Need Study For Electrical Power Plant 2005-2006

APPENDICES
 FoO

Appendix F

FPL's Forecast of Peak Demand,
 Net Energy for Load (NEL) and Results of Summer Peak and Winter Peak Runs

Annual Peaks

Annual Peaks			
Year (Winter) Aug (Summer)	NEL		
2001	18,199	18,754	Annual
2002	18,968	19,131	$99,162,438$
2003	19,551	19,765	$100,158,029$
2004	19,976	20,226	$104,413,713$
2005	20,418	20,719	$108,042,500$
2006	20,854	21,186	$111,772,244$
2007	21,204	21,556	$115,602,075$
2008	21,538	21,870	$118,157,253$
2009	21,966	22,271	$120,549,022$
2010	22,366	22,687	$122,922,491$
2011	22,785	23,106	$125,448,019$
2012	23,188	23,495	$127,512,390$
2013	23,592	23,887	$128,965,087$
2014	24,018	24,294	$130,434,281$
2015	24,428	24,696	$132,014,330$
2016	24,862	25,110	$133,571,234$
2017	25,256	25,489	$135,222,711$
2018	25,699	25,890	$136,989,493$
2019	26,100	26,267	$138,628,629$
2020	26,554	26,680	$140,152,858$
2021	27,016	27,100	$141,532,815$
			$142,926,360$

SUMMER PEAK MODEL: DEPENDENT VARIABLE SUMMER PEAK PER CUSTOMER

Varable	Coefficient	SidEn	T-Stal	P-Value	Definition
CONST	0.292	1.198	0.244	80.92%	Constant term
RPRICE	-0.137	0.055	-2.479	1.92%	Real Price
RFLINC	0.00000017	0.00000018	0.924	36.29%	Real FLIncome (Income divided by CPI)
MAXTMP	0.050	0.011	4.463	0.01%	Max Summer Temp
AR(1)	0.813	0.076	10.763	0.00%	Auto-regresive term

Estimation Period: 1965-2001

Year	Summer PeaK Customer	Pred	RPRICE	RFLINC	MAXTMP	Customers
1965	2.66		6.53	472,150	89.00	949.591
1966	2.83	3.05	6.07	505,821	90.80	1,000.020
1967	3.01	3.10	5.58	543,566	90.30	1,051,335
1968	3.61	3.34	5.25	600,512	91.80	1,050,200
1969	3.68	3.85	4.93	662,051	93.30	1,177.347
1970	3.99	3.86	4.64	706,685	93.50	1,253,124
1971	4.01	4.03	4.63	758,050	92.60	1,340,416
1972	4.16	3.95	4.70	846,054	89.90	1,446,114
1973	4.40	4.22	4.92	934,565	91.10	1,567,638
1974	4.32	4.23	5.82	947.514	90.50	1,676,022
1975	4.07	4.18	6.36	935,931	90.00	1,738,071
1976	4.23	4.27	5.90	974,305	92.70	1,795,793
1977	4.18	4.14	6.36	1,028,202	92.00	1,875,821
1978	4.24	4.16	6.17	1,109,389	90.80	1,967,352
1979	4.17	4.27	6.25	1,158,316	91.90	2,074,327
1980	4.40	4.32	6.30	1,200,022	94.80	2,184,974
1981	4.26	4.32	7.18	1,255,330	95.70	2,285,187
1982	4.18	4.17	6.71	1,279,278	92.50	2,358,167
1983	4.39	4.37	6.64	1,363,880	95.90	2,429,688
1984	4.07	4.16	7.63	1,462,479	93.60	2,520,523
1985	4.07	4.14	7.67	1,551,294	94.50	2,617,556
1986	4.05	4.16	6.84	1,641,895	93.20	2,723,555
1987	4.36	4.27	6.55	1,733,620	95.80	2,840,207
1988	4.19	4.29	6.47	1,830,131	93.50	2,953,663
1989	4.38	4.41	5.94	1,941,022	95.40	3,064,436
1990	4.35	4.44	5.63	1,977,651	95.00	3,158,817
1991	4.38	4.30	5.56	1,969,928	92.90	3,226,455
1992	4.47	4.57	5.22	1,988,798	95.40	3,281,238
1993	4.55	4.47	5.11	2,054,861	94.30	3,355,794
1994	4.44	4.50	4.62	2,104,648	91.60	3,422,187
1995	4.64	4.61	4.57	2,188,487	94.20	3,488,796
1996	4.52	4.50	4.71	2,263,453	91.30	3,550,747
1997	4.59	4.61	4.72	2,353,104	92.60	3,615,485
1998	4.86	4.78	4.37	2,463,120	94.94	3,680,470
1999	4.80	4.87	4.10	2,519,811	94.31	3,756,009
2000	4.70	4.74	3.97	2,612,175	92.30	3,848,401
2001	4.77	4.68	4.59	2,715,132	93.00	3,935.007
2002		4.76	4.39	2,753,517	92.00	4,004,161
2003		4.83	3.96	2,787,453	92.00	4.078,038
2004		4.85	3.78	2,831,349	92.00	4.151,237
2005		4.89	3.58	2,877,091	92.00	4.225.960
2006		4.91	3.44	2,927,345	92.00	4,299,491
2007		4.92	3.34	2,928,905	92.00	4.365,095
2008		4.94	3.28	2,996,594	92.00	4.428,309
2009		4.96	3.21	3,084,096	92.00	4.490.271
2010		4.98	3.11	3,159,105	92.00	4.551.096
2011		5.01	3.03	3,252,581	92.00	4.610,993
2012		5.03	2.97	3.332,159	92.00	4.670,075
2013		5.05	2.91	3.413,645	92.00	4.728.447
2014		5.08	2.85	3.514,652	92.00	4.786.202
2015		5.10	2.79	3,600,471	92.00	4.843.426
2016		5.12	2.73	3,707,075	92.00	4,900,198
2017		5.14	2.68	3,778,252	92.00	4.956.589
2018		5.17	2.65	3,890,118	92.00	5.012,663
2019		5.18	2.61	3,964,368	92.00	5.068.480
2020		5.21	2.57	4,081,690	92.00	5,124,093

Year	Summer Peak	TotCust	ELECPRI	MAXTMP	FLNONAG	FLINC	CPI	Dummy
1965	2.529	949,591	2.06	89.0	1,619.1	14,872,711	31.5	0
1966	2,827	1,000,020	1.97	90.8	1,726.8	16,388,588	32.4	0
1967	3,160	1,051,335	1.87	90.3	1,816.4	18,155,097	33.4	0
1968	3,789	1,050,200	1.83	91.8	1,932.3	20,897,819	34.8	0
1969	4,329	1,177,347	1.81	93.3	2,069.9	24,297,276	36.7	0
1970	5,001	1.253,124	1.80	93.5	2,152.1	27,419,366	38.8	0
1971	5,378	1,340,416	1.88	92.6	2,276.4	30,701,044	40.5	0
1972	6,011	1,446,114	1.96	89.9	$2,513.1$	35,365,052	41.8	0
1973	6,894	1,567,638	2.18	91.1	2,778.6	41,494,668	44.4	0
1974	7.235	1,676,022	2.87	90.5	2,863.8	46,712,426	49.3	0
1975	7,076	1,738,071	3.42	90.0	2,746.4	50,353,108	53.8	1
1976	7,598	1,795,793	3.36	92.7	2,784.3	55,437,981	56.9	1
1977	7,841	1,875,821	3.86	92.0	2,933.2	62,309,059	60.6	1
1978	8,345	1,967,352	4.02	90.8	3,180.6	72,332,145	65.2	1
1979	8,650	2,074,327	4.54	91.9	3,381.2	84,093,751	72.6	1
1980	9,623	2,184,974	5.19	94.8	3,576.2	98,881,848	82.4	1
1981	9,738	2.285,187	6.53	95.7	3,736.0	114,109,540	90.9	1
1982	9,862	2,358,167	6.48	92.5	3,761.9	123,450,308	96.5	1
1983	10,676	2,429,688	6.62	95.9	3,905.4	135,842,481	99.6	1
1984	10,270	2,520,523	7.93	93.6	4,204.2	151,951,597	103.9	1
1985	10,654	2,617,556	8.25	94.5	4.410 .0	166,919,255	107.6	1
1986	11,022	2,723,555	7.50	93.2	4,599.4	179,951,679	109.6	1
1987	12,394	2,840,207	7.44	95.8	4,848.1	196,939,232	113.6	1
1988	12,382	2,953,663	7.66	93.5	5,066.6	216,504,523	118.3	1
1989	13,425	3,064,436	7.36	95.4	5,260.9	240,686,677	124.0	1
1990	13,754	3,158,817	7.36	95.0	5,387.4	258,479,049	130.7	1
1991	14,123	3,226,455	7.57	92.9	5,294.3	268,304,176	136.2	1
1992	14,661	3,281,238	7.32	95.4	5,358.7	279,028,337	140.3	1
1993	15,266	3,355,794	7.38	94.3	5,571.4	296,927,420	144.5	1
1994	15,179	3,422,187	6.85	91.6	5,799.4	311,908,852	148.2	1
1995	16,172	3,488,796	6.96	94.2	5,996.1	333,525,354	152.4	1
1996	16,064	3,550,747	7.39	91.3	6,183.3	355,135,853	156.9	1
1997	16,613	3,615,485	7.57	92.6	6,414.4	377,673,158	160.5	1
1988	17,897	3,680,470	7.12	94.9	6,636.5	401,488,554	163.0	1
1999	18,040	3,756,009	6.83	94.3	6,827.0	419,800,453	166.6	1
2000	18,086	3,848,401	6.84	92.3	7,076.4	449,816,610	172.2	1
2001	18,755	3,935,007	8.13	93.0	7,266	480,605,551	177.01	1
2002		4,004,161	7.96	92.0	7,431	499,515,489	181.41	1
2003		4,079,038	7.39	92.0	7.573	519,804,294	186.48	1
2004		4,151,237	7.25	92.0	7.710	542,826,291	191.72	1
2005		4,225,960	7.05	92.0	7.839	566,700,563	195.97	1
2006		4,299,491	6.94	92.0	7,962	591,616,338	202.10	1
2007		4,365,095	6.92	92.0	8,083	607,191,303	207.31	1
2008		4,428,309	6.96	92.0	8,207	637,135,849	212.62	1
2009		4,490,271	7.01	92.0	8,336	672,394,561	218.02	1
2010		4,551,096	6.96	92.0	8,468	706,091,576	223.51	1
2011		4,610,993	6.93	92.0	8,602	745,166,257	229.10	1
2012		4,670,075	6.98	92.0	8,738	782,490,853	234.83	1
2013		4,728,447	7.01	92.0	8,876	821,664,457	240.70	1
2014		4,786,202	7.04	92.0	9,016	867,134,871	246.72	1
2015		4,843,426	7.05	92.0	9.158	910,522,989	252.89	1
2016		4,900,198	7.07	92.0	9,303	960,910,781	259.21	1
2017		4,956,589	7.12	92.0	9,450	1,003,843,700	265.69	1
2018		5,012,663	7.21	92.0	9,599	1,059,395,803	272.33	1
2019		5,068,480	7.29	92.0	9,753	1,106,613,737	279.14	1
2020		5,124,093	7.36	92.0	9,909	1,167,853,073	286.12	1

Regression Statistics	
Iterations	55
Adjusted Observations	36
Deg. of Freedom for Error	31
R-Squared	0.937
Adjusted R-Squared	0.928
Durbin-Watson Statistic	2.327
Durbin-H Statistic	\#NA
AIC	-4.211
BIC	-3.991
F-Statistic	114.539
Prob (F-Statistic)	0
Log-Likelihood	29.72
Model Sum of Squares	6
Sum of Squared Errors	0
Mean Squared Error	0.01
Std. Error of Regression	0.11
Mean Abs. Dev. (MAD)	0.09
Mean Abs. \% Err. (MAPE)	2.20%
Ljung-Box Statistic	3.78
Prob (Ljung-Box)	0.581

DEPENDENT VARIABLE: SUMMER PEAK PER CUSTOMER

ELASTICITIES

	Coeefficient Mean	Elast

RPRICE	-0.137	5.654	-0.185	Real Price
RFLINC	0.000	$1,477,110.0$	0.059	Real FL Income (Income divided by CPI)
MAXTMP	0.050	92.891	1.099	Max Summer Temp

WINTER PEAK MODEL: DEPENDENT VARIABLE WINTER PEAK PER CUSTOMER

Variable	Coefficient	StdEr	T Stat	P-Value	
CONST	5.821	0.7252	8.027	0.00\%	Constant
RFLINC	000024	0.000245	0.974	34.08\%	Real FL income
INWDTMP2	-0.086	0.0300	-2.878	0.87\%	Min Winter Peak Day Temp
SATEMP2	0.0003	0.0004	0.881	38.78\%	Heat Saturation - Yemp
PRIORAM	0.001	0.0004	2.320	3.00\%	HOD Prior day until 9AM day of Peak
UMTMP36	-0.009	0.0075	-1.168	25.54\%	Dummy * Temp
SAR(1)	0.186	0.1956	0.952	35.12\%	Auto-Regressive term

Estimation period: 1970-2001

Year	Winter Peak	Total Gustomers	Winter Peak Customer	Winter Peak Customar Prad	RFUINC	MINWDTHP2	HSATEMP2	PRIORAM	DUMTMP38
1970	4.716	1.253 .124	3.76		707	36	1,520.16	812.37	0
1971	5,059	1.340 .415	3.77	3.99	758	33	1.517 .40	458.64	0
1972	4.816	1.446,114	3.33	3.41	846	43	2,090.81	535.86	0
1973	5.853	1,567.638	3.73	3.59	935	40	2,048.35	407.05	0
1974	6.258	1,676,022	3.73	3.66	948	42	2,260.37	568.65	0
1975	5,807	1,738.071	3.34	3.42	936	46	2,565.37	535.84	0
1976	7.287	1.795 .783	4.08	4.01	974	40	2.305.15	711.13	0
1977	8.723	1,875,821	4.65	4.53	1.028	33	2,009.25	755.01	0
1978	8,617	1,967,352	4.38	4.41	1.109	35	2.205 .33	674.82	0
1979	8.791	2.074.327	4.24	4.18	1,158	39	2.539 .66	675.59	0
1980	9.732	2.184.974	4.45	4.30	1.200	31	2.105 .45	489.84	31
1981	11,360	2,285.187	4.97	4.69	1.255	31	2.149 .58	855.00	31
1982	11.345	2.358.167	4.81	4.66	1.279	31	2.224 .94	778.89	31
1983	9.280	2.429.688	3.82	3.78	1,364	40	2,972.21	460.66	40
1984	11.050	2,520.523	4.38	4.89	1,462	30	2.274.11	939.30	30
1985	12.533	2,617.556	4.79	4.90	1.551	29	2,228.60	926.92	29
1986	12.139	2.723.555	4.46	4.47	1,642	33	2,591.97	815.55	33
1987	10,779	2,840,207	3.80	3.98	1,734	40	3,248.55	525.61	40
1988	12.372	2,953,663	4.19	3.89	1,830	42	3,485.26	599.65	42
1989	12,876	3.064.436	4.20	4.59	1,041	35	2,907.76	737.67	35
1990	18,046	3.158.817	5.08	4.99	1.978	28	2,358.89	789.66	28
1991	11,868	3,226.455	3.68	4.01	1.970	39	3,271.34	300.24	39
1992	13,319	3,281.238	4.06	3.92	1.989	43	3.700 .12	557.77	43
1993	12.932	3,355.794	3.85	4.18	2.055	41	3,551.36	601.13	49
1994	12.594	3,422.187	3.68	3.52	2.105	48	4,220.51	445.27	48
1995	18,563	3.488.796	4.75	4.46	2,188	36	3,165.77	503.51	36
1996	18.252	3,550,747	5.14	4.82	2.263	33	2.954 .60	869.67	33
1997	17.298	3.615.485	4.78	4.80	2.353	35	3,120.32	742.88	35
1998	13,060	3.680.470	3.55	3.68	2.463	48	4,277.01	425.17	48
1999	16,802	3,756,009	4.47	4.39	2.520	40	3.556.00	674.00	40
2000	17.057	3,848.401	4.43	4.39	2.612	39	3,457.08	512.00	39
3 ma	18109		$4 \mathrm{6})$	470	3,715	36	3 3 16 AC	cat ca	36
LUOL		¢,004, 101		4.14	4.109	\pm	J, $111 .<0$	004.21	30
2003		4.079.038		4.77	2,787	36	3,240.00	684.21	36
2004		4.151 .237		4.79	2,831	36	3,281.60	684.21	36
2005		4,725.980		4.81	2.877	36	3,286.80	684.21	36
2006		4.299.49,		4.83	2.927	36	3,308.40	684.21	36
2007		4.365.095		4.84 .	2.929	36	3,330.00	684.21	36
2008		4.428,309		4.86	2.997	36	3,351.60	684.21	36
2009		4.490.271		4.89	3,064	36	3,373.20	684.21	36
2010		4.551 .096		4.91	3.159	36	3,387.60	684.21	36
2011		4,810.993		4.94	3.253	36	3.402 .00	884.21	36
2012		4.870 .075		4.97	3,332	36	3.418 .40	684.21	36
2013		4.728 .447		4.99	3.414	36	3,430.80	684.21	36
2014		4.786 .202		5.02	3.515	36	3.445 .20	684.21	36
2015		4.843 .426		5.04	3,600	36	3.459.80	684.21	36
2016		4.000. 198		5.07	3.707	36	3.474 .00	684.21	36
2017		4,956.589		510	3,778	36	3.488 .40	684.21	36
2018		5.012.863		513	3.890	36	3,502.80	684.21	36
2019		5,068,480		5.15	3.964	36	3.517 .20	684.21	36
2020		5,124,093		5.18	4.082	36	3.531 .80	684.21	36

Cegression Statistios	
Iterations	15
Adjusted Observations	31
Deg. of Freedom for Error	24
R-Squared	0.837
Adjusted R-Squared	0.797
Durbin-Watson Statistic	2.123
Durbin-H Statistic	\#NA
AIC	-2.74
BIC	-2.417
F-Statistic	20.609
Prob (F-Statistic)	0
Log-Likelihood	5.31
Model Sum of Squares	7
Sum of Squared Errors	1
Mean Squared Error	0.05
Std. Error of Regression	0.23
Mean Abs. Dev. (MAD)	0.16
Mean Abs. \% Err. (MAPE)	3.84\%
Ljung-Box Statistic	4.73
Prob (Ljung-Box)	0.449

DEPENDENT VARIABLE: WINTER PEAK PER CUSTOMER

ELASTICITIES

| Variable | Coefficient | Mean | | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| RFLINC | 0.000 | $1,620.9$ | 0.092 | Real FL income |
| MiNWDTMP2 | -0.086 | 37.365 | -0.764 | Min Winter Peak Day Temp |
| HSATEMP2 | 0.000 | 2.752 .500 | 0.227 | Heat Saturation * Temp |
| PRIORAM | 0.001 | 622.721 | 0.120 | HDD Prior day until 9AM day of Peak |
| DUMTMP36 | -0.009 | 25.3 | -0.052 | Dummy * Temp |

FPL 200FPL 2001 THROUGH 2030 MOST LIKELY NATURAL GAS PRICE AND AVAILABILITY FORECAST
SEPTEMBE
ANNURE

	, \%:										NATURAL GAS PRICE FORECAST FIRM PHASE VI TRANSPORTATION:						
	SYSTEM WEIGHTED AVERAGE TOTAL (NON-FIRM \& FIRM) NATURAL GAS PRICE		VARIABLE (DISPATCH) COST FOR GAS MOVING UNDER NON-FIRM TRANSPORATION		VARIABLE (DISPATCH) COST FOR GAS MOVING UNDER FIRM TRANSPORATION		DEMAND (SUNK) COST FOR GAS MOVING UNDER FIRM TRANSPORATION		TOTAL								
			COST	R GAS				VARIABLE	DEMAND								
			MOVING U	DER FIRM			DELIVERED	DISPATCH	(SUNK)								
			TRANSP	ORATION			PRICE	PRICE	COST								
MONTH/	NOMINAL	NOMINAL			NOMINAL	NOMINAL			NOMINAL								
YEAR	\$/MMBTU	MMS			\$/MMBTU	MMS			\$/MMBTU	MMS	S/MMBTU	MM\$	\$/MMBTU	MM\$	S/MMBTU	S/MMBTU	S/MMBTU
2000	\$4.56	\$1,133.78			\$4.43	\$209.06			-\$4.01	\$809.18	\$0.58	\$116	\$4.59	\$924.72	\$4.76	\$4.76	\$0.00
2001	\$4.91	\$2,311.37	\$4.79	\$1,123.97	\$4.39	\$1,035.84	\$0.61	\$151.56	\$5.00	\$1,187.40	\$5.14	\$4.38	\$0.76				
2002	\$3.76	\$1,820.35	\$3.61	\$665.40	\$3.23	\$967.99	\$0.62	\$186.96	\$3.85	\$1,154.95	\$3.98	\$3.22	\$0.76				
2003	\$3.97	\$1,512.11	\$3.78	\$294.58	\$3.40	\$1,029.07	\$0.62	\$188.46	\$4.02	\$1,217.53	\$4.15	\$3.39	\$0.76				
2004	\$3.99	\$1,334.51	\$3.78	\$113.62	\$3.39	\$1,032.30	\$0.62	\$188.60	\$4.01	\$1,220.89	\$4.14	\$3.38	\$0.76				
2005	\$4.01	\$1,334.20	\$3.81	\$108.44	\$3.41	\$1,038.37	\$0.62	\$187.39	\$4.03	\$1,225.76	\$4.17	\$3.41	\$0.76				
2006	\$4.05	\$1,322.62	\$3.85	\$107.15	\$3.45	\$1,030.93	\$0.62	\$184.54	\$4.08	\$1,215.47	\$4.21	\$3.45	\$0.76				
2007	\$4.09	\$1,332.46	\$3.90	\$105.12	\$3.50	\$1,043.38	\$0.62	\$183.95	\$4.11	\$1,227.34	\$4.25	\$3.49	\$0.76				
2008	\$4.19	\$1,363.14	\$4.00	\$105.72	\$3.59	\$1,073.57	\$0.62	\$183.85	\$4.21	\$1,257.42	\$4.34	\$3.58	\$0.76				
2009	\$4.29	\$1,389.42	\$4.10	\$104.59	\$3.69	\$1,102.05	\$0.61	\$182.78	\$4.31	\$1,284.83	\$4.45	\$3.69	\$0.76				
2010	\$4.39	\$1,418.36	\$4.22	\$104.48	\$3.80	\$1,133.96	\$0.61	\$179.93	\$4.41	\$1,313.88	\$4.55	\$3.79	\$0.76				
2011	\$4.51	\$1,452.92	\$4.34	\$104.13	\$3.92	\$1,169.36	\$0.60	\$179.42	\$4.52	\$1,348.78	\$4.67	\$3.91	\$0.76				
2012	\$4.63	\$1,491.87	\$4.47	\$104.62	\$4.04	\$1,207.36	\$0.60	\$179.89	\$4.64	\$1,387.25	\$4.79	\$4.03	\$0.76				
2013	\$4.75	\$1,524.97	\$4.60	\$103.43	\$4.16	\$1,242.13	\$0.60	\$179.42	\$4.77	\$1,421.54	\$4.92	\$4.15	\$0.76				
2014	\$4.88	\$1,562.68	\$4.73	\$103.03	\$4.29	\$1,280.24	\$0.60	\$179.42	\$4.89	\$1,459.66	\$5.04	\$4.28	\$0.76				
2015	\$5.01	\$1.601.69	\$4.87	\$102.32	\$4.64	\$1,385.18	\$0.39	\$114.19	\$5.03	\$1,499.37	\$5.18	\$4.42	\$0.76				
2016	\$5.15	\$1,645.66	\$5.02	\$102.32	\$4.89	\$1,464.06	\$0.27	\$79.28	\$5.16	\$1,543.34	\$5.31	\$4.55	\$0.76				
2017	\$5.29	\$1,682.83	\$5.17	\$100.72	\$5.04	\$1,503.06	\$0.27	\$79.06	\$5.30	\$1,582.11	\$5.45	\$4.69	\$0.76				
2018	\$5.44	\$1,725.11	\$5.32	\$99.77	\$5.18	\$1,546.29	\$0.27	\$79.06	\$5.45	\$1,625.35	\$5.60	\$4.84	\$0.76				
2019	\$5.59	\$1,768.96	\$5.48	\$98.58	\$5.33	\$1,591.32	\$0.27	\$79.06	\$5.60	\$1,670.38	\$5.75	\$4.99	\$0.76				
2020	\$5.75	\$1,818.40	\$5.64	\$97.99	\$5.49	\$1,641.13	\$0.27	\$79.28	\$5.76	\$1,720.41	\$5.90	\$5.14	\$0.76				
2021	\$5.91	\$1,860.43	\$5.81	\$95.85	\$5.65	\$1,685.53	\$0.27	\$79.06	\$5.92	\$1,764.58	\$6.07	\$5.30	\$0.76				
2022	\$6.07	\$1,908.15	\$5.98	\$94.26	\$6.01	\$1,793.65	\$0.07	\$20.23	\$6.08	\$1,813.88	\$6.23	\$5.47	\$0.76				
2023	\$6.25	\$1,957.55	\$6.16	\$92.45	\$6.25	\$1,865.10	\$0.00	\$0.00	\$6.25	\$1,865.10	\$6.40	\$5.64	\$0.76				
2024	\$6.42	\$2,013.24	\$6.35	\$91.13	\$6.43	\$1,922.11	\$0.00	\$0.00	\$6.43	\$1,922.11	\$6.58	\$5.82	\$0.76				
2025	\$6.61	\$2,060.92	\$6.54	\$88.31	\$6.61	\$1,972.61	\$0.00	\$0.00	\$6.61	\$1,972.61	\$6.76	\$6.00	\$0.76				
2026	\$6.80	\$2,114.94	\$6.74	\$85.96	\$6.80	\$2,028.98	\$0.00	\$0.00	\$6.80	\$2,028.98	\$6.95	\$6.19	\$0.76				
2027	\$6.99	\$2,170.61	\$6.94	\$83.34	\$7.00	\$2,087.27	\$0.00	\$0.00	\$7.00	\$2,087.27	\$7.15	\$6.38	\$0.76				
2028	\$7.20	\$2,233.21	\$7.16	\$81.11	\$7.20	\$2,152.10	\$0.00	\$0.00	\$7.20	\$2,152.10	\$7.35	\$6.59	\$0.76				
2029	\$7.40	\$2,286.73	\$7.37	\$77.43	\$7.41	\$2,209.30	\$0.00	\$0.00	\$7.41	\$2,209.30	\$7.56	\$6.79	\$0.76				
2030	\$7.62	\$2,347.82	\$7.60	\$74.64	\$7.62	\$2,273.19	\$0.00	\$0.00	\$7.62	\$2,273.19	\$7.77	\$7.01	\$0.76				

												NATURAL GAS PRICE FORECAST FIRM PHASE VI TRANSPORTA		
		SYSTEM WEIGHTED AVERAGE TOTAL (NON-FIRM \& FIRM) NATURAL GAS PRICE		VARIABLE (DISPATCH) COST FOR GAS MOVING UNDER NON-FIRM TRANSPORATION		VARIABLE (DISPATCH) COST FOR GAS MOVING UNDER FIRM TRANSPORATION		DEMAND (SUNK) COSTFOR GAS MOVING UNDER FIRM TRANSPORATION		$\begin{array}{r} \text { TOT } \\ \text { COST } \\ \text { MOVING UI } \\ \text { TRANS } \end{array}$	R GAS DER FIRM RATION	DELIVERED PRICE	VARIABLE DISPATCH PRICE	DEMAND (SUNK) COST
	MONTHI YEAR	NOMINAL S/MMBTU	NOMINAL MMS	NOMINAL S/MMBTU	NOMINAL MMS	NOMINAL S/MMBTU	NOMINAL MMS	NOMINAL \$/MMBTU	NOMINAL MMS	NOMINAL \$/MMBTU	NOMINAL MMS	NOMINAL \$/MMBTU	NOMINAL S/MMBTU	NOMINAL S/MMBTU
	2001	\$5.55	\$2,584.32	\$5.44	\$1,224.56	\$5.03	\$1,208.21	\$0.61	\$151.56	\$5.63	\$1,359.77	\$5.78	\$5.02	\$0.76
	2002	\$4.85	\$2.345.83	\$4.71	\$868.31	\$4.30	\$1,290.56	\$0.62	\$186.96	\$4.93	\$1,477.52	\$5.06	\$4.30	\$0.76
	2003	\$5.10	\$1,944.21	\$4.94	\$384.83	\$4.52	\$1,370.92	\$0.62 ${ }^{-}$	\$188.46	\$5.15	\$1,559.38	\$5.28	\$4.52	\$0.76
	2004	\$5.11	\$1,710.82	\$4.92	\$148.07	\$4.51	\$1,374.16	\$0.62	\$188.60	\$5.13	\$1,562.76	\$5.26	\$4.50	\$0.76
	2005	\$5.14	\$1,709.80	\$4.96	\$141.20	\$4.54	\$1,381.22	\$0.62	\$187.39	\$5.16	\$1,568.60	\$5.30	\$4.53	\$0.76
	2006	\$5.19	\$1,694.31	\$5.01	\$139.43	\$4.59	\$1,370.34	\$0.62	\$184.54	\$5.21	\$1,554.88	\$5.35	\$4.58	\$0.76
	2007	\$5.25	\$1,707.66	\$5.07	\$136.79	\$4.65	\$1,386.92	\$0.62	\$183.95	\$5.27	\$1,570.87	\$5.40	\$4.64	\$0.76
	2008	\$5.37	\$1.748.59	\$5.20	\$137.62	\$4.77	\$1,427.13	\$0.62	\$183.85	\$5.39	\$1,610.97	\$5.53	\$4.76	\$0.76
	2009	\$5.51	\$1,784.06	\$5.35	\$136.20	\$4.91	\$1,465.09	\$0.61	\$182.78	\$5.52	\$1,647.87	\$5.66	\$4.90	\$0.76
	2010	\$5.64	\$1,823.62	\$5.50	\$136.11	\$5.05	\$1,507.59	\$0.61	\$179.93	\$5.66	\$1,687.52	\$5.81	\$5.04	\$0.76
	2011	\$5.80	\$1,869.89	\$5.66	\$135.71	\$5.21	\$1,554.76	\$0.60	\$179.42	\$5.81	\$1,734.18	\$5.96	\$5.20	\$0.76
	2012	\$5.96	\$1,921.65	\$5.83	\$136.40	\$5.37	\$1,605.37	\$0.60	\$179.89	\$5.97	\$1,785.26	\$6.12	\$5.36	\$0.76
	2013	\$6.13	\$1,966.01	\$6.00	\$134.89	\$5.53	\$1,651.70	\$0.60	\$179.42	\$6.14	\$1,831.12	\$6.29	\$5.53	\$0.76
	2014	\$6.30	\$2.016.31	\$6.18	\$134.41	\$5.79	\$1,702.48	\$0.60	\$179.42	\$6.31	\$1,881.90	\$6.46	\$5.70	\$0.76
	2015	\$6.48	\$2,068.34	\$6.36	\$133.54	\$6.10	\$1,820.61	\$0.39	\$114.19	\$6.49	\$1,934.80	\$6.64	\$5.87	\$0.76
Q	2016	\$6.66	\$2,126.79	\$6.55	\$133.58	\$6.40	\$1,913.93	\$0.27	\$79.28	\$6.67	\$1,993.22	\$6.82	\$6.06	\$0.76
1	2017	\$6.85	\$2.176.58	\$6.75	\$131.54	\$6.59	\$1,965.99	\$0.27	\$79.06	\$6.86	\$2,045.04	\$7.01	\$6.24	\$0.76
N	2018	\$7.04	\$2,232.97	\$6.95	\$130.33	\$6.78	\$2,023.58	\$0.27	\$79.06	\$7.05	\$2,102.64	\$7.20	\$6.44	\$0.76
N	2019	\$7.24	\$2,291.47	\$7.16	\$128.83	\$6.98	\$2,083.58	\$0.27	\$79.06	\$7.25	\$2,162.64	\$7.40	\$6.64	\$0.76
	2020	\$7.45	\$2,357.21	\$7.38	\$128.08	\$7.19	\$2,149.85	\$0.27	\$79.28	\$7.46	\$2,229.13	\$7.61	\$6.84	\$0.76
	2021	\$7.67	\$2,413.48	\$7.60	\$125.33	\$7.40	\$2,209.09	\$0.27	\$79.06	\$7.67	\$2,288.15	\$7.82	\$7.06	\$0.76
	2022	\$7.89	\$2,477.12	\$7.83	\$123.29	\$7.82	\$2,333.60	\$0.07	\$20.23	\$7.89	\$2,353.83	\$8.04	\$7.28	\$0.76
	2023	\$8.12	\$2,543.02	\$8.07	\$120.95	\$8.12	\$2,422.07	\$0.00	\$0.00	\$8.12	\$2,422.07	\$8.27	\$7.51	\$0.76
	2024	\$8.35	\$2,617.11	\$8.32	\$119.25	\$8.36	\$2,497.86	\$0.00	\$0.00	\$8.36	\$2,497.86	\$8.50	\$7.74	\$0.76
	2025	\$8.60	\$2,680.91	\$8.57	\$115.60	\$8.60	\$2,565.31	\$0.00	\$0.00	\$8.60	\$2,565.31	\$8.75	\$7.99	\$0.76
	2026	\$8.85	\$2,752.97	\$8.83	\$112.55	\$8.85	\$2,640.42	\$0.00	\$0.00	\$8.85	\$2,640.42	\$9.00	\$8.24	\$0.76
	2027	\$9.11	\$2,827.22	\$9.11	\$109.15	\$9.11	\$2,718.07	\$0.00	\$0.00	\$9.11	\$2,718.07	\$9.26	\$8.50	\$0.76
	2028	\$9.38	\$2,910.53	\$9.39	\$106.24	\$9.38	\$2,804.28	\$0.00	\$0.00	\$9.38	\$2,804.28	\$9.53	\$8.77	\$0.76
	2029	\$9.66	\$2,982.11	\$9.67	\$101.44	\$9.66	\$2,880.66	\$0.00	\$0.00	\$9.66	\$2,880.66	\$9.81	\$9.04	\$0.76
	2030	\$9.94	\$3,063.60	\$9.97	\$97.81	\$9.94	\$2,965.79	\$0.00	\$0.00	\$9.94	\$2,965.79	\$10.09	\$9.33	\$0.76

FPL. 2001 THROUGH 2030 MOST LIKELY COAL AND PETROLEUM COKE PRICE FORECAST

John																				
	PLONT SCHERER UNIT 4																WEIGHTED AVERAG			
	WEIGHTED	SPOT	MARTIN PLANT		1.0\% SULFUR COAL WEIGHTED AVERAGE		PETROLEUM COKE DELIVERED TO FLORIDA										FUEL AT SURPP (85\% SPOT COAL;			
	AVERAGE	PRICE	SPO	Price							WEIGHTED AVERAGCOAL PRICE				FUEL PRICE				15% PETROLEUM COKE)	
MONTH	NOMINAL	NOMINAL	NOMINAL	NOMINAL	NOMINAL	NOMINAL			nominal											
YEAB	¢мMmer	smmerl	STON	SMMBETU	STON	SMMBTU	STON	S/MMBTU	STON	SIMMBTU	$5{ }^{\text {STON}}$	S/MMAIU	Ston	S/MMBTU	STON	S/MMBTU	STON	SMMBTU	5	SMMETU
2001	51.72	\$1.53	\$37.62	\$1.59	\$37.62	\$1.59	\$23.18	\$0.83	\$40.17	\$1.64	\$36.37	\$1.44	539.62	\$1.61	\$14.59	S0. 52	\$35.88	\$1.45	\$33.10	\$1.30
2002	\$1.78	\$1.57	\$37.92	\$1.61	\$37.92	\$1.61	\$22.24	\$0.79	\$40.82	\$1.66	\$36.65	\$1.55	\$40.56	\$1.66	\$20.93	\$0.75	\$37.33	\$1.51	\$34.29	\$1.43
2003	\$1.94	\$1.78	\$3971	\$1.68	\$39.71	\$1.68	\$21.92	\$0.78	\$40.25	\$1.65	\$38.42	\$1.63	\$40.07	\$1.65	\$20.88	S0.75	\$36.83	\$1.49	\$35.79	\$1.49
2004	\$1.65	\$1.63	540.84	\$1.73	\$40.84	\$1.73	\$21.36	\$0.76	\$40.78	\$1.67	\$39.53	\$1.65	\$40.67	\$167	\$21.36	\$0.76	\$37.41	\$1.51	\$36.60	\$1.51
2005	$\$ 1.67$	\$1.65	\$41.32	\$1.75	\$41.32	\$1.75	\$21.18	S0.76	\$41.69	\$1.71	\$40.00	\$1.67	\$41.53	\$1.70	\$21.18	\$0.76	\$38.09	\$1.54	\$37.17	\$1.53
2006	\$1.69	\$1.67	\$41.84	\$1.77	541.84	\$1.77	\$2126	\$0.76	\$44.52	\$1.73	\$40.49	\$1.69	\$41.88	\$1.70	\$21.26	S0 76	\$38.40	\$1.54	\$37.61	\$1.55
2007	\$1.72	\$1.69	542.41	\$1.80	\$42,41	\$1.80	\$21.57	S0.77	\$44.96	\$1.75	\$41.04	\$1.71	542.38	\$1.72	\$21.57	S0.77	\$38.87	\$1.56	\$38.12	\$1.57
2008	\$1.72	\$1.79	543.01	\$1.82	\$43.01	\$1.82	\$21.59	S0.77			\$4161	\$1.73	\$41.61	\$1.73	\$21.59	S0.77	\$38.23	\$1.57	\$38.61	\$1.59
2009	\$1.74	\$1.74	543.64	\$1.85	\$43.64	\$1.85	\$21.88	\$0.78			\$42.22	\$1.76	\$4222	\$1.76	\$21.88	\$0.78	\$38.78	\$1.59	\$39.16	\$1.61
2010	51.77	\$1.77	\$44.32	\$1.88	\$44.32	\$1.88	\$22.13	\$0.79			\$42.87	\$1.79	\$42.87	\$1.79	\$22.13	\$0.79	\$39.37	\$1.62	\$39.76	\$1.64
2011	\$1.79	\$1.79	\$45.07	\$1.91	\$45.07	\$1.91	\$22 30	\$0.80			\$43.59	\$1.82	\$43.59	\$1.82	\$22.30	S0 80	\$39.99	\$1.64	\$40.40	\$1.66
2012	\$1.82	\$1.82	\$45.82	\$1.94	54582	\$1.94	\$22.74	\$0.81			\$44.31	\$1.85	\$44.31	\$1.85	\$22.74	\$0.81	\$40.67	\$1.67	\$41.07	\$1.69
2013	\$1.85	\$1.85	\$46.59	\$1.97	\$4659	\$1.97	\$23.24	\$0.83			\$45.05	\$1.88	\$4505	\$1.88	\$23.24	\$0.83	\$41.36	\$1.70	\$41.77	\$1.72
2014	\$1.88	\$1.88	547.38	\$2.01	\$47.38	\$2.01	\$23.63	\$0.84			\$45.80	\$1.91	\$45.80	\$1.91	\$23.63	50.84	\$4206	\$1.73	542.48	\$1.75
2015	\$1.91	\$1.91	\$48.17	\$2.04	\$48.17	\$2.04	\$23.94	\$0.86			\$46.57	\$1.94	\$46.57	\$1.94	\$23.94	\$0.86	\$42.75	\$1.76	\$43.17	\$1.78
2016	\$1.94	\$1.94	\$48.99	\$2.07	\$48.99	\$2.07	\$24.31	\$0.87			\$47.34	\$1.97	\$47.34	\$1.97	\$24.31	\$0.87	\$43.46	\$1.79	\$43.89	\$1.81
2017	\$1.97	\$1.97	\$49.81	\$2.11	S49.81	\$2.11	\$24.78	\$0.88			\$48. 14	\$2.01	\$48.14	\$2.01	\$24.78	\$0.88	\$44.19	\$1.82	544.63	\$1.84
2018	52.01	\$2.01	\$50.65	\$2.14	\$50.65	\$2.14	\$25.27	\$0.90			\$48.94	\$2.04	\$48.94	\$2.04	\$25.27	\$0.90	\$44.95	\$1.85	\$45.39	\$1.87
2019	\$204	\$2.04	\$51.51	\$2.18	\$51.51	\$2.18	\$25.77	S0.92			\$49.77	\$2.07	\$49.77	\$2.07	\$25.77	\$0.92	\$45.72	\$1.88	\$46.17	\$1.90
2020	\$2.07	\$2.07	\$52.39	\$2.22	\$52.39	\$2.22	\$26.27	S0 94			\$50.61	\$2.11	\$50.61	\$2.11	\$26.27	50.94	546.50	\$1.91	\$46.96	\$1.93
2021	52.11	\$2.11	\$53.28	\$2.26	\$53.28	\$2.26	\$26.83	\$0.96			\$51.46	\$2.14	\$51.46	\$2.14	\$26.83	\$0.96	547.30	\$1.94	547.77	\$1.97
2022	\$2.14	\$2.14	\$54.19	\$229	\$54.19	\$2.29	\$27.40	50.98			\$52.33	\$2.18	\$52.33	\$2.18	\$27.40	\$0.98	548.12	\$1.98	\$48.59	\$2.00
2023	52.18	\$2.18	\$55.12	\$2.33	\$55.12	\$2.33	\$27.98	\$1.00			\$53.22	\$2. 22	\$53.22	\$2. 22	\$27.98	\$1.00	\$48.96	\$2.01	\$49.44	\$2.03
2024	\$2.21	\$2.21	\$56.07	\$2.37	\$56.07	\$2.37	\$28.57	\$1.02			\$54. 13	\$2.26	\$54.13	\$2.26	\$28.57	\$1.02	\$49.82	\$2.05	\$50.30	$\$ 2.07$
2025	\$2.25	\$2.25	\$57.04	\$2.41	\$57.04	\$2.41	\$29.19	\$1.04			\$55.06	\$2.29	\$55.06	\$2.29	\$29.19	\$1.04	\$50.69	\$2.08	\$51.18	\$2.11
2026	\$2.29	\$2.29	\$58.03	\$2.46	\$58.03	\$2.46	\$29.81	\$1.06			\$56.00	\$2.33	\$56.00	\$2.33	\$29.81	\$1.06	\$51.58	\$2.12	\$52.08	\$2.14
2027	\$2.32	\$2.32	\$59.03	\$2.50	\$59.03	\$2.50	\$30.45	\$1.09			\$56.97	\$2.37	\$56.97	\$2.37	\$30.45	\$1.09	\$52.49	\$2.16	\$52.99	\$2.18
2028	\$2.36	\$2.36	\$60.05	\$2.54	\$60.05	\$2.54	\$31.11	\$1.11			\$57.94	\$2.41	\$57.94	\$2.41	\$31.11	\$1.11	\$53.41	\$2.19	\$53.92	\$2.22
2029	\$2.40	\$2.40	\$61.09	\$2.59	\$61.09	\$2.59	\$31.77	\$1.13			\$58.94	\$2.46	\$58.94	\$2.46	\$31.77	\$1.13	\$54.35	\$2.23	\$54.86	\$2.26
2030	\$2.44	\$2.44	\$62.15	\$2.63	\$62.15	\$2.63	\$32.45	\$1.16			\$59.95	\$2.50	\$59.95	\$2.50	\$32.45	\$1.16	\$55.31	\$2.27	\$55.82	\$2.30

