MCWHIRTER REEVES
 ATTORNEYS AT LAW

ORIGINAL

August 21, 2000

VIA HAND DELIVERY

Blanca S. Bayo, Director
Division of Records and Reporting $(850) 222-2525$

$(850) 222.5606$ FAX

Betty Easley Conference Center 4075 Esplanade Way
Tallahassee, Florida 32399-0870
Re: Docket No.: 990649-TP

Dear Ms. Bayo:
On behalf of Florida Competitive Carriers Association, AT\&T, MCI WorldCom, Intermedia and Z-Tel, enclosed for filing and distribution are the original and 15 copies of the following:

- Joint Prehearing Statement of Florida Competitive Carriers Association, AT\&T, MCI WorldCom, Intermedia and Z-Tel.

Please acknowledge receipt of the above on the extra copy of each and return the stamped copies to me in the envelope provided. Thank you for your assistance.

Yours truly,

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION (7 A 4

In re: Investigation into pricing of unbundled network elements.

Docket No. 990649-TP
Filed: August 21, 2000

Joint Prehearing Statement of Florida Competitive Carriers Association, AT\&T, MCI WorldCom, Intermedia and Z-Tel

The Florida Competitive Carriers Association (FCCA), AT\&T Communications of the Southern States, Inc. (AT\&T), MCI WorldCom, Inc. (MCIW), Intermedia Communications, Inc. (Intermedia), and Z-Tel Communications, Inc. (Z-Tel), pursuant to Order No. PSC-00-2015-PCOTP, issued on June 8, 2000, jointly file their Prehearing Statement.

Preliminary Statement

As the Commission is aware, BellSouth very recently distributed numerous modifications to its model. At the time this Prehearing Statement is being prepared, FCCA, AT\&T, MCIW, Intermedia, and $\mathrm{Z}-\mathrm{Tel}$ have not had an adequate opportunity to assess either the changes or related testimony. Accordingly, these parties reserve the right to modify the positions stated herein as necessary to protect their interests.

A. APPEARANCES:

JOSEPH A. MCGLOTHLIN and VICKI GORDON KAUFMAN, McWhirter, Reeves, McGlothlin, Davidson, Decker, Kaufman, Arnold \& Steen, P.A., 117 South Gadsden Street, Tallahassee, Florida 32301. (Attorneys for Florida Competitive Carriers Association)

JAMES LAMOUREUX, 1200 Peachtree Street, Suite 1200, Atlanta, Georgia 32309 and
FLOYD R. SELF, Messer, Caparello and Self, Post Office Box 1876, Tallahassee, Florida 32302 (Attorneys for AT\&T Communications of the Southern States, Inc.)

DONNA CANZANO MCNULTY, MCI WorldCom, Inc. 325 John Knox Road, The Atrium Building-Suite 105, Tallahassee, Florida 32303
and
RICHARD D. MELSON, Hopping Green Sams \& Smith, P.A., Post Office Box 6526, Tallahassee, Florida 32314. (Attorneys for MCI WorldCom, Inc.)

SCOTT A. SAPPERSTEIN, Sr. Policy Counsel, Intermedia Communications, Inc., 3625 Queen Palm Drive, Tampa, Florida 33619. (Attorney for Intermedia Communications, Inc.)

JONATHANE. CANIS and MICHAEL HAZZARD, Kelley Drye \& Warren, LLP, 1200 Nineteenth Street N.W., Fifth Floor, Washington, DC 20036. (Attorneys for Z-Tel Communications, Inc.)

B. WITNESSES:

On Behalf of the Florida Competitive Carriers Association:

Witness

Joseph Gillan

Issue

On Behalf of AT\&T and MCIW:

Witness

Greg Darnell
John C. Donovan and Brian F. Pitkin
Brenda J. Kahn Jeffrey King
Catherine E. Pitts

Issue

$7(\mathrm{t}), 7(\mathrm{u}), 2(\mathrm{a})$
1, 7(a), 7(e,f,g,h,i,j,k,1,m,n,s), 8
4
8, 9(a), 10, 11, 12
7(o)
On Behalf of Intermedia: None
On Behalf of Z-Tel:

Witness

Issue
Dr. George S. Ford $\quad 1,7(0)$

C. EXHIBITS:

On Behalf of the Florida Competitive Carriers Association:

Joseph Gillan

JPG-1 Figure 1: The Longer the Analytical Period, the More Inputs are Included in a Forward Looking Analysis
JPG-2 Table 1: Status of UNE-based Competition in Florida
Table 2: Growth in UNE Loops and ILEC Lines
Table 3: The Status of UNE-Based Competition in New York

On Behalf of AT\&T and MCIW:

Greg Darnell

GJD-1	Rebuttal Testimony of Walter S. Reid GJD-2 Calculations to Determine Indirectly Avoided Retail Cost Amount
GJD-3	Revised Expense Development Factors and Revised Shared and Common Cost Factors
GJD-4	Analysis of BellSouth Plant Specific Expense Factors
GJD-5	Calculations Used to Determine Total Monthly Cost for a 2-
Wire Loop System	
GJD-6	USOA's Trend Analysis
GJD-7	BellSouth Corporate Operations Expense
GJD-8	BellSouth Deaveraging Analysis
GJD-9	BellSouth Deaveraging Summary GJD-10 Response to AT\&T Interrogatories 28, 29, 30, 32 \& 35 GJD-11

