BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 040001-EI FLORIDA POWER & LIGHT COMPANY

SEPTEMBER 9, 2004

IN RE: LEVELIZED FUEL COST RECOVERY AND CAPACITY COST RECOVERY

PROJECTIONS JANUARY 2005 THROUGH DECEMBER 2005

TESTIMONY & EXHIBITS OF:

G. YUPP J. R. HARTZOG K. M. DUBIN T. HARTMAN

> 09879 SEP-93 FPSC-COMMISSION CLERK

ULN UATE

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF GERARD J. YUPP
4		DOCKET NO. 040001-EI
5		SEPTEMBER 9, 2004
6	Q.	Please state your name and address.

- My name is Gerard J. Yupp. My business address is 700 Universe 7 Α. Boulevard, Juno Beach, Florida, 33408. 8
- 9

6

Q.

- By whom are you employed and what is your position? Q. 10
- Α. I am employed by Florida Power & Light Company (FPL) as 11 Manager of Regulated Wholesale Power Trading in the Energy 12 Marketing and Trading Division. 13
- 14
- 15 Q. Have you previously testified in this docket?
- Α. Yes. 16
- 17

What is the purpose of your testimony? Q. 18

Α. The purpose of my testimony is to present and explain FPL's 19 projections for (1) the dispatch costs of heavy fuel oil, light fuel oil, 20 coal, petroleum coke, and natural gas, (2) the availability of natural 21 22 gas to FPL, (3) generating unit heat rates and availabilities, (4) the

guantities and costs of wholesale (off-system) power and purchased 1 power transactions, and (5) FPL's Risk Management Plan for fuel 2 procurement in 2005. Additionally, my testimony will briefly discuss 3 the year-to-date results of FPL's hedging program for 2004 and 4 FPL's hedging strategy beyond the 2005 projected period. The 5 projected values for (1) through (4) were used as input data to the 6 POWRSYM model that FPL uses to calculate the fuel costs to be 7 included in the proposed fuel cost recovery factors for the period of 8 January through December 2005. 9

10

11 **Q.** How is your testimony organized?

Α. My testimony first describes the basis for the fuel price forecast for 12 oil, coal and petroleum coke, and natural gas, as well as, the 13 projection for natural gas availability. A description of FPL's forecast 14 methodology change for 2005 is also included in this part of the 15 testimony. The second part of the testimony addresses plant heat 16 rates, outage factors, planned outages, and changes in generation 17 capacity. This is followed by a description of projected wholesale 18 19 (off-system) power and purchased power transactions. Next, the 20 testimony describes FPL's 2005 Risk Management Plan for fuel 21 procurement, as outlined in Order PSC- 02-1484-FOF-EI issued on October 30, 2002. This section includes an overview of FPL's fuel 22 23 hedging objectives and an itemization of projected, prudentlyincurred incremental operating and maintenance expenses for
 maintaining FPL's expanded, non-speculative financial and physical
 hedging program for the projected period. Lastly, the testimony
 provides a discussion of FPL's 2004 hedging activities and a
 description of FPL's hedging plans beyond the 2005 recovery
 period.

- 7
- Q. Have you prepared or caused to be prepared under your
 supervision, direction and control an Exhibit in this
 proceeding?
- A. Yes, I have. It consists of the entire Appendix I and Schedules E2,
 E3, E4, E5, E6, E7, E8 and E9 of Appendix II of this filing.
- 13

14 FUEL PRICE FORECAST

15 Q. Has FPL's forecast methodology changed for the 2005 16 recovery period?

Yes. For natural gas commodity prices, the forecast methodology has changed to the NYMEX Natural Gas Futures contract (forward curve). For light and heavy fuel oil prices, FPL will utilize Over-The-Counter (OTC) forward market prices. FPL is implementing this change in an effort to align its price projections with its expanded hedging program. The forward curves for both natural gas and fuel oil represent expected future prices at a given point in time. The basic assumption made with respect to the forward curves is that all
available data that could impact the price of natural gas and fuel oil
in the future is incorporated into the curve at all times. The forward
curves represent real prices that FPL can transact at for its hedging
program. The methodology allows FPL to better react to changing
market conditions.

For the projected price of coal and petroleum coke, and the
availability of natural gas, FPL's forecast methodology has not
changed.

10

11Q.What are the key factors that could affect FPL's price for heavy12fuel oil during the January through December 2005 period?

Α. The key factors that could affect FPL's price for heavy oil are (1) 13 worldwide demand for crude oil and petroleum products (including 14 domestic heavy fuel oil), (2) non-OPEC crude oil production, (3) the 15 extent to which OPEC production matches actual demand for OPEC 16 crude oil, (4) the price relationship between heavy fuel oil and crude 17 18 oil, (5) the price relationship between heavy oil and natural gas and 19 (6) the terms of FPL's heavy fuel oil supply and transportation 20 contracts.

21

22 World demand for crude oil and petroleum products is projected to 23 increase slightly in 2005 over 2004 average levels primarily due to

increases in demand in the U.S. (primarily for gasoline and 1 2 distillates, including light fuel oil) and in the Pacific Rim countries. Although crude oil production and worldwide refining capacity will be 3 adequate to meet the projected increase in crude oil and petroleum 4 5 product demand, general adherence by OPEC members to its most recent production accord, and limited spare OPEC productive 6 7 capacity, should prevent significant overproduction of crude oil. When coupled with the continuation of historically low domestic 8 crude oil and petroleum product inventory levels, the supply of crude 9 10 oil and petroleum products will remain somewhat tight during most 11 of 2005.

12

Q. What is the projected relationship between heavy fuel oil and crude oil prices during the January through December 2005 period?

Α. The price of heavy fuel oil on the U.S. Gulf Coast (1.0% sulfur) is 16 projected to be approximately 85% of the price of West Texas 17 Intermediate (WTI) crude oil during this period. 18 Please note, however, that in order to meet the growth in U.S. demand for 19 gasoline and distillates, including light fuel oil, refineries will be 20 21 operating at record levels during most of 2005. Because heavy 22 fuel oil is essentially a residual product of the distillation process, 23 this high level of refinery operation has resulted in a high level of

heavy fuel oil supply. Without a corresponding increase in 1 2 projected heavy fuel oil demand, the increase in heavy fuel oil supply should result in a further widening of the price differential 3 between worldwide crude oil and domestic heavy fuel oil prices. 4 5 Q. Please provide FPL's projection for the dispatch cost of heavy 6 7 fuel oil for the January through December 2005 period. Α. FPL's projection for the system average dispatch cost of heavy fuel 8 oil, by sulfur grade and by month, is provided on page 3 of Appendix 9 Ι. 10 11 Q. What are the key factors that could affect the price of light fuel 12 oil? 13 Α. The key factors that could affect the price of light fuel oil are similar 14 to those described above for heavy fuel oil except that, because 15 16 light fuel oil is a distillate product and not a residual of the refining process, there is no reason to expect an over-supply of light fuel oil 17 18 comparable to that described above for heavy fuel oil. Therefore, FPL anticipates that light fuel oil prices will track increases in 19 20 worldwide crude oil prices more closely than will be the case for heavy fuel oil prices. 21 22

23 Q. Please provide FPL's projection for the dispatch cost of light

1		fuel oil for the January through December 2005 period.
2	Α.	FPL's projection for the system average dispatch cost of light oil, by
3		month, is provided on page 3 of Appendix I.
4		
5	Q.	What is the basis for FPL's projections of the dispatch cost for
6		St. Johns' River Power Park (SJRPP) and Scherer Plant?
7	А.	FPL's projected dispatch cost for SJRPP is based on FPL's price
8		projection for spot coal and petroleum coke delivered to SJRPP.
9		The dispatch cost for Scherer is based on FPL's price projection for
10		spot coal delivered to Scherer Plant.
11		
12		For SJRPP, annual coal volumes delivered under long-term
13		contracts are fixed on October 1st of the previous year. For Scherer
14		Plant, the annual volume of coal delivered under long-term contracts
15		is set by the terms of the contracts. Therefore, in each case the
16		price of coal delivered under long-term contracts does not affect the
17		daily dispatch decision.
18		
19		In the case of SJRPP, FPL will continue to blend petroleum coke
20		with coal in order to reduce fuel costs. It is anticipated that
21		petroleum coke will represent 17% of the fuel blend at SJRPP
22		during 2005. The lower price of petroleum coke is reflected in the
23		projected dispatch cost for SJRPP, which is based on this projected

- 1 fuel blend.
- 2

Q. Please provide FPL's projection for the dispatch cost of SJRPP
 and Scherer Plant for the January through December 2005
 period.

A. FPL's projection for the system average dispatch cost of "solid fuel"
for this period, by plant and by month, is shown on page 3 of
Appendix I.

9

Q. What are the factors that can affect FPL's natural gas prices during the January through December 2005 period?

In general, the key factors are (1) North American natural gas Α. 12 demand and domestic production, (2) LNG and Canadian natural 13 gas imports, (3) heavy fuel oil and light fuel oil prices, and (4) the 14 terms of FPL's natural gas supply and transportation contracts. The 15 dominant factors influencing the projected price of natural gas in 16 2005 are: (1) projected natural gas demand in North America will 17 18 continue to grow moderately in 2005, primarily in the electric generation sector; and (2) domestic natural gas production in 2005 19 is projected to be slightly above average 2004 levels. The balance 20 of the supply to meet demand will come from increased Canadian 21 22 and LNG imports.

23

1 Q. What are the factors that affect the availability of natural gas to

FPL during the January through December 2005 period?

The key factors are (1) the existing capacity of the Florida Gas Α. 3 Transmission (FGT) pipeline system into Florida, (2) the existing 4 capacity of the Gulfstream natural gas pipeline system into Florida, 5 (3) the limited number of receipt points into the Gulfstream natural 6 gas pipeline system, (4) the portion of FGT capacity that is 7 contractually allocated to FPL on a firm basis each month, (5) the 8 assumed volume of natural gas which can move from the 9 Gulfstream pipeline into FGT at the Hardee and Osceola 10 interconnects, and (6) the natural gas demand in the State of 11 Florida. 12

13

2

The current capacity of FGT into the State of Florida is about 14 2,030,000 million BTU per day and the current capacity of 15 Gulfstream is about 1,100,000 million BTU per day. FPL currently 16 has firm natural gas transportation capacity on FGT ranging from 17 750,000 to 874,000 million BTU per day, depending on the month. 18 Additionally, FPL has acquired 350,000 million BTU per day of firm 19 20 natural gas transportation on Gulfstream to fuel the new Manatee Unit 3 and Martin Unit 8 projects. This firm transport contract on 21 Gulfstream begins on June 1, 2005 and runs through June 1, 2028. 22 Total demand for natural gas in the state of Florida during the 23

January through December 2005 period (including FPL's firm 1 allocation) is projected to be between 550,000 and 700,000 million 2 BTU per day below the total pipeline capacity into the state. FPL 3 projects that it could acquire, if economic, an additional 463,000 to 4 613,000 million BTU per day of natural gas transportation beyond its 5 current 750,000 to 874,000 million BTU per day of firm allocation on 6 FGT and 350,000 million BTU per day of firm allocation on 7 Gulfstream. This projection is based on the current capability of the 8 two interconnections between Gulfstream and FGT pipeline systems 9 and the availability of capacity on each pipeline. 10

11

Q. Please provide FPL's projections for the dispatch cost and
 availability of natural gas for the January through December
 2005 period.

A. FPL's projections of the system average dispatch cost and
 availability of natural gas, by transport type, by pipeline and by
 month, are provided on page 3 of Appendix I.

- 18
- 19

20 PLANT HEAT RATES, OUTAGE FACTORS, PLANNED 21 OUTAGES, and CHANGES IN GENERATING CAPACITY

- 22 **Q.** Please describe how FPL developed the projected Average Net
- 23 Operating Heat Rates shown on Schedule E4 of Appendix II.

1	Α.	The projected Average Net Operating Heat Rates were calculated
2		by the POWRSYM model. The current heat rate equations and
3		efficiency factors for FPL's generating units, which present heat rate
4		as a function of unit power level, were used as inputs to POWRSYM
5		for this calculation. The heat rate equations and efficiency factors
6		are updated as appropriate based on historical unit performance
7		and projected changes due to plant upgrades, fuel grade changes,
8		and/or from the results of performance tests.
9		
10	Q.	Are you providing the outage factors projected for the period
11		January through December 2005?
12	Α.	Yes. This data is shown on page 4 of Appendix I.
13		
14	Q.	How were the outage factors for this period developed?
15	A.	The unplanned outage factors were developed using the actual
16		historical full and partial outage event data for each of the units. The
17		historical unplanned outage factor of each generating unit was
18		adjusted, as necessary, to eliminate non-recurring events and
19		recognize the effect of planned outages to arrive at the projected
20		factor for the January through December 2005 period.
21		
22	Q.	Please describe the significant planned outages for the

23 January through December 2005 period.

Α. Planned outages at our nuclear units are the most significant in 1 relation to Fuel Cost Recovery. Turkey Point Unit No. 4 is 2 scheduled to be out of service for refueling and replacement of the 3 4 reactor vessel head from April 9, 2005 until June 13, 2005 or 65 5 days during the projected period. St. Lucie Unit No. 1 will be out of 6 service for refueling and replacement of the reactor vessel head from October 3, 2005 until December 2, 2005 or 60 days during the 7 projected period. 8

9

Q. Please list any changes to FPL's generation capacity projected
 to take place during the January through December 2005
 period.

A. The conversion of Martin Unit 8 to combined cycle will increase
 FPL's net summer peak capability (NSPC) by 793 MW. Also, the
 addition of combined cycle Manatee Unit 3 will increase FPL's
 NSPC by 1,107 MW.

17

18

WHOLESALE (OFF-SYSTEM) POWER AND PURCHASED
 POWER TRANSACTIONS

Q. Are you providing the projected wholesale (off-system) power
 and purchased power transactions forecasted for January
 through December 2005?

- A. Yes. This data is shown on Schedules E6, E7, E8, and E9 of
 Appendix II of this filing.
- 3

4 Q. In what types of wholesale (off-system) power transactions 5 does FPL engage?

Α. FPL purchases power from the wholesale market when it can б displace higher cost generation with lower cost power from the 7 market. FPL will also sell excess power into the market when its 8 9 cost of generation is lower than the market. Purchasing and selling power in the wholesale market allows FPL to lower fuel costs for its 10 customers as all savings and gains are credited to the customer 11 through the Fuel Cost Recovery Clause. Power purchases and 12 sales are executed under specific tariffs that allow FPL to transact 13 with a given entity. Although FPL primarily transacts on a short-term 14 basis, hourly and daily transactions, FPL continuously searches for 15 all opportunities to lower fuel costs through purchasing and selling 16 wholesale power, regardless of the duration of the transaction. FPL 17 can also purchase and sell power during emergency conditions 18 under several types of Emergency Interchange agreements that are 19 in place with other utilities within Florida. 20

21

22 Q. Does FPL have additional agreements for the purchase of 23 electric power and energy that are included in your

1 projections?

Α. Yes. FPL purchases coal-by-wire electrical energy under the 1988 2 Unit Power Sales Agreement (UPS) with the Southern Companies. 3 FPL has contracts to purchase nuclear energy under the St. Lucie 4 Plant Nuclear Reliability Exchange Agreements with Orlando 5 Utilities Commission (OUC) and Florida Municipal Power Agency 6 (FMPA). FPL also purchases energy from JEA's portion of the 7 SJRPP Units. Additionally, FPL has purchased exclusive dispatch 8 rights for the output of 6 combustion turbines totaling approximately 9 950 MW (the output varies depending on the season). The 10 agreements for the combustion turbines are with Progress Energy 11 Ventures, Reliant Energy Services, and Oleander Power Project 12 L.P. FPL provides natural gas for the operation of each of these 13 14 three facilities as well as light fuel oil for two of the facilities. FPL 15 has also purchased 150 MW of capacity and energy from Calpine 16 Energy Services out of the Osprey Energy Center. This agreement 17 runs through April 30, 2005. Lastly, FPL purchases energy and capacity from Qualifying Facilities under existing tariffs and 18 contracts. 19

20

21 Q. Please provide the projected energy costs to be recovered 22 through the Fuel Cost Recovery Clause for the power 23 purchases referred to above during the January through

1 December 2005 period.

Α. Under the UPS agreement, FPL's capacity entitlement during the 2 projected period is 931 MW from January through December 2005. 3 4 Based upon the alternate and supplemental energy provisions of UPS, an availability factor of 100% is applied to these capacity 5 entitlements to project energy purchases. 6 The projected UPS energy (unit) cost for this period, used as an input to POWRSYM, is 7 based on data provided by the Southern Companies. For the 8 period, FPL projects the purchase of 8,049,486 MWh of UPS 9 Energy at a cost of \$136,358,000. The total UPS Energy 10 11 projections are presented on Schedule E7 of Appendix II.

12

13 Energy purchases from the JEA-owned portion of the St. Johns 14 River Power Park generation are projected to be 2,757,125 MWh for the period at an energy cost of \$41,267,000. FPL's cost for energy 15 purchases under the St. Lucie Plant Reliability Exchange 16 Agreements is a function of the operation of St. Lucie Unit 2 and the 17 fuel costs to the owners. For the period, FPL projects purchases of 18 537,383 MWh at a cost of \$1,710,800. These projections are 19 shown on Schedule E7 of Appendix II. 20

21

FPL projects to dispatch 633,479 MWh from its combustion turbine
 agreements at a cost of \$50,923,113. These projections are shown

- 1 on Schedule E7 of Appendix II.
- 2

In addition, as shown on Schedule E8 of Appendix II, FPL projects
 that purchases from Qualifying Facilities for the period will provide
 7,227,963 MWh at a cost to FPL of \$160,556,000.

6

Q. How were the projected energy costs related to purchases from Qualifying Facilities developed?

9 A. For those contracts that entitle FPL to purchase "as-available"
energy, FPL used its fuel price forecasts as inputs to the
POWRSYM model to project FPL's avoided energy cost that is used
to set the price of these energy purchases each month. For those
contracts that enable FPL to purchase firm capacity and energy, the
applicable Unit Energy Cost mechanism prescribed in the contract is
used to project monthly energy costs.

16

17 Q. Please describe the method used to forecast wholesale (off 18 system) power purchases and sales.

- A. The quantity of wholesale (off-system) power purchases and sales
 are projected based upon estimated generation costs, generation
 availability and expected market conditions.
- 22
- 23 Q. What are the forecasted amounts and costs of wholesale (off-

1 system) power sales?

2	А.	FPL has projected 2,460,000 MWh of wholesale (off-system) power
3		sales for the period of January through December 2005. The
4		projected fuel cost related to these sales is \$115,254,050. The
5		projected transaction revenue from these sales is \$133,365,000.
6		The projected gain for these sales is \$11,084,350 and is credited to
7		our customers.
8		
9	Q.	In what document are the fuel costs for wholesale (off-system)
10		power sales transactions reported?
11	Α.	Schedule E6 of Appendix II provides the total MWh of energy; total
12		dollars for fuel adjustment, total cost and total gain for wholesale
13		(off-system) power sales.
14		
15	Q.	What are the forecasted amounts and cost of energy being
16		sold under the St. Lucie Plant Reliability Exchange Agreement?
17	Α.	FPL projects the sale of 448,894 MWh of energy at a cost of
18		\$1,408,227. These projections are shown on Schedule E6 of
19		Appendix II.
20		
21	Q.	What are the forecasted amounts and costs of wholesale (off-
22		system) power purchases for the January to December 2005

A. The costs of these purchases are shown on Schedule E9 of
Appendix II. For the period, FPL projects it will purchase a total of
1,219,396 MWh at a cost of \$51,185,840. If generated, FPL
estimates that this energy would cost \$61,951,692. Therefore,
these purchases are projected to result in savings to FPL's
customers of \$10,765,852.

- 7
- 8

9 2005 RISK MANAGEMENT PLAN

10Q.Has FPL completed its risk management plan as outlined in11Order PSC- 02-1484-FOF-El issued on October 30, 2002?

A. Yes. FPL's 2005 Risk Management Plan is provided on pages 5
 and 6 of Appendix I.

14

15 **Q.** Please describe FPL's hedging objectives.

16 Α. FPL's fuel hedging objectives are to effectively execute a well-17 disciplined and independently controlled fuel procurement strategy 18 to manage fuel price stability (volatility minimization), to potentially achieve fuel cost minimization and to achieve asset optimization. 19 FPL's fuel procurement strategy aims to mitigate fuel price 20 increases and reduce fuel price volatility, while maintaining the 21 opportunity to benefit from price decreases in the marketplace for 22 23 FPL's customers.

Q. Does FPL's hedging plan for 2005 include strategies to mitigate
 the replacement fuel costs associated with the extended
 outages of Turkey Point Unit No. 4 and St. Lucie Unit No. 1 due
 to the reactor vessel head replacements?

A. Yes. FPL's fuel hedging strategies incorporate all of FPL's planned
 unit outages for a given time period. FPL takes mitigation steps to
 lower the impact of all plant outages, through the procurement of
 fuel and purchased power.

10

11Q.Does FPL project to incur incremental operating and12maintenance expenses with respect to maintaining an13expanded, non-speculative financial and/or physical hedging14program for which it is seeking recovery in the January15through December 2005 period?

Α. Yes. FPL projects to incur incremental expenses of \$466,745 for its 16 Trading and Operations group and \$86,400 for its Systems Group. 17 The expenses projected for the Trading and Operations Group are 18 for salaries of the three personnel that were added to support FPL's 19 enhanced hedging program. 20 The expenses projected for the Systems Group are composed of incremental annual license fees 21 and automation upgrades for FPL's volume forecasting software. 22 Volume forecasting is done on a continuous basis to help FPL 23

1 manage its hedge positions by adjusting those positions according 2 to updated fuel volume forecasts on an ongoing basis. The 3 incremental expenses for annual license fees and automation 4 upgrades are necessary to fully support FPL's expanded hedging 5 program.

6

7 Q. Are these projected hedging expenses prudent?

8 A. Yes, for the reasons just described.

- 9
- 10

11 **2004 HEDGING SUMMARY**

Q. Has FPL's 2004 hedging strategies been successful in
 reducing fuel price volatility and delivering greater price
 certainty to its customers?

15 Yes. FPL's hedging strategies during 2004 have been successful in reducing fuel price volatility and delivering greater price certainty to 16 its customers. Additionally, FPL's customers have realized, through 17 September 2004, approximately \$134.5 million in savings versus the 18 19 market on natural gas hedges that have settled. FPL's customers have also realized, through July 2004, approximately \$25.5 million in 20 savings versus the market on fuel oil hedges that have settled. In 21 22 other words, had FPL not had hedged during 2004; its customers 23 would have incurred an additional \$160 million in fuel expenses on a year-to-date basis. FPL also has hedges in place for both natural gas and fuel oil for the remainder of 2004 that have not come to settlement.

4

5 Although the savings described above have been very beneficial to 6 FPL's customers, it is important to realize that the main goal of 7 hedging is to reduce fuel price volatility and deliver greater price 8 certainty. Savings from hedging will be realized in a rising market; 9 however the opposite holds true in a falling market. Either way, if 10 the hedging program achieves its goal of reducing fuel price 11 volatility, then it should be judged a success.

12

FPL constantly monitors the fundamentals of the energy markets and as conditions change, FPL will make further adjustments to its hedging program to meet FPL's objective of reduced volatility to its customers. FPL will continue to utilize the additional resources (both systems and personnel) it acquired as a result of Order PSC-02-1484-FOF-El issued on October 30, 2002, to meet its goals and the goals of its customers.

20

21 Q. Does FPL have plans to extend its hedging program farther 22 into future periods?

23 A. Yes. FPL believes that it is appropriate to begin extending its

hedging program farther into the future. FPL has historically hedged
its portfolio only through the end of the next recovery period. FPL
believes that additional benefits can be attained by hedging up to
two years past the next recovery period. As with the initial
expansion of the hedging program FPL will approach this extension
of its hedging program into the future gradually and cautiously.

7

8 Q. Does this conclude your testimony?

9 A. Yes, it does.

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

FLORIDA POWER & LIGHT COMPANY

TESTIMONY OF J. R. HARTZOG

DOCKET NO. 040001-EI

September 9, 2004

1	Q.	Please state your name and address.
2	A.	My name is John R. Hartzog. My business address is 700 Universe
3		Boulevard, Juno Beach, Florida 33408.
4		
5	Q.	By whom are you employed and what is your position?
6	Α.	I am employed by Florida Power & Light Company (FPL) as
7		Manager, Nuclear Financial & Information Services in the Nuclear
8		Business Unit.
9		
10	Q.	Have you previously testified in this docket?
11	Α.	Yes, I have.
12		
13	Q.	What is the purpose of your testimony?
14	A.	The purpose of my testimony is to present and explain FPL's
15		projections of nuclear fuel costs for the thermal energy (MMBTU) to
16		be produced by our nuclear units, the costs of disposal of spent

1 nuclear fuel, the costs of decontamination and decommissioning (D&D), and additional plant security costs; to update the inspections 2 and repairs to the reactor pressure vessel heads since the issuance 3 of NRC Bulletin (IEB) 2002-02; and to update the status of certain 4 litigation that affects FPL's nuclear fuel costs. Both nuclear fuel and 5 disposal of spent nuclear fuel costs were input values to 6 POWERSYM used to calculate the costs to be included in the 7 proposed fuel cost recovery factors for the period January 2005 8 through December 2005. 9

10

11 Nuclear Fuel Costs

12 Q. What is the basis for FPL's projections of nuclear fuel costs?

- A. FPL's nuclear fuel cost projections are developed using projected
 energy production at our nuclear units and their operating schedules,
 for the period January 2005 through December 2005.
- 16

17 Spent Nuclear Fuel Disposal Costs

- Q. Please provide FPL's projection for nuclear fuel unit costs and
 energy for the period January 2005 through December 2005.
- A. FPL projects the nuclear units will produce 257,760,861 MMBTU of energy at a cost of \$0.3072 per MMBTU, excluding spent fuel disposal costs, for the period January 2005 through December 2005.
 - 2

- Projections by nuclear unit and by month are in Appendix II, on
 Schedule E-3, starting on page 12.
- 3

Q. Please provide FPL's projections for spent nuclear fuel disposal
 costs for the period January 2005 through December 2005 and
 explain the basis for FPL's projections.

7 A. FPL's projections for spent nuclear fuel disposal costs of
 approximately \$21.5 million are provided in Appendix II, on Schedule
 9 E-2, starting on page 10. These projections are based on FPL's
 contract with the U.S. Department of Energy (DOE), which sets the
 spent fuel disposal fee at 0.9303 mills per net kWh generated, which
 includes transmission and distribution line losses.

13

14 Decontamination and Decommissioning Costs

Q. Please provide FPL's projection for Decontamination and
 Decommissioning (D&D) costs to be paid in the period January
 2005 through December 2005 and explain the basis for FPL's
 projection.

A. FPL's projection of \$6.87 million for D&D costs is based on the
 amount to be paid during the period January 2005 through
 December 2005 and is included in Appendix II, on Schedule E-2
 starting on page 10.

2 Nuclear Plant Security Costs

- Q. Please provide FPL's projection for incremental security costs
 to be paid in the period January 2005 through December 2005
 and explain the basis for FPL's projection.
- FPL has projected that it will incur \$12.5 million in incremental 6 Α. security costs during the period January 2005 through December 7 2005. These costs relate to ongoing activities associated with NRC 8 requirements for heightened security measures. In addition, for 9 reasons I will explain, FPL currently anticipates deferring to 2005 10 approximately \$10 million of the \$40.36 million that we estimated in 11 August would be spent during 2004 on complying with the NRC's 12 Design Basis Threat (DBT) Order. 13
- 14

1

In my August testimony on the 2004 estimated/actual true-up, I 15 noted that FPL might need an extension of time to complete all the 16 changes necessary to comply with the DBT Order. FPL has now 17 decided that an extension is needed and has filed a request for an 18 extension with the NRC. If granted, the extension will result in 19 deferring some of the DBT changes past the October 29, 2004 20 deadline and into 2005. The projected cost of the DBT changes to 21 be deferred is approximately \$10 million. The extension request 22

contemplates that FPL will take compensatory measures (primarily
 the posting of additional security personnel) until all required DBT
 changes are completed.

4

The cost impact of the compensatory measures on FPL's estimate of 5 \$40.36 million in overall DBT compliance costs will be minimal. Since 6 that estimate was prepared, there have been modifications to the 7 scope of various DBT projects that will reduce the cost of those 8 projects. This reduction will substantially offset the cost of the 9 compensatory measures. Of course, the NRC has continued to inject 10 changes into the DBT compliance process, so the estimated costs of 11 compliance may change yet again. 12

13

14 **Reactor Pressure Vessel Head Inspection Status**

Q. What is the status of the reactor head inspections for the St.
 Lucie and Turkey Point Units that are being conducted
 pursuant to NRC Bulletin IEB 2002-02?

A. The NRC issued IEB 2002-02 on August 9, 2002 to address
 concerns related to visual inspections of the reactor head. This
 bulletin resulted in all four FPL units being categorized as high
 susceptibility, requiring ultrasonic testing in addition to visual
 inspections until the reactor heads are replaced.

St. Lucie Unit 1 performed ultrasonic inspections of the reactor head 2 during the refueling outage beginning on March 22, 2004. The total 3 4 duration for the refueling outage was approximately 30 days. The inspections detected no indications and no repairs to the reactor 5 head were necessary. The total cost of the inspections was 6 7 approximately \$6.6 million. 8 St. Lucie Unit 2 is scheduled to perform ultrasonic inspections during 9 the refueling outage beginning on November 28, 2004. 10 11 Turkey Point Unit 3 is scheduled to replace the reactor vessel head 12 during the refueling outage beginning on September 25, 2004. The 13 estimated duration of this outage is 65 days. 14 15 Turkey Point Unit 4 performed ultrasonic inspections of the reactor 16 head during the refueling outage beginning on October 6, 2003. The 17 18 total duration for the refueling outage was approximately 30 days. The inspections detected no indications and no repairs to the reactor 19 20 head were necessary. The total cost of the inspection was approximately \$5.3 million. Unit 4 is scheduled to replace the reactor 21

1

1 vessel head during the refueling outage beginning on April 9, 2005.

2 The estimated duration of that outage is 65 days.

3

4 Litigation Status Update

- 5 Q. Are there currently any unresolved disputes under FPL's 6 nuclear fuel contracts?
- 7 A. Yes.
- 8
- 1. Spent Fuel Disposal Dispute. The first dispute is under FPL's 9 contract with the Department of Energy (DOE) for final disposal of 10 spent nuclear fuel. In 1995, FPL along with a number of electric 11 utilities, states, and state regulatory agencies filed suit against DOE 12 over DOE's denial of its obligation to accept spent nuclear fuel 13 beginning in 1998. On July 23, 1996, the U.S. Court of Appeals for 14 the District of Columbia Circuit (D.C. Circuit) held that DOE is 15 required by the Nuclear Waste Policy Act (NWPA) to take title and 16 dispose of spent nuclear fuel from nuclear power plants beginning on 17 January 31, 1998. 18
- 19

On January 11, 2002, based on the Federal Circuit's ruling, the Court
 of Federal Claims granted FPL's motion for partial summary
 judgement in favor of FPL on contract liability.

While there is no trial date scheduled at this time for the FPL damages claim, on May 21,2004, the Court of Federal Claims ruled following a trial that another nuclear plant owner, Indiana Michigan Power Company, was not entitled to any damages arising out of the Government's failure to begin disposal of spent nuclear fuel by January 31, 1998. Indiana Michigan can appeal the Court's decision to the U.S. Court of Appeals for the Federal Circuit.

9

1

10 2(a). <u>Uranium Enrichment Pricing Disputes – FY 1993</u>
 <u>Overcharges.</u> FPL is currently seeking to resolve a pricing dispute
 12 concerning uranium enrichment services purchased from the United
 13 States (U.S.) Government, prior to July 1, 1993.

14

15 On August 20, 2001, the Court entered judgment for FPL for \$6.075 million. DOE appealed the judgement to the Federal Circuit. On 16 October 4, 2002, the Federal Circuit reversed the judgment and 17 remanded the case back to the Court of Federal Claims for further 18 consideration. The Federal Circuit directed the Court of Federal 19 Claims to determine whether DOE had other appropriate, but 20 unrecovered, costs sufficient to justify its FY 1993 SWU price. On 21 22 May 28, 2003, the Court of Federal Claims granted the

Government's motion for judgment on the record and dismissed 1 FPL's claims, finding that DOE had other costs sufficient to justify its 2 FY 1993 SWU price. On June 15, 2004, the Federal Circuit again 3 reversed the May 28, 2003 judgment and remanded the case back 4 to the Court of Federal Claims for further consideration. At this time, 5 it is unknown whether the Government will seek rehearing by the 6 Federal Circuit, seek review by the U.S. Supreme Court, or do 7 8 nothing and proceed on remand to the Court of Claims.

9

2(b). Uranium Enrichment Services Contract. DOE was required 10 under FPL's uranium enrichment services contract with DOE to 11 establish a price for enrichment services pursuant to DOE's 12 established pricing policy, based on recovery of DOE's appropriate 13 costs over a reasonable period of time. In the course of discovery in 14 the FY1993 overcharge case discussed above, FPL and the other 15 utility plaintiffs uncovered two other cost components that DOE 16 improperly included in its cost recovery calculation. At trial in the 17 FY1993 case, FPL and the other plaintiffs asserted that these 18 additional costs had been improperly included in DOE's cost 19 20 recovery calculation for its FY1993 SWU price. The Court denied recovery on these issues, concluding that ruling on the merits of 21

these issues would prejudice DOE in the particular chronology of the
 FY1993 litigation.

3

On October 10, 2001, FPL and 21 other U.S. and foreign utility 4 plaintiffs filed new lawsuits in the U.S. Court of Federal Claims 5 alleging that DOE breached the uranium enrichment services 6 7 contract by inappropriately including two amounts in its cost recovery calculation in violation of the pricing provisions of the contracts: 8 9 Imputed interest on the Gas Centrifuge Enrichment Project (GCEP) for FY1986 through FY1993, and costs relating to the production of 10 high assay uranium (i.e., uranium produced primarily for military 11 customers) (High Assay Costs) for FY1992 through FY1993. The 12 GCEP and High Assay Costs claims are described in greater detail 13 14 below. FPL's lawsuit has been stayed by the Court of Federal Claims pending the outcome of the appeal of the judgment 15 concerning the FY 1993 uranium enrichment claims, discussed in 16 17 item 2(a) above.

18

<u>GCEP Claim</u>. In 1976, Congress first authorized the construction of
 GCEP as additional Government uranium enrichment capacity to
 meet the then-projected future demand. This future demand never
 materialized and, by 1985, DOE found itself in a plant over capacity

position and the highest cost worldwide producer of enrichment 1 services. In 1985, DOE cancelled the GCEP and wrote-off the entire 2 \$3.6 billion from the DOE Uranium Enrichment Activity's 1986 3 financial statements relating to accumulated costs of plant 4 construction, termination costs, and imputed interest associated with 5 GCEP. DOE failed to exclude the entire \$3.6 billion from its 6 calculation in setting the uranium enrichment services price. 7 Beginning in FY1986, DOE improperly left approximately \$773 8 million of imputed interest in its cost recovery calculations and price 9 determination. This amount is reflected in the calculation of the 10 Contract's SWU price for FY1986 through FY1993. DOE 11 determined that none of the capital costs of GCEP were used to 12 provide enrichment services to customers. Additionally, under well-13 recognized economic and accounting principles, imputed interest 14 should have been treated as inseparable from the underlying GCEP 15 costs. Therefore, none of the capital investment in GCEP - neither 16 the underlying principal nor the imputed interest - should have been 17 included in the cost recovery calculation for the contract prices. 18

19

High Assay Costs. In 1991, DOE adjusted the financial statements
 of the Uranium Enrichment Activity by removing approximately \$1.14
 billion in accumulated losses and other costs relating to the

1		production of High Assay uranium. DOE made this adjustment
2		based on its conclusion that the Uranium Enrichment Activity no
3		longer had any responsibility for the High Assay program, which
4		produced uranium for military purposes. Despite removing such
5		costs from the financial statements, DOE improperly included
6		approximately \$394 million of High Assay costs in calculating the
7		price for uranium enrichment services for FY1992 through FY1993.
8		
9		FPL's lawsuit alleges that DOE breached the contract by including
10		these costs in the uranium enrichment services price charged to
11		FPL. FPL is claiming that it is owed a refund of \$16,086,328.91 plus
12		interest.
13		
14	Q.	Does this conclude your testimony?
15	Α.	Yes, it does.

