 58,886 & 12,670 & 13,345 & 56,996 & \$ & 0.8062 & 1,457 & 47,215 & 7,613 & 661 & 17,833 \\
\hline NFMYFLXADSO & \$ & 8,804 & & 4,926 & 216,905 & 103,637 & 86,872 & 514,295 & \$ & 0.7447 & 4,535 & 114,623 & 46,937 & 2,368 & 88,506 \\
\hline NFMYFLXBDSO & \$ & 12,628 & \$ 624 & 12,129 & 667,956 & 201,119 & 108,753 & 736,642 & \$ & 0.9031 & 2,732 & 84,380 & 40,273 & 893 & 76,982 \\
\hline NNPLFLXADS1 & \$ & 6,734 & \$ 1,362 & 14,265 & 646,717 & 296,715 & 153,120 & 934,080 & \$ & 0.4601 & 3,863 & 98,172 & 40,829 & 1,526 & 59,930 \\
\hline NPLSFLXCDSO & \$ & 10,913 & & 19,414 & 1,061,796 & 346,728 & 167,064 & 1,213,180 & \$ & 0.3972 & 3,386 & 155,831 & 29,491 & 1,490 & 56,208 \\
\hline NPLSFLXDDSO & \$ & 7,568 & \$ 375 & 17,110 & 801,251 & 378,716 & 184,543 & 1,323,126 & \$ & 0.3909 & 3,023 & 73,612 & 31,798 & 1,357 & 51,728 \\
\hline OCALFLXADSO & \$ & 11,112 & \$ 1,608 & 33,188 & 1,707,177 & 584,869 & 361,909 & 1,831,951 & \$ & 0.4568 & 14,262 & 495,495 & 154,010 & 5,566 & 244,136 \\
\hline OCALFLXBDSO & \$ & 16,786 & \$ 924 & 29,604 & 1,612,937 & 489,671 & 197,726 & 1,379,314 & \$ & 0.4154 & 5,679 & 215,043 & 70,273 & 1,765 & 112,701 \\
\hline OCALFLXCRSO & \$ & 8,628 & & 2,776 & 137,254 & 55,673 & 65,261 & 300,888 & \$ & 1.0015 & 3,218 & 78,430 & 31,923 & 1,384 & 67,295 \\
\hline OCNFFLXARSO & \$ & 12,259 & & 12,906 & 909,382 & 148,709 & 64,914 & 418,267 & \$ & 0.6630 & 5,492 & 245,317 & 39,869 & 1,709 & 76,607 \\
\hline OKCBFLXADSO & \$ & 17,331 & & 85,594 & 6,152,398 & 973,286 & 228,593 & 2,766,185 & \$ & 0.3477 & 19,752 & 1,154,593 & 181,477 & 3,801 & 305,781 \\
\hline OKLWFLXADSO & \$ & 12,217 & & 5,434 & 333,565 & 78,543 & 51,981 & 255,074 & \$ & 0.8246 & 5,026 & 157,638 & 31,695 & 1,331 & 65,464 \\
\hline ORCYFLXADSO & \$ & 8,279 & & 3,697 & 177,008 & 70,552 & 71,406 & 404,796 & \$ & 0.8194 & 2,743 & 68,190 & 30,986 & 1,517 & 53,797 \\
\hline ORCYFLXCRSO & \$ & 8,203 & & 6,265 & 317,552 & 120,048 & 111,317 & 494,892 & \$ & 0.6740 & 1,707 & 53,427 & 19,828 & 660 & 32,282 \\
\hline PANCFLXARSO & \$ & 8,595 & & 2,335 & 156,809 & 30,041 & 16,025 & 92,209 & \$ & 0.7160 & 1,440 & 49,899 & 4,941 & 674 & 12,567 \\
\hline PNGRFLXADS 1 & \$ & 13,127 & & 38,137 & 2,567,744 & 484,003 & 211,611 & 1,470,014 & \$ & 0.4387 & 6,132 & 208,978 & 61,880 & 2,312 & 109,379 \\
\hline PNISFLXADSO & \$ & 9,276 & & 9,947 & 628,741 & 135,549 & 63,568 & 382,244 & \$ & 0.7025 & 6,516 & 245,780 & 65,478 & 2,085 & 118,014 \\
\hline PNLNFLXARSO & \$ & 8,916 & & 6,912 & 474,590 & 85,003 & 33,643 & 241,575 & \$ & 0.6312 & 1,570 & 80,643 & 9,513 & 541 & 20,120 \\
\hline PTCTFLXADSO & \$ & 9,497 & & 25,936 & 1,229,379 & 503,971 & 350,242 & 1,757,457 & \$ & 0.4886 & 7,074 & 261,931 & 76,058 & 1,864 & 118,441 \\
\hline RYHLFLXARSO & \$ & 11,267 & & 13,866 & 960,536 & 171,318 & 56,379 & 488,858 & & - & - & - & - & - & \(\cdots\) \\
\hline SBNGFLXADS1 & \$ & 10,581 & & 19,075 & 1,089,268 & 315,922 & 196,893 & 1,075,493 & \$ & 0.5040 & 7,782 & 334,984 & 73,492 & 2,139 & 138,871 \\
\hline SGBHFLXARSO & \$ & 10,581 & & 19,075 & 1,089,268 & 315,922 & 196,893 & 1,075,493 & \$ & 0.5040 & 7,782 & 334,984 & 73,492 & 2,139 & 138,871 \\
\hline
\end{tabular}