John C. Donovan and Brian F. Pitkin

JCD-BFP-1 John C. Donovan Professional Experience
JCD-BFP-2 Curriculum Vitae of Brian F. Pitkin
JCD-BFP-3 Table: Number of DLC's
JCD-BFP-4 Table: Annual Nominal Cost of Capital v. Real Cost of Capital
JCD-BFP-5 Graph: Annuity Nominal Cost of Capital v. Real Cost of Capital

JCD-BFP-6 Table: Nominal Cost of Capital Plus Inflation for Material and Labor
JCD-BFP-7 Chart: Nominal Cost of Capital v. Nominal Cost of Capital Plus Inflation
JCD-BFP-8 DLC In Plant Factor Development
JCD-BFP-9 Comparison of Installed DLCRT \& COT Investments by Vendor
JCD-BFP-10 Regression to Determine Aerial DTBT Inputs
JCD-BFP-11 BellSouth's Inputs and Modified Inputs
JCD-BFP-12 Map with Central office
JCD-BFP-13 Map with BSTLM Original Routing and Map of Alternative Routing with Splitting
JCD-BFP-14 Map of BSTLM Drop Routing and Map of Correct Drop Routing
JCD-BFP-15 Chart: DLC In Plant Factor Development
Brenda J. Kahn

BK-1 Scenario A: "25 Pair Terminal" Scenario
BK-2 Single Point of Interconnection Scenario
Jeffrey King
JAK-1 BellSouth Cost Calculator 2.3: Element Summary Report Comparison of BellSouth and AT\&T Proposed Rates (Revised)
JAK-2 Element Summary Report Comparison of AT\&T and GTE Proposed Rates (Revised)
JAK-3 Table: BST Default
Catherine E. Pitts

CEP-1	BellSouth's Response to ATT's 2nd Set of Interrogatories, Item \#87
CEP-2	3 pages, all confidential
CEP-3	POD \#6
CEP-4	1 page, all confidential
CEP-5	POD \#141, Attachment No. 1
CEP-6	POD \#14
CEP-7	ATT Item \#89
CEP-8	2 pages, all confidential

On Behalf of Intermedia: None

On Behalf of Z-Tel: None

D,E,F. STATEMENT OF ISSUES AND POSITIONS

Statement of General Position

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

Only by establishing rates for unbundled network elements that are based on appropriate economic costs can the Commission provide the framework for meaningful competition in the local market in Florida. In this proceeding BellSouth has proffered a new cost model that, as a consequence of improved methods in such areas as customer locations and road networks, generally "builds" a network requiring far fewer materials than did its prior model. In this respect the model itself is an improvement. Yet, counterintuitively, the overall costs claimed by BellSouth in this case--and the UNE rates proposed by BellSouth--are similar to the very high costs and rates proffered by BellSouth in the past. An analysis explains this paradox. BellSouth has artificially inflated the network costs by injecting into its new model a myriad of unrealistic, inappropriate, and inefficient assumptions, methods, factors and inputs. Even though BellSouth prevented parties from accessing all areas of the model necessary to accomplish all needed reforms, witnesses representing ALECs have made and substantiated many corrections that reveal the extent of BellSouth's excesses and that translate into prices for UNEs that are significantly lower than those proposed by BellSouth.

Issue 1:

What factors should the Commission consider in establishing rates and charges for UNEs (including deaveraged UNEs and UNE combinations)?

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

The Commission should focus on the forward-looking costs that would be incurred by the ILEC when an ALEC obtains an unbundled network element or combination of such elements. Forward-looking costs are the best measurement of the relevant and pertinent costs that an ILEC incurs to provide a UNE, because those are the only costs that affect future decisions. Use of embedded costs would violate accepted economic theory, overstate UNE prices and impede competition. With respect to combinations, BellSouth's concept of "full market value" is another attempt at abandoning cost-based pricing. BellSouth's proposal to set combination rates equal to the value of its retail services would cripple the development of competition and would fail to meet the requirement of the Act to establish forward-looking cost-based UNE rates. The Commission should combine the forward-looking cost methodology it has historically embraced, the experience it has gained since the early arbitrations, and the better data that has become available since then to set cost-based UNE rates that will promote the development of local competition in Florida.

Issue 2(a): What is the appropriate methodology to deaverage UNEs and what is the appropriate rate structure for deaveraged UNEs?

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

The requirement that a UNE rate be based on forward-looking costs is applicable to all UNE rates, including deaveraged rates. Accordingly, the Commission should select a methodology that focuses solely on identified geographical differences between forward-looking costs. BellSouth's
proposal fails this criterion. BellSouth proposes to stratify wire centers on the basis of its common retail rate groups, and then calculate the average costs of the wire centers in each resulting group. However, areas used for retail service often include both low cost and high cost areas. Accordingly, this method of dividing geographic areas would place greater emphasis on consistency of retail revenues than on differences in economic costs.

The Commission should prescribe a minimum of three geographical areas within the service area of each ILEC that would be differentiated on the basis of variances in forward-looking economic costs.

Issue 2(b): For which of the following UNEs should the Commission set deaveraged rates?
(1) loops (all);
(2) local switching;
(3) interoffice transport (dedicated and shared);
(4) other (including combinations)

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

The rates for all loops of every type should be deaveraged.

Issue 3(a): What are xDSL capable loops?
3(b): Should a cost study for xDSL-capable loops make distinctions based on loop length and/or the particular DSL technology to be deployed?

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel adopt the positions of Covad, BlueStar, and Rhythms Links as their positions on Issues 3(a) and 3(b).

Issue 4(a): Which subloop elements, if any, should be unbundled in this proceeding, and how should prices be set?