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF KOREL M. DUBIN
4		DOCKET NO. 040001-EI
5		September 9, 2004
6		
7	Q.	Please state your name and address.
8	Α.	My name is Korel M. Dubin and my business address is 9250 West
9		Flagler Street, Miami, Florida 33174.
10		
11	Q.	By whom are you employed and in what capacity?
12	Α.	I am employed by Florida Power & Light Company (FPL) as Manager
13		of Regulatory Issues in the Regulatory Affairs Department.
14		
15	Q.	Have you previously testified in this docket?
16	Α.	Yes, I have.
17		
18	Q.	What is the purpose of your testimony?
19	Α.	The purpose of my testimony is to present for Commission review
20		and approval the Fuel Cost Recovery factors (FCR) and the Capacity
21		Cost Recovery factors (CCR) for the Company's rate schedules for
22		the period January 2005 through December 2005. The calculation of
23		the fuel factors is based on projected fuel cost, using the forecast as
24		described in the testimony of FPL Witness Gerard Yupp, operational
1		data as set forth in Commission Schedules E1 through E10, H1 and
----	----	---
2		other exhibits filed in this proceeding, and data previously approved
3		by the Commission. I am also providing projections of avoided
4		energy costs for purchases from small power producers and
5		cogenerators and an updated ten year projection of Florida Power &
6		Light Company's annual generation mix and fuel prices.
7		
8	Q.	Have you prepared or caused to be prepared under your
9		direction, supervision or control an exhibit in this proceeding?
10	A.	Yes, I have. It consists of Schedules E1, E1-A, E1-C, E1-D E1-E,
11		E2, E10, H1, and pages 8-9 and 80-81 included in Appendix II (KMD-
12		5) and the entire Appendix III (KMD-6). Appendix II contains the FCR
13		related schedules and Appendix III contains the CCR related
14		schedules.
15		
16		FUEL COST RECOVERY CLAUSE
17		
18	Q.	What is the proposed levelized fuel cost recovery (FCR) factor
19		for which the Company requests approval?
20	A.	4.001¢ per kWh. Schedule EI, Page 3 of Appendix II shows the
21		calculation of this twelve-month levelized FCR factor. Schedule E2,
22		Pages 10 and 11 of Appendix II indicates the monthly fuel factors for
23		January 2005 through December 2005 and also the twelve-month
24		levelized FCR factor for the period.

1	Q.	Has the Company developed a twelve-month levelized FCR							
2		factor for its Time of Use rates?							
3	Α.	Yes. Schedule E1-D, Page 6 of Appendix II, provides a twelve-							
4		month levelized FCR factor of 4.246¢ per kWh on-peak and 3.892¢							
5		per kWh off-peak for our Time of Use rate schedules.							
6									
7	Q.	Were these calculations made in accordance with the							
8		procedures previously approved in this Docket?							
9	Α.	Yes.							
10									
11	Q.	What is the true-up amount that FPL is requesting to be							
12		included in the FCR factor for the January 2005 through							
13		December 2005 period?							
14	A.	FPL is requesting to include a net true-up under-recovery of							
15		\$140,387,623 in the FCR factor for the January 2005 through							
16		December 2005 period. This \$140,387,623 under-recovery							
17		represents the estimated/actual under-recovery for the period							
18		January 2004 through December 2004 of \$182,196,299 that was							
19		filed with the Commission on August 10, 2004 plus the final true-up							
20		over-recovery of \$41,808,676 that was filed on February 23, 2004 for							
21		the period January 2003 through December 2003.							
22									
23	Q.	What adjustments are included in the calculation of the twelve-							
24		month levelized FCR factor shown on Schedule E1. Page 3 of							

1 Appendix II?

23

2	Α.	As shown on line 29 of Schedule E1, Page 3 of Appendix II, the total
3		net true-up to be included in the 2005 factor is an under-recovery of
4		\$140,387,623. This amount divided by the projected retail sales of
5		103,009,994 MWh for January 2005 through December 2005 results
6		in an increase of .1363¢ per kWh before applicable revenue taxes.
7		The Generating Performance Incentive Factor (GPIF) Testimony of
8		FPL Witness Pam Sonnelitter, filed on April 1, 2004, calculated a
9		reward of \$6,615,282 for the period ending December 2003 which is
10		being applied to the January 2005 through December 2005 period.
11		This \$6,615,282 divided by the projected retail sales of 103,009,994
12		MWh during the projected period results in an increase of .0064¢ per
13		kWh, as shown on line 33 of Schedule E1, Page 3 of Appendix II.
14		
15	Q.	In Docket No. 011605-EI, the Commission approved the Hedging
16		Resolution which allows for:
17		"Each investor-owned electric utility may recover through the
18		fuel and purchased power cost recovery clause prudently-
19		incurred incremental operating and maintenance expenses
20		incurred for the purpose of initiating and/or maintaining a new
21		or expanded non-speculative financial and/or physical hedging
22		program designed to mitigate fuel and purchased power price

24 **2006**, or the time of the utility's next rate proceeding, whichever

4

volatility for its retail customers each year until December 31,

1		comes first." Has FPL included any additional costs in its										
2		factors for the period January 2005 through December 2005										
3		consistent with the Hedging Resolution approved in Docket No.										
4		011605-EI?										
5	Α.	Yes. As stated in the testimony of FPL witness Gerard Yupp, FPL										
6		projects to incur \$553,145 in incremental O&M expenses for FPL's										
7		expanded hedging program. The \$553,145 is for three (3)										
8		employees who are dedicated full time to FPL's expanded hedging										
9		program and for computer license fees.										
10												
11		Since the entire \$553,145 in O&M expenses are for FPL's expanded										
12		hedging program and none of those expenses were included in										
13		FPL's MFR filing in Docket No. 001148-EI, FPL has included										
14		\$553,145 in projected incremental hedging expenses in its FCR										
15		calculations for the period January 2005 through December 2005.										
16		This amount is shown on line 3b of Schedule E1, page 3 of Appendix										
17		И.										
18												
19												
20		CAPACITY COST RECOVERY CLAUSE										
21												
22	Q.	Please describe Page 3 of Appendix III.										
23	A.	Page 3 of Appendix III provides a summary of the requested capacity										
24		payments for the projected period of January 2005 through										

1 December 2005. Total Recoverable Capacity Payments amount to \$689,014,560 (line 16) and include payments of \$189,483,480 to 2 non-cogenerators (line1), Short-term Capacity Payments of 3 \$71,226,940 (line 2), payments of \$353,802,166 to cogenerators (line 4 3), and \$4,718,484 relating to the St. John's River Power Park 5 (SJRPP) Energy Suspension Accrual (line 4a) \$35,856,342 of 6 Okeelanta/Osceola Settlement payments (line 5b), \$12,482,363 in 7 Incremental Power Plant Security Costs (line 6), and \$7,118,219 for 8 Transmission of Electricity by Others (line 7). This amount is offset 9 10 by \$4,407,384 of Return Requirements on SJRPP Suspension 11 Payments (line 4b), by Transmission Revenues from Capacity Sales 12 of \$7,026,600 (line 8), and \$56,945,592 of jurisdictional capacity related payments included in base rates (line 12) less a net under-13 14 recovery of \$80,942,956 (line 13). The net under-recovery of \$80,942,956 includes the final over-recovery of \$7,050,883 for the 15 January 2003 through December 2003 period that was filed with the 16 17 Commission on February 23, 2004, plus the estimated/actual under-18 recovery of \$73,892,873 for the January 2004 through December 2004 period, which was filed with the Commission on August 10, 19 2004. 20

21

Q. Has FPL included a projection of its 2005 Incremental Power
 Plant Security Costs in calculating its Capacity Cost Recovery
 (CCR) Factors?

A. Yes. FPL has included \$12,482,363 on Appendix III, page 3, Line 6
 for projected 2005 Incremental Power Plant Security Costs in the
 calculation of its CCR Factors.

4

Of the total \$12,482,363 for 2005 incremental power plant security 5 costs. \$10.838.199 is for nuclear power plant security, which is 6 discussed in the testimony of FPL Witness John Hartzog. The 7 remaining \$1,644,163 of the total \$12,482,363 is for fossil power 8 9 plant security. This projection includes the costs of increased security measures for incremental fossil power plant security required 10 11 by the Maritime Transportation Act, Security Coast Guard rule and/or recommendations from the Department of Homeland Security 12 13 authorities. FPL is in the process of complying with these 14 requirements and will continue implementing these measures into 2005. The measures include the cost of cameras/recorders and 15 16 security guards.

17

The 2002 MFRs filed in Docket No. 001148-EI do not include any of the incremental power plant security costs as a result of 9/11/01 or other Homeland Security responses that FPL has included for recovery through the CCR clause. On November 9, 2001, FPL filed a series of adjustments to its 2002 MFRs to reflect the impact of the 9/11/01 events. However, the footnote on Attachment 1 of this filing stated that this series of adjustments "Reflects recovery of additional

1	security costs through the fuel clause as filed 11/05/2001 in Docket
2	010001-EI." The "additional security costs" reflected in the fuel
3	clause were the initial estimate of the costs of power plant security.
4	Thus, from the outset FPL's incremental power plant security costs
5	as a result of 9/11/01 and other Homeland Security responses have
6	been accounted for and recovered through the adjustment clauses
7	and not reflected in base rates.

8

9 Q. Please describe Page 4 of Appendix III.

A. Page 4 of Appendix III calculates the allocation factors for demand
 and energy at generation. The demand allocation factors are
 calculated by determining the percentage each rate class contributes
 to the monthly system peaks. The energy allocators are calculated
 by determining the percentage each rate contributes to total kWh
 sales, as adjusted for losses, for each rate class.

16

17 Q. Please describe Page 5 of Appendix III.

A. Page 5 of Appendix III presents the calculation of the proposed CCR
 factors by rate class.

20

Q. What effective date is the Company requesting for the new FCR and CCR factors?

A. The Company is requesting that the new FCR and CCR factors
 become effective with customer bills for January 2005 through

- December 2005. This will provide for 12 months of billing on the
 FCR and CCR factors for all our customers.
- 3

Q. What will be the charge for a Residential customer using 1,000 kWh effective January 2005?

6 Α. The typical 1,000 Residential kWh bill is \$90.35. This includes a 7 base charge of \$40.22, the fuel cost recovery charge from Schedule E1-E, Page 7 of Appendix II for a residential customer is \$40.09, the 8 9 Capacity Cost Recovery charge is \$7.39, the Conservation charge is 10 \$1.48, the Environmental Cost Recovery charge is \$0.25 and the 11 Gross Receipts Tax is \$0.92. A comparison of the current Residential (1,000 kWh) Bill and the 2005 projected Residential 12 13 (1,000 kWh) Bill is presented in Schedule E10, Page 78 of Appendix 11. 14

15

16 Q. Does this conclude your testimony.

17 A. Yes, it does.

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2	FLORIDA POWER & LIGHT COMPANY
3	TESTIMONY OF TOM HARTMAN
4	DOCKET NO. 040001-EI
5	September 9, 2004
6	
7	Q. Please state your name and business address.
8	A. My name is Thomas L. Hartman. My business address is 700 Universe
9	Blvd., Juno Beach, FL 33408.
10	
11	Q. By whom are you employed and what is your position?
12	A. I am employed by Florida Power & Light Company ("FPL" or the
13	"Company") as the Director of Business Management for Resource
14	Assessment and Planning.
15	
16	Q. What are your present job responsibilities?
17	A. My current responsibilities include: providing analyses and support to
18	assist the Company in determining whether and on what terms to extend or
19	replace expiring purchase power contracts; evaluating and identifying
20	improvement opportunities and negotiating amendments to existing long
21	term power purchase agreements; negotiating new power purchase
22	agreements; and assisting in the development of draft purchase power
23	agreements for future generation capacity purchases.

24

- **Q.** Would you please give a brief description of your educational
- 2 background and professional experience?

A. I received a Bachelor of Science Degree in Mechanical Engineering and 3 Aerospace Sciences in 1974, and a Master's Degree in Mechanical 4 5 Engineering in 1975 from Florida Technological University. I received a Masters of Business Administration degree from Georgia State University 6 in 1985. I have been employed in my current position at FPL since July 7 8 2003. From 1994 until joining FPL, I was employed by FPL's unregulated affiliate, FPL Energy, LLC and its predecessor company. 9 Throughout my employment at FPL Energy I held a number of positions 10 in Business Management, where I had responsibility for various 11 unregulated power projects, including responsibility for administering, 12 negotiating, and modifying power purchase agreements. Prior to joining 13 FPL Energy, I was with a number of consulting firms, providing 14 15 management and technical consulting.

16

17 **Q. What is the purpose of your testimony?**

A. My testimony is provided in support of FPL's request for approval of three purchase power contracts with subsidiaries of the Southern Company, for purposes of cost recovery through the capacity cost recovery clause and the fuel and purchased power cost recovery clause. The capacity represented by the three contracts totals 955 MW. My testimony describes

1	these contracts, identifies their principal benefits, and explains why the
2	Commission should approve them for purposes of cost recovery.
3	
4	Q. Have you prepared, or caused to be prepared under your direction or
5	supervision, an exhibit to be used in this proceeding?
6	A. Yes. It consists of the following documents:
7	Document TLH - 1 Contract for Scherer Unit 3
8	Document TLH - 2 Contract for Harris Unit 1
9	Document TLH - 3 Contract for Franklin Unit 1
10	Document TLH – 4 2003 Off Peak Price Spread between Florida and
11	Southeastern SERC
12	Document TLH – 5 Summary of Merchant Plants in Southeastern SERC
13	Document TLH – 6 Summary Economic Analysis against 2003 RFP
14	Plant
15	
16	Q. Please describe each of the contracts and summarize its key elements.
17	A. FPL has negotiated three individual contracts for the purchase of power
18	from three discrete units owned by one or more subsidiaries of the
19	Southern Company, (sometimes referred to as "Southern Company" or
20	"Southern").
21	
22	The first contract is for approximately 165 MW (19.57% of unit capacity)
23	of firm capacity and energy from the coal-fired Robert W. Scherer Unit 3
24	plant, located near Juliette, Georgia and jointly owned by Georgia Power
25	Company and Gulf Power Company (the "Scherer Contract," my
26	Document TLH - 1). Under this contract, FPL would make a fixed

monthly capacity payment and an energy payment tied to the actual cost of
 fuel, emissions allowances, and variable O&M at the facility, as well as a
 fixed startup payment which escalates at a fixed rate.

4

5 The second contract is for 100% of unit capacity, up to 600 MW of 6 energy and firm capacity from Southern Power Company's Harris Unit 1 7 combined cycle facility, located near Autaugaville, Alabama (the "Harris Contract," my Document TLH - 2). Under this contract FPL would make 8 a fixed monthly capacity payment, variable O&M and startup payments 9 that escalate at a fixed rate, payments for firm gas transportation to the 10 11 unit, and payments for fuel supply tied to an established gas index and a 12 fixed heat rate curve for the facility.

13

14 The third contract is for approximately 190 MW (35.1% of unit capacity) of firm capacity and energy from Southern Power Company's Franklin 15 16 Unit 1 combined cycle facility, located near Smiths, Alabama (the "Franklin Contract," my Document TLH - 3). Under this contract, FPL 17 would make a fixed monthly capacity payment, variable O&M and startup 18 19 payments that escalate at a fixed rate, payments for firm gas transportation to the unit, and payments for fuel supply tied to an established gas index 20 21 and at fixed heat rates based upon output.

22

All three unit outputs under the contracts are fully dispatchable by FPL 1 2 within agreed-upon scheduling parameters. Additionally, all three 3 contracts call for bonuses/penalties in the capacity payments based upon each unit's ability to meet or exceed target availabilities. 4 All three contracts call for delivery of energy and capacity to FPL at the facility's 5 interconnection point to the transmission system. After allowance for 6 7 losses in transmission, the contracts will provide 930 MW of capacity at 8 the FPL system. All three contracts call for delivery of energy and capacity starting June 1, 2010 and have a nominal termination date of 9 December 31, 2015. The contracts for Harris and Franklin include an 10 option for FPL to extend the term of the contracts by two years, 11 exercisable by FPL until January 2010. 12

13

14 Q. What is FPL's purpose in entering into these contracts?

A. The purpose of these contracts is to allow FPL to continue cost-effectively 15 16 many of the benefits provided by the current supply arrangements under the Unit Power Sales Agreement (the "UPS Agreement") between FPL 17 18 and subsidiaries of the Southern Company, which provides energy and 19 930 MW of capacity, and expires May 31, 2010. Under the UPS Agreement, FPL has received coal-fired power from Scherer Unit 3 and 20 21 Alabama Power Company's Miller Units 1, 2, 3 and 4. The Miller Units currently provide 720 of the 930 MW under the UPS Agreement. 22 Alabama Power has indicated to FPL that, upon expiration of the UPS 23

Agreement, it is not willing to continue the wholesale sale of the Miller portion of the UPS agreement. In addition to providing energy and capacity, the current supply arrangement under the UPS Agreement provides FPL other benefits, including transmission rights out of the SERC region. With the UPS Agreement set to expire in 2010, it was necessary to seek alternative supply sources that would preserve these additional benefits associated with the UPS Agreement.

8

9 Q. Are there any contingencies or conditions precedent in the contracts

10 that you wish to bring to the Commission's attention?

A. There are two important conditions precedent in each of the contracts that 11 I would like to address. The first relates to the need to obtain firm 12 13 transmission rights from each generating facility. If FPL is unable to 14 obtain adequate firm transmission by a date certain, and at an acceptable 15 cost, FPL has the right to terminate the contracts. The second condition precedent relates to FPSC approval of all three contracts for purposes of 16 cost recovery. If the Commission fails to grant the requisite approval 17 18 within six months (or before transmission rights are obtained, whichever is 19 later), FPL will have the right to terminate the contracts. These conditions 20 precedent are linked through all three contracts, in that termination of any 21 one contract requires the termination of all three contracts. Thus, the contracts, although separate in form and relating to different generating 22

- units, in fact constitute a single, composite power purchase option for
 purposes of the Commission's review and approval.
- 3

Q. Please explain why these contracts are contingent upon FPL's ability to obtain firm transmission rights.

A. Firm transmission rights are essential to these contracts in order to deliver 6 7 the power to FPL's system. The existing UPS Agreement has transmission service bundled into the contract. Continuation of bundled 8 transmission service is no longer allowed under FERC Order 888. In 9 order to move the energy and capacity to FPL's customers from units 10 located within Southern's service territory, FPL must seek and obtain the 11 needed transmission capacity. If FPL is unable to obtain the requisite firm 12 transmission rights, the contracts will offer no value to FPL's customers 13 14 and FPL will have the right to reject them.

15

16 Q. Does FPL believe that it will be able to obtain the requisite

17 transmission rights?

A. Yes. Under FERC Order 888, long term (i.e., more than one year) firm
transmission customers have the right to "roll-over" their transmission
rights to other sources of energy and capacity. FPL has been a long-term
transmission customer of the Southern Company and, therefore, expects to
"roll-over" the transmission rights bundled in our existing UPS Agreement
to meet customers' needs through these new contracts.

2 To roll-over its transmission rights, FPL expects that it will have to show that the changed delivery points (from the existing UPS Agreement to the 3 new contracts) do not cause substantial changes in the transmission 4 5 provider's system flows. The UPS Agreement currently provides energy and capacity to FPL from Scherer Unit 3 and Alabama Power Company's 6 7 Miller Units 1, 2, and 3. The flow from Scherer Unit 3 will be essentially 8 unchanged. The Harris and Franklin units are suitable replacements for the Miller output from a transmission standpoint because they are located 9 10 on the flow path between the Miller units and the Florida border. 11 Consequently, little change in the transmission provider's flows is 12 expected under the Harris and Franklin Contracts. As a result of these 13 considerations, FPL should be granted "roll-over" of its existing transmission rights under the UPS Agreement to these three replacement 14 15 contracts.

16

1

17 Q. How does the capacity provided by these contracts relate to the

18 **Company's current Ten Year Site Plan?**

A. FPL's current Ten Year Site Plan contemplates replacing the existing
 supply arrangement under the UPS Agreement with purchased power in
 the same quantity, starting in the summer of 2010. Entering into these
 contracts would be consistent with that plan. The Ten Year Site Plan,
 however, assumed that the replacement contracts would be based only

- 1 upon natural gas fired generation, while the proposed contracts include a
- 2 firm coal component.
- 3

4 Q. What are the key benefits of entering into these contracts?

A. The contracts offer several important benefits. In conjunction with these
contracts:

7 1) FPL will maintain 165 MW of firm coal capacity in FPL's portfolio
8 with the opportunity to purchase additional "coal-by-wire" on an as9 available basis.

FPL will receive rights of first refusal for additional firm coal fired
 capacity and energy from Southern's Miller and Scherer units.

3) FPL also will retain 930 MW of firm transmission within SERC for
future use, enabling it to procure energy and capacity when market terms
are favorable.

4) FPL will obtain the equivalent of firm gas transportation adequate for
790 MW of generation, on a separate gas transmission network
independent of the two that serve Florida, to meet FPL's power supply
needs.

5) FPL's access to firm transmission capacity on the Southern system will
enable FPL to obtain contracted firm capacity and/or purchase market
energy from outside Florida, thus enhancing FPL's electric system
reliability.

6) FPL will be able to defer making a long term commitment (self build
 or long-term purchase) which likely would be gas-based, thus preserving a
 certain amount of flexibility to consider new non-gas technologies over
 the next ten years.

5

Q. Please explain the importance of maintaining coal-fired capacity in FPL's resource portfolio.

A. The Scherer Contract represents the only available source of additional
coal-based generation in the time frame contemplated. FPL believes in
maintaining a diversity of energy sources, including natural gas, oil,
nuclear and coal, the combined use of which benefits our customers by
reducing volatility in energy costs for our customers. In addition, a
diversity of energy sources increases system reliability because
interruptions in one source are unlikely to occur simultaneously in others.

15

The Scherer contract, along with the transmission access associated with all three contracts, increase the diversity of FPL's energy sources. Without these contracts, FPL would need to add gas generation to its portfolio to meet its load requirements in 2010. Moreover, FPL will acquire a Right of First Refusal in conjunction with the contracts that potentially could add substantial additional coal-based generation to FPL's portfolio.

23

Q. Explain how FPL may be able to obtain additional coal-based

2 capacity pursuant to the Right of First Refusal.

A. If Alabama Power ultimately chooses to sell the Miller units at wholesale
on a long-term basis, FPL has the first option to purchase Miller energy
and firm capacity and concurrently reducing the energy and capacity taken
under the Franklin and Harris Contracts. Additionally, FPL will have the
option to purchase a small amount of additional firm capacity from
Scherer Unit 3 under some circumstances.

9

10 Q. Would the contracts generate additional opportunities for FPL to

11 access coal-fired generation?

A. Yes. Operating subsidiaries of the Southern Company have a large 12 13 proportion of base load coal and nuclear units in their portfolio of 14 generation assets. Retention of the Miller units to meet Alabama Power's native load means that coal generation will be more frequently on the 15 16 margin than it would otherwise be. As a result, power from coal units will be available more frequently in off-peak periods at attractive prices. 17 18 FPL can use its firm transmission to wheel this inexpensive power to our 19 customers. This is still "coal-by-wire," but on an as-available basis.

20

Essentially, the firm transmission rights in SERC allow FPL to arbitrage price differences between Southern's territory and Florida markets, for the benefit of FPL's customers. Comparing off-peak market clearing price

1 projections in Southern's territory to prices in Florida indicates that the ability to purchase off-peak power could result in substantial savings to 2 3 FPL's customers, ranging between \$36 to \$83 million (2004 NPV), or an average of \$60 million over the contract term. Such estimates are based on 4 the natural gas prices contained in FPL's current baseline projections. 5 However, if gas prices should increase over the Company's baseline 6 projections, the potential benefit of this arbitrage opportunity to FPL's 7 customers is likely to increase because coal will still be on the margin in 8 many hours and the spread between coal generation costs and gas will 9 10 widen. My Document TLH - 4 shows publicly reported data for the spread in off peak power prices between Florida and Southern's territory, 11 and illustrates the potential value of the arbitrage opportunity. Using 2003 12 13 prices, the arbitrage value of the transmission rights for that year would have been worth \$10.87 million. 14

15

16 Q. Please describe any additional benefits to FPL's customers resulting

17 from the transmission rights associated with these contracts.

A. In addition to enabling the delivery of the contracted energy and firm
capacity, and additional coal-fired energy on an as-available basis, the
firm transmission capacity itself enhances FPL's system reliability.
Should the units under contract be unable to generate for any reason, FPL
can use this firm transmission capacity to procure replacement power from
the market to meet its customers' needs. Without these firm transmission

rights, FPL would have no assured access to any capacity in the SERC
 region. In addition, preserving the firm transmission rights will allow FPL
 to pursue additional opportunities to purchase economic capacity and
 energy in the SERC region after these contracts have expired.

5

Q. Please explain how these contracts provide FPL the equivalent of access to an incremental source of firm gas transportation.

8 A. Under each of the Harris and Franklin Contracts, Southern will provide firm gas transportation to these plants under a contract between Southern 9 10 and Southern Natural Gas Company. To the extent FPL is supplied 11 energy from these facilities. Southern will give priority to scheduling FPL's gas with respect to the use of this firm gas transportation capacity. 12 13 Southern cannot, as a condition of these contracts, cancel or replace the existing firm gas transportation contracts without FPL's consent. The 14 15 Southern Natural Gas system is independent of the FGT and Gulfstream pipelines where FPL currently has firm gas transportation capacity. 16

17

This firm gas transportation commitment has several benefits for FPL's customers. First, an additional gas transportation capability increases reliability because it is independent of the in-state supplies (FGT and Gulfstream) used by FPL's gas-fired generation. Secondly, the ability to use this firm transportation to meet our customers' load defers the need for additional gas transportation to be obtained on FGT or Gulfstream, leaving

- that capacity available for later system additions, and deferring the need
 for gas transportation expansion within the state.
- 3

4 Q. Please explain how entering into these contracts will enhance FPL's

5 electric system reliability.

A. First, as discussed above, the Harris and Franklin units use gas 6 transportation facilities that are independent of FPL's current firm gas 7 transportation paths. Therefore, the contracts for these gas-fired units, 8 combined with that for coal-fired power from Scherer Unit 3, provide 930 9 MW (after allowance for transmission losses on Southern's system) into 10 11 FPL's system that is independent of the existing gas infrastructure in 12 Florida. This alone would increase our system reliability, by diversifying the risk due to gas pipeline interruptions. 13

14

Second, Southern has a financial incentive under the contracts to use other resources available to them to meet FPL's need if, for any reason, any of the units under these contracts is not available.

18

Third, in conjunction with these contracts, FPL will hold firm transmission rights within SERC into FPL's system. Should the contract units be unavailable, and should Southern be unable to provide alternate resources, FPL would still have the capability to use its firm transmission rights to import market energy it may purchase in the region to meet FPL's

customers' requirements. While a single power plant is only one source of
energy, transmission that will be held to implement these contracts will
effectively provide two additional alternatives to concentrated generation:
an alternate resource(s) if offered by Southern, or other units in a market
that is geographically diversified from FPL's service territory.

6

Q. If these contracts are not approved, how would FPL meet the 930 MW need left by the loss of the UPS Agreement?

A. It is likely that FPL would either purchase power from one or more yet-tobe-built gas-fired facilities, or self-build a combined cycle unit to meet this
need. The latter alternative would be equivalent to accelerating the selfbuild combined cycle additions shown in the 2004 Ten Year Site Plan.

13

Q. How do the costs of FPL's self-build option compare versus the cost of the contracts proposed for approval?

16 A. If we were to consider only the costs that can be readily quantified, 17 accelerating FPL's self-build plan could result in lower costs of between 18 \$60 and \$80 million (2004 NPV). However, this would ignore a number of the benefits of the Southern contracts that are not easily quantified but 19 20 represent real opportunities and value for FPL's customers. First, the 21 contracts provide approximately 165 MW of firm coal capacity, with the potential to obtain additional firm coal capacity as well as the opportunity 22 23 to purchase additional coal-based energy on an as-available basis, which

1 reduces our customers' exposure to natural gas price volatility. Second, 2 the contracts are a short term commitment and therefore give FPL the 3 option of moving to other fuels at their expiry when new solid fuel generation is possible, whereas a self-build option for 2010 would involve 4 5 a long term commitment to additional gas-fired capacity. Third, they 6 enhance system reliability through availability of additional firm gas 7 transportation on a different pipeline system, as well as the ability to purchase energy outside Florida and transmit it to meet our customers' 8 needs. Fourth, they enable FPL to maintain firm transmission capacity 9 10 which will allow FPL to purchase cost effective capacity and energy in the 11 SERC region after these contracts expire. Given these benefits, I believe 12 that entering into these three contracts is in our customers' best interests.

13

15

14 Q. Putting aside the benefits you have described above, what have you

done to satisfy yourself that the costs of the contracts are reasonable?

A. I have satisfied myself that the costs of these contracts would be
reasonable based on my review of the market for merchant generation in
the SERC region, recent publicly disclosed power purchase agreements for
energy and capacity in the SERC region, and indications of interest from
merchant generators. In addition, I oversaw an evaluation of the contracts
against offers received by FPL in the last RFP conducted relative to FPL's
2007 need for incremental capacity.

23

Q. It has been reported in the trade press that there is a "glut" of
 merchant generation in the SERC region. Did you evaluate the
 potential for meeting FPL's firm capacity needs with purchases from
 merchant generation in that region?

5 A. Yes, I did. In assessing this alternative, I began by identifying thirty four 6 merchant facilities with a combined capacity of over 26,000 MW. Of this total, I identified a total of 4,200 MW from eight simple cycle peaker 7 units, eliminating this output from the total merchant capacity in the 8 This is because the cost of firm gas transportation and firm 9 region. 10 transmission would be uneconomic for the anticipated run time of peakers in the market. Of the remaining 21,800 MW, I concluded that 16,400 MW 11 would be from units that either are in locations where the transmission 12 13 path to FPL would be constrained, or are not directly connected to The Southern Company system and consequently FPL's transmission roll-over 14 rights would not be applicable. Of the remaining 5,800 MW, 620 MW is 15 known to be under contract past 2010. The Franklin and Harris units 16 17 represent 47% of the remaining merchant capacity in the SERC region. 18 Document TLH - 5 summarizes the units examined.

In summary, while there is a large amount of merchant generation capacity
in SERC, only a small percentage of this generation capacity could cost
effectively be used to meet FPL's customer loads.

22

Q. How does the price of the proposed power purchase agreements
 compare to the prices of recent publicly disclosed power purchase

3 agreements in the SERC region?

4 A. Publicly available information is very limited on merchant transactions. However, capacity prices were publicly available on contracts for three 5 gas facilities. Quarterly sales of energy and capacity are reported to the 6 FERC by all merchant generators. The Tenaska Lindsey Hill and Central 7 Alabama units report prices that are higher than the prices reflected in the 8 Franklin Contracts when the respective operating 9 Harris and characteristics are taken into account. The most complete public 10 disclosure was a transaction between Southern Power Company and 11 Georgia Power in June, 2002. Disclosed in Docket ER03-713-000 at the 12 13 FERC, the capacity price for the CCGT McIntosh Units 10 and 11 was \$69/kW-year. After allowance for 3% per annum inflation between that 14 time and 2010, when the contracts begin to deliver energy and capacity to 15 our system, the Southern Power-Georgia Power capacity price would be 16 \$7.28/kW-month, which is higher than the contracts' comparable costs. 17

18

Q. Please explain how FPL's solicitation of indicative offers provided you with comfort that the Southern contracts' pricing is reasonable.

A. In connection with its effort to determine possible sources of replacement
 power for the UPS Agreement upon its expiration, FPL sought indications
 of pricing from several owners of existing merchant facilities that have no

1 known transmission constraints. FPL received only one expression of 2 interest, at an indicative price of \$6.21/kW-month, but with a heat rate that 3 is higher than Harris' or Franklin's contract heat rate. When the heat rate differences are considered, the Southern contracts are more cost-effective. 4 I believe that we received such limited interest due to the timing of our 5 interest. We are interested in meeting a 2010 need, while owners of 6 existing merchant assets are not currently interested in time horizons that 7 8 far in the future. The futures market for wholesale electricity transactions has only a two or three year horizon. If we were looking to purchase 9 wholesale energy for 2006 or 2007, we may have solicited some interest. 10 Alternatively, if we were to wait until 2007 or 2008 to solicit for our 2010 11 need, we may generate some interest. But by then, there is no assurance 12 that the benefits of these contracts will still be available to FPL. To obtain 13 the benefits I have described in my testimony, we must decide now. 14

15

Q. Please explain the analysis you oversaw to compare the costs of these
 contracts to the costs of other offers received in response to FPL's
 most recent RFP for supply options.

A. An economic analysis was performed to compare the costs of these
 contracts against the most comparable offer from the 2003 RFP (a 1,220
 MW 15 year PPA), using methods consistent with those used in the RFP
 evaluation, but using the current economic assumptions. Depending upon
 the level of off-peak purchases from the market, on a straight economic

1 comparison these three contracts are more cost effective for our customers 2 by between \$4 million and \$51 million, net present value in 2004 dollars. 3 These figures include arbitrage savings, transmission interconnection and integration costs, capacity losses, marginal energy losses, increased 4 operating costs due to locational issues, and net equity adjustment. This 5 difference does not reflect all the other benefits that FPL's customers 6 receive as a result of the contracts. This analysis is summarized in my 7 8 Document TLH - 6.

9

10 Q. Please summarize your testimony.

11 A. The Franklin, Harris and Scherer Contracts have been entered into for the purpose of replacing the 930 MW FPL currently receives under the UPS 12 Agreement that terminates May 31, 2010. The benefits of these contracts 13 are significant and include a reduction in energy price volatility due to the 14 firm coal component, as well as the ability to purchase low cost base load 15 16 energy from the SERC region during the off-peak periods. These contracts also provide increased system reliability due to the ability to 17 purchase power from outside the State, as well as delivery of gas to these 18 19 units via a pipeline that is independent of the two existing pipelines in Florida. The shorter term nature of the contracts allows us to broaden the 20 range of generation options for the future as opposed to an accelerated 21 22 commitment to additional natural gas generation in 2010. Further, these contracts enable FPL to retain firm transmission rights that will give FPL 23

greater resource choices in the future. FPL believes that these benefits more than offset any perceived advantages associated with accelerating the construction of combined cycle self-build options listed in its Ten Year Site Plan, thus making the Scherer, Harris and Franklin Contracts the best alternative for FPL's customers.

6

To compare these three contracts to the "market," I assessed the availability of generating resources in the SERC region and determined that only a small portion of the total installed capacity in that region might be available to replace the UPS Agreement and also meet FPL's objective of preserving its firm transmission rights from the SERC region. I further determined that these "market" alternatives were less beneficial than the three contracts.

14

To test the reasonableness of the contracts' costs, I compared the contract pricing with the limited available information on market-based contracts in the Southern territory, and compared the economics to a competitive bid obtained in the 2003 RFP. Based on this review, I am satisfied that the costs of the contracts are reasonable. Given the benefits offered by the contracts and the reasonableness of the contracts' costs, I recommend that the Commission approve the contracts for purposes of cost recovery.

- 1 Q. Does that conclude your testimony?
- 2 A. Yes

Documents TLH-4, TLH-5 and TLH-6 are attached.

Documents TLH-1, TLH-2 and TLH-3 are included in a separate volume.