\begin{tabular}{|l|r|}
\hline ACF & \(25.11 \%\) \\
\hline Common Cost & \(15 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{l|}{} & \multicolumn{3}{c|}{ Interoffice Facilities } \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Interoffice Facilities} \\
\hline Wire Center & \multicolumn{2}{|l|}{investment Per Ft: Per Fiber} & \multicolumn{2}{|r|}{Cost Perft Per Fiber} \\
\hline GNWDFLXARSO & \$ & 0.7653 & \$ & 0.0184 \\
\hline GVLDFLXARS0 & \$ & 0.4268 & \$ & 0.0103 \\
\hline HMSPFLXARSO & \$ & 0.8120 & \$ & 0.0195 \\
\hline HOWYFLXARSO & \$ & 0.6628 & \$ & 0.0160 \\
\hline IMKLFLXARSO & \$ & 0.3559 & \$ & 0.0086 \\
\hline INVRFLXADSO & \$ & 0.4315 & \$ & 0.0104 \\
\hline KGLKFLXARSO & \$ & 0.7892 & \$ & 0.0190 \\
\hline KNVLFLXARSO & \$ & 0.3351 & \$ & 0.0081 \\
\hline KSSMFLXADSO & \$ & 0.4191 & \$ & 0.0101 \\
\hline KSSMFLXBDS1 & \$ & 0.5029 & \$ & 0.0121 \\
\hline KSSMFLXDRSO & \$ & 0.7920 & \$ & 0.0191 \\
\hline LBLLFLXADSO & \$ & 0.3948 & \$ & 0.0095 \\
\hline LDLKFLXADSO & \$ & 0.8159 & \$ & 0.0196 \\
\hline LEE FLXARSO & \$ & 0.7741 & \$ & 0.0186 \\
\hline LHACFLXADSO & \$ & 0.4561 & \$ & 0.0110 \\
\hline LKBRFLXADS1 & \$ & 0.5493 & \$ & 0.0132 \\
\hline LKHLFLXARSO & \$ & 0.9924 & \$ & 0.0239 \\
\hline LKPCFLXARSO & \$ & 0.6409 & \$ & 0.0154 \\
\hline LSBGFLXADS1 & \$ & 0.4510 & \$ & 0.0109 \\
\hline LWTYFLXARSO & \$ & 0.7887 & \$ & 0.0190 \\
\hline MALNFLXARSO & \$ & 0.6872 & \$ & 0.0165 \\
\hline MDSNFLXADSO & \$ & 0.6562 & \$ & 0.0158 \\
\hline MNTIFLXADSO & \$ & 0.5889 & \$ & 0.0142 \\
\hline MOISFLXADSO & \$ & 0.1963 & \$ & 0.0047 \\
\hline MRHNFLXARSO & \$ & 0.3679 & \$ & 0.0089 \\
\hline MRNNFLXADSO & \$ & 0.5289 & \$ & 0.0127 \\
\hline MTDRFLXADSO & \$ & 0.4794 & \$ & 0.0115 \\
\hline MTLDFLXADS1 & \$ & 0.5985 & \$ & 0.0144 \\
\hline MTVRFLXARSO & \$ & 0.8062 & \$ & 0.0194 \\
\hline NFMYFLXADSO & \$ & 0.7447 & \$ & 0.0179 \\
\hline NFMYFLXBDSO & \$ & 0.9031 & \$ & 0.0217 \\
\hline NNPLFLXADS1 & \$ & 0.4601 & \$ & 0.0111 \\
\hline NPLSFLXCDSO & \$ & 0.3972 & \$ & 0.0096 \\
\hline NPLSFLXDDSO & \$ & 0.3909 & \$ & 0.0094 \\
\hline OCALFLXADSO & \$ & 0.4568 & \$ & 0.0110 \\
\hline OCALFLXBDSO & \$ & 0.4154 & \$ & 0.0100 \\
\hline OCALFLXCRSO & \$ & 1.0015 & \$ & 0.0241 \\
\hline OCNFFLXARSO & \$ & 0.6630 & \$ & 0.0160 \\
\hline OKCBFLXADSO & \$ & 0.3477 & \$ & 0.0084 \\
\hline OKLWFLXADSO & \$ & 0.8246 & \$ & 0.0198 \\
\hline ORCYFLXADSO & \$ & 0.8194 & \$ & 0.0197 \\
\hline ORCYFLXCRSO & \$ & 0.6740 & \$ & 0.0162 \\
\hline PANCFLXARSO & \$ & 0.7160 & \$ & 0.0172 \\
\hline PNGRFLXADS 1 & \$ & 0.4387 & \$ & 0.0106 \\
\hline PNISFLXADSO & \$ & 0.7025 & \$ & 0.0169 \\
\hline PNLNFLXARSO & \$ & 0.6312 & \$ & 0.0152 \\
\hline PTCTFLXADSO & \$ & 0.4886 & \$ & 0.0118 \\
\hline RYHLFLXARSO & \$ & - & \$ & - \\
\hline SBNGFLXADS 1 & \$ & 0.5040 & \$ & 0.0121 \\
\hline SGBhFLXARSO & \$ & 0.5040 & \$ & 0.0121 \\
\hline SHLMFLXADSO & \$ & 0.9015 & \$ & 0.0217 \\
\hline SLHLFLXARSO & \$ & 0.4610 & \$ & 0.0111 \\
\hline SNANFLXARSO & \$ & 0.7956 & \$ & 0.0191 \\
\hline SNDSFLXARSO & \$ & 0.7121 & \$ & 0.0171 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Interoffice Facilities} \\
\hline Wire Center & & it Per Ft Iber & & Per Ft Fiber \\
\hline SNISFLXADSO & \$ & 0.8944 & \$ & 0.0215 \\
\hline SNRSFLXARSO & \$ & 0.5268 & \$ & 0.0127 \\
\hline SPCPFLXADSO & \$ & 0.7376 & \$ & 0.0178 \\
\hline SSPRFLXARSO & \$ & 0.6568 & \$ & 0.0158 \\
\hline STCDFLXADSO & \$ & 0.3976 & \$ & 0.0096 \\
\hline STMKFLXARSO & \$ & 0.7315 & \$ & 0.0176 \\
\hline STRKFLXADSO & \$ & 0.6680 & \$ & 0.0161 \\
\hline SVSPFLXARSO & \$ & 0.8146 & \$ & 0.0196 \\
\hline SVSSFLXARSO & \$ & 0.7862 & \$ & 0.0189 \\
\hline TLCHFLXARSO & \$ & 0.8632 & \$ & 0.0208 \\
\hline TLHSFLXADSO & \$ & 0.5970 & \$ & 0.0144 \\
\hline TLHSFLXBDSO & \$ & 0.7677 & \$ & 0.0185 \\
\hline TLHSFLXCDSO & \$ & 0.5408 & \$ & 0.0130 \\
\hline TLHSFLXDDSO & \$ & 0.6081 & \$ & 0.0146 \\
\hline TLHSFLXEDSO & \$ & 0.7438 & \$ & 0.0179 \\
\hline TLHSFLXFDSO & \$ & 0.8656 & \$ & 0.0208 \\
\hline TLHSFLXGDSO & \$ & 0.7254 & \$ & 0.0175 \\
\hline TLHSFLXHDSO & \$ & 0.7741 & \$ & 0.0186 \\
\hline TVRSFLXADSO & \$ & 0.5459 & \$ & 0.0131 \\
\hline UMTLFLXARSO & \$ & 0.6419 & \$ & 0.0154 \\
\hline VLPRFLXADSO & \$ & 0.7989 & \$ & 0.0192 \\
\hline VLPRFLXBRSO & \$ & 1.0397 & \$ & 0.0250 \\
\hline WCHLFLXADSO & \$ & 0.3991 & \$ & 0.0096 \\
\hline WLSTFLXARSO & \$ & 0.6214 & \$ & 0.0150 \\
\hline WLWDFLXARSO & \$ & 0.7694 & \$ & 0.0185 \\
\hline WNDRFLXARSO & \$ & 0.7468 & \$ & 0.0180 \\
\hline WNGRFLXADSO & \$ & 0.4346 & \$ & 0.0105 \\
\hline WNPKFLXADS1 & \$ & 0.3113 & \$ & 0.0075 \\
\hline WSTVFLXARSO & \$ & 0.6614 & \$ & 0.0159 \\
\hline ZLSPFLXARSO & \$ & 0.8059 & \$ & 0.0194 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ACF & \multicolumn{3}{|c|}{22.70\%} & & & & & \\
\hline \multirow[t]{3}{*}{Common Cost} & \multicolumn{8}{|c|}{15\%} \\
\hline & \multicolumn{8}{|c|}{LOOP} \\
\hline & \multicolumn{4}{|c|}{Investment Parifiber} & \multicolumn{4}{|c|}{Cost Per Fiber} \\
\hline Wire Center & \multicolumn{2}{|r|}{Feeder} & \multicolumn{2}{|r|}{Distribution} & \multicolumn{2}{|r|}{Feeder} & \multicolumn{2}{|r|}{Distribution} \\
\hline ALFRFLXARSO & \$ & 9,744 & & & \$ & 211.94 & & \\
\hline ALSPFLXADSO & \$ & 8,029 & & & \$ & 174.64 & & \\
\hline ALVAFLXARSO & \$ & 5,976 & & & \$ & 129.98 & & \\
\hline APPKFLXADS1 & \$ & 10,707 & \$ & 2,101 & \$ & 232.88 & \$ & 45.69 \\
\hline ARCDFLXADSO & \$ & 13,349 & & & \$ & 290.36 & & \\
\hline ASTRFLXARS0 & \$ & 10,479 & & & \$ & 227.93 & & \\
\hline AVPKFLXADSO & \$ & 10,227 & & & \$ & 222.44 & & \\
\hline BAKRFLXADSO & \$ & 11,986 & & & \$ & 260.70 & & \\
\hline BCGRFLXARSO & \$ & 3,522 & & & \$ & 76.61 & & \\
\hline BLVWFLXADSO & \$ & 12,098 & & & \$ & 263.15 & & \\
\hline BNFYFLXARSO & \$ & 11,480 & & & \$ & 249.70 & & \\
\hline BNSPFLXADS1 & \$ & 11,303 & & & \$ & 245.86 & & \\
\hline BSHNFLXADSO & \$ & 14,127 & & & \$ & 307.27 & & \\
\hline BVHLFLXADSO & \$ & 11,623 & \$ & 2,395 & \$ & 252.82 & \$ & 52.10 \\
\hline BWLGFLXARS0 & \$ & 7,006 & & & \$ & 152.39 & & \\
\hline CFVLFLXADSO & \$ & 10,592 & & & \$ & 230.39 & & \\
\hline CHLKFLXARSO & \$ & 8,736 & & & \$ & 190.02 & & \\
\hline CHSWFLXARSO & \$ & 7,253 & & & \$ & 157.76 & & \\
\hline CLMTFLXADSO & \$ & 12,817 & & & \$ & 278.77 & & \\
\hline CLTNFLXARSO & \$ & 14,785 & & & \$ & 321.59 & & \\
\hline CPCRFLXADSO & \$ & 7,661 & & & \$ & 166.63 & & \\
\hline CPCRFLXBDS1 & \$ & 8,762 & & & \$ & 190.58 & & \\
\hline CPHZFLXADSO & \$ & 13,451 & & & \$ & 292.56 & & \\
\hline CRRVFLXADSO & \$ & 16,024 & & & \$ & 348.53 & & \\
\hline CRVWFLXADSO & \$ & 12,564 & & & \$ & 273.27 & & \\
\hline CSLBFLXADS1 & \$ & 9,640 & & & \$ & 209.68 & & \\
\hline CTDLFLXARSO & \$ & 8,336 & & & \$ & 181.32 & & \\
\hline CYLKFLXADSO & \$ & 9,235 & & & \$ & 200.88 & & \\
\hline CYLKFLXBRSO & \$ & 9,002 & \$ & 3,334 & \$ & 195.79 & \$ & 72.51 \\
\hline DDCYFLXADS1 & \$ & 13,272 & & & \$ & 288.67 & & \\
\hline DESTFLXADS0 & \$ & 8,431 & & & \$ & 183.37 & & \\
\hline DFSPFLXADSO & \$ & 11,526 & & & \$ & 250.71 & & \\
\hline ESTSFLXADSO & \$ & 12,065 & & & \$ & 262.42 & & \\
\hline EVRGFLXARSO & \$ & 18,199 & & & \$ & 395.84 & & \\
\hline FRPTFLXARSO & \$ & 10,349 & & & \$ & 225.09 & & \\
\hline FTMBFLXADSO & \$ & 15,578 & & & \$ & 338.83 & & \\
\hline FTMDFLXARSO & \$ & 8,232 & & & \$ & 179.05 & & \\
\hline FTMYFLXADSO & \$ & 7,383 & \$ & 500 & \$ & 160.60 & \$ & 10.87 \\
\hline FTMYFLXBDSO & \$ & 10,453 & & & \$ & 227.36 & & \\
\hline FTMYFLXCDS2 & \$ & 8,920 & \$ & 794 & \$ & 194.03 & \$ & 17.27 \\
\hline FTWBFLXADSO & \$ & 7,088 & \$ & 436 & \$ & 154.17 & \$ & 9.47 \\
\hline FTWBFLXBDSO & \$ & 9,289 & \$ & 733 & \$ & 202.04 & \$ & 15.93 \\
\hline FTWBFLXCRSO & \$ & 9,297 & & & \$ & 202.23 & & \\
\hline GDRGFLXADSO & \$ & 10,331 & & & \$ & 224.71 & & \\
\hline GLDLFLXARSO & \$ & 9,980 & & & \$ & 217.07 & & \\
\hline GLGCFLXADSO & \$ & 12,288 & \$ & 1,231 & \$ & 267.28 & \$ & 26.77 \\
\hline GLRDFLXADSO & \$ & 7,203 & \$ & 900 & \$ & 156.67 & \$ & 19.58 \\
\hline GNVLFLXARSO & \$ & 11,214 & & & \$ & 243.91 & & \\
\hline GNWDFLXARSO & \$ & 6,755 & & & \$ & 146.93 & & \\
\hline GVLDFLXARSO & \$ & 11,699 & & & \$ & 254.47 & & \\
\hline HMSPFLXARSO & \$ & 9,808 & & & \$ & 213.32 & & \\
\hline HOWYFLXARSO & \$ & 9,155 & & & \$ & 199.12 & & \\
\hline IMKLFLXARSO & \$ & 13,683 & & & \$ & 297.61 & & \\
\hline INVRFLXADSO & \$ & 13,552 & & & \$ & 294.76 & & \\
\hline KGLKFLXARSO & \$ & 5,770 & & & \$ & 125.50 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Wire Center} & \multicolumn{4}{|r|}{Investment Per Fiber} & \multicolumn{4}{|c|}{Cost Per Fiber} \\
\hline & \multicolumn{2}{|r|}{Feeder} & \multicolumn{2}{|r|}{Distribution} & \multicolumn{2}{|r|}{Feeder} & \multicolumn{2}{|r|}{Distribution} \\
\hline KNVLFLXARSO & \$ & 12,868 & & & \$ & 279.89 & & \\
\hline KSSMFLXADSO & \$ & 11,450 & \$ & 1,574 & \$ & 249.05 & \$ & 34.23 \\
\hline KSSMFLXBDS 1 & S & 14,625 & \$ & 2,963 & \$ & 318.11 & \$ & 64.45 \\
\hline KSSMFLXDRSO & & 8,092 & & & \$ & 176.00 & & \\
\hline LBLLFLXADSO & \$ & 13,487 & & & \$ & 293.34 & & \\
\hline LDLKFLXADSO & \$ & 12,292 & & & \$ & 267.36 & & \\
\hline LEE FLXARSO & \$ & 10,010 & & & \$ & 217.72 & & \\
\hline LHACFLXADSO & \$ & 9,959 & & & \$ & 216.61 & & \\
\hline LKBRFLXADS 1 & \$ & 8,955 & \$ & 1,120 & \$ & 194.78 & \$ & 24.36 \\
\hline LKHLFLXARSO & \$ & 10,114 & & & \$ & 219.99 & & \\
\hline LKPCFLXARSO & \$ & 14,195 & & & \$ & 308.75 & & \\
\hline LSBGFLXADS1 & \$ & 11,105 & & & \$ & 241.55 & & \\
\hline LWTYFLXARSO & \$ & 8,405 & & & \$ & 182.82 & & \\
\hline MALNFLXARSO & \$ & 8,341 & & & \$ & 181.42 & & \\
\hline MDSNFLXADSO & \$ & 9,017 & & & \$ & 196.13 & & \\
\hline MNTIFLXADSO & \$ & 13,064 & & & \$ & 284.14 & & \\
\hline MOISFLXADSO & \$ & 8,855 & & & \$ & 192.60 & & \\
\hline MRHNFLXARSO & \$ & 13,749 & & & \$ & 299.06 & & \\
\hline MRNNFLXADSO & \$ & 12,349 & & & \$ & 268.59 & & \\
\hline MTDRFLXADSO & \$ & 9,963 & & & \$ & 216.71 & & \\
\hline MTLDFLXADS1 & \$ & 3,180 & \$ & 526 & \$ & 69.16 & \$ & 11.43 \\
\hline MTVRFLXARSO & & 9,165 & & & \$ & 199.34 & & \\
\hline NFMYFLXADSO & \$ & 8,804 & & & \$ & 191.49 & & \\
\hline NFMYFLXBDSO & \$ & 12,628 & \$ & 624 & \$ & 274.68 & \$ & 13.57 \\
\hline NNPLFLXADS1 & \$ & 6,734 & \$ & 1,362 & \$ & 146.47 & \$ & 29.62 \\
\hline NPLSFLXCDSO & \$ & 10,913 & & & \$ & 237.36 & & \\
\hline NPLSFLXDDSO & \$ & 7,568 & \$ & 375 & \$ & 164.60 & \$ & 8.15 \\
\hline OCALFLXADSO & & 11,112 & \$ & 1,608 & \$ & 241.69 & \$ & 34.98 \\
\hline OCALFLXBDSO & \$ & 16,786 & \$ & 924 & \$ & 365.11 & \$ & 20.10 \\
\hline OCALFLXCRSO & \$ & 8,628 & & & \$ & 187.67 & & \\
\hline OCNFFLXARSO & \$ & 12,259 & & & \$ & 266.64 & & \\
\hline OKCBFLXADSO & \$ & 17,331 & & & \$ & 376.96 & & \\
\hline OKLWFLXADSO & \$ & 12,217 & & & \$ & 265.73 & & \\
\hline ORCYFLXADSO & \$ & 8,279 & & & \$ & 180.07 & & \\
\hline ORCYFLXCRSO & \$ & 8,203 & & & \$ & 178.41 & & \\
\hline PANCFLXARSO & S & 8,595 & & & \$ & 186.94 & & \\
\hline PNGRFLXADS1 & \$ & 13,127 & & & \$ & 285.53 & & \\
\hline PNISFLXADSO & \$ & 9,276 & & & \$ & 201.75 & & \\
\hline PNLNFLXARSO & \$ & 8,916 & & & \$ & 193.92 & & \\
\hline PTCTFLXADSO & \$ & 9,497 & & & \$ & 206.58 & & \\
\hline RYHLFLXARSO & \$ & 11,267 & & & \$ & 245.06 & & \\
\hline SBNGFLXADS1 & \$ & 10,581 & & & \$ & 230.15 & & \\
\hline SGBHFLXARSO & - & 10,581 & & & \$ & 230.15 & & \\
\hline SHLMFLXADSO & \$ & 2,720 & & & \$ & 59.17 & & \\
\hline SLHLFLXARSO & \$ & 11,523 & & & \$ & 250.64 & & \\
\hline SNANFLXARSO & \$ & 11,403 & & & \$ & 248.01 & & \\
\hline SNDSFLXARSO & \$ & 9,150 & & & \$ & 199.03 & & \\
\hline SNISFLXADSO & \$ & 11,682 & & & \$ & 254.09 & & \\
\hline SNRSFLXARSO & \$ & 7,816 & & & \$ & 169.99 & & \\
\hline SPCPFLXADSO & \$ & 9,643 & & & \$ & 209.75 & & \\
\hline SSPRFLXARSO & \$ & 7,782 & & & \$ & 169.26 & & \\
\hline STCDFLXADSO & \$ & 16,283 & & & \$ & 354.18 & & \\
\hline STMKFLXARSO & 5 & 8,652 & & & \$ & 188.18 & & \\
\hline STRKFLXADSO & \$ & 11,597 & & & \$ & 252.24 & & \\
\hline SVSPFLXARSO & \$ & 15,263 & & & \$ & 331.97 & & \\
\hline SVSSFLXARSO & \$ & 9,428 & & & \$ & 205.07 & & \\
\hline TLCHFLXARSO & \$ & 9,147 & & & \$ & 198.96 & & \\
\hline TLHSFLXADSO & \$ & 2,154 & \$ & 532 & \$ & 46.84 & \$ & 11.57 \\
\hline TLHSFLXBDSO & \$ & 8,640 & \$ & 765 & \$ & 187.93 & \$ & 16.65 \\
\hline TLHSFLXCDSO & \$ & 12,833 & \$ & 659 & \$ & 279.13 & \$ & 14.34 \\
\hline TLHSFLXDDSO & \$ & 13,013 & \$ & 616 & \$ & 283.04 & \$ & 13.39 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Wire Center & \multicolumn{2}{|l|}{Distribution Cost Per Fiber} & Number of Existing DS3s \\
\hline APPKFLXADS1 & \$ & 45.69 & 3 \\
\hline BVHLFLXADS0 & \$ & 52.10 & 4 \\
\hline CYLKFLXBRS0 & \$ & 72.51 & 1 \\
\hline FTMYFLXADS0 & \$ & 10.87 & 8 \\
\hline FTMYFLXCDS2 & \$ & 17.27 & 88 \\
\hline FTWBFLXADS0 & \$ & 9.47 & 1 \\
\hline FTWBFLXBDS0 & \$ & 15.93 & 1 \\
\hline GLGCFLXADS0 & \$ & 26.77 & 2 \\
\hline GLRDFLXADS0 & \$ & 19.58 & 3 \\
\hline KSSMFLXADSO & \$ & 34.23 & 1 \\
\hline KSSMFLXBDS1 & \$ & 64.45 & 1 \\
\hline LKBRFLXADS1 & \$ & 24.36 & 3 \\
\hline MTLDFLXADS1 & \$ & 11.43 & 18 \\
\hline NFMYFLXBDS0 & \$ & 13.57 & 1 \\
\hline NNPLFLXADS1 & \$ & 29.62 & 1 \\
\hline NPLSFLXDDS0 & \$ & 8.15 & 1 \\
\hline OCALFLXADSO & \$ & 34.98 & 1 \\
\hline OCALFLXBDS0 & \$ & 20.10 & 1 \\
\hline TLHSFLXADS0 & \$ & 11.57 & 76 \\
\hline TLHSFLXBDS0 & \$ & 16.65 & 2 \\
\hline TLHSFLXCDS0 & \$ & 14.34 & 3 \\
\hline TLHSFLXDDS0 & \$ & 13.39 & 2 \\
\hline TVRSFLXADS0 & \$ & 11.14 & 3 \\
\hline WNPKFLXADS1 & \$ & 12.41 & 26 \\
\hline Average & \$ & 24.61 & \\
\hline
\end{tabular}

\section*{Additional Dark Fiber Monthly Recurring Charges}
State / Jurisdiction: Florida

* Include a Patch Cord at every collocated office.
* Include a Patch Cord at every intermediate office the fiber passes through.
** Include (2) Patch Panel Positions at every intermediate office.
** Include (1) Patch Panel Position at the originating and terminating office when CLEC is collocated.