FCCA, AT\&T, MCIW, Intermedia and Z-Tel:

The following sub-loop elements must be unbundled:

Sub-Loops

Sub-Loop Feeder Per 2-Wire Analog Voice Grade Loop
Sub-Loop Distribution Per 2-Wire Analog Voice Grade Loop
Sub-Loop Distribution Per 4-Wire Analog Voice Grade Loop
Network Interface Device Cross Connect
2-Wire Intrabuilding Network Cable
4-Wire Intrabuilding Network Cable
Sub-Loop - Per Cross Box Location - CLEC Feeder Facility Set-Up
Sub-Loop - Per Cross Box Location - Per 25 Pair Panel Set-Up
Sub-Loop - Per Building Equipment Room - CLEC Feeder Facility Set-Up
Sub-Loop - Per Building Equipment Room - Per 25 Pair Panel Set-Up
Sub-Loop - Per Cross Box Location - CLEC Distribution Facility Set-Up
Sub-Loop - Per Building Equipment Room - CLEC Distribution Facility Set-Up
Sub-Loop - Per 2-Wire Analog Voice Grade Loop SL2/Feeder Only
Sub-Loop - Per 4-Wire Analog Voice Grade Loop/Feeder Only
Sub-Loop - Per 2-Wire ISDN Digital Grade Loop/Feeder Only
Sub-Loop - Per 4-Wire 56 or 64 Kbps Digital Grade Loop/Feeder Only
Sub-Loop - Per 2-Wire Copper Loop short/feeder Only
Sub-Loop - Per 4-Wire Copper Loop short/feeder only
Sub-Loop - Per 2-Wire Copper Loop short/distribution only
Sub-Loop - Per 4-Wire Copper Loop short/distribution only
Network Interface Device - 2 line
Network Interface Device - 6 line
Loop Channelization and CO Interface (inside Central Office)
Unbundled Loop Concentration - System A (TR008)
Unbundled Loop Concentration - System B (TR008)
Unbundled Loop Concentration - System A (TR303)
Unbundled Loop Concentration - System B (TR303)
Unbundled Loop Concentration - DS1 Line Interface Card
Unbundled Loop Concentration - POTS Card
Unbundled Loop Concentration - ISDN (Brite Card)
Unbundled Loop Concentration - SPOTS Card
Unbundled Loop Concentration - Specials Card
Unbundled Loop Concentration - TEST CIRCUIT Card

Concentration per system per feature activated (outside Central Office)

Unbundled Loop Concentration - Digital 19, 56, 64 Kbps Data
Unbundled Loop Concentration - System A (TR008)
Unbundled Loop Concentration - System B (TR008)
Unbundled Loop Concentration - System A (TR303)
Unbundled Loop Concentration - System B (TR303)
Unbundled Sub-Loop Concentration - USLC Feeder Interface
Unbundled Loop Concentration - POTS Card
Unbundled Loop Concentration - ISDN (Brite Card)
Unbundled Loop Concentration - SPOTS Card
Unbundled Loop Concentration - Specials Card
Unbundled Loop Concentration - TEST CIRCUIT Card
Unbundled Loop Concentration - Digital 19, 56, 64 Kbps Data
Unbundled Terminating Wire
Unbundled Network Terminating Wire (NTW) per Pair

Issue 4(b): How should access to such subloop elements be provided, and how should prices be set?

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel to 4(a) and 4(b):
As the FCC has recognized, access to subloop elements is likely to be the catalyst that will allow competitors to deploy complementary facilities and, eventually, to develop competitive loops.

With respect to intrabuilding network cable (riser) and network terminating wire, BellSouth proposes charges based on a means of access that violates the FCC's UNE remand order. Despite the fact that the order calls for a single point of interconnection, BellSouth's calculation assumes BellSouth would install duplicative facilities that would be used only by ALECs, then require cross connections to BellSouth's existing cross connect device. Imposing the cost of additional equipment on new entrants is not competitively neutral. It is unnecessary in view of arrangements-such as appropriate indemnification requirements-that can satisfy any concerns for network security. BellSouth must provide a single point of interconnection, and the Commission should establish the

UNE price that corresponds to this less costly means of interconnection.

Issue 7: What are the appropriate assumptions and inputs for the following items to be used in the forward-looking recurring UNE cost studies?
(A) network design (including customer location assumptions);

FCCA, AT\&T, MCIW, Intermedia, and Z-TeI:

Many of the numerous faulty methodologies, inputs, and assumptions employed by BellSouth that overstate the costs calculated by the BSLTM relate to network design. For instance, BellSouth modeled three different scenarios: "Combo," "All Copper," and "BST2000." BellSouth should have directed its model to construct a single network that estimates the forward-looking costs using existing technology. The Commission should utilize only the Combo scenario, which employs integrated digital loop carrier and a mix of copper and fiber facilities. The "all copper" scenario would be impractical in the real world and would artificially inflate the cost of a copper loop. Further, it is not necessary to assume an all-copper network to study unbundled copper loops (the sole purpose to which BellSouth applied the scenario); the Combo scenario can be used for that purpose. The BST 2000 scenario should be rejected because it assumes a network that requires three separate conversions (analog-to-digital, then to analog at the switch, and back to digital) at different points in the network, instead of a single analog to digital conversion at the remote terminal. This assumption is inefficient and unrealistic in an era in which the digital switches can be and are integrated with the digital loop carrier (as they are assumed to be in the "Combo" scenario) and in which the new entrants' networks will be all digital. The assumption can only increase UNE prices artificially.

In addition, BellSouth's loop length inputs do not reflect efficient network construction. To arrive at the most economical network, the inputs to the model should include a maximum loop length of 16,800 feet on 26 -gauge copper, and extended range line cards above 13,000 feet.