FPL 200 PPL 2001 THROUGH 2030 MOSTLIKELY OIL PRICE FORECAST

889000

EPL 200 FPL 2001 THROUGH 2030 HIGH PRICE OIL FORECAST
septembiseptember 10, 2001 - EUGENE UNGAR

CO-FIRE: (1) REQUIRED CO.FIRE RATIO: 70\% RESIDUAL FUEL OLI. 30\% NATURAL GAS (2) REQUIREDCO-FIRE RATTO: $15 X$ RESIDUAL FUEL OIL 55X NATURAL GAS
(3) REQUIREDCO.FIRE RATIO: 65% RESIDUAL FULL OIL, $35 \times$ NATURAL GAS (4) REQUIRED CO.FIRE RATIO: GOX RESIDUAL FUEL OIL, 40\% NATURAL GAS

\$IMM
58.20 57.88
37.4
${ }_{86.9} 86$
58.7
88.8
\$7.02
37.4
37.82
$\$ 7.84$ 38.08 8.32
38.32
38.57
\$8.83 8.09
38.09 39.37
39.65
59.93
\$10.23
510.54 510.87
$\$ 10.87$ $\$ 19$
811.54
311.90
\$12.27
\$12.85
\$13.05

SP. 48	Ss. 2
35.25	35.0
35.15	\% 1.8
54.83	S.
S4.74	st
\$4.75	8.
S4.81	St
\$4.93	St
35.08	54
35.20	84.85
\$5.34	54.97
\$5500	35.11
\$5568	35.25 35.38 58
55.83	35.38
88.00	35.54
56.18	35.88
${ }^{56.38}$	35.85
58.58	88.01
88.75	58.18
38.95	S8.34
37.18	S6.52
\$7.38	88.70
37.81	\$8.89
37.84	37.08
38.08	37.28
58.34	37.49
38.60	37.70
38.87	57.92
39.14	38.14

SEPTEMBER 10, 2001 - EUGENE UNGAR
ANNUAL VOEUMESAAN DKPRICESAREBELCOWMONTHHEY VOLUMES ANDIPRICES

NATURAL GAS TRANSPORTATION/AVAILABILITY ASSUMPTIONS

ASSUMED	ASSUMED	FIRM
FIRM	FIRM	TRANSPORT
THROUGH	THROUGH	THROUGH
$7 / 31 / 15$	$2 / 28 / 15 ;$	$12 / 31 / 05$
	$4 / 30 / 21 ; \&$	
	$3 / 31 / 22$	

RENRIE
RUB
NATURAL
GAS
RRICE
NOMINAL
\$IMMBTU
$\$ 3.91$
$\$ 4.41$
$\$ 3.16$
$\$ 3.31$
$\$ 3.29$
$\$ 3.31$
$\$ 3.34$
$\$ 3.38$
$\$ 3.47$
$\$ 3.57$
$\$ 3.68$
$\$ 3.79$
$\$ 3.91$
$\$ 4.03$
$\$ 4.15$
$\$ 4.28$
$\$ 4.42$
$\$ 4.55$
$\$ 4.70$
$\$ 4.84$
$\$ 4.99$
$\$ 5.15$
$\$ 5.31$
$\$ 5.48$
$\$ 5.65$
$\$ 5.83$
$\$ 6.02$
$\$ 6.21$
$\$ 6.40$
$\$ 6.61$
$\$ 6.81$

FPL 2001 THROUGH 2030 LOW PRICE NATURAL GAS AND AVAILABILITY FORECAST
SEPTEMBER 10, 2001 - EUGENE UNGAR

NATURAL GAS TRANSPORTATION/AVAILABILITY ASSUMPTIONS

| ASSUMED | ASSUMED FIRM |
| :---: | :---: | :---: |
| FIRM | FIRM TRANSPORT |

THROUGH T
7/31/15 2/28/15; 12/31/05

4/30121; \&
3/31/22
FIRM TRANSPORTATION
NON-FIRM
MONTHI AVAILABILITY
YEAR MMCFPD
FTS-1

$\frac{\text { YEAR }}{2001} \frac{\text { MMCFPD }}{569} \quad$ MMCFPD | PHASE II NUI | |
| :--- | :---: |
| MMCFPD | MMCFPD |

2001	569	332	335	16
2002	505	332	474	16
2003	209	332	484	16

2002	505	332	335	16
2003	209	332	474	16
2004	484	16		

TOTAL FIRM
TOTAL

$\frac{\text { MMCFPD }}{682} \quad \frac{\text { MM }}{125}$

MMCF

1251
1328

$\begin{aligned} & \text { HENRY } \\ & \text { AUB } \end{aligned}$
NATURAL
GAS
PRICE
NOMINAL
SIMMBTL
\$3.84
\$2.11
\$2.21
\$2.20
\$2.21
\$2.23
\$2.25
\$2.32
\$2.38
\$2.45
\$2.53
\$2.61
\$2.69
\$2.77
\$2.86
\$2.95
\$3.04
\$3.13
\$3.23
\$3.33
\$3.44
\$3.54
\$3.65
\$3.77
\$3.89
\$4.01
\$4.14
\$4.27
\$4.41
\$4.55

FPL 2001 THROUGH 2030 HIGH PRICE NATURAL GAS AND AVAILABILITY FORECAST
SEPTEMBER 10, 2001 - EUGENE UNGAR

NATURAL GAS TRANSPORTATIONIAVAILABILITY ASSUMPTIONS
ASSUMED ASSUMED FIRM
FIRM FIRM TRANSPORT
THROUGH THROUGH THROUGH
7/31/15 2/28/45; 12/31/05 4/30/21; \&
3/31/22
FIRM TRANSPORTATION

	FIRM TRANSPORTATION							GASPRICE
		NON-FIRM	FTS-1	FTS-2	FTS-1	TOTAL FIRM	TOTAL	
	MONTH/	AVAILABILITY	PHASE II	PHASE II	NUI	TRANSPORT	AVAILABILITY	NOMINAL
	YEAR	MMCFPD	MMCFPD	MMCFPD	MMCFPD	MMCFPD	MMCFPD	S/MMBTU
	2001	569	332	335	16	682	1251	\$4.98
	2002	505	332	474	16	822	1328	\$4.21
	2003	209	332	484	16	832	1041	\$4.41
	2004	85	332	484	16	832	917	\$4.39
	2005	81	332	484	0	832	913	\$4.41
	2006	79	332	484	0	817	895	\$4.45
	2007	77	332	484	0	817	893	\$4.50
	2008	75	332	484	0	817	891	\$4.63
	2009	73	332	484	0	817	889	\$4.76
Q	2010	71	332	484	0	817	887	\$4.90
1	2011	68	332	484	0	817	885	\$5.05
∞	2012	66	332	484	0	817	883	\$5.21
	2013	64	332	484	0	817	881	\$5.37
	2014	62	332	484	0	817	879	\$5.54
	2015	60	332	484	0	817	877	\$5.71
	2016	58	332	484	0	817	875	\$5.89
	2017	56	332	484	0	817	872	\$6.07
	2018	54	332	484	0	817	870	\$6.26
	2019	52	332	484	0	817	868	\$6.46
	2020	50	332	484	0	817	866	\$6.66
	2021	48	332	484	0	817	864	\$6.87
	2022	46	332	484	0	817	862	\$7.08
	2023	43	332	484	0	817	860	\$7.30
	2024	41	332	484	0	817	858	\$7.53
	2025	39	332	484	0	817	856	\$7.77
	2026	37	332	484	0	817	854	\$8.02
	2027	35	332	484	0	817	852	\$8.27
	2028	33	332	484	0	817	850	\$8.53
	2029	31	332	484	0	817	847	\$8.81
0	2030	29	332	484	0	817	846	\$9.08

Appendix H

Summary of Financial and Economic Assumptions

Projected Capitalization Ratios Debt $=45 \%$ Preferred $=0 \%$ Equity $=55 \%$	Projected Cost of Capital Debt $=7.4 \%$ Preferred $=0 \%$ Equity $=11.7 \%$
Rates: Composite Income Tax $=38.575 \%$ (Includes Federal and State Tax)	Book Life Combustion Turbines $=25$ Years Combined Cycle $=25$ Years

Annual Escalation Assumptions (In Percent)			
Year	Generator Capital	Generator Fixed O\&M	Generator Variable O\&M
2001	1.70\%	4.90\%	2.70\%
2002	1.70\%	3.80\%	2.50\%
2003	1.70\%	4.40\%	2.80\%
2004	1.70\%	3.80\%	2.80\%
2005	1.70\%	3.40\%	2.70\%
2006	1.70\%	3.40\%	2.60\%
2007	1.70\%	3.60\%	2.60\%
2008	1.70\%	3.80\%	2.60\%
2009	1.70\%	4.00\%	2.50\%
2010	1.70\%	4.20\%	2.50\%
2011	1.70\%	4.50\%	2.50\%
2012	1.70\%	4.50\%	2.50\%
2013	1.70\%	4.50\%	2.50\%
2014	1.70\%	4.50\%	2.50\%
2015	1.70\%	4.50\%	2.50\%
2016	1.70\%	4.50\%	2.50\%
2017	1.70\%	4.50\%	2.50\%
2018	1.70\%	4.50\%	2.50\%
2019	1.70\%	4.50\%	2.50\%
2020	1.70\%	4.50\%	2.50\%
2021	1.70\%	4.50\%	2.50\%
2022	1.70\%	4.50\%	2.50\%
2023	1.70\%	4.50\%	2.50\%
2024	1.70\%	4.50\%	2.50\%
2025	1.70\%	4.50\%	2.50\%
2026	1.70\%	4.50\%	2.50\%
2027	1.70\%	4.50\%	2.50\%
2028	1.70\%	4.50\%	2.50\%
2029	1.70\%	4.50\%	2.50\%

Request for Proposals

Florida Power \& Light Company (FPL) is soliciting proposals for. (a) a supply of up to 1,750 megawatts of firm capacity and energy to FPL statting in 2005 and 2006, and (b) new renewable energy sources that could be made avallable to FPL customers starting in 2003.
The 1,750 megawatt solicitation is for firm capacity and energy projects that could be more economical than FPL's next planned capacity additions for 2005 and 2006. FPL's projects, as described in its 2001 Ten-Year Power Plant Site Plan, are as follows:
Ear 2005. Two combustion turbines (CT's) are planned for conversion into a combined cycle (CC) unit at FPL's Martin site. A similar conversion of two CT's into a CC unit is also planned at FPL's Fort Myers site. Each conversion adds 249 MW (summer) and will be natural gas-fired. Two new CC units are planned, one at FPL's Martin site, and one at FPL's Midway site. Each CC unit adds 547 MW (summer) and will be natural gas-fired. All of these capacity additions are projected to be in-service by June 1, 2005.

Eor 2006: A new CC unit is planned for FPL's Martin site. It will add 547 MW (summer), will be natural gas-fired and is projected to be in-service by June 1, 2006.
The solicitation for energy from new renewable energy sources is separate from proposals related to firm capacity. FPL is seeking renewable energy projects that would potentially serve FPL customers by 2003.
Parties interested in submitting proposals for parts (a) and/or (b) of this solicitation need to send a non-refundable check for $\$ 500$ payable to Forida Power \& Light Company in order to recelve the Request for Proposals (RFP) document and to be eligible for the Pre-Bid Workshop. The RFP document is scheduled for release on August 13, 2001, and the Pre-Bid Workshop will be held in Miami on Augus! 24, 2001. Please address your request for the RFP document, with the enciosed check, to: Steve R. Sim, RFP Contact Person, Florida Power \& Light Company, Resource Assessment and Planning Dept., P.O. Box 029100, Miami, FL 33102-9100, (305) 552-2246.
A Notice of intent to Respond to the Solicitation Form from all parties wishing to bid must be received by FPL by August 31, 2001, and all proposals must be received by FPL by September 14, 2001. Initial evaluation of proposals is projected to be completed in November 2001 at which time a short list of proposals will be announced and contract negotiations initiated. The final announcement of the selected bid(s) is projected for some time in March 2002.
FPL reserves the right to reject all proposals, to modity or cancel the RFP, or to match or beat any/all proposal(s) with FPL's own resource option.
an FPL Group compary

For Your Home
For Your Business
Storm Center
Safety
Our Environment

News

Community Care
Learning Center
About Us
Profile
Nuclear Power
Power Line Projects Quality History FPL Retirees

Investor

Family of Sites

Questions and Answers relating to FPL's Request for Proposals for Capacity and Energy

Due Date Extension (8/26/01) | Purpose of RFP FAQ (8/22/01) | What are FPL's street and mailing addresses? (8/22/01) | What specific risks is FPL seeking to mitigate by terminating or shortening negotiated contracts upon deregulation of Florida's electric utility industry? What are their concerns? (8/26/01) Why did FPL limit its option to shorten contracts by half? What flexibility is FPL seeking in a contract to respond to deregulation? (8/26/01) | Does FPL have a preference for a 3 -year, 10 -year or a longerterm contract? If so, why? (8/26/01) Do projects need to submit their application for the FPL's queue for generation interconnection prior to September 14? (8/26/01) | Please answer the following questions on FPL's "Next Planned Generating Units" as outlined in the RFP Tables V1: (8/26/01) I In the "Notice of Intent to Respond to the Solicitation" (NOI), if more than one proposal is being considered does it need to be listed in the NOI? (8/26/01) | Will FPL issue a written list of all questions and answers? (8/26/01) | Does FPL require projects with a secondary fuel supply or a minimum storage of the primary fuel? (8/26/01) I Will FPL give any indication of the relative value of projects connecting at various points in the system? (8/26/01) | Will FPL accept proposals for contract extensions from parties with existing contracts? (8/26/01) Is there any specific weighting or scoring system of pricing and non-pricing factors? (8/26/01) | Please clarify the intent of item 8 of Minimum Requirements for Proposals, are LDs required upon the Proposal or upon execution of the contract? (8/26/01) | Will the provision in Section Il.C. 3 be mutual i.e, the bidder will have the same options to terminate or shorten the contract? $(8 / 26 / 01)$ | Will there be additional opportunities to ask questions at a later date? ($8 / 26 / 01$) | Can you clarify the intent of Section 9 ? It can be interpreted that these proposals must come from existing_power plants. Can proposals be made from proposed power plants? (8/26/01) |Do proposals require site control? (8/26/01) | Why such a short time line for submitting the proposals? (8/26/01) | Will FPL also extend the NOI deadline? (8/28/01) I Will one $\$ 500$ NOl check cover all NOI financial obligations for all companies under the same corporate umbrella? (8/28/01) Will one $\$ 500$ check from a company cover all NOL financial obligations for the company if different groups/departments of the same company wish to submit separate bids? (8/28/01) | In the evaluation of its self-build option will FPL give its self build credit for wholesales power sales because those units (directly or because they created available wholesale capacity on other FPL resources) generate wholesale income? ($8 / 29 / 01$) \mid Will the same treatment/evaluation be given to the RFP proposals? (8/29/01) If FPL run-hours cause a facility to perform maintenance during the December to September time period will the down time cause a reduction to the capacity payment due to the Seller? (8/29/01) | How does FPL define force majeure as it relates to both power and gas? (8/29/01) IThe RFP provides FPL with an option to extend existing_purchase contracts. Does FPL have existing purchase contracts set to expire within the time frames outlined in the RFP? (8/29/01) (If so, approximately how many MW are represented by these contracts? (8/29/01) |Is FPL considering expansion of their Pt. Everglades and Lauderdale Plants? If so, how much more output? (8/29/01) I Will FPL provide a copy of the type of "regulatory Out' clause(s) that it has used in past contracts (post on the web site)? (8/29/01) | Will the 390 day requirement be terminated once a bidder fails to make the short list? (8/29/01) I If not, may the bidder be able to sell aportion of the MW's bid? (8/29/01) I Is the fuel price used in the FPL self-build assumptions an existing FPL contract price or is it based on an index? If it is based on an index, and if 80 , what is the index? lf the fuel price is index-based, what is the
escalation rate used during the life of FPL's self-build option? (8/29/01) | Since the results of transmission (i.e. Oasis) studies take a few months to get, the proposal may come to FPL with the status of transmission being unknown. How does FPL propose that bidders address this issue in their bid(s)? (8/29/01) | Will the bids be kept confidential? If not, will there be an opportunity for bidder to review competing bids? (8/29/01) | Page 15 of the RFP, 3rd full paragraph speaks to emission allowances or credits. Is FPL aware of any requirements for a Florida based facility to secure such allowances or credits? ($8 / 29 / 01$) Is there a renewable or DSM program available outside of this RFP? If yes, who do we contact? (8/29/01) Where can we find the formula to determine a deferred or avoided cost? (8/29/01) Could you please comment on the need for the bid to remain open for 390 days? (8/29/01) I Will FPL entertain a renewable proposal (landfill gas generation) that contemplates a block of renewable generation delivered from multiple sites within the 2003 to 2005 window? (8/29/01) | Are costs associated with existing infrastructure at FPL facilities (i.e. existing combustion turbines) being evaluated and included as part of FPL's self-build options? If SO, what are the cost assumptions being used for this existing infrastructure? (8/29/01) What type of dispatch model will be used? Will all details be revealed to the shor list for use during negotiations? (8/29/01) If FPL decides to allocate its low-cost gas supply (fuel and/or transportation capacity) to the FPL self-build option, would FPL have to purchase additional fuel at market prices for use at other existing FPL facilities? In other words. has FPL used its lowest cost existing fuel supplies as the assumption for its self-build option? (8/29/01) If a capacity proposal would not otherwise require a public notice under Rule 25.22-082 FL Administrative Code will FPL still require a public notice? (8/29/01) I How is FPL going to evaluate the proposals it receives? Will the same factors, standards, and weights be used to evaluate the proposals submitted in response to the RFP as will be used to evaluate the FPL self-build options? What are the factors, standards, and weights that will be used to evaluate the proposals? ($8 / 29 / 01$) Why is landfill gas considered renewable if MSW combustion is not? (8/29/01) Would FPL be interested in a structure pursuant to which they contributed turbines to the project? ($8 / 29 / 01$) Given the short response time, by what date does FPL expect to have the Q\&A from pre-bid meeting posted on the website? (8/29/01) | The PSC is reviewing the interconnection and net-metering of small DG technologies. It is expected to make a ruling on these issues later this year or the beginning of next. Will FPL consider net-metering as part of this proposal? (8/29/01) I Conceming the newspaper announcement-when is any announcement to be made? After bid award? ($8 / 29 / 01$) A number of items made in the assumptions by FPL are beyond the control of any individual Bidder or FPL and will impact all bidders and FPL self-build options equally (i.e. natural gas prices, inflation, labor costs) will FPL make uniform assumptions from the bidders responses and its self-build option? If FPL changes the assumptions they are making for its self-build options, will FPL make | With respect to Renewable Projects. (Energy Only), will FPL require a corporate guarantee (Form \# 4). Financial information). Or can the developer consider limited recourse financing? (8/29/01) I Since the FPL Green Power Program is not yet clearly defined will you consider proposals separate from this RFP? If so, do you have a specific group that is coordinating this effort? (8/29/01) | Describe conditions of regulatory out; will FPL assume any regulatory risk? ($8 / 30 / 01$) If the FPSC allows recovery of less than 100% of the winning bidder's contract cost, what steps would FPL expect to take? Would the contract be reopened and renegotiated? Will the bidder be able to withdraw its proposal if the modifications required are not attractive? (8/30/01) | Page 28 and 29 of the bid document addressing Form \#6B states "...(with the transmission interconnection price component also separately identified)* then states "transmission integration cost with FPL system will be addressed at a later date after identification of a shor list of bidders". These two statements seem somewhat inconsistent. Please explain what is expected regarding transmission interconnection price and transmission integration costs with | The RFP contains language regarding liquidated damages. Why did FPL decide to include a liquidated damages provision as compared to having the market price establish FPL's anticipated damages. ($8 / 30 / 01$) Since one delivery option is to deliver to FPL's interface with another control area, if the transmission service and ancillary service costs change as a result of an RTO regime (e.g. foad pays for RTO transmission costs) will the bidder and FPL share the cost increases or decreases or will the bidder always be exposed to the increased costs and the benefit of decreased costs? I What would be the advantage to FPL of an offer for capacify that would not require a need detemination le. the
merchant plan provides less than 75 MW of steam based generation and would you shorten the 390 days requirement? (8/30/01) | For FPL's self-build options that involve conversion of existing resources, are the conversion costs considered? If so, how are they considered and what are these costs? (8/31/01) Page 17 of the RFP appears to address a "legislative out" clause if the 75 MW limitation contained in the Power Plant Siting is changed. This clause imposes a great deal of risk on a potential bidder. What is FPL's position as to whether the 75 MW limitation on steam fired power should be changed. If FPL favors a change, what change would it seek? I Would pricing for different terms be considered separate bids? (i.e. 3yr, 5yrs $10 y$ y.)? (8/31/01) | Since we are competing with a self-build, how does FPL plan to monetize the options to terminate upon wholesale power legislative change? If you self-build, you will not have this option. How will you credit IPP's for offering this? ($8 / 31 / 01$) I On Form 5 A, what is a turnaround rate? MW/minute ($8 / 31 / 01$) | IS FPL's request for an evaluation fee a typical purchasing practice? If not, why is this purchase being charged a fee? Justify why this practice does not harm least cost buying practice? (8/31/01) | When will further details of FPL "Green Program" be available? ($8 / 31 / 01$) | Will FPL consider a bid from an existing biomass plant EWG, non-QF, less than 50 MW and located 300 miles outside the Miami metropolitan area? If so, is there any expectation of a favorable consideration? ($8 / 31 / 01$) | Does FPL have a Green Pricing tariff? If not, does it plan to seek such a tariff? If yes, approximately when will it seek such a tariff? (8/31/01) I Just another request for more time. Two week extension would help a lot, especially with the performance security. issues. ($8 / 31 / 01$) Does restart of a presently mothballed biomass facility qualify as "new"? (8/31/01)) Firm capacity is defined as? $>89 \%$ Avail $>90 \%$ avail $>93 \%$ Avail $>98 \%$ Avail (8/31/01) | FPL states that no maintenance can be scheduled during Jan. Feb, Jun - Sept and Dec. Since FPL wants full dispatchability and since many of the turbine (and other component) maintenance are run-hour dependent, how would FPL treat a seller who must do maintenance during these months because of FPL run-hours? (8/31/01) | What, specifically, are the operational requirements listed in the "Minimum requirements for Proposal" section, item number 7 ? Will these be made available to the bidders? When? (8/31/01) | Would FPL consider proposals for peak mitigation (load shedding) using renewables or storage as part of the RFP. (8/31/01) | Can we get information on dispatching of existing FPL units and purchase contracts? (8/31/01) | What is the expected dispatch and capacity utilization of capacity submitted under this bid? (8/31/01) Is there any GWH load forecast that can be used to analyze the optimum configuration of generation (i.e. simple cycle vs ccgt)? (8/31/01) | For the renewables, what surveys were done? Is this information available? What will customers pay? ($8 / 31 / 01$) I You stated a $\$ 9,000$ fee is applicable to firm capacity and energy_proposals. Thus, is it correct that this fee is not applicable to renewable or turnkey proposals? (8/31/01) | Will you supply a list of the Brownfields (Greenfields) locations and their conditions? ($8 / 31 / 01$) Will FPL consider an existing_plant that generates power using biomass as a renewable energy source or does the plant have to be new-that is coming on-line at the beginning of the FPL RFP term? ($8 / 31 / 01$) | What are the interconnection requirements for the renewables (D.G. technologies)? ($8 / 31 / 01$) | If capacity is included with a renewable bid, is $\$ 9,000$ required? ($8 / 31 / 01$) | What preference does FPL have for getting capacity on-line prior to the dates set forth in the RFP? Is this weighed into the evaluation of the proposals? If so, how? (8/31/01) | I noticed that FPL wants bidders to submit their own fuel supply forecast. Does this imply that FPL will not entertain a proposal that incorporates fuel tolling? If FPL will entertain fuel-tolling proposals, how does FPL propose that fuel tolling bids be submitted? ($8 / 31 / 01$) | Within the preferred 3 to 10 year term, is there any preferred length? ($8 / 31 / 01$) | For a capacity bid using a renewable energy source, can the bid start in 2003 or does it have to start in 2005? ($8 / 31 / 01$) What constitutes another proposal that requires another $\$ 9,000$? How much optionality can be provided in a single response? (i.e. nominate up to \times MW in 2005 and Y MW in 2006). (8/31/01) | Is the option to modify permit application only applicable in the option to buy scenario? When would FPL expect to enter into actual power purchase agreements? ($8 / 31 / 01$) Will alternative pricing structure be considered separate bids? What is FPL's definition of QF and is it consistent with PURPA? (8/31/01) | Does FPL prefer fuel type (pipeline, LNG, oil, etc) or source? (8/31/01) | Will bids that take exception to the 390 day open period specified in Item K on page 31 of the RFP be disqualified? ($8 / 31 / 01$) Will proposals with a term that is longer than ten (10) years be rewarded or penalized? ($8 / 31 / 01$) | Does the Rule 25-22,082, Florida Administrative Code, requirement apply to existing units(s) or to unit(s) that have already been
announced? (8/31/01) | Will FPL consider signing a 20 year PPA that remains in effect even if the FPSC repeals the statutory barrier to merchant combined cycle plants? (8/31/01) | What is meant by "new" renewable sources? Are renewables exempt from project cancellation due to deregulation? (8/31/01) | How does FPL propose to address transmission credits associated with a Bidder's "system upgrades" resulting from a Bidder's GIS request? ($8 / 31 / 01$) What is the value of deferral formula? ($8 / 31 / 01$) | Question from August, 24th Workshop -What is included in the levelized revenue recovery amounts? Is it based upon a rate recovery methodology and include all O\&M, depreciation, interest, rate of return, capital recovery, fuel, etc? What are the number of MWhs associated with the revenue recovery amounts? (8/31/01) | Question from August, 24th Workshop - Is the direct cost detailed in the back of the RFP the total cost that FPL will seek for recovery in rates, or is there additional indirect cost that will be included? (8/31/01) | Question from August, 24th Workshop - The direct construction costs of $\$ 363 / \mathrm{kW}$ for the FPL self-build option at Midway seems very low. Experience in the industry has shown the actual price should be closer to $\$ 500 / \mathrm{kW}$. What is the basis for the price estimate for the FPL self-build option for Midway? What is included. specifically, in this price estimate number? (8/31/01) | Question from August, 24th Workshop - What are your capacity factor assumptions used to arrive at variable O\&M? What number of starts are assumed in each? ($8 / 31 / 01$) | Question from August, 24th Workshop - For FPL's self-build options that involve conversion of existing resources. are the conversion costs considered? If so, how are they considered and what are those costs? ($8 / 31 / 01$) Question from August, 24th Workshop - Can FPL provide the value of deferral for years beyond the first year of deferral? (8/31/01) | Question from August. 24th Workshop - Is the fuel price used in the FPL self-build assumptions an existing FPL contract price or is it based on an index? If it is based on an index, what is the index? If the fuel price is index-based what is the escalation rate used during the life of FPL's selfbuild option? ($8 / 31 / 01$) | Question from Pre-Bid Workshop-Does additional capacity. expansion at an existing biomass site qualify as new? (8/31/01) | Question from Pre-Bid Workshop- Will the short list be announced? If a proposal is not short-listed, does the 390 days firm still apply? How will a proposal know it is not under consideration? (8/31/01) Question from Pre-Bid Workshop-When FPL goes before the FPSC in May, 2002, what is FPL attempting to achieve at that time? Is the awarding of a winning bid and FPL's going before the FPSC a guarantee that FPL will activate the winning bid given that the Seller holds up his responsibilities? (In other words, is there a potential for someone to spend dollars or | Question from Pre-Bid Workshop-Would you consider a waste-to-energy facility as a renewable resource? ($8 / 31 / 01$) | Which is the Docket number where goals for DSM and renewables were set? (9/04/01) | Please briefly describe FPL's "cogeneration program under which it [FPL] could contract with QFs for renewable energy"? Is there a contact person? (9/04/01) | What is FPL's schedule for seeking recovery of costs from the PSC? If the PSC denies recovery one year into the contract, does FPL want immediate termination? (That would not be nice.) (9/05/01) | Will FPL clarify the meaning of and consider modifications to, the first paragraph on page 17 of the RFP regarding termination of contract due to failure to obtain costs recovery from the PSC? (9/06/01) I What quantity of firm transportation (MMBtu per day) will FPL use in its planning assumptions for each of its self-build options? (9/06/01) What annual fixed transportation costs will FPL use in its planning assumptions for each of its self-build options? ($9 / 06 / 01$) | How much incremental firm pipeline transportation (MMBtu per day) will FPL purchase for each of its self-build options? (9/06/01) | Will FPL incur any incremental annual fixed transportation cost for its self-build options? If so how much? ($9 / 06 / 01$) | What maximum daily quantity will each plant proposed by FPL subscribe for on a firm basis on FGT? (9/06/01) | For each year, what capacity factor does FPL assume for each plant? For each year, how many starts per year are assumed? ($9 / 06 / 01$) What construction index is used to escalate total direct costs? If more than one index applies, what are the appropriate weightings? What is the value of the index in the base year" How is the index applied? To the start of construction? Through construction? (9/06/01) |As a "Renewable, Energy Only" respondent under the RFP. I am concemed that a significantly larger percentage of contract cost (as compared to conventional generation) under a PPA could be disallowed by Florida Public Service Commission, or other jurisdictional entities. The resultant downward pricing adjustment could have far greater financial impact on proposed renewable projects (and their sponsor companies) than on conventional fossil fuel generation. I Is it EPL's intent that there be dentical treatment for energy-only renewables under this
provision of the RFP, or can the cost recovery be tied to a different standard, such as EPL customer demand for renewable energy, renewable market maturity and liquidity in FPL and adjacent service territories, and/or other indices responsive to the renewable market? It may be FPL's desire to address this level of detail through specific negotiation on a renewable PPA, however the recovery provision as stated seems to create a significantly greater barrier to entry for renewable developers in Florida's "PreDeregulation" environment. (9/12/01) | For the purposes of the performance, what relative humidity would you like us to use? (9/13/01) | We would like some direction on what constitutes multiple proposals, thus, requiring multiple evaluation fees. By way of specific example:a) If the proposer submits one Base-load and One peaking proposal from four separate facilities (two base-load and two peaking facilities) would this example be considered two or four separate proposals?b) To further complicate question a) above, if FPL is given the option to pick and In our NOI filing, we indicated that our bid would be for a nominal amount of a specific technology at a particular location. Can we modify that without penalty or (9/14/01) Developer A has submitted one or more NOI forms by the August 31st deadline and, therefore, is eligible to submit the same number of proposals in response to FPL's RFP. Developer B did not make the deadline for submitting an NOI and is not eligible to submit a bid, but wants to participate in the RFP. I Developer B has proposed the following approach to Developer A: | Developer A submits one more bid than A otherwise would submit (e.g. if A had submitted NOI forms for four proposals and A subsequently decided to submit only three proposals, A would now submit its three proposals plus an "extra" bid for Developer B.). This bid is the proposal that B wants to have submitted. If this bid is short listed, then A will drop out of the picture and allow B to step in as sponsor/owner of the bid and enter contract negotiations with FPL. What is FPL's view of this proposed approach? ($9 / 14 / 01$) Form \#5 A requests that firm capacity be stated at 95 degrees for summer capability and 35 degrees for winter capability. Will FPL accept a winter rating at 45 degrees rather than 35 degrees? Also, can the heat rate guarantee be submitted at a temperature of 70 degrees rather than 75 degrees as listed on Form \#5A? (9/19/01) Important Notice (9/20/01)

Due Date Extension (8/26/01)

As we discussed in the bidder's conference and based on further review, we will extend the due date for proposals from September 14 to September $28^{\text {th }}$.

Questions should be submitted to us no later than September 21.

Purpose of RFP FAQ (8/22/01)

This space on Florida Power \& Light's (FPL) Web site is dedicated to providing answers to relevant questions related to FPL's Request for Proposals (RFP) for Capacity and Energy.

All questions concerning the RFP are to be submitted to FPL's RFP Contact Person in writing (preferably by e-mail). These questions, and FPL's answers to these questions, will then be posted in this space so that all potential Bidders will have access to the same information in preparing their Bids.

FPL's intent is to regularly update this list of RFP Questions and Answers (as long as new questions are submitted) until the Proposal Due Date is reached. FPL will answer questions in the order they were submitted. New questions, and the answers to them, will simply be added to the
bottom of the previous listing.

What are FPL's street and mailing addresses? (8/22/01)

All overnight or express type mailing should be sent to FPL's street address to the attention of Steve Sim. FPL's street address is 9250 West Flagler Street, Miami, FL 33174.

All normal correspondence can be sent to FPL's mailing address which is P.O. Box 029100, Miami, FL 33102-9100. This correspondence should also be sent to Mr. Sim's attention.

What specific risks is FPL seeking to mitigate by terminating or shortening negotiated contracts upon deregulation of Florida's electric utility industry? What are their concerns? (8/26/01)

FPL may face a number of risks upon the advent of deregulation (e.g., loss of load, potential divestiture, overpayment, etc.). Because "deregulation" may take many forms it is impossible at this stage to ascertain the form and level of risks that may be faced by FPL. Accordingly, FPL is giving itself an option that allows it to mitigate some of those risks, once known.

Why did FPL limit its option to shorten contracts by half? What flexibility is FPL seeking in a contract to respond to deregulation? (8/26/01)

Because FPL may still have an obligation to serve in a deregulated scenario, FPL wanted an option that would allow it to reduce its contracted obligation, if necessary to meet its needs, without having to resort to full contract termination when such termination was not necessary.

Does FPL have a preference for a 3-year, 10-year or a longer-term contract? If so, why? (8/26/01)

FPL interprets this question to refer to power purchase proposals only. At this time, FPL prefers power purchase proposals with a 3-to-10 year time frame but will consider longer - term proposals. The 3-to - 10 year time frame is currently preferred largely due to uncertainty in the Florida electric utility industry.

Do projects need to submit their application for the FPL's queue for generation interconnection prior to September 14? (8/26/01)

FPL does not require that a project submit a GIS application by any
specific date. However, FPL will look at a project's interconnection and/or transmission service request status to evaluate the likelihood that a project can meet FPL's needs on the required dates. Also as described in Section IIB of the RFP, all costs associated with the design, construction, operation and maintenance of the transmission interconnection facilities associated with the delivery of firm capacity and/or energy to FPL are the responsibility of the Bidder.

Please answer the following questions on FPL's "Next Planned Generating Units" as outlined in the RFP Tables VI: (8/26/01)

Are these projects wet cooled?

- All of FPL's "Next Planned Generating Units" are wet cooled. The cooling method for Martin No. 5, Martin No. 6 , and the conversion of 2 Martin CT's to 1 CC unit is by cooling pond while the conversion of 2 Fort Myers CT's to 1 CC is by cooling tower. The cooling method for the Midway Combined Cycle is grey water or groundwater.

Are SCR's included in price and at what emissions level?

- SCR costs are included in the prices for all projects. The emissions level is 3.5 ppm for Nox.

What are the components of "total direct cost"? Does it include, for example, interest during construction, or transmission interconnection and upgrades? How were the costs arrived at and can a copy of the transmission study be provided?

