ATTACHMENT B

BellSouth Telecommunications, Inc.
FPSC Docket No. 001797-TP
Request for Confidential Classification Page 1 of 1 5/17/01

REQUEST FOR CONFIDENTIAL CLASSIFICATION OF BELLSOUTH'S RESPONSE TO COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS (POD NOS. 7, 18, 22, 32 AND 33) FILED APRIL 26, 2001 IN FLORIDA DOCKET NO. 001797-TP

Two Redacted Copies

FPSC DKT NO. 001797-TP

COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

Missed Repair Appmts CLEC - 2001							
		FL					
		Residence	Residence	UNE Design	UNE Design	UNE Non-Design	
Month	METRICS	Dispatch	Non-Dispatch	Dispatch	Non-Dispatch	Dispatch	TOTAL
January	Missed App.						
2001	Trouble Count						
	Missed Percent						
February	Missed App.			-			
2001	Trouble Count						
	Missed Percent						
March	Missed App.						
2001	Trouble Count						
	Missed Percent						

Missed Repair Appmts CLEC - 1999				
		FL		
		UNE Design	UNE Design	
Month	METRICS	Dispatch	Non-Dispatch	TOTAL
August	Missed App.			
1999	Trouble Count			
	Missed Percent			
September	Missed App.			
1999	Trouble Count			
	Missed Percent			
October	Missed App.			
1999	Trouble Count			
	Missed Percent			
November	Missed App.			
1999	Trouble Count			
	Missed Percent			
December	Missed App.			
1999	Trouble Count			
	Missed Percent			

BELLSOUTH TELECOMMUNICATIONS, INC.

FPC DKT NO. 001797-TP

COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

POD NO.
 PROPRIETARY Endive

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DKT NO. 001797-TP

COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

FEB 2000 - DEC 2000

	- Florida \% No Trouble Found Troubles		
MONTH	TOTAL FLA	NTF/TOK	\%
March-00		on	
April-00			
May-00			
June-00			
July-00			
August-00			
September-00			
October-00			
November-00			
December-00			
January-01			
February-01			
March-01			

\% Repeat Trbls w/in 30 days CLEC - 1999				
		FL		
		UNE Design	UNE Design	
Month	METRICS	Dispatch	Non-Dispatch	TOTAL
August	Repeat Count			
1999	Trouble Count			
	Percent			
September	Repeat Count			
1999	Trouble Count			
	Percent			
October	Repeat Count			-
1999	Trouble Count			-
	Percent			
November	Repeat Count			
1999	Trouble Count			-
	Percent			-
December	Repeat Count			
1999	Trouble Count			
	Percent			-

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DKT NO. 001797-TP

COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

Requests for Production Item No. 32
Attachment No. 1
Line Sharing - Supporting Documents

Price Details

Contract No: Description: ${ }^{\cdots}$: i. $]^{*}$

Price Type
Net Price (D)
Delivery Interval: NA Order Multiple Qty: NA:- :" 32221.

Notes:

Add to my saved product list:

View product list: \qquad 23 Create new product list: \qquad (Help on this activity Return to price query 6

Al/ $i,<e s$ shtewn irt iथitiont.

QTY	Driver	Installation Activity	ENGINEERING			INSTALLATION			MATERIAL	
			FIRST	EA ADD.	Total	FIRST	EA. ADD.	Total	EACH	Iotal
1	1	Assemble and Mount Bay/Cabinet								
14	2	Install Sheif/Unit/etc. in Existing Bay								
42	20	DSO (Ntwk Element to DF 100 Pair Connectorized) 150'								
336	21	Plugs/Ckt Packs - Handle, Warehouse, Deliver								
1	31	Furnish Bay (All Types)(Mat'I only)								
42	33	Terminal Strips/Wiring Blocks		-						
14	42	1 hour of installation; 3-89 type blocks per/hour		-						
		TOTALS		ENG:			INST:		MAT:	
		Grand Total $=$	\$30,9							
Estimated cost of extra cabling if cosmic frame is involved; max distance 150'										
	49	DS0 wire-wrap both ends; 100 pair								
This excel spreadsheet provides Engineering, Installation, and minor material charges for the Siecor 96-line ADSL POTS splitter.										
fully equipped bay of the equipment. The device is passive, and derives powering from the DSLAM equipment, so no power cabling is included. Siecor recommended capacity for one bay is 14 shelves. The equipment is not shopwircti, so the installation portion also covers assembly of the shelves into the bay and placement of the 24 plug-in circuit boards in each shelf. These costs only reflect cabling for an MDF environment. If the office has a cosmic frame, additional DS0/tie (wire-wrap both ends) cabling for 2688 pairs (14 shelves $X 96$ lines $X 2$) would be required. See additional estimated charge at the bottom of the spreadsheet.										
The assumption is made that the max distance on the DSO cabling is 150^{\prime}, and that the backplane allows for cabling with a 100 ' cable to each 89 type block for each set of 32 lines.										
1 would advise referencing the total E, total I, and total M costs - and overall project cost; but not the activity level pricing.										