The BSLT fails to employ the appropriate minimum spanning road tree when "constructing" DLC. Instead, the model mistakenly relies on the same MSRT used to develop the feeder network. As a result, the model may artificially restrict the number of customers that can be served by a single DLC., thereby overstating costs.

Another flaw separately overstates the cost of DLC equipment. The data provided in the model indicates that BellSouth obtains DLC equipment from two vendors. One of the vendors is more expensive than the other for large DLCs, but less expensive for small DLCs. The costeffective modeling approach would be to assume that all small DLC facilities are purchased from one vendor and all large DLCs from the other. Instead, BellSouth inappropriately assumed a "mix" of large and small facilities purchased from each. Therefore, BellSouth failed to assume the most cost-efficient investment in DLC facilities.

In designing the network BellSouth erroneously assumed a "rectilinear" or "perpendicular" drop pattern, i.e. a pattern that assumes the service drop will follow the perimeter of the lot and then approach the residence at a right angle, when in fact the drop typically and more efficiently runs from the lot corner to the NID. The impact of the inappropriate assumption was to inflate the amount of investment in drops by 21.7%. (BellSouth's latest filing purports to address this problem; the above parties have not had an opportunity to evaluate the attempt.)

The overall impact of these errors in network design is to artificially bloat the investment associated with the network. When these errors are corrected, corresponding UNE rates are reduced
significantly.
(E) structure sharing
(F) structure costs

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:
Structure sharing and structure costs should be explicitly calculated in BellSouth's model.
Instead, BellSouth derived values based on the application of various "factors" to prior values. This "factor approach" distorts costs, because of the inherently arbitrary and inaccurate nature of the factors applied.
(G) fill factors

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

In its model, BellSouth assumed that each household would receive an average of 2 copper pairs. In its USF order, issued in Docket No. 980696-TP, the Commission determined that the appropriate assumption should instead be an average of 1.5 pairs. This assumption should be employed in this case.

In addition, as a general matter, where increased activity can be accommodated with additional line cards, there is no need to install large amounts of extra capacity. For this reason, the fill factors applicable to central office terminal equipment should change from 80% to 90%, and the fill factor for remote terminals should increase from 70% to 90%.
(I) fiber cable (material and placement costs);
(J) copper cable (material and placement costs);
(K) drops:
(L) network interface devices
(N) terminal costs

Consolidated response of FCCA, AT\&T, MCIW, Intermedia, and Z-Tel to (I), (J), (K), (L), and (N):

The BSLT inflates the cost of these facilities by double counting the effects of inflation. The application of a nominal cost of capital takes inflation into account. "Updating", as BellSouth proposes, takes the same effect into account a second time. Further, with respect of each of these categories, BellSouth's approach was to apply "factors" to base amounts as a substitute for direct inputs for engineering and installation costs. To correct for the effect of arbitrary and inappropriate "factors," the Commission should employ the specific unit costs that it developed in Docket No.980696-TP (USF).
(M) digital loop

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

BellSouth also applied the "factor" approach to the quantification of digital loop investment. In this instance, no direct correlation can be made to unit costs developed in the USF docket. Accordingly, the Commission should examine BellSouth's specific assumptions and conclude that the factor applied to digital loop is overstated. The above parties support the more appropriate engineering and installation factor developed by witnesses Donovan and Pitkin.
(O) switching costs and associated variables:

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

BellSouth's proposed switching prices are severely overstated, as the result of the following significant flaws.

Switch vendors apply a higher discount to the list price of new switches than to "growth" or
add-on equipment. When calculating the cost of switches BellSouth melded these discounts in a way that caused it to "purchase," for purposes of the modeling, a majority of lines at the higher prices associated with "growth" or add-on equipment. In fact, BellSouth purchases most lines at the lower "new switch" price. If translated into UNE prices, the inappropriate discount would cause BellSouth to overrecover from ALECs the cost of the switch component of UNE-P at the same time it would create an obstacle to competition. The contract discounts for new switches should be used throughout the switch study. Correcting the discounts reduces BellSouth's claimed investment in ports by 50% and reduces the costs of local switching by 40%. In addition:

Critical investment and capacity errors in BellSouth's feature hardware study caused feature costs to be seriously inflated;

BellSouth's overly simplistic averaging of widely disparate, and often wrong, inputs to arrive at one feature category input produced inaccurate results;

The Simplified Switching Tool that BellSouth developed to produce switch element investments is rife with errors and faults, and should be rejected.

Corrections to these errors are reflected in the switching prices contained in Exhibit \qquad 1, revised).
(T) expenses;
(U) common costs

Consolidated response of FCCA, AT\&T, MCIW, Intermedia, and Z-Tel to (T) and (U):
A review of its submission reveals that BellSouth has overstated these significant expenses in several ways:
(1) BellSouth failed to remove at least $\$ 223,376,929$ of avoided retail expense contained in
overhead and support accounts:
(2) BellSouth applied a very low productivity factor of 3.1% to forecast its expense, when the last productivity factor approved for BellSouth by the FCC was 6.5%;
(3) BellSouth's proposed UNE rates would recover the same land, building, and power expense twice;
(4) BellSouth used plant- specific expense factors that increase as a percent of investment, at a time when the industry is experiencing decreasing expense-to-investment ratios.

These errors have the effect of inflating the UNE prices that are produced by the application of BellSouth's model. The effect of the errors has been corrected in the UNE prices proposed in Exhibit ___(JAK-1, revised).

