

CHIMINISSION 2602 Jackson Bluff Road, Tallahasses, Florida 32304, (850) 891-4YOU (4968), talgov.com

April 4, 2005

Ms. Blanca S. Bayó, Director Division of the Commission Clerk And Administrative Services Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

Dear Ms. Bayó:

Attached are fifteen (15) copies of the City of Tallahassee's 2005 Ten Year Site Plan. If you have any questions, please e-mail me at childsv@talgov.com or call me at 891-3122.

Sincerely,

Venus Childe

Venus Childs **Planning Engineer**

Attachments KGW cc: GSB

CMP
COM
CTR
ECR
GCL
OPC RECEIVED & FILED
MMS
RCA FPSC-BUREAU OF RECORDS
SCR
SEC
OTH Kimp.
$\pm 1 \cos 24$

DOCUMENT NUMBER-DATE 03287 APR-48

Recycled Paper

FPSC-COMMISSION CLERK

Ten Year Site Plan 2005 - 2014 City of Tallahassee Electric Utility

Arvah B. Hopkins Generating Station

C. H. Corn Hydroelectric Station

Sam O. Purdom Generating Station

Report Prepared By: City of Tallahassee Electric Utility System Planning

City of Tallahassee

DOCUMENT NUMBER-DATE 03287 APR-48 EPSC-COMMISSION CLERK

CITY OF TALLAHASSEE TEN YEAR SITE PLAN FOR ELECTRICAL GENERATING FACILITIES AND ASSOCIATED TRANSMISSION LINES 2005-2014 TABLE OF CONTENTS

т	Deservintion o	f Existing Facilities	
1. 1	1.0	Introduction	1
	1.0	System Capabilities	
	1.1	Purchased Power Agreements	
	Table 1.1	FPSC Schedule 1 Existing Generating Facilities	
	1 able 1.1	TTSC Schedule 1 Existing Generating Facilities	. 5
Π.	Forecast of I	Energy/Demand Requirements and Fuel Utilization	
	2.0	Introduction	.4
	2.1	System Demand and Energy Requirements	
	2.1.1	System Load and Energy Forecasts	
	2.1.2	Load Forecast Sensitivities	
	2.1.3	Energy Efficiency and Demand Side Management Programs	
	2.2	Energy Sources and Fuel Requirements	
	Table 2.1	FPSC Schedule 2.1 History/Forecast of Energy Consumption (Residential and Commercial Classes)	
	Table 2.2	FPSC Schedule 2.2 History/Forecast of Energy Consumption (Industrial and Street Light Classes)	
	Table 2.3	FPSC Schedule 2.3 History/Forecast of Energy Consumption (Utility Use and Net Energy for Load)	
	Figure B1	Energy Consumption by Customer Class (1995-2014)	
	Figure B2	Energy Consumption: Comparison by Customer Class (2005 and 2014)	
	Table 2.4	FPSC Schedule 3.1.1 History/Forecast of Summer Peak Demand - Base Forecast	
	Table 2.5	FPSC Schedule 3.1.2 History/Forecast of Summer Peak Demand - High Forecast	
	Table 2.6	FPSC Schedule 3.1.3 History/Forecast of Summer Peak Demand - Low Forecast	
	Table 2.7	FPSC Schedule 3.2.1 History/Forecast of Winter Peak Demand - Base Forecast	
	Table 2.8	FPSC Schedule 3.2.2 History/Forecast of Winter Peak Demand - High Forecast	
	Table 2.9	FPSC Schedule 3.2.3 History/Forecast of Winter Peak Demand - Low Forecast	. 19
	Table 2.10	FPSC Schedule 3.3.1 History/Forecast of Annual Net Energy for Load - Base Forecast	. 20
	Table 2.11	FPSC Schedule 3.3.3 History/Forecast of Annual Net Energy for Load - Low Forecast	
	Table 2.12	FPSC Schedule 3.3.2 History/Forecast of Annual Net Energy for Load - High Forecast	
	Table 2.13	FPSC Schedule 4 Previous Year Actual and Two Year Forecast Demand/Energy by Month	
	Table 2.14	Load Forecast: Key Explanatory Variables	. 24
	Table 2.15	Load Forecast: Sources of Forecast Model Input Information	. 25
	Figure B3	Banded Summer Peak Load Forecast vs. Supply Resources	. 26
	Table 2.16	Projected DSM Energy Reductions	. 27
	Table 2.17	Projected DSM Seasonal Demand Reductions	. 28
	Table 2.18	FPSC Schedule 5.0 Fuel Requirements	. 29
	Table 2.19	FPSC Schedule 6.1 Energy Sources (GWh)	. 30
	Table 2.20	FPSC Schedule 6.2 Energy Sources (%)	
	Figure B4	Generation by Fuel Type (2005 and 2014)	. 32