PROPRIEIRRY

TEXT
Subject: DSL Line card w/eese pointe - traneltion info Dated: 7/11/00 at is: 16
Cratcot: Roblghrhardt /Intetnet \{Rob ghrfardtecorning.com) Size: 3353 bytad
oontlamen, in response to your inquiry x arm providing informetion regarding
 cersehed ermali trom paul Davia. our Markec spocialist for belliouth.

AB point of ciafification, allow me to potne out that the rate which paul
 monehly allocition of 400 CO Eplicear thelver 400 ahelves $x 4$
 more then eufficient to suppore the ordera that we curgently have an the booke lox july and Auguetl. Fael fret to call is you have iny guentione (904/424-2330).

Niso, I have forwardad camplan of ehe propesed ine card to you ar eho Brac Lor your ovaluation len noesd in vix to cary genayson youtarday. July 201.

Fiacliy, hould you decide to befin ualag the line cerd with che teat golnt acceen feacuse ple confirm whether you intand to coatinue the purcheat of our gantan Jack Tast shelf (1.0. Wili the line card caplace the toet anelf OF Will che line cards feature be en additional tent cepabilityl.
 notice for implementing ehss change to thet wo may minimite the lmpace on our component auppliefi, and therefore. on our ebility to continue ghipplag chesa praduces co Bellsouch in a timely manage.
r/Rob

Peul Davia
$07 / 10 / 2000$ 05:30 PW
so: Rob Ehrherdt/ep/siecorecorningcs
ce: Jim Cunmina/90/8iecorecorningcy
 converted)

Rob.
Bilmouth eurfantiy purchases meandard line cazde in conjugetian vith mpsh 96-11ne co splitear amelven. corning Cable syetome (CCAl otere an
 BST with additioncl tatt ceece/eapability. ces cas tranition Bet to theat cazde begimaing wieh shipmenta in August. 2000 et tace of 10.000 /monch.

In sumaty, ebo ackectad part aumbers and priceo set

C M / A
 \$2.447.36

4-11na card (eurrent) cosso0s20000 . M12112
 $\$ 90.80$
cospocs180000 ebd v/A

PROPRIETRN
woodeon E Elaeon /mb,ma116e 10/12/00 16:3elancan Jeck fese shelf (curtent) Cosjero96 2021018/A
24-1ine RT Splitest shelf (rear accese) coszatascole ebd
(1)
24-1ine ep splitter uhelf (Ezone accese) coseztsacols tbd(1)
(1) CGA doet not currently ofter a line card uitireat point acean tor Ehe
RT Spliteer ahelf. However, thle product fa under devolophare.
please let me know 12 you have additional queselons.
Tharks.
Paul Davia
Market Specialiat - Publif MotworksCaraing Cable Ifatame

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DKT NO. 001797-TP

COVAD'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

Requests for Production Item No. 33 Attachment No. 1
Collocation - Supporting Documents

$$
\begin{array}{r}
\text { Karen C. Hill } 6 \sqrt{5-646-7448} \\
575 \text { \& } 888
\end{array}
$$

The information provided below, including the price, is generic in nature. It does not provide any information specific to a particular niles. We have made several assumptions. Since the terms of adjacent collocation are still being negotiated and wo have not provisioned any adjacent collocation arrangements it 1. hard to tell whet will be encountered in reel iffe. The ateumptions that have been made are as follows:

Pricing for typical project:

1) The hut/CEV will be located no further than 50 feet away from the building.
2) The distance traversed within the building to connect to tellsouth'a power will be no further away than 100 feet.
3) The service provided would handle an additional load of a dehumidifier. electrical rocopeacles, lighting, sump pump, mechanical cooling eEc.
4) A standard collocator equipment layout Ear 200 square feet wa used to calculate the amount of power.
5) standard condition were considered. No work within battery rome, no work around sensitive equipment, no usage of special breakers, etc. were considered.
6) All work would be between the hours of 7:00גM and 5:008M during weekday.
7) Any work associated with the CEV/Hut much ae building setup, foundations, landscaping, etc. were not considered an they will be provided by the CLEC.
8) The collocacorn will be provided the ane AC power that ia available in the central office facility. If the collocacor wishes to convert this power to another phase, they will purchase and instal the transformer.

The cope of work categories covered by this price mould include:

1) Supervision
2) Demolition (rearing up the parking lot, coring the exterior wall. etc.)
3) Mobilization
4) Earth Work and Excavation (Digging the trench)
5) Compaction (Compacting the dirt placed back in the trench)
6) Asphalt (Now parking lot paving)
7) Electrical
a) Painting Allowance (Re-atripping the parking lot)

Baaically, the pricing would break down an follows:

TOTAL: 37.000.00
$\begin{array}{lr}\text { Contingency: } & 2,500.00 \\ \text { Grand TOTAL: } & 35,500.00\end{array}$
GRAND TOTAL: 35,500.00
Conversion to coat per in near toot $\$ 39,500 / 150$ 1.t.e $\$ 263$ per linear foot
This price can be used for the electrical installation cont for all adjacent collocation arrangements excluding extraordinary conditions. This race is in addition to the recurring cost per amp for power usage.