Issue 8: What are the appropriate assumptions and inputs for the following items to be used in the forward-looking non-recurring UNE cost studies?
(A) network design

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

See 7(A) above
(B) OSS design
(E) mix of manual versus electronic activities;

Consolidated response of FCCA, AT\&T, MCIW, Intermedia, and Z-Tel to (B) and (E):

For purposes of costing UNEs, the model should assume that each UNE is capable of being ordered either electronically or manually.
(C) labor rates-No position
(D) required activities

FCCA, AT\&T, MCIW, Intermedia, and Z-Tel:

BellSouth forms certain "intermediary" work groups which do not get involved in BellSouth's own retail activities. ALECs should not be required to pay for the cost of such groups through UNE prices.

Issue 9(A): What are the appropriate recurring rates (averaged or deaveraged as the case may be) and non-recurring charges for each of the following UNEs?
(1) 2-wire voice grade loop:
(2) 4-wire analog loop;
(3) 2-wire ISDN/IDSL loop;
(4) 2-wire xDSL-capable loop;
(5) 4-wire xDSL-capable loop;
(6) 4-wire 56 kbps loop;
(7) 4-wire 64 kbps loop;
(8) DS-1 loop;
(9) high capacity loops (DS3 and above);
(10) dark fiber loop;
(11) subloop elements (to the extent required by the Commission in Issue 4);
(12) network interface devices;
(13) circuit switching (where required);
(14) packet switching (where required);
(15) shared interoffice transmission;
(16) dedicated interoffice transmission;
(17) dark fiber interoffice facilities;
(18) signaling networks and call-related databases;
(19) OS/DA (where required).

Issue 10: What is the appropriate rate, if any for customized routing?

Issue 11: What is the appropriate rate if any, for line conditioning, and in what situations should the rate apply?

Issue 12: Without deciding the situations in which such combinations are required, what are the appropriate recurring and non-recurring rates for the following UNE combinations:
"UNE platform" consisting of: loop (all), local (including packet, where required) switching (with signaling), and dedicated and shared transport (through and including local termination); "extended links," consisting of:
(1) loop, $\mathrm{DSO} / 1$ multiplexing, DS 1 ingeroffice transport;
(2) DS1 loop, DS1 interoffice transport;
(3) DS1 loop, DS1/3 multiplexing, DS3 interoffice transport.

Consolidated response of FCCA, AT\&T, MCIW, Intermedia, and Z-Tel to Issues 9(a),

10,11 , and 12:

The appropriate UNE prices are those proposed by AT\&T/MCI witness King on Exhibit
___(JAK-1, as revised). An excerpt from the exhibit, showing the UNE prices supported by these parties, is attached.

G. STIPULATED ISSUES:

None at this time.

H. PENDING MOTIONS:

None.

I. STATEMENT OF ANY REQUIREMENT WITH WHICH PARTIES ARE UNABLE TO

COMPLY:

None.

joseph A.Mctllothlin
JO\&EPH A. MCGLOTHLIN
VICKI GORDON KAUFMAN
McWhirter, Reeves, McGlothlin, Davidson
Decker, Kaufman, Arnold \& Steen, P.A.
117 South Gadsden Street
Tallahassee, Florida 32301
Attorneys for Florida Competitive

Posen a Merlathem for

Attorney for MCI
325 John Knox Road
The Atrium Building
Suite 105
Tallahassee, Florida 32303

Messer, Caparello and Self
Post Office Box 1876
Tallahassee, Florida 32302
Attorney for AT\&T

3625 Queen Palm Drive
Tampa, Florida 33619

Attorney for Intermedia Communications, Inc.

Kelly Drye \& Warren, LLP
1200 Nineteenth Street N.W.
Fifth Floor
Washington DC 20036
Attorney for Z-Tel Communications, Inc.

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of the Joint Prehearing Statement of Florida Competitive Carriers Association, AT\&T, MCI, Intermedia and Z-Tel has been furnished by U. S. Mail this 21st day of August 2000, to:
(*)Beth Keating
Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, Florida 32399-0850
Nancy B. White
c/o Nancy H. Sims
BellSouth Telecommunications, Inc.
150 South Monroe Street, Suite 400
Tallahassee, FL 32301-1556
Eric J. Branfman and Morton J. Posner
Swidler Berlin Shereff Friedman, LLP
3000 K. Street, NW, Suite 300
Washington, D.C. 20007-5116

James Falvey
e.spire Communications

133 National Business Parkway
Suite 200
Annapolis Junction, MD 20701
Michael A. Gross
Vice President, Regulatory Affairs \& Regulatory Counsel
Florida Cable
Telecommunications Assoc.
310 North Monroe Street
Tallahassee, FL 32301
Richard Melson
Hopping, Green, Sams \& Smith, PA
P.O. Box 6526

Tallahassee, FL 32314

Jeffrey Wahlen
Ausley Law Firm
Post Office Box 391
Tallahassee, Florida 32301
Jeremy Marcus
Blumenfeld \& Cohen
1615 M. Street, N.W., Suite 700
Washington, DC 20036
Catherine Boone
Covad Communications Company
Ten Glenlake Parkway
Suite 650
Atlanta, Georgia 30328
Norman H. Horton, Jr.
Messer, Caparello \& Self, P.A.
215 South Monroe Street, Suite 701
Tallahassee, Florida 32302-1876

Kimberly Caswell
GTE Florida Incorporated
Post Office Box 110, FLTC0007
Tampa, Florida 33601-0110

Norman Horton, Jr.
Post Office Box 1876
Tallahassee, Florida 32302

Glenn Harris
North Point Communications, Inc.
222 Sutter Street, 7th Floor
San Francisco, CA 94108