2003 off peak price spread between Florida and Southeastern SERC

2003 Off Peak Price Spread

TLH-4 DOCKET NO. 040001-EI FPL WITNESS: T. Hartman EXHIBIT SEPTEMBER 9, 2004

	Owner	Plant	Capacity	State		Notes
Simple	Cycle Plants					
-	FPL Energy	Calhoun	668	AL		
	Southern Co.	Greene County	740	AL		
	Duke Energy	Sandersville	640	GA		
	NRG Energy	Sterling	202	LA	٦	
	NRG Energy	Bayou Cove	320	LA		
	Duke Energy	New Albany	350	MS	\mathbf{F}	Must wheel through transmission constrained areas
	Duke Energy	Southhaven	640	MS		
	Duke Energy	Enterprise	640	MS	1	
Combir	ned Cycle Plan	ts				
in t	ransmission c	onstrained areas	:			
	Calpine	Pine Bluff	213	AR	ſ	
	Cleco	Perryville	718	AR	ļ	
	Duke Energy	Hot Springs	620	AR	ŀ	Must wheel through transmission constrained areas
	Mirant/Kinder	Wrightsville	550	AR	ļ	
	Teco Energy	Union	2,200	AR	Т	
	Calpine	Hog Bayou	246	LA	ŗ	
	Calpine	Carville	501	LA	ļ	
	Calpine	Arcadia	1,160	LA	ļ	
	Cleco	Evangeline	919	LA	ļ	
	Cogentrix	Ouachita	816	LA		
	Cogentrix	Caldonia	810	MS		
	Cogentrix	Southhaven	810	MS	F	Must wheel through transmission constrained areas
	Duke Energy	Hinds	520	MS	ļ	
	Intergen	Magnolia	900	MS		
	NEGI	Attala	526	MS		
	NRG Energy	Batesville	837	MS		
	Roliant	County	804	MS	1	
	Southern Co	Daniel	1 064	MS]	
Evi	ra Wheel	Damoi	1,004	NIC		
	Calnine	Decatur	792	AL		Connect to TVA
	Calpine	Morgan	807	AL		Connect to TVA
	Gaiping	morgan	007	,		
						Half under contract to Ga Power, remainder transmission
	Duke Energy	Murray	1,240	GA	—	constrained, need to wheel through Dalton, TVA, and
	57	2				Southern
Via	ble Alternative	s				
	Southern Co.	Barry	1,064	AL		
	Southern Co.	Franklin	1,185	AL	_	Current offer
	Southern Co.	Harris	1,254	AL	_	Current offer
	Tenaska	Lindsey Hill Central	845	AL	-	Under contract until 2020 to Coral
	Tenaska	Alabama	885	AL	_	Under contract until 2020 to Williams
Total			26,486			

DOCKET NO. 040001-EI FPL WITNESS: T. Hartman EXHIBIT_____ SEPTEMBER 9, 2004

Economic Analysis Against 2003 RFP Plant

SoCo Offer Economic Comparison to 2003 RFP Plant (millions, NPV, 2004\$, 2004 - 2032)

Description of Options	MW	Effective FPL Border Costs	Trans. Related Costs	Net Equity Adj.	Total	Difference from 2003 RFP Plant
Southern Company Offer						
Average Arbitrage	9 55	64,301	127	17	64,445	(28)
Minimum Arbitrage	955	64,325	127	17	64,468	(4)
Maximum Arbitrage	95 5	64,278	127	17	64,421	(51)
Comparison:						
2003 RFP Plant	1,220	64,342	73	58	64,473	

TLH-6 DOCKET NO. 040001-EI FPL WITNESS: T. Hartman EXHIBIT SEPTEMBER 9, 2004

APPENDIX I

FUEL COST RECOVERY

GJY-1 DOCKET NO. 040001-EI EXHIBIT_____ PAGES 1-6 SEPTEMBER 9, 2004

APPENDIX 1

FUEL COST RECOVERY

TABLE OF CONTENTS

PAGE	DESCRIPTION	SPONSOR										
3	Projected Dispatch Costs	G. Yupp										
3	Projected Availability of Natural Gas	G. Yupp										
4	Projected Unit Availabilities and Outage Schedules	G. Yupp										
5,6	2005 Risk Management Plan	G. Yupp										
Florida Power and Light Company Projected Dispatch Costs and Projected Availability of Natural Gas												
---	----------------	-----------------	--------------	--------------	------------	-------------	-------------	---------------	------------------	----------------	-----------	-------------
January Through December 2005												
Heavy Oil										October		
1.0% Sulfur Grade (\$/Bbl)	33.00	32.38	31.68	31.47	31.87	32.16	32.27	32.24	31.79	31.01	30.61	29.99
1.0% Sulfur Grade (\$/mmBtu)	5.16	5.06	4.95	4.92	4.98	5.03	5.04	5.04	4.97	4.85	4.78	4.69
Light Oil	<u>January</u>	<u>February</u>	<u>March</u>	<u>April</u>	<u>May</u>	<u>June</u>	July	<u>August</u>	September	<u>October</u>	November	December
0.05% Sulfur Grade (\$/Bbl)	52.11	51.89	50.89	49.49	48.17	47.23	46.99	47.08	47.34	47.60	47.86	48.12
0.05% Sulfur Grade (\$/mmBtu)	8.94	8.90	8.73	8.49	8.26	8.10	8.06	8.08	8.12	8.16	8.21	8.25
Natural Gas Transportation	<u>January</u>	February	<u>March</u>	<u>April</u>	<u>May</u>	<u>June</u>	<u>July</u>	<u>August</u>	<u>September</u>	October	November	December
Firm FGT (mmBtu/Day)	760,000	760,000	760,000	859,000	894,000	894,000	894,000	894,000	894,000	859,000	760,000	760,000
Firm Gulfstream (mmBtu/Day)	-	-	•	-	•	350,000	350,000	350,000	350,000	350,000	350,000	350,000
Non-Firm FGT (mmBtu/Day)	150,000	150,000	150,000	110,000	50,000	50,000	50,000	50,000	50,000	110,000	150,000	150,000
Non-Firm Gulfstream (mmBtu/Day)	463,000	463,000	463,000	438,000	413,000	413,000	413,000	413,000	413,000	438,000	463,000	463,000
Total Projected Daily Availability (mmBtu/Day)	1,373,000	1,373,000	1,373,000	1,407,000	1,357,000	1,707,000	1,707,000	1,707,000	1,707,000	1,757,000	1,723,000	1,723,000
												·
Natural Gas Dispatch Price	<u>January</u>	<u>February</u>	March	<u>April</u>	<u>May</u>	June	July	August	September	<u>October</u>	November	December
Firm FGT (\$/mmBtu)	7.10	7.05	6.88	6.25	6.08	6.10	6.14	6.15	6.12	6.13	6.29	6.47
Firm Gulfstream (\$/mmBtu)	-	-	-	-	-	6.06	6.10	6.11	6.07	6.09	6.24	6.42
Non-Firm FGT (\$/mmBtu)	7.25	7.21	7.03	6.42	6.31	6.33	6.37	6.38	6.35	6.30	6.44	6.62
Non-Firm Gulfstream (\$/mmBtu)	7.47	7.42	7.25	6.65	6.69	6.71	6.75	6.76	6.73	6.59	6.75	6.93
											_	, ,
an												
Scherer (\$/mmBtu)	1.59	1.59	1.59	1.59	1 59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
SIBPP (\$/mmBtu)	2.03	2.03	2.03	2.03	2.03	2.02	2.02	2.02	2.02	2.02	2.02	2.02

FLORIDA POWER & LIGHT PROJECTED UNIT AVAILABILITIES & OUTAGE SCHEDULES PERIOD OF: JANUARY THROUGH DECEMBER, 2005

PLANT/UNIT	FORCED OUTAGE FACTOR (%)	MAINTENANCE OUTAGE FACTOR (%)	PLANNED OUTAGE FACTOR (%)	OVERHAUL DATES	OVERHAUL DATES	OVERHAUL DATES	OVERHAUL DATES
Cape Canaveral 1	1.4	3.6	15.3	02/05/05 - 04/01/05			
Cape Canaveral 2	1.3	3.4	11.5	10/15/05 - 11/25/05			
Cutler 5	1.0	1.2	8.2	10/22/05 - 11/20/05			
Cutler 6	1.3	1.7	11.5	10/22/05 - 12/02/05			
Lauderdale 4	0.9	4.2	3.3	03/19/05 - 03/30/05			
Lauderdale 5	0.9	4.2	19.7	09/24/05 - 12/04/05			
Lauderdale GTs	1.0	7.2	0.0	NONE			
Fort Myers 2 CC	1.0	4.2	1.6	02/12/05 - 02/23/05	** 01/29/05 - 02/09/05 **	01/15/05 - 01/26/05 *	*
Ft. Myers 3	1.1	1.7	1.6	02/26/05 - 03/03/05	** 03/05/05 - 03/10/05 **		
Ft. Myers GTs	0.3	1.3	2.1	03/01/05 - 03/28/05	** 04/01/05 - 04/28/05 **	02/01/05 - 02/28/05 *	* 03/01/05 - 03/07/05 **
Manatee 1	1.1	3.3	20.5	09/17/05 - 11/30/05			
Manatee 2	1.0	3.2	0.0	NONE			
Manatee 3	1.5	0.6	0.0	NONE			
Martin 1	0.8	2.5	17.3	01/29/05 - 04/01/05			
Martin 2	0.9	2.8	0.0	NONE			
Martin 3	1.0	3.9	0.8	03/12/05 - 03/17/05	**		
Martin 4	1.0	4.3	2.5	02/12/05 - 02/17/05	** 03/19/05 - 03/30/05 **		
Martin 8 CC	1.5	0.6	0.0	NONE			
Port Everglades 1	1.8	2.4	15.3	10/01/05 - 11/25/05			
Port Everglades 2	1.9	2.4	22.5	02/26/05 - 05/18/05			
Port Everglades 3	1.3	3.4	5.8	02/05/05 - 02/25/05			
Port Everglades 4	1.2	3.2	0.0	NONE			
Port Everglades GTs	1.9	9.7	0.0	NONE			
Putnam 1	1.0	3.2	9.6	03/12/05 - 04/15/05	** 10/15/05 - 11/18/05 **	7	
Putnam 2	1.0	3.2	6.8	04/23/05 - 05/27/05	** 04/30/05 - 05/14/05 **	r	
Riviera 3	2.4	3.4	7.7	03/12/05 - 04/08/05			
Riviera 4	2.8	3.9	8.2	10/08/05 - 11/06/05			
Sanford 3	1.8	2.2	5.8	03/12/05 - 04/01/05			
Sanford 4 CC	1.0	3.3	0.5	02/05/05 - 02/12/05	**		
Sanford 5 CC	1.0	3.7	2.7	05/28/05 - 06/06/05	** 05/14/05 - 05/23/05 **	* 09/03/05 - 09/12/05 *	** 06/11/05 - 06/20/05 **
Turkey Point 1	1.4	3.6	0.0	NONE			
Turkey Point 2	1.4	3.6	20.5	02/26/05 - 05/11/05			
Turkey Point 3	1.3	1.3	0.0	NONE			
Turkey Point 4	1.0	1.0	17.8	04/09/05 - 06/13/05			
St. Lucie 1	1.0	1.0	16.4	10/03/05 - 12/02/05			
St. Lucie 2	1.3	1.3	0.0	NONE			
St. Johns River Power P	1.8	4.0	16.2	02/27/05 - 04/26/05			
St. Johns River Power P	2.0	4.4	0.0	NONE			
Scherer 4	1.8	4.0	0.0	NONE			

** Partial Planned Outage

2005 Risk Management Plan

- 1. Identify overall quantitative and qualitative risk management objectives.
 - A. FPL's risk management objectives are to effectively execute a well-disciplined and independently controlled fuel procurement strategy to achieve the goals of fuel price stability (volatility minimization), to potentially achieve fuel cost minimization, and to achieve asset optimization. FPL's fuel procurement strategy aims to mitigate fuel price increases and reduce fuel price volatility, while maintaining the opportunity to benefit from price decreases in the marketplace for FPL's customers.

FPL plans to hedge a percentage of its residual fuel oil and natural gas purchases with a combination of fixed price transactions and options. Additionally, FPL plans to extend its hedging program up to two years beyond the next recovery period. FPL believes that hedging up to three years (next recovery period and an additional two years) into the future will help further achieve the goal of fuel price stability. FPL will approach hedging into the extended period cautiously, similar to its initial approach to implementing its expanded hedging program.

- 3. Identify and quantify each risk, general and specific, that the utility may encounter with its fuel procurement.
 - A. The potential risks that FPL encounters with its fuel procurement are supplier credit, fuel supply and transportation availability, product quality, delivery timing, weather, environmental and supplier failure to deliver. The utility determines acceptable levels of risk for fuel procurement by performing various analyses that include forecasted/expected levels of activity, forecasted price levels and price changes, price volatility, and Value-at-Risk (VaR) calculations. The analyses are then presented to the Exposure Management Committee for review and approval. Approval is given to remain within specified VaR limits. These VaR limits are specified in FPL's policies and procedures that were filed on a confidential basis with the Commission.
- 4. Describe the utility's oversight of its fuel procurement activities.
 - A. The utility has a separate and independent middle office risk management department that provides oversight of fuel procurement activities at the deal level. In addition, an executive-level, Exposure Management Committee meets monthly to review performance and discuss current procurement/hedging activities and monitors daily results of procurement activity.
- 5. Verify that the utility provides its fuel procurement activities with independent and unavoidable oversight.
 - A. Please see response to No. 4.
- 6. Describe the utility's corporate risk policy regarding fuel procurement activities.
 - A. The utility has a written policy and procedures that define VaR, stop -loss, and duration limits for all forward activity by portfolio. FPL's policies and procedures were filed on a confidential basis with the Commission. In addition, individual procurement strategies must be documented and approved by front and middle office management prior to deal execution.

- Verify that the utility's corporate risk policy clearly delineates individual and group transaction limits and authorizations for all fuel procurement activities.
 A. Please see response to No. 6.
- Describe the utility's strategy to fulfill its risk management objectives.
 A. Please see response to No. 1.
- Verify that the utility has sufficient policies and procedures to implement its strategy.
 A. Please see response to No. 6.
- 13. Describe the utility's reporting system for fuel procurement activities.
 - A. The utility has sufficient systems capability for identifying, measuring, and monitoring all types of risk associated with fuel procurement activities. These systems include: deal capture, a database for maintaining current and historical pricing, deal information, and valuation models, and a reporting system that utilizes the information in the trade capture system and the database.
- 14. Verify that the utility's reporting system consistently and comprehensively identifies, measures, and monitors all forms of risk associated with fuel procurement activities.A. Please see response to No. 13.
- 15. If the utility has current limitations in implementing certain hedging techniques that would provide a net benefit to ratepayers, provide the details of a plan for developing the resources, policies, and procedures for acquiring the ability to use effectively the hedging techniques.
 - A. FPL does not believe that there are any such limitations currently.

APPENDIX II FUEL COST RECOVERY E SCHEDULES

KMD-5 DOCKET NO. 040001-EI FPL WITNESS: K. M. DUBIN EXHIB<u>IT</u> PAGES 1-81 SEPTEMBER 9, 2004

APPENDIX II FUEL COST RECOVERY E SCHEDULES January 2005 – December 2005

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	SPONSOR
3	Schedule E1 Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin
4	Schedule E1-A Calculation of Total True-up (Projected Period)	K. M. Dubin
5	Schedule E1-C Calculation Generating Performance Incentive Factor and True-Up Factor	K. M. Dubin
6	Schedule E1-D Time of Use Rate Schedule	K. M. Dubin
7	Schedule E1-E Factors by Rate Group	K. M. Dubin
8-9	2003 Actual Energy Losses by Rate Class	K. M. Dubin
10-11	Schedule E2 Monthly Summary of Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin/ G. Yupp/J. Hartzog
12-15	Schedule E3 Monthly Summary of Generating System Data	G. Yupp/J. Hartzog
16-67	Schedule E4 Monthly Generation and Fuel Cost by Unit	G. Yupp/J. Hartzog
68-69	Schedule E5 Monthly Fuel Inventory Data	G. Yupp/J. Hartzog
70-71	Schedule E6 Monthly Power Sold Data	G. Yupp/J. Hartzog
72-73	Schedule E7 Monthly Purchased Power Data	G. Yupp
74-75	Schedule E8 Energy Payment to Qualifying Facilities	G. Yupp
76 -77	Schedule E9 Monthly Economy Energy Purchase Data	G. Yupp
78	Schedule E10 Residential Bill Comparison	K. M. Dubin
79	Schedule H1 Three Year Historical Comparison	K. M. Dubin
80-81	Cogeneration Tariff Sheets	K. M. Dubin

FLORIDA POWER & LIGHT COMPANY

FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION

ESTIMATED FOR THE PERIOD: JANUARY 2005 - DECEMBER 2005 1-1

	ES: MATED FOR THE FERIOD. DANGART 2003 DEC	(a)	(b)	(c)
		DOLLARS	MWH	¢/KWH
1	Fuel Cost of System Net Generation (E3)	\$3,616,133,562	94,398,459	3.8307
2	Nuclear Fuel Disposal Costs (E2)	21,509,414	23,120,944	0.0930
3	Fuel Related Transactions (E2)	11,344,023	0	0.0000
3 b	Incremental Hedging Costs (E2)	553,145	0	
4	Fuel Cost of Sales to FKEC / CKW (E2)	(46,912,909)	(1,074,064)	4.3678
5	TOTAL COST OF GENERATED POWER	\$3,602,627,235	93,324,395	3.8603
6	Fuel Cost of Purchased Power (Exclusive of	230,258,913	11,977,473	1.9224
7	Energy Cost of Sched C & X Econ Purch (Florida) (E9)	24,343,065	646,000	3.7683
8	Energy Cost of Other Econ Purch (Non-Florida) (E9)	26,842,775	573,396	4.6814
9		0	0	0.0000
10		0	0	0.0000
11	Okeelanta/Osceola Settlement (E2)	\$9,531,433	0	0.0000
12	Payments to Qualifying Facilities (E8)	160,556,000	7,227,963	2.2213
13	TOTAL COST OF PURCHASED POWER	\$451,532,186	20,424,832	2.2107
14	TOTAL AVAILABLE KWH (LINE 5 + LINE 13)		113,749,227	
15	Fuel Cost of Economy Sales (E6)	(115,254,050)	(2,460,000)	4.6851
16	Gain on Economy Sales (E6A)	0	0	0.0000
17	Fuel Cost of Unit Power Sales (SL2 Partpts) (E6)	(1,408,227)	(448,894)	0.3137
18 18a	Fuel Cost of Other Power Sales (E6) Revenues from Off-System Sales	0 (11.084.350)	0 (2.908.894)	0.0000 0.3811
19	TOTAL FUEL COST AND GAINS OF POWER SALES	(\$127,746,627)	(2.908.894)	4.3916
19a	Net Inadvertent Interchange	0	0	
20	TOTAL FUEL & NET POWER TRANSACTIONS (LINE 5 + 13 + 19 + 19a)	\$3,926,412,793	110,840,333 =======	3.5424
21	Net Unbilled Sales	(8,002,929) **	(225,918)	(0.0077)
22	Company Use	11,779,238 **	332,521	0.0114
23	T & D Losses	255,216,832 **	7,204,622	0.2465
24	SYSTEM MWH SALES (Excl sales to FKEC / CKW)	\$3,926,412,793	103,529,108	3.7926
25	Wholesale MWH Sales (Excl sales to FKEC / CKW)	\$19,687,819	519,114	3.7926
26	Jurisdictional MWH Sales	\$3,906,724,974	103,009,994	3.7926
27	Jurisdictional Loss Multiplier	-	•	1.00065
28	Jurisdictional MWH Sales Adjusted for Line Losses	\$3,909,264,345	103,009,994	3.7950
29	FINAL TRUE-UP EST/ACT TRUE-UP JAN 03 - DEC 03 JAN 04 - DEC 04 \$41,808.676 \$182,196,299 (average application) Update application	140,387,623	103,009,994	0.1363
30		\$4 049 651 968	102 000 004	2 0212
31	Revenue Tax Factor	ψ-100,100,100	100,003,334	1 01597
32	Fuel Factor Adjusted for Taxes			3 9941
33	GPIF ***	\$6,615.282	103.009.994	0.0064
34	Fuel Factor including GPIF (Line 32 + Line 33)		,,	4.0005
35	FUEL FACTOR ROUNDED TO NEAREST .001 CENTS/K	WH		4.001

** For Informational Purposes Only
 *** Calculation Based on Jurisdictional KWH Sales

SCHEDULE E - 1A

CALCULATION OF TOTAL TRUE-UP (PROJECTED PERIOD) FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2005 - DECEMBER 2005

1. Estimated/Actual over/(under) recovery (January 2004 - December 2004)	\$ (182,196,299)
2.Final over/(under) recovery (January 2003 - December 2003)	\$ 41,808,676
3.Total over/(under) recovery to be included in the January 2005 - December 2005 projected period (Schedule E1, Line 29)	\$ (140,387,623)
4. TOTAL JURISDICTIONAL SALES (MWH) (Projected period)	103,009,994

5. True-Up Factor (Lines 3/4) c/kWh:

(0.1363)

SCHEDULE E - 1C

CALCULATION OF GENERATING PERFORMANCE INCENTIVE FACTOR AND TRUE - UP FACTOR FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2005 - DECEMBER 2005

147,052,976
\$6,615,282
\$ 140,437,694
103,009,994

3. ADJUSTMENT FACTORS c/kWh:	0.1428
A. GENERATING PERFORMANCE INCENTIVE FACTOR	0.0064
B. TRUE-UP FACTOR	0.1363

SCHEDULE E - 1D

FLORIDA POWER & LIGHT COMPANY

DETERMINATION OF FUEL RECOVERY FACTOR TIME OF USE RATE SCHEDULES

JANUARY 2005 - DECEMBER 2005

NET ENERGY FOR LOAD (%)

		FUEL COST (%)
ON PEAK	30.67	32.62
OFF PEAK	69.33	67.38
	100.00	100.00

FUEL RECOVERY CALCULATION

	TOTAL	ON-PEAK	OFF-PEAK
1 TOTAL FUEL & NET POWER TRANS	\$3,926,412,793	\$1,280,795,853	\$2,645,616,940
2 MWH SALES	103,529,108	31,752,377	71,776,731
3 COST PER KWH SOLD	3.7926	4.0337	3.6859
4 JURISDICTIONAL LOSS FACTOR	1.00065	1.00065	1.00065
5 JURISDICTIONAL FUEL FACTOR	3.7950	4.0363	3.6883
6 TRUE-UP	0.1363	0.1363	0.1363
7			
8 TOTAL	3.9313	4.1726	3.8246
9 REVENUE TAX FACTOR	1.01597	1.01597	1.01597
10 RECOVERY FACTOR	3.9941	4.2392	3.8857
11 GPIF	0.0064	0.0064	0.0064
12 RECOVERY FACTOR including GPIF	4.0005	4.2456	3.8921
13 RECOVERY FACTOR ROUNDED	4.001	4.246	3.892
TO NEAREST .001 c/KWH			
	24.62	0/	
	24.02	/0 0/_	
	10.00	/0	

FLORIDA POWER & LIGHT COMPANY

SCHEDULE E - 1E

FUEL RECOVERY FACTORS - BY RATE GROUP (ADJUSTED FOR LINE/TRANSFORMATION LOSSES)

JANUARY 2005 - DECEMBER 2005

(1)	(2) BATE	(3) AVEBAGE	(4) FUEL RECOVERY	(5) FUEL RECOVERY
GROUP	SCHEDULE	FACTOR	LOSS MULTIPLIER	FACTOR
A	RS-1, GS-1, SL-2	4.001	1.00201	4.009
A-1*	SL-1, OL-1, PL-1	3.949	1.00201	3.957
В	GSD-1	4.001	1.00194	4.008
С	GSLD-1 & CS-1	4.001	1.00097	4.004
D	GSLD-2, CS-2, OS-2 & MET	4.001	0.99390	3.976
Е	GSLD-3 & CS-3	4.001	0.95678	3.828
А	RST-1, GST-1 ON-PEAK	4.246	1.00201	4.254
	OFF-PEAK	3.892	1.00201	3.900
в	GSDT-1 ON-PEAK	4.246	1.00194	4.254
	CILC-1(G) OFF-PEAK	3.892	1.00194	3.900
С	GSLDT-1 & ON-PEAK	4.246	1.00097	4.250
	CST-1 OFF-PEAK	3.892	1.00097	3.896
D	GSLDT-2 & ON-PEAK	4.246	0.99513	4.225
U	CST-2 OFF-PEAK	3.892	0.99513	3.873
Е	GSLDT-3,CST-3, ON-PEAK	4.246	0.95678	4.062
	CILC -1(T) OFF-PEAK & ISST-1(T)	3.892	0.95678	3.724
F	CILC -1(D) & ON-PEAK	4.246	0.99349	4.218
	ISST-1(D) OFF-PEAK	3.892	0.99349	3.867

* WEIGHTED AVERAGE 16% ON-PEAK AND 84% OFF-PEAK

Florida Power & Light Company 2003 Actual Energy Losses by Rate Class

.ine No	Rate Class	Delivered MWH Sales	Expansion Factor	Delivered Energy at Generation	Delivered Efficiency	Losses	Fuel Cost Recovery Multiplier
1	RS-1 Sec	53,362,062	1.07281827	57,247,795	0.932124	3,885,733	1.00201
23	GS-1 Sec	5,858,928	1.07281827	6,285,565	0.932124	426,637	1.00201
4	GSD-1 Pri	65 919	1 04657532	68 989	0 955497	3.070	
6	GSD-1 Sec	22 196 556	1.07281827	23 812 870	0.932124	1 616 315	
7	Subtotal GSD-1	22,262,475	1.07274057	23,881,860	0.932192	1,619,385	1.00194
8						· · · ·	
9	OS-2 Pri	20,360	1.04657532	21,309	0.955497	948	
10	OS-2 Sec	-	1.07281827	-	0.000000	-	
11	Subtotal OS-2	20,360	1.04657532	21,309	0.955497	948	0.97750
12	GSI D-1 Pri	381.079	1 04657532	398.828	0 955497	17,749	
14	GSLD-1 Sec	9.629.926	1.07281827	10.331.161	0.932124	701,235	
15	Subtotal GSLD-1	10.011.005	1 07181931	10,729,989	0.932993	718,983	1.00108
16		,					
17	CS-1 Pri	55,410	1.04657532	57,990	0.955497	2,581	
18	CS-1 Sec	183,213	1.07281827	196,555	0.932124	13,341	
19	Subtotal CS-1	238,623	1.06672450	254,545	0.937449	15,922	0.99632
20		10.040.000	4 03470000	10 004 504	0.000000	704 005	4 00007
21	Subtotal GSLD-17 CS-1	10,249.628	1.07170069	10,984,534	0.933096	/34.905	1.00097
23	GSI D-2 Pri	395 254	1 04657532	413 663	0.955497	18 409	
24	GSI D-2 Sec	1 014 726	1.07281827	1.088.616	0.932124	73 891	
25	Subt GSI D-2	1 409 980	1.06546169	1 502 279	0.938560	92 300	0.99514
26		1,400,000	1.00040100	1,002,270	0.000000		0.00014
27	CS-2 Pri	27,756	1.04657532	29.049	0.955497	1.293	
28	CS-2 Sec	68,799	1.07281827	73,809	0.932124	5.010	
29	Subtotal CS-2	96,556	1.06527437	102,858	0.938725	6,303	0.99497
30							
31	Subtotal GSLD-2 / CS-2	1.506.535	1.06544968	1.605.138	0.938571	98.602	0.99513
32							
33	GSLD-3 Trn	180,521	1.02438901	184,923	0.976192	4,403	0.95678
34	00 0 T	•	4 00 400004	•			
36	CS-3 IM	0	1.02436901	U	0.000000	U	0.00000
37	Subtotal GSLD-3 / CS-3	180.521	1.02438901	184.923	0.976192	4.403	0.95678
38							
39	ISST-1 Sec	0	1.07281827	0	0.000000	0	0.00000
40			4 9 4 9 5 7 5 9 9	4 70 4	0.055407		
41	SST-1 Pfi	4,494	1.04657532	4,704	0.955497	209	
42	SSI-I Sec	18,259	1.07281827	19,589	0.932124	1,330	
40	Subtotal SST-T (D)	22,734	1.00/034/3	24,293	0.930050	1,539	0.99717
44	SST-1 Trn	144 682	1 02438901	148 211	0 976192	3 529	0 95678
46		144,002	1.02400001	140,211	0.070102	0,020	0.00070
47	CILC-1D Pri	1,082,146	1.04657532	1,132,548	0.955497	50,401	
48	CILC-1D Sec	2,028,149	1.07281827	2,175,835	0.932124	147,686	
49	Subtotal CILC-1D	3,110,295	1.06368772	3,308,383	0.940126	198,088	0.99349
50							
51	CILC-1G Pri	700	1.04657532	733	0.955497	33	
52	CILC-1G Sec	235,235	1.07281827	252,365	0.932124	17,129	
53	Subtotal CILC-1G	235,936	1.07274038	253,098	0.932192	17,162	1.00194
54			1 00 10001				
55 56	Suptotal CILC-1D/ CILC-1G	3,346,231	1.06432600	3,561,481	0.939562	215,250	0.99408
50 57	Subtotal GSD-1 & Cil C-1G	22,498,411	1.07274058	24,134,958	0.932192	1,636,547	1 00194
58						1,000,047	
59 60	CILC-1T Trn	1,468,366	1.02438901	1,504,178	0.976192	35,812	0.95678

Florida Power & Light Company 2003 Actual Energy Losses by Rate Class

ine No	Rate Class	Delivered MWH Sales	Expansion Factor	Delivered Energy at Generation	Delivered Efficiency	Losses	Fuel Cost Recovery Multiplier
61	Subtotal ISST-D & CILC-1D	3,110,295	1.06368772	3,308,383	0.940126	198,088	0.99349
62 ['] 63 64	MET Pri	93,198	1.04657532	97,539	0.955497	4,341	0.97750
65	Subtotal OS-2, GSLD-2, CS-2, & MET	1,620,094	1.06412671	1,723,985	0.939738	103,891	0.99390
66 67 68	OL-1 Sec	109,597	1.07281827	117,578	0.932124	7,981	1,00201
69 70	SL-1 Sec	426,217	1.07281827	457,254	0.932124	31,036	1.00201
71	Subtotal OL-1 / SL-1	535.815	1.07281827	574,832	0.932124	39,017	1.00201
72 73 74	SL-2 Sec	67,673	1.07281827	72,601	0.932124	4,928	1.00201
75	RTP-1 Pri	0	1.04657532	0	0,000000	0	
76	RTP-1 Sec	38,247	1.07281827	41,032	0.932124	2,785	
77	Subtotal RTP-1	38,247	1.07281827	41,032	0.932124	2,785	1.00201
78 79 80	RTP-2 Pri BTP-2 Sec	69,791	1.04657532	73,042	0.955497	3,251 8 147	
81	Subtotal BTP-2	181,669	1.06273654	193,066	0.940967	11,397	0 99260
82 83 84	RTP-3 Trn	0	1.02438901	0	0.000000	0	0.00000
85	Total FPSC	99,339,144	1.07136372	106,428,356	0.933390	7,089,211	1,00065
86							
87	Total FERC Sales	1,511,574	1.02438901	1,548,440	0.976192	36,866	
88							
8 9 i	Total Company	100.850.719	1.07065966	107.976.796	0.934004	7.126.077	
90 91 92	Company Use	139,794	1.07281827	149,974	0.932124	10,180	
93 94	Total FPL	100,990,513	1.07066264	108,126,769	0.934001	7,136,257	1.00000
95	Summary of Sales by Voltage:						
96							
97	Transmission	3,305,143	1.02438901	3,385,752	0.976192	80,609	
98 99 00	Primary	2,196,109	1.04657532	2,298,394	0.955497	102,284	
01	Secondary	95,349,467	1.07281827	102,292,650	0.932124	6,943,183	
103	Total	100,850,719	1.07065966	107,976,796	0.934004	7,126,077	

SCHEDULE E2

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2005 - DECEMBER 2005

Page 1 of 2

1	INF	(a)	(b)	(C) Estimated -	(d)	(e)	(f)	(g) 6 MONTH	LINE
-	NO.	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	SUB-TOTAL	NO.
	A1 FUEL COST OF SYSTEM GENERATION	\$249,062,689	\$229,494,456	\$248,849,987	\$264,235,844	\$322,553,153	\$340,576,822	\$1,654,772,951	A1
	1a NUCLEAR FUEL DISPOSAL	2,033,221	1,836,458	2,033,221	1,587,482	1,515,688	1,738,342	10,744,412	1a
	15 COAL CAR INVESTMENT	357,992	355,784	353,577	351,369	349,162	346,954	2,114,838	1b
	1d GAS LATERAL ENHANCEMENTS	47,580	47,140	46,700	46,260	45,819	45,379	278,878	1d
	1e DOE DECONTAMINATION AND	0	0	0	0	0	0	0	1e
	DECOMMISSIONING COSTS								
	1g INCREMENTAL HEDGING COSTS	59,542	35,542	47,707	35,542	49,580	35,542	263,455	1g
	2 FUEL COST OF POWER SOLD	(12,813,229)	(11,745,573)	(10,540,691)	(8,393,387)	(7,532,681)	(10,253,775)	(61,279,336)	2
	2a REVENUES FROM OFF-SYSTEM SALES	(750,000)	(885,800)	(787,500)	(736,750)	(672,000)	(1,190,100)	(5,022,150)	2a
	3 FUEL COST OF PURCHASED POWER	22,005,184	18,732,575	17,921,994	14,381,067	20,527,668	16,225,115	109,793,603	3
	3b OKEELANTA/OSCEOLA SETTLEMENT	799,033	798,170	797,307	796,444	795,581	794,718	4,781,253	Зb
	3c QUALIFYING FACILITIES	13,899,000	12,887,000	13,908,000	13,598,000	13,924,000	13,630,000	81,846,000	30
	4 ENERGY COST OF ECONOMY PURCHASES	5,194,735	4,768,471	5,385,712	5,926,802	6,084,294	2,705,396	30,065,410	4
	4a FUEL COST OF SALES TO FKEC / CKW	(3,354,286)	(3,373,026)	(3,414,130)	(3,662,360)	(3,859,379)	(4,014,266)	(21,677,447)	4a
	5 TOTAL FUEL & NET POWER TRANSACTIONS (SUM OF LINES A-1 THRU A-4)	\$276,541,461	\$252,951,197	\$274,601,884	\$288,166,313	\$353,780,885	\$360,640,127	\$1,806,681,867	5
10	6 SYSTEM KWH SOLD (MWH)	7,871,434	7,643,474	7,321,581	7,506,178	7,862,448	9,376,285	47,581,400	6
_	7 COST PER KWH SOLD (¢/KWH)	3.5132	3.3094	3.7506	3.8391	4.4996	3.8463	3.7970	7
	7a JURISDICTIONAL LOSS MULTIPLIER	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	7a
	7b JURISDICTIONAL COST (¢/KWH)	3.5155	3.3115	3.7530	3.8416	4.5026	3.8488	3.7995	7b
	9 TRUE-UP (¢/KWH)	0.0782	0.0806	0.0841	0.0820	0.0783	0.0657	0.0776	9
	10 TOTAL	3.5937	3.3921	3.8371	3.9236	4.5809	3.9145	3.8771	10
	11 REVENUE TAX FACTOR 0.01597	0.0574	0.0542	0.0613	0.0627	0.0732	0.0625	0.0619	11
	12 RECOVERY FACTOR ADJUSTED FOR TAXES	3.6511	3.4463	3.8984	3.9863	4.6541	3.9770	3.9390	12
	13 GPIF (¢/KWH)	0.0070	0.0072	0.0076	0.0074	0.0070	0.0059	0.0070	13
	14 RECOVERY FACTOR including GPIF	3.6581	3.4535	3.9060	3.9937	4.6611	3.9829	3.9460	14
	15 RECOVERY FACTOR ROUNDED TO NEAREST .001 ¢/KWH	3.658	3.454	3.906	3.994	4.661	3.983	3.946	15

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2005 - DECEMBER 2005

SCHEDULE E2 Page 2 of 2

LINE	(h)	(i)	(j) ESTIMATED -	(k)	(1)	(m)	(n) 12 MONTH	LINE
NO.	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	PERIOD	NO.
A1 FUEL COST OF SYSTEM GENERATION	\$381,888,807	\$373,972,172	\$343,270,872	\$326,700,974	\$270,114,226	\$265,413,560	\$3,616,133,562	A1
1a NUCLEAR FUEL DISPOSAL	1,983,357	1,983,357	1,919,376	1,453,692	1,410,567	2,014,653	\$21,509,414	1a
1b COAL CAR INVESTMENT	344,747	342,539	340,332	338,124	335,917	333,709	\$4,150,206	1b
1d GAS LATERAL ENHANCEMENTS	44,939	0	0	0	0	0	\$323,817	1d
1e DOE DECONTAMINATION AND	0	0	0	0	6,870,000	0	\$6,870,000	1e
DECOMMISSIONING COSTS	00 740	00 740	05 540	05 540	40 500	05 5 40	\$U	d
IG INCREMENTAL REDGING COSTS	66,742	66,742	35,542	35,542	49,580	35,542	\$553,145	ig
2 FUEL COST OF POWER SOLD	(9,436,953)	(9,570,193)	(9,216,004)	(7,905,823)	(8,824,500)	(10,429,469)	(\$116,662,278)	2
28 REVENUES FROM OFF-SYSTEM SALES	(1,395,800)	(1,422,300)	(576,300)	(427,100)	(842,000)	(1,398,700)	(\$11,084,350)	2a
3 FUEL COST OF PURCHASED POWER	25,581,676	23,624,151	17,930,638	17,451,974	16,675,160	19,201,711	\$230,258,913	3
3b OKEELANI A/OSCEOLA SETTLEMENT	793,855	792,991	792,128	791,265	790,402	789,539	\$9,531,433	Зb
3c QUALIFYING FACILITIES	13,796,000	13,849,000	13,609,000	13,936,000	11,677,000	11,843,000	\$160,556,000	3c
4 ENERGY COST OF ECONOMY PURCHASES	2,871,499	2,931,412	2,834,577	4,142,850	4,089,990	4,250,102	\$51,185,840	4
4a FUEL COST OF SALES TO FKEC / CKW	(4,275,422)	(4,431,069)	(4,499,500)	(4,295,460)	(4,035,242)	(3,698,767)	(\$46,912,909)	4a
5 TOTAL FUEL & NET POWER TRANSACTIONS (SUM OF LINES A-1 THRU A-4)	\$412,263,447	\$402,138,802	\$366,440,661	\$352,222,038	\$298,311,100	\$288,354,880	\$3,926,412,793	5
6 SYSTEM KWH SOLD (MWH) (Excl sales to FKEC / CKW)	9,794,123	10,257,836	10,200,267	9,238,929	8,188,913	8,267,640	103,529,108	6
7 COST PER KWH SOLD (¢/KWH)	4.2093	3.9203	3.5925	3.8124	3.6429	3.4878	3.7926	7
7a JURISDICTIONAL LOSS MULTIPLIER	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	7a
7b JURISDICTIONAL COST (¢/KWH)	4.2120	3.9229	3.5948	3.8148	3.6452	3.4900	3.7950	7b
9 TRUE-UP (¢/KWH)	0.0629	0.0600	0.0604	0.0667	0.0752	0.0745	0.0714	9
10 TOTAL	4.2749	3.9829	3.6552	3.8815	3.7204	3.5645	3.8664	10
11 REVENUE TAX FACTOR 0.01597	0.0683	0.0636	0.0584	0.0620	0.0594	0.0569	0.0617	11
12 RECOVERY FACTOR ADJUSTED FOR TAXES	4.3432	4.0465	3.7136	3.9435	3.7798	3.6214	3.9281	12
13 GPIF (¢/KWH)	0.0057	0.0054	0.0054	0.0060	0.0068	0.0067	0.0064	13
14 RECOVERY FACTOR including GPIF	4.3489	4.0519	3.7190	3.9495	3.7866	3.6281	3.9345	14
15 RECOVERY FACTOR ROUNDED TO NEAREST .001 ¢/KWH	4.349	4.052	3.719	3.950	3.787	3.628	3.935	15