Extra-ordinary condition would only include having to add additional electrical capacity. Thin will be rare occurrence and these costs need to be recovered on an ICB basie mince there in no way to predict the coat or occurrence.

PROPRIETARY
 Not for Disclosure Outside BellSouth Except by Written Agreement.

Notes:

Help on this activity \quad Return to price query

64

莫保fOMNAVBAR

By initiating any Electronic Commerce transaction herein related to the purchase of goods from Lucent Technologies, you are deemed to have accepted the Electronic Commerce Rules of use.

Copyrighte 1999 Lucent Technologies. All rights reserved.

8' \times 24' CONTROLLED ENVIRONMENT VAULT

PRRPRIEIRYY
Not for Decl: ". "Bellsouth
Excepthy Wiatiti ingreement

ITEM	DESCRIPTION	QTY	$\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$	$\begin{aligned} & \text { EQPT } \\ & \text { TOTAL } \end{aligned}$	TOTAL DNST. MATERHL	TOTAL INST. LABOR
	POWER TRANSFER SWITCH					
. 2	200 Amp JuiceBox RJBD200MXRBS JuiceBox Template (F003488)	1				
	BASIC STRUCTURE					
3 A	Oldcastle 6' X $24^{\circ} \mathrm{CEV}$	1				
3B	Capital Concrete $6^{\circ} \times 24^{\circ} \mathrm{CEV}$	1				
	DISTRIBUTING FRAME					
4	800 Frame	5				
	100 Pr. Cross Connect Block	27				
	DS-1 CROSS CONNECT					
5	DIXI.84 DS. 1 DSX Panels	2				
6	800 Frame	2				
	56 Pr . Cross Connecr Block	8				
\bullet.	MULTIPLEXER					
7 A	FLM-150 Multiplexer Syatem	2				
78	DDM-2000 Multiplexer System	2				
	I.GX / FIBER MGMT.					
8	Feeder 24F LGX (108319849)	1				
9	Dist. 144F LGX (10834939)	5			
10	CEV Fiber Management System	1			N/A	N/A
		PRODPRIFTADY				
		Not fo	.	uth		
			cifictil			15

$\mathbf{3}^{\prime} \times 24^{\prime}$ CONTROLLED ENVIRONMENT VAULT

ITEM DESCRIPTION	QTV	$\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$	$\begin{aligned} & \text { EQPT } \\ & \text { TOTAL } \end{aligned}$	TOTAL INST. MATERAL	TOTAL INST. LABOR

11 Wescom STS 3192 System I

POWER EQUIPMENT

12 Power Plant 1
13 Battery Stands (PMO125-4CB) 2
Batte:ies FIAMM 16
(FLO125BE 125 AH)

MISC. EQUIPMENT
14 Iron Work \& Cable Rack 1
Ground System 1
Fiber Ductang System 1
Pwr. Hamess for PC Data \& Video 1

MISC. FUSE PANEL
15 Misc. Fuse Panel

MISC. EQUIPMENT RACK
16 Misc. Equipment Rack
5

ALARM CROSS CONNECT SYSTEM

17 Alarm Cross Cornect Panel
2

PROTECTION

18 Protection Frame Assembly 1
307C2-100 Prorection Block 14

PROPRTPYARY
Kot for Disst: . . . vitice Bellsouth Except by wiwten Rgreement.

CONFIGURATION:
MESA 6 Remote Terminal Cabinet Equipped with Three (3) DISC \star S Common Shelves. One (1) DOM 2000 Mix Shelf, Zero (0) STS 3192 Repeater Shelves, (1) DIXI Panel, and wired for (21) Copper Channel Shelves.

ITEM	BASE MODEL PLUG-INS	PRODUCT CODE	QTY
9.0	Power and Pinging Plug-Ins		2
9.1	Nodular Rectifiers	$41-308-39$	2
9.2	Ringing Generator Modules	487110900	2
10.0	LIU Test Connector	$41-008-39$	2
11.0	Adapter Null Modem	$41-008-46$	1