TCG South Florida
c/o Kenneth Hoffman
Rutledge Law Firm
Post Office Box 551
Tallahassee, Florida 32302
Andrew Isar
Telecommunications Resellers Assoc.
4312 92nd Avenue, N.W.
Gig Harbor, WA 98335
Charles J. Rehwinkel
Sprint-Florida, Incorporated
P.O. Box 2214

Tallahassee, FL 32316-2214
John Kerkorian
5607 Glenridge Drive
Suite 310
Atlanta, Georgia 30342
Mark E. Buechele
Koger Center
Ellis Building
Suite 200
1311 Executive Center Drive
Tallahassee, Florida 32301-5027
Jon C. Moyle, Jr., Esquire
Cathy M. Sellers, Esquire
Moyle, Flaningan, Katz, Kolins, Raymond
\& Sheehan, P. A.
The Perkins House
118 N. Gadsden Street
Tallahassee, Florida 32301

Stephen P. Bowen
Blumfield \& Cohen
4 Embarcadero Center
Suite 1170
San Francisco, CA 94111
Peter Dunbar
Pennington, Moore, Wilkinson, Bell \&
Dunbar, P.A.
Post Office Box 10095
Tallahassee, Florida 32302
Laura L. Gallagher
Laura L. Gallagher, P.A.
101 East College Avenue, Suite 302
Tallahassee, Florida 32301
Angela Green, General Counsel
Florida Public Telecommunications Assoc.
125 S. Gadsden Street, Suite 200
Tallahassee, Florida 32301-1525
Bruce May
Holland Law Firm
Post Office Drawer 810
Tallahassee, Florida 32302
Russell M. Blau
Marc B. Rothschild
Swidler Berlin Shereff Friedman, LLP
3000 K Street, NW
Suite 300
Washington, DC 20007-5116
Rodney L. Joyce
Shook, Hardy \& Bacon, LLP.
600 14th Street, N.W.
Suite 800
Washington, D.C. 20005-2005

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0
1															
2															
3	Study Name:	Florida Docket No 990649-TP													
4	State:	Florida													
5											AT\&T	\& MCI W	ridCom Pro	Pposed	
6											Non		Non-R	ecurring	
7	Cost Element	Description								Recurring	recurring	First	Additional	Initial	Subsequent
8															
9															
10	A. 0	UNBUNDLED LOCAL LOOP													
11															
12	A. 1	2-MIRE ANALOG VOICE GRADE LOOP													
13	A.1.1	2-Wire Analog Voice Grade Loop- Service Level 1								\$7.42		\$16.20	\$10.23		
14		Zone 1								\$4.96					
15		Zone 2								\$6.94					
16		Zone 3								\$8.55					
17										\$13.13					
18		Zone 5								\$19.28					
19		Zone 6								\$30.51					
20	A.1.1	2-Wire Analog Voice Grade Loop-Service Levet 1 - Disconnect Only										\$6.02	\$3.28		
21	A.1.2	2-Wire Analog Voice Grade Loop - Service Level2								\$8.67		\$21.26	\$12.34		
22		Zone 1								\$5.79					
23		Zone 2								\$8.10					
24		Zone 3								\$9.99					
25		Zone 4								\$15.34					
26		Zone 5 -		$\cdots \cdots$						\$22.52					
27		Zone 6 -								\$35.65					
28	A.1.2	2-Wire Analog Voice Grade Loop - Service Level 2 - Disconnect Only 1 --. . . .										\$6.02	\$3.28		
29	A.1.8	Engineering Information Per 2-Wre Analog Voice Grade Loop - Service Level 1										\$0	\$0		
$\frac{30}{31}$		SUB-LOOP													
32	A.2.1	Sub-Loop Feeder Per 2-Wire Analog Voice Grade Loop								\$4.61		\$37. 13	\$16.72		
33		Zone 1								\$3.08					
34		Zone 2						---. -		\$2.88					
35		Zone 3								\$3.32					
${ }^{36}$		Zone 4								\$5.87					
37		Zone 5								\$15.25	.				
-38		Zone 6								\$62.70	-				
40	A.2. 1	Sub-Loop Feeder Per 2-Wire Analog Voice Grade Loop - Disconnect Only										\$35.19	\$8.93		
41		Zone 1 -								\$3.04		\$28.14	\$10.10		
42		Zone 2								\$4.25					
43	---	Zone 3								\$5.24					
44		Zone 4								\$8.05					
45		Zone 5								\$11.82					
46		Sub-Loop Distribution Per 2-Wire Analog Voice Grade Loop - Disconnect Only								\$18.71					
47	A.2.2 211	Sub-Loop Distribution Per 2-Wrre Analog Voice Grade Loop - Disconnect Only										\$25.86	\$5.01		
$\begin{array}{r}48 \\ \hline 49 \\ \hline\end{array}$	A.2.11	Sub-Loop Distribution Per 4-Wire Analog Voice Grade Loop Zone 1								$\$ 4.47$ $\$ 299$		\$34.99	\$14.65		
50		Zone 2								$\begin{array}{r}\text { P } \\ \hline \mathbf{\$ 2 . 9 9} \\ \hline \mathbf{\$ 4 . 1 8}\end{array}$					-
51		Zone 3								\$5.15					
52		Zone 4								\$7.91					
53		Zone 5								\$11.61					
54		Zone 6								\$18.38.					
55	A.2.11	Sub-Loop Distribution Per 4-Wire Analog Voice Grade Loop - Disconnect Only										\$3361	\$9.60		
56	A.2. 13	Network Interface Device Cross Connect										\$9.54	\$9.54.		
57	A.2.14	2-Wire Intrabuilding Network Cable (INC)								\$0.5661		\$0.4304	\$0.4304		
58	A. 214	2-Wire Intrabuilding Network Cable (INC) - Disconnect Only										\$0	\$0		
59	A. 2.15	4-Wire Intrabuilding Network Cable (INC)								\$0.96910		\$0.4304	\$0.4304		
60	A.2.15	4-Wire Intrabuilding Network Cable (INC) - Disconnect Onty										\$0	\$0		
61	A. 2.17	Sub-Loop - Per Cross Box Location - CLEC Feeder Facility Set-Up									\$0				
62	A.2.18	Sub-Loop - Per Cross Box Location - Per 25 Pair Panel Set-Up									\$0				
63	A.2. 19	Sub-Loop - Per Building Equipment Room - CLEC Feeder Facility Set-Up	- -		---	-					- $\quad \$ 0$				
64	A.2.20	Sub-Loop - Per Building Equipment Room - Per 25 Pair Panel Set-Up									\$0				
65	A.2.21	Sub-Loop - Per Cross Box Location - CLEC Distribution Facility Set-Up									\$0				
67	A.2.23	Sub-Loop - Per 2 -Wire Analog Voice Grade Loop SLi / Feeder Only								\$4.52		\$44.85	\$19.67		
68		Zone 1 --								\$3.02					
69		Zone 2 ${ }_{\text {Zone }}$								$\$ 4.23$ $\$ 5.21$					