- The components of "total direct cost" did not include interest. The costs did include gas expansion cost as well as estimates of transmission interconnection and upgrades/costs.
- A text listing the transmission work required to integrate each FPL project (transmission and substation) are shown in Section III.E - Transmission Plan - in FPL's 2001 Ten Year Site Plan (Site Plan). FPL did not receive a transmission study report detailing these costs; only cost value estimates were provided. The transmission line upgrades/work is also listed in Schedule 10 of the Site Plan and includes the associated costs. However, the cost for the associated transmission substation and fuel expansion cost work is not shown in the Site Plan.

Does FPL plan to share the expected transmission upgrade costs with the other developers upgrade costs that are in FPL's queue?

- FPL is not clear as to what is being asked. The transmission costs included for each project in Table VI are estimates only and are not based on formal requests for GIS or transmission service. FPL is also not aware what other developers are being referred to or what their upgrade cost may be.

Are costs included for land acquisition for the new CCGT facilities?

- The land costs for the new CCGT facilities are not included since FPL already owns the land.

Are the planning numbers provided the most current numbers that FPL are using internally? If no, will FPL provide up-to-date numbers?

- The planning numbers shown in the RFP are 2000vintage numbers (as stated in the RFP). New planning numbers are still being developed by FPL and, once developed, will be used in the proposal evaluation. FPL may use current numbers that may become available at any time and is not prepared to provide these up-todate numbers.

Has FPL placed orders for the gas turbines?

- FPL has ordered and committed gas turbines for the two CT - to - CC conversion projects listed on the RFP. Although FPL has not yet committed gas turbines for the three remaining projects shown in the RFP, FPL Group has ordered a sufficient number of gas turbines to cover these units as needed.

Will the FPL projects be required to meet all of the RFP requirements including the cost overruns and Completion Security Agreement?

- No

Will FPL have an independent consultant review all the RFP proposals including the FPL's projects?

- FPL has no plans at this time to have an independent consultant but reserves the right to bring one in at a later date.

Is the 7150 heat rate the guarantee point?, average?, degraded average? At what site conditions?

- The $7,150 \mathrm{Btu} / \mathrm{kWh}$ is the conceptual heat rate point for the FPL projects. This value is based on the following
site conditions: a 95 -degree F. summer day, at 100% load, duct - fired with foggers.

Is the estimated annual levelized revenue requirement escalated over 25 years? If so is it escalated at the general escalation rate?

- The capital cost is escalated in the calculation of annual revenue requirements. The escalation rate varies by plant based on the cost percentages between labor and material for the particular plant.
- The annual levelized revenue requirement is then computed assuming a plant life of 25 years.

What is the meaning of "the annual value of deferral"?

- Value of deferral is a pricing mechanism designed to calculate the value of deferring a capital investment. This mechanism is typically used for determining capacity payments for projects which defer an "avoided unit" for a time period less than the plant life of the avoided unit. The value of deferral methodology calculates the capacity revenue stream in comparison to what the utility's cost would be if it constructed the avoided unit and added it to rate base.
- The year-by-years value of deferral of an avoided unit is the difference in revenue requirements associated with deferring the avoided unit one more year. The "annual value of deferral" specified on Table VI \# 7 of the RFP for FPL's "Next Planned Generating Units" is the value of deferring that unit for the first year in-service.
- The VOD formula and a detailed explanation can be found in the Commission Rules Chapter 25-17.0832 (page 17-27).

What is the escalation rate used in calculating the annual value of deferral in (2005\$)? What would the values be in 2000\$?

- The annual escalation rate for plant cost used in the value of deferral calculation was 1.0%. A $2000 \$$ value would represent an early capacity payment. (Please see the response to the previous part of this question.) Such a calculation would be meaningless since the year 2000 has passed.

Does the estimated fixed O\&M expense include estimated property taxes?

- The fixed O\&M expense does not include property taxes. Property taxes are calculated based on the total capital cost and are included in the calculation of total revenue requirements for the plant.

Are overhaul expenses included in fixed or variable O\&M estimates?

- The overhaul expenses are included in the fixed O\&M.

Are start costs included in fixed or variable O\&M estimates?

- No.

What is FPL's fixed forecast for natural gas in nominal \$ and 2000\$?

- FPL will use the then current forecast at the time the proposals are evaluated.

How does FPL calculate the fixed transportation rate for natural gas?

- FPL's fixed transportation rate for natural gas is based on several existing contracts with Florida Gas Transmission.

In the "Notice of Intent to Respond to the Solicitation" (NOI), if more than one proposal is being considered does it need to be listed in the NOI? $(8 / 26 / 01)$

Yes. A separate NOI form should be submitted for each proposal being considered. (Note that additional $\$ 500$ checks are not required for notice of additional proposals submitted by one potential Bidder. One $\$ 500$ check "covers" all NOI forms submitted by a specific Bidder. However, each actual proposal for firm capacity will require a separate $\$ 9,000$ evaluation fee.)

Will FPL issue a written list of all questions and answers? (8/26/01)

Yes. FPL will post all relevant questions, and the answers to them, on FPL's website. Instructions will be given at the 8/24/01 Pre-Bid Workshop as to how to locate these Q \& A's on the website.

Does FPL require projects with a secondary fuel supply or a minimum storage of the primary fuel? (8/26/01)

No. Neither a secondary fuel supply nor a minimum storage of the primary fuel is an absolute requirement for a proposal. However, FPL will consider the security/availability of a proposal's fuel supply in evaluating proposals.

Will FPL give any indication of the relative value of projects connecting at various points in the system? (8/26/01)

FPL will not quantitatively evaluate proposed project locations, but recognizes that, in general, projects located close to FPL's Southeastern Florida load centers are preferred.

Will FPL accept proposals for contract extensions from parties with existing contracts? (8/26/01)

FPL will consider proposals for contract extensions from parties with existing contracts with FPL as long as such proposed extensions supply additional firm capacity starting by either June, 2005 or June, 2006.

Is there any specific weighting or scoring system of pricing and non-pricing factors? (8/26/01)

FPL does not have a pre-determined weighting or scoring system of pricing and non-pricing factors.

Please clarify the intent of item 8 of Minimum Requirements for Proposals, are LDs required upon the Proposal or upon execution of the contract? (8/26/01)

A Completion Security Agreement would be entered into upon execution of a contract. A Bidder must indicate on part (2) of Form \# 7 whether the Bidder agrees or disagrees with the Completion Security Agreement provisions set forth in section IV.H. (2) of the RFP. If the Bidder disagrees, Form \#7 requests the Bidder to present revised language concerning a Completion Security Agreement.

Will the provision in Section II.C. 3 be mutual, i.e. the bidder will have the same options to terminate or shorten the contract? (8/26/01)

No. Because FPL is trying to protect itself against some currently unknown risks, it has proposed an option that may allow it to mitigate those risks when known. To allow a Bidder to exercise that same option could increase, rather than decrease, FPL's risks.

Will there be additional opportunities to ask questions at a later date? (8/26/01)

Yes. Questions may be asked in person at the Pre-Bid Workshop on $8 / 24 / 01$. Additionally, questions may also be sent via e-mail (addressed to stever_sim@fpl.com) until three (3) days before the proposals are due. All relevant questions, and the answers to these questions, will be posted on the FPL website.

Can you clarify the intent of Section 9 ? It can be interpreted
that these proposals must come from existing power plants. Can proposals be made from proposed power plants? (8/26/01)
(FPL believes this question refers to "Minimum Requirement" \#9, which appears on page 9 of the RFP). Proposals can be made from proposed power plants.

Do proposals require site control? (8/26/01)
FPL has not required that proposals include site control at the time of proposal submission. However, as with other aspects of a proposal, site control may assist in the evaluation of a project's feasibility and deliverability.

Why such a short time line for submitting the proposals?

 (8/26/01)FPL believes that one month should be sufficient time considering FPL's use of a simplified proposal format and the fact that numerous developers have announced plans in some detail for new power plants throughout Peninsular Florida.

Will FPL also extend the NOI deadline? (8/28/01)

No. The NOI deadline is unchanged. The deadline for getting the NOI form and $\$ 500$ check (made payable to Florida Power \& Light Company) to Steve R. Sim at FPL is still at 4:00 p.m. this Friday, August 31, 2001.

Will one $\$ 500$ NOI check cover all NOI financial obligations for all companies under the same corporate umbrella? (8/28/01)

No. Each separate company that plans to submit a bid needs to send both a separate NOI form and a separate $\$ 500$ check. In other words, one NOI form and check from one company does not "cover" any other company under the same corporate umbrella.

Will one $\$ 500$ check from a company cover all NOI financial obligations for the company if different groups/departments of the same company wish to submit separate bids? (8/28/01)

Yes, as long as the bids will all come from the same company, and not from a separate but affiliated company, then one $\$ 500 \mathrm{NOI}$ check will suffice. However, a separate NOI form should be submitted for each separate proposal that is being considered by this company.

In the evaluation of its self-build option will FPL give its self build credit for wholesales power sales because those units (directly or because they created available wholesale capacity on other FPL resources) generate wholesale income? (8/29/01)

No. FPL will evaluate any self-build option as an option to serve FPL's native load.

Will the same treatment/evaluation be given to the RFP proposals? (8/29/01)

Yes. All options will be evaluated as an option to serve FPL's native load.
If FPL run-hours cause a facility to perform maintenance during the December to September time period will the down time cause a reduction to the capacity payment due to the Seller? (8/29/01)

This issue will be addressed in the negotiations stage. However, based on the use of a formulaic approach it is likely that monthly capacity payments may be impacted if maintenance is performed during either summer or winter peak periods.

How does FPL define force majeure as it relates to both power and gas? (8/29/01)

Force majeure will be defined at the contract negotiation stage
The RFP provides FPL with an option to extend existing purchase contracts. Does FPL have existing purchase contracts set to expire within the time frames outlined in the RFP? (8/29/01)

Yes. FPL has two such contracts.
If so, approximately how many MW are represented by these contracts? (8/29/01)

These two contracts represent approximately 450 MW (Summer).
Is FPL considering expansion of their Pt. Everglades and Lauderdale Plants? If so, how much more output? (8/29/01)

Expansion at these two plant sites is not currently part of FPL's official capacity expansion plan. (Please refer to FPL's 2001 Site Plan).

Will FPL provide a copy of the type of "regulatory Out' clause(s) that it has used in past contracts (post on the web site)? (8/29/01)

FPL plans to post a sample "regulatory out" clause at this web site over the next few days.

Will the 390 day requirement be terminated once a bidder fails to make the short list? (8/29/01)

No. The requirement will not automatically be terminated. However, FPL will consider requests to terminate from Bidders who do not make the short list on case-by-case basis.

If not, may the bidder be able to sell a portion of the MW's bid? (8/29/01)

FPL will consider releasing a block upon specific request by a Bidder. Please see the answer to the previous question.

Is the fuel price used in the FPL self-build assumptions an existing FPL contract price or is it based on an index? If it is based on an index, and if so, what is the index? If the fuel price is index-based, what is the escalation rate used during the life of FPL's self-build option? (8/29/01)

No FPL self-build evaluations have yet been made. Self - build evaluations, and evaluations of all proposals which do not include a guaranteed fuel price, will be based on a fuel forecast to be developed by FPL.

Since the results of transmission (i.e. Oasis) studies take a few months to get, the proposal may come to FPL with the status of transmission being unknown. How does FPL propose that bidders address this issue in their bid(s)? (8/29/01)

Transmission GIS costs are the Bidder's responsibility and these interconnection cost estimates are to be included in the Bid.

Transmission integration costs will be unknown for some, if not all, Bidders. Transmission integration costs will be addressed after a short list of proposals is announced.

Will the bids be kept confidential? If not, will there be an opportunity for bidder to review competing bids? (8/29/01)

All information on bids that is clearly indicated as confidential will be treated as confidential. Please refer to pages 19 \& 20 in FPL's RFP.

Page 15 of the RFP, $3^{\text {rd }}$ full paragraph speaks to emission allowances or credits. Is FPL aware of any requirements for a Florida based facility to secure such allowances or credits? (8/29/01)

The statement refers to emission allowance requirements such as the SO2 allowances required by the federal Clean Air Act. Determining the requirements for a proposed facility is the responsibility of the Bidder. Bid prices must cover the costs of these requirements, if any.

Is there a renewable or DSM program available outside of this RFP? If yes, who do we contact? (8/29/01)

FPL has many DSM programs but it currently has no generally applicable renewable energy programs outside of this RFP. However, FPL has a cogeneration program under which it could sign contracts with Qualifying Facilities for renewable energy.

Where can we find the formula to determine a deferred or avoided cost? (8/29/01)

The Value of deferral (VOD) formula can be found in the Florida Public service Commission's Rules, specifically Rule 25-17.083216), Florida Administrative Code.

FPL will post this formula on this web site at a later date (i.e., after the bulk of these questions have been answered).

Could you please comment on the need for the bid to remain open for 390 days? (8/29/01)

The 390 day period is designed to keep Bids intact and firm through the need/cost recovery hearings, both for the winning bid and bids that may be utilized as backup in case winning bids are rejected by FPSC.

Will FPL entertain a renewable proposal (landfill gas generation) that contemplates a block of renewable generation delivered from multiple sites within the 2003 to 2005 window? (8/29/01)

FPL would consider a proposal for energy (MWH) delivered from new landfill gas facilities at multiple sites within the 2003 to 2005 time frame.

Are costs associated with existing infrastructure at FPL
facilities (i.e. existing combustion turbines) being evaluated and included as part of FPL's self-build options? If so, what are the cost assumptions being used for this existing infrastructure? (8/29/01)

FPL has not yet evaluated its self-build options. When this evaluation is performed, all incremental costs will be included in the evaluation.

What type of dispatch model will be used? Will all details be revealed to the short list for use during negotiations? (8/29/01)

The EGEAS model from Stone \& Webster will be the primary evaluation tool. FPL does not intend to reveal details of other options, including FPL self-build or contract extension options, during negotiations.

If FPL decides to allocate its low-cost gas supply (fuel and/or transportation capacity) to the FPL self-build option, would FPL have to purchase additional fuel at market prices for use at other existing FPL facilities? In other words, has FPL used its lowest cost existing fuel supplies as the assumption for its self-build option? (8/29/01)

FPL has not yet evaluated its self-build options. When such an evaluation is performed, all incremental fuel transportation/delivery costs for fuel needed for new FPL capacity will be "charged" to the self-build options. Additional fuel commodity will also be needed and fuel will be dispatched based on system economics throughout FPL's system. The resulting fuel commodity costs for new FPL capacity will also be "charged" to the self-build options.

If a capacity proposal would not otherwise require a public notice under Rule 25.22-082 FL Administrative Code will FPL still require a public notice? (8/29/01)

No.
How is FPL going to evaluate the proposals it receives? Will the same factors, standards, and weights be used to evaluate the proposals submitted in response to the RFP as will be used to evaluate the FPL self-build options? What are the factors, standards, and weights that will be used to evaluate the proposals? (8/29/01)

The general evaluation approach is described on pages $20-22$ of the RFP. FPL does not plan to use weights or factors in its evaluation. FPL intends to use the same assumptions/forecasts in evaluating the Bids
received, FPL's self-build options, and extension options to existing FPL contracts to the extent applicable.

Why is landfill gas considered renewable if MSW combustion is not? (8/29/01)

The renewable portion of FPL's RFP request is the result of a DSM goals docket stipulation. In this stipulation, landfill gas was considered a renewable source while MSW was not. FPL's RFP follows the language/direction of that stipulation.

Would FPL be interested in a structure pursuant to which they contributed turbines to the project? (8/29/01)

No.
Given the short response time, by what date does FPL expect to have the Q\&A from pre-bid meeting posted on the website? (8/29/01)

FPL began posting RFP Q\&A's on Tuesday morning, August $28^{\text {th }}$. Additional Q\&A's will be regularly posted. Please note that on Monday August $27^{\text {th }}$, FPL extended the Proposal Due Date (only) by two weeks to 4:00 p.m. on September $28^{\text {th }}$.

The PSC is reviewing the interconnection and net-metering of small DG technologies. It is expected to make a ruling on these issues later this year or the beginning of next. Will FPL consider net-metering as part of this proposal? (8/29/01)

No.
Concerning the newspaper announcement-when is any announcement to be made? After bid award? (8/29/01)

The rule states ... "no later than 10 days after the date that proposals are due." FPL understands that the notice is to be provided within ten days of the date responses to the RFP are due. Please note that evidence of these notices is to be forwarded to FPL.

A number of items made in the assumptions by FPL are beyond the control of any individual Bidder or FPL and will impact all bidders and FPL self-build options equally (i.e. natural gas prices, inflation, labor costs) will FPL make uniform assumptions from the bidders responses and its self-build option? If FPL changes the assumptions they are

Abstract

making for its self-build options, will FPL make uniform changes to the same assumption in the bidder's proposals? Will FPL make the assumptions it is using regarding these items referenced above for its self-build options available to potential bidders? If so, when. (8/29/01)

FPL will use the Bidder's proposed pricing without getting to underlying assumptions such as labor costs, etc. (unless a bid is so low that FPL feels there is a need to review underlying data to test feasibility or viability). FPL will use the Bidder's gas price if guaranteed; otherwise it will use its own fuel forecast (which will also be used for evaluation of FPL's self-build options.). FPL has not yet finalized its assumptions/ forecasts and does not intend to make these available to potential Bidders.

With respect to Renewable Projects, (Energy Only), will FPL require a corporate guarantee (Form \#4), Financial information). Or can the developer consider limited recourse financing? (8/29/01)

Some form of guarantee will be needed. FPL wants to avoid signing up customers for a potential Green Power program and then find that it has no renewable-based MWH to provide. If a renewable project Bidder takes exception to this corporate guarantee, it may propose another approach on the Exceptions Form (Form \#9)

Since the FPL Green Power Program is not yet clearly defined will you consider proposals separate from this RFP? If so, do you have a specific group that is coordinating this effort? (8/29/01)

Yes, but only after proposals received in response to this RFP are evaluated and, as applicable, utilized. Renewable project developers that are interested in submitting proposals to FPL separate from the RFP may contact Steve Sim after the RFP's Proposal Due Date.

Describe conditions of regulatory out; will FPL assume any regulatory risk? (8/30/01)

FPL has posted a sample regulatory out clause from a prior contract in response to a previous question. Regulatory out issues will be addressed with bidders on the short list during the contract negotiation phase of the RFP. The risk to be assumed by each Party will be addressed then. Note that the final regulatory out language contained in the Purchase Power Agreement may be completely different from the sample posted.

> If the FPSC allows recovery of less than 100% of the winning bidder's contract cost, what steps would FPL
expect to take? Would the contract be reopened and renegotiated? Will the bidder be able to withdraw its proposal if the modifications required are not attractive? (8/30/01)

Generally, purchase power contracts are entered into contingent upon FPSC approval without changes or modifications that are unacceptable to the parties. The effect of an FPSC rejection would have to be addressed after such rejection and may be a function of the contract language contained in the Purchase Power Agreement.

Page 28 and 29 of the bid document addressing Form \# 6B states "...(with the transmission interconnection price component also separately identified)* then states "transmission integration cost with FPL system will be addressed at a later date after identification of a short list of bidders". These two statements seem somewhat inconsistent. Please explain what is expected regarding transmission interconnection price and transmission integration costs with FPL system. (8/30/01)

The Bid price must include transmission interconnection costs. (FPL wants to see this price separately identified on Form \#6B.) However, the Bid price does not need to address transmission integration within FPL's system (the bidder is still responsible for all cost associated with delivering power to the FPL interface). FPL's integration cost will be addressed later once a short list has been named.

The RFP contains language regarding liquidated damages. Why did FPL decide to include a liquidated damages provision as compared to having the market price establish FPL's anticipated damages. (8/30/01)

> The Completion Security is the applicable provision within FPL's RFP. Market prices are difficult to forecast and FPL felt that the Completion Security provision was an appropriate one for inclusion in its RFP.

> Since one delivery option is to deliver to FPL's interface with another control area, if the transmission service and ancillary service costs change as a result of an RTO regime (e.g. load pays for RTO transmission costs) will the bidder and FPL share the cost increases or decreases or will the bidder always be exposed to the increased costs and the benefit of decreased costs? Or will FPL absorb all costs and benefits? (8/30/01)

FPL requires that power be delivered to FPL's interface if the power is coming across other systems. All costs to deliver the power to the interface are the Bidder's responsibility and must be included in the Bid. Transmission service within FPL's system will be addressed later.

What would be the advantage to FPL of an offer for capacity that would not require a need determination i.e. the merchant plan provides less than 75 MW of steam based generation and would you shorten the 390 days requirement? (8/30/01)

Of course, without seeing a proposal FPL cannot state what advantages or disadvantages a proposal might offer. It is conceivable that a proposal from a plant that does not require a determination of need might shorten the timeline necessary to bring it in service or allow FPL to avoid costs of being co-applicant, but without more information FPL cannot determine if there would be offsetting concerns or disadvantages.

For FPL's self-build options that involve conversion of existing resources, are the conversion costs considered? If so, how are they considered and what are these costs? (8/31/01)

FPL has not yet evaluated its self-build options. The "next planned generating units" shown in the RFP contain two CT-to-CC conversion options from FPL's 2000 resource planning work. The capital costs listed for these two conversion options are the conversion costs. Each conversion includes the addition of two heat recovery steam generators, one steam turbine, one electric generator, and transmission costs.

Page 17 of the RFP appears to address a "legislative out" clause if the 75 MW limitation contained in the Power Plant Siting is changed. This clause imposes a great deal of risk on a potential bidder. What is FPL's position as to whether the 75 MW limitation on steam fired power should be changed. If FPL favors a change, what change would it seek? (8/31/01)

In regard to this RFP, FPL is not taking a position as to whether this 75 MW limitation should be changed.

Would pricing for different terms be considered separate bids? (i.e. $3 \mathrm{yr}, 5 \mathrm{yrs} 10 \mathrm{yr}$.$) ? (8/31/01)$

FPL will consider one or two pricing proposals for the same amount of capacity or the same facility as one bid which requires one $\$ 9,000$ evaluation fee. A third pricing proposal for the same amount of capacity or facility will be considered a second bid which requires its own $\$ 9,000$
evaluation fee. Each additional pricing proposal would require its own $\$ 9,000$ fee.

Since we are competing with a self-build, how does FPL plan to monetize the options to terminate upon wholesale power legislative change? If you self-build, you will not have this option. How will you credit IPP's for offering this? (8/31/01)

FPL currently does not intend to monetize options such as the one mentioned above or options to sell off, fuel switch, etc. any self-build project.

On Form 5A, what is a turnaround rate? MW/minute (8/31/01)
"Turnaround rate" refers to how quickly a generating unit can "reverse direction"; i.e., how quickly it can begin ramping down if it is now ramping up and vice versa. FPL's Form \#5A has requested that this information be provided in terms of MW/minute, but FPL will also accept an answer in terms of the number of seconds (or minutes) the turnaround takes.

Is FPL's request for an evaluation fee a typical purchasing practice? If not, why is this purchase being charged a fee? Justify why this practice does not harm least cost buying practice? (8/31/01)

Yes. Proposal evaluation fees for Bids submitted in response to recent RFP's issued by Gulf and FPC were $\$ 8,000$ and $\$ 10,000$ respectively. FPL's RFP seeks the best proposals while seeking to cover the costs of proposal evaluation and potential negotiations.

When will further details of FPL "Green Program" be available? (8/31/01)

FPL has not yet determined if it will offer a Green Program. This determination will be made after the renewable energy bids are evaluated and the market surveys are completed.

Will FPL consider a bid from an existing biomass plant EWG, non-QF, less than 50 MW and located 300 miles outside the Miami metropolitan area? If so, is there any expectation of a favorable consideration? ($8 / 31 / 01$)

FPL will consider a renewable energy only bid from such a facility, but will not consider a firm capacity bid from the same facility. (Please refer to page 8 of the RFP.) FPL cannot provide a meaningful comment now on how competitive such a bid may be since neither this bid nor competing bids have been received.

Does FPL have a Green Pricing tariff? If not, does it plan to seek such a tariff? If yes, approximately when will it seek such a tariff? (8/31/01)

No such tariff yet exists. If the RFP bids and market surveys show that such a program can be successful, and other programs feasibility issues are resolved, a tariff would be likely be sent for FPSC approval next year (in 2002).

Just another request for more time. Two week extension would help a lot, especially with the performance security issues. (8/31/01)

FPL has already announced that the Proposal Due Date, originally set for September $14^{\text {th }}$, has been moved back to September $28^{\text {th }}$. No other due dates - including the August $31^{\text {st }}$ date for notifying FPL of the intent to bid - have been changed.

Does restart of a presently mothballed biomass facility qualify as "new"? (8/31/01)

No.
Firm capacity is defined as? >89\% Avail >90\% avail >93\% Avail >98\% Avail (8/31/01)
"Firm capacity" proposals are not defined by an "availability" value. A proposal is deemed a "firm capacity" proposal if the capacity (MW) in the proposal is solely dedicated to FPL and meets other RFP and/or contract requirements.

FPL states that no maintenance can be scheduled during Jan, Feb, Jun - Sept and Dec. Since FPL wants full dispatchability and since many of the turbine (and other component) maintenance are run-hour dependent, how would FPL treat a seller who must do maintenance during these months because of FPL run-hours? (8/31/01)

No planned maintenance may be scheduled during these months. Maintenance outage hours (i.e., unplanned outages) will need to be coordinated with FPL'System Control Center.

What, specifically, are the operational requirements listed in the "Minimum requirements for Proposal" section, item number 7 ? Will these be made available to the bidders? When? (8/31/01)

FPL's RFP requests that Bidders address seven (7) operational facets of their proposal on part 2 of Form \#5A. These seven (7) operational facets are listed/briefly discussed on pages 25-27 of the RFP.

Would FPL consider proposals for peak mitigation (load shedding) using renewables or storage as part of the RFP. (8/31/01)

No, not as part of this RFP. FPL is after energy (MWH) delivered from renewable energy sources. DSM-type proposals (i.e., load shedding) are not being sought by this proposal.

Can we get information on dispatching of existing FPL units and purchase contracts? ($8 / 31 / 01$)

No. A projected dispatch of the FPL system components has not yet been conducted. This will be conducted as part of the economic evaluation of the proposals received in response to the RFP.

What is the expected dispatch and capacity utilization of capacity submitted under this bid? (8/31/01)

The projected dispatch and annual capacity factors for proposals submitted in response to this RFP will be economically driven by the proposals' pricing and operational information. These projections will be made as part of the economic evaluation of the proposals received in response to this RFP.

Is there any GWH load forecast that can be used to analyze the optimum configuration of generation (i.e. simple cycle vs cogt)? (8/31/01)

FPL will finalize a load forecast for purposes of proposal evaluation at the time proposal evaluation begins.

For the renewables, what surveys were done? Is this information available? What will customers pay? (8/31/01)

FPL has reviewed a number of surveys that have been conducted nationwide and is now conducting surveys that are Florida-specific. This information, including what customers may be willing to pay, is not available.

You stated a $\$ 9,000$ fee is applicable to firm capacity and energy proposals. Thus, is it correct that this fee is not applicable to renewable or turnkey proposals? (8/31/01)

The $\$ 9,000$ evaluation fee is not applicable to renewable energy only proposals but is applicable to all firm capacity proposals whether power purchase, turnkey, or renewable-energy-based.

Will you supply a list of the Brownfields (Greenfields) locations and their conditions? (8/31/01)

No. Site location is the responsibility of each developer.
Will FPL consider an existing plant that generates power using biomass as a renewable energy source or does the plant have to be new-that is coming on-line at the beginning of the FPL RFP term? (8/31/01)

FPL will not consider a proposal from an existing biomass plant.
What are the interconnection requirements for the renewables (D.G. technologies)? (8/31/01)

This question should be posed to Tom Sanders of FPL's Transmission Operations and Planning department. Mr. Sanders' phone number is (305) 442-5922.

If capacity is included with a renewable bid, is $\$ 9,000$ required? (8/31/01)

The $\$ 9,000$ evaluation fee for evaluating firm capacity proposals is required if the proposal is bidding for the $1,750 \mathrm{MW}$ of firm capacity needs. This evaluation fee is not required if the proposal is intended to address energy only from renewable sources but the bid included capacity values in the bid for purposes of stating capacity payment price in addition to energy price payments.

What preference does FPL have for getting capacity on-line prior to the dates set forth in the RFP? Is this weighed into the evaluation of the proposals? If so, how? (8/31/01)

FPL does not have a set preference level or weight for firm capacity delivery earlier than the dates set forth in the RFP, but will consider earlier delivery as Bids are evaluated.

I noticed that FPL wants bidders to submit their own fuel supply forecast. Does this imply that FPL will not entertain a proposal that incorporates fuel tolling? If FPL will entertain fuel-tolling proposals, how does FPL propose that fuel tolling bids be submitted? (8/31/01)

FPL does not want Bidders to supply their own fuel forecasts. If a Bidder wishes to guarantee fuel commodity and transportation prices as part of its Bid, then FPL requests that this information be provided on Form \# 6 . FPL will not entertain proposals that incorporate fuel tolling.

Within the preferred 3 to 10 year term, is there any preferred length? (8/31/01)

No.
For a capacity bid using a renewable energy source, can the bid start in 2003 or does it have to start in 2005? (8/31/01)

FPL will consider firm capacity bids prior to 2005 , whether from renewable or non-renewable energy sources.

What constitutes another proposal that requires another $\$ 9,000$? How much optionality can be provided in a single response? (i.e. nominate up to \times MW in 2005 and Y MW in 2006). (8/31/01)

FPL will consider as "one bid" a proposal which is based on one specific capacity source/facility and which has one or two pricing offers. For example, offering capacity from a specific facility with one pricing if the capacity delivery starts in 2005, and another pricing if capacity delivery starts in 2006, will be considered as one bid. Each additional facility or source, and each additional pricing offer, will be considered a new and separate bid that will require an additional $\$ 9,000$ evaluation fee.

Is the option to modify permit application only applicable in the option to buy scenario? When would FPL expect to enter into actual power purchase agreements? (8/31/01)

Yes, this requirement applies only to turnkey Bids. Whether FPL enters into any power purchase agreements is dependent upon the proposal evaluation results and contract negotiations which may follow. FPL expects that any agreements reached would be reached by approximately March, 2002.

Will alternative pricing structure be considered separate bids? What is FPL's definition of QF and is it consistent with PURPA? (8/31/01)

FPL will consider as "one bid" a proposal which is based on one specific capacity or energy source/facility and which has one or two pricing offers. Additional pricing offers will constitute separate bids that require an additional $\$ 9,000$ evaluation fee each.

FPL's definition of a QF is identical to PURPA's definition.
Does FPL prefer fuel type (pipeline, LNG, oil, etc) or source? (8/31/01)

FPL has no predetermined preference as to fuel type or source.
Will bids that take exception to the 390 day open period specified in item K on page 31 of the RFP be disqualified? (8/31/01)

No. Bids that take exception to this period and that propose alternative language will not be disqualified. However, as with all exceptions taken on Form \#9A, such an exception will be a consideration in the evaluation of the proposal.

Will proposals with a term that is longer than ten (10) years be rewarded or penalized? (8/31/01)

FPL does not plan to "reward" or "penalize" proposals with terms longer than ten (10) years. FPL has reserved the right to consider or decline to consider such proposals. (Please refer to page 4 of the RFP.)

Does the Rule 25-22.082, Florida Administrative Code, requirement apply to existing units(s) or to unit(s) that have already been announced? (8/31/01)

Rule 25-22.082(5), Florida Administrative Code requires participants in a RFP to publish notice for the "the participants proposed generating facility." Ultimately, it is the Commission, not FPL, that will interpret the scope of this rule, so any reliance upon this answer rather than asking the Florida Public Service Commission is at your risk. FPL reads the notice requirement of Rule 25-22.082(5), Florida Administrative Code as not applying to existing facilities already generating electricity. It is unclear whether units already announced are "proposed generating facilities" within the meaning of the rule. Given that uncertainty, FPL believes a notice should be published even for previously announced units.

Will FPL consider signing a 20 year PPA that remains in effect even if the FPSC repeals the statutory barrier to merchant combined cycle plants? (8/31/01)

FPL has not proposed such an approach in this RFP and has not determined if it would consider such a proposal.

What is meant by "new" renewable sources? Are
renewables exempt from project cancellation due to deregulation? (8/31/01)

Renewable energy sources include, but are not necessarily limited to, solar, biomass, landfill methane, wind, and low impact hydro. "New" projects mean projects based on new facilities (i.e., facilities not currently existing). The potential impacts of deregulation on FPL purchases of renewable energy only, and FPL's potential response to deregulation, will be addressed in any contract negotiations.

How does FṔL propose to address transmission credits associated with a Bidder's "system upgrades" resulting from a Bidder's GIS request? (8/31/01)

As FPL understands this question it refers to credits a generator may receive under existing Open Access Transmission Tariff (OATT) policies towards future transmission service because that generator paid for transmission system upgrades as part of its interconnection. To the extent that FPL enters into a contract with a generator that then becomes an FPL designated network resource and that generator would have received credits towards future transmission service as specified above, but that credit instead is now received by FPL as the transmission customer, FPL will credit the net amount actually received in transmission credits (net of applicable taxes) towards the generator's payments under the contract.

What is the value of deferral formula? (8/31/01)

The following is the value of deferral formula per the Florida Public Service Commission Rule 25-17.0832 (6)(a); Florida Administrative Code:

Calculation of year-by-year value of deferral. The year-by-year value of deferral of an avoided unit shall be the difference in revenue requirements associated with deferring the avoided unit one year and shall be calculated as follows:
$V A C_{m}=1 / 12\left[K I_{n}(1-R) /\left(1-R^{L}\right)+O_{n}\right]$
Where, for a one year deferral:
VAC $_{m}=$ utility's monthly value of avoided capacity, in dollars per kilowatt per month, for each month of year n;
$K=$ present value of carrying charges for one dollar of investment over L years with carrying charges computed using average annual rate base and assumed to be paid at the middle of each year and present value to the middle of the first year;
$R=\left(1+i_{p}\right) /(1+r) ;$
$I_{\mathrm{n}}=$ total direct and indirect cost, in mid-year dollars per kilowatt including

AFUDC but excluding CWIP, of the avoided unit with an in-service date of
year n, including all identifiable and quantifiable costs relating to the construction of the avoided unit that would have been paid had the avoided unit been constructed;
$\mathrm{O}_{\mathrm{n}}=$ total fixed operation and maintenance expense for the year n , in mid-year dollars per kilowatt per year, of the avoided unit;
$i_{p}=$ annual escalation rate associated with the plant cost of the avoided unit(s);
$i_{0}=$ annual escalation rate associated with the operation and maintenance expense of the avoided unit(s);
$r=$ annual discount rate, defined as the utility's incremental after tax cost of
$L=$ expected life of the avoided unit; and
$\mathrm{n}=$ year for which the avoided unit is deferred starting with its original anticipated in-service date and ending with the termination of the contract for the purchase of firm energy and capacity.

Question from August, $24^{\text {th }}$ Workshop -What is included in the levelized revenue recovery amounts? Is it based upon a rate recovery methodology and include all O\&M, depreciation, interest, rate of return, capital recovery, fuel, etc? What are the number of MWhs associated with the revenue recovery amounts? (8/31/01)

The estimated annual levelized revenue requirement value includes all projected capital costs, interest, AFUDC, depreciation, deferred taxes, property taxes and insurance. It does not include fixed $O \& M$, variable O\&M, or fuel costs. There are no MWh associated with the revenue requirement projection since the value is capital cost-based.

Question from August, $24^{\text {th }}$ Workshop - Is the direct cost detailed in the back of the RFP the total cost that FPL will seek for recovery in rates, or is there additional indirect cost that will be included? (8/31/01)

The "next planned generating units", and their associated costs, in the back of the RFP represent the results of FPL's 2000 resource planning work. They do not necessarily represent self-build options which FPL may evaluate versus proposals received in response to this RFP. Only after all proposals, self-build options, and contract extensions are evaluated, and negotiations (as applicable) are completed, will FPL reach decisions regarding cost recovery.

Question from August, $24^{\text {th }}$ Workshop - In the planned unit data, does the annual levelized revenue requirement include fixed O\&M, variable O\&M, or interconnection costs (gas and transmission)? (8/31/01)

The estimated annual levelized revenue requirement value does not include fixed O\&M, variable O\&M, or fuel costs. The value is for all capital costs including incremental generation, transmission interconnection, and gas expansion costs.

Question from August, $24^{\text {th }}$ Workshop - The direct construction costs of $\$ 363 / \mathrm{kW}$ for the FPL self-build option at Midway seems very low. Experience in the industry has shown the actual price should be closer to $\$ 500 / \mathrm{kW}$. What is the basis for the price estimate for the FPL self-build option for Midway? What is included, specifically, in this price estimate number? (8/31/01)

The $\$ 363 / k w$ value for FPL's projected Midway CC unit referred to in the question appears to be quoted directly from FPL's 2001 Ten Year Power Plant Site Plan (and can also be calculated from the RFP by dividing the direct cost value by the summer capacity rating.) The value represents direct construction costs. The basis for the cost estimate is a two CTbased combined cycle which is duct-fired. The cost estimate includes the combustion turbines, heat recovery steam generators, steam turbine, electric generators, and applicable transmission and gas interconnection costs.

Question from August, $\mathbf{2 4}^{\text {th }}$ Workshop - What are your capacity factor assumptions used to arrive at variable O\&M? What number of starts are assumed in each? (8/31/01)

The variable O\&M cost estimate is based on a 96% capacity factor and 100 starts per year (although the start costs are a very small contributor to the estimated annual variable O\&M costs).

Question from August, $24^{\text {th }}$ Workshop - For FPL's self-build options that involve conversion of existing resources, are

the conversion costs considered? If so, how are they considered and what are those costs? (8/31/01)

FPL has not yet evaluated its self-build options. The projected costs for "next planned generating units" shown in the RFP which involve the conversion of combustion turbines into combined cycle units include all estimated incremental capital costs necessary for the conversion. These costs are from FPL's 2000 resource planning work. These capital costs are for the heat recovery steam generators, steam turbine, electric generator and incremental transmission and gas interconnection costs.

Question from August, $24^{\text {th }}$ Workshop - Can FPL provide the value of deferral for years beyond the first year of deferral? (8/31/01)

The value of deferral (VOD) formula and a detailed explanation can be found in the Commission Rules Chapter 25-17.0832 (page 17-27). FPL is also posting the VOD formula on the website as a separate Q\&A.

With the data shown on Table VI of the RFP and Schedule 9 of FPL's 2001 Ten-Year Site Plan (Site Plan), the value of deferral can be calculated by a prospective Bidder for any desired number of years beyond the first year of deferral for each of FPL's "next planned generating units" found in the RFP.

Question from August, $24^{\text {th }}$ Workshop - Is the fuel price used in the FPL self-build assumptions an existing FPL contract price or is it based on an index? If it is based on an index, what is the index? If the fuel price is index-based what is the escalation rate used during the life of FPL's selfbuild option? (8/31/01)

FPL has not yet evaluated its self-build options. The "next planned generating units" shown in the RFP, and their associated costs, represent the results of FPL's 2000 resource planning work. The fuel cost values shown in the RFP for these "next planned generating units" are from a fuel forecast developed by FPL in 2000 for the 2000 resource planning work.

FPL will use a new fuel forecast for evaluating proposals received in response to this RFP, its self-build options, and extensions to existing contracts. That fuel forecast has not yet been developed and will not be made available.

Question from Pre-Bid Workshop- Does additional capacity

 expansion at an existing biomass site qualify as new? (8/31/01)The existing capacity would not qualify. Modifications to the existing facility would also not qualify. New facilities at the same site may or may not qualify. FPL suggests that the party posing this question submit an additional question(s) offering further information to FPL if additional clarification is desired.