\section*{HIGH CAPACITY LOOPS COST STUDY - METHODS}

Sprint Florida, Inc.
Docket No. 990649-TP
April 30, 2000

\section*{HIGH CAPACITY LOOPS COST STUDY - METHODS}

Table of Contents
A. Purpose
B. Scope
C. . Assumptions
D. Methodology

\section*{A. PURPOSE}

Determine the cost of providing high capacity loops. Per Order PSC-00-0540-PCO-TP, high capacity loops are defined as DS3 and above. High capacity loops require fiber optic transport and transmission facilities. Sprint's study identifies the necessary network facilities and costs to provide transport and termination of dedicated high capacity loops.

\section*{B. SCOPE}

This study determines the costs of provisioning high capacity loops. Based on the number of high capacity loops requested to a particular Wire Center and location, economies of scale can be achieved. Sprint's cost study identifies the following logical break points, based on fiber optic terminal economic cost break points and appropriate fill factors, for which costs will vary. Documentation of this study may be found in the worksheets filed for the dark fiber UNE.
\begin{tabular}{|c|c|}
\hline Number of DS3s & Terminal Size \\
\hline 8 1-2 & OC-3 \\
\hline 8 3-9 & OC-12 \\
\hline 10-18 & OC-12 (two OC-12s) \\
\hline - 19-36 & OC-48 unidirectional \\
\hline - 37and up & OC-48 unidirectional (two OC-48s) \\
\hline
\end{tabular}

In addition, Wire Center specific fiber costs are calculated which recognize the varying cost characteristics based on exchange size, terrain, density, etc.

\section*{C. ASSUMPTIONS}
1. Use of Fiber Optic facilities is assumed for provisioning High Capacity loops. Based on forward-looking plant design, this consists primarily of shared Fiber Optic feeder facilities; fiber distribution facilities are also required to terminate to each end user location. Use of forward-looking SONET technology and least cost network unit costs are assumed.
2. Current DS3 customer locations in Sprint's local network are used as the basis of deriving unit costs and associated terminal characteristics.
3. Forward-looking network design incorporates the use of common fiber routes serving Digital Loop Carrier Systems (DLCs) and other customers, as applicable, to create the most efficient network design model.

\section*{D. METHODOLOGY}

\begin{abstract}
A Total Element Long Run Incremental Cost (TELRIC) study methodology was used to identify the cost of high capacity loops. The cost of a high capacity loop is comprised of fiber cost and circuit terminal cost. The costs developed for the dark fiber UNE are the applicable fiber costs for high capote loops. The circuit terminal cost for a high capacity loop consists of common material and labor costs; which include such things as power, fiber patch panels, patch cords, cable racking, and labor; and incremental costs, consisting of the plug-in circuit cards required to provide the site-specific bandwidth requirements.

In order to distribute common costs and ensure cost recovery, Sprint determined appropriate levels of demand by obtaining state-specific data from its Carrier Access Information System (CAIMS) and Customer Record Billing (CRB) systems. The information from these systems allowed identification of Wire Center, service address and circuit quantity information for high capacity loops. This information was geocoded and entered into the Sprint Loop Cost Model (SLCM), which constructs the forwardlooking plant design required to support high capacity and other loop demand.
\end{abstract}

The SLCM results include Wire Center-specific investment based actual demand to each grid location within a Wire Center. The SLCM demand information, audited to ensure separate customer locations are properly identified for terminal count purposes, is used to determine statewide terminal fill factors for high capacity loop demand. A state-wide average level of demand is determined by terminal size. This process is detailed in Schedule A.

The most current vendor pricing available was then used to determine the common material and labor cost of each terminal size: OC-3, OC-12, and OC-48 unidirectional. The common material and labor cost of each terminal size is then distributed over the average fill for the terminal.

The incremental circuit costs would apply based on the specific bandwidth requirements for a particular application. This is recovered via a circuit card charge, which consists of DS3 cards which act as a direct circuit interface to customer owned facilities. Two DS3 interface circuit cards are required per DS3 circuit for OC-3 terminals: one working and one on standby. For OC-12 and larger systems, two DS3 interface circuit cards are required for four or fewer DS3 circuits: one working and one standby. These are referred to as quad cards.

In addition to the interface circuit card, line driver / receivers are required. Each DS3 requires two line driver / receivers: one for incoming and one for outgoing transmission. Each pair of DS3 interface cards are outfitted with a pair of line driver / receivers for each working DS3 provided by the interface card. Therefore, the OC-3 incremental circuit
costs include two line driver / receivers, and the OC-12 and larger systems' incremental circuit costs include eight line driver / receivers.

The cost of each pair of DS3 interface circuit cards, and the necessary number of line drivers / receivers for the entire working interface card, must thus be recovered based on the specific DS3 quantity requested, even though in some cases additional incremental circuit capacity may exist.

For example, if a CLEC requires 6 DS3s to a specific location, an OC-12 system equipped with two pairs of DS3 quad cards is required. The common material and labor cost for an OC-12 system divided by the average fill for an OC-12 system will apply. The circuit terminal costs of two pairs of DS3 quad cards and sixteen line drivers / receivers , providing a total capacity of eight DS3s, will apply.

Schedule B shows the common material and labor cost and circuit terminal card cost calculations specific to recovery of terminal investment only. The resulting terminal investments are applied to Schedule \(C\) which identifies expenses, provide investment specific annual charge factors, and applies a reasonable share of common costs to arrive at a monthly cost for each demand break point group. Schedule C shows the common and per circuit card charges; the matrix also includes a cross-reference of the circuit quantities to the appropriate common and incremental circuit charge.

Similar calculations for the fiber costs can be found on the similar worksheet used for the dark fiber UNE. Additional costs must be included to recover the fiber investment associated with each terminal. The SLCM results also include a Wire Center-specific per fiber investment which is based upon the average feeder plus distribution fiber optic cable length required to meet the sample DS3 demand that was geocoded and input into the model. The investment is multiplied by four fibers (required to service each terminal). The total cost result will be a combination of the Wire Center specific fiber costs plus appropriate terminal costs based on specific bandwidth requirements.

High Capacity Loops - Schedule A Calculation of Typical Terminal Configurations
\begin{tabular}{|c|c|c|c|}
\hline SWCLLI & FDICODE & Number of DS3s & \begin{tabular}{l}
Required \\
Terminals
\end{tabular} \\
\hline APPKFLXADS1 & 1007499 & & \\
\hline & 1007499 Total & & \\
\hline BVHLFLXADSO & 4006199 & & \\
\hline & 4006199 Total & & \\
\hline CYLKFLXBRSO & 2002199 & & \\
\hline & 2002199 Total & & \\
\hline FTMYFLXADSO & 4006199 & & \\
\hline & 4006199 Total & & \\
\hline FTMYFLXADSO & 4003399 & & \\
\hline & 4003399 Total & & \\
\hline FTMYFLXADSO & 3001299 & & \\
\hline & 3001299 Total & & \\
\hline FTMYFLXCDS2 & 1008499 & & \\
\hline & 1008499 Total & & \\
\hline FTWBFLXADSO & 3002299 & & \\
\hline & 3002299 Total & & \\
\hline FTWBFLXBDS0 & 3002499 & & \\
\hline & 3002499 Total & & \\
\hline GLGCFLXADSO & 2002199 & & \\
\hline & 2002199 Total & & \\
\hline GLRDFLXADS0 & 1007455 & & \\
\hline & 1007455 Total & & \\
\hline GLRDFLXADS0 & 4001339 & & \\
\hline & 4001339 Total & & \\
\hline KSSMFLXADSO & 1011454 & & \\
\hline & 1011454 Total & & \\
\hline KSSMFLXBDS1 & 2201299 & & \\
\hline & 2201299 Total & & \\
\hline LKBRFLXADS1 & 1006299 & & \\
\hline & 1006299 Total & & \\
\hline MTLDFLXADS1 & 4003199 & & \\
\hline & 4003199 Total & & \\
\hline MTLDFLXADS 1 & 4001199 & & \\
\hline & 4001199 Total & & \\
\hline MTLDFLXADS1 & 1005499 & & \\
\hline & 1005499 Total & & \\
\hline MTLDFLXADS 1 & 2001399 & & \\
\hline MTLDFLXADS1 & 2001399 & & \\
\hline & 2001399 Total & & \\
\hline MTLDFLXADS1 & 1002299 & & \\
\hline MTLDFLXADS1 & 1002299 & & \\
\hline & 1002299 Total & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SWCLLI & FDICODE & Number of DS3s & Required Terminals \\
\hline MTLDFLXADS1 & 1004299 & & \\
\hline & 1004299 Total & & \\
\hline NFMYFLXBDSO & 1001499 & & \\
\hline & 1001499 Total & & \\
\hline NNPLFLXADS1 & 4007159 & & \\
\hline & 4007159 Total & & \\
\hline NPLSFLXDDSO & 2010313 & & \\
\hline & 2010313 Total & & \\
\hline OCALFLXADSO & 3002499 & & \\
\hline & 3002499 Total & & \\
\hline OCALFLXBDSO & 3003299 & & \\
\hline & 3003299 Total & & \\
\hline TLHSFLXADSO & 4007399 & & \\
\hline TLHSFLXADS0 & 4007399 & & \\
\hline & 4007399 Total & & \\
\hline TLHSFLXADS0 & 4005399 & & \\
\hline & 4005399 Total & & \\
\hline TLHSFLXADS0 & 4004336 & & \\
\hline & 4004336 Total & & \\
\hline TLHSFLXADSO & 4001199 & & \\
\hline TLHSFLXADSO & 4001199 & & \\
\hline & 4001199 Total & & \\
\hline TLHSFLXADSO & 2001399 & & \\
\hline & 2001399 Total & & \\
\hline TLHSFLXADSO & 2002199 & & \\
\hline & 2002199 Total & & \\
\hline TLHSFLXBDSO & 1007265 & & \\
\hline & 1007265 Total & & \\
\hline TLHSFLXBDSO & 1007297 & & \\
\hline & 1007297 Total & & \\
\hline TLHSFLXCDS0 & 3005499 & & \\
\hline TLHSFLXCDSO & 3005499 & & \\
\hline & 3005499 Total & & \\
\hline TLHSFLXCDSO & 3004299 & & \\
\hline & 3004299 Total & & \\
\hline TLHSFLXDDS0 & 3004229 & & \\
\hline & 3004229 Total & & \\
\hline TLHSFLXDDS0 & 2008339 & & \\
\hline & 2008339 Total & & \\
\hline TVRSFLXADSO & 3102248 & & \\
\hline & 3102248 Total & & \\
\hline WNPKFLXADSt & 1001299 & & \\
\hline
\end{tabular}

High Capacity Loops - Schedule A
May 1, 2000 Calculation of Typical Terminal Configurations
\begin{tabular}{llll} 
SWCLLI & FDICODE & \begin{tabular}{l} 
Number \\
of DS3s
\end{tabular} & \begin{tabular}{l} 
Required \\
Terminals
\end{tabular} \\
\hline & 1001299 Total & & \\
& Grand Total & &
\end{tabular}
\begin{tabular}{lc} 
& \begin{tabular}{c} 
Average \\
Number of
\end{tabular} \\
Terminal Size & Number of \\
Terminals & DS3s per \\
Terminal \\
\hline OC3 & \\
OC12 & \\
OC48 Uni &
\end{tabular}

Alcatel OC-3 Central Office Terminal ( \(7^{\prime}-0^{\prime \prime}\) )
Equipped with 1 DS-3

- The interface provides i DS3. Two cards are needed per DS3: one working and one standby.
* Two line driver : feceivers are needed per working DS3.

Alcatel OC-12 Centrol Office Terminal (7 \(7^{\prime}-0^{\prime \prime}\);
Equipped with 1-4D5-3s


\footnotetext{
- 1104 DS3s require two ine iniertaces: one working, one back-up
}
-- 2 line drivers / recemers per DSs Ouad Cark

Alcatel OC-48 Central Office leminal ( \(7^{\prime}-0^{\prime \prime}\) )
Equlpped with 1-4DS-3s

- 1104 DS3s require two ine interfacess: one working, one back-up.
- 2 line drivers / receivers per DS3 Quad Card.