H.1.6

Yr	ST	GLC	Location	Sq. Ft.	Cost	City Cost Index	National Cost	Comments
			ALABAMA					
99	AL	11616	Cahaba Herghts - CO Addion	10300	\$1,780,000	0.871	\$2,043,628	
00	AL	11734	Hancoevllo CO Additan	2000	\$370,000	0.871	\$424,799	
99	AL	11831	Hunlsulla Madson- CO Additon	3800	\$730,000	0.827	\$882,709	
00	AL	11813	Hunnsulle Unversity COAddion	6000	\$1,300,000	0.827	\$1,571,947	
99	AL	12340	Mobta Bay Fronl - COAdditon	1136	\$445,000	0834	\$533,573	
			TOTAL	23236	\$4.625,000		\$5,456,656	
			National Avg Cost/sq.ft.:	\$234.84				
			Alabama Avg. Cost Index:	0.8252				
			Investment/sq.ft::	\$193.79				
			AVG. COSTISQ. FT.:	\$199.04				
			Florida					
99	FL	31538	Cripter -Co Addston	2800	\$561,000	0.796	\$704,774	
00	FL	32273	Gemmenta NW-CO 2nd Fioor Add.	4000	\$1,600,000	0.841	\$1,902,497	
00	FL	Mes06	Godidan Glades CO Addion	10500	\$5,100,000	0.866	\$5,889, 145	
00	FL	31241	Jacksomilla Basathwod . CO Addin	1792	\$1,400,000	0.841	\$1,664,685	
00	FL	39280	Lake Mary CO Addition	3100	\$1,725,000	0.861	\$2,003,484	
00	FL	31040	Mandann-CO Additon	6148	\$1,450,000	0.841	\$1,724,138	
00	FL	31948	Ovado-CO Addition	2560	\$1,255,000	0861	\$1,457,607	
00	FL	E8660	Port St. Lucee CO Addtion	3200	\$2,175,000	0.883	\$2,463,194	
99	fL	E8838	Roval Padms -COAdition	5308	\$136,000	0869	\$156,502	
99	FL	E8636	Vero Beach - COAdditon	3158	\$1,350,000	0.883	\$1,528,879	
00	FL	E8519	WPEH Gadens - CO 2nd Floor Add	20754	\$8,601,000.	0869	\$9.897,583	
			IOTAL:	63320	\$25,353,000		\$29,392,489	
			National Avg Cost/sg.ft:	\$464.19				
			Florida Avg. Cost Index:	0.8413				
			Investment/sq.ft.:	\$390.52				
			AVG. COST/SQ.FT.:	\$400.39				
			Georgia					
00	GA	F5602	Butord, 2000	5966	\$1,728,000	0.884	\$1,954,751	Bids in, ready to start const.
00	GA	83930	Villa Pica,2000	4075	\$2.125,000	0884	\$2,403,846	Under construction
00	GA	F140	Fayetronito - CO Addtion, 2000	9600	\$3,781,000	0.884	\$4,277,149	Under construction
00	GA	F1437	Peochtroes Cily CO Additon, 2000	9600.	\$2,024,000	0.884	\$2,289,593	Bids in, ready to start const.
00	GA	F9356	Powder Spnngs - CO Addition, 2000	4275	\$1,310,000	0884	\$1,481,900	Bids in, ready to start const.
99	GA	F5352	Powers Ferry. 199982000	26970	\$5,350,000	0.884	\$6,052,036	Under construction
99	GA	R3907	Tailipposa - CO Additon, 1999	987	\$288,000	0884	\$325,792	Completed, Actual Costs
99	GA	22164	Gay -CO Additon, 1999	567	\$195,000	0.884	\$220,588	Completed, Actual Costs
98	GA		Norcross CO, 1998	17880	\$1,955,485	0.884	\$2,212,087	Completed, Actual Costs
98	GA		Woodstick CO. 1998	6400	\$1,897,000	0.884	\$2,145,928	Completed, Actual Costs
98	GA		Ounwooty $\mathrm{CO}, 1998$	16390	\$3,003,520	0.884	\$3,397,647	Completed, Actual Costs
			TOTAL	102710	\$23,657,005		\$26,761,318	
			National Avg Cost/sq.ft:	\$260.55		ncluding Planning data		
			Georgla Avg. Cost Index:	0.813		ncluding Planning data		
			Investment/sq.ft:	\$211.83				
			AVG. COST/SQ. FT.:	\$230.33				
			Kentucky					
99	KY	52470	Granden Villaga -CO Additon	448	\$166,000	0.854	\$194,379	
99	KY	52724	S Willimuson-CO Additon	384	\$181,000	0.854	\$211,944	
				832	\$347,000		\$406,323	
			National Avg Cost/sq.ft:	\$488.37				
			Kentucky Avg. Cost Index:	0.8895				
			Investment/sq.ft: :	\$434.40				
			AVG. COST /SQ FT.:	\$417.07				
			Louisianna					
		K3266	Denham Spmogs CO-Additon 8 HVAC	1600	\$340,000	0.828	\$410,628	
		K4567	Shrowpor Colitega - Adition 8 HVAC	3200	\$990,000	0.805	\$1,229,814	
				4800	\$1.330,000		\$1,640,442	
			National Avg Cost/sq.ft:	\$341.76				
			ouisianna Avg. Cost Index: 0	0.8176				
			Investment/sq.ft.:	\$279.42				
			AVG. COSTISQ. FT.:	\$277.08				
			Mississippi					
00	MS	72128	Bramdon CO Add (Jseckeon Remikn)	2500	\$680,000	0.79	\$860,759	
00	MS	75171	lika CO - Bulding Additon	1600	\$560,000	0.768	\$729,167	
				4100	\$1,240,000		\$1,589,926	
			National Avg Cost/sq.ft.:	\$387.79				
			ississippi Avg. Cost Index: 0	0.79				
			Investment/sq.ft.:	\$306.35				
			AVG. COST/SQ. FT.:	\$302.44				