Question from Pre-Bid Workshop- Will the short list be announced? If a proposal is not short-listed, does the 390 days firm still apply? How will a proposal know it is not under consideration? (8/31/01)

The short list will be announced. The 390 days still applies for those proposals not short listed, but FPL will consider requests from the Bidder to withdraw/terminate these proposals on a case-by-case basis after the short list is announced. Proposals may also take exception to the 390 days period using Form \#9. A Bidder will know that a proposal is not on the short list once the short list announcement has been made. However, some proposals not on the short list may remain under consideration in the event negotiations fail with a Bidder on the shortist or other complications arise.

Question from Pre-Bid Workshop- When FPL goes before the FPSC in May, 2002, what is FPL attempting to achieve at that time? Is the awarding of a winning bid and FPL's going before the FPSC a guarantee that FPL will activate the winning bid given that the Seller holds up his responsibilities? (In other words, is there a potential for someone to spend dollars or construct new plant to serve FPL and FPL walks away, in whole or in part, from the deal in 2003 or 2005)? (8/31/01)

First, FPL is not guaranteeing that there will be a contract, nor that the contract may not terminate according to its terms. FPL anticipates having a contract before going to the Florida Public Service Commission, but envisions performance under that contract being contingent upon Commission approval. The current schedule shows that FPL may seek either or both a determination of need or approval of cost recovery from the Florida Public Service Commission in May 2002. A determination of need will be required for any new unit falling within the Florida Power Plant Siting Act. If a proposal is from a unit not covered by the Act, no determination of need will be sought or required. For units that require a determination of need, failure to secure a determination of need will be grounds for FPL to "walk way". FPL also may file in May, 2002 petitions for Commission approval of cost recovery for winning proposals other than self-build options. Failure to secure such approvals will be grounds for FPL to terminate such an agreement.

Question from Pre-Bid Workshop- Would you consider a

waste-to-energy facility as a renewable resource? (8/31/01)

For the purposes of this RFP, a new Municipal Solid Waste-to-Energy facility would not be considered a renewable source. However, a "biomass waste"-to-energy facilities (using wood chips, crop residue, etc.) would be considered a renewable source. Note that only new renewable energy facilities are eligible under this RFP.

Which is the Docket number where goals for DSM and renewables were set? (9/04/01)

Numerical DSM Goals were last set for Florida's four largest investorowned electric utilities by the Florida Public Service Commission (Commission) in docket number 971004 -EG. The Commission approved FPL's DSM Plan to meet these numeric goals in docket number 991788EG.

These goals are for demand side management (DSM) programs. There are no specific renewable energy-based goals. However, the Commission approved the Joint Motion to Approve a Stipulation by FPL and LEAF (Order No. PSC-99-1412-S-EG in docket number 971004EG). This Stipulation, in part, stated that FPL agreed to investigate, and, if feasible, develop various energy-efficiency measures including "green" pricing.

Please briefly describe FPL's "cogeneration program under which it [FPL] could contract with QFs for renewable energy"? Is there a contact person ? (9/04/01)

FPL's QF program is not limited to energy from renewables. FPL continues to negotiate with QFs individually in addition to making available, periodically, a Standard Offer Contract to those QFs that meet the requirement for such Standard Offer. The contact person for questions related to this is Delia Perez-Alonso 305-552-3227.

Finally, FPL is also exploring the potential for renewable energy projects to contribute to FPL's energy mix. The information obtained from the RFP will be combined with marketing information related to interest by FPL customers to purchase blocks of energy from renewable resources at an identified price. At this time FPL does not have a program to "contract with QFs for renewable energy". As with all other questions related to the RFP, inquiries related to renewables should be addressed to Steve Sim.

> What is FPL's schedule for seeking recovery of costs from the PSC? If the PSC denies recovery one year into the contract, does FPL want immediate termination? (That would not be nice.) (9/05/01)

FPL intends to seek cost recovery and/or need determination in 2002. If cost recovery is obtained from the FPSC, FPL does not envision the FPSC reversing themselves one year into the contract absent serious contract non-compliance or other occurrences which the contract terms and conditions may be designed to address anyway.

Regulatory Out Clause (9/05/01)

The Regulatory Out language being provided should be interpreted as no more than an example. FPL reserves the right to provide language that differs either partially or in its entirety from the example provided during the negotiating phase of the RFP.

SAMPLE LANGUAGE

xxx Notwithstanding anything to the contrary in this Agreement, if FPL, at any time during the term of this Agreement, fails to obtain or is denied the authorization of the FPSC, or the authorization of any other legislative, administrative, judicial or regulatory body which now has, or in the future may have, jurisdiction over FPL's rates and charges, to recover from its customers all of the payments required to be made to the Authority under the terms of this Agreement or any subsequent amendment hereto, FPL may, at its sole option, adjust the payments made under the Agreement to the amount(s) which FPL is authorized to recover from its customers. In the event that FPL so adjusts the payments to which the Authority is entitled under this Agreement, then, without limiting or otherwise affecting any other remedies which the Authority may have hereunder or by law, the Authority may, at its sole option, terminate this Agreement upon $\times \times \times \times \times \times \times \times \times$ written notice to FPL. If such determination of disallowance is ultimately reversed and such payments previously disallowed are found to be recoverable, FPL shall pay all withheld payments, with interest at the rate of xxx per annum. The Authority acknowledges that any amounts initially received by FPL from its ratepayers, but for which recovery is subsequently disallowed and charged back to FPL, may be offset or credited, with interest at the rate of xxx per annum, against subsequent payments to be made by FPL to the Authority under this Agreement.

If, at any time, FPL receives notice that the FPSC or any other legislative, administrative, judicial or regulatory body seeks or will seek to prevent full recovery by FPL from its customers of all payments required to be made under the terms of this Agreement or any subsequent amendments to this Agreement, then FPL shall, within $x X X$ days of such action, give written notice thereof to the Authority. FPL shall use its best efforts to defend and uphold the validity of this Agreement and its right to recover from its customers all payments required to be made by FPL hereunder, and will cooperate in any effort by the Authority to intervene in any proceeding challenging, or to otherwise be allowed to defend, the validity of the Agreement and the right of FPL to recover from its customers all payments to be made by it hereunder.

The Parties do not intend this Section xxx to grant any rights or remedies to any third party(ies) or to any legislative, administrative, judicial or regulatory body; and this Section xxx shall not operate to release any person from any claim or cause of action which the Authority may have relating to, or to preclude the Authority from asserting, the validity or enforceability of any obligation undertaken by FPL under this Agreement.

Will FPL clarify the meaning of and consider modifications to, the first paragraph on page 17 of the RFP regarding termination of contract due to failure to obtain costs recovery from the PSC? (9/06/01)

On page 17 of Florida Power \& Light's RFP's, the following paragraph
2) Any negotiated contract for the purchase of capacity and/or energy between FPL and the Bidder will be subject to termination by FPL in the event that the Florida Public Service Commission fails to allow cost recovery of all costs incurred pursuant to the contract.
is now changed to the following:
2) In the event that the Florida Public Service Commission, or any other legislative, administrative, judicial or regulatory body which now has; or in the future may have, jurisdiction over FPL's rates and charges fails to allow cost recovery of all the costs incurred pursuant to any negotiated contract for the purchase of capacity and/or energy between FPL and the Bidder, the payments required to be made under the contract shall be reduced to the amount which FPL is authorized to recover from its customers. Should the payments be reduced by a significant amount, either Party may, within the notice period provided in the contract, terminate the contract as of a specified future date. The specific terms will be the subject of contract negotiations.

What quantity of firm transportation (MMBtu per day) will FPL use in its planning assumptions for each of its selfbuild options? (9/06/01)

FPL has not finalized its self-build options. Consequently, FPL does not know the quantity of firm gas transportation that may be needed for its self-build options.

What annual fixed transportation costs will FPL use in its planning assumptions for each of its self-build options? (9/06/01)

FPL has not finalized a fuel cost forecast that it will use in evaluating Bids received in response to the RFP, its self-build options, and extensions to existing contracts. Consequently, the annual fixed

How much incremental firm pipeline transportation (MMBtu per day) will FPL purchase for each of its self-build options? (9/06/01)

FPL has not finalized its self-build options. Consequently, FPL does not know how much incremental firm pipeline transportation (MMBtu per day) that may be needed for its self-build options.

Will FPL incur any incremental annual fixed transportation cost for its self-build options? If so, how much? (9/06/01)

It is likely that FPL will incur incremental annual fixed gas transportation costs for any self-build option fired by natural gas. However, FPL has not finalized either its self-build options or its fuel cost forecast.
Consequently, FPL does not know the projected amount of annual fixed gas transportation costs that will be incurred.

What maximum daily quantity will each plant proposed by FPL subscribe for on a firm basis on FGT? (9/06/01)

FPL understands that this question refers to FPL's self-build options rather than to FPL's "next planned generating units" presented in the RFP. FPL has not finalized its self-build options and, therefore, does not know the projected maximum daily quantity of gas that may be subscribed for each of these self-build options.

For each year, what capacity factor does FPL assume for each plant? For each year, how many starts per year are assumed? (9/06/01)

FPL understands that this question refers to FPL's self-build options rather than to FPL's "next planned generating units" presented in the RFP.FPL has neither finalized its self-build options nor performed economic analyses of them. Consequently, FPL does not have projected annual capacity factors or projected annual starts for these options.

What construction index is used to escalate total direct costs? If more than one index applies, what are the appropriate weightings? What is the value of the index in the base year" How is the index applied? To the start of construction? Through construction? (9/06/01)

FPL understands that this question refers to FPL's self-build options rather than to FPL's "next planned generating units" presented in the RFP. FPL will use the following general formula to escalate direct cots for construction of any self-build options:
[(labor cost \% of total cost) * (labor hourly compensation rate escalator)]
$+[($ materials costs \% of total cost) * (PPI escalator) $]$.
However, FPL has finalized neither its self-build options nor the escalation forecasts/indexes it will use in evaluating these options. Consequently, FPL cannot supply more detailed information regarding construction e scalation values.

As a "Renewable, Energy Only" respondent under the RFP, I am concerned that a significantly larger percentage of contract cost (as compared to conventional generation) under a PPA could be disallowed by Florida Public Service Commission, or other jurisdictional entities. The resultant downward pricing adjustment could have far greater financial impact on proposed renewable projects (and their sponsor companies) than on conventional fossil fuel generation.

Is it FPL's intent that there be identical treatment for energyonly renewables under this provision of the RFP, or can the cost recovery be tied to a different standard, such as FPL customer demand for renewable energy, renewable market maturity and liquidity in FPL and adjacent service territories, and/or other indices responsive to the renewable market?

It may be FPL's desire to address this level of detail through specific negotiation on a renewable PPA, however the recovery provision as stated seems to create a significantly greater barrier to entry for renewable developers in Florida's "Pre-Deregulation" environment. (9/12/01)

As previously stated, FPL will compare the prices and MWH amounts proposed in Bids received in response to the RFP with the results of ongoing market research designed to determine the number of FPL customers who would like to be served by renewable energy and the costs these customers would be willing to incur for such service. If FPL decides a Green Pricing Program is feasible and determines that specific renewable energy proposals are likely candidates for energy purchases and enters into contracts, FPL would request regulatory approval based on the premise that only participating customers will incur the costs associated with the renewable energy purchased. Non-participating customers would not incur these costs. Consequently, FPL does not
necessarily agree that a significantly larger percentage of contract costs might be subsequently disallowed by the Florida Public Service Commission taking into account its prior review and approval prior to the contract's implementation.

In any case, any Bidder may raise an exception to this facet of the RFP, and propose revised language-on Form \#9 of their Bid. FPL will take these (and all other) exceptions into account in evaluating Bids. Bids that obtain short list status will then be discussed in contract negotiations.

For the purposes of the performance, what relative humidity would you like us to use? $(9 / 13 / 01)$

FPL anticipates that it may receive proposals for projects sited in a variety of locations; i.e., inside FPL's service territory, outside of FPL's service territory but within the state of Florida, and outside of Florida. In addition, projects may be based on technologies whose projected performance varies greatly in regard to relative humidity considerations of the intake air itself (i.e., a CT with a fogger "versus" a CT without a fogger). Therefore, for purposes of projecting performance of a generating unit, Developers should use a relative humidity value appropriate to the generating unit's proposed site and technology.

We would like some direction on what constitutes multiple proposals, thus, requiring multiple evaluation fees. By way of specific example:a) If the proposer submits one Baseload and One peaking proposal from four separate facilities (two base-load and two peaking facilities) would this example be considered two or four separate proposals?b) To further complicate question a) above, if FPL is given the option to pick and choose to take partial capacity from the facilities proposed (the two peaking and two base-load facilities proposed in question a), would this option trigger additional proposals?c) Lastly, if a 500 MW base-load proposal is constructed, for example, to provide FPL with capacity split between two facilities (250 MW from facility "A" and 250 MW from facility " B "), would the 500 MW proposal be considered 1) one proposal since it is one 500 MW block of base-load capacity being bid, or 2) two proposals, due to the fact that it comes from two facilities? (9/14/01)

FPL understands this part of the question to mean that only the full output of the two baseload units (for example, 250 MW per unit), and the full output of the two peaking units (for example, 150 MW per unit), would be offered. FPL would consider this as two separate proposals requiring two evaluation fees. One proposal would be a 500 MW
"system" baseload proposal and the second proposal would be a 300 MW "system" peaking proposal. Each proposal would only have one price proposed.

FPL is looking for Bids that propose specific capacity amounts rather than Bids offering a range of MW. So, expanding the answer to part a), if instead of just offering only the combined total output of two 250 MW units (i.e., 500 MW), a Bidder provides another offer of a different, less-than-the-total-of-500-MW (for example, 200 MW), FPL would consider the second offer as a separate proposal requiring a separate evaluation fee.

FPL views this question as essentially similar to that posed in part a). As long as only one specific capacity (MW) amount is being offered, FPL would consider this as one proposal requiring only one evaluation fee.

In our NOI filing, we indicated that our bid would be for a nominal amount of a specific technology at a particular location. Can we modify that without penalty or $(9 / 14 / 01)$

A developer's Bid must "match up" with the information shown on that developer's NOI form which was submitted on/before August 31st. The only allowable exceptions to these are: (1) changes in facility location, (2) (for firm capacity and energy proposals only) relatively small changes in Estimated Firm Capacity Net (MW) Summer and Winter to account for small variations in output of the unit(s)/technology proposed, (3) (for energy from renewable energy source proposals only) relatively small changes in the Estimated Annual Energy (MWH) to FPL, and (4) corrections to phone numbers, address, etc. All other information in the Bid and on the NOI form should match.

In the case of renewable energy proposals, FPL may consider additional proposals received outside of this RFP. However, any such consideration would come after proposals received in response to this RFP are evaluated and, as applicable, utilized. Renewable project developers that are interested in submitting proposals to FPL separate from the RFP may contact Steve Sim after the RFP's Proposal Date (September $28^{\text {th }}$).

Developer A has submitted one or more NOI forms by the August $31^{\text {st }}$ deadline and, therefore, is eligible to submit the same number of proposals in response to FPL's RFP. Developer B did not make the deadline for submitting an NOI and is not eligible to submit a bid, but wants to participate in the RFP.

Developer B has proposed the following approach to Developer A:

Developer A submits one more bid than A otherwise would submit (e.g., if A had submitted NOI forms for four proposals and A subsequently decided to submit only three proposals, A would now submit its three proposals plus an "extra" bid for Developer B.). This bid is the proposal that B wants to have submitted.

If this bid is short listed, then A will drop out of the picture and allow B to step in as sponsorlowner of the bid and enter contract negotiations with FPL.

What is FPL's view of this proposed approach? (9/14/01)
FPL views this as an "end run" around its RFP process. First, no potential bidder may submit bids beyond those for which it has submitted an NOI form. Second, any bid submitted must comply in form and substance with the submitted NOI form. Third, if FPL enters into any contract negotiations, FPL intends to enter into such negotiations, and to contract if it determines it appropriate, only with the firm that submitted the bid in question (subject to acceptable and legitimate assignment, buyout, or business entity succession).

In the case of renewable energy proposals, FPL may consider additional proposals received outside of this RFP. However, any such consideration would come after proposals received in response to this RFP are evaluated and, as applicable, utilized. Renewable project developers that are interested in submitting proposals to FPL separate from the RFP may contact Steve Sim after the RFP's Proposal Date (September 28th).

Form \#5A requests that firm capacity be stated at 95 degrees for summer capability and 35 degrees for winter capability. Will FPL accept a winter rating at 45 degrees rather than 35 degrees? Also, can the heat rate guarantee be submitted at a temperature of 70 degrees rather than 75 degrees as listed on Form \#5A? (9/19/01)

FPL wants the guaranteed winter capability rating stated for a 35 degree temperature. (Unit ratings at this temperature "match up" to load forecasts based on the same temperature. This ensures consistency on reserve margin calculations.) FPL also wants the heat rate guarantee submitted for a 75 degree temperature. FPL's analyses will utilize the 35 and 75 degree guaranteed values.

Important Notice (9/20/01)

Bids that are in response to FPL's RFP are due to FPL by 4:00 p.m. on Friday, September 28, 2001. Bids provided by hand delivery must be received by 4:00 p.m. on Friday, September 28, 2001. Another option of
submitting a bid is by courier. Realizing how the events of the last week and a half have affected courier service, FPL will accept any next day or overnight package sent by courier, even if it does not arrive at FPL until after September 28, as long as there is proof that it was delivered to the courier for overnight or next day delivery on or before September 27, 2001.

TOP $x=$

Legal Notices Privacy Policy

FPL Options: 2005 in-service date

Option	Total Start-up Cost (NPV $\$(000))$
PMR: 4×1 CC-F Expansion Moderate	982
PMR: 4x1 CC-F Brownfield Moderate	982
PMR: 3x1 CC-F Expansion Moderate	736
PMR: 3x1 CC-F Brownfield Heavy	736
PMR: 3x1 CC-F Brownfield Moderate	736
PMR: 3x1 CC-F Brownfield Light	736
PMT: 3x1 CC-F Brownfield Moderate	736
PPE 3\&4: 2-4x1 CC-F Repowering Light	1,963
PMR: 2-300 MW Brownfield	614
PFM: 2x1 CC-F Expansion Moderate	491
PSN Peaker \& PA: 1x0 SC-F PSN5	368
PSN Peaker \& PA: 1x0 SC-F PSN4	245
CT: Greenfield Site	4,090
PMT: 4x1 CC-F Brownfield Moderate	982

FPL Options: 2006 in-service date

Option	Total Start-up Cost (NPV \$(000))
PMR: 4×1 CC-F Expansion Moderate	912
PMR: 4×1 CC-F Brownfield Moderate	912
PMR: 3×1 CC-F Expansion Moderate	684
PMR: 3x1 CC-F Brownfield Heavy	684
PMR: 3x1 CC-F Brownfield Moderate	684
PMR: 3x1 CC-F Brownfield Light	684
PMT: 3×1 CC-F Brownfield Moderate	684
PPE 3\&4: 2-4×1 CC-F Repowering Light	1,825
PMR: 2-300 MW Brownfield	570
PFM: 2x1 CC-F Expansion Moderate	456
PSN Peaker \& PA: 1x0 SC-F PSN5	342
PSN Peaker \& PA: 1x0 SC-F PSN4	228
CT: Greenfield Site	3,802
PMT: 4x1 CC-F Brownfield Moderate	912

Note: CT: Greenfield Site assumed 100 annual start-ups All CC options assumed 6 annual start-ups.

Outside Options

Option	Total Start-up Cost (NPV \$(000))
FC 1	0
FC 2	196
FC 3	2,745
FC 4	1,666
FC 5	0
FC 6	432
FC 7	0
FC 8	No value given
FC 9	Ineligible proposal
FC 10	0
FC 11	N/A - System Sale
FC 12	431
FC 13	0
FC 14	720
FC 15	864
FC 16	127
FC 17	No value given
FC 18	0
FC 19	102
FC 20	185
FC 21	Not available - Turnkey
FC 22	No value given
FC 23	185
FC 24	498
FC 25	539
FC 26	539
FC 27	539
FC 28	0
FC 29	0
FC 30	218
FC 31	Not available - Turnkey
FC 32	Not available - Turnkey
FC 33	Not available - Turnkey
FC 34	N/A - System Sale
FC 35	N/A - System Sale
FC 36	N/A - System Sale
FC 37	N/A - System Sale
FC 38	N/A - System Sale
FC 39	351
FC 40	1,110
FC 41	199

Option	Total Start-up Cost (NPV \$(000))
FC 42	190
FC 43	299
FC 44	526
FC 45	597
FC 46	1,052
FC 47	0
FC 48	N/A - System Sale
FC 49	N/A - System Sale
FC 50	398
FC 51	1,023
FC 52	N/A - System Sale
FC 53	0
FC 54	0
FC 55	To be negotiated
FC 56	0
FC 57	397
FC 58	94
FC 59	171
FC 60	171
FC 61	N/A - System Sale
FC 62	No value given
FC 63	No value given
FC 64	No value given
FC 65	2,557
FC 66	0
FC 67	0
FC 68	0
FC 69	0
FC 70	816
FC 71	119
FC 72	331
FC 73	187
FC 74	178
FC 75	281
FC 76	497
FC 77	562
FC 78	993
FC 79	Not available - Turnkey
FC 80	Not available - Turnkey
FC 81	Not available - Turnkey

Note: FC 3 and FC 65 assumed 6 annual start-ups due to high dispatch costs All CC options assumed 6 annual start-ups.

Calculation of Plan Start Up Costs

Year	All FPL Plan	All FPL Stant Up Costs	Combination Plan I	C. Plan 1 Start Up Costs	$\begin{gathered} \text { Combination } \\ \text { Plan } 2 \end{gathered}$	C. Plan 2 Start Up Costs	$\begin{aligned} & \text { Combination } \\ & \text { Ptan } 3 \end{aligned}$	C. Plan 3 Start Up Costs	Combination Plan 4	C. Plan 4 Start Up Costs	Combination Plan 5	C. Plan 5 Start Up Costs	Combination Plan 6	C Plan 6 Start Up Costs	$\begin{aligned} & \text { Combination } \\ & \text { Plan } 7 \end{aligned}$	C. Plan 7 Stan Up Costs
2005	Martin Conversion	0.982	FC 3, FC 19, FC 38	2.847	FC 3, FC 19, FC 11	2.847	FC 3, FC 8, 17 , or 22	2.745								
	Manatee CC	0.982	FC3	2.745	FC3	2.745	FC19	0.102	FC 38, FC 39	0.351					-	
2006	$\underline{-}$		FC 58	0.058	FC71, FC 72	0.450	FC 65	2.557	FC 65, FC 71	2.676	Martin Conversion	0.912	Martin Conversion	0.912	Mattin Conversion	0.912
	-		$\underline{-}$		\cdots		\cdots		\cdots		\cdots				\cdots	
2007	CC	0.848														
2008	$\underline{-}$	0.000	\cdots	0.000	-	0.000	CC	0.788	\cdots	0.000	CC	0.788	CC	0.788		0.000
2009	CC	0.731	CC	0.731	CC	0.731	\cdots	0.000	CC	0.731	$\underline{-}$	0.000		0000	CC	0.731
2010	CC	0.677	2 CC s	1.354	CC	0.677	2 CC 's	1.354	CC	0.677	2 CC	1.354	2 CC	1.354	CC	0.677
2011	CC	0.626	\cdots	0.000	CC	0.626	\cdots	0.000	CC	0.626	-	0.000	\cdots	0.000	\cdots	0.000
2012	$\underline{ }$	0.000	CC	0.577	----	0.000	CC	0.577	-	0.000	CC	0.577	CC	0.577	CC	0.577
2013	$\underline{\square}$	0.000	$\underline{-}$	0.000	CC	0.531	\cdots	0.000	CC	0.531	\bigcirc	0.000	\cdots	0.000	-	0.000
2014	CC	0.487	$\underline{-}$	0000	\cdots	0.000	CC	0.487								
2015	$\underline{ }$	0.000	CC	0.445	CC	0.445	CC	0.445	CC	0.445	CC	0445	CC	0.445	CC	0.445
2016	Cc	0.406	\cdots	0.000	-	0.000	$-$	0.000	\cdots	0.000	\cdots	0.000		0.000	CC	0.000
2017	C	0.000	CC	0.368												
2018	CT	1.385		0.000	-	0.000	$\underline{-}$	0.000	\cdots	0.000	\cdots	0.000	\cdots	0.000	\cdots	0.000
2019	2 CT	2.486	CT	1.243												
2020	4 CT	4.433	3 CTs	3.325	3 CTs	3325	3 CTs									
		14.042		12.676		12.971		12.589		12.803		12.707		12.707		12.358

Startup Cost Calculation for

February Combination Plan

Year	Expansion Plan Components	Startup Costs (\$millions)
2005	Manatee CC unit	0.982
	FC 11	0.000
2006	FC 65	2.557
2007	Unsited CC	0.848
2008		0.000
2009	Unsited CC	0.731
2010	Unsited CC	0.677
2011	Unsited CC	0.626
2012		0.000
2013	Unsited CC	0.531
2014		0.000
2015	Unsited CC	0.445
2016		0.000
2017		0.000
2018	Unsited CC	0.332
2019		0.000
2020	2 Unsited CT's	2.216
		9.945

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of Cr's in the unit $=$	4

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Norninal $\$(000)$)	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	98	60
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	848

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups = } & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000 \\ \text { Number of CT's in the unit = } & 4\end{array}$

Year		PMR: 4×1 CC-F Brownfield Moderate	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	788

Assumed Number of Annual $\mathrm{S} \quad 6$
 The start-up cost per annual s 4,000

Year	Annual Discount Factor 0.085	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
			Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	1	0	0
2002	0.922	0.922	0	0
2003	0.849	0.849	0	0
2004	0.783	0.783	0	0
2005	0.722	0.722	0	0
2006	0.665	0.665	0	0
2007	0.613	0.613	0	0
2008	0.565	0.565	0	0
2009	0.521	0.521	0	0
2010	0.480	0.480	0	0
2011	0.442	0.442	0	0
2012	0.408	0.408	0	0
2013	0.376	0.376	0	0
2014	0.346	0.346	0	0
2015	0.319	0.319	0	0
2016	0.294	0.294	0	0
2017	0.271	0.271	0	0
2018	0.250	0.250	0	0
2019	0.230	0.230	0	0
2020	0.212	0.212	145	31
2021	0.196	0.196	149	29
2022	0.180	0.180	154	28
2023	0.166	0.166	159	26
2024	0.153	0.153	164	25
2025	0.141	0.141	169	24
2026	0.130	0.130	175	23
2027	0.120	0.120	180	22
2028	0.111	0.111	186	21
2029	0.102	0.102	192	20
2030	0.094	0.094	198	19
			Sum $=$	266

$\begin{array}{ll}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4.000\end{array}$
The start-up cost per annual start-up is $=\quad 4,000$

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.420	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	235

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000\end{array}$
 Number of CT's in the unit =

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	188	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	206

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000\end{array}$
Number of CT's in the unit =

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	178

$\begin{array}{lr}\text { Assumed Number of Annual Start-ups }= & \mathbf{6} \\ \text { The start-up cost per annual start-up is }= & 4.00\end{array}$
 Uumber of CT's in the unit =

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	152

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000\end{array}$
Number of CT's in the unit =

Year	Annual Discount Factor 0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	127

Assumed Number of Annual Start-ups $=$ The start-up cost per annual start-up is $=$
 Number of CT's in the unit =

Assumed Number of Annual Start-ups $=$
The start-up cost per annual start-up is $=$
$\begin{array}{lc}\text { The start-up cost per annual start-up is }= & 4.000 \\ \text { Number of CT's in the unit }= & 4\end{array}$

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	80

	Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's in the unit $=$			$\begin{gathered} 6 \\ 4,000 \\ 4 \end{gathered}$	Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's in the unit =			$\begin{gathered} 6 \\ 4,000 \\ 4 \end{gathered}$	Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's in the unit =			$\begin{gathered} 6 \\ 4,000 \\ 4 \end{gathered}$
$\begin{aligned} & -1 \\ & 1 \\ & 6 \end{aligned}$	Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Brownfield Moderate		PMR: 4×1 CC-F Brownfield Moderate				PMR: 4×1 CC-F Brownfield Moderate			
			Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))	Year	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000))$	Year	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal $\$(000))$	Annual Start-up Costs (NPV $\$(000)$)
	2001	- 1	0	0	2001	1	0	0	2001	1	0	0
	2002	0.922	0	0	2002	0.922	0	0	2002	0.922	0	0
	2003	0.849	0	0	2003	0.849	0	0	2003	0.849	0	0
	2004	0.783	0	0	2004	0.783	0	0	2004	0.783	0	0
	2005	0.722	0	0	2005	0.722	0	0	2005	0.722	0	0
	2006	0.665	0	0	2006	0.665	0	0	20067	0.665	0	0
	2007	0.613	0	0	2007	0.613	0	0	2008	0.565	0	0
	2008	0.565	0	0	2008	0.565	0	0	2009	0.521	0	0
	2009	0.521	0	0	2009	0.521	0	0	2010	0.480	0	0
	2010	0.480	0	0	2010	0.480	0	0	2011	0.442	0	0
	2011	0.442	0	0	2011	0.442	0	0	2012	0.408	0	0
	2012	0.408	0	0	2013	0.376	0	0	2013	0.376	0	0
	2013	0.376	0	0	2014	0.346	0	0	2014	0.346	0	0
	2016	0.294	0	0	2016	0.294	0	0	2016	0.294	0	0
	2017	0.271	0	0	2017	0.271	0	0	2017	0.271	0	0
	2018	0.250	0	0	2018	0.250	0	0	2019	0.230	0	0
	2019	0.230	0	0	2019	0.230	0	0	2020	0.212	0	0
	2020	0.212	0	0	2020	0.196	0	0	2021	0.196	0	0
	2023	0.166	0	0	2023	0.466	0	0	2023	0.166	0	0
	2024	0.153	0	0	2024	0.153	0	0	2024	0.151	0	0
	2025	0.141	0	0	2025	0.141	0	0	2026	0.130	0	0
	2026	0.130	0	0	2027	0.130	0	0	2027	0.120	0	0
	2027	0.120	0	0	2028	0.111	0	0	2028	0.111	0	0
	2028	0.111	186	20	2029	0.102	192	20	2029	0.102	198	19
	2030	0.094	198	19	2030	0.094	198	38			Sum $=$	19
			Sum $=$	59								

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's in the unit =			$\begin{gathered} 100 \\ 4000 \\ 1 \end{gathered}$
		CT: Greenfield Site	
Year	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	408	250
2008	0.565	419	237
2009	0.521	431	225
2010	0.480	445	213
2011	0.442	458	203
2012	0.408	473	193
2013	0.376	487	183
2014	0.346	502	174
2015	0.319	517	165
2016	0.294	534	157
2017	0.271	550	149
2018	0.250	568	142
2019	0.230	585	135
2020	0.212	603	128
2021	0.196	622	122
2022	0.180	642	116
2023	0.166	662	110
2024	0.153	683	105
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	3,533

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's in the unit =			$\begin{gathered} 100 \\ 4000 \end{gathered}$
		CT: Greenfield Site	
Year	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	419	237
2009	0.521	431	225
2010	0.480	445	213
2011	0.442	458	203
2012	0.408	473	193
2013	0.376	487	183
2014	0.346	502	174
2015	0.319	517	165
2016	0.294	534	157
2017	0.271	550	149
2018	0.250	568	142
2019	0.230	585	135
2020	0.212	603	128
2021	0.196	622	122
2022	0.180	642	116
2023	0.166	662	110
2024	0.153	683	105
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	3.283

Assumed Number of Annual The start-up cost per annual Number of CT's in the unit =		$\begin{gathered} 100 \\ 4000 \\ 1 \end{gathered}$		
			CT: Greenfield Site	
Year	Annual Discount Factor 0.085	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \end{gathered}$	Annual Start-up Costs (Nominal $\$(000)$	Annual Start-up Costs (NPV $\$(000)$)
2001	1	1	0	0
2002	0.922	0.922	0	0
2003	0.849	0.849	0	0
2004	0.783	0.783	0	0
2005	0.722	0.722	0	0
2006	0.665	0.665	0	0
2007	0.613	0.613	0	0
2008	0.565	0.565	0	0
2009	0.521	0.521	0	0
2010	0.480	0.480	0	0
2011	0.442	0.442	0	0
2012	0.408	0.408	0	0
2013	0.376	0.376	0	0
2014	0.346	0.346	0	0
2015	0.319	0.319	0	0
2016	0.294	0.294	0	0
2017	0.271	0.271	0	0
2018	0.250	0.250	0	0
2019	0.230	0.230	0	0
2020	0.212	0.212	603	128
2021	0.196	0.196	622	122
2022	0.180	0.180	642	116
2023	0.166	0.166	662	110
2024	0.153	0.153	683	105
2025	0.141	0.141	705	99
2026	0.130	0.130	727	95
2027	0.120	0.120	750	90
2028	0.111	0.111	773	85
2029	0.102	0.102	799	81
2030	0.094	0.094	823	77
			Sum $=$	1,108

Assumed Number of Annual Start-ups $=$	100
The start-up cost per annual start-up is $=$	4000
Number of CT's in the unit $=$	1

Number of CT's in the unit =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	683	105
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	633

$$
\begin{array}{lc}
\text { Assumed Number of Annual Start-ups }= & 100 \\
\text { The start-up cost per annual start-up is }= & 4000 \\
\text { Number of CT's in the unit = } & 1
\end{array}
$$

Year		CT: Greenfield Site	
	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	528

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is $=$
Number of CT's in the unit =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	429

Assumed Number of Annual Start-ups $=\quad 100$
The start-up cost per annual start-up is = Number of CT's in the unit =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	750	90
2028	0.114	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum =	334

Assumed Number of Annual Start-ups $=$
The start-up cost per annual start-up is =
Number of CT's in the unit =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	244

Assumed Number of Annual Start-ups
The start-up cost per annual start-up is =
Number of CT's in the unit =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)\rangle$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	159

Assumed Number of Annual Start-ups $=\quad 100$
The start-up cost per annual start-up is =

Year	Annual Discount Factor 0.085	CT: Greenfieid Site	
		Annual Start-up Costs Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	823	77
		Sum $=$	77

Filler Units Summary:

PMR: 4×1 CC-F Brownfield Moderate 6 Annual Starts are assumed

If Start Year is:	NPV Total Starting Cost (000) is:
2007	848
2008	788
2009	731
2010	677
2011	626
2012	577
2013	531
2014	487
2015	445
2016	406
2017	368
2018	332
2019	298
2020	266
2021	235
2022	206
2023	178
2024	152
2025	127
2026	103
2027	80
2028	59
2029	38
2030	19

CT: Greenfield Site
100 Annual Starts are assumed

If Start Year is:	NPV Total Starting Cost (000) is:
2007	3,533
2008	3,283
2009	3,046
2010	2,821
2011	2,608
2012	2,405
2013	2,213
2014	2,030
2015	1,856
2016	1,691
2017	1,534
2018	1,385
2019	1,243
2020	1,108
2021	980
2022	858
2023	743
2024	633
2025	528
2026	429
2027	334
2028	244
2029	159
2030	77

FPL Options: 2005 Start Year

Assumed Number of Annual Start-ups =
 The start-up cost per annual start-up is = Number of CT's =

Year	Annual Discount Factor 0.085	PFM: 2×1 CC-F Expansion Moderate	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	48	35
2006	0.665	48	32
2007	0.613	49	30
2008	0.565	50	28
2009	0.521	52	27
2010	0.480	53	26
2011	0.442	55	24
2012	0.408	57	23
2013	0.376	58	22
2014	0.346	60	21
2015	0.319	62	20
2016	0.294	64	19
2017	0.271	66	18
2018	0.250	68	17
2019	0.230	70	16
2020	0.212	72	15
2021	0.196	75	15
2022	0.180	77	14
2023	0.166	79	13
2024	0.153	82	13
2025	0.141	85	12
2026	0.130	87	11
2027	0.120	90	11
2028	0.111	93	10
2029	0.102	96	10
2030	0.094	99	9
		Sum =	491

Assumed Number of Annual Start-ups $=\quad 6$ The start-up cost per annual start-up is = $\quad 4,000$ Number of CT's = 4,000
3

Year	Annual Discount Factor 0.085	PMR: 3×1 CC-F Expansion Moderate	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	72	52
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
		Sum $=$	736

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 4,000$ Number of CT's =

4,000

Year	AnnualDiscount Factor0.085	PMR: 3×1 CC-F Brownfield Heavy	
		Annual Start-up Costs (Nominal $\$(000))$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	72	52
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
		Sum $=$	736

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4.000
Number of $\mathrm{CT}=$	3

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is = 4,000 Number of CT's =

3

	Annual Yiscount Factor 0.085	Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	72	52
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
			736

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 4,000$ Number of CT's =

Year	AnnualDiscount Factor0.085	PMT: 3×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	72	52
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
		Sum $=$	736

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of CTs =	8

Year		AnnualDiscount Factor0.085	PPE 384: 2-4 $\times 1$ CC-F Repowering Light		
		Annual Start-up Costs $($ Nominal $\$(000))$	Annual Start-up Costs (NPV $\$(000)$)		
	2001		1	0	0
	2002	0.922	0	0	
	2003	0.849	0	0	
	2004	0.783	0	0	
	2005	0.722	192	139	
\square	2006	0.665	194	129	
1	2007	0.613	196	120	
-	2008	0.565	201	114	
∞	2009	0.521	207	108	
	2010	0.480	213	102	
	2011	0.442	220	97	
	2012	0.408	227	92	
	2013	0.376	234	88	
	2014	0.346	241	83	
	2015	0.319	248	79	
	2016	0.294	256	75	
	2017	0.271	264	72	
	2018	0.250	273	68	
	2019	0.230	281	65	
	2020	0.212	289	61	
	2021	0.196	299	58	
	2022	0.180	308	56	
	2023	0.166	318	53	
	2024	0.153	328	50	
	2025	0.141	338	48	
	2026	0.130	349	45	
	2027	0.120	360	43	
	2028	0.111	371	41	
	2029	0.102	383	39	
-	2030	0.094	395	37	
			Sum $=$	1,963	

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is = Number of CT's =

	Annual Discount Factor Year	MR: 4×1 CC-F Expansion Moderate Annual Start-up Costs (Nominal $\$(000)$	Annual Start-up Costs (NPV $\$(000)$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	96	69
2006	0.665	97	64
2007	0.613	98	60
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
			Sum

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000\end{array}$ Number of CT's =

Year	Annual Discount Factor 0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	96	69
2006	0.665	97	64
2007	0.613	98	60
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	982

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	5,000
Number of units $=$	2

Year		AnnualDiscount Factor0.085	PMR: 2-300 MW Brownfield		
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)		
	2001		1	0	0
	2002	0.922	0	0	
	2003	0.849	0	0	
	2004	0.783	0	0	
	2005	0.722	60	43	
5	2006	0.665	61	40	
1	2007	0.613	61	38	
\square	2008	0.565	63	36	
0	2009	0.521	65	34	
	2010	0.480	67	32	
	2011	0.442	69	30	
	2012	0.408	71	29	
	2013	0.376	73	27	
	2014	0.346	75	26	
	2015	0.319	78	25	
	2016	0.294	80	24	
	2017	0.271	82	22	
	2018	0.250	85	21	
	2019	0.230	88	20	
	2020	0.212	90	19	
	2021	0.196	93	18	
	2022	0.180	96	17	
	2023	0.166	99	17	
	2024	0.153	102	16	
	2025	0.141	106	15	
	2026	0.130	109	14	
	2027	0.120	113	13	
	2028	0.111	116	13	
	2029	0.102	120	12	
	2030	0.094	123	12	
			Sum $=$	614	