Seicor Fiber Patch Panel
\begin{tabular}{|c|c|c|c|c|c|}
\hline Iterm & Configuration P/N. & Configuration Description & Qty & Unit Price & Material Price \\
\hline 968311 & ACH-72-11 & 72 Fiber Angled Pane! Housing equipped with: 72 FC Sleeves intalled & 1 & & \\
\hline & & TOTAL MATERIAL 70\% Utilization & & & \\
\hline & & Material per fiber & & & \\
\hline & & ENGINEERING HOURS per fiber INSTALLATION HOURS per fiber & \[
\begin{gathered}
8 \\
0.11 \\
16 \\
0.22
\end{gathered}
\] & & \\
\hline
\end{tabular}

Seicor Fiber Patch Cord
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pat Code & Comfiguration P/N. & Configuration Description & Qty & Unit Price & Material Price \\
\hline 964081 & 545401:83131050M & Ultra FCPC-10-FCPC 50 Meler & 1 & & \\
\hline & & & & & \\
\hline & & TOTAL MATEAIAL & & & \\
\hline & & ENGINEERING HOURS & 0.02 & & \\
\hline & & INSTALLATION HOURS & 0.03 & & \\
\hline
\end{tabular}

Note: Fiber tip cables can be ordered in a variety of lengths. This jumper represents the median cost of the family of cables.

\section*{Labor Rates}
Engineering Labor Rate: ..... \(\$ 43.09\)
Engineering Labor Rate: ..... \$43.19
Sales Tax: ..... \(6.59 \%\)

High Capacity Loops - Schedule C
Cost Development Worksheet

1 Investment - Loop Circuit Equipment

2 Annual Charge Factor - Loop Circuit Equipment
3 Annual Cost-Loop Circuit Equipment

4 Other Direct Expense Facior
5 Other Direct Expense
6 Annual Cost with ODE- Loop Circuit Equipment

7 Common Cost Factor

8 Common Cost
9 Total Annual Cost - Loop Circuit Equipment
Source
ACF Tab
Volume 1
L1 X L2
ODC Tab
Voiume i
L1 X L4
L3 + L5
ODC Tab
Volume 1
L7 X L6
L6 + L8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{OC 3} & \multicolumn{4}{|c|}{OC 12} & \multicolumn{4}{|l|}{OC 48 Two Fiber Unidirectional} \\
\hline Common Terminal & \multicolumn{2}{|r|}{DS3 Card} & \multicolumn{2}{|r|}{Common Terminal} & \multicolumn{2}{|r|}{DS3 Card} & \multicolumn{2}{|r|}{Common Terminal} & \multicolumn{2}{|r|}{DS3 Card} \\
\hline \$ 25,130 & \$ & 2,282 & \$ & 6,630 & \$ & 5,288 & \$ & 2,398 & \$ & 5,288 \\
\hline 27.24\% & & 27.24\% & & 27.24\% & & 27.24\% & & 27.24\% & & 27.24\% \\
\hline \$6,845.39 & & \$621.54 & & \$1,806.14 & & 1,440.38 & & \$653.14 & & \$1,440.38 \\
\hline 2.24\% & & 2.24\% & & 2.24\% & & 2.24\% & & 2.24\% & & 2.24\% \\
\hline \$ 562.91 & \$ & 51.11 & \$ & 148.52 & \$ & 118.45 & \$ & 53.71 & \$ & 118.45 \\
\hline \$ 7,408.30 & \$ & 672.65 & \$ & 1,954.66 & \$ & 1,558.83 & \$ & 706.85 & \$ & 1,558.83 \\
\hline 15.00\% & & 15.00\% & & 15.00\% & & 15.00\% & & 15.00\% & & 15.00\% \\
\hline \$ 1,111.25 & \$ & 100.90 & \$ & 293.20 & & 233.82 & \$ & 106.03 & \$ & 233.82 \\
\hline \$ 8,519.55 & \$ & 773.55 & \$ & 2,247.86 & & 1,792.65 & \$ & 812.87 & \$ & 1,792.65 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Required Terminals & \# of DS3s Required & \multicolumn{2}{|r|}{Common Material \& Labor Investment} \\
\hline OC-3 & 1 & \$ & 8,519.5.5 \\
\hline & 2 & & 17,039.09 \\
\hline \multirow[t]{7}{*}{OC-12} & 3 & \$ & 6,743.58 \\
\hline & 4 & & 8,991,44 \\
\hline & 5 & & 11,239.30 \\
\hline & 6 & & 13,487.16 \\
\hline & 7 & & 15,735.02 \\
\hline & 8 & & 17,982.89 \\
\hline & 9 & & 20,230.75 \\
\hline \multirow[t]{9}{*}{OC-12 (2 terminals)} & 10 & \$ & 22,478.61 \\
\hline & 11 & & 24,726.47 \\
\hline & 12 & & 26,974.33 \\
\hline & 13 & & 29,222.19 \\
\hline & 14 & & 31,470.05 \\
\hline & 15 & & 33,717.91 \\
\hline & 16 & & 35,965.77 \\
\hline & 17 & & 38,213.63 \\
\hline & 18 & & 40,461.49 \\
\hline \multirow[t]{18}{*}{OC-48} & 19 & \$ & 15,444.58 \\
\hline & 20 & & 16,257.45 \\
\hline & 21 & & 17,070.33 \\
\hline & 22 & & 17,883.20 \\
\hline & 23 & & 18,696.07 \\
\hline & 24 & & 19,508.94 \\
\hline & 25 & & 20,321.82 \\
\hline & 26 & & 21,134.69 \\
\hline & 27 & & 21,947.56 \\
\hline & 28 & & 22,760.43 \\
\hline & 29 & & 23,573.31 \\
\hline & 30 & & 24,386.18 \\
\hline & 31 & & 25,199.05 \\
\hline & 32 & & 26,011.93 \\
\hline & 33 & & 26,824.80 \\
\hline & 34 & & 27,637.67 \\
\hline & 35 & & 28,450.54 \\
\hline & 36 & & 29,263.4.2 \\
\hline \multirow[t]{36}{*}{OC-48 (2 terminais)} & 37 & \$ & 30,076.29 \\
\hline & 38 & & 30,889.16 \\
\hline & 39 & & \(31,702.113\) \\
\hline & 40 & & 32,514.91 \\
\hline & 41 & & 33,327.78 \\
\hline & 42 & & 34,140.65 \\
\hline & 43 & & 34,953.552 \\
\hline & 44 & & 35,766.40 \\
\hline & 45 & & 36,579.27 \\
\hline & 46 & & 37,392. 14 \\
\hline & 47 & & 38,205.01 \\
\hline & 48 & & 39,017.89 \\
\hline & 49 & & 39,830.76 \\
\hline & 50 & & 40,643.63 \\
\hline & 51 & & 41,456.51 \\
\hline & 52 & & 42,269.38 \\
\hline & 53 & & 43,082.25 \\
\hline & 54 & & 43,895.12 \\
\hline & 55 & & 44,708.00 \\
\hline & 56 & & 45,520.87 \\
\hline & 57 & & 46,333.74 \\
\hline & 58 & & 47,146.61 \\
\hline & 59 & & 47,959.49 \\
\hline & 60 & & 48,772.36 \\
\hline & 61 & & 49,585.23 \\
\hline & 62 & & 50,398.10 \\
\hline & 63 & & 51,210.98 \\
\hline & 64 & & 52,023.135 \\
\hline & 65 & & 52,836.72 \\
\hline & 66 & & 53,649.150 \\
\hline & 67 & & 54,462.47 \\
\hline & 68 & & 55,275.34 \\
\hline & 69 & & 56,088.21 \\
\hline & 70 & & 56,901.09 \\
\hline & 71 & & 57,713.96 \\
\hline & 72 & & 58,526.133 \\
\hline
\end{tabular}

\$ 1,792.65 \(1,792.65\) \(3,585.30\)
\(3,585.30\)
\(3,585.30\)
\(5,377.95\)
\$ \(5,377.95\) 5,377.95 5,377.95 7,170.60 \(7,170.60\)
\(7,170.60\) 7,170.60 8,963.24 8.963 .24 \(\begin{array}{r}8,963.24 \\ 8,963.24 \\ \hline\end{array}\) \(8,963.24\)
\(10,755.89\) \(10,755.89\) 10,755.89 \(10,755.89\) \(12,548.54\) \(12,548.54\) \(12,548.54\) \(12,548.54\) \(14,341.19\) \(14,341.19\)
\(14,341.19\) \(14,341.19\) \(16,133.84\) \(16,133.84\) 16,133.84 17,926.49 \(19,719.14\) 3,304.44 25,097.09 26,889.73 \(28,682.38\) 30,475.03 \(32,267.68\)
\(34,060.33\) 35,852.98 37,645.63 39,438.28 \(41,230.93\)
\(43,023.57\) \(44,816.22\) \(46,608.87\) \(48,401.52\)
\(50,194.17\) \(51,986.82\) 53,779.47 \(55,572.12\)
\(57,364.77\) 59,157.42 60,950.06 \(62,742.71\)
\(64,535.36\) 66,328.01 68,120.66 69,913.31 \(71,705.96\)
\(73,498.61\) 75,291.26 \(77,083.90\)
\(78,876.55\) 30,669.20

F
G
\((C+E) *(1+F)\)
\begin{tabular}{|l|l|}
\hline & \\
\hline \begin{tabular}{c} 
Common \\
Cost Factor
\end{tabular} & \\
\hline \(15.00 \%\) & TEl_RIC Price \\
\hline \(15.00 \%\) & \(10,687.06\) \\
\hline
\end{tabular}
5.00\% \$ 9,816.67 \(\begin{array}{ll}15.00 \% & 12,401.71 \\ 15.00 \% & 17,048.29\end{array}\) \(15.00 \% \quad 19,633.33\) \(\begin{array}{ll}15.00 \% & 22,218.37 \\ 15.00 \% & 24,803.41\end{array}\) \(15.00 \% \quad 29,450.00\)\(\begin{array}{lll}15.00 \% & \text { § } & 32,035.04 \\ 15.00 \% & 34,620.08\end{array}\)15.00\% \(\quad 37,205.12\)\(15.00 \% \quad 41,851.70\)\(\begin{array}{ll}15.00 \% & 44,436.74 \\ 15.00 \% & 47,021.78\end{array}\)\(15.00 \% \quad 49,606.82\)
\begin{tabular}{ll}
\(15.00 \%\) & \(54,253.41\) \\
\(15.00 \%\) & \(56,838.45\)
\end{tabular}15.00\% \$ 28,069.00\(15.00 \% \quad 29,003.80\)
\(15.00 \% \quad 32,934.96\)\(\begin{array}{ll}15.00 \% & 33,869.76 \\ 15.00 \% & 34,804.56\end{array}\)\(\begin{array}{ll}15.00 \% & 34,804.56 \\ 15.00 \% & 37,800.91\end{array}\)\(\begin{array}{ll}15.00 \% & 38,735.72 \\ 15.00 \% & 39,670.52\end{array}\)\(\begin{array}{ll}15.00 \% & 40,605.32 \\ 15.00 \% & 43,601.67\end{array}\)\(\begin{array}{ll}15.00 \% & 43,601.67 \\ & 44,536.48\end{array}\)
\(15.00 \% \quad 46,406.08\)\(15.00 \% \quad \begin{array}{ll}\text { 49,402.43 }\end{array}\)\(\begin{array}{ll}15.00 \% & 51,272.04 \\ 15.00 \% & 52,206.84\end{array}\)15.00\% \$ 55,203.19
\begin{tabular}{ll}
\(15.00 \%\) & \(58,199.54\) \\
\(15.00 \%\) & \(61,195.89\)
\end{tabular}\(15.00 \% \quad 64,192.24\)\(\begin{array}{ll}15.00 \% & 67,188.59 \\ 15.00 \% & 70,184.94\end{array}\)\(15.00 \% \quad 73,181.29\)\(15.00 \% \quad 76,177.64\)\(\begin{array}{ll}15.00 \% & 79,173.99 \\ 15.00 \% & 82,170.34\end{array}\)\(15.00 \% \quad 85,166.69\)\(15.00 \% \quad 88,163.04\)\(\begin{array}{ll}15.00 \% & 91,159.39 \\ 15.00 \% & 94,155.74\end{array}\)\(15.00 \% \quad 97,152.09\)\(15.00 \% \quad 100,148.44\)\(\begin{array}{ll}15.00 \% & 103,144.79 \\ 15.00 \% & 106,141.14\end{array}\)\(15.00 \% \quad 109,137.49\)\(\begin{array}{ll}15.00 \% & 112,133.84 \\ 15.00 \% & 115.130 .19\end{array}\)\(\begin{array}{ll}15.00 \% & 115,130.19 \\ 15.00 \% & 118,126.54\end{array}\)\(\begin{array}{ll}15.00 \% & 121,122.89 \\ 15.00 \% & 124,119.24\end{array}\)\(\begin{array}{ll}15.00 \% & 124,119.24 \\ 15.00 \% & 127,115.59\end{array}\)\(\begin{array}{ll}15.00 \% & 127,115.59 \\ 15.00 \% & 130,111.94\end{array}\)\(\begin{array}{ll}15.00 \% & 133,108.29 \\ 15.00 \% & 136.104 .64\end{array}\)\(15.00 \% \quad 136,104.64\)\(\begin{array}{ll}15.00 \% & 139,100.99 \\ 15.00 \% & 142,097.34\end{array}\)\(\begin{array}{ll}15.00 \% & 142,097.34 \\ 155,00 \% & 145,093.69\end{array}\)\(\begin{array}{ll}15.00 \% & 148,090.04 \\ 15.00 \% & 151,086.39\end{array}\)\(15.00 \% \quad 151,086.39\)\(\begin{array}{ll}15.00 \% & 154,082.74 \\ 15.00 \% & 157,079.09\end{array}\)
\(15.00 \% \quad 160,075.44\)

\section*{DIGITAL PBX TRUNK PORT COST STUDY - METHODS}

Sprint Florida, Inc.
May 1, 2000

\title{
DIGITAL PEXX TRUNK PORT COST STUDY - METHODS
}

\section*{Table of Contents}
A. Purpose
B. Scope
C. Methodology
D. Digital PBX Trunk Port Cost Study Results

\section*{A. Purpose}

The purpose of the Digital PBX Trunk Port cost study is to determine the TELRIC of a DS1 PBX Trunk Port. The trunk connection-DID allows calls to be terminated to a specific station. Multiline hunting allows for dialtone for outgoing telephone calls.