					\because \because \because $\because 0$ 0								
JCBHFLMA.DLT. 01	734808-81291	2	1	21.5	308	887	1	\$27,294	\$74,565	\$1,360	\$103,219	\$73,550	\$82.92
JCVLFLCL.ATX. 02	734808-80141	1	0	0	400	520	0	\$17,751	\$34,209	\$0	\$51,960	\$44,889	\$86.33
JCVLFLCL.FDW. 03	732822-25751	1	0	0	200	260	0	\$20,181	\$30,105	\$0	\$50,286	\$43,215	\$166.21
ORLDFLCL.FDW. 03	734808-80811	1	0	98	200	260	1	\$33,571	\$31,016	\$0	\$64,587	\$37,399	\$143.84
ORLDFLCL.ICF. 01	732822-22941	1	0	96	300	399	1	\$32,759	\$51,734	\$0	\$84,493	\$57,425	\$143.92
ORLDFLCL.LVC. 01	732822-25741	1	0	263	400	2475	1	\$44,572	\$124,270	\$1,183	\$170,025	\$132,937	\$53.71
ORLDFLMA.FDW. 05	732822-25921	1	0	0	200	260	0	\$27,431	\$54,736	\$0	\$82,167	\$75,096	\$288.83
PNVDFLMA.DLT. 01	734808-81571	0	1	0	8	225	0	\$15,949	\$36,463	\$0	\$52,412	\$52,412	\$232.94
MIAMFLWM.NVE. 02	734808-80101	1		0	100	305	0	\$20,389	\$40,761	\$0	\$61,150	\$54,079	\$177.31
MIAMFLBA.NVE. 03	734808-82031	4		0	100	310	0	\$18,074	\$75,432	\$0	\$93,506	\$65,222	\$210.39
MIAMFLBA.FIM. 01	734808-80931	1		0	100	300	0	\$37,393	\$68,407	\$0	\$105,800	\$98,729	\$329.10

								NOISEO LSOO 3 VIOL					
MIAMFLSO.NVE. 01	734808-82051	1			115	130	0	\$11,881	\$25,310	\$2,047	\$39,238	\$32,167	\$247.44
MIAMFLSO.FIM. 01	734808-81041	4		0	100	130	0	\$27,504	\$53,943	\$0	\$81,447	\$53,163	\$408.95
MIAMFLBR.NVE. 01	734808-80181	2		0	400	520	0	\$18,062	\$94,171	\$0	\$112,233	\$98,091	\$188.64
PRRNFLMA.AKJ. 07	734808-81741	1		0	100	690	0	\$14,452	\$135,674	\$0	\$150,126	\$143,055	\$207.33
MIAMFLFL.AKJ. 02	734808-82201	1		0	100	130	0	\$13,459	\$14,480	\$1,738	\$29,677	\$22,606	\$173.89
MIAMFLBA.AKJ. 04	734808-86081	1		0	100	130	0	\$17,144	\$15,585	\$0	\$32,729	\$25,658	\$197.37
MIAMFLAP.OVC. 03	734808-81501	1			100	130	0	\$13,323	\$21,409	\$2,076	\$36,808	\$29,737	\$228.75
MIAMFLAP.AKJ. 02	734808-81581	1			100	130	0	\$11,550	\$21,230	\$0	\$32,780	\$25,709	\$197.76
MIAMFLAP.ATX. 01	734808-80281	1			400	1200	0	\$31,177	\$121,019	\$0	\$152,196	\$145,125	\$120.94
MIAMFLWD.AKJ. 02	734808-81651	1			100	130	1	\$17,015	\$29,624	\$0	\$46,639	\$25,331	\$194.85
PRRNFLMA.NVE. 03	734808-82021	1			100	130	0	\$10,668	\$25,154	\$0	\$35,822	\$28,751	\$221.16

					B \vdots \vdots 6 6 0 0 0 0 0 0 0								
HLWDFLPE.ATX. 01	73480883101	1			400	520		\$19,607	\$42,248	\$0	\$61,855	\$54,784	\$105.35
HLWDFLPE.AKJ. 07	73480886061	1			100	130		\$18,685	\$33,833	\$0	\$52,518	\$45,447	\$349.59
HLWDFLPE.OVC. 04	732822-25101				100	130		\$19,124	\$27,412	\$253	\$46,789	\$46,789	\$359.91

Assumptions:

BellSouth expends infrastructure capital immediately to prepare space. BellSouth has no control over utilization of this investment. The investment benefits no other service other than Collocation. Therefore, recovery of infrastructure costs should begin immediately without regard to activation of service.
above. The cost calculations are based upon preliminary "driver" costs provided to Supply Chain Management by three Turf Vendors and a theoretical average arrangement of collocated equipment within this 800 sq . ft. From these calculations the average EF\&l cost/sq.ft. is determined. From the avg. EF\&l
To accomplish this for caged or cageless non-conventional collocation the average EF 81 space preparation cost to prepare 800 sq. ft . (2 building bays) of collocation space is calculated above. The cost calculations are based upon preliminary EF\&I "driver" costs provided to Supply Chain Management by three Turf Vendors and a theoretical average of $8-100 \mathrm{sq}$. ft. arrangements within this 800 sq . ft. area. From these calculations the average EF\&I cost/arrangement is determined. From the avg.EF\&I cost/arrangement a cost study can determine a recurring rate to apply to every arrangement. All TelCo loadings must be applied to the EF\&I cost.

The recurring charge for cross-connects should not be impacted by the standard rate space preparation charge. Cross connects will continue to require utilization of via or main aisle cable support to deliver the service from the collocated equipment to the demarcation point.
It must be emphasised that the above "driver" rates are very preliminary. These drivers are being established to address equipment space preparation. Such drivers do not currently exist, as space preparation for BellSouth equipment space has been recovered by Turf vendors through the MBOS model prices.

Used \leq Rated Amps

$$
\begin{aligned}
& P=I \times E \\
& \text { WATTS }=A_{\text {mus }} \times V_{0} t_{s}
\end{aligned}
$$

Recommended AC power pricing formulas for the recovery of commercial AC power expenses and standby power assets.
 These formulas may be used to develop recurring charges when BST supplies AC equipment power to collocated equipment.

The following formulas can be used to compute the monthly cost of providing commercial and standby AC power to a collocated power plant. The costs are based on the electrical service (voltage and phases) and the rating (in Amps) of the electrical protection device used to provide AC power to the collocated power plant.

Commercial AC Formula (\$/month/breaker amp) for 120 V , single phase ($120 / 240$)						
$0.07 \$ / \mathrm{kwh} \times 8760 \mathrm{~h} / \mathrm{yr} \quad \times 0.0833333 \mathrm{yr} / \mathrm{mo} \times$ for 240 V , single phase (120/240)	0.001 KWN	X	0.8 WNA	X	120 V/Phase X	
$0.07 \mathrm{\$} / \mathrm{kwh} \times 8760 \mathrm{~h} / \mathrm{yr} \times 0.0833333 \mathrm{yr} / \mathrm{mo} \times$ for 120 V , three phase (208Y/120)	0.001 KW/	X	0.8 WNA	X	240 V/Phase X	
0.07 \$/kwh X $8760 \mathrm{~h} / \mathrm{yr} \quad \mathrm{X} 0.0833333 \mathrm{yr} / \mathrm{mo} X$ for 277V, three phase ($480 \mathrm{Y} / 277$ or 480 Delta)	0.001 KW/W	X	0.8 WNA	x	120 V/Phase X	
0.07 \$/kwh X $8760 \mathrm{~h} / \mathrm{yr} \times 0.0833333 \mathrm{yr} / \mathrm{mo} \mathrm{X}$	0.001 KW/W	X	0.8 WNA	x	277 V/Phase X	
Engine Alternator Investment required to provide stand for 120V, single phase (120/240)	y power per AC		ker amp			
800 \$/KW X 0.001 KWNW X 0.8 WNA X for 240V, single phase (120/240)	120 V/Phase	X	1 Phases	X	$0.8($ NEC Rule $)=$	\$61.44
800 \$/KW X 0.001 KWN X 0.8 WNA X for 120 V , three phase (208Y/120)	240 V/Phase	X	1 Phases	X	0.8 (NEC Rule) $=$	\$122.88
800 \$/KW X 0.001 KW/W X 0.8 WNA X for 277 V , three phase ($480 \mathrm{Y} / 277$ or 480 Delta)	120 V/Phase	X	3 Phases	X	$0.8($ NEC Rule $)=$	\$184.32
$800 \$ / \mathrm{KW} \times 0.001$ KWN X 0.8 WNA X	277 V/Phase	x	3 Phases	X	0.8 (NEC Rule) $=$	\$425.47

The above formulas can be reduced to:
for 120 V , single phase - monthly recurring billing $=$
($\$ 3.92$ + monthly recurring charge to recover $\$ 61.44$ standby engine asset) \times AC breaker amperage rating
for 240 V , single phase - monthly recurring billing $=$
($\$ 7.85+$ monthly recurring charge to recover $\$ 122.88$ standby engine asset) \times AC breaker amperage rating for 120 V , three phase - monthly recurring billing $=$
($\$ 11.77$ + monthly recurring charge to recover $\$ 184.32$ standby engine asset) \times AC breaker amperage rating
for 277 V , three phase - monthly recurring billing =
($\$ 27.18$ + monthly recurring charge to recover $\$ 425.47$ standby engine asset) \times AC breaker amperage rating