Florida Power & Light Company 9/09/2004

Generating System Comparative Data by Fuel Type

	Jan-05	Feb-05	Mar-05	Apr-05	May-05	Jun-05
Fuel Cost of System Net Generation (\$)						
1 Heavy Oil	\$33,087,835	\$37,458,500	\$51,577,745	\$69,599,003	\$106,072,579	\$83,666,800
2 Light Oil	\$2,216,880	\$803,350	\$231,920	\$48,330	\$2,030,150	\$188,920
3 Coal	\$8,507,240	\$7,707,010	\$7,412,740	\$6,974,450	\$8,398,090	\$8,185,290
4 Gas	\$198,076,044	\$177,057,456	\$182,480,002	\$181,854,572	\$200,527,134	\$242,086,322
5 Nuclear	\$7,174,690	\$6,468,140	\$7,147,580	\$5,759,490	\$5,525,200	\$6,449,490
6 Total	\$249,062,689	\$229,494,456	\$248,849,987	\$264,235,844	\$322,553,153	\$340,576,822
System Net Generation (MWH)						
7 Heavy Oil	647,984	773,297	1,047,366	1,406,814	2,166,583	1,704,318
8 Light Oil	14,534	5,108	1,963	443	16,626	1,746
9 Coal	549,042	497,851	477,618	459,315	554,244	540,233
10 Gas	3,333,275	2,995,902	3,200,666	3,384,807	3,793,417	4,691,752
11 Nuclear	2,185,554	1,974,049	2,185,554	1,706,419	1,629,247	1,868,582
12 Total	6,730,389	6,246,207	6,913,167	6,957,798	8,160,117	8,806,631
Units of Fuel Burned						
13 Heavy Oil (BBLS)	1,006,964	1,144,805	1,595,356	2,183,270	3,333,852	2,619,546
14 Light Oil (BBLS)	39,562	14,249	4,215	885	36,680	3,500
15 Coal (TONS)	279,471	253,982	253,056	237,815	276,278	269,216
16 Gas (MCF)	25,351,870	22,688,758	23,805,438	25,443,770	29,012,332	34,751,459
17 Nuclear (MBTU)	24,102,626	21,770,150	24,102,626	19,096,638	18,193,580	20,959,048
BTU Burned (MMBTU)						
18 Heavy Oil	6,444,569	7,326,754	10,210,278	13,972,926	21,336,650	16,765,090
19 Light Oil	230,646	83,072	24,572	5,158	213,844	20,406
20 Coal	5,351,378	4,852,657	4,663,963	4,386,011	5,285,164	5,151,205
21 Gas	25,351,870	22,688,758	23,805,438	25,443,770	29,012,332	34,751,459
22 Nuclear	24,102,626	21,770,150	24,102,626	19,096,638	18,193,580	20,959,048
23 Total	61,481,089	56,721,391	62,806,877	62,904,503	74,041,570	77,647,208

Schedule E 3

Florida Power & Light Company 9/09/2004

	Jan-05	Feb-05	Mar-05	Apr-05	May-05	Jun-05
Generation Mix (%MWH)						
24 Heavy Oil	9.63%	12.38%	15.15%	20.22%	26.55%	19.35%
25 Light Oil	0.22%	0.08%	0.03%	0.01%	0.20%	0.02%
26 Coal	8.16%	7.97%	6.91%	6.60%	6.79%	6.13%
27 Gas	49.53%	47.96%	46.30%	48.65%	46.49%	53.28%
28 Nuclear	32.47%	31.60%	31.61%	24.53%	19.97%	21.22%
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Fuel Cost per Unit						
30 Heavy Oil (\$/BBL)	32.8590	32.7204	32.3299	31.8783	31.8168	31.9394
31 Light Oil (\$/BBL)	56.0356	56.3794	55.0225	54.6102	55.3476	53.9771
32 Coal (\$/ton)	30.4405	30.3447	29.2929	29.3272	30.3972	30.4042
33 Gas (\$/MCF)	7.8131	7.8038	7.6655	7.1473	6.9118	6.9662
34 Nuclear (\$/MBTU)	0.2977	0.2971	0.2965	0.3016	0.3037	0.3077
Fuel Cost per MMBTU (\$/MMBTU)						
35 Heavy Oil	5.1342	5.1126	5.0516	4.9810	4.9714	4.9905
36 Light Oil	9.6116	9.6705	9.4384	9.3699	9.4936	9.2581
37 Coal	1.5897	1.5882	1.5894	1.5902	1.5890	1.5890
38 Gas	7.8131	7.8038	7.6655	7.1473	6.9118	6.9662
39 Nuclear	0.2977	0.2971	0.2965	0.3016	0.3037	0.3077
BTU burned per KWH (BTU/KWH)						
40 Heavy Oil	9,946	9,475	9,749	9,932	9,848	9,837
41 Light Oil	15,869	16,263	12,518	11,643	12,862	11,687
42 Coal	9,747	9,747	9,765	9,549	9,536	9,535
43 Gas	7,606	7,573	7,438	7,517	7,648	7,407
44 Nuclear	11,028	11,028	11,028	11,191	11,167	11,217
Generated Fuel Cost per KWH (cents/KWH)						
45 Heavy Oil	5.1063	4.8440	4.9245	4.9473	4.8958	4.9091
46 Light Oil	15.2531	15.7273	11.8146	10.9097	12.2107	10.8202
47 Coal	1.5495	1.5481	1.5520	1.5184	1.5152	1.5151
48 Gas	5.9424	5.9100	5.7013	5.3727	5.2862	5.1598
49 Nuclear	0.3283	0.3277	0.3270	0.3375	0.3391	0.3452
50 Total	3.7006	3.6741	3.5997	3.7977	3.9528	3.8673

Schedule E 3

Florida Power & Light Company 9/09/2004

Generating System Comparative Data by Fuel Type

	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Total
Fuel Cost of System Net Generation (\$)		-					
1 Heavy Oil	\$81,002,720	\$84,894,368	\$83,052,400	\$73,649,915	\$37,664,690	\$26,834,391	\$768,560,945
2 Light Oil	\$6,036,540	\$4,394,280	\$1,663,880	\$689,530	\$111,750	\$68,010	\$18,483,540
3 Coal	\$8,340,990	\$8,343,510	\$8,170,830	\$8,354,940	\$8,327,810	\$8,677,420	\$97,400,320
4 Gas	\$279,078,237	\$268,919,464	\$243,216,162	\$238,368,779	\$218,637,616	\$222,198,659	\$2,652,500,447
5 Nuclear	\$7,430,320	\$7,420,550	\$7,167,600	\$5,637,810	\$5,372,360	\$7,635,080	\$79,188,310
6 Total	\$381,888,807	\$373,972,172	\$343,270,872	\$326,700,974	\$270,114,226	\$265,413,560	\$3,616,133,562
System Net Generation (MWH)							
7 Heavy Oil	1,628,985	1,707,451	1,686,888	1,517,309	771,735	554,092	15,612,822
8 Light Oil	43,226	32,195	12,607	6,547	1,001	458	136,454
9 Coal	549,508	549,6 4 5	538,561	550,462	536,695	559,183	6,362,357
10 Gas	5,210,262	5,068,958	4,628,617	4,576,916	4,202,601	4,078,709	49,165,882
11 Nuclear	2,131,954	2,131,954	2,063,180	1,562,606	1,516,250	2,165,595	23,120,944
12 Total	9,563,935	9,490,203	8,929,853	8,213,840	7,028,282	7,358,037	94,398,459
Units of Fuel Burned							
13 Heavy Oil (BBLS)	2,529,125	2,646,073	2,600,413	2,335,576	1,201,148	861,133	24,057,261
14 Light Oil (BBLS)	110,188	81,092	30,889	13,143	2,107	1,255	337,765
15 Coal (TONS)	274,194	274,328	268,556	274,479	273,224	284,678	3,219,277
16 Gas (MCF)	40,438,751	38,723,054	34,845,441	33,832,175	30,442,219	30,220,774	369,556,040
17 Nuclear (MBTU)	23,967,112	23,967,112	23,193,978	17,690,118	16,831,692	23,886,181	257,760,861
BTU Burned (MMBTU)							
18 Heavy Oil	16,186,398	16,934,872	16,642,645	14,947,685	7,687,350	5,511,248	153,966,465
19 Light Oil	642,397	472,764	180,081	76,621	12,281	7,315	1,969,157
20 Coal	5,245,828	5,246,001	5,136,962	5,249,295	5,230,722	5,449,722	61,248,908
21 Gas	40,438,751	38,723,054	34,845,441	33,832,175	30,442,219	30,220,774	369,556,040
22 Nuclear	23,967,112	23,967,112	23,193,978	17,690,118	16,831,692	23,886,181	257,760,861
23 Total	86,480,486	85,343,803	79,999,107	71,795,894	60,204,264	65,075,240	844,501,431

Florida Power & Light Company 9/09/2004

Generating System Comparative Data by Fuel Type

	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Total
Generation Mix (%MWH)							
24 Heavy Oil	17.03%	17.99%	18.89%	18.47%	10.98%	7.53%	16.54%
25 Light Oil	0.45%	0.34%	0.14%	0.08%	0.01%	0.01%	0.14%
26 Coal	5.75%	5.79%	6.03%	6.70%	7.64%	7.60%	6.74%
27 Gas	54.48%	53.41%	51.83%	55.72%	59.80%	55.43%	52.08%
28 Nuclear	22.29%	22.46%	23.10%	19.02%	21.57%	29.43%	24.49%
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Fuel Cost per Unit							
30 Heavy Oil (\$/BBL)	32.0280	32.0832	31.9382	31.5339	31.3572	31.1617	31.9472
31 Light Oil (\$/BBL)	54.7840	54.1888	53.8664	52.4637	53.0375	54.1912	54.7231
32 Coal (\$/ton)	30.4200	30.4144	30.4251	30.4393	30.4798	30.4815	30.2553
33 Gas (\$/MCF)	6.9013	6.9447	6.9799	7.0456	7.1821	7.3525	7.1775
34 Nuclear (\$/MBTU)	0.3100	0.3096	0.3090	0.3187	0.3192	0.3196	0.3072
Fuel Cost per MMBTU (\$/MMBTU)							
35 Heavy Oil	5.0044	5.0130	4.9903	4.9272	4.8996	4.8690	4.9917
36 Light Oil	9.3969	9.2949	9.2396	8.9992	9.0994	9.2973	9.3865
37 Coal	1.5900	1.5905	1.5906	1.5916	1.5921	1.5923	1.5902
38 Gas	6.9013	6.9447	6.9799	7.0456	7.1821	7.3525	7.1775
39 Nuclear	0.3100	0.3096	0.3090	0.3187	0.3192	0.3196	0.3072
BTU burned per KWH (BTU/KWH)							
40 Heavy Oil	9,936	9,918	9,866	9,851	9,961	9,946	9,862
41 Light Oil	14,861	14,684	14,284	11,703	12,269	15,972	14,431
42 Coal	9,546	9,544	9,538	9,536	9,746	9,746	9,627
43 Gas	7,761	7,639	7,528	7,392	7,244	7,409	7,517
44 Nuclear	11,242	11,242	11,242	11,321	11,101	11,030	11,148
Generated Fuel Cost per KWH (cents/KWH)							
45 Heavy Oil	4.9726	4.9720	4.9234	4.8540	4.8805	4.8429	4.9226
46 Light Oil	13.9651	13.6490	13.1981	10.5320	11.1638	14.8493	13.5456
47 Coal	1.5179	1.5180	1.5172	1.5178	1.5517	1.5518	1.5309
48 Gas	5.3563	5.3052	5.2546	5.2081	5.2024	5.4478	5.3950
49 Nuclear	0.3485	0.3481	0.3474	0.3608	0.3543	0.3526	0.3425
50 Total	3.9930	3.9406	3.8441	3.9774	3.8432	3.6071	3.8307

16

Schedule E4 Page: 1

				Estimated I	For The Pe	riod of :	Jan-0	5					
(A)	(B)	(C)	 (D)	(E)	 (F)	 (G)	(H)		 (i)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type) }	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	397	52,423 18,746	24.1	95.0	75.0	9,390	Heavy Oil B Gas M	BBLS -> CF ->	71,978 207,611	6,400,003 1,000,000	460,656 207,611	2,368,691 1,619,028	4.5185 8.6368
3 4 TRKY O 2 5	397	19,653 10,770	10.3	93.7	51.4	10,526	Heavy Oil B Gas M	BLS -> CF ->	28,324 138,969	6,400,001 1,000,000	181,273 138,969	932,151 1,083,679	4.7430 10.0624
7 TRKY N 3	717	520,110	97.5	97.5	100.0	11,231	Nuclear C	Dthr ->	5,841,326	1,000,000	5,841,326	1,919,300	0.3690
8 9 TRKY N 4	717	520,110	97.5	97.5	100.0	11,231	Nuclear C	Dthr ->	5,841,326	1,000,000	5,841,326	1,586,400	0.3050
10 11 FT LAUD4	443	290,193	88.0	94.7	93.0	7,715	Gas M	CF ->	2,238,768	1,000,000	2,238,768	17,458,380	6.0161
12 13 FT LAUD5	442	275,635	83.8	93.6	88.5	7,906	Gas M	CF ->	2,179,029	1,000,000	2,179,029	 16,992,476	6.1649
14 15 PT EVER1 16	211	5,990 4,110	6.4	95.0	45.0	11,424	Heavy Oil B Gas M	BLS -> CF ->	 7,823 65,306	6,400,020 1,000,000	50,068 65,306	258,012 509,309	4.3077 12.3925
17 18 PT EVER2 19	211	6,608 4,182	6.9	94.4	46.3	10,979	Heavy Oil B Gas M	BLS -> CF ->	8,288 65,424	6,399,969 1,000,000	53,042 65,424	273,318 510,191	4.1362 12.1997
20 21 PT EVER3 22	383	14,860 7,991	8.0	95.1	42.3	12,377	Heavy Oil B Gas M	BLS -> CF ->	25,001 122,820	6,400,010 1,000,000	160,004 122,820	824,426 957,752	5.5481 11.9854
23 24 PT EVER4 25	390	9,900 7,308	5.9	95.6	34.9	13,779	Heavy Oil B Gas M	BLS -> CF ->	18,129 121,075	6,400,014 1,000,000	116,023 121,075	597,821 944,128	6.0388 12.9191
27 RIV 3 28	275	6,415 4,693	5.4	93.8	40.7	12,625	Heavy Oil B Gas M	BLS -> CF ->	9,064 82,234	6,400,018 1,000,000	58,010 82,234	298,460 641,183	4.6525 13.6619
30 RIV 4 31 32	281	121,327 23,161	69.1	92.8	79.7	9,100	Heavy Oil B Gas M	BLS -> CF ->	170,311 224,919	6,399,999 1,000,000	1,089,988 224,919	5,607,933 1,753,969	4.6222 7.5730

Date: 9/9/2004 Florida Power & Light Company:

4 17 4

				Estimated For The Period of :			Jan-05					
 (A)	(B)	(C)	 (D)	(E)	(F)	 (G)		(I)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	853	618,763	97.5	97.5	100.0	10,844	Nuclear Othr ->	6,709,888	1,000,000	6,709,888	1,909,700	0.3086
35 ST LUC 2	726	526,572	97.5	97.5	100.0	10,844	Nuclear Othr ->	5,710,086	1,000,000	5,710,086	1,759,400	0.334
36 37 CAP CN 1 38	398	24,898 18,635	14.7	94.2	62.7	10,536	Heavy Oil BBLS - Gas MCF ->	-> 37,237 > 220,364	6,400,002 1,000,000	238,316 220,364	1,221,742 1,718,374	4.9070 9.2212
40 CAP CN 2 41	398	35,439 19,490	18.6	94.7	68.4	10,251	Heavy Oil BBLS - Gas MCF ->	> 52,587 > 226,527	6,400,003 1,000,000	336,559 226,527	1,725,427 1,766,497	4.868 9.0638
42 43 SANFRD 3 44	140	2,961 2,824	5.6	95.8	41.8	11,755	Heavy Oil BBLS - Gas MCF ->	 > 4,129 > 41,572	6,399,985 1,000,000	26,428 41,572	116,162 324,161	3.9232 11.4804
45 46 PUTNAM 1	250	16,041	8.6	95.3	56.3	9,645	Gas MCF ->	> 154,710	1,000,000	154,710	1,206,921	7.523
47 48 PUTNAM 2	250	14,316	7.7	95.4	53.2	10,044	Gas MCF ->	•	1,000,000	143,787	1,121,559	7.834
49 50 MANATE 1 51	821	150,168 22,065	28.2	94.4	54.2	10,279	Heavy Oil BBLS - Gas MCF ->	> 238,560 > 243,636	6,399,999 1,000,000	1,526,785 243,636	7,834,481 1,969,498	5.217 ⁻ 8.9259
52 53 MANATE 2 54	821	80,168 29,726	18.0	95.8	42.2	11,122	Heavy Oil BBLS - Gas MCF ->	> 136,372 > 349,505	6,400,000 1,000,000	872,778 349,505	4,478,522 2,825,960	5.5864 9.5066
56 CUTLER 5	70	2,684	5.2	97.6	41.3	10,935	Gas MCF ->	29,351	1,000,000	29,351	228,888	8.5272
57 58 CUTLER 6	142	3,893	3.7	96.6	29.2	11,682	Gas MCF ->	 45,477	1,000,000	45,477	354,700	9.1112
59 60 MARTIN 1 61 62	813	38,742 38,451	12.8	86.6	41.7	12,168	Heavy Oil BBLS Gas MCF ->	> 71,207 > 483,554	6,400,003 1,000,000	455,724 483,554	2,342,148 3,770,888	6.0456 9.8070

18

Schedule E4 Page: 3

(A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	I	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
 63 MARTIN 2 64	804	 78,433 57,353	22.7	96.3	54.7	10,711	Heavy Gas	Oil BBLS -> MCF ->	127,955 635,439	6,400,002 1,000,000	818,912 635,439	4,208,730 4,955,328	5.3660 8.6400
66 MARTIN 3	465	257,513	74.4	95.1	86.4	7,158	Gas	MCF ->	1,843,253	1,000,000	1,843,253	14,374,046	5.5819
37 68 MARTIN 4	466	274,667	79.2	94.6	89.6	6,884	Gas	MCF ->	1,890,900	1,000,000	1,890,900	14,745,568	5.3685
59 70 MARTIN 8	 1,099		0.0	0.0		0							
71 72 FM GT	624	 14,310	3.1	98.4	48.2	15,850	Light	Oil BBLS ->	38,904	5,829,992	226,807	2,189,600	15.3014
73 74 FL GT 75	768	 71 10,542	1.9	91.7	30.8	18,675	Light Gas	Oil BBLS -> MCF ->	216 196,938	5,829,314 1,000,000	1,257 196,938	8,600 1,535,942	12.1813 14.5695
76 77 PE GT 78	384	 154 9,709	3.5	88.3	57.3	17,624	Light Gas	Oil BBLS -> MCF ->	443 171,237	5,830,662 1,000,000	2,582 171,237	18,700 1,341,514	12.1666 13.8174
79 80 SJRPP 10	130	84,290	87.1	93.1	99.7	9,640	Coal	TONS ->	33,219	24,460,311	812,537	1,306,400	1.5499
81 82 SJRPP 20	130	84,864	87.7	93.6	99.7	9,500	Coal	TONS ->	32,961	24,460,316	806,232	1,296,200	1.5274
83 84 SCHER #4	648	379,888	78.8	94.2	89.7	9,826	Coal	TONS ->	213,292	17,500,004	3,732,609	5,904,600	1.5543
85 86 FMREP 1	 1,451	822,450	76.2	87.1	86.3	6,897	Gas	MCF ->	5,672,200	1,000,000	5,672,200	 44,278,455	5.3837
87 88 SNREP4	 938	 549,897	78.8	95.7	90.7	6,885	Gas	MCF ->	3,785,782	1,000,000	3,785,782	29,573,130	5.3779
89 90 SNREP5	938	507,031	 72. 7	95.2	87.3	6,809	Gas	MCF ->	3,452,432	1,000,000	3,452,432	26,999,502	5.3250
91 92 MANATE 3 93	1,105		0.0	0.0		0					· · · · · · · · · · · · · · · · · · ·		

Schedule E4 Page: 4

				Estimated F	For The Pe	eriod of :		Jan-05					
(A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 FM SC	166	29,201	11.8	97.1	81.2	2 10,926	Gas	MCF -:	> 319,055	1,000,000	319,055	2,515,300	8.6139
95 96 MR SC 97	163		0.0	0.0		0							
98 TOTAL	13,446 ======	3,556,626	0.0			8,062 ======					28,673,479 ======	181,385,180 ======	5.0999 ======

20

Schedule E4 Page: 5

				Estimated I	or The Pe	riod of :	Feb-05					
(A)	(B)	(C)	(D)	(E) (F) (G)		(H)	 (I)	 (J)		(L)	(M)	
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	397	103,636 16,835	45.2	95.0	87.3	8,983	Heavy Oil BBLS -> Gas MCF ->	140,224 184,754	6,400,001 1,000,000	897,432 184,754	4,586,958 1,439,169	4.4260 8.5485
4 TRKY O 2 5	397	62,538 13,088	28.3	83.7	74.1	9,414	Heavy Oil BBLS -> Gas MCF ->	86,641 157,481	6,400,000 1,000,000	554,502 157,481	2,834,135 1,226,709	4.5318 9.3727
7 TRKY N 3	717	469,777	97.5	97.5	100.0	11,231	Nuclear Othr ->	5,276,049	1,000,000	5,276,049	1,730,300	0.3683
9 TRKY N 4	717	469,777	97.5	97.5	100.0	11,231	Nuclear Othr ->	5,276,049	1,000,000	5,276,049	1,430,100	0.3044
10 11 FT LAUD4	443	260,154		 94.7	 92.3	7,707	Gas MCF ->	2,004,950	1,000,000	2,004,950	15,617,647	6.0032
12 13 FT LAUD5	442	246,850	83.1	 93.6	 87.7	7,890	Gas MCF ->	 1,947,564	1,000,000	1,947,564	 15,170,627	6.1457
14 15 PT EVER1 16	211	7,651 7,320	10.6	95.0	50.3	11,435	Heavy Oil BBLS -> Gas MCF ->	9,889 107,899	6,399,972 1,000,000	63,287 107,899	324,997 840,458	4.2479 11.4818
17 18 PT EVER2 19	211	10,972 6,816	12.5	84.3	57.3	10,244	Heavy Oil BBLS -> Gas MCF ->	13,486 95,903	6,400,007 1,000,000	86,307 95,903	443,196 746,991	4.0394 10.9595
20 21 PT EVER3 22	383	7,610 4,307	4.6	23.8	54.2	11,280	Heavy Oil BBLS -> Gas MCF ->	12,291 55,766	6,400,023 1,000,000	78,661 55,766	403,929 434,422	5.3079 10.0864
23 24 PT EVER4 25	390	39,740 13,162	20.2	95.6	58.9	11,572	Heavy Oil BBLS -> Gas MCF ->	66,090 189,225	6,399,998 1,000,000	422,973 189,225	2,172,028 1,473,974	5.4656 11.1991
27 RIV 3 28	275	125,164 12,934	74.7	93.8	84.1	8,444	Heavy Oil BBLS -> Gas MCF ->	163,640 118,828	6,399,999 1,000,000	1,047,294 118,828	5,355,646 925,537	4.2789 7.1561
30 RIV 4 31 32	281	4,972 7,953	6.8	92.8	37.6	14,590	Heavy Oil BBLS -> Gas MCF ->	7,541 140,309	6,399,981 1,000,000	48,263 140,309	246,759 1,092,916	4.9633 13.7427

Date: 9/9/2004 Florida Power & Light Company:

2

Schedule E4 Page: 6

				Estimated For The Period of :		Fe	b-05						
 (A)	(B)	(C)	 (D)	(E)	(F)	 (G)		 H)	 (I)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	853	558,883	97.5	97.5	100.0	10,844	Nuclear	· Othr ->	6,060,552	1,000,000	6,060,552	1,721,600	0.3080
34 35 ST LUC 2	726	475,613	97.5	97.5	100.0	10,844	Nuclear	· Othr ->	5,157,500	1,000,000	5,157,500	1,586,100	0.3335
36 37 CAP CN 1 38	398	12,725 4,757	6.5	13.5	76.2	9,785	Heavy O Gas	NI BBLS -> MCF ->	 18,693 51,424	6,399,999 1,000,000	 119,634 51,424	610,715 400,512	4.7992 8.4201
40 CAP CN 2 41	398	89,092 16,354	39.4	94.7	83.2	9,655	Heavy O Gas	il BBLS -> MCF ->	 129,499 189,246	6,399,999 1,000,000	828,792 189,246	4,230,955 1,474,089	4.7490 9.0135
42 43 SANFRD 3 44	140	3,874 4,653	9.1	95.8	46.6	11,901	Heavy O Gas	HIBBLS -> MCF ->	5,356 67,203	6,399,940 1,000,000	34,277 67,203	151,203 523,476	3.9035 11.2493
46 PUTNAM 1 47	250	30 31,620	18.8	95.3	69.3	8,937	Light Oi Gas	I BBLS -> MCF ->	44 282,601	5,828,767 1,000,000	255 282,601	2,000 2,202,397	6.6667 6.9653
49 PUTNAM 2 50	250	7 24,708	14.7	95.4	64.4	9,318	Light Oi Gas	I BBLS -> MCF ->	11 230,220	5,831,858 1,000,000	66 230,220	500 1,794,077	6.7568 7.2613
52 MANATE 1 53	821	102,033 13,194	20.9	94.4	61.0	10,246	Heavy O Gas	MCF ->	160,858 151,090	6,399,998 1,000,000	1,029,488 151,090	5,266,257 1,218,384	5.1613 9.2346
55 MANATE 2 56	821	67,538 15,927	15.1	95.8	52.4	10,897	Heavy O Gas	NI BBLS -> MCF ->	112,492 189,580	6,400,000 1,000,000	719,951 189,580	3,682,852 1,529,636	5.4530 9.6042
58 CUTLER 5	70	2,384	5.1	97.6	36.5	13,746	Gas	MCF ->	32,771	1,000,000	32,771	255,224	10.7057
60 CUTLER 6	142	4,510	4.7	96.6	33.4	12,067	Gas	MCF ->	54,427	1,000,000	54,427	423,932	9.3992
62 MARTIN 1	813		0.0	0.0		0							

Date: 9/9/2004 Florida Power & Light Company:

 $\frac{12}{2}$

Schedule E4 Page: 7

				Estimated I	For The Pe	riod of :	F	-eb-05					
(A)	(B)	 (C)	 (D)	 (E)	 (F)	 (G)		(H)	 (l)	 (J)	 (К)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 MARTIN 2 65	804	135,753 79,332	39.8	96.3	65.1	10,497	Heavy Gas	Oil BBLS -> MCF ->	218,108 861,867	6,400,001 1,000,000	1,395,891 861,867	7,148,771 6,713,986	5.2660 8.4631
66 67 MARTIN 3	465	252,761	80.9	95.1	89.0	7,117	Gas	MCF ->	1,798,872	1,000,000	1,798,872	14,028,815	5.5502
68 69 MARTIN 4	466	230,290	73.5		82.7	6,935	Gas	MCF ->	1,597,095	1,000,000	1,597,095	12,459,263	5.4103
70 71 MARTIN 8	1,099		0.0	0.0		0			***-******				
72 73 FM GT	624	5,071	1.2	90.2	44.4	16,320	Light	Oil BBLS ->	 14,194	5,830,020	82,751	800,800	15.7927
74 75 FL GT 76	768	 1 3,581	0.7	91.7	27.5	19,253	Light Gas	Oil BBLS -> MCF ->	2 68,936	5,950,000 1,000,000	 12 68,936	100 536,957	14.2857 14.9967
77 78 PE GT 79	384	0 3,571	1.4	88.3	54.9	17,863	Light Gas	Oil BBLS -> MCF ->	0 63,784	1,000,000	0 63,784	0 496,849	13.9146
80 81 SJRPP 10	130	72,239	82.7	86.5	99.6	9,639	Coal	TONS ->	28,467	24,459,950	696,301	1,106,300	1.5314
82 83 SJRPP 20	130	77,637	88.9	93.6	99.7	7 9,499	Coal	TONS ->	30,151	24,459,963	737,495	1,171,800	1.5093
84 85 SCHER #4	648	347,975	79.9	94.2	89.8	9,825	Coal	TONS ->	195,364	17,500,001	3,418,861	5,428,900	1.5601
86 87 FMREP 1	1,451	723,542	74.2	82.9		6,920	Gas	MCF ->	5,007,216	1,000,000	5,007,216	39,003,902	5.3907
88 89 SNREP4	938	472,004	74.9	88.9		6,982	Gas	MCF ->	3,295,762	1,000,000	3,295,762	25,721,806	5.4495
90 91 SNREP5	938	483,104	76.6	95.2	87.5	6,841	Gas	MCF ->	3,304,830	1,000,000	3,304,830	25,842,009	5.3492
92 93 MANATE 3 94	1,105		0.0	0.0		0							

Schedule E4 Page: 8

				Estimated F	mated For The Period of :			Feb-05					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	(1)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 FM SC	166	40,194	18.0	91.9	86.3	10,926	Gas	MCF ->	439,168	1,000,000	439,168	3,463,530	8.6171
97 MR SC 98	163		0.0	0.0		0			*****				
99 TOTAL	13,196 ======	3,188,972 ======	0.0			7,983 === === =					25,459,035 ======	160,297,047 ======	5.0266 ==== =

24

Schedule E4 Page: 9

					Estimated I	For The Pe	riod of :	Ma	r-05					
	 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	 (†	H)	 (1)	 (J)	 (K)	(L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fu Ty	ıbe Iel	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1	TRKY O 1	397	117,209 16,861	45.4	95.0	88.3	8,951	Heavy Oi Gas	 I BBLS -> MCF ->	158,333 186,722	6,399,998 1,000,000	1,013,330 186,722	5,123,143 1,430,373	4.3709 8.4832
4	TRKY O 2	397		0.0	0.0		0							
6	TRKY N 3	717	520,110	97.5	97.5	100.0	11,231	Nuclear	Othr ->	5,841,326	1,000,000	5,841,326	1,912,000	0.3676
7 8	TRKY N 4	717	520,110	97.5	97.5	100.0	11,231	Nuclear	Othr ->	5,841,326	1,000,000	5,841,326	1,580,300	0.3038
9 10	FT LAUD4	443	166,797	50.6	58.0	92.0	7,711	Gas	MCF ->	1,286,135	1,000,000	1,286,135	9,852,575	5.9069
11	FT LAUD5	442	279,836	85.1	93.6	89.8	7,847	Gas	MCF ->	2,195,919	1,000,000	2,195,919	16,822,021	6.0114
13 14 15	PT EVER1	211	8,202 8,967	10.9	95.0	57.4	11,037	Heavy Oi Gas	BBLS -> MCF ->	 10,492 122,352	6,400,013 1,000,000	67,148 122,352	339,938 937,309	4.1447 10.4524
16 17	PT EVER2	211		0.0	0.0		0							
18 19 20) PT EVER3	383	65,682 15,242	28.4	95.1	72.6	10,496	Heavy Oi Gas	 BBLS -> MCF ->	 101,499 199,774	6,400,003 1,000,000	649,593 199,774	3,288,263 1,530,425	5.0064 10.0408
21 22 23	PT EVER4	390	38,117 15,199	18.4	95.6	59.1	11,688	Heavy Oi Gas	 BBLS -> MCF ->	 63,286 218,127	6,399,999 1,000,000	405,031 218,127	2,050,318 1,671,042	5.3790 10.9944
24 25 26	 RIV 3	275	1,460 2,095	1.7	33.3	42.7	13,664	Heavy Oi Gas	I BBLS -> MCF ->	2,056 35,419	6,400,029 1,000,000	13,156 35,419	66,449 271,322	4.5528 12.9491
27 28 29	 RIV 4	281	138,405 16,291	74.0	92.8	83.0	9,012	Heavy Oi Gas	BBLS -> MCF ->	193,154 157,936	6,399,999 1,000,000	1,236,186 157,936	6,242,972 1,209,860	4.5106 7.4264

25

Schedule E4 Page: 10

				Estimated	For The Pe	riod of :	Ma	ar-05					
 (A)	(B)	(C)	(D)	 (E)	 (F)	(G)		(H)	(ł)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31 ST LUC 1	853	618,763	97.5	97.5	100.0	10,844	Nuclear	r Othr ->	6,709,888	1,000,000	6,709,888	1,902,500	0.3075
32 33 ST LUC 2	726	526,572	97.5	97.5	100.0	10,844	Nuclear	r Othr ->	5,710,086	1,000,000	5,710,086	1,752,800	0.3329
34 35 CAP CN 1	398		0.0	0.0		0		g					********
36 37 CAP CN 2 38	398	96,907 15,623	38.0	94.7	83.3	9,658	Heavy O Gas	MCF ->	140,686 186,384	6,400,000 1,000,000	900,391 186,384	4,545,084 1,427,807	4.6902 9.1394
40 SANFRD 3 41	140	531 1,052	1.5	34.0	43.1	12,935	Heavy O Gas)il BBLS -> MCF ->	748 15,684	6,400,027 1,000,000	4,785 15,684	21,181 120,120	3.9897 11.4226
43 PUTNAM 1	250	17,869	9.6	64.5	49.6	9,607	Gas	MCF ->	171,671	1,000,000	171,671	1,315,250	7.3605
44 45 PUTNAM 2	250	25,211	13.6	95.4	68.3	9,135	Gas	MCF ->	230,307	1,000,000	230,307	1,764,409	6.9985
46 47 MANATE 1 48	821	224,316 13,366	38.9	94.4	73.2	10,019	Heavy C Gas)ii BBLS -> MCF ->	348,986 147,821	6,399,999 1,000,000	2,233,508 147,821	11,261,577 1,174,215	5.0204 8.7850
49 50 MANATE 2 51	821	168,863 17,734	30.5	95.8	66.7	10,578	Heavy C Gas)il BBLS -> MCF ->	276,178 206,225	6,400,001 1,000,000	1,767,541 206,225	8,912,097 1,637,992	5.2777 9.2363
53 CUTLER 5	70	2,746	5.3	97.6	47.8	12,088	Gas	MCF ->	33,190	1,000,000	33,190	254,271	9.2611
54 55 CUTLER 6	142	6,173	5.8	96.6	49.0	10,865	Gas	MCF ->	67,073	1,000,000	67,073	 513,887	8.3246
56 57 MARTIN 1	813		0.0	0.0		0				************	<u>`</u>		
58 59 MARTIN 2 60 61	804	187,675 101,347	48.3	96.3	72.4	10,426	Heavy C Gas	Dil BBLS -> MCF ->	299,939 1,093,783	6,400,000 1,000,000	1,919,608 1,093,783	9,726,803 8,378,980	5.1828 8.2676

26

Schedule E4

Page: 1	1	
---------	---	--

					For The Pe	eriod of :	l	Mar-05					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		 (H)	 (I)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
62 MARTIN 3	465	251,923	72.8	85.9	82.8	7,149	Gas	MCF ->	1,800,915	1,000,000	1,800,915	13,796,040	5.4763
63 64 MARTIN 4	466	229,422	66.2	76.3	74.9	7,006	Gas	MCF ->	1,607,315	1,000,000	1,607,315	 12,312,965	5.3669
66 MARTIN 8	1,099		0.0	0.0		0							
68 FM GT	624	1,807	0.4	89.1	86.3	12,432	Light	Oil BBLS ->	3,854	5,830,042	22,468	217,400	12.0290
70 FL GT 71	768	138 415	0.1	91.7	90.3	13,998	Light Gas	Oil BBLS -> MCF ->	 320 5,878	5,830,053 1,000,000	 1,866 5,878	12,800 45,018	9.2552 10.8502
72 73 PE GT 74	384	17 51	0.0	88.3	93.1	14,388	Light Gas	Oil BBLS -> MCF ->	 41 748	5,835,381 1,000,000	 238 748	1,700 5,688	9.9415 11.0653
76 SJRPP 10	130		0.0	0.0		0							
78 SJRPP 20	130	87,134	90.1	93.6	99.8	9,498	Coal	TONS ->	33,837	24,459,590	827,637	1,309,800	1.5032
80 SCHER #4	648	390,485	81.0	94.2	89.9	9,825	Coal	TONS ->	219,219	17,499,997	3,836,327	6,102,900	1.5629
82 FMREP 1	1,451	865,240	80.1	94.7	89.6	6,882	Gas	MCF ->	5,954,284	1,000,000	5,954,284	45,613,362	5.2718
83 84 SNREP4	938	561,668	80.5	95.7	90.0	6,901	Gas	MCF ->	3,876,101	1,000,000	3,876,101	29,693,225	5.2866
85 86 SNREP5	938	539,723	77.3	95.2	88.3	6,818	Gas	MCF ->	3,679,920	1,000,000	3,679,920	28,204,322	5.2257
88 MANATE 3	1,105		0.0	0.0		0							
90 FM SC 91	166	29,814	12.1	83.0	87.3	10,926	Gas	MCF ->	325,758	1,000,000	325,758	2,497,287	8.3762