\section*{B. Scope}

The cost results were developed specifically for the Sprint Florida serving area and apply only in Florida.

\section*{C. Methodology}

The TELRIC of the DS1 Digital PBX trunk port accounts for investment requirements for Direct Inward Dialing (DID) and Multiline hunt capabilities, which allows a station within the PBX system to make and receive calls. Investment for DID was obtained from SCIS. A power additive for DS1s, based on line counts for the wire center, was applied to the DID investment. Multiline hunt investment was obtained from SCIS and added to the total DID investment, which results in total material investment. Engineering labor per port was added to the material to obtain total investment. The total investment was then multiplied times the annual charge factor (ACF) to obtain annual cost recovery requirements. Annual cost was then divided by twelve to obtain monthly costs. Common cost was then applied to exchange specific costs which results in exchange specific prices.
D. Digital PBX Trunk Port Cost Study Results

Trunk Connection-DID allows calls to be terminated to a specific station. Multiline Hunt allows for dialtone for outgoing calls.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A B & c & 0 & \(E=C+1 * D\) & & F & & \(E+F\) & & & 1 & & * 112 & K & & \(=\mathrm{J} * \mathrm{~K}\) \\
\hline & \[
\begin{aligned}
& \text { SCIS } \\
& \text { DID }
\end{aligned}
\] & Calculations Host/Remotes & DID+Pwr Add & \multicolumn{2}{|l|}{\begin{tabular}{l}
SCIS \\
Multiline Hunt
\end{tabular}} & \multicolumn{2}{|l|}{Port Related Investment+Pwr} & \multicolumn{2}{|l|}{\begin{tabular}{l}
c.o. \\
Engineering
\end{tabular}} & ACF & \multicolumn{2}{|c|}{Monthly Port Exp.} & Common Factor & \multicolumn{2}{|l|}{TELRIC Cost} \\
\hline Cypress Lake0100 & \$5,095.68 & 0.07 & 5,437.49 & \$ & 2.70 & \$ & 5,440.19 & \$ & 43.09 & 33.38\% & \$ & 152.53 & 1.15000 & \$ & 175.41 \\
\hline OcalaD100 & \$5,095.68 & 0.08 & 5,490.05 & \$ & 2.70 & \$ & 5,492.75 & \$ & 43.09 & 33.38\% & \$ & 153.99 & 1.15000 & \$ & 177.09 \\
\hline Naples MooringsD100 & \$ 5,095.68 & 0.09 & 5.564 .67 & \$ & 2.70 & \$ & 5,567.37 & \$ & 43.09 & 33.38\% & \$ & 156.06 & 1.15000 & \$ & 179.47 \\
\hline WNPKAltamonte SpringsD100 & \$ 5,095.68 & 0.09 & 5,576.11 & \$ & 2.70 & \$ & 5,578.81 & \$ & 43.09 & 33.38\% & \$ & 156.38 & 1.15000 & \$ & 179.84 \\
\hline North NaplesD100 & \$5,095.68 & 0.10 & 5.588.27 & \$ & 2.70 & \$ & 5,590.97 & \$ & 43.09 & 33.38\% & \$ & 156.72 & 1.15000 & \$ & 180.23 \\
\hline WNPKGoidenrodD100 & \$5,095.68 & 0.10 & 5,602.46 & \$ & 2.70 & \$ & 5,605.16 & \$ & 43.09 & 33.38\% & \$ & 157.12 & 1.15000 & \$ & 180.68 \\
\hline Winter ParkD100 & \$5,095.68 & 0.10 & 5,603.34 & \$ & 2.70 & \$ & 5,606.04 & \$ & 43.09 & 3338\% & \$ & 157.14 & 1.15000 & \$ & 180.71 \\
\hline WiNPKLik. ErantieyD100 & \$5,095.68 & 0.10 & 5,630.20 & \$ & 2.70 & \$ & 5,632.90 & \$ & 43.09 & 33.38\% & \$ & 157.89 & 1.15000 & \$ & 181.57 \\
\hline TallyCalhoun599D100 & \$5,095.68 & 0.11 & 5,672.32 & \$ & 2.70 & \$ & 5,675.02 & \$ & 43.09 & 33.38\% & \$ & 159.06 & 1.15000 & \$ & 182.92 \\
\hline Ft. MyersD100 & \$ 5,095.68 & 0.12 & 5,686.26 & \$ & 2.70 & \$ & 5,888.96 & \$ & 43.09 & 33.38\% & \$ & 159.45 & 1.15000 & \$ & 183.36 \\
\hline Reedy CreekD100 & \$5,095.68 & 0.12 & 5,689.38 & \$ & 2.70 & \$ & 5,692.08 & \$ & 43.09 & 33.38\% & \$ & 159.53 & 1.15000 & \$ & 183.46 \\
\hline N. Ft. MyersDi00 & \$5,095.68 & 0.12 & 5,718.67 & \$ & 2.70 & \$ & 5,721.37 & \$ & 43.09 & 33.38\% & \$ & 160.35 & 1.15000 & \$ & 184.40 \\
\hline Belleviewdi00 & \$ 5,095.68 & 0.12 & 5,725.07 & \$ & \$ 2.70 & \$ & 5,727.77 & \$ & 43.09 & 33.38\% & \$ & 160.53 & 1.15000 & \$ & 184.61 \\
\hline Avon Parkd100/200 & \$5,095.68 & 0.12 & 5,729.52 & \$ & - 2.70 & \$ & 5,732.22 & \$ & 43.09 & 33.38\% & \$ & 160.65 & 1.15000 & \$ & 184.75 \\
\hline Tally Blairstone877D100 & \$ 5.095.68 & 0.13 & 5,759.83 & \$ & - 2.70 & \$ & 5,762.53 & \$ & 43.09 & 33.38\% & \$ & 161.49 & 1.15000 & \$ & 185.72 \\
\hline ApopkaDi00 & \$5,095.68 & 0.13 & 5,775.88 & \$ & - 2.70 & \$ & 5,778.58 & \$ & 43.09 & 33.38\% & \$ & 161.94 & 1.15000 & \$ & 186.23 \\
\hline DentinD100 & \$5,095.68 & 0.13 & 5.780.66 & \$ & 1 2.70 & \$ & 5,783.36 & \$ & 43.09 & 33.38\% & \$ & 162.07 & 1.15000 & \$ & 186.38 \\
\hline WNPKCasselberryD100 & \$5,095.68 & 0.13 & 5,781.53 & \$ & 1 2.70 & \$ & 5,784.23 & \$ & 43.09 & 33.38\% & \$ & 162.10 & 1.15000 & \$ & 186.41 \\
\hline TallyCalhoun222D100 & \$5,095.68 & 0.14 & 5,788.32 & \$ & \$ 2.70 & \$ & 5,791.02 & \$ & 43.09 & 33.38\% & \$ & 162.29 & 1.15000 & \$ & 186.63 \\
\hline ClermontD100 & \$5,095.68 & 0.14 & 5,798.50 & \$ & \$ 2.70 & \$ & 5,801.20 & \$ & 43.09 & 33.38\% & \$ & 162.57 & 1.15000 & \$ & 186.95 \\
\hline DestinD100 & \$5,095.68 & 0.14 & 5,806.42 & \$ & + 2.70 & \$ & 5,809.12 & \$ & 43.09 & 33.38\% & \$ & 162.79 & 1.15000 & \$ & 187.21 \\
\hline Lake Placid & \$5.095.68 & 0.15 & 5.842 .02 & \$ & \$ 2.70 & \$ & 5,844.72 & \$ & 43.09 & 33.38\% & \$ & 163.78 & 1.15000 & \$ & 188.35 \\
\hline Spring Lake Hills & \$5.095.68 & 0.15 & 5,842.02 & \$ & \$ 2.70 & \$ & 5,844.72 & \$ & 43.09 & 33.38\% & \$ & 163.78 & 1.15000 & \$ & 188.35 \\
\hline LeesburgD100 & \$5,095.68 & 0.15 & 5,846.82 & \$ & \$ 2.70 & \$ & 5,849.52 & \$ & 43.09 & 33.38\% & \$ & 163.91 & 1.15000 & \$ & 188.50 \\
\hline ValparaisoD100 & \$5,095.68 & 0.15 & 5,858.47 & \$ & 1 2.70 & \$ & 5,861.17 & \$ & 43.09 & 33.38\% & \$ & 164.24 & 1.15000 & \$ & 188.87 \\
\hline Lehigh Acres D100 & \$5.095.68 & 0.15 & 5,862.65 & \$ & \$ 2.70 & \$ & 5,865.35 & \$ & 43.09 & 33.38\% & \$ & 164.35 & 1. 15000 & \$ & 189.01 \\
\hline Orange CityO100 & \$5,095.68 & 0.15 & 5,872.11 & \$ & \$ 2.70 & \$ & 5.874.81 & \$ & 43.09 & 33.38\% & \$ & 164.62 & 1.15000 & \$ & 189.31 \\
\hline Shady Road & \$5,095.68 & 0.15 & 5,877.00 & \$ & \$ 2.70 & \$ & 5,879.70 & \$ & 43.09 & 33.38\% & \$ & 164.75 & 1.15000 & \$ & 189.47 \\
\hline Ft. Waiton Beach-243-D100/200 & \$5,095.68 & 0.19 & 6,043.23 & \$ & \$ 2.70 & \$ & 6,045.93 & \$ & 43.09 & 33.38\% & \$ & 169.38 & 1.15000 & \$ & 194.78 \\
\hline CrestviewD100/200 & \$5,095.68 & 0.20 & 6,096.17 & \$ & \$ 2.70 & \$ & 6,098.87 & \$ & 43.09 & 33.38\% & \$ & 170.85 & 1.15000 & \$ & 196.48 \\
\hline Bowiing Green & \$5,095.68 & 0.20 & 6,102.46 & \$ & \$ 2.70 & \$ & 6,105.16 & \$ & 43.09 & 33.38\% & \$ & 171.02 & 1.15000 & \$ & 196.68 \\
\hline Ft. Meade & \$5,095.68 & 0.20 & 6,102.46 & \$ & \$ 2.70 & \$ & 6,105.16 & \$ & 43.09 & 33.38\% & \$ & 171.02 & 1.15000 & \$ & 196.68 \\
\hline Clewiston & \$5,095.68 & 0.20 & 6.120 .29 & \$ & \$ 2.70 & \$ & 6,122.99 & \$ & 43.09 & 33.38\% & \$ & 171.52 & 1.15000 & \$ & 197.25 \\
\hline Moore Haven & \$5,095.68 & 0.20 & 6,120.29 & \$ & \$ 2.70 & \$ & 6,122.99 & \$ & 43.09 & 33.38\% & \$ & 171.52 & 1.15000 & \$ & 197.25 \\
\hline WNPKMaitlandParkD100 & \$5,095.68 & 0.20 & 6,122.80 & \$ & \$ 2.70 & \$ & 8,125.50 & \$ & 43.09 & 33.38\% & \$ & 171.59 & 1.15000 & + & 197.33 \\
\hline TallyMabry5750100 & \$5,095.68 & 0.21 & 6,146.53 & \$ & \$ 2.70 & \$ & 6,149.23 & \$ & 43.09 & 33.38\% & \$ & 172.25 & 1.15000 & & 198.09 \\
\hline TavaresD100 & \$ 5,095.68 & 0.21 & 6,160.86 & \$ & \$ 2.70 & \$ & 6,163.56 & \$ & 43.09 & 33.38\% & \$ & 172.65 & 1.15000 & \$ & 198.55 \\
\hline TallyWoodvilleD10 & \$5,095.68 & 0.21 & 6,179.12 & \$ & \$ 2.70 & \$ & 6,181.82 & \$ & 43.09 & 33.38\% & \$ & 173.16 & 1.15000 & & 199.13 \\
\hline SebringD100 & \$5,095.68 & 0.21 & 6,187.60 & \$ & \$ 2.70 & \$ & 6,190.30 & \$ & 43.09 & 33.38\% & \$ & 173.39 & 1.15000 & \$ & 199.40 \\
\hline Cape HazeD100 & \$5.095.68 & 0.21 & 6,189.83 & & \$ 2.70 & \$ & 6,192.53 & \$ & 43.09 & 33.38\% & \$ & 173.45 & 1.15000 & \$ & 199.47 \\
\hline Santa Rosa Beach & \$ 5,095.68 & 0.23 & 6,292.17 & \$ & \$ 2.70 & \$ & 6,294.87 & \$ & 43.09 & 33.38\% & \$ & 176.30 & 1.15000 & \$ & 202.75 \\
\hline
\end{tabular}