$\begin{array}{lc}\text { Assumed Number of Annual Start-ups }= & 6 \\ \text { The start-up cost per annual start-up is }= & 4,000\end{array}$ Number of CT's =

Year	Annual Discount Factor 0.085	PSN Peaker \& PA: 1×0 SC-F PSN4	
		Annual Start-up Costs (Nominal $\$(000))$	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	24	17
2006	0.665	24	16
2007	0.613	25	15
2008	0.565	25	14
2009	0.521	26	13
2010	0.480	27	13
2011	0.442	27	12
2012	0.408	28	12
2013	0.376	29	11
2014	0.346	30	10
2015	0.319	31	10
2016	0.294	32	9
2017	0.271	33	9
2018	0.250	34	9
2019	0.230	35	8
2020	0.212	36	8
2021	0.196	37	7
2022	0.180	39	7
2023	0.166	40	7
2024	0.153	41	6
2025	0.141	42	6
2026	0.130	44	6
2027	0.120	45	5
2028	0.111	46	5
2029	0.102	48	5
2030	0.094	49	5
		Sum $=$	245

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 6,000$ Number of CT's =

Year	Annual Discount Factor 0.085	PSN Peaker \& PA: 1×0 SC-F PSN5	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	36	26
2006	0.665	36	24
2007	0.613	37	23
2008	0.565	38	21
2009	0.521	39	20
2010	0.480	40	19
2011	0.442	41	18
2012	0.408	43	17
2013	0.376	44	16
2014	0.346	45	16
2015	0.319	47	15
2016	0.294	48	14
2017	0.271	49	13
2018	0.250	51	13
2019	0.230	53	12
2020	0.212	54	12
2021	0.196	56	11
2022	0.180	58	10
2023	0.166	60	10
2024	0.153	61	9
2025	0.141	63	9
2026	0.130	65	9
2027	0.120	68	8
2028	0.111	70	8
2029	0.102	72	7
2030	0.094	74	7
		Sum $=$	368

Assumed Number of Annual Start-ups =
 The start-up cost per annual start-up is Number of CT's =
 100 4,000

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \end{gathered}$	CT: Greenfield Site	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	400	289
2006	0.665	404	268
2007	0.613	408	250
2008	0.565	419	237
2009	0.521	431	225
2010	0.480	445	213
2011	0.442	458	203
2012	0.408	473	193
2013	0.376	487	183
2014	0.346	502	174
2015	0.319	517	165
2016	0.294	534	157
2017	0.271	550	149
2018	0.250	568	142
2019	0.230	585	135
2020	0.212	603	128
2021	0.196	622	122
2022	0.180	642	116
2023	0.166	662	110
2024	0.153	683	105
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	4,090

FPL Options: 2006 Start Year

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
Number of CT's =

Assumed Number of Annual Start-ups $=$
The start-up cost per annual start-up is = Number of CT's $=$

6 4,000
3

Year		PMR: 3×1 CC-F Expansion Moderate	
	Annual Discount Factor 0.085	Annual Start-up Costs Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
		Sum $=$	684

Assumed Number of Annual Start-ups $=\quad 6$ The start-up cost per annual start-up is $=\quad 4,000$ Number of CT's =

3

	Annual Discount Factor Year	MR: 3 $\times 1$ CC-F Brownfield Heavy Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV \$(000)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
			Sum
			684

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of CT's $=$	3

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is = Number of CT's

	Annual Year Discount Factor 0.085	PMR: 3 $\times 1$ CC-F Brownfield Light Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
			Sum
			684

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of CT's =	3

Year	Annual Discount Factor 0.085	PMT: 3×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000))$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	73	48
2007	0.613	74	45
2008	0.565	75	43
2009	0.521	78	40
2010	0.480	80	38
2011	0.442	82	36
2012	0.408	85	35
2013	0.376	88	33
2014	0.346	90	31
2015	0.319	93	30
2016	0.294	96	28
2017	0.271	99	27
2018	0.250	102	26
2019	0.230	105	24
2020	0.212	109	23
2021	0.196	112	22
2022	0.180	116	21
2023	0.166	119	20
2024	0.153	123	19
2025	0.141	127	18
2026	0.130	131	17
2027	0.120	135	16
2028	0.111	139	15
2029	0.102	144	15
2030	0.094	148	14
		Sum $=$	684

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of CT's $=$	8

$\begin{array}{lc}\text { The start-up cost per annual start-up is }= & 4,000 \\ \text { Number of CT's }= & 8\end{array}$

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \end{gathered}$	PPE 3\&4: 2-4 1 CC-F Repowering Ligh	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	194	129
2007	0.613	196	120
2008	0.565	201	114
2009	0.521	207	108
2010	0.480	213	102
2011	0.442	220	97
2012	0.408	227	92
2013	0.376	234	88
2014	0.346	241	83
2015	0.319	248	79
2016	0.294	256	75
2017	0.271	264	72
2018	0.250	273	68
2019	0.230	281	65
2020	0.212	289	61
2021	0.196	299	58
2022	0.180	308	56
2023	0.166	318	53
2024	0.153	328	50
2025	0.141	338	48
2026	0.130	349	45
2027	0.120	360	43
2028	0.111	371	41
2029	0.102	383	39
2030	0.094	395	37
		Sum $=$	1,825

Assumed Number of Annual Start-ups $=$	6
The start-up cost per annual start-up is $=$	4,000
Number of CT's =	4

4,000
4

Year	AnnualDiscount Factor0.085	PMR: 4×1 CC-F Expansion Moderate	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	97	64
2007	0.613	98	60
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	912

Assumed Number of Annual Start-ups $=\quad 6$ The start-up cost per annual start-up is $=\quad 4,000$ Number of CT's =

Year	Annual Discount Factor 0.085	PMR: 4×1 CC-F Brownfield Moderate	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	97	64
2007	0.613	98	60
2008	0.565	101	57
2009	0.521	104	54
2010	0.480	107	51
2011	0.442	110	49
2012	0.408	113	46
2013	0.376	117	44
2014	0.346	120	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	132	36
2018	0.250	136	34
2019	0.230	140	32
2020	0.212	145	31
2021	0.196	149	29
2022	0.180	154	28
2023	0.166	159	26
2024	0.153	164	25
2025	0.141	169	24
2026	0.130	175	23
2027	0.120	180	22
2028	0.111	186	21
2029	0.102	192	20
2030	0.094	198	19
		Sum $=$	912

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 5,000$ Number of units $=$

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 4,000$ Number of CT's =

Year		PSN Peaker \& PA: 1×0 SC-F PSN4	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	24	16
2007	0.613	25	15
2008	0.565	25	14
2009	0.521	26	13
2010	0.480	27	13
2011	0.442	27	12
2012	0.408	28	12
2013	0.376	29	11
2014	0.346	30	10
2015	0.319	31	10
2016	0.294	32	9
2017	0.271	33	9
2018	0.250	34	9
2019	0.230	35	8
2020	0.212	36	8
2021	0.196	37	7
2022	0.180	39	7
2023	0.166	40	7
2024	0.153	41	6
2025	0.141	42	6
2026	0.130	44	6
2027	0.120	45	5
2028	0.111	46	5
2029	0.102	48	5
2030	0.094	49	5
		Sum $=$	228

Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 6,000$ Number of CT's =

6,000

Year	Annual Discount Factor 0.085	PSN Peaker \& PA: 1×0 SC-F PSN5	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	36	24
2007	0.613	37	23
2008	0.565	38	21
2009	0.521	39	20
2010	0.480	40	19
2011	0.442	41	18
2012	0.408	43	17
2013	0.376	44	16
2014	0.346	45	16
2015	0.319	47	15
2016	0.294	48	14
2017	0.271	49	13
2018	0.250	51	13
2019	0.230	53	12
2020	0.212	54	12
2021	0.196	56	11
2022	0.180	58	10
2023	0.166	60	10
2024	0.153	61	9
2025	0.141	63	9
2026	0.130	65	9
2027	0.120	68	8
2028	0.111	70	8
2029	0.102	72	7
2030	0.094	74	7
		Sum $=$	342

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is = Number of CT's =

Year	Annual Discount Factor 0.085	CT: Greenfield Site	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	404	268
2007	0.613	408	250
2008	0.565	419	237
2009	0.521	431	225
2010	0.480	445	213
2011	0.442	458	203
2012	0.408	473	193
2013	0.376	487	183
2014	0.346	502	174
2015	0.319	517	165
2016	0.294	534	157
2017	0.271	550	149
2018	0.250	568	142
2019	0.230	585	135
2020	0.212	603	128
2021	0.196	622	122
2022	0.180	642	116
2023	0.166	662	110
2024	0.153	683	105
2025	0.141	705	99
2026	0.130	727	95
2027	0.120	750	90
2028	0.111	773	85
2029	0.102	799	81
2030	0.094	823	77
		Sum $=$	3,802

In-service year $=$ 2005-2014
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is =
First 100 starts per year are included in the pricing.

Year	Annual Discount Factor 0.085	FC 1	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year $=2005-2011$
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is =
7,600 Start-up cost is escalated at CPI

Year	Annual Discount Factor 0.085	FC 2	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	46	33
2006	0.665	47	31
2007	0.613	48	29
2008	0.565	49	28
2009	0.521	50	26
2010	0.480	52	25
2011	0.442	53	23
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	196

In-service year = 2005-2029

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is $=$ 1-100 starts/year per unit Multiply by 3 because there are 3 units

6
 due to high dispatch cost 17,500

 3| | | FC 3

 Year | |
| :---: | :---: | :---: | :---: |
| Annual
 Discount Factor
 0.085 | Annual
 Start-up
 Costs
 (Nominal \$ (000) $)$ | Annual
 Start-up
 Costs
 (NPV \$(000) $)$ | |
| 2001 | 1 | 0 | 0 |
| 2002 | 0.922 | 0 | 0 |
| 2003 | 0.849 | 0 | 0 |
| 2004 | 0.783 | 0 | 0 |
| 2005 | 0.722 | 315 | 227 |
| 2006 | 0.665 | 318 | 211 |
| 2007 | 0.613 | 321 | 197 |
| 2008 | 0.565 | 324 | 183 |
| 2009 | 0.521 | 327 | 170 |
| 2010 | 0.480 | 330 | 158 |
| 2011 | 0.442 | 334 | 148 |
| 2012 | 0.408 | 337 | 138 |
| 2013 | 0.376 | 341 | 128 |
| 2014 | 0.346 | 345 | 119 |
| 2015 | 0.319 | 349 | 111 |
| 2016 | 0.294 | 352 | 104 |
| 2017 | 0.271 | 356 | 97 |
| 2018 | 0.250 | 360 | 90 |
| 2019 | 0.230 | 364 | 84 |
| 2020 | 0.212 | 368 | 78 |
| 2021 | 0.196 | 372 | 73 |
| 2022 | 0.180 | 376 | 68 |
| 2023 | 0.166 | 381 | 63 |
| 2024 | 0.153 | 385 | 59 |
| 2025 | 0.141 | 389 | 55 |
| 2026 | 0.130 | 393 | 51 |
| 2027 | 0.120 | 398 | 48 |
| 2028 | 0.111 | 402 | 44 |
| 2029 | 0.102 | 406 | 41 |
| 2030 | 0.094 | 0 | 0 |
| | | | Sum |
| | | 2,745 | |

In-service year = 2006-2025
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is $=\quad 8,586$
Firm transportation cost $=\quad 0.65$

Year		FC 4	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	206	137
2007	0.613	208	127
2008	0.565	212	120
2009	0.521	217	113
2010	0.480	223	107
2011	0.442	229	101
2012	0.408	235	96
2013	0.376	241	91
2014	0.346	247	86
2015	0.319	254	81
2016	0.294	261	77
2017	0.271	268	73
2018	0.250	276	69
2019	0.230	283	65
2020	0.212	291	62
2021	0.196	299	58
2022	0.180	307	55
2023	0.166	316	52
2024	0.153	325	50
2025	0.141	334	47
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	1,666

In-service year = 2006-2011
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

		FC 5	
	Annual Year Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
			Sum
			0

In-service year = 2005-2007
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

		FC 6	
	Annual Yiscount Factor 0.085	Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV \$(000) $)$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	216	156
2006	0.665	216	144
2007	0.613	216	132
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0

In-service year $=2004$-2013
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

	Annual Yiscount Factor Year	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0
		0	0

In-service year = 2005-2014
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
6
No value given

		$\begin{array}{c}\text { FC 8 }\end{array}$	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000))			

In-service year = ?

Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is $=$
Ineligible Proposal

Year	Annual Discount Factor 0.085	FC 9	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	Ineligible Proposal	Ineligible Proposal
2002	0.922	Ineligible Proposal	Ineligible Proposal
2003	0.849	Ineligible Proposal	Ineligible Proposal
2004	0.783	Ineligible Proposal	Ineligible Proposal
2005	0.722	Ineligible Proposal	Ineligible Proposal
2006	0.665	Ineligible Proposal	Ineligible Proposal
2007	0.613	Ineligible Proposal	Ineligible Proposal
2008	0.565	Ineligible Proposal	Ineligible Proposal
2009	0.521	Ineligible Proposal	Ineligible Proposal
2010	0.480	Ineligible Proposal	Ineligible Proposal
2011	0.442	Ineligible Proposal	Ineligible Proposal
2012	0.408	Ineligible Proposal	Ineligible Proposal
2013	0.376	Ineligible Proposal	Ineligible Proposal
2014	0.346	Ineligible Proposal	Ineligible Proposal
2015	0.319	Ineligible Proposal	Ineligible Proposal
2016	0.294	Ineligible Proposal	Ineligible Proposal
2017	0.271	Ineligible Proposal	Ineligible Proposal
2018	0.250	Ineligible Proposal	Ineligible Proposal
2019	0.230	Ineligible Proposal	Ineligible Proposal
2020	0.212	Ineligible Proposal	Ineligible Proposal
2021	0.196	Ineligible Proposal	Ineligible Proposal
2022	0.180	Ineligible Proposal	Ineligible Proposal
2023	0.166	Ineligible Proposal	Ineligible Proposal
2024	0.153	Ineligible Proposal	Ineligible Proposal
2025	0.141	Ineligible Proposal	Ineligible Proposal
2026	0.130	Ineligible Proposal	Ineligible Proposal
2027	0.120	Ineligible Proposal	Ineligible Proposal
2028	0.111	Ineligible Proposal	Ineligible Proposal
2029	0.102	Ineligible Proposal	Ineligible Proposal
2030	0.094	Ineligible Proposal	Ineligible Proposal
		Sum $=$	Ineligible Proposal

In-service year = 2005-2014
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

		FC 10 Year	
Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))	
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0

In-service year = 2005-2009

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

N/A - System Sale

		FC 11	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

In-service year $=$ 2005-2013
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

		FC 12	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

In-service year = 2004-2013
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is =
Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

		FC 13	
	Annual Yiscount Factor 0.085	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0
		0	0

In-service year = 2006-2015
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

		FC 14 Year	
Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))	
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	138	92
2007	0.613	141	87
2008	0.565	145	82
2009	0.521	149	77
2010	0.480	152	73
2011	0.442	156	69
2012	0.408	160	65
2013	0.376	164	62
2014	0.346	168	58
2015	0.319	172	55
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0

In-service year = 2005-2024
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is $=\quad 4,293$
Firm transportation cost $=\quad 0.55$

Year	Annual Discount Factor 0.085	FC 15	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	99	72
2006	0.665	100	67
2007	0.613	101	62
2008	0.565	104	58
2009	0.521	106	55
2010	0.480	109	52
2011	0.442	112	49
2012	0.408	115	47
2013	0.376	118	44
2014	0.346	121	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	131	36
2018	0.250	135	34
2019	0.230	139	32
2020	0.212	143	30
2021	0.196	147	29
2022	0.180	151	27
2023	0.166	155	26
2024	0.153	160	24
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	864

In-service year = 2005-2007
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is $=\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 2 because it is a per combustion turbine scenario

Year	AnnualDiscount Factor0.085	FC 16	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs $(N P V \$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	63	45
2006	0.665	63	42
2007	0.613	64	39
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	127

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2005-2014
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

6
No value given

Year	Annual Discount Factor 0.085	FC 17	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	No value given	No value given
2006	0.665	No value given	No value given
2007	0.613	No value given	No value given
2008	0.565	No value given	No value given
2009	0.521	No value given	No value given
2010	0.480	No value given	No value given
2011	0.442	No value given	No value given
2012	0.408	No value given	No value given
2013	0.376	No value given	No value given
2014	0.346	No value given	No value given
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2029
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = 0

		FC 18	
Year	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0
		0	0

In-service year = 2005-2007
Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is =

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \end{gathered}$	FC 19	
		Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	51	37
2006	0.665	51	34
2007	0.613	51	31
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	102

In-service year $=$ 2005-2009
Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is = 10,000 Assumes 75\% load factor

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 20	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	60	43
2006	0.665	60	40
2007	0.613	60	37
2008	0.565	60	34
2009	0.521	60	31
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum =	185

In-service year = ?
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
6
Not available - Turnkey

Year	Annual Discount Factor 0.085	FC 21	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV \$(000))
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum =	Not available - Turnkey

In-service year = 2005-2014
Assumed Number of Annual Start-ups a The start-up cost per annual start-up is =

6
No value given

Year	AnnualDiscount Factor0.085	FC 22	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	No value given	No value given
2006	0.665	No value given	No value given
2007	0.613	No value given	No value given
2008	0.565	No value given	No value given
2009	0.521	No value given	No value given
2010	0.480	No value given	No value given
2011	0.442	No value given	No value given
2012	0.408	No value given	No value given
2013	0.376	No value given	No value given
2014	0.346	No value given	No value given
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2009
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is = 10,000
Assumes 75\% load factor

Year	AnnualDiscount Factor0.085	FC 23	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	60	43
2006	0.665	60	40
2007	0.613	60	37
2008	0.565	60	34
2009	0.521	60	31
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	185

In-service year = 2006-2015
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = Number of Units =2,330

		FC 24	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

Note: Cost estimate includes fixed costs per startup only
Fuel cost not included. (" Fuel cost/start/unit $=\$ 3,317$ fuel cost will escalate at actual Henry Hub prices for natural gas divided by $\$ 2.50 / \mathrm{mmbtu}$.")

In-service year $=$ 2005-2014
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is = 6

Number of Units =

2,330 3

Year	Annual Discount Factor 0.085	FC 25	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	102	73
2006	0.665	102	68
2007	0.613	103	63
2008	0.565	104	59
2009	0.521	105	55
2010	0.480	106	51
2011	0.442	107	47
2012	0.408	108	44
2013	0.376	109	41
2014	0.346	110	38
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	539

Note: Cost estimate includes fixed costs per startup only
Fuel cost not included. (" Fuel cost/start/unit $=\$ 3,317$ fuel cost will escalate at actual Henry Hub prices for natural gas divided by $\$ 2.50 / \mathrm{mmbtu} . "$)

In-service year = 2005-2014
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is $=\quad 2,330$ Number of Units $=\quad 3$

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 26	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	102	73
2006	0.665	102	68
2007	0.613	103	63
2008	0.565	104	59
2009	0.521	105	55
2010	0.480	106	51
2011	0.442	107	47
2012	0.408	108	44
2013	0.376	109	41
2014	0.346	110	38
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	539

Note: Cost estimate includes fixed costs per startup only
Fuel cost not included. (" Fuel cost/start/unit $=\$ 3,317$ fuel cost will escalate at actual Henry Hub prices for natural gas divided by $\$ 2.50 / \mathrm{mmbtu}$. ")

In-service year = 2005-2014
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is = 2,330 3

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 27	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs $($ NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	42	30
2006	0.665	42	28
2007	0.613	42	26
2008	0.565	42	24
2009	0.521	42	22
2010	0.480	42	20
2011	0.442	42	19
2012	0.408	42	17
2013	0.376	42	16
2014	0.346	42	15
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	215

Note: Cost estimate includes fixed costs per startup only Fuel cost not included. (" Fuel cost/start/unit $=\$ 3,317$ fuel cost will escalate at actual Henry Hub prices for natural gas divided by $\$ 2.50 / \mathrm{mmbtu}$. .)

In-service year = 2005-2014
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 28	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2029
Assumed Number of Annual Start-ups =

		FC 29	
	Annual Year Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0

In-service year $=2006-2012$
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is = Start-up cost is escalated at CPI

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 30	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	46	33
2006	0.665	47	31
2007	0.613	48	29
2008	0.565	49	28
2009	0.521	50	26
2010	0.480	52	25
2011	0.442	53	23
2012	0.408	54	22
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	218

In-service year = ?

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

6
Not available - Turnkey

Year		FC 31	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum $=$	Not available - Turnkey

In-service year = ?
Assumed Number of Annual Start-ups =
6
Not available - Turnkey

Year	Annual Discount Factor 0.085	FC 32	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum =	Not available - Turnkey

In-service year = ?
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is =
Not available - Turnkey

Year	Annual Discount Factor 0.085	FC 33	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum =	Not available - Turnkey

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

N/A - System Sale

Year	Annual Discount Factor 0.085	FC 34	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	N/A - System Sale	N/A - System Sale
2004	0.783	N/A - System Sale	N/A - System Sale
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	N/A - System Sale	N/A - System Sale
2011	0.442	N/A - System Sale	N/A - System Sale
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum =	0

In-service year = 2003-2011
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
N/A - System Sale

		FC 35	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal S (000)			

In-service year = 2004-2011
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is =
N/A - System Sale

Year	AnnualDiscount Factor0.085	FC 36	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	N/A - System Sale	N/A - System Sale
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	N/A - System Sale	N/A - System Sale
2011	0.442	N/A - System Sale	N/A - System Sale
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2004-2011
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is =
N/A - System Sale

		FC 37	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

In-service year = 2005-2009
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

6
N/A - System Sale

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 38	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year $=2005-2014$
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is $=\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 2 because it is a per combustion turbine scenario

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \end{gathered}$	FC 39	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	63	45
2006	0.665	63	42
2007	0.613	64	39
2008	0.565	66	37
2009	0.521	68	35
2010	0.480	70	33
2011	0.442	72	32
2012	0.408	74	30
2013	0.376	76	29
2014	0.346	79	27
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	351

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2005-2014
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

36,000

Year	Annual Discount Factor 0.085	FC 40	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	216	156
2006	0.665	216	144
2007	0.613	216	132
2008	0.565	216	122
2009	0.521	216	112
2010	0.480	216	104
2011	0.442	216	96
2012	0.408	216	88
2013	0.376	216	81
2014	0.346	216	75
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	1,110

In-service year = 2005-2009
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is = 1,580
Multiply by FPL Gas Forecast to get start-up price Multiply by 2 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 41	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	63	45
2006	0.665	63	42
2007	0.613	64	39
2008	0.565	66	37
2009	0.521	68	35
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	199

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=$ 2005-2007
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = 1,580 Multiply by FPL Gas Forecast to get start-up price Multiply by 3 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 42	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	94	68
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	190

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=2005$-2009
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
Multiply by FPL Gas Forecast to get start-up price
Multiply by 3 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 43	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	94	68
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	99	56
2009	0.521	102	53
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	299

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2005-2014
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is $=\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 3 because it is a per combustion turbine scenario

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \end{gathered}$	FC 44	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	94	68
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	99	56
2009	0.521	102	53
2010	0.480	105	50
2011	0.442	108	48
2012	0.408	111	45
2013	0.376	115	43
2014	0.346	118	41
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	526

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=2005-2009$
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = 1,580
Multiply by FPL Gas Forecast to get start-up price
Multiply by 6 because it is a per combustion turbine scenario

	$\begin{array}{c}\text { Annual } \\ \text { Discount Factor } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ \text { (Nominal \$ (000) }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(NPV \$(000))			

Note: Plus Start Charges

A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2005-2014
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is = 1,580
Multiply by FPL Gas Forecast to get start-up price
Multiply by 6 because it is a per combustion turbine scenario

Year	AnnualDiscount Factor0.085	FC 46	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	188	136
2006	0.665	190	126
2007	0.613	192	118
2008	0.565	197	112
2009	0.521	203	106
2010	0.480	209	100
2011	0.442	216	95
2012	0.408	222	91
2013	0.376	229	86
2014	0.346	236	82
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	1,052

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2006-2015
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is $=$
First 100 starts per year are included in the pricing.

Year	Annual Discount Factor 0.085	FC 47	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2009

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

6
N/A - System Sale

Year	Annual Discount Factor 0.085	FC 48	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2009

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

N/A - System Sale

	Annual Discount Factor 49 Year	Annual Start-up Costs (Nominal \$ (000) $)$	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
			Sum
			0

In-service year = 2006-2008
Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is $=\quad 36,000$

Year	Annual Discount Factor 0.085	FC 50	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	216	144
2007	0.613	216	132
2008	0.565	216	122
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	398

Inservice year = 2006-2015
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

Year	AnnualDiscount Factor0.085	FC 51	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	216	144
2007	0.613	216	132
2008	0.565	216	122
2009	0.521	216	112
2010	0.480	216	104
2011	0.442	216	96
2012	0.408	216	88
2013	0.376	216	81
2014	0.346	216	75
2015	0.319	216	69
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	1,023

In-service year = 2003-2011
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is =
N/A - System Sale

Year	Annual Discount Factor 0.085	FC 52	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	N/A - System Sale	N/A - System Sale
2004	0.783	N/A - System Sale	N/A - System Sale
2005	0.722	N/A - System Sale	N/A - System Sale
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	N/A - System Sale	N/A - System Sale
2010	0.480	N/A - System Sale	N/A - System Sale
2011	0.442	N/A - System Sale	N/A - System Sale
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2014
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is = 0
Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

		FC 53	
	Annual Yiscount Factor 0.085	Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
			0

In-service year = 2005-2014
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = 0
Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 54	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2006-2015
Assumed Number of Annual Start-ups = 6

The start-up cost per annual start-up is = 0 Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	FC 55	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2006-2015
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is = 0
Proposal states: 50 free starts per year. Above that, costs to be negotiated for hot, warm, or cold startups.

	Annual Year Discunt Factor 0.085	Annual Start-up Costs (Nominal \$ (000)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		0	0
		0	0

In-service year = 2006-2014
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

Year	Annual Discount Factor 0.085	FC 57	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	90	60
2007	0.613	90	55
2008	0.565	90	51
2009	0.521	90	47
2010	0.480	90	43
2011	0.442	90	40
2012	0.408	90	37
2013	0.376	90	34
2014	0.346	90	31
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	397

In-service year = 2006-2008
Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is = 8,500

Year	Annual Discount Factor 0.085	FC 58	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	51	34
2007	0.613	51	31
2008	0.565	51	29
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	94

In-service year = 2006-2010
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
Assumes 75\% load factor

		FC 59	
	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

In-service year $=2006$-2010
$\begin{array}{lc}\text { Assumed Number of Annual Start-ups = } & 6 \\ \text { The start-up cost per annual start-up is = } & 10,000 \\ \text { Assumes } 75 \% \text { load factor } & \end{array}$

Year	Annual Discount Factor 0.085	FC 60	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	60	40
2007	0.613	60	37
2008	0.565	60	34
2009	0.521	60	31
2010	0.480	60	29
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	171

In-service year $=2006$-2008
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

N/A - System Sale

Year	AnnualDiscount Factor0.085	FC 61	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	O	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	N/A - System Sale	N/A - System Sale
2007	0.613	N/A - System Sale	N/A - System Sale
2008	0.565	N/A - System Sale	N/A - System Sale
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2014

Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

6
No value given

Year	Annual Discount Factor 0.085	FC 62	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	No value given	No value given
2006	0.665	No value given	No value given
2007	0.613	No value given	No value given
2008	0.565	No value given	No value given
2009	0.521	No value given	No value given
2010	0.480	No value given	No value given
2011	0.442	No value given	No value given
2012	0.408	No value given	No value given
2013	0.376	No value given	No value given
2014	0.346	No value given	No value given
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2014

Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

6
No value given

Year	Annual Discount Factor 0.085	FC 63	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	No value given	No value given
2006	0.665	No value given	No value given
2007	0.613	No value given	No value given
2008	0.565	No value given	No value given
2009	0.521	No value given	No value given
2010	0.480	No value given	No value given
2011	0.442	No value given	No value given
2012	0.408	No value given	No value given
2013	0.376	No value given	No value given
2014	0.346	No value given	No value given
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2005-2014
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is $=$

6
No value given

Year	AnnualDiscount Factor0.085	FC 64	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	No value given	No value given
2006	0.665	No value given	No value given
2007	0.613	No value given	No value given
2008	0.565	No value given	No value given
2009	0.521	No value given	No value given
2010	0.480	No value given	No value given
2011	0.442	No value given	No value given
2012	0.408	No value given	No value given
2013	0.376	No value given	No value given
2014	0.346	No value given	No value given
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year $=2006-2030$

Assumed Number of Annual Start-ups =
6
17,500 The start-up cost per annual start-up is = 1-100 starts/year per unit
Multiply by 3 because there are 3 units

Year	Annual Discount Factor 0.085	FC 65	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	318	211
2007	0.613	321	197
2008	0.565	324	183
2009	0.521	327	170
2010	0.480	330	158
2011	0.442	334	148
2012	0.408	337	138
2013	0.376	341	128
2014	0.346	345	119
2015	0.319	349	111
2016	0.294	352	104
2017	0.271	356	97
2018	0.250	360	90
2019	0.230	364	84
2020	0.212	368	78
2021	0.196	372	73
2022	0.180	376	68
2023	0.166	381	63
2024	0.153	385	59
2025	0.141	389	55
2026	0.130	393	51
2027	0.120	398	48
2028	0.111	402	44
2029	0.102	406	41
2030	0.094	411	39
		Sum $=$	2,557

In-service year = 2006-2015
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

Year	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \end{gathered}$	FC 66	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year $=2006$-2030
Assumed Number of Annual Start-ups =
6
The start-up cost per annual start-up is =

Year	Annual Discount Factor 0.085	FC 67	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2006-2030
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is $=\quad 0$

Year	Annual Discount Factor 0.085	FC 68	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2006-2015
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = 0

Year	Annual Discount Factor 0.085	FC 69	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	0	0
2007	0.613	0	0
2008	0.565	0	0
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	0

In-service year = 2006-2025
Assumed Number of Annual Start-ups $=\quad 6$ The start-up cost per annual start-up is = 4,293 Firm Transportation cost = 0.55

Year	Annual Discount Factor 0.085	FC 70	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	100	67
2007	0.613	101	62
2008	0.565	104	58
2009	0.521	106	55
2010	0.480	109	52
2011	0.442	112	49
2012	0.408	115	47
2013	0.376	118	44
2014	0.346	121	42
2015	0.319	124	40
2016	0.294	128	38
2017	0.271	131	36
2018	0.250	135	34
2019	0.230	139	32
2020	0.212	143	30
2021	0.196	147	29
2022	0.180	151	27
2023	0.166	155	26
2024	0.153	160	24
2025	0.141	164	23
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	816

In-service year = 2006-2008
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = $\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 2 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 71	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs $($ NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	63	42
2007	0.613	64	39
2008	0.565	66	37
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	O	0
		Sum $=$	119

Note: Plus Start Charges

A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2006-2015
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is = $\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 2 because it is a per combustion turbine scenario

	$\begin{array}{c}\text { Annual } \\ \text { Year }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(Nominal \$ (000)			

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2006-2010
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = $\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 2 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 73	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	63	42
2007	0.613	64	39
2008	0.565	66	37
2009	0.521	68	35
2010	0.480	70	33
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	187

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=$ 2006-2008
Assumed Number of Annual Start-ups = 6
The start-up cost per annual start-up is = $\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 3 because it is a per combustion turbine scenario

Year		FC 74	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV \$(000))
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	99	56
2009	0.521	0	0
2010	0.480	0	0
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	178

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add \$15,000 per actual start after 50 starts/combustion turbine.

In-service year = 2006-2010
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is (MMBTU) =
1,580
Multiply by FPL Gas Forecast to get start-up price
Multiply by 3 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 75	
		Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	99	56
2009	0.521	102	53
2010	0.480	105	50
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	281

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=2006$-2015
Assumed Number of Annual Start-ups $=\quad 6$
The start-up cost per annual start-up is = $\quad 1,580$
Multiply by FPL Gas Forecast to get start-up price
Multiply by 3 because it is a per combustion turbine scenario

Year	Annual Discount Factor 0.085	FC 76	
		Annual Start-up Costs (Nominal \$(000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	95	63
2007	0.613	96	59
2008	0.565	99	56
2009	0.521	102	53
2010	0.480	105	50
2011	0.442	108	48
2012	0.408	111	45
2013	0.376	115	43
2014	0.346	118	41
2015	0.319	122	39
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	497

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = 2006-2010
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =
Multiply by FPL Gas Forecast to get start-up price
Multiply by 6 because it is a per combustion turbine scenario

Year		FC 77	
	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \end{gathered}$	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs $($ NPV $\$(000))$
2001	1	0	0
2002	0.922	0	0
2003	0.849	0	0
2004	0.783	0	0
2005	0.722	0	0
2006	0.665	190	126
2007	0.613	192	118
2008	0.565	197	112
2009	0.521	203	106
2010	0.480	209	100
2011	0.442	0	0
2012	0.408	0	0
2013	0.376	0	0
2014	0.346	0	0
2015	0.319	0	0
2016	0.294	0	0
2017	0.271	0	0
2018	0.250	0	0
2019	0.230	0	0
2020	0.212	0	0
2021	0.196	0	0
2022	0.180	0	0
2023	0.166	0	0
2024	0.153	0	0
2025	0.141	0	0
2026	0.130	0	0
2027	0.120	0	0
2028	0.111	0	0
2029	0.102	0	0
2030	0.094	0	0
		Sum $=$	562

Note: Plus Start Charges
A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year $=2006-2015$
Assumed Number of Annual Start-ups = 6 The start-up cost per annual start-up is = 1,580 Multiply by FPL Gas Forecast to get start-up price Multiply by 6 because it is a per combustion turbine scenario

	$\begin{array}{c}\text { Annual } \\ \text { Discount Factor } \\ 0.085\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs } \\ \text { (Nominal \$ (000) }\end{array}$	$\begin{array}{c}\text { Annual } \\ \text { Start-up } \\ \text { Costs }\end{array}$
(NPV \$(000))			

Note: Plus Start Charges

A. For dispatch greater than or equal to 30 hours; add $\$ 10,000$ per actual start after 50 starts/combustion turbine.
B. For dispatch less than 30 hours; add $\$ 15,000$ per actual start after 50 starts/combustion turbine.