Schedule E4 Page: 12

				Estimated I	For The Pe	eriod of :	Mar-05					
 (A)	 (B)	(C)	(D)	(E)	(F)	(G)	 (H)	 (I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
92 MR SC	163		0.0	0.0		0						
93	12 //6			***********		8 007			****	29 810 181	184 751 987	4 9623
34 IUIAL	13,440	======	0.0			======				=======	=======	======

28

Schedule E4

				Estimated I	For The Pe	eriod of :	Ap 	nr-05					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F T	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	43,897 5,827	17.5	95.0	74.0) 10,059	Heavy O Gas	MCF ->	65,603 80,304	6,399,999 1,000,000	419,860 80,304	2,114,718 573,628	4.8175 9.8436
4 TRKY O 2	394		0.0	0.0		0							
5 6 TRKY N 3	693	486,491	97.5	97.5	100.0) 11,485	Nuclear	othr ->	5,587,286	1,000,000	5,587,286	1,825,800	0.3753
7 8 TRKY N 4	693	129,730	26.0	26.0	100.0) 11,485	Nuclear	Othr ->	1,489,945	1,000,000	1,489,945	402,400	0.3102
9 10 FT LAUD4	· 425	275,838	90.1	94.7	95.2	2 7,620	Gas	MCF ->	2,101,941	1,000,000	2,101,941	15,013,113	5.4427
11 12 FT LAUD5	424	272,338	89.2	93.6	94.2	2 7,306	Gas	MCF ->	1,989,709	1,000,000	1,989,709	 14,211,548	5.2183
13 14 PT EVER1 15	210	6,739 1,078	5.2	95.0	78.2	2 10,487	Heavy C Gas	il BBLS -> MCF ->	10,211 16,637	6,400,022 1,000,000	65,349 16,637	325,963 118,819	4.8368 11.0191
16 17 PT EVER2	210		0.0	0.0		0							
18 19 PT EVER3 20	381	81,100 9,307	33.0	95.1	82.1	9,439	Heavy C Gas	Dil BBLS -> MCF ->	115,606 113,511	6,400,002 1,000,000	739,880 113,511	3,690,947 810,805	4.5511 8.7115
21 22 PT EVER4 23	388	96,424 12,935	39.1	95.6	87.3	9,295	Heavy C Gas	MCF ->	135,952 146,376	6,400,001 1,000,000	870,090 146,376	4,340,473 1,045,478	4.5015 8.0823
24 25 RIV 3 26	273	81,718 17,543	50.5	68.8	84.6	5 10,384	Heavy C Gas	Dil BBLS -> MCF ->	130,929 192,778	6,400,000 1,000,000	837,944 192,778	4,192,141 1,376,909	5.1300 7.8489
27 28 RIV 4 29	279	11,614 1,492	6.5	92.8	79.4	10,615	Heavy C Gas	Dil BBLS -> MCF ->	17,912 24,480	6,399,982 1,000,000	114,635 24,480	573,559 174,904	4.9386 11.7228

Date: 9/9/2004 Florida Power & Light Company:

29

Schedule E4 Page: 14

				Estimated I	For The Pe	riod of :	Ар	r-05					
 (A)	(B)	 (C)	 (D)	 (E)	 (F)	(G)	 (†	 H)	(I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fi Ty	vel vpe	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31 ST LUC 1	839	588,980	97.5	97.5	100.0	11,025	Nuclear	Othr ->	6,493,449	1,000,000	6,493,449	1,838,000	0.3121
32 33 ST LUC 2	714	501,219	97.5	97.5	100.0	11,025	Nuclear	Othr ->	5,525,958	1,000,000	5,525,958	1,693,400	0.3379
34 35 CAP CN 1 36	394	54,654 7,889	22.0	91.0	78.0	9,760	Heavy Oi Gas	BBLS -> MCF ->	79,669 100,518	6,400,003 1,000,000	509,883 100,518	2,549,729 717,932	4.6652 9.1010
37 38 CAP CN 2 39	394	71,026 8,515	28.0	94.7	81.2	9,350	Heavy Oi Gas	BBLS -> MCF ->	99,984 103,798	6,400,001 1,000,000	639,900 103,798	3,199,956 741,354	4.5053 8.7060
40 41 SANFRD 3 42	138	6,542 1,593	8.2	92.6	72.7	9,816	Heavy Oi Gas	MCF ->	9,029 22,071	6,400,013 1,000,000	57,787 22,071	255,779 157,659	3.9097 9.8951
43 44 PUTNAM 1	239	15,911	9.2	71.5	63.1	8,887	Gas	MCF ->	141,403	1,000,000	141,403	1,009,948	6.3474
45 46 PUTNAM 2	239	14,947	8.7	81.1	70.8	8,962	Gas	MCF ->	133,961	1,000,000	133,961	956,820	6.4015
47 48 MANATE 1 49	795	259,918 20,120	48.9	94.4	69.1	10,048	Heavy O Gas	il BBLS -> MCF ->	406,388 213,016	6,400,000 1,000,000	2,600,885 213,016	12,934,639 1,586,034	4.9764 7.8828
50 51 MANATE 2 52	795	233,104 17,915	43.9	95.8	71.1	10,104	Heavy O Gas	il BBLS -> MCF ->	366,020 193,879	6,399,999 1,000,000	2,342,527 193,879	11,649,782 1,442,489	4.9977 8.0520
53 54 CUTLER 5	68	1,618	3.3	97.6	78.4	11,439	Gas	MCF ->	18,512	1,000,000	18,512	132,189	8.1684
55 56 CUTLER 6	138	3,712	3.7	96.6	75.8	11,842	Gas	MCF ->	43,959	1,000,000	43,959	313,955	8.4576
57 58 MARTIN 1 59	803	210,955 116,018	56.6	92.7	71.5	10,676	Heavy O Gas	il BBLS -> MCF ->	345,614 1,278,750	6,400,001 1,000,000	2,211,931 1,278,750	11,013,456 9,133,492	5.2208 7.8725

ЗО

				Estimated I	For The Pe	eriod of :	/	Apr-05					
 (A)	(B)	 (C)	 (D)	(E)	 (F)	 (G)		(H)	 (I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
61 MARTIN 2 62	796	249,123 146,139	69.0	96.3	71.6	10,475	Heavy Gas	Oil BBLS -> MCF ->	400,352 1,578,200	6,400,000 1,000,000	2,562,255 1,578,200	12,757,820 11,272,314	5.1211 7.7134
64 MARTIN 3	443	239,681	75.1	95.1	83.8	7,198	Gas	MCF ->	1,725,171	1,000,000	1,725,171	12,322,022	5.1410
66 MARTIN 4	443	256,383	80.4	94.6	93.5	6,971	Gas	MCF ->	1,787,353	1,000,000	1,787,353	12,766,208	4.9794
68 MARTIN 8	1,080		0.0	0.0	***********	0							
70 FM GT	552	407	0.1	90.7	92.6	11,467	Light	Oil BBLS ->	800	5,830,064	4,666	45,000	11.0592
71 72 FL GT 73	684	33 99	0.0	91.7	89.7	14,019	Light Gas	Oil BBLS -> MCF ->	 77 1,406	5,826,371 1,000,000	446 1,406	3,100 10,052	9.3939 10.1435
74 75 PE GT 76 77	348	3 9	0.0	88.3	92.0	15,348	Light Gas	Oil BBLS -> MCF ->	 8 144	5,846,154 1,000,000	46 144	300 1,028	9.6774 11.1729
78 SJRPP 10	127	2,774	3.0	12.4	97.7	9,503	Coal	TONS ->	1,078	24,456,207	26,359	41,600	1.4997
80 SJRPP 20	127	81,754	89.4	93.6	99.7	9,321	Coal	TONS ->	31,160	24,455,948	762,045	1,205,200	1.4742
81 82 SCHER #4	643	374,788	81.0	94.2	90.0	9,599	Coal	TONS ->	205,578	17,500,005	3,597,607	5,727,600	1.5282
84 FMREP 1	1,423	868,202	84.7	94.7	94.0	6,932	Gas	MCF ->	6,018,456	1,000,000	6,018,456	42,986,880	4.9513
86 SNREP4	891	523,430	81.6	95.7	93.9	6,935	Gas	MCF ->	3,629,836	1,000,000	3,629,836	25,926,120	4.9531
88 SNREP5	940	538,392	79.5	95.2	91.0	6,880	Gas	MCF ->	3,704,260	1,000,000	3,704,260	26,457,710	4.9142
90 MANATE 3	1,080		0.0	0.0		0					• •		

Schedule E4 Page: 16

				Estimated I	For The Pe	eriod of :	Apr-	05					
(A)	(B)	 (C)	 (D)	 (E)	 (F)	(G)	 (H)	 (I)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fue Typ	el De	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
92 FM SC	164	7,874	3.3	97.1	91.3	3 10,584	Gas I	MCF ->	83,341	1,000,000	83,341	595,232	7.5596
93 94 MR SC	149		0.0	0.0		0							
96 TOTAL	12,967	4,183,308	0.0			8,285					34,660,412 ======	202,290,990 ======	4.8357 =======

.....

32

Schedule E4 Page: 17

				Estimated F	or The Pe	riod of :	N	lay-05						
(A)	 (B)	(C)	(D)	 (E)	 (F)	(G)		(H)	-	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	1	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	85,254 6,667	31.4	95.0	78.4	9,864	Heavy Gas	Oil BBLS MCF -:	-> >	126,916 94,417	6,400,001 1,000,000	812,261 94,417	4,074,848 651,052	4.7796 9.7651
3 4 TRKY O 2 5	394	42,935 4,657	16.2	60.5	78.5	9,838	Heavy Gas	Oil BBLS MCF -:	-> >	63,651 60,840	6,399,996 1,000,000	407,364 60,840	2,043,619 419,528	4.7599 9.0085
6 7 TRKY N 3	693	502,707	97.5	97.5	100.0	11,485	Nucle	ar Othr -:	>.	5,773,532	1,000,000	5,773,532	1,883,100	0.3746
8 9 TRKY N 4	693		0.0	0.0		0			-					
10 11 FT LAUD4	425	293,519	92.8	94.7	98.0	7,534	Gas	MCF -	>	2,211,250	1,000,000	2,211,250	15,247,943	5.1949
12 13 FT LAUD5	424	291,731	92.5	93.6	97.6	5 7,239	Gas	MCF -	>	2,111,935	1,000,000	2,111,935	14,563,020	4.9919
14 15 PT EVER1 16	210	29,418 3,713	21.2	95.0	77.0	10,337	Heavy Gas	Oil BBLS MCF -	-> >	44,648 56,733	6,400,003 1,000,000	285,749 56,733	1,423,321 391,298	4.8383 10.5375
17 18 PT EVER2 19	210	8,135 1,001	5.8	39.6	76.1	10,219	Heavy Gas	Oil BBLS MCF -	-> >	11,874 17,359	6,400,017 1,000,000	75,994 17,359	378,486 119,675	4.6528 11.9603
20 21 PT EVER3 22	381	119,936 11,784	46.5	95.1	85.8	9,356	Heavy Gas	Oil BBLS MCF -	-> >	170,597 140,603	6,400,001 1,000,000	1,091,818 140,603	5,438,394 969,499	4.5344 8.2270
23 24 PT EVER4 25	388	133,516 16,194	51.9	95.6	90.8	9,256	Heavy Gas	Oil BBLS MCF -	-> >	188,118 181,726	6,399,999 1,000,000	1,203,956 181,726	5,996,932 1,253,140	4.4915 7.7382
27 RIV 3 28	273	31,517 4,548	17.8	93.8	74.7	7 10,979	Heavy Gas	Oil BBLS MCF -	-> ·>	50,555 72,406	6,400,002 1,000,000	323,550 72,406	1,614,565 499,305	5.1228 10.9786
30 RIV 4 31 32	279	131,735 29,453	77.7	92.8	87.4	4 10,021	Heavy Gas	Oil BBLS MCF	-> >	203,577 312,297	6,400,000 1,000,000	1,302,891 312,297	6,501,823 2,153,505	4.9355 7.3118

ယ္သ .

Schedule E4

				Estimated I	For The Pe	eriod of :	Ma	iy-05					
 (A)	 (B)	 (C)	 (D)	(E)	 (F)	 (G)		 (H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	839	608,613	97.5	97.5	100.0) 11,025	Nuclear	r Othr ->	6,709,895	1,000,000	6,709,895	1,895,600	0.3115
34 35 ST LUC 2	714	517,926	97.5	97.5	100.0) 11,025	Nuclear	r Othr ->	5,710,153	1,000,000	5,710,153	1,746,500	0.3372
36 37 CAP CN 1 38	394	102,911 10,176	38.6	94.2	83.5	9,568	Heavy O Gas	Dil BBLS -> MCF ->	149,488 125,256	6,399,998 1,000,000	956,723 125,256	4,766,552 863,755	4.6317 8.4884
39 40 CAP CN 2 41	394	115,351 11,346	43.2	94.7	85.2	9,243	Heavy C Gas	Dil BBLS -> MCF ->	162,057 133,934	6,400,000 1,000,000	1,037,164 133,934	5,167,320 923,591	4.4796 8.1405
42 43 SANFRD 3 44	138	19,650 3,685	22.7	95.8	78.1	9,449	Heavy C Gas	MCF ->	26,947 48,022	6,399,992 1,000,000	172,463 48,022	762,888 331,135	3.8823 8.9870
46 PUTNAM 1 47	239	227 46,470	26.3	95.3	81.9	8,617	Light Oi Gas	I BBLS -> MCF ->	320 400,521	5,829,169 1,000,000	1,867 400,521	14,600 2,763,336	6.4204 5.9465
49 PUTNAM 2 50	239	 198 37,239	21.1	32.3	75.6	9,087	Light Oi Gas	il BBLS -> MCF ->	294 338,490	5,830,048 1,000,000	1,715 338,490	13,400 2,335,542	6.7643 6.2717
52 MANATE 1 53	795	388,647 20,477	69.2	94.4	75.8	9,994	Heavy C Gas)il BBLS -> MCF ->	605,117 215,860	6,400,000 1,000,000	3,872,748 215,860	19,223,518 1,586,315	4.9463 7.7470
55 MANATE 2 56	795	391,124 24,749	70.3	95.8	73.8	3 10,061	Heavy C Gas)il BBLS -> MCF ->	613,027 260,671	6,400,001 1,000,000	3,923,376 260,671	19,474,809 1,916,548	4.9792 7.7439
58 CUTLER 5	68	6,007	11.9	97.6	68.3	3 11,632	Gas	MCF ->	69,874	1,000,000	69,874	481,853	8.0217
60 CUTLER 6	138	12,898	12.6	96.6	66.8	5 12,032	Gas	MCF ->	155,185	1,000,000	155,185	1,070,121	8.2969
62 MARTIN 1 63 64	803	284,350 148,985	72.5	95.9	75.2	2 10,643	Heavy C Gas)il BBLS -> MCF ->	464,854 1,636,720	6,400,000 1,000,000	2,975,068 1,636,720	14,800,623 11,286,124	5.2051 7.5754

3<u>4</u>

Schedule E4 Page: 19

				Estimated I	For The Pe	riod of :	۱ 	May-05					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	<u></u> .	(H)	(1)	 (J)	· (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MARTIN 2 66	796	282,105 158,988	74.5	96.3	77.3	10,449	Heavy Gas	Oil BBLS -> MCF ->	452,427 1,713,451	6,399,999 1,000,000	2,895,530 1,713,451	14,404,851 11,815,236	5.1062 7.4315
68 MARTIN 3	443	283,281	85.9	95.1	95.3	7,095	Gas	MCF ->	2,009,774	1,000,000	2,009,774	13,858,590	4.8922
69 70 MARTIN 4	443	281,279	85.3	94.6	95.9	6,947	Gas	MCF ->	1,953,976	1,000,000	1,953,976	13,473,850	4.7902
71 72 MARTIN 8	1,080	6,373	0.8	1.0	55.9	6,989	Gas	MCF ->	 44,541	1,000,000	44,541	307,113	4.8190
73 74 FM GT	552	11,337	2.8	98.4	58.4	14,049	Light	Oil BBLS ->	27,320	5,829,997	159,273	1,526,300	13.4629
75 76 FL GT 77	684	 231 7,515	1.5	91.7	35.8	18,205	Light Gas	Oil BBLS -> MCF ->	 687 137,003	5,830,180 1,000,000	4,007 137,003	27,400 945,079	11.8718 12.5762
78 79 PE GT 80	348	 42 6,461	2.6	88.3	62.5	18,390	Light Gas	Oil BBLS -> MCF ->	126 118,860	5,830,159 1,000,000	735 118,860	5,300 819,870	12.6492 12.6891
81 82 SJRPP 10	127	84,005	88.9	93.1	99.7	9,460	Coal	TONS ->	 32,497	24,455,575	794,726	1,256,100	1.4953
83 84 SJRPP 20	127	84,580	89.5	93.6	99.7	9,323	Coal	TONS ->	 32,242	24,455,591	788,505	1,246,300	1.4735
85 86 SCHER #4	643	385,660	80.6	94.2	90.0	9,599	 Coal	TONS ->	 211,539	17,500,004	3,701,933	5,895,700	1.5287
87 88 FMREP 1	1,423	 928,922	87.7	94.7	96.8	6,903	Gas	MCF ->	6,412,056	1,000,000	6,412,056	 44,214,983	4.7598
89 90 SNREP4	891	 569,331	85.9	95.7	97.5	6,881	 Gas	MCF ->	 3,917,689	1,000,000	3,917,689	27,062,594	4.7534
91 92 SNREP5	940	 525,935	75.2	84.5	85.4	6,916	Gas	MCF ->	3,637,421	1,000,000	3,637,421	25,230,458	4.7973
93 94 MANATE 3 95	1,080		0.0	0.0		0							

Schedule E4 Page: 20

				Estimated I	For The Pe	riod of :	May-05					
(A)	 (B)	(C)	 (D)	 (E)	(F)	 (G)	 (H)		 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
96 FM SC 97	16 4	4,591 40,034	18.3	97.1	90.5	10,526	Light Oil BBLS -> Gas MCF ->	 7,933 423,463	5,829,987 1,000,000	46,249 423,463	443,200 2,973,136	9.6537 7.4265
98 99 MR SC	149		0.0	0.0		0						
100 101 TOTAL	12,728	4,975,342 ======	0.0			8,484 ======				42,208,895	237,694,913	4.7775

36

Schedule E4

				Estimated I	For The Pe	riod of :	Ju	n-05					
(A)	(B)	 (C)	 (D)	(E)	 (F)	 (G)		 H)	(1)	 (J)	(K)	(L)	
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F T	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	76,652 6,993	29.5	95.0	79.1	9,920	Heavy O Gas	MCF ->	114,076 99,640	6,399,998 1,000,000	730,088 99,640	3,663,639 690,407	4.7796 9.8724
3 4 TRKY O 2 5	394	87,849 8,509	34.0	93.7	83.0	9,797	Heavy O Gas	Dil BBLS -> MCF ->	129,795 113,377	6,400,001 1,000,000	830,690 113,377	4,168,445 785,640	4.7450 9.2327
6 7 TRKY N 3	693	486,491	97.5		100.0	11,485	Nuclear	r Othr ->	5,587,286	1,000,000	5,587,286	1,819,000	0.3739
8 9 TRKY N 4	693	291,892	58.5	58.5	100.0	11,485	Nuclear	 г г->	3,352,356	1,000,000	3,352,356	1,112,300	0.3811
10 11 FT LAUD4	425	280,398	91.6	94.7	 96.7	7,589	Gas	MCF ->	2,127,971	1,000,000	2,127,971	14,745,266	5.2587
12 13 FT LAUD5	424	276,518	90.6	93.6	95.6	7,302	Gas	MCF ->	2,019,036	1,000,000	2,019,036	13,990,390	5.0595
14 15 PT EVER1 16	210	7,145 2,452	6.3	95.0	57.3	11,980	Heavy O Gas	MCF ->	11,148 43,626	6,400,027 1,000,000	71,344 43,626	356,437 302,293	4.9888 12.3284
17 18 PT EVER2 19	210	13,931 2,971	11.2	94.4	66.7	10,702	Heavy C Gas	NI BBLS -> MCF ->	20,565 49,273	6,400,010 1,000,000	131,613 49,273	657,461 341,452	4.7194 11.4936
20 21 PT EVER3 22		113,209 9,593	44.8	95.1	86.6	9,350	Heavy C Gas	NI BBLS -> MCF ->	160,868 118,664	6,399,998 1,000,000	1,029,552 118,664	5,142,976 822,303	4.5429 8.5718
23 24 PT EVER4 25	388	121,428 13,452	48.3	95.6	90.4	9,265	Heavy C Gas	MCF ->	171,072 154,837	6,399,999 1,000,000	1,094,862 154,837	5,469,161 1,072,847	4.5040 7.9753
27 RIV 3 28	273	118,574 29,801	75.5	93.8	83.8	10,418	Heavy C Gas	0il BBLS -> MCF ->	190,462 326,869	6,400,000 1,000,000	1,218,956 326,869	6,098,281 2,264,781	5.1430 7.5997
30 RIV 4 31 32	279	11,036 2,912	6.9	92.8	61.2	11,936	Heavy C Gas	NI BBLS -> MCF ->	17,374 55,279	6,400,010 1,000,000	111,193 55,279	556,323 381,907	5.0412 13.1154

.

37

Schedule E4 Page: 22

				Estimated	For The Pe	riod of :	Jui	n-05					
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)		H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	839	588,980	97.5	97.5	100.0	11,025	Nuclear	Othr ->	6,493,449	1,000,000	6,493,449	1,831,100	0.3109
35 ST LUC 2	714	501,219	97.5	97.5	100.0	11,025	Nuclear	Othr ->	5,525,958	1,000,000	5,525,958	1,687,100	0.3366
36 37 CAP CN 1 38	394	104,587 8,433	39.8	94.2	85.4	9,555	Heavy O Gas	il BBLS -> MCF ->	151,702 109,019	6,400,001 1,000,000	970,892 109,019	4,845,939 755,445	4.6334 8.9582
40 CAP CN 2 41 42	394	114,209 8,679	43.3	94.7	86.9	9,228	Heavy O Gas	il BBLS -> MCF ->	160,209 108,634	6,400,000 1,000,000	1,025,340 108,634	5,117,709 752,728	4.4810 8.6730
43 SANFRD 3 44 45	138	9,808 3,039	12.9	95.8	68.2	10,141	Heavy O Gas	il BBLS -> MCF ->	13,640 42,991	6,399,981 1,000,000	87,298 42,991	385,811 297,270	3.9336 9.7812
46 PUTNAM 1	239	40,889	23.8	95.3	80.2	8,737	Gas	MCF ->	357,243	1,000,000	357,243	2,475,441	6.0540
48 PUTNAM 2	239	26,962	15.7	95.4	71.5	9,223	Gas	MCF ->	248,657	1,000,000	248,657	1,723,053	6.3907
49 50 MANATE 1 51 52	795	280,209 26,503	53.6	94.4	68.7	10,096	Heavy O Gas	il BBLS -> MCF ->	439,658 282,678	6,400,000 1,000,000	2,813,811 282,678	14,014,897 1,945,821	5.0016 7.3419
52 53 MANATE 2 54 55	795	216,201 20,877	41.4	95.8	67.4	10,139	Heavy O Gas	il BBLS -> MCF ->	340,331 225,691	6,400,000 1,000,000	2,178,120 225,691	10,848,613 1,553,605	5.0178 7.4417
56 CUTLER 5	68	1,667	3.4	97.6	52.1	14,134	Gas	MCF ->	23,554	1,000,000	23,554	162,933	9.7770
58 CUTLER 6	138	4,370	4.4	96.6	54.8	12,775	Gas	MCF ->	55,831	1,000,000	55,831	386,663	8.8475
60 MARTIN 1 61 62	803	201,749 117,232	55.2	95.9	68.4	10,742	Heavy O Gas	il BBLS -> MCF ->	332,245 1,300,243	6,400,001 1,000,000	2,126,365 1,300,243	10,624,421 8,950,056	5.2662 7.6345

Date: 9/9/2004 Florida Power & Light Company:

Schedule E4 Page: 23

				Estimated F	For The Pe	riod of : 		Jun-05						
(A)	 (B)	(C)	(D)	 (E)	(F)	(G)		(H)		 (I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MARTIN 2	796	227,731 136,944	63.6	96.3	70.2	10,494	Heavy Gas	Oil BBLS) -> ->	366,401 1,481,961	6,400,000 1,000,000	2,344,966 1,481,961	11,716,696 10,200,981	5.1450 7.4490
65 66 MARTIN 3	443	260,925	81.8	95.1	92.2	7,148	Gas	MCF	->	1,865,036	1,000,000	1,865,036	12,837,834	4.9201
67 68 MARTIN 4	443	261,790	82.1	94.6		6,982	Gas	MCF	->	1,827,710	1,000,000	1,827,710	12,580,939	4.8057
69 70 MARTIN 8	 1,080	 613,784	78.9	 96.5	92.6	6,883	 Gas	MCF	->	4,224,857	1,000,000	4,224,857	29,122,886	4.7448
71 72 FM GT	552	 1,569	0.4	 98.4	 93.6	 11,467	 Light	Oil BBLS	->	3,085	5,830,033	17,987	172,200	10.9772
8 73 74 FL GT 75	684	154 462	0.1	91.7	92.1	14,018	 Light Gas	Oil BBLS MCF	-> ->	357 6,558	5,830,020 1,000,000	2,082 6,558	14,200 45,410	9.2148 9.8227
76 77 PE GT 78	348	23 68	0.0	88.3	94.3	15,348	 Light Gas	Oil BBLS MCF	-> ->	58 1,062	5,832,180 1,000,000	337 1,062	2,400 7,376	10.5263 10.7838
79 80 SJRPP 10	127	81,960	89.6	93.1	99.7	9,459	Coal	TONS	->	31,701	24,455,202	775,262	1,225,000	1.4946
81 82 SJRPP 2O	127	82,778	90.5	93.6	99.7	9,321	 Coal	TONS	->	31,551	24,455,171	771,585	1,219,200	1.4729
83 84 SCHER #4	643	375,494	81.1	94.2	89.8	9,599	Coal	TONS	->	205,963	17,500,002	3,604,358	5,741,200	1.5290
85 86 FMREP 1	1,423		 84.7	 94.7		6,922	 Gas	MCF	->	6,008,992	1,000,000	6,008,992	41,637,774	4.7965
87 88 SNREP4	891	536,418	 83.6	 95.7	96.6	6,889	Gas	MCF	->	3,695,358	1,000,000	3,695,358	25,606,027	4.7735
89 90 SNREP5	940	 500,741	74.0	82.5	86.0	6,915	 Gas	MCF	->	3,462,763	1,000,000	3,462,763	 23,994,326	4.7918
91 92 MANATE 3 93	1,080	 597,986	76.9	96.5	91.0	6,820	Gas	MCF	->	4,078,383	1,000,000	4,078,383	 30,019,839 	5.0202

......

Schedule E4 Page: 24

				Estimated I	For The Pe	riod of :		Jun-05					
 (A)	 (B)	 (C)	 (D)	(E)	 (F)	(G)		(H)	 (I)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 FM SC	164	22,304	9.4	97.1	86.9	10,566	Gas	MCF ->	235,673	1,000,000	235,673	1,633,040	7.3217
96 MR SC	149	**	0.0	0.0		0							
98 TOTAL	20,210	8,806,630	0.0			8,817 ======					77,647,212 ======	340,577,244 ======	3.8673

40

Schedule E4 Page: 25

				Estimated I	The Pe	riod of :	Jul-05					
 (A)	(B)	(C)	 (D)	(E)	 (F)	 (G)	 (H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	83,768 15,698	33.9	95.0	69.1	10,020	Heavy Oil BBLS -> Gas MCF ->	126,628 186,193	6,400,002 1,000,000	810,419 186,193	4,073,915 1,278,282	4.8634 8.1431
4 TRKY O 2 5	394	88,228 25,603	38.8	93.7	74.8	9,960	Heavy Oil BBLS -> Gas MCF ->	132,657 284,691	6,399,999 1,000,000	849,004 284,691	4,267,863 1,954,482	4.8373 7.6339
6 7 TRKY N 3	693	502,707	97.5	97.5	100.0	11,485	Nuclear Othr ->	5,773,532	1,000,000	5,773,532	1,882,600	0.3745
8 9 TRKY N 4	693	502,70 7	97.5	97.5	100.0	11,485	Nuclear Othr ->	5,773,532	1,000,000	5,773,532	 1,914,000	0.3807
10 11 FT LAUD4	425	290,097	91.7	94.7	96.9	7,650	Gas MCF ->	2,219,162	1,000,000	2,219,162	 15,235,007	5.2517
12 13 FT LAUD5	424	286,572	90.8	93.6	95.9	7,361	Gas MCF ->	2,109,514	1,000,000	2,109,514	 14,482,235	5.0536
14 15 PT EVER1 16	210	16,157 6,894	14.8	95.0	45.8	11,516	Heavy Oil BBLS -> Gas MCF ->	25,694 101,018	6,400,007 1,000,000	164,441 101,018	824,202 693,425	5.1013 10.0588
17 18 PT EVER2 19	210	22,379 7,835	19.3	94.4	54.2	10,721	Heavy Oil BBLS -> Gas MCF ->	 33,667 108,448	6,399,999 1,000,000	215,471 108,448	1,080,037 744,503	4.8262 9.5018
20 21 PT EVER3 22	381	118,641 21,797	49.5	95.1		9,440	Heavy Oil BBLS -> Gas MCF ->	170,451 234,791	6,400,001 1,000,000	1,090,883 234,791	5,467,959 1,611,960	4.6088 7.3955
23 24 PT EVER4 25	388	123,921 24,861	51.5	95.6	86.4	9,364	Heavy Oil BBLS -> Gas MCF ->	176,626 262,856	6,400,001 1,000,000	1,130,408 262,856	5,665,999 1,804,576	4.5723 7.2586
26 27 RIV 3 28	273	6,822 9,699	8.1	93.8	28.3	14,162	Heavy Oil BBLS -> Gas MCF ->	12,466 154,179	6,399,986 1,000,000	79,780 154,179	400,173 1,056,907	5.8663 10.8971
29 30 RIV 4 31	279	92,752 64,976	76.0	92.8	85.1	10,290	Heavy Oil BBLS -> Gas MCF ->	145,650 690,817	6,399,999 1,000,000	932,160 690,817	4,675,206 4,742,369	5.0405 7.2986

41

Schedule E4 Page: 26

				Estimated I	For The Pe	riod of :	Ju	I-05					
 (A)	(B)	 (C)	(D)	 (E)	 (F)	 (G)		 	(1)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fi Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	839	608,613	97.5	97.5	100.0	11,025	Nuclear	Othr ->	6,709,895	1,000,000	6,709,895	1,888,500	0.3103
34 35 ST LUC 2	714	517,926	97.5	97.5	100.0	11,025	Nuclear	Othr ->	5,710,153	1,000,000	5,710,153	1,745,200	0.3370
36 37 CAP CN 1 38	394	95,086 36,958	45.0	94.2	82.0	9,741	Heavy O Gas	il BBLS -> MCF ->	140,054 389,953	6,400,000 1,000,000	896,346 389,953	4,485,432 2,677,079	4.7172 7.2435
39 40 CAP CN 2 41	394	112,724 30,166	48.7	94.7	84.7	9,329	Heavy O Gas	il BBLS -> MCF ->	159,647 311,231	6,399,998 1,000,000	1,021,737 311,231	5,112,889 2,136,594	4.5358 7.0829
42 43 SANFRD 3 44	138	14,892 6,300	20.6	95.8	57.9	10,004	Heavy O Gas	il BBLS -> MCF ->	21,134 76,750	6,400,008 1,000,000	135,258 76,750	600,967 526,157	4.0355 8.3524
45 46 PUTNAM 1	239	55,368	31.1	95.3	74.4	9,021	Gas	MCF ->	499,469	1,000,000	499,469	3,428,956	6.1930
47 48 PUTNAM 2	239	39,618	22.3	95.4	64.4	9,641	Gas	MCF ->	381,977	1,000,000	381,977	2,622,306	6.6189
49 50 MANATE 1 51	795	264,285 34,937	50.6	94.4	57.1	10,201	Heavy O Gas	MCF ->	418,583 373,463	6,400,000 1,000,000	2,678,930 373,463	13,385,088 2,546,542	5.0646 7.2889
52 53 MANATE 2 54	795	194,253 37,203	39.1	95.8	50.0) 10,356	Heavy O Gas)il BBLS -> MCF ->	311,404 404,009	6,399,999 1,000,000	1,992,985 404,009	9,957,839 2,754,954	5.1262 7.4052
55 56 CUTLER 5	68	4,539	9.0	97.6	31.5	5 13,773	Gas	MCF ->	62,510	1,000,000	62,510	428,650	9.4443
57 58 CUTLER 6	138	9,482	9.2	96.6	32.0) 13,238	Gas	MCF ->	125,527	1,000,000	125,527	861,367	9.0838
59 60 MARTIN 1 61	803	201,823 133,307	56.1	95.9	58.2	2 10,954	Heavy O Gas)il BBLS -> MCF ->	338,708 1,503,408	6,400,001 1,000,000	2,167,730 1,503,408	10,870,946 10,251,687	5.3864 7.6903

42

Schedule E4 Page: 27

				Estimated	For The Pe	riod of :		Jul-05					
(A)	(B)	(C)	 (D)	(E)	(F)	(G)		 (H)	 (i)	 (J)	(K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MARTIN 2 64	796	193,256 151,050	58.1	96.3	60.4	10,686	Heavy Gas	/ Oil BBLS -> MCF ->	315,757 1,658,473	6,400,001 1,000,000	2,020,847 1,658,473	10,134,285 11,309,136	5.2440 7.4870
66 MARTIN 3	443	275,210	83.5	95.1	91.7	7,178	Gas	MCF ->	1,975,360	1,000,000	1,975,360	13,469,924	4.8944
67 68 MARTIN 4	443	270,613	82.1	94.6	92.9	7,022	Gas	MCF ->	1,900,139	1,000,000	1,900,139	12,957,073	4.7880
69 70 MARTIN 8	1,080	632,468	78.7	96.6	89.5	6,994	Gas	MCF ->	4,423,391	1,000,000	4,423,391	30,227,705	4.7793
71 72 FM GT	552	43,123	10.5	98.4	51.0	14,853	 Light	Oil BBLS ->	109,866	5,829,998	640,519	6,023,600	13.9686
73 74 FL GT 75	684	90 32,099	6.3	91.7	31.2	19,050	Light Gas	Oil BBLS -> MCF ->	 280 611,553	5,830,418 1,000,000	 1,633 611,553	 11,200 4,198,391	12.4444 13.0796
76 77 PE GT 78	348	 14 31,579	12.4	88.3	61.5	18,479	Light Gas	Oil BBLS -> MCF ->	42 583,575	5,830,952 1,000,000	245 583,575	1,800 4,006,338	12.9496 12.6866
80 SJRPP 10	127	83,320	88.2	93.1	98.3	9,476	Coal	TONS ->	32,291	24,451,621	789,572	1,250,100	1.5004
81 82 SJRPP 20	127	83,984	88.9	93.6	98.4	9,338	Coal	TONS ->	32,074	24,451,591	784,258	1,241,700	1.4785
83 84 SCHER #4	643	382,204	79.9	94.2	88.7	9,607	 Coal	TONS ->	209,828	17,500,006	3,671,998	 5,849,300	1.5304
85 86 FMREP 1	1,423	888,753	83.9	94.7	94.4	6,944	 Gas	MCF ->	6,171,784	1,000,000	6,171,784	42,370,532	4.7674
87 88 SNREP4	891	 546,934	82.5	95.7	93.4	6,961	 Gas	MCF ->	3,807,481	1,000,000	3,807,481	26,139,060	4.7792
89 90 SNREP5	940	 550,733	78.7	95.2	89.2	6,920	 Gas	MCF ->	 3,811,164	1,000,000	3,811,164	 26,164,426	4.7508
91 92 MANATE 3 93	1,080	 622,043	77.4	96.6	87.5	6,929	 Gas 	MCF ->	 4,310,272 	1,000,000	4,310,272	 31,553,520 	5.0726

Schedule E4 Page: 28

				Estimated [for The De	riad of t		hul 05					
*********											**********	*******	
(A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 FM SC	164	66,871	27.4	97.1	77.3	10,552	Gas	MCF ->	705,607	1,000,000	705,607	4,844,175	7.2440
95 96 MR SC	149		0.0	0.0		0							
98 TOTAL	20,210	9,563,937	0.0			9,042	•••				86,480,500	381,889,116	3.9930
	====== :	=======				======					======	======	======