2/9/1999
Spreadsheet developed by Tom Weber, NP\&PS, 205-321-8113
The commercial AC formulas were developed bx Jom Clements, P\&SM,
The standby engine investment formlas were developed by Steve Martin, NP\&PS
(Note: the maximum utilization on a standby engine will be approximately 80%.
The regional average utilization of these assets is estimated at approximately 65%)
H.1.37

Average Card Reader Installation Costs:		
Average card reader installation includes 2 readers.		
ITEM		
Unit		
Modem \& encryption software		
Avg. electrical job		
POTS line		
Total		
Parsons markup @1\%		
Parsons distributables/loadings @ 13.5\%		
*Host cost		
Grand Total		
Notes:		
Host costs include hardware, software and communications costs.		
Host can support 2,000 - 3000 units.		
Host costs spread over 2000 units		
No taxes included.		

nE1820:
Aubject: Coct Accounting Information for collocasion

Dated: 9/30/99 at 10:56 conespea: 2

IEA 1

IEen 3
Moody,
Ilated bolow is the intermetian you racuaced:

COST
i. Exeg.
subantesed.
Musey Poases 205-321-4733
Tard Secess Soffre (206K)

Application SU Multiple site Piceindécide Sufrianier Work sthins 1 Is (oaddl
crack dB $R \pi$ fee Server $16 t$ Redunant
 vCSN conneftivive

MatI	Source		Cost	
Virtual Collocation-2 Fiber (Singlemode) Cross Connects				
LGX Bay				
Bay Frwk	Network Planning \& Support			
Retainers JR4C9	Network Planning \& Support			
Lightguide Kit (2)	Network Planning \& Support			
Total Material Price	Network Planning \& Support			
Circuit Capacity	Network Planning \& Support			
Projected Actual Utilization	Network Planning \& Support			
LGX Shelf				
Shelf	Network Planning \& Support			
Coupler Panel (12)	Network Planning \& Support			
SC Coupling (72)	Network Planning \& Support	-		
Total Material Price	Network Planning \& Support			
Circuit Capacity	Network Planning \& Support			
Projected Actual Utilization	Network Planning \& Support			
Fiber Duct (fiber jumper support)				Note 1
Material Price per foot	Network Planning \& Support			
Number Feet	Network Planning \& Support		\cdots	
Circurt Capacity	Network Planning \& Support		400	
Projected Actual Utilization	Network Planning \& Support			
Note 1: Virtual collocation equip. is typically				
placed in BST lineups and will use BST fiber duct.				
Fiber Duct Components/60ft run				
10-4x4 Straight Duct 6'				
2-4×4 Elbow				
10-4×4 Splice				
5 - Support Details				
5 - threaded rod				
Total per 60ft $=\$ 549.02$				
Matl Cost per Foot $=\$ 9.15$				
Fiber Patchcord Capacity from ADC catalog $=800$				
Assumes 3mm patchcords, 2/ckt				

What costa are recovered in space construction?

The following unit cost specifications were compiled based on engineering estimates and actual costs. The engineer's estimates were extrapolated from actual projects to come up with a cost per square foot. The actual costs were taken from past projects and project costs to determine a new project baseline cost.

Space construction investment for the first 100 square foot enclosure includes (a) the material and labor cost of constructing a 100 square foot welded wire mesh enclosure. (b) architectural and engineering fees for project management, design and construction oversight, and (c) electrical and grounding work.

The standard is a 100 square foot enclosure and is assumed to be a 10^{\prime} by 10° space with enclosure required on 3 sides for a total of 30 linear feet. Enclosure sizes are available at 100 s.f. minimum and then 50 s.f. increments.

These prices are based on constructing the entire collocation suite and all enclosures at the same time (at least 80% of the time). This method allows for cost savings due to bulk purchases, reduced contractor setup fee and reduced architectural/engineering fees. The enclosure construction can not be done at this rate if the enclosures are constructed as each firm orders is received.

These costs are considered to be the most likely costs. The actual cost will vary according to existing building conditions, location of building, and local material and labor rates.

The material and labor costs for constructing the 100 square foot enclosure are as follows: \qquad
Welded Wire Mesh Enclosure (3 sides considered)
Swinging Door (3 ' $\times 8$ ') and locket
Dust Protection
Electrical Work
Electrical Grounding
Signage
General Conditions
Contractor's Fee
Architectural/Engineering fee
Project Management fee
Total
Incremental cost for additional 50 s.f.
(See calculation below)
Space construction investment for an additional 50 square feet includes the material and labor cost of increasing the enclosure by additional 50 foot increments when constructed

$$
\begin{aligned}
& \text { Pranaitrapy }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ercoef by written hgreememt }
\end{aligned}
$$

at the same time as the first 100 square foot enclosure. Costs may include additional wire cage, doors, electrical and grounding work.