In-service year = ?
Assumed Number of Annual Start-ups = The start-up cost per annual start-up is =

6
Not available - Turnkey

Year	Annual Discount Factor 0.085	FC 79	
		Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV \$(000))
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum =	Not available - Turnkey

In-service year = ?
Assumed Number of Annual Start-ups =
The start-up cost per annual start-up is =

Year		FC 80	
	$\begin{gathered} \text { Annual } \\ \text { Discount Factor } \\ 0.085 \\ \hline \hline \end{gathered}$	Annual Start-up Costs (Nominal $\$(000)$)	Annual Start-up Costs (NPV $\$(000)$)
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum $=$	Not available - Turnkey

In-service year = ?
Assumed Number of Annual Start-ups =

Year		FC 81	
	Annual Discount Factor 0.085	Annual Start-up Costs (Nominal \$ (000))	Annual Start-up Costs (NPV $\$(000)$)
2001	1	Not available - Turnkey	Not available - Turnkey
2002	0.922	Not available - Turnkey	Not available - Turnkey
2003	0.849	Not available - Turnkey	Not available - Turnkey
2004	0.783	Not available - Turnkey	Not available - Turnkey
2005	0.722	Not available - Turnkey	Not available - Turnkey
2006	0.665	Not available - Turnkey	Not available - Turnkey
2007	0.613	Not available - Turnkey	Not available - Turnkey
2008	0.565	Not available - Turnkey	Not available - Turnkey
2009	0.521	Not available - Turnkey	Not available - Turnkey
2010	0.480	Not available - Turnkey	Not available - Turnkey
2011	0.442	Not available - Turnkey	Not available - Turnkey
2012	0.408	Not available - Turnkey	Not available - Turnkey
2013	0.376	Not available - Turnkey	Not available - Turnkey
2014	0.346	Not available - Turnkey	Not available - Turnkey
2015	0.319	Not available - Turnkey	Not available - Turnkey
2016	0.294	Not available - Turnkey	Not available - Turnkey
2017	0.271	Not available - Turnkey	Not available - Turnkey
2018	0.250	Not available - Turnkey	Not available - Turnkey
2019	0.230	Not available - Turnkey	Not available - Turnkey
2020	0.212	Not available - Turnkey	Not available - Turnkey
2021	0.196	Not available - Turnkey	Not available - Turnkey
2022	0.180	Not available - Turnkey	Not available - Turnkey
2023	0.166	Not available - Turnkey	Not available - Turnkey
2024	0.153	Not available - Turnkey	Not available - Turnkey
2025	0.141	Not available - Turnkey	Not available - Turnkey
2026	0.130	Not available - Turnkey	Not available - Turnkey
2027	0.120	Not available - Turnkey	Not available - Turnkey
2028	0.111	Not available - Turnkey	Not available - Turnkey
2029	0.102	Not available - Turnkey	Not available - Turnkey
2030	0.094	Not available - Turnkey	Not available - Turnkey
		Sum =	Not available - Turnkey

\begin{tabular}{|c|c|c|c|c|}
\hline Summer/Winter MW and Plant Type \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Interconnection Substation/Transmission Line Location and Attendant Interconnection Facilities \\
AND \\
Costs (in Millions)
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Facilities required for Integration as an FPL Network Resource \\
AND \\
Costs (in Millions)
\end{tabular}} \\
\hline Previous Plan
Martin CC Conversion to
\(4 \times 1 \mathrm{CC}=1072 / 1163\)
MW
(754/801 MW
Incremental)
+
Alexander Project
\(465 / 535\) MW
+
300 MW from 4
Generators at 3
locations: 1 at Midway
Project, 2 at Recker
Project (TECO system),
1 near Calusa Project
+
150 MW System Sale

Total 1669/1786 MW
(Incremental) \& ```
Martin CC Conversion (Add 2 CT's and 1 ST unit to
existing 2 CT's):
\Rightarrow Connect to new bay via string bus to Martin
230 kV
Alexander Project:
\Rightarrow 3-breaker ring bus substation on Plumosus-
Bridge 230 kV line
\Rightarrow Loop Plumosus-Bridge 230 kV line
Midway Project (St.Lucie)
\Rightarrow Loop Malabar-Midway 230 kV line
Other equipment required for Martin CC Conv.,
Alexander and /or Midway projects:
\Rightarrow Add 10 ohm 230 kV Phase Reactor at Martin
\Rightarrow Upgrade four (4) 230 kV breakers and other
substation equipment at Midway substation
(TECO) Recker Project:
\Rightarrow Estimate not available for any facilities required
for interconnection on the TECO system.
Calusa Project
\Rightarrow Double breaker terminal at Calusa substation
\Rightarrow Radial line from Generator to Calusa
Previous Plan
Total Interconnection Costs

``` & \$ 2.0 M & \begin{tabular}{l}
\(\Rightarrow\) Five (5) new circuits \\
Indiantown - Martin 230 kV \#3 \\
Indiantown - Ranch 230 kV \\
Plumosus - Ranch 230 kV \\
Ranch - Cedar 230 kV \\
Ranch - Broward 230kV \\
\(\Rightarrow\) Other facilities required at Ranch substation for new circuits. (Substation expansion, terminal equipment, etc.) \\
Note: For Recker project, estimates DO NOT include cost of Transmission Service to FPL and/or incremental facilities on TECO's and/or neighboring systems. \\
Note: For System sale, estimates DO NOT include cost of Transmission Service to FPL and/or incremental facilities on the other system and/or neighboring systems. \\
Previous Plan \\
Total Integration Costs
\end{tabular} & \begin{tabular}{l}
\$ 9.4M \\
\$ 21.6 M \\
\$ 19.2M \\
\$ 10.8M \\
\$ 20.6 M \\
\(\$ 11.4 \mathrm{M}\) \\
\$ 93.0M
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Summer/Winter MW and Plant Type & \begin{tabular}{l}
Interconnection Substation/Transmission Line L Attendant Interconnection Facilities AND \\
Costs (in Millions)
\end{tabular} & ocation and & \multicolumn{2}{|l|}{\begin{tabular}{l}
Facilities required for Integration as an FPL Network Resource \\
AND \\
Costs (in Millions)
\end{tabular}} \\
\hline \begin{tabular}{l}
New Plan 1 \\
Martin CC Conversion to \(4 \times 1 \mathrm{CC}=1072 / 1163\) MW (754/801 MW Incremental) \(+\) \\
Alexander Project 465/535 MW \(+\) \\
Okeechobee Project 526/602 MW on Midway-Sherman line (Incremental)
\end{tabular} & \begin{tabular}{l}
Martin CC Conversion (Add 2 CT's and 1 ST unit to existing 2 CT's): \\
\(\Rightarrow\) Connect to new bay via string bus to Martin 230 kV \\
Alexander Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on PlumosusBridge 230 kV line \\
\(\Rightarrow\) Loop Plumosus-Bridge 230 kV line \\
Okeechobee Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on MidwaySherman 230 kV line \\
\(\Rightarrow\) Loop Midway-Sherman 230 kV ckt approximately 7.5 miles southeast of Sherman substation \\
Other equipment required for New Plan 1: \\
\(\Rightarrow\) Add 10 ohm 230 kV Phase Reactor at Martin \\
\(\Rightarrow\) Upgrade four (4) 230 kV breakers and other substation equipment at Midway substation \\
New Plan 1 \\
Total Interconnection Costs
\end{tabular} & \begin{tabular}{l}
\$ 2.0M \\
\$ 7.1M \\
\(\$ 6.3 \mathrm{M}\) \\
\$ 6.7M \\
\$ 22.1M
\end{tabular} & ```
=> Five (5) new circuits
    Indiantown - Martin 230 kV #3
    Indiantown - Ranch 230kV
    Plumosus - Ranch 230 kV
    Ranch - Cedar 230 kV
    Ranch - Broward 230kV
=> Upgrade (2) lines
    Cedar-Tartan 230kV from 1598A to 1647A
Other facilities required at Ranch substation for new
    circuits. (Substation expansion, terminal equipment, etc.)
``` & \begin{tabular}{l}
\$ 9.4M \\
\(\$ 21.6 \mathrm{M}\) \\
\$ 19.2M \\
\$ 10.8M \\
\$ 20.6M \\
\(\$ 0.5 \mathrm{M}\) \\
\(\$ 11.4 \mathrm{M}\) \\
\$ 93.5M
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Summer/Winter MW and Plant Type & \multicolumn{2}{|l|}{\begin{tabular}{l}
Interconnection Substation/Transmission Line Location and Attendant Interconnection Facilities \\
AND \\
Costs (in Millions)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Facilities required for Integration as an FPL Network Resource \\
AND \\
Costs (in Millions)
\end{tabular}} \\
\hline \begin{tabular}{l}
New Plan 2 (Identical to New Plan 1) \\
Martin CC Conversion to \(4 \times 1 C C=1072 / 1163\) MW (754/801 MW Incremental) \(+\) \\
Alexander Project 465/535 MW \(+\) \\
Okeechobee Project 526/602 MW on Midway-Sherman line (Incremental)
\end{tabular} & \begin{tabular}{l}
Martin CC Conversion (Add 2 CT's and 1 ST unit to existing 2 CT's): \\
\(\Rightarrow\) Connect to new bay via string bus to Martin 230 kV \\
Alexander Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on PlumosusBridge 230 kV line \\
\(\Rightarrow\) Loop Plumosus-Bridge 230 kV line \\
Okeechobee Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on MidwaySherman 230 kV line \\
\(\Rightarrow\) Loop Midway-Sherman 230 kV ckt approximately 7.5 miles southeast of Sherman substation \\
Other equipment required for New Plan 2: \\
\(\Rightarrow\) Add 10 ohm 230 kV Phase Reactor at Martin \\
\(\Rightarrow\) Upgrade four (4) 230 kV breakers and other substation equipment at Midway substation \\
New Plan 2 \\
Total Interconnection Costs
\end{tabular} & \begin{tabular}{l}
\$ 2.0M \\
\$7.1M \\
\$ 6.3M \\
\$ 6.7M \\
\$ 22.1M
\end{tabular} & ```
F Five (5) new circuits
 Indiantown - Martin 230 kV #3
 Indiantown - Ranch 230kV
 Plumosus - Ranch 230 kV
 Ranch - Cedar 230 kV
 Ranch - Broward 230kV
Upgrade (2) lines
 Cedar-Tartan 230kV from 1598A to 1647A
Other facilities required at Ranch substation for new
 circuits. (Substation expansion, terminal equipment, etc.)
``` & \begin{tabular}{l}
\$ 9.4M \\
\(\$ 21.6 \mathrm{M}\) \\
\$ 19.2M \\
\$ 10.8 M \\
\$ 20.6 M \\
\$ 0.5M \\
\$ 11.4M \\
\$93.5M
\end{tabular} \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|}
\hline Summer/Winter MW and Plant Type & \multicolumn{2}{|l|}{\begin{tabular}{l}
Interconnection Substation/Transmission Line Location and Attendant Interconnection Facilities \\
AND \\
Costs (in Millions)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Facilities required for Integration as an FPL Network Resource \\
AND \\
Costs (in Millions)
\end{tabular}} \\
\hline New Plan 6
Martin CC Conversion to
\(4 \times 1\) CC \(=1072 / 1163\)
MW
(754/801 MW
Incremental)
+
Alexander Project
\(465 / 535\) MW
+
300 MW from 4
Generators at 3
locations: 1 at Midway
Project, 2 at Recker
Project (TECO system),
1 near Calusa Project
+
300 additional MW from
same 4 Generators at 3
locations: 1 at Midway
Project, 2 at Recker
Project (TECO system),
1 near Calusa Project
+
150 MW System Sale
Total 1969/2086 MW
(Incremental) & \begin{tabular}{l}
Martin CC Conversion (Add 2 CT's and 1 ST unit to existing 2 CT's): \\
\(\Rightarrow\) Connect to new bay via string bus to Martin 230 kV \\
Alexander Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on PlumosusBridge 230 kV line \\
\(\Rightarrow\) Loop Plumosus-Bridge 230 kV line \\
Midway Project (St.Lucie) \\
\(\Rightarrow\) Loop Malabar-Midway 230 kV line \\
Other equipment required for Martin CC Conv., Alexander and /or Midway projects: \\
\(\Rightarrow\) Add 10 ohm 230 kV Phase Reactor at Martin \\
\(\Rightarrow\) Upgrade four (4) 230 kV breakers and other substation equipment at Midway substation \\
(TECO) Recker Project: \\
\(\Rightarrow\) Estimate not available for any facilities required for interconnection on the TECO system. \\
Calusa Project \\
\(\Rightarrow\) Double breaker terminal at Calusa substation \\
\(\Rightarrow\) Radial line from Generator to Calusa \\
Other facilities required for Recker and/or Calusa \\
projects \\
\(\Rightarrow\) O.River-Corbett 230 kV line (POTENTIAL STABILITY LIMITATIONS) \\
\(\Rightarrow\) Upgrade one (1) breaker at Ft.Myers \\
New Plan 6 \\
Total Interconnection Costs
\end{tabular} & \begin{tabular}{l}
\(\$ 2.0 \mathrm{M}\) \\
\$7.1M \\
\$ 1.9M \\
\$ 6.7M \\
\$ Not \\
Provided \\
\$ 4.0M \\
\$ 68.9M \\
\(\$ 90.6 \mathrm{M}\)
\end{tabular} & \begin{tabular}{l}
```

\Rightarrow Five (5) new circuits
Indiantown - Martin 230 kV \#3
Indiantown - Ranch 230 kV
Plumosus - Ranch 230 kV
Ranch - Cedar 230 kV
Ranch - Broward 230kV
\Rightarrow Upgrade (1) line
Cedar-Tartan 230kV from 1598A to 1647A
\Rightarrow Other facilities required at Ranch substation for new
circuits. (Substation expansion, terminal equipment, etc.)

``` \\
Note: For System sale, estimates DO NOT include cost of Transmission Service to FPL and/or incremental facilities on the system and/or neighboring systems. \\
Note: For Recker project, estimates DO NOT include cost of Transmission Service to FPL and/or incremental facilities on TECO's and/or neighboring systems. \\
New Plan 6 \\
Total Integration Costs
\end{tabular} & \begin{tabular}{l}
\$ 9.4M \\
\(\$ 21.6 \mathrm{M}\) \\
\$ 19.2M \\
\(\$ 10.8 \mathrm{M}\) \\
\$ 20.6M \\
\(\$ 0.5 \mathrm{M}\) \\
\$ 11.4 M \\
\$ 93.5M
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Summer/Winter MW and Plant Type & \multicolumn{2}{|l|}{\begin{tabular}{l}
Interconnection Substation/Transmission Line Location and Attendant Interconnection Facilities \\
AND \\
Costs (in Millions)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Facilities required for Integration as an FPL Network Resource \\
AND \\
Costs (in Millions)
\end{tabular}} \\
\hline \[
\begin{aligned}
& 3 \\
& 1 \\
& 6
\end{aligned}
\] & New Plan 7
Martin CC Conversion to
\(4 \times 1 \mathrm{CC}=1072 / 1163\)
MW
\((754 / 801 \mathrm{MW}\)
Incremental)
+
Alexander Project
\(465 / 535 \mathrm{MW}\)
+
\(811 / 836 \mathrm{MW}\) from
St Lucie project on
Poinsett-Midway 500 kV


Total 2030/2172 MW
(Incremental) & \begin{tabular}{l}
Martin CC Conversion (Add 2 CT's and 1 ST unit to existing 2 CT's): \\
\(\Rightarrow\) Connect to new bay via string bus to Martin 230 kV \\
Alexander Project: \\
\(\Rightarrow\) 3-breaker ring bus substation on PlumosusBridge 230 kV line \\
\(\Rightarrow\) Loop Plumosus-Bridge 230 kV line \\
St Lucie Project: \\
\(\Rightarrow\) 4-breaker ring bus substation on MidwayPoinsett 500 kV line \\
\(\Rightarrow\) Loop Midway-Poinsett 500 kV line \\
Other equipment required for New Plan 7: \\
\(\Rightarrow\) Add 10 ohm 230 kV Phase Reactor at Martin \\
\(\Rightarrow\) Upgrade four (4) 230 kV breakers and other substation equipment at Midway substation \\
New Plan 7 \\
Total Interconnection Costs
\end{tabular} & \begin{tabular}{l}
\(\$ 2.0 \mathrm{M}\) \\
\$7.1M \\
\$ 14.1M \\
\(\$ 5.6 \mathrm{M}\) \\
\$ 28.8M
\end{tabular} & \begin{tabular}{l}
```

=> Five (5) new circuits
Indiantown - Martin 230 kV \#3
Indiantown - Ranch 230kV
Plumosus - Ranch 230 kV
Ranch - Cedar 230 kV
Ranch - Broward 230kV
Other facilities required at Ranch substation for new
circuits. (Substation expansion, terminal equipment, etc.)