,

44

Schedule E4 Page: 29

				Estimated	For The Pe	eriod of :	Au	g-05 					
 (A)	 (B)	(C)	 (D)	(E)	(F)	(G)		 (H)	 (I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	84,901 10,564	32.6	95.0	69.5	9,996	Heavy O Gas	MCF ->	128,039 134,784	6,400,002 1,000,000	819,447 134,784	4,122,997 931,197	4.8562 8.8145
4 TRKY O 2 5	394	90,396 16,024	36.3	93.7	73.7	9,908	Heavy O Gas	NI BBLS -> MCF ->	135,350 188,199	6,400,000 1,000,000	866,239 188,199	4,358,403 1,300,400	4.8214 8.1151
6 7 TRKY N 3	693	502,707	97.5	97.5	100.0) 11,485	Nuclear	r Othr ->	5,773,532	1,000,000	5,773,532	1,879,100	0.3738
8 9 TRKY N 4	693	502,707	97.5	97.5	100.0) 1 1,485	Nuclear	r Othr ->	5,773,532	1,000,000	5,773,532	1,914,400	0.3808
10 11 FT LAUD4	425	291,303	92.1	94.7	97.3	7,620	Gas	MCF ->	2,219,610	1,000,000	2,219,610	15,335,844	5.2646
12 13 FT LAUD5	424	287,557	91.2	93.6	96.2	2 7,337	Gas	MCF ->	2,109,904	1,000,000	2,109,904	14,577,869	5.0696
14 15 PT EVER1 16	210	13,483 5,164	11.9	95.0	46.8	3 11,352	Heavy C Gas)il BBLS -> MCF ->	21,382 74,839	6,399,988 1,000,000	136,847 74,839	687,047 517,068	5.0958 10.0125
17 18 PT EVER2 19	210	24,792 5,677	19.5	94.4	56.9	9 10,399	Heavy C Gas	Dil BBLS -> MCF ->	37,060 79,660	6,399,991 1,000,000	237,186 79,660	1,190,702 550,406	4.8027 9.6952
20 21 PT EVER3 22	381	113,252 12,304	44.3	95.1	78.9	9,441	Heavy C Gas)il BBLS -> MCF ->	162,704 144,043	6,400,001 1,000,000	1,041,304 144,043	5,227,628 995,184	4.6159 8.0882
23 24 PT EVER4 25	388	119,904 16,674	47.3	95.6	82.6	5 9,356	Heavy C Gas)il BBLS -> MCF ->	170,723 185,187	6,400,002 1,000,000	1,092,628 185,187	5,485,296 1,279,527	4.5747 7.6738
27 RIV 3 28	273	103,341 51,293	76.1	93.8	85.0) 10,549	Heavy C Gas	Dil BBLS -> MCF ->	166,881 563,121	6,400,001 1,000,000	1,068,038 563,121	5,365,403 3,890,487	5.1919 7.5848
30 RIV 4 31	279	15,058 8,262	11.2	92.8	42.0) 12,019	Heavy C Gas)il BBLS -> MCF ->	24,721 122,064	6,399,998 1,000,000	158,217 122,064	794,867 841,900	5.2787 10.1900

45

Schedule E4 Page: 30

				Estimated I	For The Pe	riod of :	Aug-(05					
 (A)	(B)	(C)	 (D)	 (E)	 (F)	(G)	 (H)	·	(I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fue Type	e	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	839	608,613	97.5	97.5	100.0	11,025	Nuclear (Othr ->	6,709,895	1,000,000	6,709,895	1,885,000	0.3097
34 35 ST LUC 2	714	517,926	97.5	97.5	100.0	11,025	Nuclear (Othr ->	5,710,153	1,000,000	5,710,153	1,742,000	0.3363
36 37 CAP CN 1 38	394	97,394 23,641	41.3	94.2	78.4	9,684	Heavy Oil E Gas M	 BBLS -> 1CF ->	142,822 257,994	6,400,002 1,000,000	914,059 257,994	4,579,700 1,782,562	4.7022 7.5403
40 CAP CN 2 41	394	111,094 17,324	43.8	94.7	79.9	9,314	Heavy Oil E Gas N	BBLS-> MCF->	157,231 189,800	6,400,002 1,000,000	1,006,278 189,800	5,041,723 1,311,408	4.5383 7.5698
42 43 SANFRD 3 44	138	16,104 5,626	21.2	95.8	61.0	9,887	Heavy Oil E Gas N	BBLS -> ACF ->	22,655 69,854	6,399,992 1,000,000	144,993 69,854	675,379 481,807	4.1939 8.5647
46 PUTNAM 1 47 48	239	118 51,085	28.8	95.3	72.0	8,989	Light Oil B Gas N	3BLS -> MCF ->	173 459,275	5,831,116 1,000,000	1,008 459,275	7,900 3,173,433	6.7120 6.2120
49 PUTNAM 2 50	239	99 37,400	21.1	95.4	63.2	9,627	Light Oil B Gas M	BLS -> ACF ->	155 360,092	5,828,276 1,000,000	903 360,092	7,000 2,488,097	7.1066 6.6526
52 MANATE 1 53	795	267,281 30,099	50.3	94.4	63.1	10,158	Heavy Oil I Gas M	BBLS -> //CF ->	421,638 322,307	6,400,000 1,000,000	2,698,484 322,307	13,501,967 2,211,888	5.0516 7.3487
55 MANATE 2 56	795	219,031 29,986	42.1	95.8	59.8	10,239	Heavy Oil I Gas M	BBLS-> MCF->	347,883 323,283	6,400,000 1,000,000	2,226,449 323,283	11,140,144 2,218,624	5.0861 7.3988
58 CUTLER 5	68	4,341	8.6	97.6	37.5	13,008	Gas N	//CF ->	56,460	1,000,000	56,460	389,700	8.9780
60 CUTLER 6	138	8,940	8.7	96.6	36.9	12,865	Gas M	/CF ->	115,011	1,000,000	115,011	794,378	8.8858
61 62 MARTIN 1 63 64	803	206,250 127,511	55.9	95.9	63.2	10,836	Heavy Oil I Gas M	 BBLS -> MCF ->	342,527 1,424,483	6,400,001 1,000,000	2,192,172 1,424,483	11,009,233 9,776,104	5.3378 7.6669

46

Schedule E4

				Estimated I	For The Pe	riod of :	<i>4</i>	Aug-05					
 (A)	(B)	(C)	 (D)	(E)	(F)	 (G)		(H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MARTIN 2 66	796	225,171 151,245	63.6	96.3	66.0	10,567	Heavy Gas	Oil BBLS -> MCF ->	364,458 1,645,071	6,400,000 1,000,000	2,332,531 1,645,071	11,714,050 11,289,942	5.2023 7.4647
68 MARTIN 3	443	264,664	80.3	95.1	91.2	7,173	Gas	MCF ->	1,898,477	1,000,000	1,898,477	13,029,043	4.9229
69 70 MARTIN 4	443	267,319	81.1	94.6	92.7	7,013	Gas	MCF ->	1,874,741	1,000,000	1,874,741	12,866,133	4.8130
71 72 MARTIN 8	1,080	622,638	77.5	96.6	90.7	6,962	Gas	MCF ->	4,334,974	1,000,000	4,334,974	29,821,233	4.7895
73 74 FM GT	552	31,778	7.7	98.4	52.2	14,704	Light	Oil BBLS ->	80,146	5,830,001	467,251	4,354,500	13.7029
75 76 FL GT 77	684	170 23,296	4.6	91.7	31.9	18,897	Light (Gas	Oil BBLS -> MCF ->	 525 440,364	5,830,160 1,000,000	3,062 440,364	 20,900 3,042,564	12.2869 13.0606
78 79 PE GT 80	348	31 22,422	8.8	88.3	61.7	18,462	Light (Gas	Oil BBLS -> MCF ->	93 413,976	5,828,294 1,000,000	540 413,976	3,900 2,860,254	12.7036 12.7565
81 82 SJRPP 10	127	82,923	87.8	93.1	98.5	9,473	Coal	TONS ->	32,126	24,451,240	785,508	1,244,600	1.5009
83 84 SJRPP 20	127	83,634	88.5	93.6	98.6	9,335	Coal	TONS ->	31,929	24,451,183	780,690	1,237,000	1.4791
85 86 SCHER #4	643	383,088	80.1	94.2	89.1	9,606	 Coal	TONS ->	210,274	17,500,004	3,679,803	 5,861,900	1.5302
87 88 FMREP 1	1,423	905,082	85.5	94.7	94.5	6,936	Gas	MCF ->	6,277,353	1,000,000	6,277,353	43,371,700	4.7920
89 90 SNREP4	891	557,821	84.1	95.7	94.1	6,943	Gas	MCF ->	3,873,163	1,000,000	3,873,163	26,760,586	4.7973
91 92 SNREP5	940	550,853	78.8	95.2	90.4	6,895	Gas	MCF ->	3,798,026	1,000,000	3,798,026	26,241,494	4.7638
93 94 MANATE 3 95	1,080	610,432	76.0	96.6	88.5	6,903	Gas	MCF ->	4,213,737	1,000,000	4,213,737	 30,962,657 	5.0723

Schedule E4 Page: 32

				Estimated F	or The Pe	eriod of :		Aug-05					
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (i)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
96 FM SC	164	52,410	21.5	97.1	79.1	10,555	Gas	MCF ->	553,206	1,000,000	553,206	3,825,806	7.2997
97 98 MR SC	149		0.0	0.0	*********	0							
100 TOTAL	12,728	5,765,914 	0.0			8,167 ======					47,092,117 ======	282,045,401 ======	4.8916 ======

48

Schedule E4 Page: 33

				Estimated I	For The Pe	riod of :	Sep-05					
(A)	 (B)		(D)	 (E)	(F)	(G)	 I)	 (I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	77,121 7,101	29.7	95.0	75.1	9,929	Heavy Oil BBLS -> Gas MCF ->	115,338 98,092	6,400,000 1,000,000	738,160 98,092	3,697,459 680,749	4.7943 9.5871
3 4 TRKY O 2 5	394	85, 9 98 9, 8 11	33.8	93.7	79.1	9,821	Heavy Oil BBLS -> Gas MCF ->	127,665 123,870	6,399,999 1,000,000	817,058 123,870	4,092,602 859,617	4.7590 8.7622
7 TRKY N 3	693	486,491	97.5	97.5	100.0	11,485	Nuclear Othr ->	5,587,286	1,000,000	5,587,286	1,815,100	0.3731
8 9 TRKY N 4	693	486,491	97.5	97.5	100.0	11,485	Nuclear Othr ->	5,587,286	1,000,000	5,587,286	 1,849,200	0.3801
10 11 FT LAUD4	425	280,002	91.5	94.7	96.6	7,613	Gas MCF ->	2,131,626	1,000,000	2,131,626	14,793,006	5.2832
12 13 FT LAUD5	424	 211,775	69.4	71.8	95.5	7,326	Gas MCF ->	1,551,561	1,000,000	1,551,561	10,767,480	5.0844
14 15 PT EVER1 16	210	18,575 4,158	15.0	95.0	61.3	10,928	Heavy Oil BBLS -> Gas MCF ->	 28,804 64,076	6,399,997 1,000,000	 184,347 64,076	920,966 444,616	4.9581 10.6930
17 18 PT EVER2 19	210	24,277 4,474	19.0	94.4	67.2	10,292	Heavy Oil BBLS -> Gas MCF ->	35,899 66,147	6,399,991 1,000,000	229,751 66,147	1,147,860 459,018	4.7282 10.2594
20 21 PT EVER3 22	381	106,356 11,503	43.0	95.1	84.0	9,393	Heavy Oil BBLS -> Gas MCF ->	151,787 135,577	6,399,999 1,000,000	971,439 135,577	4,853,304 940,831	4.5633 8.1789
23 24 PT EVER4 25	388	114,201 15,421	46.4	95.6	87.4	9,305	Heavy Oil BBLS -> Gas MCF ->	161,5 4 5 172,238	6,399,999 1,000,000	1,033,888 172,238	5,165,321 1,195,235	4.5230 7.7507
27 RIV 3 28	273	21,504 4,652	13.3	93.8	61.2	11,492	Heavy Oil BBLS -> Gas MCF ->	35,131 75,753	6,399,996 1,000,000	224,839 75,753	1,124,082 524,605	5.2274 11.2770
30 RIV 4 31	279	117,391 36,124	76.4	92.8	85.3	3 10,079	Heavy Oil BBLS -> Gas MCF ->	182,122 381,762	6,400,000 1,000,000	1,165,582 381,762	5,827,425 2,649,088	4.9641 7.3333

49

Schedule E4 Page: 34

				Estimated	For The Pe	riod of :	Se	p-05					
 (A)	(B)	(C)	(D)	(E)	 (F)	 (G)		 (H)	 (I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Tj	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	839	588,980	97.5	97.5	100.0	11,025	Nuclear	r Othr ->	6,493,449	1,000,000	6,493,449	1,820,700	0.3091
34 35 ST LUC 2	714	501,219	97.5	97.5	100.0	11,025	Nuclear	r Othr ->	5,525,958	1,000,000	5,525,958	1,682,600	0.3357
36 37 CAP CN 1 38	394	97,091 12,559	38.7	94.2	82.9	9,594	Heavy O Gas	HEBLS ->	141,389 147,039	6,399,998 1,000,000	904,891 147,039	4,514,005 1,020,442	4.6492 8.1253
40 CAP CN 2 41	394	106,709 11,838	41.8	94.7	84.5	9,265	Heavy O Gas	NI BBLS -> MCF ->	150,209 137,015	6,400,002 1,000,000	961,335 137,015	4,795,649 950,911	4.4942 8.0326
42 43 SANFRD 3 44	138	12,114 3,751	16.0	95.8	66.7	9,882	Heavy O Gas	ii BBLS -> MCF ->	16,889 48,687	6,399,993 1,000,000	108,088 48,687	516,811 337,280	4.2663 8.9922
46 PUTNAM 1 47	239	107 35,250	20.5	95.3	74.0	8,884	Light Oi Gas	I BBLS -> MCF ->	155 313,204	5,831,721 1,000,000	905 313,204	7,000 2,173,590	6.5482 6.1663
49 PUTNAM 2 50	239	96 24,909	14.5	95.4	66.9	9,406	Light Oi Gas	IBBLS -> MCF ->	147 234,330	5,828,338 1,000,000	856 234,330	6,700 1,626,223	7.0157 6.5285
52 MANATE 1 53	795	148,261 15,066	28.5	50.4	66.4	10,122	Heavy O Gas	Dil BBLS -> MCF ->	233,169 160,844	6,399,999 1,000,000	1,492,281 160,844	7,441,746 1,108,779	5.0193 7.3593
55 MANATE 2 56	795	274,147 28,695	52.9	95.8	66.5	10,158	Heavy O Gas	MCF ->	432,386 308,983	6,400,000 1,000,000	2,767,270 308,983	13,799,876 2,130,025	5.0337 7.4229
58 CUTLER 5	68	3,100	6.3	97.6	46.5	12,944	Gas	MCF ->	40,130	1,000,000	40,130	278,153	8.9721
59 50 CUTLER 6	138	6,460	6.5	96.6	45.7	12,648	Gas	MCF ->	81,704	1,000,000	81,704	566,692	8.7725
52 MARTIN 1 53	803	242,752 139,806	66.2	95.9	68.6	10,751	Heavy O Gas	Dil BBLS -> MCF ->	400,466 1,549,882	6,400,000 1,000,000	2,562,982 1,549,882	12,782,701 10,684,701	5.2658 7.6425

_ _ _ _

50

Schedule E4 Page: 35

				Estimated I	For The Pe	riod of :		Sep-05					
 (A)	(B)	(C)	 (D)	 (E)	 (F)	 (G)		(H)	(1)		 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MARTIN 2 66	796	240,392 148,217	67.8	96.3	70.4	10,516	Heav Gas	y Oil BBLS -> MCF ->	387,614 1,606,010	6,400,001 1,000,000	2,480,733 1,606,010	12,372,473 11,071,591	5.1468 7.4698
67 68 MARTIN 3	443	251,851	79.0	95.1	91.7	7,152	Gas	MCF ->	1,801,289	1,000,000	1,801,289	12,417,846	4.9306
69 70 MARTIN 4	443	261,304	81.9	94.6	93.5	6,990	Gas	MCF ->	1,826,622	1,000,000	1,826,622	12,592,448	4.8191
71 72 MARTIN 8	1,080	 606,458	78.0	 96.5	90.5	6,919	Gas	MCF ->	4,196,035	1,000,000	4,196,035	28,986,816	4.7800
73 74 FM GT	552	 12,222	3.1	98.4	54.9	14,325	Light	t Oil BBLS ->	30,030	5,830,003	175,075	1,627,800	13.3192
75 76 FL GT 77	684	 160 8,288	1.7	91.7	33.1	18,620	Light Gas	t Oil BBLS -> MCF ->	 486 154,453	5,829,835 1,000,000	 2,833 154,453	 19,400 1,071,831	12.1554 12.9328
78 79 PE GT 80	348	 24 7,654	3.1	88.3	61.8	18,440	Light Gas	t Oil BBLS -> MCF ->	 71 141,170	5,833,098 1,000,000	412 141,170	3,000 979,723	12.7660 12.7995
81 82 SJRPP 10	127	81,583	89.2	93.1	99.2	9,464	Coal	TONS ->	31,578	24,450,890	772,115	1,223,800	1.5001
83 84 SJRPP 20	127	82,131	89.8	93.6	99.3	9,326	Coal	TONS ->	31,326	24,450,824	765,947	1,214,000	1.4781
85 86 SCHER #4	643	 374,847	81.0	94.2	89.7	9,601	Coal	TONS ->	205,651	17,500,001	3,598,900	5,733,100	1.5295
87 88 FMREP 1	1,423		79.6	94.7	89.8	6,963	Gas	MCF ->	5,679,020	1,000,000	5,679,020	39,411,284	4.8323
89 90 SNREP4	891	 533,946	83.2	95.7	94.8	6,920	Gas	MCF ->	3,694,670	1,000,000	3,694,670	25,640,215	4.8020
91 92 SNREP5	940	497,238	73.5	87.3	84.8	6,944	Gas	MCF ->	3,453,028	1,000,000	3,453,028	23,968,988	4.8204
93 94 MANATE 3 95	1,080	594,173	76.4	96.5	89.0	6,858	Gas	MCF ->	4,074,851	1,000,000	4,074,851	30,130,105	5.0709

Date: 9/9/2004 Florida Power & Light Company:

Schedule E4 Page: 36

				Estimated f	For The Pe	riod of :		Sep-05					
(A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
96 FM SC	164	37,461	15.9	97.1	84.8	10,565	Gas	MCF ->	395,775	1,000,000	395,775	2,754,195	7.3521
97 98 MR SC	149		0.0	0.0		0							
100 TOTAL	12,728	5,436,812	0.0			8,096	••				44,018,199	261,644,210	4.8125

52

Schedule E4 Page: 37

				Estimated	For The Pe	eriod of :	Oc	t-05					
 (A)	(B)	 (C)	(D)	(E)	 (F)	(G)		· H)	(1)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F T <u>y</u>	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	81,201 5,032	29.4	95.0	78.7	9,862	Heavy O Gas	il BBLS -> MCF ->	120,692 77,978	6,400,000 1,000,000	772,427 77,978	3,822,760 547,627	4.7078 10.8833
3 4 TRKY O 2 5	394	94,573 6,444	34.5	93.7	83.2	2 9,739	Heavy O Gas	il BBLS -> MCF ->	139,519 90,851	6,400,002 1,000,000	892,920 90,851	4,419,028 638,021	4.6726 9.9005
6 7 TRKY N 3	693	502,707	97.5	97.5	100.0) 11,485	Nuclear	Othr ->	5,773,532	1,000,000	5,773,532	1,873,200	0.3726
8 9 TRKY N 4	693	502,707	97.5	97.5	100.0) 11,485	Nuclear	othr ->	5,773,532	1,000,000	5,773,532	1,907,300	0.3794
0 1 FT LAUD4	425	288,467	91.2	94.7	96.3	3 7,597	Gas	MCF ->	2,191,436	1,000,000	2,191,436	15,390,134	5.3351
2 3 FT LAUD5	424		0.0	0.0		0							
4 5 PT EVER1	210		0.0	0.0		0				********			
6 7 PT EVER2 8	210	21,380 2,795	15.5	94.4	78.6	5 10,068	Heavy O Gas	MCF ->	31,108 44,302	6,400,009 1,000,000	199,090 44,302	982,508 311,057	4.5955 11.1295
9 20 PT EVER3 21	381	111,255 8,732	42.3	95.1	86.3	3 9,331	Heavy C Gas	MCF ->	157,965 108,573	6,400,000 1,000,000	1,010,978 108,573	4,988,989 762,445	4.4843 8.7315
22 23 PT EVER4 24	388	121,174 12,523	46.3	95.6	89.7	7 9,253	Heavy C Gas	MCF ->	170,628 145,069	6,400,002 1,000,000	1,092,020 145,069	5,388,937 1,018,732	4.4473 8.1346
25 26 RIV 3 27	273	122,399 32,228	76.1	93.8	85.8	3 10,414	Heavy C Gas	Dil BBLS -> MCF ->	196,318 353,860	6,400,001 1,000,000	1,256,436 353,860	6,203,339 2,484,762	5.0681 7.7099
28 29 RIV 4 30	279	 7,842 1,604	4.6	21.0	80.4	4 10,798	Heavy C Gas	Dil BBLS -> MCF ->	12,125 24,393	6,400,013 1,000,000	77,601 24,393	383,137 170,981	4.8859 10.6603

53

Schedule E4 Page: 38

				Estimated I	For The Pe	riod of : 		t-05					
(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)		H)	(1)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fi Ty	uel /pe	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 ST LUC 1	839	39,265	6.3	6.3	100.0	11,025	Nuclear	Othr ->	432,899	1,000,000	432,899	121,100	0.3084
33 34 ST LUC 2	714	517,926	97.5	97.5	100.0	11,025	Nuclear	Othr ->	5,710,153	1,000,000	5,710,153	1,736,200	0.3352
35 36 CAP CN 1 37	394	102,967 8,978	38.2	94.2	85.8	9,550	Heavy O Gas	il BBLS -> MCF ->	149,318 113,415	6,399,998 1,000,000	955,635 113,415	4,709,420 796,468	4.5737 8.8715
39 CAP CN 2 40	394	55,977 3,610	20.3	42.7	88.8	9,172	Heavy O Gas	il BBLS -> MCF ->	78,407 44,707	6,400,000 1,000,000	501,804 44,707	2,472,933 314,019	4.4178 8.6988
42 SANFRD 3 43 44	138	12,408 2,670	14.7	95.8	76.1	9,628	Heavy O Gas	il BBLS -> MCF>	17,041 36,099	6,399,995 1,000,000	109,060 36,099	530,833 253,033	4.2782 9.4787
45 PUTNAM 1	239	29,323	16.5	69.1	70.5	8,735	Gas	MCF ->	256,124	1,000,000	256,124	1,798,693	6.1341
40 47 PUTNAM 2 48	239	26,594	15.0	95.4	74.1	8,965	Gas	MCF ->	238,425	1,000,000	238,425	1,674,389	6.2960
49 MANATE 1	795		0.0	0.0		0							
50 51 MANATE 2 52	795	281,519 21,779	51.3	95.8	72.4	10,099	Heavy O Gas	il BBLS -> MCF ->	441,920 234,589	6,400,000 1,000,000	2,828,288 234,589	13,985,642 1,637,365	4.9679 7.5182
53 54 CUTLER 5	68	3,385	6.7	66.1	72.6	11,769	Gas	MCF ->	39,840	1,000,000	39,840	279,473	8.2555
56 CUTLER 6	138	7,606	7.4	65.5	70.5	12,027	Gas	MCF ->	91,478	1,000,000	91,478	642,281	8.4442
57 58 MARTIN 1 59	803	246,304 135,345	63.9	95.9	72.8	10,706	Heavy O Gas	il BBLS -> MCF ->	404,688 1,495,820	6,400,000 1,000,000	2,590,002 1,495,820	12,706,114 10,440,718	5.1587 7.7141
61 MARTIN 2 62	796	258,311 148,186	68.6	96.3	71.8	10,491	Heavy O Gas	il BBLS -> MCF ->	415,848 1,603,122	6,400,000 1,000,000	2,661,425 1,603,122	13,056,532 11,189,628	5.0546 7.5511

წ

				Estimated I	For The Pe	riod of :		Oct-05					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (1)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 MARTIN 3	443	276,568	83.9	 95.1	92.4	7,140	 Gas	MCF ->	1,974,812	1,000,000	1,974,812	13,783,910	4.9839
65 66 MARTIN 4	443	271,201	82.3	94.6	93.7	6,975	 Gas	MCF ->	1,891,685	1,000,000	1,891,685	13,203,686	4.8686
67 68 MARTIN 8	1,080	597,582	74.4	96.6	86.6	6,934	 Gas	MCF ->	4,143,722	1,000,000	4,143,722	 28,955,431	4.8454
69 70 FM GT	552	5,851	1.4	98.4	92.9	11,467	 Light	Oil BBLS ->	11,509	5,830,001	67,097	 623,900	10.6624
71 72 FL GT 73	684	597 1,792	0.5	91.7	91.4	14,019	 Light Gas	Oil BBLS -> MCF ->	 1,385 25,426	5,829,975 1,000,000	8,072 25,426	55,200 178,603	9.2400 9.9661
74 75 PE GT 76	348	98 295	0.2	88.3	93.7	15,348	Light Gas	Oil BBLS -> MCF ->	 249 4,575	5,830,189 1,000,000	 1,452 4,575	 10,500 32,085	10.6925 10.8947
77 78 SJRPP 10	127	83,225	88.1	93.1	99.7	9,461	 Coal	TONS ->	32,206	24,447,278	787,359	1,250,600	1.5027
79 80 SJRPP 20	127	83,858	88.8	93.6	99.7	9,323	Coal	TONS ->	31,978	24,447,283	781,785	1,241,700	1.4807
81 82 SCHER #4	643	383,379	80.2	94.2	90.0	9,599	 Coal	TONS ->	210,294	17,500,004	3,680,151	5,862,600	1.5292
83 84 FMREP 1	1,423	898,351		94.7	94.7	6,922	 Gas	MCF ->	6,218,799	1,000,000	6,218,799	43,673,667	4.8615
85 86 SNREP4	891	560,668	84.6	95.7	95.9	6,900	 Gas	MCF ->	3,868,365	1,000,000	3,868,36 5	 27,166,864	4.8454
87 88 SNREP5	940	561,150		 95.2	92.6	6,848	 Gas	 MCF ->	 3,842,669	1,000,000	3,842,669	 26,986,420	4.8091
89 90 MANATE 3	1,080	 628,143	 78.2	96.6	89.9	6,834	 Gas	 MCF ->	 4,292,536	1,000,000	4,292,536	 31,372,807	4.9945
91 92 FM SC 93	164	35,868	14.7	97.1	92.3	10,581	 Gas 	MCF ->	 379,503 	1,000,000	 379,503	2,665,159	7.4305

Schedule E4 Page: 40

				Estimated F	For The Pe	eriod of :	Oct-05					
(A)	(B)	(C)	 (D)	(E)	(F)	(G)	 (H)	 (I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 MR SC	149		0.0	0.0		0						
96 TOTAL	12,967 ======	5,546,977 ======	0.0			7,934 ======				44,007,120	264,473,968 ======	4.7679 ======

1 56 1

				Estimated F	For The Pe	riod of :	Nov-05					
 (A)	 (B)	(C)	 (D)	 (E)	 (F)	 (G)	 (H)	 (I)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuei Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
TRKY O 1	397	97,820 13,837	39.1	95.0	87.9	8,981	Heavy Oil BBLS -> Gas MCF ->	 132,249 156,399	6,399,999 1,000,000	846,396 156,399	4,157,381 1,121,742	4.2500 8.1071
4 TRKY O 2	397	50,311 14,212	22.6	93.7	69.6	9,689	Heavy Oil BBLS -> Gas MCF ->	70,112 176,425	6,400,003 1,000,000	448,718 176,425	2,204,009 1,265,331	4.3808 8.9034
6 7 TRKY N 3	717	503,332	97.5	97.5	100.0	11,231	Nuclear Othr ->	5,652,901	1,000,000	5,652,901	1,830,700	0.3637
8 9 TRKY N 4	717	503,332	97.5	97.5	100.0	11,231	Nuclear Othr ->	5,652,901	1,000,000	5,652,901	1,864,600	0.3705
0 1 FT LAUD4	443	280,419	 87.9	94.7	92.8	7,691	Gas MCF ->	2,156,826	1,000,000	2,156,826	15,469,259	5.5165
2 3 FT LAUD5	442		0.0	0.0		0						
4 5 PT EVER1 6	211	0 89	0.1	15.8	22.0	20,771	Heavy Oil BBLS -> Gas MCF ->	0 1,843	1,000,000	0 1,843	0 13,228	14.9128
7 8 PT EVER2 9	211	7,482 6,898	9.5	94.4	54.9	10,932	Heavy Oil BBLS -> Gas MCF ->	9,261 97,921	6,400,002 1,000,000	59,269 97,921	291,141 702,291	3.8913 10.1818
0 1 PT EVER3 2	383	71,045 10,058	29.4	95.1	77.4	10,285	Heavy Oil BBLS -> Gas MCF ->	109,047 136,217	6,400,001 1,000,000	697,900 136,217	3,428,524 976,916	4.8259 9.7127
4 PT EVER4	390	31,949 12,142	15.7	95.6	56.9	11,839	Heavy Oil BBLS -> Gas MCF ->	53,285 180,969	6,399,997 1,000,000	341,025 180,969	1,675,263 1,297,944	5.2435 10.6895
7 RIV 3	275	6,335 6,573	6.5	93.8	45.8	13,087	Heavy Oil BBLS -> Gas MCF ->	8,844 112,324	6,399,991 1,000,000	56,603 112,324	277,308 803,312	4.3775 12.2221
9 0 RIV 4 1	281	80,707 23,639	51 <i>.</i> 6	74.2	79.8	9,163	Heavy Oil BBLS -> Gas MCF ->	113,634 228,813	6,400,001 1,000,000	727,256 228,813	3,562,491 1,640,903	4.4141 6.9416

57

Schedule E4

				Estimated I	For The Pe	riod of :	!	Nov-C	95 					
 (A)	(B)	(C)	(D)	(E)	 (F)	 (G)		(H)		(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	9	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	853		0.0	0.0		0								
34 35 ST LUC 2	726	509,586	97.5	97.5	100.0	10,844	Nucle	ear (Dthr ->	5,525,890	1,000,000	5,525,890	1,677,100	0.3291
36 37 CAP CN 1 38	398	86,460 13,296	34.8	94.2	83.8	9,649	Heavy Gas	y Oil E M	BLS -> CF ->	125,767 157,685	6,399,998 1,000,000	804,906 157,685	3,936,662 1,130,978	4.5531 8.5060
40 CAP CN 2 41	398	4,628 1,470	2.1	15.8	74.4	10,103	Heavy Gas	y Oil E M	BLS -> CF ->	6,799 18,084	6,400,026 1,000,000	43,513 18,084	212,844 129,673	4.5994 8.8243
43 SANFRD 3 44 45	140	2,748 3,524	6.2	95.8	47.3	12,063	Heavy Gas	y Oil E M	BLS -> CF ->	3,754 51,633	6,400,059 1,000,000	24,024 51,633	117,500 369,506	4.2765 10.4848
46 PUTNAM 1	250	22,685	12.6	66.7	67.1	9,028	Gas	М	CF ->	204,799	1,000,000	204,799	1,468,893	6.4752
47 48 PUTNAM 2 49	250	18,947	10.5	95.4	67.0	9,262	Gas	М	CF ->	175,480	1,000,000	175,480	1,258,596	6.6428
50 MANATE 1	821		0.0	0.0		0								
51 52 MANATE 2 53	821	130,765 22,509	25.9	95.8	60.5	10,737	Heavy Gas	y Oil E M	BLS -> CF ->	216,719 258,771	6,400,000 1,000,000	1,387,001 258,771	6,846,339 1,844,465	5.2356 8.1942
55 CUTLER 5	70	317	0.6	32.5	37.4	14,766	Gas	М	CF ->	4,680	1,000,000	4,680	33,434	10.5470
57 CUTLER 6	142		0.0	0.0		0								
58 59 MARTIN 1 60	813	132,089 82,128	36.6	95.9	67.4	11,322	Heavy Gas	y Oil E M	BLS -> CF ->	228,732 961,453	6,400,001 1,000,000	1,463,887 961,453	7,125,300 6,852,822	5.3943 8.3441
62 MARTIN 2 63	804	69,398 44,676	19.7	96.3	56.7	11,631	Heavy Gas	y Oil E M	BLS -> CF ->	122,946 539,884	6,400,002 1,000,000	786,854 539,884	3,829,937 3,848,063	5.5188 8.6133

58

Schedule E4 Page: 43

				Estimated I	For The Pe	riod of :	٦	Nov-05					
(A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	 (I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MARTIN 3	465	257,333	76.9	95.1	88.0	7,122	Gas	MCF ->	1,832,779	1,000,000	1,832,779	13,063,338	5.0764
66 67 MARTIN 4	466	267,314	79.7	94.6	89.5	6,879	Gas	MCF ->	1,838,750	1,000,000	1,838,750	13,105,812	4.9028
68 69 MARTIN 8	1,099	565,339	71.4	96.5	83.9	6,630	Gas	MCF ->	3,748,032	1,000,000	3,748,032	26,717,823	4.7260
70 71 FM GT	624	927	0.2	98.4	92.3	12,165	Light	Oil BBLS ->	1,935	5,830,034	11,278	104,900	11.3149
72 73 FL GT 74	768	 68 205	0.0	91.7	89.6	13,996	Light Gas	Oil BBLS -> MCF ->	158 2,903	5,828,590 1,000,000	922 2,903	6,300 20,864	9.2240 10.1825
75 76 PE GT 77	384	6 18	0.0	88.3	92.0	14,388	Light Gas	Oil BBLS -> MCF ->	 14 256	5,841,727 1,000,000	81 256	600 1,826	10.1695 10.3747
78 79 SJRPP 10	130	82,353	88.0	93.1	99.6	9,638	Coal	TONS ->	32,468	24,446,915	793,740	1,262,000	1.5324
80 81 SJRPP 20	130	82,893	88.6	93.6	99.7	9,499	Coal	TONS ->	32,208	24,446,956	787,385	1,251,900	1.5103
82 83 SCHER #4	648	371,448	79.6	94.2	89.7	9,825	Coal	TONS ->	208,548	17,499,997	3,649,596	5,813,900	1.5652
84 85 FMREP 1	1,451	859,088	82.2	94.7	91.1	6,871	Gas	MCF ->	5,903,126	1,000,000	5,903,126	42,338,451	4.9283
86 87 SNREP4	938	530,986	78.6	95.7	92.2	2 6,841	Gas	MCF ->	3,632,691	1,000,000	3,632,691	26,054,445	4.9068
88 89 SNREP5	938	521,403	77.2	95.2	89.1	6,776	Gas	MCF ->	3,533,084	1,000,000	3,533,084	25,340,065	4.8600
90 91 MANATE 3	1,105	587,122	73.8	96.5	87.3	6,699	Gas	MCF ->	3,932,936	1,000,000	3,932,936	28,917,142	4.9252
92 93 FM SC	166	36,376	15.2	97.1	89.6	5 10,926	Gas	MCF ->	397,459	1,000,000	397,459	2,850,663	7.8366
94													

Schedule E4 Page: 44

					Estimated I	For The Pe	eriod of :	Nov-05					
-	(A)	 (B)	(C)	 (D)	(E)	 (F)		 (H)	 (I)	 (J)	 (K)	 (L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 N	IR SC	163		0.0	0.0		0						
97 T	TOTAL	13,446 =======	4,686,392	0.0			7,649				35,847,824	219,957,877	4.6935

60

				Estimated I	For The Pe	eriod of :	De	ec-05					
 (A)	 (B)	 (C)	 (D)	(E)	 (F)	(G)		(H)	 (l)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F	⁻ uel Jype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	397	40,809 9,829	17.1	95.0	69.6	9,644	Heavy C Gas	Dil BBLS -> MCF ->	56,333 127,803	6,400,001 1,000,000	360,533 127,803	1,762,798 940,298	4.3196 9.5670
4 TRKY O 2 5	397	14,534 9,602	8.2	93.7	47.5	11,166	Heavy C Gas	Dil BBLS -> MCF ->	21,132 134,266	6,399,995 1,000,000	135,245 134,266	 661,276 987,937	4.5499 10.2888
7 TRKY N 3	717	520,110	97.5	97.5	100.0	11,231	Nuclea	r Othr ->	5,841,326	1,000,000	5,841,326	1,888,100	0.3630
9 TRKY N 4	717	520,110	97.5	97.5	100.0	11,231	Nuclea	r Othr->	5,841,326	1,000,000	5,841,326	1,923,200	0.3698
10 11 FT LAUD4	443	281,031	85.3	94.7	90.0	7,833	Gas	MCF ->	2,201,389	1,000,000	2,201,389	 16,196,587	5.7633
12 13 FT LAUD5	442	193,842	58.9	81.5	80.4	8,154	Gas	MCF ->	1,580,633	1,000,000	1,580,633	11,629,412	5.9994
14 15 PT EVER1 16	211	903 3,809	3.0	95.0	33.3	15,771	Heavy C Gas	Dil BBLS -> MCF ->	1,270 66,175	6,399,858 1,000,000	8,129 66,175	40,057 486,868	4.4360 12.7837
17 18 PT EVER2 19	211	1,749 4,042	3.7	94.4	38.4	13,753	Heavy C Gas	Dil BBLS -> MCF ->	2,256 65,207	6,400,027 1,000,000	14,436 65,207	71,156 479,709	4.0686 11.8684
20 21 PT EVER3 22	383	21,218 9,792	10.9	95.1	54.2	11,704	Heavy C Gas	Dil BBLS -> MCF ->	34,210 143,974	6,400,001 1,000,000	218,947 143,974	1,079,822 1,059,259	5.0892 10.8181
23 24 PT EVER4 25	390	8,038 6,982	5.2	95.6	35.0) 14,371	Heavy C Gas	Dil BBLS -> MCF ->	14,571 122,610	6,400,015 1,000,000	93,256 122,610	459,948 902,086	5.7219 12.9196
27 RIV 3 28	275	121,180 20,328	69.2	93.8	77.4	8,534	Heavy C Gas	Dil BBLS -> MCF ->	159,741 185,270	6,400,001 1,000,000	1,022,343 185,270	4,949,020 1,362,932	4.0840 6.7047
30 RIV 4 31	281	1,003 3,770	2.3	92.8	27.9	18,703	Heavy C Gas	Dil BBLS -> MCF ->	1,600 79,045	6,400,000 1,000,000	10,240 79,045	 49,524 579,798	4.9361 15.3776