	A	B	C	D	E	F	G	H	$1]$	J	K	L	M	N	0
1															
2															
3	Study Name:	Florida Docket No 990649-TP													
4	State:	Florida													
5											AT\&T	8. MCI Wo	ridCom Pro	posed	
6											Non		Non-R	ecurring	
7	Cost Element	Description								Recurring	recurring	First	Additional	\|nitial	Subsequent
8															
257	A. 13.1	2-Wire Copper Loop- short								\$7.46		\$26.43	\$16.27		
258		Zone 1								\$4.98					
259		Zone 2								\$6.97					
260		Zone 3								\$8.60					
261		Zone 4								\$13.20					
262		Zone 5								\$19.38					
263		Zone 6								\$30.67					
264	A.13.1	2-Wire Copper Loop - short- Disconnect Only										\$9.58	\$5.23		
265	A.13.7	2-Wire Copper Loop - long								\$7.46		\$26.43	\$16.27		
266		Zone 1								\$4.98					
267		Zone 2								\$6.97					
288		Zone 3								\$8.60					
268		Zone 4								\$13.20					
270		Zone 5								\$19.38					
$\frac{271}{272}$		Zone 6 2-Wire ${ }^{\text {2 }}$								\$30.67					
$\frac{272}{}$	A.13.7	2-Wire Copper Loop - long - Disconnect Only										\$36.62	\$18.75		
273										\cdots					
274	A. 14	4-WIRE COPPER LOOP													
275	A.14.1	4-Wire Copper Loop-short								\$12.88		\$29.45	\$19.28		
\|276		Zone 1								\$8.60					
277		Zone 2								\$12.04					
\| 278		Zone 3								\$14.85					
		Zone 4 ${ }^{\text {Zone } 5} \ldots$								$\$ 22.79$ $\$ 33.46$					
281		Zone ${ }^{\text {Z }}$ -- ---								$\mathbf{\$ 3 3 . 4 6}$ $\$ 52.96$					
282	A. 14.1	4-Wire Copper Loop - short- Disconnect Only										\$13.33	\$8.89		
283	A.14. 7	4-Wire Copper Loop - long								\$12.88		\$29.45	\$19.28		
284		Zone 1								\$8.60					
285		Zone 2 Zone 3								\$12.04					
\|286		Zone 3 Zone 4								$\$ 14.85$ $\$ 22.79$					
288		Zone 5								\$33.46					
289		Zone 6								\$52.96					
290	A. 14.7	4-Wire Copper Loop - long - Disconnect Only										\$13.33	\$8.89		
$\frac{291}{292}$															
292	A. 15	UNBUNDLED NETWORK TERMINATING WRE (NTW)													
293	A.15. 1	Unbundled Network Terminating Wire (NTW) per Pair								\$0.1762		\$0.4316			
295	A. 16	HIGH CAPACITY UNBUNDLED LOCAL LOOP													
296	A. 16.1	High Capacity Unbundled Local Loop - DS3-Facility Termination								\$244.72		$\$ 49.36$	\$37.90		
297	A. 16.1	High Capacity Unbundled Local Loop - DS3 - Facility Termination - Disconnect Only										\$18.18	\$9.70		
298	A. 16.2	High Capacity Unbundled Local Loop - os3 - Per Mile								\$4.19					
299	A.16.4	High Capacity Unbundied Local Loop - OC3-Facility Termination								\$422.09		\$33.90	\$29.76		
300	A.16.4	High Capacity Unbundled Local Loop - OC3 - Facility Termination - Disconnect Only										\$5.00	\$5.00		
301	A. 16.5	High Capacity Unbundled Local Loop - Oc3 - Per Mile								\$3.18					
302	A.16.7	High Capacity Unbundled Local Loop - OC12- Facility Termination								\$1,323		\$33.90	\$29.76		
303	A. 16.7	High Capacity Unbundled Local Loop - OC12-Facility Termination - Disconnect Only										\$5.00	\$5.00		
304	A. 16.8	High Capacity Unbundled Local Loop - OC12-Per Mile								\$3.91					
305	A.16.10	High Capacity Unbundled Local Loop- OC48- Facility Termination								\$992.75		\$1,96	\$413.06		
306	A. 16.10	High Capacity Unbundled Local Loop - OC48-Facility Termination - Disconnect Only										\$112.71	\$109.45		
307	A. 16.11	High Capacity Unbundled Local Loop - OC48-Per Mile								\$12.84					
308	A.16.13	High Capacity Unbundled Local Loop - OC48-Interface OC12 on OC48								\$416.95		\$549.32	\$315.26		
309	A.16. 13	High Capacity Unbundled Local Loop-OC48-Interface OC12 on OC48-Disconnect Only										\$112.71	\$109.45		
310	A.16.15	High Capacity Unbundled Local Loop - STS-1 - Facility Termination								\$277.98		\$49.36	\$37.90		
311	A.16.15	High Capacity Unbundled Local Loop - STS-1 - Facility Termination - Disconnect Only							-			\$18.18	\$9.70		
312	A. 16.16	High Capacity Unbundled Local Loop - STS-1 - Per Mile - - .-........-.								\$4.19					
$\frac{313}{314}$			--- - - .		--	- - - .									
314	A. 17	LOOP CONDITIONING								- - - -					
315	A.17.1	Unbundled Loop Modification - Load Coil / Equipment Removal - short									\$0				
${ }^{316}$	A.172	Unbundied Loop Modification - Load Coil / Equipment Removal - long - First and Additional _-_.........- Unbundled Loop Modification - Bnidged Tap Removal										\$0	\$0		
- $\frac{317}{318}$	A.17.3	Unbundled Loop Modification - Bridged Tap Removal									- \quad \$0				
318	A.17.4	Unbundled Loop Modification - Additive										\$121.27	\$121.27		