New Plan 7

Total Integration Costs

```
\end{tabular} & \begin{tabular}{l}
\$ 9.4M \\
\$ 21.6 M \\
\$ 19.2M \\
\$ 10.8M \\
\(\$ 20.6 \mathrm{M}\) \\
\$ 11.4 M \\
\$ 93.0M
\end{tabular} \\
\hline
\end{tabular}

Transmission Cost Expenditure Stream for RFP Plans
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Summer MW} & \multirow[t]{2}{*}{\$ Integration TOTAL} & \multicolumn{3}{|l|}{\$(Millions) Stream for 2005 Projects} & \multirow[t]{2}{*}{TOTAL FOR 2005 Projects} & \multicolumn{3}{|l|}{\$(Millions) Stream for 2006 Projects} & \multirow[t]{2}{*}{TOTAL \$ FOR 2006 Projects} \\
\hline Plan & 2005 & 2006 & & 2003 & 2004 & 2005 & & 2004 & 2005 & 2006 & \\
\hline All FPL & 1826 & 0 & 41.8 & 10.87 & 15.47 & 15.47 & 41.80 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Previous & 1219 & 450 & 93 & 17.66 & 25.13 & 25.13 & 67.93 & 6.52 & 9.28 & 9.28 & 25.07 \\
\hline 1 & 1219 & 526 & 93.5 & 16.98 & 24.17 & 24.17 & 65.32 & 7.33 & 10.43 & 10.43 & 28.18 \\
\hline 2 & 1280 & 465 & 93.5 & 17.83 & 25.38 & 25.38 & 68.58 & 6.48 & 9.22 & 9.22 & 24.92 \\
\hline 3 & 1141 & 754 & 93.5 & 14.64 & 20.83 & 20.83 & 56.30 & 9.67 & 13.76 & 13.76 & 37.20 \\
\hline 4 & 1219 & 600 & 93 & 16.20 & 23.06 & 23.06 & 62.32 & 7.98 & 11.35 & 11.35 & 30.68 \\
\hline 5 & 1141 & 754 & 93.5 & 14.64 & 20.83 & 20.83 & 56.30 & 9.67 & 13.76 & 13.76 & 37.20 \\
\hline 6 & 1204 & 765 & 93.5 & 14.87 & 21.15 & 21.15 & 57.17 & 9.44 & 13.44 & 13.44 & 36.33 \\
\hline 7 & 1276 & 754 & 93 & 15.20 & 21.63 & 21.63 & 58.46 & 8.98 & 12.78 & 12.78 & 34.54 \\
\hline
\end{tabular}


\section*{MR \& MT Integration Costs}

INPUT SHEET \#5 - CAPITAL INVESTMENTS THAT REQUIRE CONSTRUCTION
\begin{tabular}{l|l|}
\hline TITLE FOR INVESTMENT \#1 & Project \#1 \\
\hline TITLE FOR INVESTMENT \#2 & Project \#2 \\
\hline TITLE FOR INVESTMENT \#3 & Project \#3 \\
\hline
\end{tabular}

*** Per Jeff Young (conversation on 1/11/02), cost split 45\% labor, 39\% material and \(16 \%\) overhead, where overhead is considered engineering, part of labor, etc. Therefore, assumed \(39 \%\) materials and \(61 \%\) labor

\section*{MR \& MT Integration Costs}

Calculation Sheet \#1 - In-Service Cost for Capital Expenditures Requiring Construction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Project \#1} \\
\hline Year & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & \[
\begin{aligned}
& \text { Total } \\
& \text { AFUDC }
\end{aligned}
\] & Cumulative AFUDC & \[
\begin{array}{r}
\text { Debt } \\
\text { AFUDC }
\end{array}
\] & Const. Period Int. & Cumulative CPI & \begin{tabular}{l}
Deferred \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2002 & 12 & 10,870.00 & 10,870.00 & 530.24 & 530.24 & 180.50 & 401.10 & 401.10 & (85.10) & (85.10) \\
\hline 2003 & 12 & 15,962.46 & 26,832.46 & 1,899.16 & 2,429.40 & 646.48 & 1,420.82 & 1,821.93 & (298.70) & (383.80) \\
\hline 2004 & 12 & 16,385.20 & 43,217.67 & 3,691.50 & 6,120.90 & 1,256.61 & 2,719.31 & 4,541.23 & (564.24) & (948.04) \\
\hline 2005 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2006 & 0 & 0.00 & -43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2007 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2008 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2009 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2010 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline 2011 & 0 & 0.00 & 43,217.67 & 0.00 & 6,120.90 & 0.00 & 0.00 & 4,541.23 & 0.00 & (948.04) \\
\hline \multicolumn{11}{|l|}{Project \#2} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2002 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

Project \#3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Construction Months & \[
\begin{aligned}
& \text { Nominal \$ } \\
& \text { Cash Flow } \\
& \hline
\end{aligned}
\] & Cumulative Cash Flows & \[
\begin{array}{r}
\text { Total } \\
\text { AFUDC }
\end{array}
\] & Cumulative AFUDC & \[
\begin{aligned}
& \text { Debt } \\
& \text { AFUDC }
\end{aligned}
\] & Const. Period Int. & Cumulative
\(\qquad\) & \[
\begin{array}{r}
\hline \text { Deferred } \\
\text { Taxes } \\
\hline
\end{array}
\] & Cumulative Def. Taxes \\
\hline 2002 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

MR \& MT Integration Costs
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 2001 & 2 & 3
2003 & 4 & 2005 & 2006 & 2007 & 88 & \(\begin{array}{r}9 \\ \hline\end{array}\) & 10 & 11 & 12 \\
\hline & & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & \[
2012
\] \\
\hline & \multicolumn{13}{|l|}{Capital Carrying Cost} \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#1 & 0.00 & 0.00 & 0.00 & 0.00 & 8,152.60 & 7,902.55 & 7,615.18 & 7.341.10 & 7.079.31 & 6,828.89 & 6.588.98 & 6,358.80 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline '2 & Total Annual Carrying Cost & 0.00 & 0.00 & 0.00 & 0.00 & 8,152.60 & 7,902.55 & 7,615.18 & 7,341.10 & 7,079.31 & 6,828.89 & 6.588.98 & 6,358.80 \\
\hline 1 & \multicolumn{13}{|l|}{Operating Savings} \\
\hline \(\cdots\) & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline + & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \multicolumn{13}{|l|}{Operating Costs} \\
\hline & \multirow[t]{7}{*}{Property Taxes \& Insurance} & 0.00 & 0.00 & 0.00 & 0.00 & 1,213.73 & 1,189.53 & 1,165.43 & 1,141.41 & 1,117.51 & 1,093.70 & 1,069.99 & 1,046.29 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 0.00 & 0.00 & 0.00 & 0.00 & 1,213.73 & 1,189.53 & 1,165.43 & 1,141.41 & 1,117.51 & 1.093 .70 & 1,069.99 & 1,046.29 \\
\hline & Total Annual Revenue Requirements & 0.00 & 0.00 & 0.00 & 0.00 & 9,366.33 & 9,092.08 & 8,780.62 & 8.482.52 & 8.196.82 & 7,922.59 & 7,658.97 & 7.405.09 \\
\hline & Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 & 6,758.50 & 6,046.65 & 5,382.03 & 4,792.00 & 4,267.83 & 3,801.89 & 3,387.45 & 3,018.59 \\
\hline & Cumulative Present Value & 0.00 & 0.00 & 0.00 & 0.00 & 6,758.50 & 12,805.15 & 18,187.18 & 22,979.18 & 27,247.01 & 31,048.91 & 34,436.36 & 37.454.94 \\
\hline & Total Present Value Revenue Requirements & \multicolumn{12}{|l|}{58,227.70} \\
\hline
\end{tabular}

MR \& MT Integration Cos
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\hline & \multirow[t]{2}{*}{Capital Carrying Cost} & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 & 2022 & 2023 & 2024 \\
\hline & & & & & & & & & & & & & \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#1 & 6.134.05 & 5,910.08 & 5,686.11 & 5,462.13 & 5,238.16 & 5,014.19 & 4,790.21 & 4,566.24 & 4,342.27 & 4,118.30 & 3.894.32 & 3,670.35 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Annual Carrying Cost & 6,134.05 & 5,910.08 & 5,686.11 & 5,462.13 & 5,238.16 & 5,014.19 & 4,790.21 & 4.566.24 & 4.342.27 & 4,118.30 & 3,894.32 & 3,670.35 \\
\hline 1 & \multirow[t]{7}{*}{Operating Savings} & & & & & & & & & & & & \\
\hline \multirow{7}{*}{On} & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \multicolumn{13}{|l|}{Operating Costs} \\
\hline & \multirow[t]{7}{*}{Property Taxes \& Insurance} & 1,022.63 & 998.98 & 975.37 & 951.77 & 928.19 & 904.64 & 881.11 & 857.60 & 834.12 & 810.67 & 787.24 & 763.83 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 1,022.63 & 998.98 & 975.37 & 951.77 & 928.19 & 904.64 & 881.11 & 857.60 & 834.12 & 810.67 & 787.24 & 763.83 \\
\hline & Total Annual Revenue Requirements & 7.156.68 & 6,909.06 & 6,661.47 & 6,413.91 & 6,166.35 & 5,918.83 & 5,671.32 & 5.423 .84 & 5,176.39 & 4,928.96 & 4.681 .56 & 4,434.18 \\
\hline & Present Value @ 8.5\% & 2,688.78 & 2,392.39 & 2,125.95 & 1,886.59 & 1,671.68 & 1,478.87 & 1,306.02 & 1,151.18 & 1.012 .59 & 888.65 & 777.92 & 679.09 \\
\hline & Cumulative Present Value & 40,143.72 & 42,536.11 & 44,662.06 & 46,548.65 & 48,220.33 & 49,699.20 & 51,005.21 & 52,156.39 & 53.168.98 & 54,057.63 & 54,835.55 & 55,514.65 \\
\hline & Total Present Value Revenue Requirements & & & & & & & & & & & & \\
\hline
\end{tabular}

MR \& MT Integration Cos
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 \\
\hline & \multirow[t]{2}{*}{Capital Carrying Cost} & 2025 & 2026 & 2027 & 2028 & 2029 & 2030 & 2031 & 2032 & 2033 & 2034 & 2035 & 2036 \\
\hline & & & & & & & & & & & & & \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project*1 & 3,474.82 & 3,336.15 & 3,225.91 & 3,115.68 & 3,005.45 & 2,895.22 & 2,784.99 & 2,674.75 & 2,564.52 & 2,454.29 & 2,344.06 & 2,233.82 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline S & Total Annual Carrying Cost & 3,474.82 & 3,336.15 & 3,225.91 & 3,115.68 & 3,005.45 & 2,895.22 & 2,784.99 & 2,674.75 & 2,564.52 & 2,454.29 & 2,344.06 & 2,233.82 \\
\hline 1 & Operating Savings & & & & & & & & & & & & \\
\hline \(\cdots\) & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Operating Costs & & & & & & & & & & & & \\
\hline & Property Taxes 8 Insurance & 740.45 & 717.10 & 693.77 & 670.46 & 647.19 & 623.94 & 600.72 & 577.52 & 554.36 & 531.22 & 508.11 & 485.03 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 000 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 740.45 & 717.10 & 693.77 & 670.46 & 647.19 & 623.94 & 600.72 & 577.52 & 554.36 & 531.22 & 508.11 & 485.03 \\
\hline & Total Annual Revenue Requirements & 4,215.27 & 4,053.24 & 3,919.68 & 3,786.15 & 3,652.64 & 3,519.16 & 3,385.70 & 3,252.28 & 3,118.88 & 2,985.51 & 2,852.17 & 2,718.85 \\
\hline & Present Value @ 8.5\% & 594.99 & 527.30 & 469.98 & 418.40 & 372.03 & 330.35 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Cumulative Present Value & 56,109.64 & 56,636.94 & 57,106.92 & 57,525.32 & 57,897.35 & 58,227.70 & 58,227.70 & 58,227.70 & 58,227.70 & 58,227.70 & 58,227.70 & 58,227.70 \\
\hline & Total Present Value Revenue Requirements & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{MR \& MT Integration Cos}

Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\begin{array}{r}37 \\ 2037 \\ \hline\end{array}\) & \[
\begin{array}{r}
38 \\
2038
\end{array}
\] & 39
2039 & \(\begin{array}{r}40 \\ 2040 \\ \hline\end{array}\) \\
\hline \multicolumn{5}{|l|}{Capital Carrying Cost} \\
\hline Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#1 & 2,123.59 & 2,013.36 & 1,903.13 & 1,792.90 \\
\hline Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Projact \#3 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Annual Carrying Cost & 2,123.59 & 2,013.36 & 1,903.13 & 1,792.90 \\
\hline \multicolumn{5}{|l|}{Operating Savings} \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{5}{|l|}{Operating Costs} \\
\hline Property Taxes \& Insurance & 461.98 & 438.96 & 415.96 & 393.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Costs & 461.98 & 438.96 & 415.96 & 393.00 \\
\hline Total Annual Revenue Requirements & 2,585.57 & 2,452.32 & 2,319.09 & 2,185.90 \\
\hline Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Cumulative Present Value & 58,227.70 & 58,227.70 & 58,227.70 & 58,227.70 \\
\hline Total Present Value Revenue Requirements & & & & \\
\hline
\end{tabular}

INPUT SHEET \#1
GENERAL ASSUMPTIONS


Combination Plan \# 1 (MR Conv, FC 3; FC 58)
INPUT SHEET \#5 - CAPITAL INVESTMENTS THAT REQUIRE CONSTRUCTION


\footnotetext{
*** Per Jeff Young (conversation on 1/11/02), cost split \(45 \%\) labor, \(39 \%\) material and \(16 \%\) overhead, where overhead is considered engineering, part of labor, etc. Therefore, assumed \(39 \%\) materials and \(61 \%\) labor.
}

Combination Plan \# 1 (MR Conv, FC 3; FC 58)
Calculation Sheet \#1-In-Service Cost for Capital Expenditures Requiring Construction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\xrightarrow[\text { Project \#1 }]{ }\) & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & Total AFUDC & Cumulative AFUDC & \[
\begin{aligned}
& \text { Debt } \\
& \text { AFUDC }
\end{aligned}
\] & Const. Period Int. & Cumulative CPI & Deferred Taxes & Cumulative Def. Taxes \\
\hline 2002 & 12 & 16,980.00 & 16,980.00 & 828.28 & 828.28 & 281.95 & 626.56 & 626.56 & (132.93) & (132.93) \\
\hline 2003 & 12 & 32,492.43 & 49,472.43 & 3,335.33 & 4,163.61 & 1,135.36 & 2,498.33 & 3,124.90 & (525.77) & (658.70) \\
\hline 2004 & 12 & 47,693.97 & 97,166.40 & 7,623.51 & 11,787.12 & 2,595.09 & 5,641.59 & 8,766.49 & \((1,175.19)\) & \((1,833.89)\) \\
\hline 2005 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline 2006 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline 2007 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline 2008 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline 2009 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline 2010 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & (1,833.89) \\
\hline 2011 & 0 & 0.00 & 97,166.40 & 0.00 & 11,787.12 & 0.00 & 0.00 & 8,766.49 & 0.00 & \((1,833.89)\) \\
\hline \multicolumn{11}{|l|}{Project \#2} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2002 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{11}{|l|}{Project \#3} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2002 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

Combination Plan \# 1 (MR Conv, F
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1
2001 & 2
2002 & \(\begin{array}{r}3 \\ 2003 \\ \hline\end{array}\) & \(\begin{array}{r}4 \\ 2004 \\ \hline\end{array}\) & \(\begin{array}{r}5 \\ 2005 \\ \hline\end{array}\) & 6
2006 & \(\begin{array}{r}7 \\ 2007 \\ \hline\end{array}\) & \(\begin{array}{r}8 \\ 2008 \\ \hline\end{array}\) & 9
2009 & 10
2010 & 11
2011 & \(\begin{array}{r}12 \\ 2012 \\ \hline\end{array}\) \\
\hline \multicolumn{13}{|l|}{Capital Carying Cost} \\
\hline Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project\#1 & 0.00 & 0.00 & 0.00 & 0.00 & 17,949.70 & 17,397.67 & 16.762.88 & 16,157.55 & 15,579.47 & 15,026.62 & 14,497.09 & 13,989.13 \\
\hline Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Annual Carrying Cost & 0.00 & 0.00 & 0.00 & 0.00 & 17,949.70 & 17,397.67 & 16,762.88 & 16,157.55 & 15,579.47 & 15.026.62 & 14,497.09 & 13,989.13 \\
\hline \multicolumn{13}{|l|}{Operating Savings} \\
\hline 1 I & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(N\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\cdots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{13}{|l|}{Operating Costs} \\
\hline Property Taxes \& Insurance & 0.00 & 0.00 & 0.00 & 0.00 & 2,680.26 & 2,626.83 & 2,573.60 & 2,520.56 & 2,467.78 & 2,415.21 & 2,362.83 & 2.310.51 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Costs & 0.00 & 0.00 & 0.00 & 0.00 & 2,680.26 & 2,626.83 & 2,573.60 & 2,520.56 & 2,467.78 & 2,415.21 & 2,362.83 & 2,310.51 \\
\hline Total Annual Revenue Requirements & 0.00 & 0.00 & 0.00 & 0.00 & 20,629.96 & 20,024.50 & 19,336.48 & 18,678.11 & 18,047.25 & 17,441.83 & 16,859.92 & 16,299.65 \\
\hline Present Value © 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 & 14,886.05 & 13,317.20 & 11,852.20 & 10,551.76 & 9,396.65 & 8,369.98 & 7,456.90 & 6,644.33 \\
\hline Cumulative Present Value & 0.00 & 0.00 & 0.00 & 0.00 & 14,886.05 & 28,203.25 & 40,055.45 & 50,607.20 & 60,003.86 & 68.373.83 & 75,830.73 & 82,475.06 \\
\hline Total Present Value Revenue Requirements & 128,164.81 & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Combination Plan \# 1 (MR \\ \section*{Results - Revenue Requirements}}


\section*{Combination Plan \# 1 (MR}

Results - Revenue Requirements


\section*{Combination Plan \# 1 (MR \\ Results - Revenue Requirements}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\begin{array}{r}37 \\ 2037 \\ \hline\end{array}\) & 38
2038 & 39
2039 & \(\begin{array}{r}40 \\ 2040 \\ \hline\end{array}\) \\
\hline \multicolumn{5}{|l|}{Capital Carying Cost} \\
\hline Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#1 & 4,660.16 & 4,418.26 & 4,176.36 & 3,934.46 \\
\hline Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Annual Carrying Cost & 4,660.16 & 4,418.26 & 4,176.36 & 3.934.46 \\
\hline \multicolumn{5}{|l|}{Operating Savings} \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{5}{|l|}{Operating Costs} \\
\hline Property Taxes \& Insurance & 1.020.18 & 969.34 & 918.56 & 867.86 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Costs & 1,020.18 & 969.34 & 918.56 & 867.86 \\
\hline Total Annual Revenue Requirements & 5,680.34 & 5.387.60 & 5,094.92 & 4.802 .32 \\
\hline Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Cumulative Present Value & 128,164.81 & 128,164.81 & 128,164.81 & 128,164.81 \\
\hline Total Present Value Revenue Requirements & & & & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{21}{|c|}{2004} \\
\hline & & CTOBER & & VEMBER & & CEMBER & & tal year & & NUARY & & BRUARY & & MARCH & & APRIL & & MAY & & JuNE \\
\hline \multicolumn{21}{|l|}{FEBRUARY COMBINATION PLAN} \\
\hline total cash flow for ferruary combination & \$ & 374,841 & \$ & 374,841 & \$ & 374,841 & \$ & 9,028,590 & \$ & 835,558 & \$ & 835,558 & \$ & 835,558 & \$ & 835,558 & \$ & 835,558 & \$ & 835,558 \\
\hline \multicolumn{21}{|l|}{COMBINATION PLAN\# 1} \\
\hline TOTAL CASH FLOW FOR COMBINATION PLAN \# 1 & \$ & 1,766,077 & \$ & 1,766,077 & \$ & 1,766,077 & \$ & 52,095,960 & \(\stackrel{1}{ }\) & 4,625,947 & \$ & 4,625,947 & \$ & 4,625,947 & \$ & 4,625,947 & \$ & 4,625,947 & & ,625,947 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FEBRUARY COMBINATION PLAN} & \multirow[t]{2}{*}{APRIL} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{MAY}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{JUNE}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{JULY}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{AUGUST}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{SEPTEMBER}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{OCTOBER}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{NOVEMBER}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DECEMBER}} & \multicolumn{2}{|r|}{2006} \\
\hline & & & & & & & & & & & & & & & & & & & EAR \\
\hline TOTAL CASH FLOW FOR FEBRUARY COMBINATION & \$ 61,882 & \$ & 61,882 & \$ & 61,882 & \$ & 56,334 & \$ & 25,575 & \$ & 25,575 & \$ & 25,575 & \$ & 25,575 & \$ & 25,575 & \$ & 26,490 \\
\hline COMBINATION PLAN \# 1 & & & & & & & & & & & & & & & & & & & \\
\hline TOTAL CASH FLOW FOR COMBINATION PLAN \# 1 & \$ 2,235,354 & & 235,354 & & 235,354 & & 877,460 & & 649,604 & \$ & ,649,604 & & 649,604 & \$ & 1,649,604 & \$ & 1,649,604 & \$ & 1,708,576 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & JANUARY & FEBRUARY & MARCH & APRIL & MAY & JUNE & JULY & AUGUST & SEPTEMBER & OCTOBER & NOVEMBER & DECEMBER \\
\hline \multicolumn{13}{|l|}{FEBRUARY COMBINATION PLAN} \\
\hline TOTAL CASH FLOW FOR FEBRUARY COMBINATION & \$ 7,520 & \$ 7,520 & S 6,814 & \$ 1,159 & \$ 1,159 & \$ 1,159 & \$ 1,159 & \$ & s & \$ & \$ & \$ \\
\hline \multicolumn{13}{|l|}{COMBINATION PLAN \# 1} \\
\hline TOTAL CASH FLOW FOR COMBINATION PLAN \# 1 & \$ 485,065 & \$ 485,065 & \$ 439,474 & \$ 74,743 & \$ 74,743 & \$74,743 & \$ 74,743 & \$ - & \$ - & s & \$ & S \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
AFUDC For the Month \\
AFUDC Rate (Annual \(8.26 \%\), Monthly \(.0066357 \%\) )
\end{tabular}} & 101,763 & \[
\begin{array}{r}
19,810 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
25,398 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
30,982 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
38.558 \\
0.0088357
\end{array}
\] & \[
\begin{array}{r}
42.154 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
47,740 \\
0.0086357
\end{array}
\] & \[
\begin{array}{r}
53,328 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
50,912 \\
0.0086357
\end{array}
\] & \[
\begin{array}{r}
64,498 \\
0.0086357
\end{array}
\] & \[
\begin{array}{r}
70.084 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
75,670 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
81,256 \\
0.0066357
\end{array}
\] & 606,400 & 708,164 \\
\hline & \multicolumn{3}{|l|}{AFUDC Calculated on AFUDC Accrual} & 2.379 & 891 & 827 & 1,001 & 1,213 & 1.484 & 1,753 & 2,082 & 2,450 & 2,857 & 3,304 & 3,791 & 4,318 & 25.751 & 28.130 \\
\hline & Totat Cumulative AF & & & 104,142 & 124.844 & 150.857 & 182,850 & 220.832 & 284.250 & 313.744 & 369.153 & 430.515 & 497,870 & 571,258 & 650.719 & 738.293 & & \\
\hline & \multicolumn{4}{|l|}{Monthly AFUDC} & 20.501 & 28.223 & 31,883 & 37.782 & 43.618 & 49.494 & 55.408 & 61,362 & 87,355 & 73.388 & 79.461 & 85.574 & 632,151 & 736,293 \\
\hline & \multirow[t]{2}{*}{Equity Component Debil Component} & 0.0499 & 0.604116223 & 62.914 & 12.385 & 15.842 & 19,322 & 22,825 & 28,351 & 29.900 & 33,473 & 37,070 & 40,690 & 44.335 & 48.004 & 51.697 & 381.893 & 444,807 \\
\hline & & 0.0327 & 0.395883777 & 41,228 & 8.116 & 10,381 & 12,662 & 14,957 & 17,268 & 19.594 & 21,935 & 24,292 & 26,665 & 29.053 & 31.457 & 33,878 & 250,258 & 291.487 \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Deferred Taxes \\
AFIDC FOR FINANCIAL REPORTING
\end{tabular}} & (15,904) & (3,131) & (4.005) & (4,884) & (5,770) & (6,6e1) & (7,558) & (8,462) & (9,371) & (10,286) & (11,207) & (12.135) & (13.068) & (112,44) & \\
\hline & \multirow[t]{2}{*}{Equlty Componort
Debil Component} & 0.0443 & 0.536319813 & 55.854 & 10,995 & 14.064 & 17,153 & 20,263 & 23.393 & 26,545 & 29.717 & 32,010 & 36,124 & 39,360 & 42.817 & 45.895 & 339,035 & 394,889 \\
\hline & & \[
\begin{aligned}
& 0.0383 \\
& 0.0828
\end{aligned}
\] & 0.483880387 & 48,289 & 9.508 & 12,459 & 14,830 & 17.519 & 20,225 & 22,949 & 25,692 & 28,452 & 31,231 & 34.029 & 36,845 & 39.679 & 293.118 & \[
341,405
\]
\[
736,293
\] \\
\hline & & & & Dec-04 & Jan-05 & Febes & Mar-05 & Abr-05 & May-05 & Jun-05 & Jul-05 & Aug-05 & Sep-05 & Oct-05 & Nov-05 & Dec.05 & TOTAL FOR YEAR & \\
\hline & & & & & & & & & & ( \(13,313,802)\) & (107.941) & 0 & 0 & & & 0 & (13.421,843) & \\
\hline \multirow[b]{3}{*}{2} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Manetsee Brownfeld Combined Cycle Expenditure}} & 841,813 & 107,941 & 107,941 & 107,941 & 107,941 & 107,941 & 107,941 & 107.941 & 0 & 0 & 0 & & 0 & 755.587 & \\
\hline & & & & 12.868 .256 & 12,774,197 & 12,882, 138 & 12,990,079 & 13,098,020 & 13,205,961 & \({ }^{0}\) & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & \multicolumn{3}{|l|}{Averrage Plant in Servico (Bog. + Ena)/2} & 12.245,350 & 12.720.227 & 12.828, 188 & 12,936,109 & 13,044,050 & 13.151.991 & 8.802,981 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & \multicolumn{3}{|l|}{Hatrif Morth convention for April} & & 0000 & \(0{ }^{0}\) & 0 & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{\[
\underset{\sim}{\boldsymbol{\omega}}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & & 0.0086357 & 0.0006357 & 0.0086357 & 0.0086357 & 0.0086357 & 0.0086357 & 0.0086357 & 00066357 & 0.0068357 & 0.0066357 & 0.0066357 & 0.0066357 & & \\
\hline & & & & 708.164 & 88.408 & \({ }^{\text {85, } 124}\) & 85,840 & \({ }^{88,558}\) & \({ }^{87,273}\) & 1.481 & 0 & 0 & 0 & 0 & 0 & 0 & 430,661 & 1,138,825 \\
\hline & \multicolumn{3}{|l|}{AFUDC Rate (Annual 8.2e\%, Monthly .0066357\%)} & & 0086357 & 0.0088357 & 0.0088357 & 0.0086357 & 0.0088357 & 0.0036357 & 0.0086357 & 0.0086357 & 066357 & 068357 & . 0068 & . 066 & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AFUDC Cakculated on AFUDC Accrual Total Cumulativo AFUDC}} & 28.130 & 4.888 & 5,478 & 6,080 & 6,690 & 7,308 & 285 & 0 & 0 & 0 & 0 & 0 & 0 & 30.706 & 58.836 \\
\hline & & & & 736.283 & 825,587 & 916.189 & 1.008,109 & 1.101.355 & 1,195.930 & 1.197,661 & 1,197.661 & 1.197.661 & 1.197,881 & 1,197,681 & 1.197.661 & 1.197.661 & & \\
\hline & \multicolumn{3}{|l|}{Monethy AFUDC} & & 89.293 & 90.602 & 91,920 & 93.248 & 94.581 & 1.725 & 0 & 0 & 0 & 0 & 0 & 0 & 461,367 & . 1 \% 6 \\
\hline & Equity Component & 0.0489 & 0804116223 & 444.807 & 53,944 & 54.734 & 55.530 & 56,331 & 57.138 & 1.042 & 0 & 0 & 0 & 0 & 0 & 0 & 278.719 & 723,528 \\
\hline & Debm Component & 0.0327 & 0395883777 & 291,487 & 35,350 & 35,868 & 36,390 & 36,915 & 37,443 & 683 & 0 & 0 & 0 & 0 & 0 & 0 & 182.648 & 474,134 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Deferred Taxas AFUDC FOR FINANCIL REPORTING}} & & & & & & & & 0 & 0 & & & & & & 1,197,661 \\
\hline & & & & (112,44) & (13,836) & \((13,838)\) & (14,037) & \((14,240)\) & \((14,444)\) & (283) & 0 & 0 & 0 & 0 & 0 & 0 & (70.456) & \\
\hline & Equly Componert & 0.0443 & 0.538319813 & 394,889 & 47,890 & 48.592 & 49.298 & 50,010 & 50.728 & 925 & 0 & 0 & 0 & 0 & 0 & 0 & 247.440 & 642,329 \\
\hline & \multirow[t]{2}{*}{Doon Component} & 0.0383 & 0.463880387 & 341.405 & 41,404 & 42.010 & 42.621 & 43,236 & 43,855 & 800 & 0 & 0 & 0 & 0 & 0 & 0 & 213.927 & 555,332 \\
\hline & & 0.0828 & & & & & & & & & & & & & & & & 1.197.661 \\
\hline
\end{tabular}



\section*{Horida Power 2 Light Company}

Accrual of AFUDC ON February Combination Plan *1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Februnry Combination Plan \({ }^{1}\)}} & Dac-02 & Jan-03 & Feb-03 & Mar-03 & Apr-03 & May-03 & Jun-03 & Jul-03 & Aug-03 & Sep-03 & Oct-03 & Nov-03 & Dec-03 & \[
\begin{aligned}
& \text { TOTAL FOR } \\
& \text { YEAR }
\end{aligned}
\] & \\
\hline & & & & & 1,376.548 & 1,378,548 & 1,376,548 & 1,376,548 & 1.376.548 & 1,376,548 & 1,999.901 & 1.788,077 & 1.768.077 & 1.786.077 & 1,766,077 & 1,768,077 & 19,089,574 & \\
\hline & \multicolumn{3}{|l|}{Balance End of Momth} & & 1,378.548 & 2,753.096 & 4.129,64 & 5.506,192 & 8.882,740 & 8,259,288 & 10,259.180 & 12.025,268 & 13.791.343 & 15.557.420 & 17.323,497 & 19,089,574 & & \\
\hline & \multicolumn{3}{|l|}{Average Plant in Service (Beg. + End) 2} & & 688,274 & 2.064,822 & 3.441.370 & 4.817.918 & 8.194,468 & 7.571.014 & 9,259.239 & 11.142.228 & 12,908.305 & 14,674,382 & 16,440,459 & 18.206,536 & & \\
\hline & \multicolumn{3}{|l|}{Harl Month convention} & & 0 & 0 & & & & & & & & & & & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & & 0.0066357 & 0.0086357 & 0.0086357 & 0.0088357 & 0.0086357 & 0.0086357 & 0.0066357 & 0.0088357 & 0.0086357 & 0.0066357 & 0.0066357 & 0.0066357 & & \\
\hline & & & & & 4,567 & 13.702 & 22,838 & 31,970 & 41,105 & 50,239 & 81,442 & 73,936 & 85,858 & 97,375 & 109,094 & 120,813 & 712.734 & 712,734 \\
\hline & \multicolumn{3}{|l|}{AFUDC Rate (Annual 8.26\%. Monthly .0066357\%)} & & 0.0068357 & 0.0066357 & 0.0066357 & 0.0086357 & 0.0068357 & 0.0086357 & 0.0066357 & 0.0086357 & 0.0068357 & 0.0086357 & 0.0066357 & 0.0066357 & & \\
\hline & \multicolumn{3}{|l|}{AFUDC Carculated on AFUDC Accrual} & & & 30 & 121 & 274 & 488 & 764 & 1,102 & 1,517 & 2,018 & 2,600 & 3,263 & 4,009 & 16,185 & 6,185 \\
\hline & \multicolumn{3}{|l|}{Tomen Curnulative AFUDC} & & 4.567 & 18.299 & 41.258 & 73.500 & 115,093 & 186,095 & 228.639 & 304.093 & 391.786 & 491.741 & 604,098 & 728.919 & & \\
\hline & \multicolumn{3}{|l|}{Monthy AFUDC} & & 4.567 & 13,732 & 22.957 & 32,244 & 41.592 & 51.003 & 82.544 & 75.454 & 87.674 & 99,974 & 112,357 & 124.822 & 728,999 & 19 \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& 3 \\
& 1 \\
& w
\end{aligned}
\]} & Equlty Componemt & 00499 & 0.004118223 & & 2.759 & 8.298 & 13,869 & 19.478 & 25.127 & 30.812 & 37.784 & 45.583 & 52.965 & 60,396 & 67.877 & 75.407 & 440,352 & \\
\hline & Debl Componert & 0.0327 & 0395883777 & & 1,808 & 5.436 & 9.088 & 12.765 & 16,468 & 20.191 & 24.760 & 29.871 & 34,709 & 39,578 & 44.480 & 49.415 & 288.567 & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Dolorrod Texes \\
AFUDC FOR FINANCIAL REPORTING
\end{tabular}}} & & (697) & (2,097) & (3,508) & (4.924) & (8,352) & (0.788) & (9,551) & (11.523) & (13.389) & (15.26) & (17.158) & (19,062) & (111,315) & 728.819 \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline & Equily Componem & 0.0443 & 0.538319813 & & 2.449 & 7.365 & 12,312 & 17,293 & 22,307 & 27,354 & 33.543 & 40,487 & 47,021 & 53,618 & 60.259 & 66,944 & 390,934 & \\
\hline & \multirow[t]{2}{*}{Dob* Component} & 0.0383 & 0.463880387 & & 2.118 & 6,387 & 10,645 & 14,951 & 19,288 & 23,649 & 29.000 & 34,986 & 40.852 & 46,356 & 52,098 & 57,877 & 337,986 & \\
\hline & & \multicolumn{2}{|l|}{0.0826} & & & & & & & & & & & & & & & 728.919 \\
\hline & & & & Dec-03 & Jan-as & Feb-04 & Mar-04 & Apr-04 & May-04 & Jun-04 & Jul-04 & Aug-04 & Sep-04 & Oct-04 & Nov-04 & Dec-04 & total for
YEAR & \\
\hline & \multicolumn{3}{|l|}{February Combination Plan \({ }^{1} 1\)} & 1,786.077 & 4,625,947 & 4.825,947 & 4,625,947 & 4,625,947 & 4,825,947 & 4,825,947 & 4,300,004 & 4,008.055 & 4,008.055 & 4,008,055 & 4,008,055 & 4.008 .055 & 52.095.961 & \\
\hline & \multicolumn{3}{|l|}{Batamese End of Montt} & 19,089.574 & 23.715.521 & 28.341.468 & 32,987,415 & 37.593.362 & 42.219,309 & 48,845.258 & 51,145,280 & 55,153,315 & 59,181,370 & 63,169,425 & 87.177.480 & 71,185,535 & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Average Plant in Service (Beg. \(~+~ E n d) / 2\) Haff Morth convention}} & 18,206,536 & 21,402,548 & 26.028,485 & 30.654,442 & 35,280,389 & 39.908.336 & 44.532.283 & 48,995.258 & 53,149.288 & 57,157,343 & 61.185,398 & 65,173.453 & 69,181,508 & & \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline & \multicolumn{3}{|l|}{AFUDC Rate (Annual 8 8.26\%, Monthly . \(0068357 \%\) )} & 712.734 & \begin{tabular}{l}
0.0088357 \\
142.021
\end{tabular} & 0.0088357 172.717 & 0.0068357 203.414 & 0.0068357 234.110 & \begin{tabular}{l}
0.0066357 \\
204,808
\end{tabular} & 0.0066357 295,503 & \begin{tabular}{l}
0.0086357 \\
325.118
\end{tabular} & \begin{tabular}{l}
0.0086357 \\
352,683
\end{tabular} & 0.0036357 379,279 & 0.0066357 405,875 & \begin{tabular}{l}
0.0066357 \\
432,471
\end{tabular} & 0.0066357 459,068 & 3,667,065 & 4,379,799 \\
\hline & \multicolumn{3}{|l|}{AFUDC Rate (Amual \(8.28 \%\), Monthly . \(0086357 \%\) )} & & 0.0086357 & 0.0088357 & 0.0088357 & 0.0088357 & 0.0088357 & 0.0088357 & 0.0088357 & 0.0068357 & 0.0086357 & 0.0066357 & 0.0066357 & 0.0066357 & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AFUDC Calkulated on AFUDC Accrial Total Cumutative AFUDC}} & 18,185 & 4.837 & 5,811 & 6.996 & 8,392 & 10,001 & 11,825 & 13,864 & 16,114 & 18,561 & 21,201 & 24,035 & 27,064 & 168,702 & 184,887 \\
\hline & & & & 728.919 & 875.777 & 1.054,300 & 1.264,716 & 1,507.218 & 1.782,028 & 2.099,354 & 2.428.336 & 2.797.132 & 3.194,972 & 3.622.048 & 4,078,555 & 4,564,686 & & \\
\hline & \multicolumn{3}{|l|}{Monthly AFUDC} & & 146.858 & 178,529 & 210.410 & 242,502 & 274,808 & 307.328 & 338,982 & 388,796 & 397.840 & 427,076 & 456,506 & 486,132 & 3,835,767 & 4.564.686 \\
\hline & Equty Componem & 0.0499 & 0.004116223 & 440.352 & 88.719 & 107,852 & 127,112 & 146,500 & 166,018 & 185,882 & 204,785 & 222.796 & 240,342 & 258,004 & 275,783 & 293,680 & 2,317,249 & 2.757.601 \\
\hline & Debit Componemt & \[
0.0327
\]
\[
00820
\] & 0.395883777 & 288.587 & 58.138 & 70.677 & 83,298 & 96.003 & 108.792 & 121.888 & 134.198 & 148.001 & 157.498 & 169.073 & 180,723 & 192,452 & 1,518.518 & \[
1,807,085
\]
\[
4.564,686
\] \\
\hline & \multicolumn{3}{|l|}{Deferred Texes} & (111,315) & (22,427) & (27,284) & (32,132) & (37.033) & (41,987) & \((48,933)\) & \((51,767)\) & (56,320) & (80,755) & \((85,220)\) & (69,714) & (74,238) & \((585.768)\) & \\
\hline & \multicolumn{3}{|l|}{AFUDC FOR FINANCIAL REPORTING} & & & & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{Equily Component DebH Component} & 0.0443 & 0.538319613 & 390.934 & 78,763 & 95.748 & 112,847 & 130.059 & 147,385 & 164,828 & 181.803 & 197.793 & 213,369 & 229.049 & 244,833 & 280,722 & 2.057,197 & 2,448,131 \\
\hline \multirow[t]{2}{*}{} & & \[
\begin{aligned}
& 0.0383 \\
& 088 \times 6
\end{aligned}
\] & 0.463600367 & 337.986 & 68.095 & 82.780 & 97,583 & 112,44 & 127,423 & 142.502 & 157.179 & 171,004 & 184,471 & 198,027 & 211,673 & 225,410 & 1,778,570 & \[
\begin{aligned}
& 2,116,556 \\
& 4.564686
\end{aligned}
\] \\
\hline & & & & Dac-04 & Jan-03 & Feb-05 & Mar-05 & Apr-05 & May-0s & Jun-05 & Jut-0 & Aug-05 & Sep-05 & Oct-05 & Nov-05 & Dec-05 & \(\underset{\substack{\text { YEAR }}}{\text { TOTAL FOR }}\) & \\
\hline & \multicolumn{3}{|l|}{February Combination Plan *1} & 4.008.055 & 2,995,049 & 2,895,049 & 2.910.638 & 2.235.354 & 2,235,354 & 2,235,354 & 1.877.460 & 1,649.804 & 1,649,604 & 1,649,604 & 1,849,604 & 1,649.604 & 25,732,278 & \\
\hline & \multicolumn{3}{|l|}{Bolance End of Month} & 71,185,535 & 74.180,584 & 77.175.033 & 80.086.271 & 82,321,625 & 84,556,879 & 88,792,333 & 88,869,793 & 90,319,397 & 91.969.001 & 93,618,005 & 95,268,209 & 96,917,813 & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Average Plant in Service (Beg. + End)/2 Halt Month convention}} & 69.181.508 & 72.883 .060 & 75.678.109 & 78,630,852 & 81.203.948 & 83.439.302 & 85,874.856 & 87.731.083 & 89,494,595 & 91.144.199 & 02.793.803 & 94.443.407 & 96,093,011 & & \\
\hline & & & & & & & 00008357 & & & & & & & 0.0066357 & 0.0068357 & 57 & & \\
\hline & afude Rato (Annua & 2x, Mont & y .0086357\%) & & & & & & & & & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{AFUDC For the Month AFUDC Rato (Annual 8.28\%, Monthly .0066357\%)} & 853.853 & \[
\begin{array}{r}
87,537 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
89,018 \\
0.0088357
\end{array}
\] & \[
\begin{array}{r}
90,439 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
91,325 \\
0.0086357
\end{array}
\] & \[
\begin{array}{r}
91,735 \\
0.0088357
\end{array}
\] & \[
\begin{array}{r}
92,146 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
92,538 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
92,810 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
92,980 \\
0.0068357
\end{array}
\] & \[
\begin{array}{r}
93,149 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
93,319 \\
0.0066357
\end{array}
\] & \[
\begin{array}{r}
93,489 \\
0.0068357
\end{array}
\] & 1,400,485 & 1,954,338 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AFUDC Calculated on AFUDC Accrual Total Cumulative AFUDC}} & 37,521 & 5,915 & 8,535 & 7,169 & 7.817 & 8,475 & 9,140 & 9,812 & 10,491 & 11.778 & 11,867 & 12,564 & 13,267 & 114,228 & 151.749 \\
\hline & & & & 891,374 & 984,828 & 1.080,379 & 1.177,986 & 1.277.128 & 1.377.338 & 1.478,624 & 1,580.974 & 1,684,275 & 1,788,431 & 1.893,448 & 1,999,332 & 2.108 .087 & & \\
\hline & \multicolumn{4}{|l|}{Monthly AFUDC} & 93,452 & 85,553 & 97,808 & 99.142 & 100,210 & 101,286 & 102,350 & 103,301 & 104,158 & 105,017 & 105,884 & 106,756 & 1.214.713 & 2.106,087 \\
\hline & Equity Component & 0.0499 & 0.804116223 & 538,494 & 50,456 & 57,725 & 58,968 & 59,893 & 60,539 & 81,188 & 61,831 & 62,406 & 62,922 & 63,442 & 63,966 & 64.493 & 733.828 & 1,272,322 \\
\hline & Debit Componemt & 0.0337 & 0.395883777 & 352,881 & 36,998 & 37,828 & 38,641 & 39.249 & 30.672 & 40.097 & 40.519 & 40.895 & 41,234 & 41.575 & 41.918 & 42.263 & 480,885 & 833.768 \\
\hline & \multicolumn{3}{|l|}{Deferred Taxes} & (112,498) & \((14,271)\) & \((14,592)\) & \((14,906)\) & \((15,140)\) & \((15,303)\) & (15.488) & (15.630) & (15.775) & (15.908) & (16.037) & (18.170) & (16.303) & (297.999) & \\
\hline & Equly Componemt & 0.0443 & 0.538319613 & 478,062 & 50.120 & 51,247 & 52,349 & 53,172 & 53.745 & 54,322 & 54,892 & 55,402 & 55,881 & 56,323 & 56,787 & 57.255 & 651.474 & 1.129.536 \\
\hline & Dobh Componemt & \[
\begin{aligned}
& 0.0383 \\
& 0.0828
\end{aligned}
\] & 0.463880387 & 413,313 & 43,332 & 44,306 & 45,259 & 45.970 & 46.485 & 46,964 & 47.458 & 47,899 & 48.295 & 48,694 & 49.096 & 49.501 & 583.239 & \[
\begin{array}{r}
976.551 \\
2,106,087
\end{array}
\] \\
\hline & & & & Dec-05 & Jan-06 & Feb-06 & Mar-06 & Apr-06 & May-06 & Jun-06 & Jul-06 & Aug-06 & Sep-06 & Oct-06 & Nov-06 & Dec-06 & total for YEAR & \\
\hline & & & & & & & & & & (14,128,898) & (1.159) & 0 & 0 & & & 0 & (14,128,057) & \\
\hline & \multicolumn{3}{|l|}{Fentruary Combination} & 25.575 & 7,520 & 7.520 & 6,814 & ¢,159 & 1,159 & 1,159 & 1,159 & 0 & 0 & 0 & & 0 & 28,490 & \\
\hline & \multicolumn{3}{|l|}{Balance End of Month} & 14,101,587 & 14,109.087 & 14.116.607 & 14,123,421 & 14.124.580 & 14.125.739 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 3 & \multicolumn{3}{|l|}{Average Ptant in Sevice (Beg. + End) 2 Htalf Month convention} & 14,088,780 & 14,105,327 & \[
\begin{array}{r}
14,112,847 \\
0
\end{array}
\] & \[
\begin{array}{r}
14,120,014 \\
0
\end{array}
\] & 14,124,001 & 14,125,180 & 7,082,870 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & \multicolumn{3}{|l|}{AFUDC Rate (Annual 8.28\%, Monthy . 0068357\%)} & & 0.0086357 & 0.0068357 & 0.0086357 & 0.0088357 & 0.0086357 & 0.0066357 & 0.0086357 & 0.0066357 & 0.0068357 & 0.0068357 & 0.0066357 & 0.0066357 & & \\
\hline & \multicolumn{3}{|l|}{AFUDC For the Month} & 1,954.338 & 93,599 & 93.849 & 83,696 & 93.723 & 93.730 & 1.562 & \({ }^{0}\) & 0 & 0 & 0 & 0 & 0 & 469,959 & 2.424,297 \\
\hline \multirow[t]{3}{*}{\(\pm\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AFUDC Rate (Anmual 8.28\%. Monthy . \(0086357 \%\) )}} & & 0.0088357 & 0.0068357 & D.0088357 & 0.0068357 & 0.0088357 & 0.0068357 & 0.0086357 & 0.0068357 & 0.0088357 & 0.0066357 & 0.0066357 & 0.0088357 & & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{AFUDC Calculated on AFUDC Accrual Totel Cumulative AFUDC}} & 151,749 & 13.975 & 14.889 & 15.408 & 16.132 & 16.881 & 586 & 0 & 0 & 0 & \({ }^{\circ}\) & 0 & 0 & 77.652 & 229,401 \\
\hline & & & & 2,106,087 & 2.213.661 & 2.321,999 & 2,431.104 & 2.540,958 & 2,651,550 & 2,853,698 & 2,853,698 & 2,653,698 & 2.653,698 & 2.653,698 & 2,653,698 & 2.853.698 & & \\
\hline & \multicolumn{3}{|l|}{Monthy AFUDC} & & 107,574 & 108,338 & 109,104 & 109,855 & 110.591 & 2.149 & 0 & 0 & 0 & 0 & 0 & 0 & 547,611 & 2,053,69a \\
\hline & Equity Component & 0.0499 & 0.604118223 & 1.272,322 & 64.987 & 65,449 & 65.912 & 68.365 & 68,810 & 1.298 & 0 & 0 & 0 & 0 & 0 & 0 & 330.821 & 1.803.142 \\
\hline & Deth Componem & 0.0327
0.0828 & 0.395883777 & 833,768 & 42,587 & 42,889 & 43,193 & 43,480 & 43,781 & 851 & 0 & 0 & 0 & 0 & 0 & 0 & 216,790 & \[
\begin{aligned}
& 1,050,558 \\
& 2.653 .698
\end{aligned}
\] \\
\hline & \multicolumn{3}{|l|}{Doferrod Tines} & (297,999) & (16,428) & (18.545) & (16,862) & (18,778) & (16,889) & (328) & 0 & 0 & 0 & 0 & 0 & 0 & (83,627) & \\
\hline & \multirow[t]{2}{*}{Eauly Component} & 0.0443 & 0.538319813 & 1.129.536 & 57,694 & 58.104 & 58.515 & 58.917 & 50.312 & 1.152 & 0 & 0 & 0 & 0 & 0 & 0 & 293.694 & 1.423.230 \\
\hline & & 0.0383 & 0.483880387 & 976,551 & 49,880 & 50.234 & 50,590 & 50,937 & 51,279 & 998 & 0 & 0 & 0 & 0 & 0 & 0 & 253.916 & 1.230.468 \\
\hline & Debt Componert & 0.0828 & & & & & & & & & & & & & & & & 2,653,698 \\
\hline
\end{tabular}

INPUT SHEET \#1
GENERAL ASSUMPTIONS

1) COMPOSIE INCOME TAX RAIE STATE INCOME TAX RATE FEDERAL INCOME TAX RATE
II) COST OF CAPITAL AS OF

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{V) INFLATION FORECAST AS OF:} & WEFA 12100 \\
\hline YEAR & CPI & HRLY COMP & PPI CAPITAL \\
\hline 2001 & 2.72\% & 4.89\% & 1.39\% \\
\hline 2002 & 2.49\% & 3.85\% & 1.10\% \\
\hline 2003 & 2.79\% & 4.39\% & 1.30\% \\
\hline 2004 & 2.81\% & 3.84\% & 0.72\% \\
\hline 2005 & 2.74\% & 3.44\% & 0.53\% \\
\hline 2006 & 2.60\% & 3.41\% & 0.87\% \\
\hline 2007 & 2.58\% & 3.62\% & 0.91\% \\
\hline 2008 & 2.56\% & 3.83\% & 0.95\% \\
\hline 2009 & 2.54\% & 4.03\% & 1.00\% \\
\hline 2010 & 2.52\% & 4.24\% & 1.04\% \\
\hline 2011 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2012 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2013 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2014 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2015 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2016 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2017 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2018 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2019 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2020 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2021 & 250\% & 4.45\% & 1.08\% \\
\hline 2022 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2023 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2024 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2025 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2026 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2027 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2028 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2029 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2030 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2031 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2032 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2033 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2034 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2035 & 250\% & 4.46\% & 1.08\% \\
\hline 2036 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2037 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2038 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2039 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2040 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2041 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2042 & 250\% & 4.46\% & 1.08\% \\
\hline 2043 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2044 & 2.50\% & 4.46\% & 1.08\% \\
\hline
\end{tabular}

\section*{MR \& MT Integration Costs}

INPUT SHEET \#5 - CAPITAL INVESTMENTS THAT REQUIRE CONSTRUCTION
\begin{tabular}{l|l|}
\hline TITLE FOR INVESTMENT \#1 & Project \#1 \\
\hline TITLE FOR INVESTMENT \#2 & Project \#2 \\
\hline TITLE FOR INVESTMENT \#3 & Project \#3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ASSUMPTIONS: & & INV. \#1 & & INV. \#2 & & INV. \#3 \\
\hline ESTIMATE IN \$'s (Can not be before 2001) & & 2002 & & 2002 & & 2002 \\
\hline ESCALATE CONST. CASH FLOWS (1=YES, \(2=\) NO) & & 2 & & 1 & & 1 \\
\hline COMPUTE AFUDC ( \(1=Y\) YES, 2=NO) & & 2 & & 1 & & 1 \\
\hline CONSTRUCTION START MONTH & & 1 & & 1 & & 1 \\
\hline CONSTRUCTION START YEAR & & 2003 & & 2003 & & 2003 \\
\hline CONSTRUCTION END MONTH & & 5 & & 12 & & 12 \\
\hline CONSTRUCTION END YEAR & & 2005 & & 2005 & & 2005 \\
\hline IN-SERVICE MONTH & & 6 & & 1 & & 1 \\
\hline IN-SERVICE YEAR & & 2005 & & 2006 & & 2006 \\
\hline USEFUL LIFE & & 40 & & 30 & & 30 \\
\hline BOOK DEPRECIATION RATE & & 2.50\% & & 3.33\% & & 3.33\% \\
\hline TAX DEPRECIATION CLASS & & 20 & & 20 & & 20 \\
\hline CASH FLOWS & LABOR & MATERIALS & LABOR & MATERIALS & LABOR & MATERIALS \\
\hline YEAR 1 & & 13,520.13 & & & & \\
\hline YEAR 2 & & 30,860.20 & & & & \\
\hline YEAR 3 & & 3,699.03 & & & & \\
\hline YEAR 4 & & & & & & \\
\hline YEAR 5 & & & & & & \\
\hline YEAR 6 & & & & & & \\
\hline YEAR 7 & & & & & & \\
\hline YEAR 8 & & & & & & \\
\hline YEAR 9 & & & & & & \\
\hline YEAR 10 & & & & & & \\
\hline TOTAL CASH FLOWS & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

MR \& MT Integration Costs
Calculation Sheet \#1 - In-Service Cost for Capital Expenditures Requiring Construction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & \[
\begin{aligned}
& \text { Total } \\
& \text { AFUDC }
\end{aligned}
\] & Cumulative AFUDC & \begin{tabular}{l}
Debt \\
AFUDC
\end{tabular} & Const. Period int. & Cumulative CPI & \begin{tabular}{l}
Deferred \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2003 & 12 & 13,520.13 & 13,520.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 30,860.20 & 44,380,33 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 5 & 3,699.03 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 48,079,36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 48,079.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 48,079,36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{11}{|l|}{Project \#2} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{11}{|l|}{Project \#3} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

MR \& MT Integration Costs
Results - Revenue Requirements

\(\underset{\text { Results - Revenue Requirements }}{\text { MR }}\) \& MT
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\hline & \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Capital Carrying Cost}} \\
\hline & & & & & & & & & & & & & \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#1 & 5,836.91 & 5,620.24 & 5,403.57 & 5,186.89 & 4,970.22 & 4,753.55 & 4,536.88 & 4,320.20 & 4.103 .53 & 3,886.86 & 3,670.19 & 3,453.52 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\cdots\) & Total Annual Carrying Cost & 5,836.91 & 5,620.24 & 5,403.57 & 5,186.89 & 4,970.22 & 4,753.55 & 4,536.88 & 4,320.20 & 4,103.53 & 3,886.86 & 3,670.19 & 3,453.52 \\
\hline - & \multicolumn{13}{|l|}{Operating Savings} \\
\hline U & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \multicolumn{13}{|l|}{Operating Costs} \\
\hline & \multirow[t]{7}{*}{Property Taxes \& Insurance} & 1,006.99 & 983.96 & 960.94 & 937.95 & 914.97 & 892.02 & 869.09 & 846.18 & 823.30 & 800.45 & 777.61 & 754.81 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 1,006.99 & 983.96 & 960.94 & 937.95 & 914.97 & 892.02 & 869.09 & 846.18 & 823.30 & 800.45 & 777.61 & 754.81 \\
\hline & Total Annual Revenue Requirements & 6,843.90 & 6,604.19 & 6,364.51 & 6,124.84 & 5,885.19 & 5,645.57 & 5,405.96 & 5,166.39 & 4,926.83 & 4,687.30 & 4,447.80 & 4,208.32 \\
\hline & Present Value @ 8.5\% & 2,571.27 & 2,286. 83 & 2,031.18 & 1,801.56 & 1,595.46 & 1,410.59 & 1,244.91 & 1,096.53 & 963.77 & 845.08 & 739.08 & 644.50 \\
\hline & Cumulative Present Value & 35,759.73 & 38,046.55 & 40.077 .73 & 41,879.29 & 43,474.75 & 44,885.34 & 46,130.25 & 47,226.79 & 48,190.56 & 49,035.64 & 49,774.72 & 50,419.22 \\
\hline & \multicolumn{13}{|l|}{Total Present Value Revenue Requirements} \\
\hline
\end{tabular}

MR \& MT Integration Cos
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 \\
\hline & & 2025 & 2026 & 2027 & 2028 & 2029 & 2030 & 2031 & 2032 & 2033 & 2034 & 2035 & 2036 \\
\hline & \multicolumn{13}{|l|}{Capital Carrying Cost} \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project\#1 & 3,265.47 & 3,134.67 & 3,032.51 & 2,930.34 & 2,828.17 & 2,726.00 & 2,623.83 & 2,521.66 & 2,419.49 & 2,317.33 & 2,215.16 & 2,112.99 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project\#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & Total Annual Carrying Cost & 3,265.47 & 3,134.67 & 3,032.51 & 2,930.34 & 2,828.17 & 2,726.00 & 2,623.83 & 2,521.66 & 2.419 .49 & 2,317.33 & 2,215.16 & 2,112.99 \\