61

Schedule E4 Page: 46

				Estimated	For The Pe	riod of :	De	ec-05					
(A)	 (B)	 (C)	 (D)	(E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUC 1	853	598,803	94.4	94.4	100.0	10,844	Nuclear	r Othr ->	6,493,443	1,000,000	6,493,443	2,094,200	0.3497
35 ST LUC 2	726	526,572	97.5	97.5	100.0	10,844	Nuclear	r Othr ->	5,710,086	1,000,000	5,710,086	1,729,600	0.3285
37 CAP CN 1 38	398	38,180 16,025	18.3	94.2	73.1	10,188	Heavy O Gas	MCF ->	56,111 193,132	6,399,996 1,000,000	359,108 193,132	1,739,853 1,421,014	4.5570 8.8673
40 CAP CN 2 41 42	398	58,664 15,617	25.1	94.7	79.1	9,853	Heavy O Gas	MCF ->	85,772 182,943	6,400,003 1,000,000	548,940 182,943	2,659,654 1,346,066	4.5337 8.6192
43 SANFRD 3 44 45	140	464 2,416	2.8	95.8	32.1	15,427	Heavy O Gas	Dil BBLS -> MCF ->	683 40,054	6,399,620 1,000,000	4,374 40,054	21,438 293,870	4.6193 12.1650
46 PUTNAM 1	250	11,093	6.0	95.3	58.1	9,417	Gas	MCF ->	104,461	1,000,000	104,461	768,568	6.9286
48 PUTNAM 2	250	7,927	4.3	95.4	53.9	9,838	Gas	MCF ->	77,982	1,000,000	77,982	573,753	7.2381
49 50 MANATE 1 51	821	75,267 10,395	14.0	94.4	58.9	10,638	Heavy O Gas	NI BBLS -> MCF ->	123,031 123,879	6,400,000 1,000,000	787,398 123,879	3,859,093 905,713	5.1272 8.7131
52 53 MANATE 2 54	821	70,585 31,543	16.7	95.8	40.6	11,259	Heavy O Gas	NI BBLS -> MCF ->	121,086 374,943	6,400,000 1,000,000	774,949 374,943	3,797,999 2,741,175	5.3808 8.6902
56 CUTLER 5	70	1,049	2.0	97.6	30.0	16,893	Gas	MCF ->	17,714	1,000,000	17,714	129,831	12.3813
58 CUTLER 6	142	1,870	1.8	90.4	30.2	12,935	Gas	MCF ->	24,192	1,000,000	24,192	 177,784	9.5052
60 MARTIN 1 61 62	813	70,319 60,879	21.7	95.9	49.5	11,853	Heavy O Gas	MCF ->	126,569 744,991	6,400,002 1,000,000	810,039 744,991	3,923,208 5,446,604	5.5792 8.9466

62

Schedule E4 Page: 47

				Estimated	For The Pe	riod of :]	Dec-05					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)		 (H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MARTIN 2 64	804	31,178 28,340	9.9	96.3	41.9	12,087	Heavy Gas	Oil BBLS -> MCF ->	56,768 356,090	6,399,996 1,000,000	363,314 356,090	1,759,586 2,603,332	5.6436 9.1862
65 66 MARTIN 3	465	221,233	63.9	95.1	85.1	7,167	Gas	MCF ->	1,585,593	1,000,000	1,585,593	11,592,117	5.2398
67 68 MARTIN 4	466	240,959	69.5	94.6	85.4	6,935	Gas	MCF ->	1,670,963	1,000,000	1,670,963	 12,216,231	5.0698
69 70 MARTIN 8	1,099	533,795	65.3	96.6	76.2	6,780	Gas	MCF ->	3,619,211	1,000,000	3,619,211	 26,460,711	4.9571
71 72 FM GT	624	458	0.1	98.4	47.8	15,960	Light	Oil BBLS ->	 1,255	5,830,079	7,315	68,000	14.8374
73 74 FL GT 75	768	0 1	0.0	91.7		13,917	Light Gas	Oil BBLS -> MCF ->	 1 17	6,111,111 1,000,000	 6 17	 0 115	0.0000 9.6210
76 77 PE GT 78	384	0 0	0.0	88.3		0	Light Gas	Oil BBLS -> MCF ->	0 0	1,000,000	0 0	 0 0	
79 80 SJRPP 10	130	85,736	88.6	93.1	99.5	9,638	Coal	TONS ->	33,801	24,446,534	826,322	1,314,300	1.5330
81 82 SJRPP 20	130	86,351	89.3	93.6	99.6	9,499	Coal	TONS ->	33,551	24,446,552	820,209	1,304,600	1.5108
83 84 SCHER #4	648	387,095	80.3	94.2	89.7	9,825	Coal	TONS ->	217,325	17,500,001	3,803,191	6,058,600	1.5651
85 86 FMREP 1	1,451	824,412	76.4	94.7	85.8	6,923	Gas	MCF ->	5,707,459	1,000,000	5,707,459	41,992,220	5.0936
87 88 SNREP4	938		72.0	95.7	86.5	6,938	 Gas	MCF ->	3,484,461	1,000,000	3,484,461	 25,636,644	5.1048
89 90 SNREP5	938	 481,117	68.9	95.2	80.2	6,946	 Gas	MCF ->	3,341,621	1,000,000	3,341,621	24,585,692	5.1101
91 92 MANATE 3 93	1,105	519,071	63.1	96.6	76.5	6,904	Gas	MCF ->	3,583,525	1,000,000	3,583,525	 26,613,919 	5.1272

Schedule E4 Page: 48

				Estimated F	For The Pe	riod of :		Dec-05					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	(1)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 FM SC	166	25,734	10.4	97.1	83.0	10,926	Gas	MCF ->	281,173	1,000,000	281,173	2,068,701	8.0389
95 96 MR SC	163		8.4	0.0	98.6	8,766	Gas	MCF ->	»	1,000,000	9	402,443	6.6742
98 TOTAL	13,446	4,308,614	0.0	0.0		0							

64

				Estimated I	For The Pe	riod of :	Jan-05	Thru	Dec-05			
 (A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	 (J)	(К)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1	395	944,691 133,990	31.2	95.0	78.3	9,563	Heavy Oil BBLS Gas MCF -	-> 1,356,408 > 1,634,697	6,400,000 1,000,000	8,681,008 1,634,697	 43,569,308 11,903,551	4.6120 8.8839
4 TRKY O 2 5 6	395	637,015 118,720 0	21.8	74.4	74.0	9,861	Heavy Oil BBLS Gas MCF -	 934,846 > 1,468,968 0	6,400,000 1,000,000	5,983,013 1,468,968 0	29,981,533 10,521,345 0	4.7066 8.8623 0.0000
8 TRKY N 3	703	6,003,740	97.5	97.5	100.0	11,378	Nuclear Othr -	> 68,308,914	1,000,000	68,308,914	22,258,300	0.3707
9 10 TRKY N 4 11	703	4,949,673	80.4	80.1	100.0	11,355	Nuclear Othr -	 > 56,203,111	1,000,000	56,203,111	17,484,200	0.3532
13 FT LAUD4	433	3,278,217	86.5	91.6	94.7	7,654	Gas MCF -	> 25,091,063	1,000,000	25,091,063	180,354,760	5.5016
15 FT LAUD5 16	432	2,622,653 0	69.4	75.2	92.2	7,548	Gas MCF -	> 19,794,804 C	1,000,000	19,794,804 0	143,207,078 0	5.4604 0.0000
18 PT EVER1 19 20	210	114,261 47,754	8.8	80.5	55.1	11,216	Heavy Oil BBLS Gas MCF -	-> 171,361 > 720,505	6,400,004 1,000,000	1,096,709 720,505	5,500,939 5,254,692	4.8143 11.0037
22 PT EVER2 23 24 25	210	141,704 46,690 0	10.2	73.2	59.6	10,573	Heavy Oil BBLS Gas MCF -	-> 203,462 > 689,644 C	6,400,000 1,000,000	1,302,158 689,644 0	6,515,866 4,965,291 0	4.5982 10.6345 0.0000
26 PT EVER3 27 28	382	944,161 132,410	32.2	89.6	79.1	9,693	Heavy Oil BBLS Gas MCF -	-> 1,372,024 > 1,654,313	6,400,001 1,000,000	8,780,957 1,654,313	43,835,161 11,871,800	4.6428 8.9659
29 PT EVER4 30	389	958,311 166,854	33.0	95.6	79.0	9,755	Heavy Oil BBLS Gas MCF -	-> 1,390,025 > 2,080,294	6,400,000 1,000,000	8,896,159 2,080,294	44,467,496 14,958,709	4.6402 8.9651

65

Schedule E4 Page: 50

				Estimated I	For The Pe	riod of :	Jan-05	Thru	Dec-05			
 (A)		(C)	 (D)	(E)	 (F)	(G)	 (H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIV 3	274	746,428 196,387	39.3	86.6	77.5	10,055	Heavy Oil BBLS -> Gas MCF ->	 1,126,086 2,273,038 	6,400,000 1,000,000	7,206,949 2,273,038	35,944,867 16,102,041	4.8156 8.1992
34 35 RIV 4 36	280	733,841 219,637	38.9	85.2	 79.1	9,876	Heavy Oil BBLS -> Gas MCF ->	 1,089,721 2,442,113	6,400,000 1,000,000	6,974,211 2,442,113	35,022,020 17,392,099	4.7724 7.9186
37 38 ST LUC 1 39	845	6,027,256	81.4	81.5	100.0	10,953	Nuclear Othr ->	66,016,701	1,000,000	66,016,701	18,908,000	0.3137
41 ST LUC 2	719	6,140,275	97.5	97.5	100.0	10,949	Nuclear Othr ->	67,232,131	1,000,000	67,232,131	20,538,000	0.3345
42 43 CAP CN 1 44 45	396	816,954 161,346	28.2	79.7	80.6	9,707	Heavy Oil BBLS ->	 1,192,249 1,865,797	6,399,999 1,000,000	7,630,392 1,865,797	37,959,749 13,284,562	4.6465 8.2336
46 47 CAP CN 2 48	396	971,820 160,031	32.7	83.8	82.6	9,439	Heavy Oil BBLS -> Gas MCF ->	> 1,383,086 1,832,302	6,400,001 1,000,000	8,851,752 1,832,302	44,282,144 13,274,736	4.5566 8.2951
49 50 SANFRD 3 51	139	102,095 41,131	11.8	90.3	61.2	10,260	Heavy Oil BBLS -> Gas MCF ->	> 142,006 560,619	6,399,993 1,000,000	908,836 560,619	4,155,953 4,015,473	4.0707 9.7627
52 53 PUTNAM 1 54	244	373,604 482	17.5	86.1	70.0	8,954	Gas MCF -> Light Oil BBLS ->	3,345,480 692	1,000,000 5,830,202	3,345,480 4,035	23,785,425 31,500	6.3665 6.5353
55 56 PUTNAM 2 57	244	298,778 400	14.0	88.9	66.6	9,350	Gas MCF -> Light Oil BBLS ->	2, 793 ,707 607	1,000,000 5,829,216	2,793,707 3,540	19,938,824 27,600	6.6735 6.9086
5859 MANATE 1 59 MANATE 1 50 51	806	2,160,386 206,222 0	33.5	75.0	65.2	10,128	Heavy Oil BBLS -> Gas MCF ->	> 3,395,987 2,234,592 0	6,400,000 1,000,000	21,734,317 2,234,592 0	108,723,264 16,253,190 0	5.0326 7.8814 0.0000

66

Schedule E4 Page: 51

				Estimated I	For The Pe	eriod of :		Jan-05	Thru	Dec-05			
 (A)	(B)	(C)	(D)	 (E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MANATE 2 64 65	806	2,327,296 298,644	37.2	95.8	61.9	10,324	Heavy Gas	Oil BBLS -> MCF ->	3,715,818 3,330,129	6,400,000 1,000,000	23,781,237 3,330,129	118,574,513 24,232,837	5.0949 8.1143
66 CUTLER 5	69	33,836	5.6	89.6	45.3	12,667	Gas	MCF ->	428,586	1,000,000	428,586	3,054,599	9.0277
67 68 CUTLER 6 69	140	69,916	5.7	85.5	44.5	12,299	Gas	MCF ->	859,865	1,000,000	859,865	6,105,760	8.7331
70 71 MARTIN 1 72 73	807	1,835,330 1,099,661 0	41.5	79.4	65.7	10,881	Heavy Gas	Oil BBLS -> MCF ->	3,055,609 12,379,303 0	6,400,001 1,000,000	19,555,899 12,379,303 0	97,198,150 86,593,195 0	5.2959 7.8745 0.0000
74 75 MARTIN 2 76	799	2,178,526 1,351,815	50.4	96.3	67.5	10,581	Heavy Gas	Oil BBLS -> MCF ->	3,528,573 14,773,350	6,400,000 1,000,000	22,582,866 14,773,350	112,830,534 104,648,517	5.1792 7.7413
78 MARTIN 3	452	3,092,943	78.1	94.3	89.1	7,149	Gas	MCF ->	22,111,331	1,000,000	22,111,331	158,573,525	5.1269
79 80 MARTIN 4	453	3,112,541	78.5	92.2	89.8	6,961	Gas	MCF ->	21,667,249	1,000,000	21,667,249	155,280,177	4.9889
81 82 MARTIN 8	1,088	4,178,436	43.8	98.0	86.7	6,877	Gas	MCF ->	28,734,764	1,000,000	28,734,764	200,599,719	4.8001
83 84 FM GT	582	128,859	2.5	96.4	52.1	14,609	Light	Oil BBLS ->	322,897	5,830,001	1,882,488	17,754,000	13.7778
85 86 FL GT 87	719	1,713 88,294	1.4	91.7	31.7	18,639	Light Gas	Oil BBLS -> MCF ->	 4,493 1,651,435	5,830,017 1,000,000	26,197 1,651,435	179,200 11,630,826	10.4593 13.1728
88 89 PE GT 90	363	411 81,838	2.6	88.3	58.9	18,311	Light Gas	Oil BBLS -> MCF ->	1,144 1,499,387	5,831,307 1,000,000	6,668 1,499,387	48,200 10,552,551	11.7332 12.8945
92 SJRPP 10 93 94	128	824,409	73.4	78.1	99.2	9,534	Coal	TONS ->	321,432	24,452,470	7,859,801	12,480,800	1.5139

Schedule E4 Page: 52

					Estimated F	For The Pe	eriod of :		Jan-05	Thru	Dec-05			
	(A)	 (B)	(C)	(D)	(E)	(F)	(G)		(H)	(1)	(J)	(K)	(L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95	SJRPP 20	128	1,001,597	89.2	93.6	99.4	9,399	Coal	TONS ->	384,968	24,453,397	9,413,770	14,939,400	1.4916
96 97	SCHER #4	645	4,536,350	80.3	94.2	89.7	9,694	Coal	TONS ->	2,512,876	17,500,002	43,975,336	69,980,300	1.5427
98 99	FMREP 1	1,435	10,267,693	81.7	93.2	91.4	6,918	 Gas	MCF ->	71,030,742	1,000,000	71,030,742	510,893,211	4.9757
100 101	SNREP4	911	6,445,312	80.8	95.2	92.5	6,914	 Gas	MCF ->	44,561,358	1,000,000	44,561,358	320,980,717	4.9801
102 103	SNREP5	939	6,257,420	76.1	92.6	87.7	6,875	 Gas	MCF ->	43,021,216	1,000,000	43,021,216	310,015,412	4.9544
് 104 105	MANATE 3	1,090	4,158,969	43.6	 98.0	86.8	6,849	 Gas	MCF ->	28,486,240	1,000,000	28,486,240	209,569,990	5.0390
106 107 108	FM SC	165	424,142 4,591	29.7	95.5	100.0) 10,695	 Gas Light	MCF -> Oil BBLS ->	4,539,180 7,933	1,000,000 5,829,987	4,539,180 46,249	32,686,225 443,200	7.7064 9.6537
109 110	MR SC	155	0	0.0	0.0	0.0) 0			0		0	0	0.0000
111 112	TOTAL	20,466	94,398,455				8,946 ======					844,501,469	3,616,135,032	3.8307

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : January 2005 thru June 2005

			January 2005	February 2005	March 2005	April 2005	May 2005	June 2005
	Heavy Oil							
1 2 3 4	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	902,834 32.9684 29,765,000	1,139,451 32.3638 36,877,000	1,744,609 31.6472 55,212,000	2,274,241 31.4338 71,488,000	3,406,900 31.8237 108,420,000	2,705,906 32.1264 86,931,000
5 6 7 8 9	Burned: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	1,006,963 32.8590 33,087,835	1,144,807 32.7204 37,458,500	1,595,357 32.3299 51,577,745	2,183,270 31.8783 69,599,003	3,333,847 31.8169 106,072,579	2,619,546 31.9394 83,666,800
10 11 12 13 14 15	Ending Invent Units Unit Cost Amount Light Oil	lory: (BBLS) (\$/BBLS) (\$)	2,654,374 32.8081 87,084,957	2,649,019 32.6066 86,375,410	2,798,270 32.1520 89,969,945	2,889,242 31.7834 91,829,814	2,962,292 31.7623 94,089,135	3,048,656 31.8900 97,221,672
17 18 19 20 21 22	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	31,377 57.9087 1,817,000	14,249 57.8286 824,000	41 48.7805 2,000	54,662 55.4864 3,033,000	35,992 53.9009 1,940,000	3,143 52.8158 166,000
24 25 26 27 28 29	Burned: Units Unit Cost Amount Ending Invent	(BBLS) (\$/BBLS) (\$) tory:	39,562 56.0356 2,216,880	14,249 56.3794 803,350	4,215 55.0225 231,920	885 54.6102 48,330	36,680 55.3476 2,030,150	3,500 53.9771 188,920
30 31 32 33 34	Units Unit Cost Amount Coal - SJRPF	(BBLS) (\$/BBLS) (\$)	527,123 45.8728 24,180,607	527,121 45.9121 24,201,214	522,947 45.8385 23,971,090	576,724 46.7394 26,955,739	576,037 46,6396 26,866,135	575,680 46.6298 26,843,821
36 37 38 39 40	Purchases: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	66,179 38.5168 2,549,000	58,618 38.5035 2,257,000	33,837 38.5081 1,303,000	32,238 38.6500 1,246,000	64,740 38.6314 2,501,000	67,775 38.6278 2,618,000
42 43 44 45 46	Burned: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	66,179 39,3267 2,602,599	58,618 38,8638 2,278,117	33,837 38.7088 1,309,788	32,238 38.6772 1,246,875	64,740 38.6535 2,502,429	63,253 38.6407 2,444,138
47 48 49 50 51	Ending Inven Units Unit Cost Amount	tory: (Tons) (\$/Tons) (\$)	45,217 39.5794 1,789,663	45,217 39.1173 1,768,768	45,217 38.9630 1,761,788	45,217 38,9374 1,760,632	45,218 38,9130 1,759,567	49,740 38.8770 1,933,740
52 53 54	Coal - SCHE	RER						
55 56 57 58 59	Purchases: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	3,732,610 1.5930 5,946,000	3,418,870 1.5929 5,446,000	3,836,333 1.5929 6,111,000	3,597,615 1.5930 5,731,000	3,701,933 1.5930 5,897,000	3,894,905 1.5931 6,205,000
60 61 62 63 64	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	3,732,610 1.5819 5,904,641	3,418,870 1.5879 5,428,886	3,836,333 1.5908 6,102,949	3,597,615 1.5920 5,727,571	3,701,933 1.5926 5,895,705	3,604,353 1,5929 5,741,201
66 67 68 69 70 71	Gending Inven Units Unit Cost Amount Gas	tory: (MBTU) (\$/MBTU) (\$}	2,905,560 1.5819 4,596,301	2,905,560 1.5879 4,613,779	2,905,560 1.5908 4,622,231	2,905,525 1.5921 4,625,772	2,905,525 1.5926 4,627,375	3,196,078 1.5929 5,090,902
72 73 74 75 76 77 76 77	Burned: Units Unit Cost Amount Nuclear	(MCF) (\$/MCF) (\$)	25,351,870 7.8131 198,076,044	22,688,758 7.8038 177,057,456	23,805,438 7.6655 182,480,002	25,443,770 7.1473 181,854,572	29,012,332 6,9118 200,527,134	34,751,459 6.9662 242,086,322
80 81 82 83 84	Burned: 2 Units 3 Unit Cost 4 Amount	(MBTU) (\$/MBTU) (\$)	24,102,626 0.2977 7,174,687	21,770,150 0.2971 6,468,144	24,102,626 0.2965 7,147,577	19,096,638 0.3016 5,759,496	18,193,580 0.3037 5,525,202	20,859,049 0.3077 6,449,491
System Generated Fuel Cost Inventory Analysis Estimated For the Period of : July 2005 thru December 2005

			July 2005	August 2005	September 2005	October 2005	November 2005	December 2005	Total
	Heavy Oil								
1	Purchases:								
2	Units	(BBLS)	2,610,470	2,646,073	2,450,414	2,335,576	1,001,149	808,825	24,026,448
3	Unit Cost	(\$/BBLS)	32.2329	32.2240	31.7799	31.0086	30.6068	29.9546	31.7679
4	Amount	(\$)	84,143,000	85,267,000	77,874,000	72,423,000	30,642,000	24,228,000	/03,2/0,000
о 6	Burned:								
7	Units	(BBLS)	2.529.125	2.646.073	2,600,414	2.335.576	1,201,149	861,132	24,057,259
8	Unit Cost	(\$/BBLS)	32.0280	32,0832	31.9381	31,5339	31.3572	31.1618	31.9472
9	Amount	(\$)	81,002,720	84,894,368	83,052,400	73,649,915	37,664,690	26,834,391	768,560,945
10		,							
11	Ending Inven	tory:							
12	Units	(BBLS)	3,129,999	3,130,000	2,979,999	2,980,000	2,780,000	2,727,693	2,727,693
13	Unit Cost	(\$/BBLS)	32.0175	32.0912	31.9438	31.5473	31.3251	31.0340	31.0340
14	Amount	(\$)	100,214,601	100,445,520	95,192,516	94,011,047	87,083,662	84,651,330	84,651,330
15									
16	Light Oil								
17									
18	Ourshaasa								
19	Purchases:		100.009	80 567	30 403	240	14	n	360.605
20	Unit Cost	(\$/881.5)	52 0080	53 0366	53 1865	40 1606	71 4286	0 0000	54 0980
22	Amount	(\$)	5 825 000	4 273 000	1 617 000	10 000	1 000	0.0000	19.508.000
23	Allioon	(#)	0,020,000	4,210,000	(1011,000	10,000	1,000	•	
24	Burned:								
25	Units	(BBLS)	110,188	81.092	30.889	13,143	2,107	1,255	337,765
26	Unit Cost	(\$/BBLS)	54,7840	54,1888	53.8664	52.4637	53.0375	54.1912	54.7231
27	Amount	(\$)	6.036.540	4,394,280	1,663,880	689,530	111,750	68,010	18,483,540
28									
29	Ending Inver	itory:							
30	Units	(BBLS)	575,400	574,875	574,389	561,495	559,403	558,147	558,147
31	Unit Cost	(\$/BBLS)	46.2846	46.1153	46.0738	45.9219	45.8949	45.8762	45.8762
32	Amount	(\$)	26,632,187	26,510,551	26,464,302	25,784,900	25,673,722	25,605,670	25,605,670
33		-							
34	Coal - SJRPI	P							
30 20									
30 37	Durch acor								
30	Fulcidadea.	(Tope)	64 366	64.055	62 005	59 664	64 676	67 352	706 405
30	Unit Cost	(funa)	38 7782	38 7636	38 7589	38 9012	38 9016	38 8853	38 7129
38 40	Amount	(\$1005)	2 406 000	2 492 000	2 438 000	2 321 000	2 516 000	2 610 000	27 347 000
40	Amount	(Φ)	2,480,000	2,403,000	2,400,000	2,021,000	2,010,000	2,010,000	21,041,000
42	Burned:								
43	Units	(Tons)	64.366	64.055	62.905	64,186	64,676	67,352	706,405
44	Unit Cost	(\$/Tons)	38,7119	38,7424	38,7531	38.8310	38.8689	38.8823	38.8165
45	Amount	(\$)	2,491,730	2,481,644	2,437,766	2,492,407	2,513,888	2,618,801	27,420,182
46									
47	Ending Inver	itory:							
48	Units	(Tons)	49,740	49,740	49,740	45,218	45,217	45,217	45,217
49	Unit Cost	(\$/Tons)	38.9540	38.9851	38.9963	39.1050	39.1445	39.1582	39.1582
50	Amount	(\$)	1,937,571	1,939,121	1,939,678	1,768,251	1,769,999	1,770,617	1,770,617
51									
52	Coal - SCHE	RER							
53		*******							
04 65	Burghosos								
00 20	Purchases.		3 671 000	2 670 705	2 509 902	3 380 503	3 640 500	3 803 188	42 075 313
50 57	Units Unit Cost	(MBTU)	1 5031	1 5030	1 5930	1 5031	1 5031	1 5031	1 5030
5.A	Amount	(\$)	5 850 000	5 862 000	5 733 000	5 400 000	5 814 000	6 059 000	70 054 000
50	,ourit	(*)	0,000,000	0,002,000	0,100,000	014001000	5,51,7,000	5,000,000	
60	Sumed:								
61	Units	(MBTU)	3,671,990	3,679,795	3,598,893	3,680,145	3,649,590	3,803,188	43,975,313
62	Unit Cost	(\$/MBTU)	1.5930	1,5930	1.5930	1.5930	1.5930	1.5930	1.5914
63	Amount	(\$)	5,849,304	5,861,906	5,733,104	5,862,574	5,813,918	6,058,608	69,980,367
64									
65	Ending Inver	ntory:							
66	Units	(MBTU)	3,196,078	3,196,078	3,196,078	2,905,525	2,905,560	2,905,560	2,905,560
67	Unit Cost	(\$/MBTU)	1,5930	1.5930	1.5930	1.5930	1.5930	1.5930	1.5930
68	Amount	(\$)	5,091,218	5,091,365	5,091,433	4,628,607	4,628,622	4,628,629	4,628,629
69									
70	Gas								
71									
12 73	Burned								
, 3 7/	Unite	(MCE)	40 498 764	38 723 064	34 845 441	33 832 175	30 442 210	30 220 774	369 556 040
76	Unit Cost	(\$/MCE)	2100,00F,0F	6 0447	6 0700	7 0456	7 1821	7 3525	7 1775
76	Amount	(\$)	279.078 237	268.919 464	243.216 162	238.368.779	218.637.616	222.198.659	2,652,500,447
77		.+/					,	,,	
78	Nuclear								
79									
80									
81	Burned:					1	10.00 - 01-		
82	Units	(MBTU)	23,967,112	23,967,112	23,193,979	17,690,116	16,831,692	23,886,181	257,760,861
03 0	Unit Cost	(\$/MBTU)	0.3100	0.3096	0.3090	0.3187	E 370 960	7 635 07-	70 400 000
04	Amount	(4)	7,430,320	7,420,550	1,107,095	0,037,012	0,072,000	1,030,077	19,100,309

Company: Florida Power & Light

Schedule: E6 Page : 1

POWER SOLD

		Estimated for	- the Period o	f: January 2005	- thru Decemb	er 2005				
(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWH Sold	(5) MWH Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWH) ((7B) Total Cost Cents / KWH	(8) Total \$ For Fuel Adjustment (6) * (7A)	(9) Total Cost \$ (6)*(7B)	(10) \$ Gain From Off System Sales
January 2005	St.Lucie Rel.	OS	275,000 46,084		275,000 46,084	4.608 0.309	5.136 0.309	12,671,000 142,229	14,125,000 142,229	750,000 0
Total			321,084	0	321,084	3.991	4.443	12,813,229	14,267,229	750,000
February 2005	St.Lucie Rel.	OS	260,000 41,624		260,000 41,624	4.468 0.308	5.069 0.308	11,617,350 128,223	13,180,000 128,223	885,800 0
Total			301,624	0	301,624	3.894	4.412	11,745,573	13,308,223	885,800
March 2005	St.Lucie Rel.	OS	225,000 46,084		225,000 46,084	4.622 0.307	5.244 0.307	10,399,000 141,691	11,800,000 141,691	787,500
Total			271,084	0	271,084	3.888	4.405	10,540,691	11,941,691	787,500
April 2005	St.Lucie Rel.	OS	175,000 43,865		175,000 43,865	4.718 0.312	5.414 0.312	8,256,500 136,887	9,475,000 136,887	736,750
Total			218,865	0	218,865	3.835	4.392	8,393,387	9,611,887	736,750
May 2005	St.Lucie Rel.	OS	150,000 45,328		150,000 45,328	4.928 0.311	5.667 0.311	7,391,500 141,181	8,500,000 141,181	672,000 0
Total			195,328	0	195,328	3.856	4.424	7,532,681	8,641,181	672,000
June 2005	St.Lucie Rel.	OS	200,000 43,865		200,000 43,865	5.059 0.311	5.975 0.311	 10,117,400 136,375	11,950,000 136,375	1,190,100 0
Total			243,865	0	243,865	4.205	4.956	10,253,775	12,086,375	1,190,100

Company: Florida Power & Light

POWER SOLD

		Estimated for	the Period c	f: January 2005	thru Decemb	er 2005				
(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWH Sold	(5) MWH Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWH) C	(7B) Total Cost Cents / KWH	(8) Total \$ For Fuel Adjustment (6) [*] (7A)	(9) Total Cost \$ (6)*(7B)	(10) \$ Gain From Off System Sales
July 2005	St.Lucie Rel.	OS	190,000 45,328		190,000 45,328	4.893 0.310	5.947 0.310	9,296,300 140,653	11,300,000 140,653	1,395,800 0
Total			235,328	0	235,328	4.010	4.862	9,436,953	11,440,653	1,395,800
August 2005	St.Lucie Rel.	OS	190,000 45,328		190,000 45,328	4.963 0.310	6.032 0.310	9,429,800 140,393	11,460,000 140,393	1,422,300 0
Total			235,328	0	235,328	4.067	4.929	9,570,193	11,600,393	1,422,300
September 2005	St.Lucie Rel.	OS	180,000 43,865		 180,000 43,865	5.045 0.309	5.683 0.309	9,080,400 135,604	10,230,000 135,604	576,300 0
Total			223,865	0	223,865	4.117	4.630	9,216,004	10,365,604	576,300
October 2005	St.Lucie Rel.	OS	160,000 2,924		160,000 2,924	4.936 0.309	5.497 0.309	7,896,800 9,023	8,795,000 9,023	427,100
Total			162,924	0	162,924	4.852	5.404	7,905,823	8,804,023	427,100
November 2005	St.Lucie Rel.	OS	200,000 0		200,000	4.412 0.000	5.105 0.000	8,824,500 0	10,210,000 0	842,000 0
Total			200,000	0	200,000	4.412	5.105	8,824,500	10,210,000	842,000
December 2005	St.Lucie Rel.	OS	255,000 44,598		255,000 44,598	4.029 0.350	4.839 0.350	10,273,500 155,969	12,340,000 155,969	1,398,700 0
Total			299,598	0	299,598	3.481	4.171	10,429,469	12,495,969	1,398,700
Period	St.Lucie Rel.	OS	2,460,000 448,894	0	2,460,000 448,894	4.685 0.314	5.421 0.314		133,365,000 1,408,227	 11,084,350 0
Total			2,908,894	0	2,908,894	4.011	4.585	116,662,277	133,365,000	11,084,350

Company: Florida Power & Light

Schedule: E7 Page : 1

Purchased Power

(Exclusive of Economy Energy Purchases)

Estimated for the Period of : January 2005 thru December 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2005	Sou. Co. (UPS + R)		685,874			685,874	1.694		11,618,000
January	St. Lucie Rel.		46,084			46,084	0.334		154,000
	SJRPP		255,683			255,683	1.505		3,849,000
	PPAs		76,579			76.579	8.337		6,384,184
Total			1,064,220	*****		1,064,220	2.068		22,005,184
2005	Sou, Co. (UPS + R)		602.046			602.046	1.694		10.199.000
February	St. Lucie Rei.		41,624			41,624	0.333		138,800
-	SJRPP		226,015			226,015	1.505		3,402,000
	PPAs		62,399			62.399	8.001		4,992,775
Total			932,084			932,084	2.010		18,732,575
2005	Sou Co. (UPS + B)		678 203			678 293	1 694		11 490 000
March	St Lucie Bel		46 084			46.084	0.333		153,400
ividi on	SJRPP		131,156			131,156	1.494		1,960.000
	PPAs		56,193			56.193	7.685		4,318,594
Total			911,726			911,726	1.966		17,921,994
2005	Sour Co. (LIPS + D)		667 694			667 624	1 604		11 310 000
Anril	St Lucie Rel		43 866			43,866	0.338		148 200
- (SJRPP		127,848			127.848	1.473		1.883.000
	PPAs		14,658			14,658	7.094		1,039,867
Total			854,006			854,006	1.684		14,381,067
2005	Sour Co. (LIPS + P)		600 975			600 275	1 604		11 605 000
2000 May	St Lucia Rel		45 328			45 328	0.337		152 900
wicay	SJRPP		254 271			254.271	1.483		3.770.000
	PPAs		61,548			61,548	7.977		4,909,768
Total			1,051,522			1,051,522	1.952		20,527,668
2005	Sou Co (UPS + P)		669 150			669 150	1 604		11 210 000
June	St Lucie Rel		43.866			43,866	0 337		147 700
Gano	SJRPP		249,689			249.689	1.483		3,702,000
	PPAs		12,680			12,680	8.339		1,057,415
Total			974,394			974,394	1.665		16,225,115
	Sou Co. (LIPS + P)		3 992 391			3 002 391	1 694		67 630 000
Period	St. Lucie Rel.		266,852			266,852	0.335		895,000
Total	SJRPP		1,244,662			1,244,662	1,492		18,566,000
	PPAs		284,057			284,057	7.992		22,702,603
Total			5,787,952			5,787,952	1.897		109,793,603

Company: Florida Power & Light

Schedule: E7 Page : 2

			F	^o urchased P	ower				
			- Exclusive of Ecc	onomy Energ	gy Purchases)				
		-	Estimated for the	Period of :	January 2005 thr	u December	2005		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwhj	Total \$ For Fuel Adj (7) x (8A)
2005 July	Sou. Co. (UPS + R) St. Lucie Rei. SJRPP PPAs		682,882 45,328 252,661 129,144			682,882 45,328 252,661 129,144	1.694 0.337 1.491 7.817		11,568,000 152,700 3,766,000 10,094,976
Total			1,110,015			1,110,015	2.305		25,581,676
2005 August	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		684,561 45,328 252,093 102,869			684,561 45,328 252,093 102,869	1.694 0.336 1.490 7.892		11,597,000 152,500 3,756,000 8,118,651
Total			1,084,851			1,084,851	2.178		23,624,151
2005 September	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		666,249 43,866 246,846 35,976			666,249 43,866 246,846 35,976	1.694 0.336 1.488 7.848		11,286,000 147,300 3,674,000 2,823,338
Total			992,937			992,937	1.806		17,930,638
2005 October	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		690,431 45,328 251,964 23,747			690,431 45,328 251,964 23,747	1.694 0.335 1.493 7.757		11,696,000 151,900 3,762,000 1,842,074
Total			1,011,470			1,011,470	1.725		17,451,974
2005 November	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		666,812 44,597 249,285 17,325			666,812 44,597 249,285 17,325	1.694 0.135 1.522 8.809		11,296,000 60,000 3,793,000 1,526,160
Total			978,019			978,019	1.705		16,675,160
2005 December	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		666,170 46,084 259,614 40,361			666,170 46,084 259,614 40,361	1.694 0.329 1.521 9.453		11,285,000 151,400 3,950,000 3,815,311
Total			1,012,229			1,012,229	1.897		19,201,711
Period Total	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		8,049,486 537,383 2,757,125 633,479			8,049,486 537,383 2,757,125 633,479	1.694 0.318 1.497 8.039		136,358,000 1,710,800 41,267,000 50,923,113
Total			11,977,473			11,977,473	1.922		230,258,913

Company: Florida Power & Light

				Energy Paym	nent to Quali	fying Facilities				
				Estimated for	the Period	of: January 20	05 thru Decem	ıber 2005		
(1)	((2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purcha	ase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2005 January	Qual. Fac	ilities		626,975			626,975	2.217	2.217	13,899,000
Total				626,975			626,975	2.217	2.217	13,899,000
2005 February	Qual. Fac	ilities		580,256			580,256	2.221	2.221	12,887,000
Total				580,256			580,256	2.221	2.221	12,887,000
2005 March	Qual. Fac	ilities		627,218			627,218	2.217	2.217	13,908,000
Total				627,218			627,218	2.217	2.217	13,908,000
2005 April	Qual. Fac	ilities		612,627			612,627	2.220	2.220	13,598,000
Total				612,627			612,627	2.220	2.220	13,598,000
2005 May	Qual. Fac	ilities		626,456			626,456	2.223	2.223	13,924,000
Total				626,456			626,456	2.223	2.223	13,924,000
2005 June	Qual. Fac	ilities		613,698			613,698	2.221	2.221	13,630,000
Total				613,698			613,698	2.221	2.221	13,630,000
Period Total	Qual. Fac	ilities		3,687,230			3,687,230	2.220	2.220	81,846,000
Total				3,687,230			3,687,230	2.220	2.220	81,846,000

Company: Florida Power & Light

				Energy Paym	ent to Quali	fying Facilities				
				Estimated for	the Period	of: January 200	05 thru Decem	nber 2005		
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Pu	rchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2005 July	Qual.	Facilities		625,600			625,600	2.205	2.205	13,796,000
Total				625,600			625,600	2.205	2.205	13,796,000
2005 August	Qual.	Facilities		625,964			625,964	2.212	2.212	13,849,000
Total				625,964			625,964	2.212	2.212	13,849,000
2005 September	Qual.	Facilities		613.260			613,260	2.219	2.219	13,609,000
Total				613,260			613,260	2.219	2.219	13,609,000
2005 October	Qual.	Facilities		627,282			627,282	2.222	2.222	1 3 ,936,000
Total				627,282			627,282	2.222	2.222	13,936,000
2005 November	Qual.	Facilities		518,322			518,322	2.253	2.253	11,677,000
Total				518,322			· 518,322	2.253	2.253	11,677,000
2005 December	Qual.	Facilities		530,305			530,305	2.233	2.233	11,843,000
Total				530,305			530,305	2.233	2.233	11,843,000
Period Total	Qual.	Facilities		7,227,963			7,227,963	2.221	2.221	160,556,000
Total				7,227,963			7,227,963	2.221	2.221	160,556,000

Company: Florida Power & Light

				Econo	my Energy Purch	nases			
			Estimated Fo	or the Period o	of : January 2005	- Thru Decemb	er 2005		
	(1) Month	(2) Purchase From	(3) Type & Schedule	(4) Total MWH Purchased	(5) Transaction Cost (Cents/KWH)	(6) Total \$ For Fuel ADJ (4) * (5)	(7A) Cost If Generated (Cents / KWH)	(7B) Cost If Generated (\$)	(8) Fuel Savings (7B) - (6)
1 2	January 2005	Florida Non-Florida	C C	94,000 42,036	3.366 4.830	3,164,213 2,030,522	5.071 5.170	4,767,010 2,173,261	1,602,797 142,739
3 4 5	Total			136,036	3.819	5,194,735	5.102	6,940,271	1,745,536
6 7 8 9	February 2005	Florida Non-Florida	C C	87,000 37,968	3.372 4.834	2,933,213 1,835,258	5.080 5.232	4,419,450 1,986,486	1,486,237 151,228
10 11	Total			124,968	3.816	4,768,471	5.126	6,405,936	1,637,465
12 13 14 15	March 2005	Florida Non-Florida	с с	94,000 44,913	3.457 4.757	3,249,213 2,136,499	5.113 5.248	4,806,310 2,357,034	1,557,097 220,535
16 17	Total			138,913	3.877	5,385,712	5.157	7,163,344	1,777,632
18 19 20 21	April 2005	Florida Non-Florida	C C	92,000 57,048	3.548 4.667	3,264,213 2,662,589	5.037 5.132	4,634,500 2,927,703	1,370,287 265,114
22 23	Total			149,048	3.976	5,926,802	5.074	7,562,203	1,635,401
24 25 26 27	May 2005	Florida Non-Florida	C C	94,000 58.950	3.547 4.665	3,334,213 2,750,081	5.089 5.154	4,783,650 3,038,283	1,449,437 288,202
28 29	Total			152,950	3.978	6,084,294	5.114	7,821,933	1,737,639
30 31 32 33	June 2005	Florida Non-Florida	C C	13,000 43,464	4.900 4.759	637,000 2,068,396	5.188 5.188	674,440 2,254,912	37,440 186,516
34 35	Total	30000000000000000000000000000000000		56,464	4.791	2,705,396	5.188	2,929,352	223,956
36 37	Period	Florida	С	474,000	3.498	16,582,065	5 5.081	24,085,360	7,503,295
38 39	Total	Non-Florida	С	284,379	4.741	13,483,345	5 5.182	14,737,679	1,254,334
40 41	Total			758,379 	3.964	30,065,410	5.119	38,823,039	0,101,029

....