Trunk Connection-DID allows calls to be terminated to a specific station. Multiline Hunt allows for dialtone for outgoing calls.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A B & C & D & \(E=C+!{ }^{\text {d }}\) & \multicolumn{4}{|r|}{\(G=E+F\)} & \multicolumn{2}{|c|}{H} & 1 & \multicolumn{2}{|l|}{\(J=\left((\mathrm{G}+\mathrm{H})^{*} \mathrm{I}\right) 12\)} & K & \multicolumn{2}{|r|}{\(L=J * K\)} \\
\hline & \[
\begin{gathered}
\text { SCIS } \\
\text { DID } \\
\hline
\end{gathered}
\] & Power Per DS1 Calculations Host/Remotes & DID+Pwr Add & & \begin{tabular}{l}
SCIS \\
Multiline Hunt
\end{tabular} & & Related ment+Pwr & & ering & ACF & & & Common Factor & & C Cost \\
\hline Seagrove Beach & \$5,095.68 & 0.23 & 6,292.17 & \$ & 2.70 & \$ & 6,294.87 & \$ & 43.09 & 33.38\% & \$ & 176.30 & 1.15000 & \$ & 202.75 \\
\hline Howey & \$5,095.68 & 0.24 & 6,295.23 & \$ & 2.70 & \$ & 6,297.93 & \$ & 43.09 & 33.38\% & \$ & 176.39 & 1.15000 & \$ & 202.84 \\
\hline Wildwood & \$5,095.68 & 0.24 & 6,295.23 & \$ & 2.70 & \$ & 6,297.93 & \$ & 43.09 & 33.38\% & \$ & 176.39 & 1.15000 & \$ & 202.84 \\
\hline Bonifay & \$5,095.68 & 0.24 & 6,312.32 & \$ & 2.70 & \$ & 6,315.02 & \$ & 43.09 & 33.38\% & \$ & 176.86 & 1.15000 & \$ & 203.39 \\
\hline Malone & \$5,095.68 & 0.24 & 6,312.32 & \$ & 2.70 & \$ & 6,315.02 & \$ & 43.09 & 33.38\% & \$ & 176.86 & 1.15000 & \$ & 203.39 \\
\hline Reynolds Hill & \$5,095.68 & 0.24 & 6,312.32 & \$ & 2.70 & \$ & 6,315.02 & \$ & 43.09 & 33.38\% & \$ & 176.86 & 1.15000 & \$ & 203.39 \\
\hline Sneads & \$5,095.68 & 0.24 & 6,312.32 & \$ & 2.70 & \$ & 6,315.02 & \$ & 43.09 & 33.39\% & \$ & 176.86 & 1.15000 & \$ & 203.39 \\
\hline Westville & \$5,095.68 & 0.24 & 6,312.32 & \$ & 2.70 & \$ & 6,315.02 & \$ & 43.09 & 33.38\% & \$ & 176.86 & 1.15000 & \$ & 203.39 \\
\hline Homosassa Springs & \$ 5,095.68 & 0.24 & 6.343 .59 & \$ & 2.70 & \$ & 6,346.29 & \$ & 43.09 & 33.38\% & \$ & 177.73 & 1.15000 & \$ & 204.39 \\
\hline Dade CityD100 & \$5,095.68 & 0.25 & 6,363.43 & \$ & 2.70 & \$ & 6.366.13 & \$ & 43.09 & 33.38\% & \$ & 178.28 & 1.15000 & \$ & 205.03 \\
\hline Astor & \$ 5.095.68 & 0.25 & 6,370.52 & \$ & 2.70 & \$ & 6,373.22 & \$ & 43.09 & 33.38\% & \$ & 178.48 & 1.15000 & \$ & 205.25 \\
\hline Umatilla & \$ 5,095.68 & 0.25 & 6,370.52 & \$ & 2.70 & \$ & 6,373.22 & \$ & 43.09 & 33.38\% & \$ & 178.48 & 1.15000 & \$ & 205.25 \\
\hline Windermere & \$5,095.68 & 0.25 & 6,372.33 & \$ & 2.70 & \$ & 6,375.03 & \$ & 43.09 & 33.38\% & \$ & 178.53 & 1.15000 & \$ & 205.31 \\
\hline Beverly Hillsd 100 & \$ 5,095.68 & 0.25 & 6,373.44 & \$ & 2.70 & \$ & 6,376.14 & \$ & 43.09 & 33.38\% & \$ & 178.56 & 1.15000 & \$ & 205.35 \\
\hline Tally THomasville8930100 & \$5,095.68 & 0.26 & 6,418.51 & \$ & 2.70 & \$ & 6,421.21 & \$ & 43.09 & 33.38\% & \$ & 179.82 & 1.15000 & \$ & 206.79 \\
\hline TallyWilisfd385D100 & \$5,095.68 & 0.26 & 6,433.25 & \$ & 2.70 & \$ & 6.435 .95 & \$ & 43.09 & 33.38\% & \$ & 180.23 & 1.15000 & \$ & 207.26 \\
\hline ShalimarD100 & \$5,095.68 & 0.26 & 6.443 .43 & \$ & 2.70 & \$ & 6.446.13 & \$ & 43.09 & 33.38\% & \$ & 180.51 & 1.15000 & \$ & 207.58 \\
\hline MariannaD100/200 & \$ 5,095.68 & 0.26 & 6.444 .16 & \$ & 2.70 & \$ & 6,446.86 & \$ & 43.09 & 33.38\% & \$ & 180.53 & 1.15000 & \$ & 207.61 \\
\hline TallyP erkinsD100 & \$5,095.68 & 0.30 & 6,616.89 & \$ & 2.70 & \$ & 6,619.59 & \$ & 43.09 & 33.38\% & \$ & 185.33 & 1.15000 & \$ & 213.13 \\
\hline San Antonio & \$5.095.68 & 0.32 & 6,703.35 & \$ & 2.70 & \$ & 6,706.05 & \$ & 43.09 & 33.38\% & \$ & 187.74 & 1.15000 & \$ & 215.90 \\
\hline Trilacoochee & \$5.095.68 & 0.32 & 6,703.35 & \$ & 2.70 & \$ & 6.706 .05 & \$ & 43.09 & 33.38\% & \$ & 187.74 & 1.15000 & \$ & 215.90 \\
\hline StarkeD10 & \$5,095.68 & 0.32 & 6.710 .65 & \$ & 2.70 & \$ & 6,713.35 & \$ & 43.09 & 33.38\% & \$ & 187.94 & 1.15000 & \$ & 216.13 \\
\hline LaBeleD 100 & \$5,095.68 & 0.34 & 6,852.94 & \$ & 2.70 & \$ & 6,855.64 & \$ & 43.09 & 33.38\% & \$ & 191.90 & 1.15000 & \$ & 220.68 \\
\hline Immokalee & \$5,095.68 & 0.35 & 6,877.18 & \$ & 2.70 & \$ & 6.879 .88 & \$ & 43.09 & 33.38\% & \$ & 192.57 & 1.15000 & \$ & 221.46 \\
\hline Silver Springs Shores & \$5,095.68 & 0.36 & 6,930.21 & \$ & 2.70 & \$ & 6,932.91 & \$ & 43.09 & 33.38\% & \$ & 194.05 & 1.15000 & \$ & 223.16 \\
\hline Eustis & \$5,095.68 & 0.37 & 6,989.49 & \$ & 2.70 & \$ & 6,992.19 & \$ & 43.09 & 33.38\% & \$ & 195.70 & 1.15000 & \$ & 225.05 \\
\hline Lady Lake & \$5.095.68 & 0.37 & 6,989.49 & \$ & 2.70 & \$ & 6,992.19 & \$ & 43.09 & 33.38\% & \$ & 195.70 & 1.15000 & \$ & 225.05 \\
\hline Montverde & \$5,095.68 & 0.37 & 6,989.49 & \$ & 2.70 & \$ & 6,992.19 & \$ & 43.09 & 33.38\% & \$ & 195.70 & 1.15000 & \$ & 225.05 \\
\hline Mt. Dora & \$5.095.68 & 0.37 & 6,989.49 & \$ & 2.70 & \$ & 6.992 .19 & \$ & 43.09 & 33.38\% & \$ & 195.70 & 1.15000 & \$ & 225.05 \\
\hline Bonita Springs5E & \$5,095.68 & 0.37 & 6,995.14 & \$ & 2.70 & \$ & 6.997.84 & \$ & 43.09 & 33.38\% & \$ & 195.86 & 1.15000 & \$ & 225.23 \\
\hline Cherry Lake & \$ 5,095.68 & 0.38 & 7,047.83 & \$ & 2.70 & \$ & 7,050.53 & \$ & 43.09 & 33.38\% & \$ & 197.32 & 1.15000 & \$ & 226.92 \\
\hline Lee & \$ 5,095.68 & 0.38 & 7,047.83 & \$ & 2.70 & \$ & 7,050.53 & \$ & 43.09 & 33.38\% & \$ & 197.32 & 1.15000 & \$ & 226.92 \\
\hline CrawfordvilleD100 & \$5,095.68 & 0.38 & 7,051.01 & \$ & 2.70 & \$ & 7,053.71 & \$ & 43.09 & 33.38\% & \$ & 197.41 & 1.15000 & \$ & 227.02 \\
\hline Port Chariotte5E & \$5.095.68 & 0.40 & 7,113.63 & \$ & 2.70 & \$ & 7.116.33 & \$ & 43.09 & 33.38\% & \$ & 199.15 & 1.15000 & \$ & 229.02 \\
\hline S. Ft. Myers5E & \$ 5,095.68 & 0.42 & 7,231.23 & \$ & 2.70 & , & 7,233.93 & \$ & 43.09 & 33.38\% & \$ & 202.42 & 1.15000 & \$ & 232.79 \\
\hline Williston & \$ 5.095.68 & 0.43 & 7,261.78 & \$ & 2.70 & \$ & 7,264.48 & \$ & 43.09 & 33.38\% & \$ & 203.27 & 1.15000 & \$ & 233.76 \\
\hline Groveland & \$5,095.68 & 0.46 & 7,419.10 & \$ & 2.70 & \$ & 7.421.80 & \$ & 43.09 & 33.38\% & \$ & 207.65 & 1.15000 & \$ & 238.80 \\
\hline Bakerd10 & \$ 5,095.68 & 0.46 & 7,424.77 & \$ & 2.70 & \$ & 7,427.47 & \$ & 43.09 & 33.38\% & , & 207.81 & 1.15000 & \$ & 238.98 \\
\hline Kissimmee5E & \$ 5,095.68 & 0.48 & 7.520 .51 & \$ & 2.70 & \$ & 7,523.21 & \$ & 43.09 & 33.38\% & \$ & 210.47 & 1.15000 & \$ & 242.04 \\
\hline Freeport & \$ 5,095.68 & 0.48 & 7,522.78 & \$ & 2.70 & \$ & 7.525.48 & \$ & 43.09 & 33.38\% & \$ & 210.53 & 1.15000 & \$ & 242.11 \\
\hline Glendale & \$ 5,095.68 & 0.48 & 7,522.78 & \$ & 2.70 & \$ & 7,525.48 & \$ & 43.09 & 33.38\% & \$ & 210.53 & 1.15000 & \$ & 242.11 \\
\hline
\end{tabular}

DIGITAL PBX TRUNK PORT

Trunk Connection-DID allows calls to be terminated to a specific station. Multiline Hunt allows for dialtone for outgoing calls
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A B & C & D & \(E=C+1 * D\) & \multicolumn{2}{|c|}{F} & \multicolumn{2}{|r|}{\(G=E+F\)} & \multicolumn{2}{|c|}{H} & 1 & \multicolumn{2}{|l|}{\(J=((G+H) * 1 / 12\)} & K & \multicolumn{2}{|r|}{\(L=J * K\)} \\
\hline & \[
\begin{gathered}
\text { SCIS } \\
\text { DID }
\end{gathered}
\] & Power Per DS Calculations Host/Remotes & DID+Pwr Add & & & \multicolumn{2}{|l|}{Port Related Investment + Pwr} & \multicolumn{2}{|l|}{\begin{tabular}{l}
C.O. \\
Engineering
\end{tabular}} & ACF & \multicolumn{2}{|c|}{\begin{tabular}{l}
Monthly \\
Port Exp.
\end{tabular}} & Common Factor & \multicolumn{2}{|l|}{TELRIC Cost} \\
\hline Ponce De Leon & \$5,095.68 & 0.48 & 7,522.78 & \$ & 2.70 & \$ & 7,525.48 & \$ & 43.09 & 33.38\% & \$ & 210.53 & 1.15000 & \$ & 242.11 \\
\hline Winter Garden5E & \$5,095.68 & 0.50 & 7,628.63 & \$ & 2.70 & \$ & 7,631.33 & \$ & 43.09 & 33.38\% & \$ & 213.48 & 1.15000 & \$ & 245.50 \\
\hline DeFuniak SpringsD100 & \$5,095.68 & 0.51 & 7,713.52 & \$ & 2.70 & \$ & 7,716.22 & \$ & 43.09 & 33.38\% & \$ & 215.84 & 1.15000 & \$ & 248.21 \\
\hline MonticelloD100 & \$5,095.68 & 0.51 & 7,717.39 & \$ & 2.70 & \$ & 7,720.09 & \$ & 43.09 & 33.38\% & \$ & 215.95 & 1.15000 & , & 248.34 \\
\hline Kenansville & \$5,095.68 & 0.52 & 7,752.70 & \$ & 2.70 & \$ & 7,755.40 & \$ & 43.09 & 33.38\% & \$ & 216.93 & 1.15000 & \$ & 249.47 \\
\hline BuenaVentura Lakes & \$5,095.68 & 0.52 & 7,752.70 & \$ & 2.70 & \$ & 7,755.40 & \$ & 43.09 & 33.38\% & \$ & 216.93 & 1.15000 & \$ & 249.47 \\
\hline St. Cloud & \$5,095.68 & 0.52 & 7,752.70 & \$ & 2.70 & \$ & 7,755.40 & \$ & 43.09 & 33.38\% & \$ & 216.93 & 1.15000 & , & 249.47 \\
\hline Grand RidgeD10 & \$5,095.68 & 0.52 & 7,759.50 & \$ & 2.70 & \$ & 7,762.20 & \$ & 43.09 & 33.38\% & \$ & 217.12 & 1.15000 & \$ & 249.68 \\
\hline Naples Southeast5E & \$5,095.68 & 0.53 & 7.813.17 & \$ & 2.70 & \$ & 7,815.87 & \$ & 43.09 & 33.38\% & \$ & 218.6 & 1.15000 & \$ & 251.40 \\
\hline Cape Coral5e & \$5,095.68 & 0.55 & 7,902.43 & \$ & 2.70 & \$ & 7,905.13 & \$ & 43.09 & 33.38\% & \$ & 221.09 & 1.15000 & \$ & 254.26 \\
\hline GoldenGate5E & \$5,095.68 & 0.58 & 8,033.29 & \$ & 2.70 & \$ & 8,035.99 & \$ & 43.09 & 33.38\% & \$ & 224.73 & 1.15000 & \$ & 258.44 \\
\hline Salt Springs & \$5,095.68 & 0.59 & 8,077.76 & \$ & 2.70 & \$ & 8,080.46 & \$ & 43.09 & 33.38\% & \$ & 225.97 & 1.15000 & \$ & 259.87 \\
\hline North Cape CoralsE & \$5,095.68 & 0.65 & 8,417.40 & \$ & 2.70 & \$ & 8,420.10 & \$ & 43.09 & 33.38\% & \$ & 235.42 & 1.15000 & \$ & 270.73 \\
\hline Punta Gorda5E & \$5,095.68 & 0.69 & 8,587.28 & \$ & 2.70 & \$ & 8,589.98 & \$ & 43.09 & 33.38\% & \$ & 240.14 & 1.15000 & \$ & 276.16 \\
\hline MadisonD100 & \$5,095.68 & 0.76 & 8,945.68 & \$ & 2.70 & \$ & 8,948.38 & \$ & 43.09 & 33.38\% & \$ & 250.11 & 1.15000 & \$ & 287.63 \\
\hline Arcadia5E & \$5,095.68 & 0.85 & 9,445.90 & \$ & 2.70 & \$ & 9,448.60 & \$ & 43.09 & 33.38\% & \$ & 264.03 & 1.15000 & \$ & 303.63 \\
\hline SopchoppyDio & \$5,095.68 & 0.88 & 9,585.92 & \$ & 2.70 & \$ & 9,588.62 & \$ & 43.09 & 33.38\% & \$ & 267.92 & 1.15000 & \$ & 308.11 \\
\hline St. Marks & \$5,095.68 & 1.11 & 10.757.85 & \$ & 2.70 & \$ & 10,760.55 & \$ & 43.09 & 33.38\% & \$ & 300.52 & 1,15000 & \$ & 345.60 \\
\hline
\end{tabular}