The incremental amount per 50 square feet (over the first 100 square feet) is weighted with the following probabilities to determine the cost per additional 50 square feet:

| Square feet | Probability | Computation | Cost |
| :---: | :---: | :---: | :---: | :---: |
| | | 5% | |
| 200 | 55% | | |
| 250 | 0% | | |
| 300 | 9% | | |
| 350 | 0% | | |
| 400 | 31% | | |

Total
100\%
$\$ 947$
These probabilities are based on the actual requests for physical collocation enclosure construction received by BellSouth in 1997 and 1998 excluding the unusual requests for 700 s.f., 4000 s.f. and 5000 s.f..

35

PROJECT: [YPICAL COLLOCATOR COSTS - WIRE MESH PARTITION SYSTEM
LOCATION: Varies ROOM AREA: 100 SF
CLIENT: BellSouth Telecommunications, IncPROJECT NO: DATE: 3/22/2000

Note: Costs shown above are directly attributable to the cost of preparing the Collocator's enclosure only. The space enclosure charge per the tarrif. Space Preparation costs are not inclu

Assumptions: Entire collocation suite and all enclosures are constructed at the same time (at least 80% of t All mechanical and electrical modifications will be included in the space preparation fees.

It is not possible to construct the enclosures for this cost if they are constructed at different times a for a central office is received. The cost savings are due to reduced set-up, architectural, engineering management fees, supervision, as well as bulk purchases.

> PROPRIETRRY
> Hot for Disclosiry: Outside Bellsouth Except by Written Agreement

STF 3-22 Please describe how the fill factors provided in response to STF 1-13 were calculated, and the information sources used to derive those factors.

Cable Support Structure cable rack - 50% - waiting on Bill McAllister

Cross Connects

The following equipment is part of the "normal" network equipment for the central office and is not specific to collocation or to a collocator; these pieces of equipment carry the general central office fill factor provided by Network Planning:

2-Wire Cross Connect	TDF	72.5% (now 85\%)
	Connecting Block	72.5% (now 85\%)
	Cable Rack	67% (see note 1)
4-Wire Cross Connect	TDF	
	Connecting Block	72.5% (now 85\%)
	Cable Rack	72.5% (now 85\%)
DS1 Cross Connect	DSX-1 Panel	(see note 1)
	Cable Rack	70% (now 85\%)
		67% (see note 1)
DS3 Cross Connect	DSX-3 Panel	67% (now 85\%)
	Cable Rack	67% (see note 1)

The following equipment is specific to a collocator and the utilizations are developed by determining the equipment required by the "typical" arrangement built and the "typical" 3-year average of circuits expected to be turned up.

2-Wire Cross Connect Cable 85\%
4-Wire Cross Connect Cable 85\%
DS1 Cross Connect Cable 90%
Repeater 100\%
Repeater Bay 30\%
Repeater Shelf 80%
DS3 Cross Connect Cable 100\%
Repeater 100\%
Repeater Bay 35\%
Repeater Shelf 85%
2-Wire POT Bay \quad POT Bay 40%

	Termination Block	85%	
	POT Bay		
4－Wire POT Bay	40%		
	Termination Block	85%	
DS1 POT Bay			
	Connecting Block	98.7%	
	Shelf	80%	
	POT Bay	$33 \% \quad$（see note 2）	
	Module	100%	
	Shelf	18%	
	POT Bay	$33 \% \quad$（see note 2）	

Note 1：The utilization of cables in the cable rack is 67% ．To get the utilization on a per circuit basis，this 67% is multiplied by the utilization of circuits in the cable itself．This yields the following utilizations that are now in the study：

2－Wire Cross Connect－ $85 \%{ }^{\bullet} 67 \%=56.95 \%$
4－Wire Cross Connect－ $85 \%{ }^{\bullet} 67 \%=56.95 \%$
DSI Cross Connect－$\quad 90 \%{ }^{\bullet} 67 \%=60.3 \%$
DS3 Cross Connect－ $100 \%^{\bullet} 67 \%=500667 \%$
Note 2：The DS1 and DS3 circuits terminate on the same POT Bay．There are 12 shelves in the POT Bay．The average customer configuration assumes that there will be 3 shelves used for DS1 circuits and 1 for DS3 circuits．This total of 4 shelves used yields the 33\％utilization listed in STF 1－13．To get this utilization on a per circuit basis，the 33% utilization is multiplied by the circuit utilization of the shelf．This yields the following utilizations that are now in the study．

DSI POT Bay－ $80 \%{ }^{\text {• }} \mathbf{3 3 \%}=\mathbf{2 6 . 4 \%}$
DS3 POT Bay－ $18 \%{ }^{\bullet}$ 33\％＝5．94\％

Line $6 \div$ Line $8=\%$ hand