Company: Florida Power & Light -----

Economy Energy Purchases _____

			Estimated F	or the Period o	of : January 2005	5 Thru Decembe	er 2005		
	(1) Month 	(2) Purchase From	(3) Type & Schedule	(4) Total MWH Purchased	(5) Transaction Cost (Cents/KWH)	(6) Total \$ For Fue! ADJ (4) * (5)	(7A) Cost If Generated (Cents / KWH)	(7B) Cost If Generated (\$)	(8) Fuel Savings (7B) - (6)
1 2	July 2005	Florida Non-Florida	C C	15,000 44,913	4.900 4.757	735,000 2,136,499	5.024 5.024	753,600 2,256,429	18,600 119,930
3 4 5	Total			59,913	4.793	2,871,499	5.024	3,010,029	138,530
6 7 8 9	August 2005	Florida Non-Florida	C C	15,000 44,913	5.000 4.857	750,000 2,181,412	5.114 5.114	767,100 2,296,851	17,100 115,439
10 11	Total			59,913	4.893	2,931,412	5.114	3,063,951	132,539
12 13 14	September 2005	Florida Non-Florida	C C	12,000 48,432	4.800 4.663	576,000 2,258,577	5.208 5.208	624,960 2,522,339	48,960 263,762
15 16 17	Total			60,432	4.691	2,834,577	5.208	3,147,299	312,722
18 19 20 21	October 2005	Florida Non-Florida	C C	30,000 59,991	4.500 4.655	1,350,000 2,792,850	5.278 5.278	1,583,400 3,166,325	233,400 373,475
22	Total			89,991	4.604	4,142,850	5.278	4,749,725	606,875
24 25 26 27	November 2005	Florida Non-Florida	C C	50,000 44,640	4.300 4.346	2,150,000 1,939,990	4.941 4.941	2,470,500 2,205,662	320,500 265,672
28 29	Total			94,640	4.322	4,089,990	4.941	4,676,162	586,172
30 31 32 33	December 2005	Florida Non-Florida	C C	50,000 46,128	4.400 4.444	2,200,000 2,050,102	4.662 4.662	2,331,000 2,150,487	131,000 100,385
34 35	Total			96,128	4.421	4,250,102	4.662	4,481,487 	231,385
36 37	Period	Florida	С	646,000	3.768	24,343,065	5.049	32,615,920	8,272,855
38 39	Total	Non-Florida	С	573,396	4.681	26,842,775	5.116	29,335,772	2,492,997
40 41	Total			1,219,396	4.198	51,185,840	5.081	61,951,692	10,765,852

SCHEDULE E10

÷

COMPANY: FLORIDA POWER & LIGHT COMPANY

		PROPOSED	DIFFER FROM CL	IENCE JRRENT
	<u>JAN 04 - DEC 04</u>	<u>JAN 05 - DEC 05</u>	<u>\$</u>	2
BASE	\$40.22	\$40.22	\$0.00	0.00%
FUEL	\$37.50	\$40.09	\$2.59	6.91%
CONSERVATION	\$1.45	\$1.48	\$0.03	2.07%
CAPACITY PAYMENT	\$6.25	\$7.39	\$1.14	18.24%
ENVIRONMENTAL	<u>\$0.13</u>	<u>\$0.25</u>	<u>\$0.12</u>	<u>92.31%</u>
SUBTOTAL	\$85.55	\$89.43	\$3.88	4.54%
GROSS RECEIPTS TAX	<u>\$0.88</u>	\$0.92	\$0.04	4.55%
TOTAL	\$86.43	\$90.35	\$3.92	4.54%

GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE

			PERIOD	
	ACTUAL	ACTUAL	ESTIMATED/ACTUAL	PROJECTED
	JAN - DEC	JAN - DEC	JAN - DEC	JAN - DEC
	2002 - 2002	2003 - 2003		
	(COLUMN 1)	(COLUMN 2)	(COLUMN 3)	(COLUMN 4)
HEAVY OF	GENERATION (\$)	660 780 553	844 089 611	768 560 945
	14.088.154	17,235,168	32,455,806	18.483.540
COAL	104.731.935	101.539.662	96,020,000	97,400,320
GAS	1,018,816,753	1,205,960,702	2,147,830,095	2,652,500,447
NUCLEAR	69,855,439	70,877,908	70,064,262	79,188,310
OTHER	0	0	0	0
TOTAL (\$)	2,201,131,566	2,065,402,993	3,190,459,774	3,616,133,562
HEAVY OIL	25,802,011	18,708,283	19,071,313	15,612,822
LIGHT OIL	161,593	188,173	252,246	136,454
COAL	6,266,830	5,977,062	6,024,585	6,362,357
GAS	24,497,016	34,545,924	41,765,221	49,165,882
NUCLEAR	24,069,938	25,295,157	23,399,357	23,120,944
OTHER	0		0	0
	40.004.002	20 700 626	20 226 770	24.057.261
	40,894,092	28,190,000 472 604	23,320,119 616 ANE	24,037,201
COAL (TON)	772.666	760.021	703.887	3.219.277
GAS (MCF)	212.955.990	286.112.118	323,457,294	369.556.040
NUCLEAR (MMBTU)	262,850,564	276,217.616	256,425,934	257,760,861
OTHER (TONS)	0	0	0	0
HEAVY OIL	260.958.241	190.168.594	187,396.213	153,966.465
LIGHT OIL	2,195,828	2,704,322	3,581,821	1,969,157
COAL	61,112,685	59,238,746	58,385,812	61,248,908
GAS	222,327,090	296,722,566	328,913,582	369,556,040
NUCLEAR	262,850,563	276,217,616	256,425,934	257,760,861
OTHER	0	0	0	0
TOTAL (MMBTU) GENERATION MIX (%MWH)	809,444,407	825,051,844	834,703,362	844,501,431
HEAVY OIL	31.93	22.08	21.07	16.54
LIGHT OIL	0.20	0.22	0.28	0.14
COAL	7.76	7.06	6.66	6.74
GAS	30.32	40.78	46.14	52.08
NUCLEAR	29.79	29.86	25.85	24.49
omer				
	100.00	100.00	100.00	100.00
	24 2381	22 4832	28 7822	31 9472
LIGHT OIL (\$/Bbl)	36,9419	36.4615	52,7389	54,7231
COAL (\$/TON)	34.7820	34.5097	38.7111	30.2553
GAS (\$/MCF)	4.7842	4.2150	6.6402	7.1775
NUCLEAR (\$/MMBTU)	0.2658	0.2566	0.2732	0.3072
OTHER (\$/TON)	0.0000	0.0000	0.0000	0.0000
	3 0077	3 5004	4 5040	4 0047
	3.0U// 8.4150	3.5221 £ 1722	4.0043	4.891/
COAL	1 7138	1 7141	1 6446	1 5902
GAS	4.5825	4.0643	6.5301	7.1775
NUCLEAR	0.2658	0.2566	0.2732	0.3072
OTHER	0.0000	0.0000	0.0000	0.0000
TOTAL (\$/MMBTU)	2.7193	2.5034	3.8223	4.2820
BTU BURNED PER KWH (BTU	//KWH)	10.105	0.000	
	10,114	10,165	9,826	9,862
	13 600	44 274		
LIGHT OIL COAL	13,589	14,371 9 911	9 69*	9 627
HEAVY OIL LIGHT OIL COAL GAS	13,589 9,752 9.076	14,371 9,911 8.589	9,691	9,627
HEAVY OIL LIGHT OIL COAL GAS NUCLEAR	13,589 9,752 9,076 10,920	14,371 9,911 8,589 10,920	9,691 7,875 10,959	9,6277,51711,148
HEAVY OIL LIGHT OIL COAL GAS NUCLEAR OTHER	13,589 9,752 9,076 10,920 0	14,371 9,911 8,589 10,920 0	9,691 7,875 10,959 0	9,627 7,517 11,148 0
HEAVY OIL LIGHT OIL COAL GAS NUCLEAR OTHER	13,589 9,752 9,076 10,920 0	14,371 9,911 8,589 10,920 0	9,691 7,875 10,959 0	9,627 7,517 11,148 0
HEAVY OIL LIGHT OIL COAL GAS NUCLEAR OTHER HEAVY OIL	13,589 9,752 9,076 10,920 0	14,371 9,911 8,589 10,920 0	14,200 9,691 7,875 10,959 0	9,627 7,517 11,148 0
HEAVY OIL LIGHT OIL GAS NUCLEAR OTHER HEAVY OIL	13,589 9,752 9,076 10,920 0 	14,371 9,911 8,589 10,920 0 3.5802 9,1592	4,200 9,691 7,875 0,959 0 4,4260	4,9226 13,5456
HEAVY OIL LIGHT OIL GAS NUCLEAR OTHER HEAVY OIL LIGHT OIL COAL	13,589 9,752 9,076 10,920 0 	14,371 9,911 8,589 10,920 0 0 3.5802 9.1592 1,6988	4,200 9,691 7,875 10,959 0 4,4260 12,8867 1,5938	4,9226 13,5456 1,5456 1,5309
HEAVY OIL LIGHT OIL GAS NUCLEAR OTHER HEAVY OIL LIGHT OIL COAL GAS	13,589 9,752 9,076 10,920 0 0 3.8510 8.7183 1.6712 4.1589	14,371 9,911 8,589 10,920 0 3.5802 9,1592 1,6988 3,4909	4,200 9,691 7,875 10,959 0 4,4260 12,8867 1.5938 5,1428	4.9226 13,5456 13,5456 15,309 5,3950
HEAVY OIL LIGHT OIL GAS NUCLEAR OTHER HEAVY OIL LIGHT OIL COAL GAS NUCLEAR	13,589 9,752 9,076 10,920 0 0 3.8510 8.7183 1.6712 4.1589 0.2902	14,371 9,911 8,589 10,920 0 3.5802 9,1592 1,6988 3,4909 0,2802	14,200 9,691 7,875 10,959 0 4,4260 12,8667 1,5938 5,1425 0,2994	4.9226 13.5456 1.5309 5.3950 0.3425
HEAVY OIL LIGHT OIL COAL GAS NUCLEAR OTHER HEAVY OIL LIGHT OIL COAL GAS NUCLEAR OTHER	13,589 9,752 9,076 10,920 0 0 3.8510 8.7183 1.6712 4.1589 0.2902 0.0000	14,371 9,911 8,589 10,920 0 0 3.5802 9,1592 1,6988 3,4909 0,2802 0,0000	14,200 9,691 7,875 10,959 0 4,4260 12,8667 1.5938 5,1426 0,2994 0,2994	4.9226 4.9226 13.5458 1.5396 0.3425 0.0000

DIFFERENCE	(%) FROM PR	IOR PERIOD
(COLUMN 2)	(COLUMN 3)	(COLUMN 4)
(COLUMN 1)	(COLUMN 2)	(COLUMN 3)
(32.6)	26.0	(9.0)
22.3	88.3	(43.1)
(3.1)	(5.4)	1.4
18.4	78.1	23.5
1.5	(1,2)	13.0
0.0		0.0
(6.2)	54.5	13.3
(27.5)	1.9	(18.1)
16.5	34.1	(45.9)
(4.6)	0.8	5.6
41.0	20.9	17.7
5.1	(7.5)	(1.2)
00	0.0	
4.9	6.8	4.3
(27.3)	/1 R)	(18.0)
24.0	30.2	(45.1)
(1.6)	(7.4)	357.4
34.4	13.1	14.3
5.1	(7.2)	0.5
0.0	0.0	0.0
,		
(27.1)	(1.5)	(17.8)
23.2	32.5	(45.0)
33.5	10.9	12.4
5.1	(7.2)	0.5
0.0	0.0	0.0
1.9	1.2	1.2
-	-	-
	-	-
(7.2)	28.0	11.0
(7.2)	28.0	11.0
(7.2) (1.3) (0.8)	28.0 44.6 12.2	11.0 3.8 (21.8)
(7.2) (1.3) (0.8) (11.9)	28.0 44.6 12.2 57.5	11.0 3.8 (21.8) 8.1 12.5
(7.2) (1.3) (0.8) (11.9) (3.5)	28.0 44.6 12.2 57.5 6.55	11.0 3.8 (21.8) 8.1 12.5 0.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0	28.0 44.6 12.2 57.5 6.5 0.0	11.0 3.8 (21.8) 8.1 12.5 0.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5)	28.0 44.6 12.2 57.5 6.5 0.0 27.9	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7) 0.0	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1)	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3)
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (77.5) (0.7) 0.0 (11.3)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7) 0.0 (11.3) (3.5)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 9.9 12.5
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.3) (0.0) (11.3) (3.5) (0.0)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (7.9) (7.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.8) (0.7)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 252.7	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (1.3) (3.5) (0.0) (7.9) (7.9)	28.0 44.6 12.2 57.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 27.9 42.2 (4.1) 60.7 52.7	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (11.9) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (1.3) (3.5) (0.0 (11.3) (3.5) (0.0) (11.9) (1.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (7.9) (7.9) (7.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 52.7 (2.2) (8.3)	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9.9 12.5 0.0 12.0 12.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (7.9) (7.9) (7.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 52.7 (2.2) (8.3) 0.4	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0 (0.7) (4.6) 1.7
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (11.3) (0.7) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 (0.7) (4.6) 1.7 0.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) (0.7) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (1.5) (1.5	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 (0.7) (4.6) 1.7 0.0
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (0.8) (1.5	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3)	11.0 3.8 (21.8) (21.8) (21.8) (0.7) 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 (0.7) (4.6) 1.7 0.0 (3.0)
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.9) (1.5	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3)	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0 (0.7) (4.6) 1.7 0.0 (3.0)
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (7.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.9) (3.5) 0.0 (11.9) (3.5) 0.0 (11.9) (3.5) 0.0 (11.9) (3.5) 0.0 (11.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (3.5) 0.0 (1.9) (1.9) (3.5) (1.9) (3.5) (3.5) (1.9) (3.5) (28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 6.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3) 23.6 40.5	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0 (0.7) (4.6) 1.7 0.0 (3.0) (3.0)
(7.2) (1.3) (0.8) (11.9) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.3) (3.5) 0.0 (11.9) (3.5	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3) (5.3) 23.6 40.5 (6.2)	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 (0.7) (4.6) 1.7 0.0 (0.7) (4.6) 1.7 0.0 (3.0) (3.0)
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (1.3) (3.5) (0.0) (7.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3) 23.6 40.5 (6.2) 47.3	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0 12.0 (0.7) (4.6) 1.7 0.0 (3.0) (3.0) (4.9) (4.9) 4.9
(7.2) (1.3) (0.8) (11.9) (3.5) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (0.7) (1.3) (3.5) (0.0) (7.9)	28.0 44.6 12.2 57.5 6.5 0.0 27.9 42.2 (4.1) 60.7 6.5 0.0 52.7 (2.2) (8.3) 0.4 0.0 (5.3) (5.3) 23.6 40.5 (6.2) 47.3 6.9	11.0 3.8 (21.8) 8.1 12.5 0.0 10.8 3.6 (3.3) 9.9 12.5 0.0 12.0 12.0 12.0 (0.7) (4.6) 1.7 0.0 (3.0) (3.0) 11.2 5.3 (4.0) 4.9 14.4

Note: Scherer coal is reported in MMBTU's only. Scherer coal is not included in TONS.

(10.5)

44.6

8.7

(Continued from Sheet No. 10.100)

ESTIMATED AS-AVAILABLE AVOIDED ENERGY COST

For informational purposes only, the estimated incremental As-Available Energy costs for the next five periods are as follows. In addition, As-Available Energy cost payments will include .0001 c/kWh for variable operation and maintenance expenses.

Applicable Period	On-Peak ¢/KWH	Off-Peak ¢/KWH	Average ¢/KWH
October 1, 2004 – March 31, 2005	5.41	4.58	4.82
April 1, 2005 – September 30, 2005	4.90	4.67	4.74
October 1, 2005 – March 31, 2006	4.84	4.16	4.36
April 1, 2006 – September 30, 2006	4.71	4.44	4.52
October 1, 2006 – March 31, 2007	4.66	4.06	4.24
April 1, 2007 – September 30, 2007	4.58	4.31	4.39

A MW block size ranging from 36 MW to 40 MW has been used to calculate the estimated As-Available Energy cost.

DELIVERY VOLTAGE ADJUSTMENT

The Company's actual hourly As-Available Energy costs shall be adjusted according to the delivery voltage by the following multipliers:

Delivery Voltage	Adjustment Factor
Transmission Voltage Delivery	1.0000
Primary Voltage Delivery	1.0217
Secondary Voltage Delivery	1.0473

For informational purposes the Company's projected annual generation mix and fuel prices are as follows:

PROJECTED ANNUAL GENERATION MIX AND FUEL PRICES

Generation by Fuel Type (%)							Price (\$/MN	by Fuel 7 (BTU)	Гуре
Year	Nuclear	<u>Oil</u>	<u>Gas</u>	<u>Coal</u>	Purchased Power	Nuclear	<u>Oil</u>	<u>Gas</u>	<u>Coal</u>
2005	21	15	45	6	14	.29	3.94	5.52	1.55
2006	21	13	47	5	14	.28	3.91	5.43	1.58
2007	20	12	49	6	13	.29	3.90	5.43	1.61
2008	21	11	50	5	13	.30	4.03	5.44	1.62
2009	20	10	52	5	13	.39	4.16	5.56	1.63
2010	19	10	57	5	9	.40	4.36	5.61	1.66
2011	19	9	60	5	6	.40	4.36	5.75	1.69
2012	19	7	64	5	6	.41	4.61	5.85	1.72
2013	18	7	64	5	6	.42	4.88	6.02	1.75

NOTE: The Company's forecasts are for illustrative purposes, and are subject to frequent revision. Amounts may not add to 100% due to rounding.

(Continued on Sheet No. 10.102)

Customer		Customer	
Rate Schedule	Charge(\$)	Rate Schedule	Charge(\$)
GS-1	8.37	CST-1	102.27
GST-1	11.44	GSLD-2	158.05
GSD-1	32.54	GSLDT-2	158.05
GSDT-1	38.58	CS-2	158.05
RS-1	5.25	CST-2	158.05
RST-1	8.32	GSLD-3	371.88
GSLD-1	38.12	CS-3	371.88
GSLDT-1	38.12	CST-3	371.88
CS-1	102.27	GSLDT-3	371.88

(Continued from Sheet No. 10.102)

B. Interconnection Charge for Non-Variable Utility Expenses:

The Qualifying Facility shall bear the cost required for interconnection, including the metering. The Qualifying Facility shall have the option of (i) payment in full for the interconnection costs upon completion of the interconnection facilities (including the time value of money during the construction) and providing a surety bond, letter of credit or comparable assurance of payment acceptable to the Company adequate to cover the interconnection costs, (ii) payment of monthly invoices from the Company for actual costs progressively incurred by the Company in installing the interconnection facilities, or (iii) upon a showing of credit worthiness, making equal monthly installment payments over a period no longer than thirty-six (36) months toward the full cost of interconnection. In the latter case, the Company shall assess interest at the rate then prevailing for the thirty (30) days highest grade commercial paper rate, such rate to be specified by the Company thirty (30) days prior to the date of each installment payment by the Qualifying Facility.

C. Interconnection Charge for Variable Utility Expenses:

The Qualifying Facility shall be billed monthly for the cost of variable utility expenses associated with the operation and maintenance of the interconnection facilities. These include (a) the Company's inspections of the interconnection facilities and (b) maintenance of any equipment beyond that which would be required to provide normal electric service to the Qualifying Facility if no sales to the Company were involved.

In lieu of payments for actual charges, the Qualifying Facility may pay a monthly charge equal to a percentage of the installed cost of the interconnection facilities necessary for the sale of energy to the Company. The applicable percentages are as follows:

Equipment Type	<u>Charge</u>
Metering Equipment	0.155%
Distribution Equipment	0.251%
Transmission Equipment	0.104%

D. <u>Taxes and Assessments</u>

The Qualifying Facility shall be billed monthly an amount equal to any taxes, assessments or other impositions, for which the Company is liable as a result of its purchases of As-Available Energy produced by the Qualifying Facility. In the event the Company receives a tax benefit as a result of its purchases of As-Available Energy produced by the Qualifying Facility, the Qualifying Facility shall be entitled to a refund in an amount equal to such benefit.

TERMS OF SERVICE

(1) It shall be the Qualifying Facility's responsibility to inform the Company of any change in the Qualifying Facility's electric generation capability.

(Continue on Sheet No. 10.104)

APPENDIX III

CAPACITY COST RECOVERY

1.00

KMD-6 DOCKET NO. 040001-EI FPL WITNESS: K. M. DUBIN EXHIBIT PAGES 1-5 SEPTEMBER 9, 2004

APPENDIX III CAPACITY COST RECOVERY

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	<u>SPONSOR</u>
3	Projected Capacity Payments	K. M. Dubin
4	Calculation of Energy & Demand Allocation % By Rate Class	K. M. Dubin
5	Calculation of Capacity Recovery Factor	K. M. Dubin

FLORIDA POWER & LIGHT COMPANY PROJECTED CAPACITY PAYMENTS JANUARY 2005 THROUGH DECEMBER 2005

							DDO IECTED						
	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
									•				
1. CAPACITY PAYMENTS TO NON-COGENERATORS	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$15,790,290	\$189,483,480
2. SHORT TERM CAPACITY PAYMENTS	\$5,850,235	\$5,850,235	\$3,576,215	\$3,465,965	\$5,984,725	\$11,272,940	\$11,272,940	\$11,272,940	\$5,803,850	\$1,446,505	\$1,726,745	\$3,703,645	\$71,226,940
3. CAPACITY PAYMENTS TO COGENERATORS	\$30,069,137	\$30,069,137	\$30,069,137	\$30,069,137	\$30,069,137	\$30,069,137	\$30,823,832	\$30,823,832	\$30,823,832	\$30,823,832	\$25,046,008	\$25,046,008	\$353,802,166
4a. SJRPP SUSPENSION ACCRUAL	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$393,207	\$4,718,484
4b. RETURN REQUIREMENTS ON SJRPP SUSPENSION LIABILITY	(\$346,104)	(\$349,955)	(\$353,805)	(\$357,656)	(\$361,506)	(\$365,357)	(\$369,207)	(\$373,058)	(\$376,908)	(\$380,759)	(\$384,609)	(\$388,460)	(\$4,407,384)
5b. OKEELANTA SETTLEMENT	\$3,005,887	\$3,002,640	\$2,999,393	\$2,996,146	\$2,992,899	\$2,989,652	\$2,986,405	\$2,983,158	\$2,979,911	\$2,976,664	\$2,973,417	\$2,970,170	\$35,856,342
6. INCREMENTAL PLANT SECURITY COSTS	\$1,175,804	\$1,175,804	\$1,175,804	\$1,175,804	\$972,393	\$972,393	\$972,393	\$972,393	\$972,393	\$972,393	\$972,393	\$972,393	\$12,482,363
7. TRANSMISSION OF ELECTRICITY BY OTHERS	\$624,947	\$633,552	\$630,309	\$640,087	\$601,573	\$603,462	\$507,849	\$523,390	\$582,789	\$591,944	\$598,537	\$579,780	\$7,118,219
8. TRANSMISSION REVENUES FROM CAPACITY SALES	(\$704,000)	(\$676,850)	(\$613,500)	(\$481,750)	(\$436,500)	(\$642,500)	(\$607,900)	(\$607,900)	(\$573,300)	(\$471,100)	(\$543,500)	(\$667,800)	(\$7,026,600)
9. SYSTEM TOTAL	\$55,859,403	\$55,888,060	\$53,667,050	\$53,691,230	\$56,006,218	\$61,083,224	\$61,769,809	\$61,778,252	\$56,396,064	\$52,142,976	\$46,572,488	\$48,399,234	\$663,254,010
10. JURISDICTIONAL % *													98.63289%
11. JURISDICTIONALIZED CAPACITY PAYMENTS													\$654,186,598
12. SJRPP CAPACITY PAYMENTS INCLUDED IN THE 1988 TAX SAVINGS REFUND DOCKET													(\$56,945,592)
13. FINAL TRUE-UP – overrecovery/(underrecovery) JANUARY 2003 - DECEMBER 2003 (\$7,050,083)		EST \ ACT TRUE JANUAR	UP overrecove 2004 - DECEM (\$73,892,873)	ry/(underrecovery) BER 2004									(\$80,942,956)
14. TOTAL (Lines 11+12-13)													\$678,183,962
15. REVENUE TAX MULTIPLIER													1.01597
16. TOTAL RECOVERABLE CAPACITY PAYMENTS													<u>\$689.014.560</u>
CALCULATION OF JURISDICTIONAL %													
FPSC 17,676 98.63289%	I												
FERC 245 1.36711%										•			

* BASED ON 2003 ACTUAL DATA

ω

FLORIDA POWER & LIGHT COMPANY CALCULATION OF ENERGY & DEMAND ALLOCATION % BY RATE CLASS JANUARY 2005 THROUGH DECEMBER 2005

Rate Schedule	(1) AVG 12CP Load Factor at Meter (%)	(2) Projected Sales at Meter (kwh)	(3) Projected AVG 12 CP at Meter (kW)	(4) Demand Loss Expansion Factor	(5) Energy Loss Expansion Factor	(6) Projected Sales at Generation (kwh)	(7) Projected AVG 12 CP at Generation (kW)	(8) Percentage of Sales at Generation (%)	(9) Percentage of Demand at Generation (%)
PS1/PST1	63 060%	55 334 940 634	10 017 085	1 09230267	1 07281827	59 364 335 282	10.941.689	53,79073%	59.77947%
GS1/GST1	69 973%	6 075 542 153	991 175	1.09230267	1 07281827	6 517 952 622	1.082.663	5.90599%	5.91508%
GSD1/GSDT1	77 702%	23 085 553 190	3 391 595	1.09220064	1.07274057	24,764,809,488	3,704,302	22.43969%	20.23830%
082	93 228%	21 113 200	2,585	1.05829225	1.04657532	22.096.554	2.736	0.02002%	0.01495%
GSLD1/GSLDT1/CS1/CST1	83.923%	10.666.361.079	1.450.879	1.09083728	1.07170069	11.431.146.528	1,582,673	10.35790%	8.64687%
GSLD2/GSLDT2/CS2/CST2	87.158%	1.750.619.663	229.288	1.08297958	1.06544968	1,865,197,160	248,314	1.69008%	1.35665%
GSLD3/GSLDT3/CS3/CST3	86.580%	187,194,635	24.682	1.02969493	1.02438901	191,760,127	25,415	0.17376%	0.13885%
ISST1D	96.676%	0	0	1.09230267	1.07281827	0	0	0.00000%	0.00000%
ISST1T	87.151%	0	0	1.02969493	1.02438901	0	0	0.00000%	0.00000%
SST1T	87.151%	150,031,028	19,652	1.02969493	1.02438901	153,690,136	20,236	0.13926%	0.11056%
SST1D1/SST1D2/SST1D3	96.676%	23,594,871	2,786	1.07224837	1.06763473	25,190,703	2,987	0.02283%	0.01632%
CILC D/CILC G	92.072%	3,469,946,584	430,221	1.08128023	1.06432600	3,693,154,368	465,189	3.34641%	2.54154%
CILC T	94.419%	1,522,653,717	184,093	1.02969493	1.02438901	1,559,789,734	189,560	1.41334%	1.03565%
MET	70.123%	96,643,843	15,733	1.05829225	1.04657532	101,145,061	16,650	0.09165%	0.09097%
OL1/SĽ1/PL1	565.360%	555,624,734	11,219	1.09230267	1.07281827	596,084,366	12,255	0.54012%	0.06695%
SL2	99.953%	70,174,667	8,015	1.09230267	1.07281827	75,284,665	8,755	0.06822%	0.04783%
TOTAL		103,009,994,000	16,779,008			110,361,636,794	18,303,424	100.00%	100.00%

(1) AVG 12 CP load factor based on actual calendar data.

(2) Projected kwh sales for the period January 2005 through December 2005.

(3) Calculated: Col(2)/(8760 hours * Col(1))

(4) Based on 2003 demand losses.

(5) Based on 2003 energy losses.

(6) Col(2) * Col(5).

4

(7) Col(3) * Col(4).

(8) Col(6) / total for Col(6)

(9) Col(7) / total for Col(7)

FLORIDA POWER & LIGHT COMPANY CALCULATION OF CAPACITY PAYMENT RECOVERY FACTOR JANUARY 2005 THROUGH DECEMBER 2005

Rate Schedule	(1) Percentage of Sales at Generation	(2) Percentage of Demand at Generation	(3) Energy Related Cost	(4) Demand Related Cost	(5) Total Capacity Costs	(6) Projected Sales at Meter	(7) Billing KW Load Factor	(8) Projected Billed KW at Meter	(9) Capacity Recovery Factor	(10) Capacity Recovery Factor
	(%)	(%)	(\$)	(\$)	(\$)	(kwh)	(%)	(kw)	(\$/kw)	(\$/kwh)
RS1/RST1	53.79073%	59.77947%	\$28,509,692	\$380,205,434	\$408,715,126	55,334,940,634				0.00739
GS1/GST1	5.90599%	5.91508%	\$3,130,243	\$37,620,733	\$40,750,976	6,075,542,153				0.00671
GSD1/GSDT1	22.43969%	20.23830%	\$11,893,287	\$128,718,313	\$140,611,600	23,085,553,190	49.73909%	52,939,773	2.66	-
OS2	0.02002%	0.01495%	\$1 0,612	\$95,071	\$105,683	21,113,200				0.00501
GSLD1/GSLDT1/CS1/CST1	10.35790%	8.64687%	\$5,489,802	\$54,995,246	\$60,485,048	10,666,361,079	64.68915%	22,587,178	2.68	
GSLD2/GSLDT2/CS2/CST2	1.69008%	1.35665%	\$895,760	\$8,628,497	\$9,524,257	1,750,619,663	66.01990%	3,632,403	2.62	
GSLD3/GSLDT3/CS3/CST3	0.17376%	0.13885%	\$92,093	\$883,129	\$975,222	187,194,635	70.45754%	363,951	2.68	
ISST1D	0.00000%	0.00000%	\$0	\$0	\$0	0	0.00000%	0	**	
ISST1T	0.00000%	0.00000%	\$0	\$0	\$0	0	0.00000%	0	**	
SST1T	0.13926%	0.11056%	\$73,810	\$703,167	\$776,977	150,031,028	19.42328%	1,058,122	**	
SST1D1/SST1D2/SST1D3	0.02283%	0.01632%	\$12,098	\$103,793	\$115,891	23,594,871	63.51414%	50,889	**	
CILC D/CILC G	3.34641%	2.54154%	\$1,773,636	\$16,164,541	\$17,938,177	3,469,946,584	74.11221%	6,413,722	2.80	-
CILC T	1.41334%	1.03565%	\$749,088	\$6,586,894	\$7,335,982	1,522,653,717	78.45936%	2,658,481	2.76	
MET	0.09165%	0.09097%	\$48,575	\$578,560	\$627,135	96,643,843	58.55491%	226,093	2.77	
OL1/SL1/PL1	0.54012%	0.06695%	\$286,269	\$425,841	\$712,110	555,624,734				0.00128
SL2	0.06822%	0.04783%	\$36,155	\$304,222	\$340,377	70,174,667		-	-	0.00485
TOTAL			\$53,001,120	\$636,013,440	\$689,014,560	103,009,994,000		89,930,612		

Note: There are currently no customers taking service on Schedules ISST1(D) and ISST1(T). Should any customer begin
taking service on these schedules during the period, they will be billed using the applicable SST1 factor.

(1) Obtained from Page 2, Col(8)
(2) Obtained from Page 2, Col(9)
(3) (Total Capacity Costs/13 * Col (1)
(4) (Totai Capacity Costs/13 * 12) * Col (2)
(5) Col (3) + Col (4)
(6) Projected kwh sales for the period January 2005 through December 2005
(7) (kWh sales / 8760 hours)/((avg customer NCP)(8760 hours))
(8) Col (6) / ((7) *730) For GSD-1, only 83.265% of KW are billed due to 10 KW exemption
(9) Col (5) / (8)
(10) Col (5) / (6)

Totals may not add due to rounding.

CAPACITY RECOVERY FACTORS FOR STANDBY RATES

Demand = Charge (RDD)	(Total col 5)/(Doc	<u>2. Total col 7)(.10) (Doc 2. col 4)</u> 12 months					
Sum of Daily Demand =	(Total col 5)/(Doc	2, Total col 7)/(21 onpeak days) (Doc 2, col 4)					
Charge (DDC)	12 months						
	CAPACITY RECO	DVERY FACTOR					
	RDC	SDD					
	<u>** (\$/kw)</u>	<u>** (\$/kw)</u>					
ISST1D	\$0.34	\$0.16					
ISST1T	\$0.32	\$0.15					
SST1T	\$0.32	\$0.15					
SST1D1/SST1D2/SST1D3	\$0.34	\$0.16					