\title{
Sprint Florida, Inc.
}

Docket 990649 - TP

Workpapers 16

FLORIDA SMALL NGDLC (Single-Ended)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LET} \\
\hline Description Quantity & Cost \\
\hline \multicolumn{2}{|l|}{ASSEMBLIES} \\
\hline CBA Supr Pkg 06A: CBA, CmnPkg06A & 1 \\
\hline 19 CBA Projection Mount (5) Adapt. Kit * & 1 \\
\hline COMMON UNITS & 0.00 \\
\hline Digital Link Processor & 2 0.00 \\
\hline TRANSCEIVERS & 0.00 \\
\hline T1 Transceiver (DSX) & 2 \\
\hline Fiber Optic Transceivers & 2 \\
\hline ANALOG UNITS & 0.00 \\
\hline L-Pay, LET Payphone Chnl. Unit & 1 \\
\hline L-UVG, LET Univ.Voice Grd.card Chnl.Unit & 1 \\
\hline DIGITAL UNITS (Cards used in special application) & 0 \\
\hline L-ISDN, Local Exch. ISDN Channel Unit & 1 \\
\hline T-1A, T1 Asynch. Chnl. Unit (Powered) & 1 \\
\hline DSO-DP, Digital Signal Zero Data Porl & 1 \\
\hline Total Material & \$11,531.24 \\
\hline Sales Tax & \$759.91 \\
\hline Eng. Labor COE (40hrs@ \$55.89/hr) & \$2,235.60 \\
\hline Install Labor (Plant COE 72hrs@ \(\$ 43.86 / \mathrm{hr}\) ) & \$3,157.92 \\
\hline Labor & 1 \\
\hline COT Total & \$17.684.67 \\
\hline
\end{tabular}

Total DS1 spans/ 4 FIBERS/DS1- SPANS
\begin{tabular}{|ll|}
\hline SITE COST & \\
\hline Description & Quantity Cost \\
\hline \begin{tabular}{l} 
Site Prep. (Mat. \& Labor) \\
Site Cost Total
\end{tabular} & 1 \\
\hline
\end{tabular}
\begin{tabular}{|lr|}
\hline SYSTEM ALLOCATION & \\
\hline LET (15 RT's per) & \(\$ 1,178.98\) \\
\hline Total & \(\$ 1,178.98\) \\
\hline
\end{tabular}
\begin{tabular}{|lrr|}
\hline BCPM INPUT (With labor \& Tax) & \\
\hline RT 0-48 lines Basic Common Eqpt.Invest & \(\$ 20,283.65\) \\
RT 49-120 lines Basic Common Eqpt.Invest & \(\$ 23,440.67\) \\
RT 121-240 lines Basic Common Eqpt.Invest & \(\$ 32,470.65\) \\
COT 0-240 lines Basic Common Eqpt.Invest (allocated) & \(\$ 1,178.98\) \\
POTS Channel Unit Investment (cost/line) & \(\$ 85.41\) \\
Coin Channel Investment (cost/line) & \(\$ 133.24\) \\
COT DLC Cost/Line & 96Line Avs & \(\$ 12.28\) \\
RT DLC Cost/Line Ext. Range Line Card/6 L & \(\$ 799.44\) & \(\$ 133.24\) \\
Digital Data Ch. Card 1 Line/card (COT\&RT) & \(\$ 1,338.50\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{REMOTE TERMINAL (copper dist.)} \\
\hline Description & Quantity & Cost \\
\hline \multicolumn{3}{|l|}{CABINETS} \\
\hline 4848 Spkg.06b:48Pkg01D,CmnPkg06B & & 1 \\
\hline 120 Spikg.06A:120Pkg06A,CmnPkg06C,PwrPkg1 & & 1 \\
\hline 240-2Spkg.06A:240-2Pkg06A,CmnPkg06D,PwrPkg1| & & 1 \\
\hline TRANSCEIVERS & & 0.00 \\
\hline Fiber Optic Transceiver & & 2 \\
\hline ADDITIONAL EQUIPMENT & & 0.00 \\
\hline 12 Position Fusion Fiber Splicing Tray & & 1 \\
\hline (SC) 12 Position Fiber Dist. Panel & & 1 \\
\hline Pour in Place Template & & 1 \\
\hline 240H-Frame & N/A & 0.00 \\
\hline RCS/240 Battery Tray Warmer & N/A & 0.00 \\
\hline AT\&T IR-40C Batteries (48) & & 4 \\
\hline AT\&T IR-40C Batteries (120) & & 4 \\
\hline AT\&T IR-40C Batteries (240) & & \\
\hline \multicolumn{2}{|l|}{RST TR8 LIF RST TR-008 Ln Item Feature (Pre-Inst) N/A} & 0.00 \\
\hline 120/240 Cable Management Riser Base 15 \({ }^{\circ}\) & & 1 \\
\hline \multicolumn{2}{|l|}{CHANNEL UNITS (Cards used in typical application)} & 0.00 \\
\hline R-POTS (6 lines/card) & & 1 \\
\hline RST-PAY PHONE (6 lines/card) & & 1 \\
\hline (R-EPOTS) RST Extended range POTS CH unit & & 1 \\
\hline \multicolumn{2}{|l|}{CHANNEL UNITS (Cards used in special application)} & 0 \\
\hline R-UVG (6 lines/card) & & 1 \\
\hline OCU_DP, Office Channel Unit Data Port (1 digital ckt & & 1 \\
\hline T-1A, T-1 Asynch. Chnl. Unit (Powered) (1 T-1 ckt) & & 1 \\
\hline R-ISDN & & 1 \\
\hline Total Material & & \$10,528.09 \\
\hline Sales Tax & & \$693.80 \\
\hline Eng. Labor COE (16hrs @ \$55.89/hr) & & \$894.24 \\
\hline Install Labor (Plant COE 32hrs@ \(\$ 43.86 / \mathrm{hr}\) ) & & \$1,403.52 \\
\hline Labor & & \\
\hline \multicolumn{2}{|l|}{RT Total (48 lines)} & \$13,519.65 \\
\hline Total Material & & \$13,489.92 \\
\hline Sales Tax & & \$888.99 \\
\hline Eng. Labor COE (16 hrs@ \$55.89/hr) & & \$894.24 \\
\hline Install Labor (Plant COE 32hrs@ \(\$ 43.86 / \mathrm{hr}\); & & \$1,403.52 \\
\hline Labor & & 1 \\
\hline RT Total (120 lines) & & \$16,676.67 \\
\hline Total Material & & \$21,961.62 \\
\hline Sales Tax & & \$1,447.27 \\
\hline Eng. Labor COE ( 16 hrs @ \(\$ 55.89 / \mathrm{hr}\) ) & & \$894.24 \\
\hline Install Labor (Plant COE 32hrs@ \$43.86/hr) & & \$1,403.52 \\
\hline Labor & & 1 \\
\hline RT Total (240 lines) & & \$25,706.65 \\
\hline
\end{tabular}

\(\square\)


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Florida LARGE NGDLC (Single-Ended)} & \multirow[t]{5}{*}{Sprint
Docket No. \(990649-\mathrm{TP}\)
Workpaper 16
4 of 9
May 1, 2000} \\
\hline Total Material & \$19,535.54 & & & & \\
\hline BCPM INPUT (With labor \& Tax) & \$1,287.39 & OC3 FOT (RT) & & & \\
\hline Eng. Labor COE (40hrs@\$55.89/hr) & \$2,235.60 & Description & Quantity & Ext.Cost & \\
\hline install Labor (Piant COE 98hrs@ \$43.86/hr) & \$4,298.28 & Alcatel 1603/12-COT-01 & 1 & & \\
\hline Labor 1 & & Fan Panel wo/ Filter & 1 & & \\
\hline COT DLC Total (762 Lines) & \$27,356.81 & DS-1 connectorized I/O Panel & 3 & & \\
\hline Total Material & \$33,608.51 & DSX-1 Cabling kit (384, 672, 1344) & 3 & & \\
\hline Sales Tax & \$2,214.80 & Factory installation of the 4 thems above & 1 & & \\
\hline Eng. Labor COE (40hrs @ \$555.89/hr) & \$2,235.60 & OSX-1 Cabling kit (2016) & 6 & & \\
\hline Install Labor (Plant COE 98hrs@ \$43.86/hr) & \$4,298.28 & Common Cards w/OC3 int. Reach Optics & 1 & & \\
\hline Labor 1 & & VTG102 (4-DS1's /Crd) (384 Lns) & 2 & & \\
\hline COT DLC Total (1344 Lines) & \$42,357.20 & VTG102 (4-DS1's /Crd) (672 Lns) & 3 & & \\
\hline Total Material & \$47,681.49 & VTG102 (4-DS1's /Crd) (1344 Lns) & 4 & & \\
\hline Sales Tax & \$3,142.21 & VTG102 (4-DS1's /Crd) (2016 Lns) & 5 & & \\
\hline Eng. Labor COE (40hrs @ \$55.89/hr) & \$2,235.60 & DS1 floating drop Group interface DMI102 & 2 & & \\
\hline Install Labor (Plant COE 98hrs@ \$43.86/hr) & \$4,298.28 & Network Element Processor & 1 & & \\
\hline Labor 1 & & Total Material & & \$19,166.61 & \\
\hline COT DLC Total (2016 Lines) & \$57,357.58 & Sales Tax & & \$1,263.08 & \\
\hline & & Eng. Labor COE (8hrs@\$55.89/hr) & & \$447.12 & \\
\hline Total COT wo/ CLEC card (384 Lns) & \$32,429.59 & Install Labor (Plant COE 23hrs@ \$43.86/hr) & & \$1,008.78 & \\
\hline Total COT wo/ CLEC card (762 Lns) & \$33,552.27 & Tumup Labor (Plant COE 16hrs@ \({ }^{\text {S }} 43.86 / \mathrm{hr}\) ) & & \$701.76 & \\
\hline Total COT wo/ CLEC card (1344 Lns) & \$48,552.65 & Labor & 1 & & \\
\hline Total COT wo/ CLEC card (2016 Lns) & \$63,553.04 & RT FOT Total (384 Lns) & & \$22,587.35 & \\
\hline
\end{tabular}

Florida LARGE NGDLC (Single-Ended)