Response to Issue 9(a)

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	
1															
2															
3	Study Name:	Florida Docket No 990649.TP													
4	State:	Florida													
5											AT\&T	\% MCI Wo	rdcom Pro	osed	
6											Non		Non-R	curring	
7	Cost Element	Description								Recurring	recurring	First	Additional	Initial	Subsequent
8															
691	P. 17.8	Nonrecurring Cost - New DS3 or STS-1 w/ 3/1 MUXing Interoffice Facility for Combination Use Only - Disconnect Only										\$17.42	\$13.07		
692	P. 17.10	Nonrecurring Cost - New VG Local Loop for Combination Use Only										\$8.17	\$4.07		
693	P. 17.10	Nonrecurring Cost - New VG Local Loop for Combination Use Only - Disconnect Only										\$4.70	\$0.9409		
694	P. 17.11	Nonrecurring Cost - New DS1 Local Loop for Combination Use Only										\$8.69	\$4.07		
695	P. 17.11	Nonrecuring Cost - New DS1 Local Loop for Combination Use Only - Disconnect Only										\$4.70	\$0.9409		
696	P.17.12	Nonrecurring Cost - New DS3 or STS-1 Local Loop for Combination Use Only										\$8.14	\$4.07		
697	P.17.12	Nonrecurring Cost - New DS3 or STS-1 Local Loop for Combination Use Only - Disconnect Only										\$4.70	\$0.9409		
698	P. 17.16	Nonrecurring Cost - New Feature Activation for Combination Use Only										\$1.99	\$1.99		
699	P. 17.17	Nonrecurring Cost - New DSO IOF for Combination Use Only										\$14.53	\$10.71		
700	P. 17.17	Nonrecurring Cost - New DSO IOF for Combination Use Only - Discomnect Only							-			\$9.58	\$5.23		
701															
702	P. 50	4-MRE DS1 LOOP WTH CHANNELIZATION WITH PORT													
703	P. 50.1	4-Wire DS1 Loop/Channelization Port Combination - Nonrecuring Costs - Switch-as-is										\$316.56	\$17.06		
704	P.50.4	4-Wire DS1 Loop/Channelization Port Combination - Subsequent Activity - Add Lines - Per Line									\$111.34				
705	P.50.5	4-Wire DS1 Loop/Channelization Port Combination - Subsequent Activity - Add Trunks - Per Tuunk									\$157.24				
706															
707	Q. 0	D4 CHANNEL BANKS													
708															
709	Q. 1	D4 CHANNEL BANKS CENTRAL OFFICE													
710	Q.1.1	D4 Channel Bank Inside CO- System								\$102.32					
711	Q.1.3	Unbundled Loop Concentration - ISDN (Brite Card)								\$2.53					
712	Q.1.4	Unbundled Loop Concentration - POTS Card								\$0.5549					
713															
714															
715	ATRT \& MCIWo	rkldacom Revised Rate Proposal 08101100													
776	Populated Cost	Eelement numbers A.2.14, A.2.15, A. 3.12-A.3.15, A 19.1-A.19.3, and D.5. 19 -													
7717	Aligned rate's de	scription and rate proposal for Cost Element numbers B.1.1-B.1.7 -	2. A.4.1, A.5.1,	A.6.1, A.7.1.	A.8.1, A. 9	.1, A.9.2, A. 10	1, A. 13	.1, A.13.7. A. 14.		1.1, P4.1					
	Original Exhibit J	JAK-1 filed on $7 / 31 / 00$ did not reflect the import of BST's Loop Cost Model adjustments into the Cost Caluator.	, A.4, A.5.	A.6.1, A.7.1,	A.8.1, A.9	1, A.9.2, A.10	1, A. 13	, A A 13.7 A. 14 ,	,	, 1, P.4.1					