\hline 1 & \multicolumn{13}{|l|}{Operating Savings} \\
\hline A & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \multicolumn{13}{|l|}{Operating Costs} \\
\hline & \multirow[t]{7}{*}{Property Taxes \& Insurance} & 732.02 & 709.26 & 686.53 & 663.82 & 641.14 & 618.48 & 595.85 & 573.25 & 550.68 & 528.13 & 505.61 & 483.12 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 732.02 & 709.26 & 686.53 & 663.82 & 641.14 & 618.48 & 595.85 & 573.25 & 550.68 & 528.13 & 505.61 & 483.12 \\
\hline & Totat Annual Revenue Requirements & 3,997.49 & 3,843.94 & 3,719.03 & 3,594.16 & 3.469.31 & 3,344.48 & 3,219.69 & 3,094.91 & 2,970.17 & 2,845.45 & 2.720 .77 & 2,596.11 \\
\hline & Present Value @ 8.5\% & 564.25 & 500.07 & 445.92 & 397.19 & 353.35 & 313.95 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Cumulative Present Value & 50,983.47 & 51,483.55 & 51,929.47 & 52,326.65 & 52,680.01 & 52,993.96 & 52,993.96 & 52,993.96 & 52,993.96 & 52,993.96 & 52,993.96 & 52,993.96 \\
\hline & Total Present Value Revenue Requirements & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{MR \& MT Integration Cos}

Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{array}{r}
37 \\
2037 \\
\hline
\end{array}
\] & \(\begin{array}{r}38 \\ 2038 \\ \hline\end{array}\) & 39
2039 & \(\begin{array}{r}40 \\ 2040 \\ \hline\end{array}\) \\
\hline Capital Carrying Cost & & & & \\
\hline Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#1 & 2,010.82 & 1,908.65 & 1,806.48 & 1,704.31 \\
\hline Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Annual Carrying Cost & 2,010.82 & 1,908.65 & 1,806.48 & 1,704.31 \\
\hline \multicolumn{5}{|l|}{Operating Savings} \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 000 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{5}{|l|}{Operating Costs} \\
\hline \multirow[t]{7}{*}{Property Taxes \& Insurance} & 460.65 & 438.22 & 415.81 & 393.44 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Costs & 460.65 & 438.22 & 415.81 & 393.44 \\
\hline Total Annual Revenue Requirements & 2,471.47 & 2,346.87 & 2,222.30 & 2,097.75 \\
\hline Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Cumulative Present Value & 52,993.96 & 52,993.96 & 52,993.96 & 52,993.96 \\
\hline Total Present Value Revenue Requirements & & & & \\
\hline
\end{tabular}

Combination Plan \# 1 (MR Conv, F
Results - Revenue Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 2001 & \[
\begin{array}{r}
2 \\
2002
\end{array}
\] & \[
\begin{array}{r}
3 \\
2003
\end{array}
\] & 4
2004 & 5
2005 & 6
2006 & 7
2007 & 8
2008 & 9
2009 & 10
2010 & 11
2011 & \[
\begin{array}{r}
12 \\
2012
\end{array}
\] \\
\hline & \multicolumn{13}{|l|}{Capital Carrying Cost} \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#1 & 0.00 & 0.00 & 0.00 & 0.00 & 10,278.50 & 17,118.14 & 16,482.66 & 15,877.48 & 15,300.33 & 14,749.11 & 14,221.87 & 13,716.82 \\
\hline & Project \#2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 511.40 & 851.70 & 820.08 & 789.97 & 761.25 & 733.83 & 707.60 \\
\hline & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1 & Total Annual Carrying Cost & 0.00 & 0.00 & 0.00 & 0.00 & 10,278.50 & 17,629.54 & 17,334.36 & 16.697 .56 & 16,090.30 & 15,510.36 & 14,955.70 & 14,424.41 \\
\hline - & \multicolumn{13}{|l|}{Operating Savings} \\
\hline \(\infty\) & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \multicolumn{13}{|l|}{Operating Costs} \\
\hline & \multirow[t]{7}{*}{Property Taxes \& Insurance} & 0.00 & 0.00 & 0.00 & 0.00 & 1,563.13 & 2,727.73 & 2.728 .59 & 2.672 .93 & 2.617.52 & 2,562.35 & 2,507.38 & 2.452.47 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 0.00 & 0.00 & 0.00 & 0.00 & 1.563 .13 & 2,727.73 & 2,728.59 & 2,672.93 & 2,617.52 & 2,562.35 & 2.507 .38 & 2,452.47 \\
\hline & Total Annual Revenue Requirements & 0.00 & 0.00 & 0.00 & 0.00 & 11,841.64 & 20,357.26 & 20,062.95 & 19,370.49 & 18,707.82 & 18.072.71 & 17,463.08 & 16,876.88 \\
\hline & Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 & 8,544.62 & 13,538.50 & 12,297.49 & 10,942.90 & 9,740.59 & 8,672.73 & 7,723.66 & 6,879.63 \\
\hline & Cumulative Present Value & 0.00 & 0.00 & 0.00 & 0.00 & 8,544.62 & 22,083.12 & 34,380.61 & 45,323.51 & 55,064.10 & 63,736.83 & 71,460.49 & 78,340.12 \\
\hline & Total Present Value Revenue Requirements & \multicolumn{12}{|l|}{125,536.84} \\
\hline
\end{tabular}

\section*{Combination Plan \# 1 (MR \\ Results - Revenue Requirements}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 13
2013 & 14
2014 & 15
2015 & \(\begin{array}{r}16 \\ 2016 \\ \hline\end{array}\) & 17
2017 & 18
2018 & 19
2019 & 20
2020 & 21
2021 & 22
2022 & 23
2023 & \(\begin{array}{r}24 \\ 2024 \\ \hline\end{array}\) \\
\hline & Capital Carrying Cost & & & & & & & & & & & & \\
\hline & Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Project \#1 & 13,224.15 & 12,733.25 & 12,242.36 & 11,751.47 & 11,260.57 & 10,769,68 & 10,278.78 & 9,787.89 & 9,296.99 & 8.806.10 & 8,315.21 & 7,824.31 \\
\hline & Project \#2 & 682.47 & 657.96 & 633.53 & 609.11 & 584.68 & 560.26 & 535.84 & 511.41 & 486.99 & 462.56 & 438.14 & 413.72 \\
\hline 3 & Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1 & Total Annual Carrying Cost & 13,906.62 & 13,391.21 & 12,875.89 & 12,360.57 & 11.845.26 & 11,329.94 & 10,814.62 & 10,299.30 & 9,783.98 & 9,26866 & 8,753.34 & 8,238.03 \\
\hline 0 & Operating Savings & & & & & & & & & & & & \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 000 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Operating Costs & & & & & & & & & & & & \\
\hline & Property Taxes \& Insurance & 2,397.61 & 2,342.81 & 2,288.07 & 2,233.39 & 2,178.74 & 2,124.15 & 2,069.61 & 2,015.13 & 1.960 .71 & 1,906.35 & 1,852.04 & 1,797.80 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & Total Operating Costs & 2,397.61 & 2,342.81 & 2,288. 07 & 2,233.39 & 2,178.74 & 2,124.15 & 2,069.61 & 2,015.13 & 1,960.71 & 1,906.35 & 1,852.04 & 1,797.80 \\
\hline & Total Annual Revenue Requirements & 16,304.23 & 15,734.02 & 15,163.97 & 14,593.97 & 14,024.00 & 13,454.08 & 12,884.23 & 12,314.43 & 11,744.69 & 11,175.01 & 10,605.39 & 10,035.82 \\
\hline & Present Value @ 8.5\% & 6,125.53 & 5,448.20 & 4,839.46 & 4,292.67 & 3,801.86 & 3,361.62 & 2,967.04 & 2,613.66 & 2,297.45 & 2,014.76 & 1,762.27 & 1,536.98 \\
\hline & Cumulative Present Value & 84,465.65 & 89,913.85 & 94,753.30 & 99,045.97 & 102,847.83 & 106,209.45 & 109.176.49 & 111,790.15 & 114,087.60 & 116,102.37 & 117,864.64 & 119,401.62 \\
\hline
\end{tabular}

Combination Plan \# 1 (MR
Results - Revenue Requirements


\section*{Combination Plan \# 1 (MR

\section*{Results - Revenue Requirement}

\section*{Results - Revenue Requirement}


INPUT SHEET \#1
GENERAL ASSUMPTIONS
\begin{tabular}{ll} 
PROJECT TITLE: & Combination Plan\# 1 (MR Conv, FC 3; FC 58) \\
PROJECT YEAR & 2001
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{INFLATION FORECAST AS OF:} & WEFA 12/00 \\
\hline YEAR & CPI & HRLY COMP & PPICAPITAL \\
\hline 2001 & 2.72\% & 4.89\% & 1.39\% \\
\hline 2002 & 2.49\% & 385\% & 1.10\% \\
\hline 2003 & 2.79\% & 4.39\% & 1.30\% \\
\hline 2004 & 2.81\% & 3.84\% & 0.72\% \\
\hline 2005 & 2.74\% & 3.44\% & 0.53\% \\
\hline 2006 & 2.60\% & 3.41\% & 0.87\% \\
\hline 2007 & 2.58\% & 3.62\% & 0.91\% \\
\hline 2008 & 2.56\% & 3.83\% & 0.95\% \\
\hline 2009 & 2.54\% & 4.03\% & 1.00\% \\
\hline 2010 & 2.52\% & 4.24\% & 1.04\% \\
\hline 2011 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2012 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2013 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2014 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2015 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2016 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2017 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2018 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2019 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2020 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2021 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2022 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2023 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2024 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2025 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2026 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2027 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2028 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2029 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2030 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2031 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2032 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2033 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2034 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2035 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2036 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2037 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2038 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2039 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2040 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2041 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2042 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2043 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2044 & 2.50\% & 4.46\% & 1.08\% \\
\hline
\end{tabular}

Combination Plan \# 1 (MR Conv, FC 3; FC 58)
inPut Sheet \#5-capital investments that require construction
\begin{tabular}{l|l|l|}
\hline TITLE FOR INVESTMENT \#1 & Project \#1 \\
\hline TITLE FOR INVESTMENT \#2 & Project \#2 \\
\hline TITLE FOR INVESTMENT \#3 & Project \#3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ASSUMPTIONS: & & INV. \#1 & & INV.\#2 & & INV. \#3 \\
\hline ESTIMATE IN \$'s (Can not be before 2001) & & 2002 & & 2002 & & 2002 \\
\hline ESCALATE CONST. CASH FLOWS ( \(1=\) YES, \(2=\) NO) & & 2 & & 2 & & 1 \\
\hline COMPUTE AFUDC ( \(1=\mathrm{YES}, 2=\mathrm{NO}\) ) & & 2 & & 2 & & 1 \\
\hline CONSTRUCTION START MONTH & & 1 & & 1 & & 1 \\
\hline CONSTRUCTION START YEAR & & 2003 & & 2006 & & 2003 \\
\hline CONSTRUCTION END MONTH & & 5 & & 5 & & 12 \\
\hline CONSTRUCTION END YEAR & & 2005 & & 2006 & & 2005 \\
\hline IN-SERVICE MONTH & & 6 & & 6 & & 1 \\
\hline IN-SERVICE YEAR & & 2005 & & 2006 & & 2006 \\
\hline USEFUL LIFE & & 40 & & 40 & & 30 \\
\hline BOOK DEPRECIATION RATE & & 2.50\% & & 2.50\% & & 3.33\% \\
\hline TAX DEPRECIATION CLASS & & 20 & & 20 & & 20 \\
\hline CASH FLOWS & LABOR & MATERIALS & LABOR & MATERIALS & LABOR & MATERIALS \\
\hline YEAR 1 & & 19,818.49 & & 5,419.67 & & \\
\hline YEAR 2 & & 55,931.73 & & & & \\
\hline YEAR 3 & & 33,178.75 & & & & \\
\hline YEAR 4 & & & & & & \\
\hline YEAR 5 & & & & & & \\
\hline YEAR 6 & & & & & & \\
\hline YEAR 7 & & & & & & \\
\hline YEAR 8 & & & & & & \\
\hline YEAR 9 & & & & & & \\
\hline YEAR 10 & & & & & & \\
\hline - TOTAL CASH FLOWS & 000 & 108.928. 98 & 0.00 & 5.41967 & 0.00 & 0.00 \\
\hline
\end{tabular}

Combination Plan \# 1 (MR Conv, FC 3; FC 58)
Calculation Sheet \#1 - In-Service Cost for Capital Expenditures Requiring Construction
Project \#1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Construction Months & \[
\begin{aligned}
& \text { Nominal } \$ \\
& \text { Cash Flow }
\end{aligned}
\] & Cumulative Cash Flows & \[
\begin{aligned}
& \text { Total } \\
& \text { AFUDC } \\
& \hline
\end{aligned}
\] & Cumulative AFUDC & \[
\begin{array}{r}
\text { Debt } \\
\text { AFUDC } \\
\hline
\end{array}
\] & Const Period Int. & Cumulative CPI & \begin{tabular}{l}
Deferred \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2003 & 12 & 19,818.49 & 19,818.49 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 55,931.73 & 75,750.22 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 5 & 33,178.75 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 108,928.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Project \#2} \\
\hline Year & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & Total AFUDC & Cumulative AFUDC & \[
\begin{aligned}
& \text { Debt } \\
& \text { AFUDC }
\end{aligned}
\] & Const Period Int. & Cumulative CPI & \begin{tabular}{l}
Deferred \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2006 & 12 & 5,419.67 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2013 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2014 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2015 & 0 & 0.00 & 5,419.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

Project \#3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & \[
\begin{aligned}
& \text { Total } \\
& \text { AFUDC } \\
& \hline
\end{aligned}
\] & Cumulative AFUDC & \[
\begin{array}{r}
\text { Debt } \\
\text { AFUDC } \\
\hline
\end{array}
\] & Const. Period Int. & Cumulative CPI & \begin{tabular}{l}
Deferred
Taxes \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

INPUT SHEET \#1
general assumptions
\(\begin{array}{ll}\text { PROJECT TITLE: } & \text { February Combination Plan (MT, FC 11; FC 65) } \\ \text { PROJECT YEAR } & 2001\end{array}\)


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{V) INFLATION FORECAST AS OF:} & WEFA 12100 \\
\hline YEAR & CPI & HRLY COMP & PPI CAPITAL \\
\hline 2001 & 2.72\% & 4.89\% & 1.39\% \\
\hline 2002 & 2.49\% & 3.85\% & 1.10\% \\
\hline 2003 & 2.79\% & 4.39\% & 1.30\% \\
\hline 2004 & 2.81\% & 3.84\% & 0.72\% \\
\hline 2005 & 2.74\% & 3.44\% & 0.53\% \\
\hline 2006 & 2.60\% & 3.41\% & 0.87\% \\
\hline 2007 & 2.58\% & 3.62\% & 0.91\% \\
\hline 2008 & 2.56\% & 3.83\% & 0.95\% \\
\hline 2009 & 2.54\% & 4.03\% & 1.00\% \\
\hline 2010 & 2.52\% & 4.24\% & 1.04\% \\
\hline 2011 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2012 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2013 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2014 & 2.50\% & 445\% & 1.08\% \\
\hline 2015 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2016 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2017 & 2.50\% & 445\% & 1.08\% \\
\hline 2018 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2019 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2020 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2021 & 2.50\% & 4.45\% & 1.08\% \\
\hline 2022 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2023 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2024 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2025 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2026 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2027 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2028 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2029 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2030 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2031 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2032 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2033 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2034 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2035 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2036 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2037 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2038 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2039 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2040 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2041 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2042 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2043 & 2.50\% & 4.46\% & 1.08\% \\
\hline 2044 & 2.50\% & 4.46\% & 1.08\% \\
\hline
\end{tabular}

February Combination Plan (MT, FC 11; FC 65)
input sheet \#5 - CAPITAL INVESTMENTS THAT REQUIRE CONSTRUCTION
\begin{tabular}{l|l|}
\hline TITLE FOR INVESTMENT \#1 & Project \#1 \\
\hline TITLE FOR INVESTMENT \#2 & Project \#2 \\
\hline TITLE FOR INVESTMENT \#3 & Project \#3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ASSUMPTIONS: & & INV. \#1 & & INV. \#2 & & INV. \#3 \\
\hline ESTIMATE IN \$'s (Can not be before 2001) & & 2002 & & 2002 & & 2002 \\
\hline ESCALATE CONST. CASH FLOWS ( \(1=Y \mathrm{YES}, 2=\mathrm{NO}\) ) & & 2 & & 2 & & 1 \\
\hline COMPUTE AFUDC ( \(1=\mathrm{YES}, 2=\mathrm{NO}\) ) & & 2 & & 2 & & 1 \\
\hline CONSTRUCTION START MONTH & & 1 & & 1 & & 1 \\
\hline CONSTRUCTION START YEAR & & 2003 & & 2006 & & 2003 \\
\hline CONSTRUCTION END MONTH & & 5 & & 5 & & 12 \\
\hline CONSTRUCTION END YEAR & & 2005 & & 2006 & & 2005 \\
\hline IN-SERVICE MONTH & & 6 & & 6 & & 1 \\
\hline IN-SERVICE YEAR & & 2005 & & 2006 & & 2006 \\
\hline USEFUL LIFE & & 40 & & 40 & & 30 \\
\hline BOOK DEPRECIATION RATE & & 2.50\% & & 2.50\% & & 3.33\% \\
\hline TAX DEPRECIATION CLASS & & 20 & & 20 & & 20 \\
\hline CASH FLOWS & LABOR & MATERIALS & LABOR & MATERIALS & LABOR & MATERIALS \\
\hline YEAR 1 & & 4,206.37 & & 574.10 & & \\
\hline YEAR 2 & & 9,765.26 & & & & \\
\hline YEAR 3 & & 2,236.02 & & & & \\
\hline YEAR 4 & & & & & & \\
\hline YEAR 5 & & & & & & \\
\hline YEAR 6 & & & & & & \\
\hline YEAR 7 & & & & & & \\
\hline YEAR 8 & & & & & & \\
\hline YEAR 9 & & & & & & \\
\hline YEAR 10 & & & & & & \\
\hline TOTAL CASH FLOWS & 0.00 & 16,207.65 & 0.00 & 574.10 & 0.00 & 0.00 \\
\hline
\end{tabular}

February Combination Plan (MT, FC 11; FC 65)
Calculation Sheet \#1-In-Service Cost for Capital Expenditures Requiring Construction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Project\#1} \\
\hline Year & Construction Months & Nominal \$ Cash Flow & Cumulative Cash Flows & Total AFUDC & Cumulative AFUDC & \[
\begin{aligned}
& \text { Debt } \\
& \text { AFUDC }
\end{aligned}
\] & Const. Period Int. & Cumulative CPI & \begin{tabular}{l}
Deferred \\
Taxes
\end{tabular} & Cumulative Def. Taxes \\
\hline 2003 & 12 & 4,206.37 & 4,206.37 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 9,765.26 & 13,971.63 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 5 & 2,236.02 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 16,207.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{11}{|l|}{Project \#2} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2006 & 12 & 574.10 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2013 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2014 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2015 & 0 & 0.00 & 574.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{11}{|l|}{Project \#3} \\
\hline & Construction & Nominal \$ & Cumulative & Total & Cumulative & Debt & Const. & Cumulative & Deferred & Cumulative \\
\hline Year & Months & Cash Flow & Cash Flows & AFUDC & AFUDC & AFUDC & Period Int. & CPI & Taxes & Def. Taxes \\
\hline 2003 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2004 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2005 & 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2006 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2007 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2008 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2009 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2010 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2011 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2012 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

February Combination Plan (MT, F
Results - Revenue Requirements


February Combination PI
Results - Revenue Requirements


February Combination PI
Results - Revenue Requirements


\section*{February Combination PI}

\section*{Results - Revenue Requirement}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) & \(\begin{array}{r}37 \\ 2037 \\ \hline\end{array}\) & \(\begin{array}{r}38 \\ 2038 \\ \hline\end{array}\) & \(\begin{array}{r}39 \\ 2039 \\ \hline\end{array}\) & \(\begin{array}{r}40 \\ 2040 \\ \hline\end{array}\) \\
\hline \multicolumn{5}{|l|}{Capital Carrying Cosi} \\
\hline Projects With No Construction & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Project \#1 & 677.85 & 643.41 & 608.97 & 574.53 \\
\hline Project \#2 & 25.23 & 24.01 & 22.79 & 21.57 \\
\hline Project \#3 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Annual Carrying Cost & 703.08 & 667.42 & 631.76 & 596.10 \\
\hline \multicolumn{5}{|l|}{Operating Savings} \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Savings & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{5}{|l|}{Operating Costs} \\
\hline Property Taxes \& Insurance & 161.06 & 153.23 & 145.41 & 137.60 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Total Operating Costs & 161.06 & 153.23 & 145.41 & 137.60 \\
\hline Total Annual Revenue Requirements & 864.14 & 820.65 & 777.17 & 733.70 \\
\hline Present Value @ 8.5\% & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Cumulative Present Value & 18,444.16 & 18,444.16 & 18,444.16 & 18.444.16 \\
\hline Total Present Value Revenue Requirements & & & & \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

Equity Penalty Calculation

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Bid
FC 3}} & \multirow[b]{2}{*}{Capacity:} & \multirow[b]{2}{*}{465} & \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{Equity} \\
\hline & & & & & & \\
\hline Year & Capacity Price (\$/kW-mo) & Annual Capacity Charges (\$000) & \begin{tabular}{l}
NPV \\
Demand \\
Charges \\
(\$000)
\end{tabular} & Debt
Equivalence
\((\$ 000)\) & Equity Replaced to Rebalance (\$000) & \\
\hline \multicolumn{7}{|l|}{2001} \\
\hline \multicolumn{7}{|l|}{2004} \\
\hline \multicolumn{7}{|l|}{2003} \\
\hline 2004 & \$0.00 & \$0.00 & \$0.00 & \$0.00 & \$0.00 & \$0.00 \\
\hline 2005 & \$3.83 & \$21,371 & \$300,747 & \$120,299 & \$66,164 & \$7,707 \\
\hline 2006 & \$3.93 & \$21,929 & \$301,631 & \$120,652 & \$66,359 & \$7,729 \\
\hline 2007 & \$4.03 & \$22,487 & \$302,023 & \$120,809 & \$66,445 & \$7,739 \\
\hline 2008 & \$4.13 & \$23,045 & \$301,885 & \$120,754 & \$66,415 & \$7,736 \\
\hline 2009 & \$4.23 & \$23,603 & \$301,179 & \$120,472 & \$66,259 & \$7,718 \\
\hline 2010 & \$4.34 & \$24,217 & \$299,863 & \$119,945 & \$65,970 & \$7,684 \\
\hline 2011 & \$4.45 & \$24,831 & \$297,835 & \$119,134 & \$65,524 & \$7,632 \\
\hline 2012 & \$4.56 & \$25,445 & \$295,044 & \$118,018 & \$64,910 & \$7,560 \\
\hline 2013 & \$4.67 & \$26,059 & \$291,433 & \$116,573 & \$64,115 & \$7,468 \\
\hline 2014 & \$4.79 & \$26,728 & \$286,940 & \$114,776 & \$63,127 & \$7,353 \\
\hline 2015 & \$4.91 & \$27,398 & \$281,445 & \$112,578 & \$61,918 & \$7,212 \\
\hline 2016 & \$5.03 & \$28,067 & \$274,875 & \$109,950 & \$60,472 & \$7,044 \\
\hline 2017 & \$5.16 & \$28,793 & \$267,148 & \$106,859 & \$58,773 & \$6,846 \\
\hline 2018 & \$5.28 & \$29,462 & \$258,124 & \$103,250 & \$56,787 & \$6,614 \\
\hline 2019 & \$5.42 & \$30,244 & \$247,763 & \$99,105 & \$54,508 & \$6,349 \\
\hline 2020 & \$5.55 & \$30,969 & \$235,854 & \$94,341 & \$51,888 & \$6,044 \\
\hline 2021 & \$5.69 & \$31,750 & \$222,338 & \$88,935 & \$48,914 & \$5,697 \\
\hline 2022 & \$5.83 & \$32,531 & \$207,041 & \$82,816 & \$45,549 & \$5,305 \\
\hline 2023 & \$5.98 & \$33,368 & \$189,830 & \$75,932 & \$41,763 & \$4,864 \\
\hline 2024 & \$6.13 & \$34,205 & \$170,509 & \$68,204 & \$37,512 & \$4,369 \\
\hline 2025 & \$6.28 & \$35,042 & \$148,922 & \$59,569 & \$32,763 & \$3,816 \\
\hline 2026 & \$6.44 & \$35,935 & \$124,899 & \$49,960 & \$27,478 & \$3,201 \\
\hline 2027 & \$6.60 & \$36,828 & \$98,207 & \$39,283 & \$21,605 & \$2,517 \\
\hline 2028 & \$6.76 & \$37,721 & \$68,646 & \$27,458 & \$15,102 & \$1,759 \\
\hline 2029 & \$6.93 & \$38,669 & \$36,005 & \$14,402 & \$7,921 & \$923 \\
\hline 2030 & \$0.00 & \$0.00 & \$0.00 & \$0.00 & \$0.00 & \$0.00 \\
\hline & & & & & NPV: & \$55,050 \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\) \\ Equity Penalty Calculation}
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 8 Capacity: 811
\begin{tabular}{cccccc} 
& Annual & NPV & \multicolumn{3}{c}{ Equity } \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 459,685\) & \(\$ 183,874\) & \(\$ 101,131\) & \(\$ 11,779\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 427,038\) & \(\$ 170,815\) & \(\$ 93,948\) & \(\$ 10,943\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 391,974\) & \(\$ 156,790\) & \(\$ 86,234\) & \(\$ 10,044\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 354,316\) & \(\$ 141,726\) & \(\$ 77,950\) & \(\$ 9,079\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 313,871\) & \(\$ 125,549\) & \(\$ 69,052\) & \(\$ 8,043\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 270,434\) & \(\$ 108,173\) & \(\$ 59,495\) & \(\$ 6,930\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 223,782\) & \(\$ 89,513\) & \(\$ 49,232\) & \(\$ 5,734\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 173,677\) & \(\$ 69,471\) & \(\$ 38,209\) & \(\$ 4,450\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 19,865\) & \(\$ 47,946\) & \(\$ 26,370\) & \(\$ 3,072\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 62,071\) & \(\$ 24,828\) & \(\$ 13,656\) & \(\$ 1,591\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 40,631\) \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 11
Capacity:
150
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{llcccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 54,327\) & \(\$ 21,731\) & \(\$ 11,952\) & \(\$ 1,392\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 44,955\) & \(\$ 17,982\) & \(\$ 9,890\) & \(\$ 1,152\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 34,890\) & \(\$ 13,956\) & \(\$ 7,676\) & \(\$ 894\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 24,079\) & \(\$ 9,632\) & \(\$ 5,297\) & \(\$ 617\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 12,469\) & \(\$ 4,988\) & \(\$ 2,743\) & \(\$ 320\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 2,834\) \\
\hline
\end{tabular}

\title{
Appendix \(\mathbf{N}\) \\ Equity Penalty Calculation
}
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 19 Capacity: 526
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity \\
Capacity & Demand & Demand & Debt & \begin{tabular}{c} 
Replaced
\end{tabular} & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.50\) & \(\$ 41,028\) & \(\$ 108,420\) & \(\$ 43,368\) & \(\$ 23,852\) & \(\$ 2,778\) \\
\(\$ 6.60\) & \(\$ 41,631\) & \(\$ 75,415\) & \(\$ 30,166\) & \(\$ 16,591\) & \(\$ 1,933\) \\
\(\$ 6.70\) & \(\$ 42,278\) & \(\$ 39,365\) & \(\$ 15,746\) & \(\$ 8,660\) & \(\$ 1,009\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 3,908\) \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 27 Capacity: 1200
\begin{tabular}{cccccc} 
& Annual & NPV & \multicolumn{3}{c}{ Equity } \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 9.72\) & \(\$ 140,014\) & \(\$ 971,542\) & \(\$ 388,617\) & \(\$ 213,739\) & \(\$ 24,896\) \\
\(\$ 9.74\) & \(\$ 140,236\) & \(\$ 903,422\) & \(\$ 361,369\) & \(\$ 198,753\) & \(\$ 23,150\) \\
\(\$ 9.75\) & \(\$ 140,453\) & \(\$ 830,039\) & \(\$ 332,016\) & \(\$ 182,609\) & \(\$ 21,270\) \\
\(\$ 9.77\) & \(\$ 140,674\) & \(\$ 751,009\) & \(\$ 300,403\) & \(\$ 165,222\) & \(\$ 19,244\) \\
\(\$ 9.78\) & \(\$ 140,898\) & \(\$ 665,910\) & \(\$ 266,364\) & \(\$ 146,500\) & \(\$ 17,064\) \\
\(\$ 9.80\) & \(\$ 141,127\) & \(\$ 574,288\) & \(\$ 229,715\) & \(\$ 126,343\) & \(\$ 14,716\) \\
\(\$ 9.82\) & \(\$ 141,359\) & \(\$ 475,659\) & \(\$ 190,264\) & \(\$ 104,645\) & \(\$ 12,189\) \\
\(\$ 9.83\) & \(\$ 141,596\) & \(\$ 369,499\) & \(\$ 147,799\) & \(\$ 81,290\) & \(\$ 9,468\) \\
\(\$ 9.85\) & \(\$ 141,838\) & \(\$ 255,246\) & \(\$ 102,098\) & \(\$ 56,154\) & \(\$ 6,541\) \\
\(\$ 9.87\) & \(\$ 142,086\) & \(\$ 132,296\) & \(\$ 52,919\) & \(\$ 29,105\) & \(\$ 3,390\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 86,097\) \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

\section*{Equity Penalty Calculation}
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Bid} \\
\hline \multirow[t]{2}{*}{FC 38} & & Capacity: & 150 & & \\
\hline & Annual & NPV & & Equity & \\
\hline Capacity & Demand & Demand & Debt & Replaced & Equity \\
\hline Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\hline (\$/kW-mo) & (\$000) & (\$000) & (\$000) & (\$000) & (\$000) \\
\hline
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 34,890\) & \(\$ 13,956\) & \(\$ 7,676\) & \(\$ 894\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 24,079\) & \(\$ 9,632\) & \(\$ 5,297\) & \(\$ 617\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 12,469\) & \(\$ 4,988\) & \(\$ 2,743\) & \(\$ 320\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(\$ P V:\) & \(\$ 1,251\) \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 39 Capacity: 300
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity & \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.55\) & \(\$ 23,580\) & \(\$ 179,707\) & \(\$ 71,883\) & \(\$ 39,536\) & \(\$ 4,605\) \\
\(\$ 6.72\) & \(\$ 24,192\) & \(\$ 169,426\) & \(\$ 67,770\) & \(\$ 37,274\) & \(\$ 4,341\) \\
\(\$ 6.89\) & \(\$ 24,804\) & \(\$ 157,771\) & \(\$ 63,108\) & \(\$ 34,710\) & \(\$ 4,043\) \\
\(\$ 7.06\) & \(\$ 25,416\) & \(\$ 144,642\) & \(\$ 57,857\) & \(\$ 31,821\) & \(\$ 3,706\) \\
\(\$ 7.24\) & \(\$ 26,064\) & \(\$ 129,930\) & \(\$ 51,972\) & \(\$ 28,585\) & \(\$ 3,329\) \\
\(\$ 7.42\) & \(\$ 26,712\) & \(\$ 113,481\) & \(\$ 45,392\) & \(\$ 24,966\) & \(\$ 2,908\) \\
\(\$ 7.60\) & \(\$ 27,360\) & \(\$ 95,166\) & \(\$ 38,066\) & \(\$ 20,937\) & \(\$ 2,439\) \\
\(\$ 7.79\) & \(\$ 28,044\) & \(\$ 74,848\) & \(\$ 29,939\) & \(\$ 16,467\) & \(\$ 1,918\) \\
\(\$ 7.99\) & \(\$ 28,764\) & \(\$ 52,343\) & \(\$ 20,937\) & \(\$ 11,515\) & \(\$ 1,341\) \\
\(\$ 8.19\) & \(\$ 29,484\) & \(\$ 27,453\) & \(\$ 10,981\) & \(\$ 6,040\) & \(\$ 703\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 16,519\) \\
& & & & & \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\)}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 48
Capacity:
150
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 54,327\) & \(\$ 21,731\) & \(\$ 11,952\) & \(\$ 1,392\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 44,955\) & \(\$ 17,982\) & \(\$ 9,890\) & \(\$ 1,152\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 34,890\) & \(\$ 13,956\) & \(\$ 7,676\) & \(\$ 894\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 24,079\) & \(\$ 9,632\) & \(\$ 5,297\) & \(\$ 617\) \\
\(\$ 7.44\) & \(\$ 13,392\) & \(\$ 12,469\) & \(\$ 4,988\) & \(\$ 2,743\) & \(\$ 320\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 2,612\) \\
\hline
\end{tabular}
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 58 Capacity: 526
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.60\) & \(\$ 41,631\) & \(\$ 110,116\) & \(\$ 44,046\) & \(\$ 24,225\) & \(\$ 2,822\) \\
\(\$ 6.70\) & \(\$ 42,278\) & \(\$ 76,633\) & \(\$ 30,653\) & \(\$ 16,859\) & \(\$ 1,964\) \\
\(\$ 6.81\) & \(\$ 42,988\) & \(\$ 40,026\) & \(\$ 16,010\) & \(\$ 8,806\) & \(\$ 1,026\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & \(\$ 3 V\) & \(\$ 3,660\) \\
\hline
\end{tabular}

\section*{Appendix N}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}
\begin{tabular}{cccccc} 
Bid & & & & & \\
FC 62 & & Capacity: & 811 & & \\
& & & & Equity & \\
& Annual & NPV & & Debt & \begin{tabular}{c} 
Replaced
\end{tabular} \\
Capacity & Demand & Demand & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-m o)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 459,685\) & \(\$ 183,874\) & \(\$ 101,131\) & \(\$ 11,779\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 427,038\) & \(\$ 170,815\) & \(\$ 93,948\) & \(\$ 10,943\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 391,974\) & \(\$ 156,790\) & \(\$ 86,234\) & \(\$ 10,044\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 354,316\) & \(\$ 141,726\) & \(\$ 77,950\) & \(\$ 9,079\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 313,871\) & \(\$ 125,549\) & \(\$ 69,052\) & \(\$ 8,043\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 270,434\) & \(\$ 108,173\) & \(\$ 59,495\) & \(\$ 6,930\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 223,782\) & \(\$ 89,513\) & \(\$ 49,232\) & \(\$ 5,734\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 173,677\) & \(\$ 69,471\) & \(\$ 38,209\) & \(\$ 4,450\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 119,865\) & \(\$ 47,946\) & \(\$ 26,370\) & \(\$ 3,072\) \\
\(\$ 6.85\) & \(\$ 66,664\) & \(\$ 62,071\) & \(\$ 24,828\) & \(\$ 13,656\) & \(\$ 1,591\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 37,448\) \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{N}\) \\ Equity Penalty Calculation}
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}

Bid
FC 65 Capacity: 465
\begin{tabular}{cccccc} 
& Annual & NPV & & Equity & \\
Capacity & Demand & Demand & Debt & Replaced & Equity \\
Price & Charges & Charges & Equivalence & to Rebalance & Penalty \\
\((\$ / \mathrm{kW}-\mathrm{mo})\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\) & \((\$ 000)\)
\end{tabular}
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 3.93\) & \(\$ 21,929\) & \(\$ 308,290\) & \(\$ 123,316\) & \(\$ 67,824\) & \(\$ 7,900\) \\
\(\$ 4.03\) & \(\$ 22,487\) & \(\$ 309,174\) & \(\$ 123,670\) & \(\$ 68,018\) & \(\$ 7,923\) \\
\(\$ 4.13\) & \(\$ 23,045\) & \(\$ 309,566\) & \(\$ 123,826\) & \(\$ 68,104\) & \(\$ 7,933\) \\
\(\$ 4.23\) & \(\$ 23,603\) & \(\$ 309,428\) & \(\$ 123,771\) & \(\$ 68,074\) & \(\$ 7,929\) \\
\(\$ 4.34\) & \(\$ 24,217\) & \(\$ 308,722\) & \(\$ 123,489\) & \(\$ 67,919\) & \(\$ 7,911\) \\
\(\$ 4.45\) & \(\$ 24,831\) & \(\$ 307,351\) & \(\$ 122,940\) & \(\$ 67,617\) & \(\$ 7,876\) \\
\(\$ 4.56\) & \(\$ 25,445\) & \(\$ 305,264\) & \(\$ 122,105\) & \(\$ 67,158\) & \(\$ 7,822\) \\
\(\$ 4.67\) & \(\$ 26,059\) & \(\$ 302,408\) & \(\$ 120,963\) & \(\$ 66,530\) & \(\$ 7,749\) \\
\(\$ 4.79\) & \(\$ 26,728\) & \(\$ 298,728\) & \(\$ 119,491\) & \(\$ 65,720\) & \(\$ 7,655\) \\
\(\$ 4.91\) & \(\$ 27,398\) & \(\$ 294,105\) & \(\$ 117,642\) & \(\$ 64,703\) & \(\$ 7,536\) \\
\(\$ 5.03\) & \(\$ 28,067\) & \(\$ 288,471\) & \(\$ 115,389\) & \(\$ 63,464\) & \(\$ 7,392\) \\
\(\$ 5.16\) & \(\$ 28,793\) & \(\$ 281,751\) & \(\$ 112,700\) & \(\$ 61,985\) & \(\$ 7,220\) \\
\(\$ 5.28\) & \(\$ 29,462\) & \(\$ 273,808\) & \(\$ 109,523\) & \(\$ 60,238\) & \(\$ 7,016\) \\
\(\$ 5.42\) & \(\$ 30,244\) & \(\$ 264,607\) & \(\$ 105,843\) & \(\$ 58,214\) & \(\$ 6,780\) \\
\(\$ 5.55\) & \(\$ 30,969\) & \(\$ 253,944\) & \(\$ 101,578\) & \(\$ 55,868\) & \(\$ 6,507\) \\
\(\$ 5.69\) & \(\$ 31,750\) & \(\$ 241,767\) & \(\$ 96,707\) & \(\$ 53,189\) & \(\$ 6,195\) \\
\(\$ 5.83\) & \(\$ 32,531\) & \(\$ 227,908\) & \(\$ 91,163\) & \(\$ 50,140\) & \(\$ 5,840\) \\
\(\$ 5.98\) & \(\$ 33,368\) & \(\$ 212,242\) & \(\$ 84,897\) & \(\$ 46,693\) & \(\$ 5,439\) \\
\(\$ 6.13\) & \(\$ 34,205\) & \(\$ 194,579\) & \(\$ 77,832\) & \(\$ 42,807\) & \(\$ 4,986\) \\
\(\$ 6.28\) & \(\$ 35,042\) & \(\$ 174,773\) & \(\$ 69,909\) & \(\$ 38,450\) & \(\$ 4,479\) \\
\(\$ 6.44\) & \(\$ 35,935\) & \(\$ 152,663\) & \(\$ 61,065\) & \(\$ 33,586\) & \(\$ 3,912\) \\
\(\$ 6.60\) & \(\$ 36,828\) & \(\$ 128,025\) & \(\$ 51,210\) & \(\$ 28,166\) & \(\$ 3,281\) \\
\(\$ 6.76\) & \(\$ 37,721\) & \(\$ 100,671\) & \(\$ 40,268\) & \(\$ 22,148\) & \(\$ 2,580\) \\
\(\$ 6.93\) & \(\$ 38,669\) & \(\$ 70,400\) & \(\$ 28,160\) & \(\$ 15,488\) & \(\$ 1,804\) \\
\(\$ 7.11\) & \(\$ 39,674\) & \(\$ 36,940\) & \(\$ 14,776\) & \(\$ 8,127\) & \(\$ 947\) \\
& & & & \(N P V:\) & \(\$ 52,006\) \\
& & & & &
\end{tabular}

\section*{Appendix N}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}
\begin{tabular}{cccccc} 
Bid & & & & \\
FC 71 & & Capacity: & 300 & & \\
& & & & Equity & \\
Capacity & Demand & NPV & Demand & Debt & Replaced
\end{tabular} Equity
\begin{tabular}{llllll}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.72\) & \(\$ 24,192\) & \(\$ 64,545\) & \(\$ 25,818\) & \(\$ 14,200\) & \(\$ 1,654\) \\
\(\$ 6.89\) & \(\$ 24,804\) & \(\$ 45,129\) & \(\$ 18,052\) & \(\$ 9,928\) & \(\$ 1,156\) \\
\(\$ 7.06\) & \(\$ 25,416\) & \(\$ 23,665\) & \(\$ 9,466\) & \(\$ 5,206\) & \(\$ 606\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & \(N P:\) & \(\$ 2,151\) \\
& & & & \\
\hline
\end{tabular}

\section*{Appendix N}

Equity Penalty Calculation
\begin{tabular}{lc} 
Discount Rate (cost of debt): & \(7.40 \%\) \\
Discount Rate (after tax cost of capital): & \(8.50 \%\) \\
Risk Factor: & \(40 \%\) \\
Equity Percentage: & \(55 \%\) \\
Effective Tax Rate: & \(38.58 \%\) \\
Equity-Debt Cost Difference & \(11.6 \%\)
\end{tabular}
\begin{tabular}{cccccc} 
Bid & & & & \\
FC 72 & Capacity: & 300 & & \\
& & & & Equity & \\
& Annual & NPV & & Rebt & Replaced
\end{tabular} Equity
\begin{tabular}{lccccc}
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 6.72\) & \(\$ 24,192\) & \(\$ 184,217\) & \(\$ 73,687\) & \(\$ 40,528\) & \(\$ 4,721\) \\
\(\$ 6.89\) & \(\$ 24,804\) & \(\$ 173,658\) & \(\$ 69,463\) & \(\$ 38,205\) & \(\$ 4,450\) \\
\(\$ 7.06\) & \(\$ 25,416\) & \(\$ 161,704\) & \(\$ 64,682\) & \(\$ 35,575\) & \(\$ 4,144\) \\
\(\$ 7.24\) & \(\$ 26,064\) & \(\$ 148,254\) & \(\$ 59,302\) & \(\$ 32,616\) & \(\$ 3,799\) \\
\(\$ 7.42\) & \(\$ 26,712\) & \(\$ 133,161\) & \(\$ 53,264\) & \(\$ 29,295\) & \(\$ 3,412\) \\
\(\$ 7.60\) & \(\$ 27,360\) & \(\$ 116,303\) & \(\$ 46,521\) & \(\$ 25,587\) & \(\$ 2,980\) \\
\(\$ 7.79\) & \(\$ 28,044\) & \(\$ 97,549\) & \(\$ 39,020\) & \(\$ 21,461\) & \(\$ 2,500\) \\
\(\$ 7.99\) & \(\$ 28,764\) & \(\$ 76,724\) & \(\$ 30,690\) & \(\$ 16,879\) & \(\$ 1,966\) \\
\(\$ 8.19\) & \(\$ 29,484\) & \(\$ 53,638\) & \(\$ 21,455\) & \(\$ 11,800\) & \(\$ 1,374\) \\
\(\$ 8.39\) & \(\$ 30,204\) & \(\$ 28,123\) & \(\$ 11,249\) & \(\$ 6,187\) & \(\$ 721\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
\(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) & \(\$ 0.00\) \\
& & & & \(N P V:\) & \(\$ 15,605\) \\
\hline
\end{tabular}

\section*{Appendix 0}

\section*{FPL's Approved DSM Programs}

FPL's current DSM Plan consists of six (6) Residential DSM programs and eight (8) Commercial/Industrial DSM programs.

The residential DSM programs are as follows:

Residential Conservation Service: This is an energy audit program which is designed to assist residential customers in understanding how to make their homes more energy-efficient through the installation of conservation measures/practices.

Residential Building Envelope: This program is designed to encourage the installation of energy-efficient ceiling insulation in residential dwellings that utilize whole-house electric air conditioning.

Duct System Testing and Repair: This program is designed to encourage demand and energy conservation through the identification of air leaks in whole-house air conditioning duct systems and by the repair of those leaks by qualified contractors.

Residential Air Conditioning: This is a program which is designed to encourage customers to purchase higher efficiency central cooling and heating equipment.

Residential Load Management (On Call): This program offers load control of major appliances/household equipment to residential customers in exchange for monthly electric bill credits.

New Construction (BuildSmart): This program encourages the design and construction of energy-efficient homes that cost-effectively reduce coincident peak demand and energy consumption.

FPL's current commercial/industrial DSM programs are as follows:

Business Energy Evaluation: This program encourages energy efficiency in both new and existing commercial and industrial facilities by identifying DSM opportunities and providing recommendations to the customer.

Commercial/Industrial Heating, Ventilating, and Air Conditioning: This program is designed to encourage the use of high-efficiency heating, ventilating, and air conditioning (HVAC) systems in commercial/industrial facilities.

Commercial/Industrial Efficient Lighting: This program encourages the installation of energyefficient lighting measures in commercial/industrial facilities.

Business Custom Incentive: This program encourages commercial/industrial customers to implement unique energy conservation measures or projects not covered by other FPL programs.

Commercial/Industrial Load Control: This program is designed to reduce peak demand by controlling customer loads of 200 kW or greater during periods of extreme demand or capacity
shortages in exchange for monthly electric bill credits. (This program was closed to new participants in 2000.)

Commercial/Industrial Demand Reduction: This program (which started in 2001) is similar to the Commercial/Industrial Load Control program mentioned above. Its objective is to reduce peak demand by controlling customer loads of 200 kW or greater during periods of extreme demand or capacity shortages. In exchange for giving FPL the right to exercise load control, participants receive monthly electric bill credits.

Commercial/Industrial Building Envelope: This program encourages the installation of energyefficient building envelope measures such as window treatments and roof/ceiling insulation for commercial/industrial facilities.

Business On Call: This program offers load control of central air conditioning units to both small non-demand-billed and medium demand-billed commercial/industrial customers in exchange for monthly electric bill credits.

FPL's current research and development initiatives are:

\section*{Conservation Research and Development Program: FPL's Conservation Research}
and Development Program is designed to evaluate emerging conservation technologies to determine which are worthy of pursuing for program development and approval. FPL has researched a wide variety of technologies and, from that research, has been able to develop new programs such as Residential New Construction, Commercial/Industrial Building Envelope and Business On Call.

Cool Communities Research Project: Cool Communities is a concept developed by American Forests to demonstrate the extent to which strategic tree planting and surface color lightening can cool ambient air temperature and impact energy consumption. This research project is designed to evaluate emerging conservation technologies and practices associated with residential structures to determine which are worthy of pursuing for program development and approval. The project, which consists of data gathering, statistical regression analysis and economic evaluation, will quantify savings from lightened roof color and tree shading of homes. This project was recently completed and is being evaluated as a potential future DSM offering.

Low Income Weatherization Retrofit Project: This R\&D project is investigating cost-effective methods of increasing the energy efficiency of FPL's low - income customers. The research project addresses the needs of low - income housing retrofits by providing monetary incentives to various housing authorities including, weatherization agency providers and non-weatherization agency providers. These incentives are used by the housing authorities to leverage their funds to increase the overall energy efficiency of the homes they are retrofitting. FPL either conducts a home energy survey, trains housing authority employees to perform FPL home energy surveys, accepts the National Energy audit (NEAT) (as supplemented to capture water heating recommendations not included in the NEAT audit), or approves similar FPL-approved audits conducted by weatherization providers to determine the need for energy-efficient retrofit measures for each home. FPL has designed the project so as to minimize extra work for the retrofit housing authorities.

Photovoltaic Research, Development and Education Project: Photovoltaic (PV) roof-tile systems are a relatively new technology which directly replaces existing roofing materials such as shingles and standing-rib roofing with PV materials. These PV materials have the same water -
proofing characteristics as conventional roofing materials. This project is consistent with the Federal Government's Million Solar Roofs initiative. However, based on FPL's research to date, a primary hurdle to the physical installation of PV systems, whether roofing materials or flat plate collectors, is the lack of awareness, understanding and acceptance by local building officials. For the most part, these officials are unclear about how these systems work and how to address these systems as part of the building permitting and inspection process. This creates barriers toward the use of this technology. This project will provide key understanding of the operation, performance, costs, and interconnection related issues of this technology.

Green Energy Project: FPL recently finished an R\&D project addressing customer acceptance of green energy, where donations were used as the funding mechanism for the purchase and installation of utility grid connected PV systems. This project raised in excess of \(\$ 89,500\) and a 10.1 kW (dc) PV system has been constructed at FPL's Martin power plant site.

FPL is now investigating potential customer acceptance of green pricing rates in its Green Energy Project. Under this project, FPL will purchase electric energy generated from new renewable resources including solar-powered technologies, biomass energy, landfill methane, wind energy, low impact hydroelectric energy and/or other renewable resources. Participating customers will be charged higher "green" electric rates for utilizing electric energy derived from these sources. FPL is currently performing an evaluation to determine the availability of renewable supply sources in Florida and customer acceptance of the program concept. As part of this evaluation, in late 2001, FPL developed an RFP in order to determine the type, availability and potential costs of renewable energy. FPL received four bids from this process, and they are currently under evaluation.

Real-Time Pricing: Although not part of FPL's approved DSM Plan, FPL continues to research new conservation/efficiency options such as Real-Time Pricing. This option is an experimental service offering for large C/I customers designed to evaluate customer load response to hourly, marginal cost-based energy prices provided on a day-ahead basis.```