\begin{tabular}{|lr|}
\hline REMOTE TERMINAL (copper dist.) & \\
\hline \multicolumn{2}{|c|}{ Quantity } \\
Description & 1 \\
Ext.Cost \\
\hline Cabinet MESA4 (384) & 384 \\
Protector SS 260VDC TP BLK & 28 \\
Solid State 260VDC TP RED & 8 \\
Lucent Batteries \& equip. (384) & 1 \\
Cabinet MESA4 (672) & 1 \\
Protector SS 260VDC TP BLK & 672 \\
Solid State 260VDC TP RED & 28 \\
Lucent Batteries \& equip.(672) & 8 \\
Cabinet MESA4 (1344) & 1 \\
Protector SS 260VDC TP BLK & 1344 \\
Solid State 260VDC TP RED & 28 \\
Lucent Batteries \& equip.(1344) & 16 \\
Cabinet MESA6 (2016) & 1 \\
Protector SS 260VDC TP BLK & 2016 \\
Solid State 260VDC TP RED & 28 \\
Lucent Batteries \& equip.(2016) & 24 \\
84CKT DSX Panel & 2 \\
Alarm Cable & 2 \\
AWT Installation Charge & 1 \\
Teradyne 4TEL 225 RMU & 1 \\
96 Fiber Patch panel & 1 \\
AC Pwr Transfer Switch & 1 \\
Cabinet Pad Template & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Total Material & & \$19,616.28 \\
\hline Sales Tax & & \$1,292.71 \\
\hline Eng. Labor COE (8hrs © \(\$ 55.89 / \mathrm{hr}\) ) & & \$447.12 \\
\hline install Labor (Plant COE 23hrs@\$43.86/hr) & & \$1,008.78 \\
\hline Turnup Labor (Plant COE 16hrs © \$43.86/hr) & & \$701.76 \\
\hline Labor & & \\
\hline RT FOT Total (672 Lns) & & \$23,066.65 \\
\hline Total Material & & \$20,065.95 \\
\hline Sales Tax & & \$1,322.35 \\
\hline Eng. Labor COE (8hrs@ \(555.89 / \mathrm{hr}\) ) & & \$447.12 \\
\hline Install Labor (Plant COE 23hrs@\$43.86/hr) & & \$1,008.78 \\
\hline Tumup Labor (Piant COE 16hrs © \$43.86/hr) & & \$701.76 \\
\hline Labor & & \\
\hline RT FOT Total (2016 Lns) & & \$23,545.96 \\
\hline Total Material & & \$21,404.84 \\
\hline Sales Tax & & \$1,410.58 \\
\hline Eng. Labor COE (8hrs@ \$55.89/hr) & & \$447.12 \\
\hline Install Labor (Plant COE 23hrs@\$43.86/hr) & & \$1,008.78 \\
\hline Tumup Labor (Plant COE 16hrs@S43.86/hr) & & \$701.76 \\
\hline Labor & & \\
\hline RT FOT Total (2016 Lns) & & \$24,973.08 \\
\hline \multicolumn{3}{|l|}{COOL CELL CABINET} \\
\hline Description & Quantity & Ext.Cost \\
\hline Cabinet & 1 & 1 \\
\hline Total Material & & \$5,925.84 \\
\hline Sales Tax & & \$390.51 \\
\hline Eng. Labor COE (8hrs@ \(555.89 / \mathrm{hr}\) ) & & \$447.12 \\
\hline install Labor (Plant COE 23hrs@ \$43.86/hr) & & 1 \\
\hline Total Labor & & 1,455.90 \\
\hline COOL CELL Total & & \$7,772.25 \\
\hline
\end{tabular}
\begin{tabular}{|lr|}
\hline & Florida \\
\hline & \\
\hline Total Material & \\
Sales Tax & \\
RT Total (384) & \\
\hline Total Material & \(\$ 3,376.069 .66\) \\
Sales Tax & \(\$ 38,446.65\) \\
\hline RT Total (672) & \(\$ 38,732.30\) \\
\hline Total Material & \(\$ 2,552.46\) \\
Sales Tax & \(\$ 41,284.76\) \\
RT Total (1344) & \(\$ 46,016.44\) \\
\hline Total Material & \(\$ 3,032.48\) \\
Sales Tax & \(\$ 49,048.92\) \\
RT Total (2016) & \(\$ 70,304.21\) \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline SITE COST & & \\
\hline Description \\
Site Prep. (Mat. \& Labor) & Quantity & Ext.Cost \\
\hline Site Cost Total & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SYSTEM ALLOCATION} \\
\hline GR-303 terminal (covered in switch input) & \\
\hline COT (15 RT's per) (384 Lns) & \$2,161.97 \\
\hline OC\# FOT (COT) (4 RT's per) (384) & \$5,382.37 \\
\hline Total (384 Lns) & \$7,544.35 \\
\hline COT (15 RT's per) (672 Lns) & \$2,236.82 \\
\hline OC\# FOT (COT) (4 RT's per) (672) & \$5,502.20 \\
\hline Total (672 Lns) & \$7,739.02 \\
\hline COT (15 RT's per) (1344 Lns) & \$3,236.84 \\
\hline OC\# FOT (COT) (4 RT's per) (1344) & \$5,622.03 \\
\hline Total (1344 Lns) & \$8,858.87 \\
\hline COT (15 RT's per) (2016 Lns) & \$4,236.87 \\
\hline OC\# FOT (COT) (4 RT's per) (2016) & \$5,741.85 \\
\hline Total (2016 Lns) & \$9,978.72 \\
\hline \multicolumn{2}{|l|}{BCPM INPUT (With labor \& Tax)} \\
\hline RT 241-384 lines Basic Common Eqpt.Invest & \$117,610.80 \\
\hline RT 385-672 lines Basic Common Eqpt.Invest & \$122,050.93 \\
\hline RT 673-1344 lines Basic Common Eqpt.Invest & \$132,856.72 \\
\hline RT 1345-2016 lines Basic Common Eqpt.Invest & \$162,328.64 \\
\hline COT 241-384 lines Basic Common Eqpt.Invest (allocated) & \$7,544.35 \\
\hline COT 385-672 lines Basic Common Eqpt.Invest (allocated) & \$7,739.02 \\
\hline COT 673-1344 lines Basic Common Eqpt.Invest (allocated) & \$8,858.87 \\
\hline COT 1345-2016 lines Basic Common Eqpt.Invest (allocated & \$9,978.72 \\
\hline POTS Channel Unit Investment (cost/line) & \$53.35 \\
\hline Coin Channel Investment (cost/line) SCU12 \& 22 COT DLC Cost/Line (avg. of \(384 \& 672\) lines) & \$643.59
\(\$ 15.58\) \\
\hline RT DLC Cost/Line Ext. Range Line Card/dual \$199.49 & \$99 \\
\hline DDS COT \& RT (1Line / card) & \$679.41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Florida LARGE NGDLC (Single-Ended)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sprint \\
Docket No. 990649-TP Workpaper 16
\end{tabular}} \\
\hline Total Material & \$17,751.47 & \\
\hline Sales Tax & \$1,169.82 & 7 of 9 \\
\hline Eng. Labor COE (72hrs © \$55.89/hr) & \$4,024.08 & May 1,2000 \\
\hline install Labor (Plant COE 150hrs@\$43.86/hr) & \$6,579.00 & \\
\hline Labor 1 & & \\
\hline Terminal Cost Total (672) & \$29,524.37 & \\
\hline Total Material & \$20,155.38 & \\
\hline Sales Tax & \$1,328.24 & \\
\hline Eng. Labor COE (72hrs © \$55.89/hr) & \$4,024.08 & \\
\hline install Labor (Plant COE 150hrs@ \$43.86/hr) & \$6,579.00 & \\
\hline Labor 1 & & \\
\hline Terminal Cost Total (1344) & \$32,086.70 & \\
\hline Total Material & \$22,178.52 & \\
\hline Total w/SNS 11.03\% & \$24,624.81 & \\
\hline Sales Tax & \$1,461.56 & \\
\hline Eng. Labor COE (72hrs @ \$55.89/hr) & \$4,024.08 & \\
\hline install Labor (Piant COE 150hrs@ \(433.86 / \mathrm{hr}\) ) & \$6,579.00 & \\
\hline Labor 1 & & \\
\hline Terminal Cost Total (2016) & \$34,243.16 & \\
\hline Total RT wo/ CLEC card ( 384 Lns ) & \$66,848.31 & \\
\hline Total RT wo/ CLEC card ( 672 Lns ) & \$70,809.14 & \\
\hline Total RT wo/ CLEC card ( 1344 Lns ) & \$81,135.62 & \\
\hline Total RT wo/ CLEC card (2016 Lns) & \$109,180.42 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
COT Misc.Equip. & \(\$ 5,812.42\) & 726.55 & 992 & -265.45 \\
COT DLC & \(\$ 18,482.26\) & 2310.28 & 2208 & 102.28 \\
COT FOT & \(\$ 18,682.52\) & 2335.31 & 2400 & -64.69 \\
RT FOT & \(\$ 19,166.61\) & 2395.83 & 1974 & 421.83 \\
RT Cabinet & \(\$ 49,048.92\) & 6131.12 & 5994 & 137.12 \\
RT Terminal Equip. & \(\$ 16,698.17\) & \(\underline{2087.27}\) & \(\underline{4619}\) & \(\underline{-2531.73}\) \\
& \(\$ 127,890.90\) & 15986.36 & 18187 & -2200.64 \\
& & & &
\end{tabular}


\section*{Sprint Florida, Inc.}

Docket 990649-TP

Workpapers 18
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ SWCLLI } & FDI Code & DS3 Count \\
\hline WNPKFLXADS1 & 1001299 \\
\hline TVRSFLXADS0 & 3102248 \\
\hline TLHSFLXDDS0 & 2008339 \\
\hline TLHSFLXDDS0 & 3004229 \\
\hline TLHSFLXCDS0 & 3004299 \\
\hline TLHSFLXCDS0 & 3005499 \\
\hline TLHSFLXBDS0 & 1007265 \\
\hline TLHSFLXBDS0 & 1007297 \\
\hline TLHSFLXXADS0 & 2001399 \\
\hline TLHSFLXADS0 & 2002199 \\
\hline TLHSFLXADS0 & 4001199 \\
\hline TLHSFLXADS0 & 4004336 \\
\hline TLHSFLXADS0 & 4005399 \\
\hline TLHSFLXXADS0 & 4007399 \\
\hline OCALFLXBDS0 & 3003299 \\
\hline OCALFLXADS0 & 3002499 \\
\hline NPLSFLXDDS0 & 2010313 \\
\hline NNPLFLXADS1 & 4007159 \\
\hline NFMYFLXBDS0 & 1001499 \\
\hline MTLDFLXADS1 & 1002299 \\
\hline MTLDFLXADS1 & 1004299 \\
\hline MTLDFLXADS1 & 1005499 \\
\hline MTLDFLXADS1 & 2001399 \\
\hline MTLDFLXADS1 & 4001199 \\
\hline MTLDFLXADS1 & 4003199 \\
\hline LKBRFLXADS1 & 1006299 \\
\hline KSSMFLXBDS1 & 2201299 \\
\hline KSSMFLXADS0 & 1011454 \\
\hline GLRDFLXADS0 & 1007455 \\
\hline GLRDFLXADS0 & 4001339 \\
\hline GLGCFLXADS0 & 2002199 \\
\hline FTWBFLXBDS0 & 3002499 \\
\hline FTWBFLXADS0 & 3002299 \\
\hline FTMYFLXCDS2 & 1008499 \\
\hline FTMYFLXADS0 & 3001299 \\
\hline FTMYFLXADS0 & 4003399 \\
\hline FTMYFLXADS0 & 4006199 \\
\hline CYLKFLXBRS0 & 2002199 \\
\hline
\end{tabular}

\title{
Sprint Florida, Inc.
}

Docket 990649-TP

Workpapers 19

\section*{INVENTORY - 'Interexchange - Middle Section Only \\ STATE - FLORIDA}


\title{
Sprint Florida, Inc.
}

\section*{Docket 990649 - TP}

Workpapers 20

\section*{Alcatel OC-3 Central Office Terminal (7'-0')} Equipped with 2 DS-3s


* 1 to 4 DS3s require two line interfaces: one working, one back-up.
Therefore, 4 cards provide 8 DS3s. Two more cards would be required to get the 9th DS3.
** 2 line drivers / receivers per working DS3.

\section*{Alcatel OC-48 Central Office Terminal (7'-0') Equipped with 36 DS-3s}

* 1 to 4 DS3s require two line interfaces: one working, one back-up. Therefore, 18 cards provide 36 DS3s.
** 2 line drivers / receivers per working DS3.



BREAK POINTS
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{OC3} \\
\hline \[
\begin{gathered}
\text { \# of } \\
\text { DS3s } \\
\text { Needed }
\end{gathered}
\] & \begin{tabular}{l}
\# of OC3 \\
Terminals
\end{tabular} & Common & DS3s & Total \\
\hline 95 & 48 & & & \\
\hline 96 & 48 & & & \\
\hline 97 & 49 & & & \\
\hline 98 & 49 & & & \\
\hline 99 & 50 & & & \\
\hline 100 & 50 & & & \\
\hline 101 & 51 & & & \\
\hline 102 & 51 & & & \\
\hline 103 & 52 & & & \\
\hline 104 & 52 & & & \\
\hline 105 & 53 & & & \\
\hline 106 & 53 & & & \\
\hline 107 & 54 & & & \\
\hline 108 & 54 & & & \\
\hline 109 & 55 & & & \\
\hline 110 & 55 & & & \\
\hline 111 & 56 & & & \\
\hline 112 & 56 & & & \\
\hline 113 & 57 & & & \\
\hline 114 & 57 & & & \\
\hline 115 & 58 & & & \\
\hline 116 & 58 & & & \\
\hline 117 & 59 & & & \\
\hline 118 & 59 & & & \\
\hline 119 & 60 & & & \\
\hline 120 & 60 & & & \\
\hline 121 & 61 & & & \\
\hline 122 & 61 & & & \\
\hline 123 & 62 & & & \\
\hline 124 & 62 & & & \\
\hline 125 & 63 & & & \\
\hline 126 & 63 & & & \\
\hline 127 & 64 & & & \\
\hline 128 & 64 & & & \\
\hline 129 & 65 & & & \\
\hline 130 & 65 & & & \\
\hline 131 & 66 & & & \\
\hline 132 & 66 & & & \\
\hline 133 & 67 & & & \\
\hline 134 & 67 & & & \\
\hline 135 & 68 & & & \\
\hline 136 & 68 & & & \\
\hline 137 & 69 & & & \\
\hline 138 & 69 & & & \\
\hline 139 & 70 & & & \\
\hline 140 & 70 & & & \\
\hline 141 & 71 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{OC12} & \multicolumn{4}{|c|}{OC48A} \\
\hline \begin{tabular}{l}
\# of OC12 \\
Terminals
\end{tabular} & Common & DS3s & Total & \# of OC48A Terminals & Common & DS3s & Total \\
\hline 11 & & & & 3 & & & \\
\hline 11 & & & & 3 & & & \\
\hline 11 & & & & 3 & & & \\
\hline 11 & & & & 3 & & & \\
\hline 11 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 12 & & & & 3 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 13 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 14 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 15 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline 16 & & & & 4 & & & \\
\hline
\end{tabular}


\section*{Bands}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# of DS3s & Terminal Size & Common Costs & Times 2 (for both ends) & Cost per DS3 & Times 2 (for both ends) \\
\hline 0-2 & OC3 & & & & \\
\hline 3-9 & OC12 & & & & \\
\hline 10-18 & OC12 & & & & \\
\hline 19-36 & OC48 Uni & & & & \\
\hline 37-72 & OC48 Uni & & & & \\
\hline 73-108 & OC48 Uni & & & & \\
\hline 109-144 & OC48 Uni & & & & \\
\hline 145-180 & OC48 Uni & & & & \\
\hline
\end{tabular}```


[^0]:    Service Order Charges
    Description and Methodology

[^1]:    Installation Charges
    Description and Methodology

[^2]:    Installation Charges
    Description and Methodology

[^3]:    Business Customer Reps - Minutes are for the first feature. Each additional feature is 1 minutes.