0000MENT NUMBER-DATE

III.	Projected F	acility Requirements	
	3.0	Introduction/City of Tallahassee Energy Policy	. 33
	3.1	Planning Process	. 33
	3.2	Projected Resource Requirements	
	3.2.1	Transmission Limitations	34
	3.2.2	Reserve Requirements	.35
	3.2.3	Near Term Resource Additions	35
	3.2.4	Purchased Power Alternatives	.36
	3.2.5	Renewable Resources	37
	3.2.6	Future Power Supply Resources	38
	Figure C	System Peak Demands and Summer Reserve Margins	. 40
	Table 3.1	FPSC Schedule 7.1 Forecast of Capacity, Demand and Scheduled Maintenance at Time of Summer Peak	. 41
	Table 3.2	FPSC Schedule 7.2 Forecast of Capacity, Demand and Scheduled Maintenance at Time of Winter Peak	
	Table 3.3	FPSC Schedule 8 Planned and Prospective Generating Facility Additions and Changes	. 43
	Table 3.4	Generation Expansion Plan	. 44
IV.	Proposed Pl	ant Sites and Transmission Lines	
	4.1	Proposed Plant Site	. 45
	4.2	Transmission Line Additions	. 45
	Table 4.1	FPSC Schedule 9 Status Report and Specifications of Proposed Generating Facilities - CT	. 48
	Table 4.2	FPSC Schedule 9 Status Report and Specifications of Proposed Generating Facilities - CT	. 49
	Table 4.3	FPSC Schedule 9 Status Report and Specifications of Proposed Generating Facilities - CC	. 50
	Table 4.4	FPSC Schedule 10 Status Report and Spec. of Proposed Directly Associated Transmission Lines	. 51
	Figure D1	Electric Transmission Map	. 52
Ap	oendix A		
[*]		erating Unit Operating Performance	A-1
		livered Residual Oil Prices Base Case	
	Nominal, De	livered Residual Oil Prices High Case	A-3

 Nominal, Delivered Residual Oil Prices Low Case
 A-4

 Nominal, Delivered Distillate Oil and Natural Gas Prices Base Case
 A-5

 Nominal, Delivered Distillate Oil and Natural Gas Prices High Case
 A-6

 Nominal, Delivered Distillate Oil and Natural Gas Prices Low Case
 A-7

 Nominal, Delivered Coal Prices Base Case
 A-7

 Nominal, Delivered Coal Prices Base Case
 A-9

 Nominal, Delivered Coal Prices Low Case
 A-10

 Nominal, Delivered Nuclear Fuel and Firm Purchases
 A-11

 Financial Assumptions Base Case
 A-12

 Financial Escalation Assumptions
 A-13

 Monthly Peak Demands and Date of Occurrence for 2002 – 2004
 A-14

 Historical and Projected Heating and Cooling Degree Days
 A-15

 Average Real Retail Price of Electricity
 A-16

 Loss of Load Probability, Reserve Margin, and Expected Unserved Energy Base Case Load Forecast
 A-17

Chapter I

Description of Existing Facilities

1.0 INTRODUCTION

The City of Tallahassee (City) owns, operates, and maintains an electric generation, transmission, and distribution system that supplies electric power in and around the corporate limits of the City. The City was incorporated in 1825 and has operated since 1919 under the same charter. The City began generating its power requirements in 1902 and the City's Electric Department presently serves approximately 103,000 customers located within a 221 square mile service territory. The Electric Department operates three generating stations with a total summer season net generating capacity of 652 megawatts (MW).

The City has two fossil-fueled generating stations which contain combined cycle (CC), steam and combustion turbine (CT) electric generating facilities. The Sam O. Purdom Generating Station, located in the town of St. Marks, Florida has been in operation since 1952; and the Arvah B. Hopkins Generating Station, located on Geddie Road west of the City, has been in commercial operation since 1970. The City has also been generating electricity at the C.H. Corn Hydroelectric Station, located on Lake Talquin west of Tallahassee, since August of 1985.

1.1 System Capability

The City maintains five points of interconnection with Progress Energy Florida ("Progress", formerly Florida Power Corporation); two at 69 kV, two at 115 kV, and one at 230 kV; and a 230 kV interconnection with Georgia Power Company (a subsidiary of the Southern Company ("Southern")).

As shown in Table 1.1 (Schedule 1), 233 MW (net summer rating) of CC generation, 48 MW (net summer rating) of steam generation and 20 MW (net summer rating) of CT generation facilities are located at the City's Sam O. Purdom Generating Station. The Arvah B. Hopkins Generating Station includes 304 MW (net summer rating) of steam generation and 36 MW (net summer rating) of CT generation facilities.

All of the City's available steam generating units at these sites can be fired with natural gas, residual oil or both. The CC and CT units can be fired on either natural gas or diesel oil but cannot burn these fuels concurrently. The total capacity of the three units at the C.H. Corn Hydroelectric Station is 11 MW.

The City's total net summer installed generating capability is 652 MW. The corresponding winter net peak installed generating capability is 699 MW. Table 1.1 contains the details of the individual generating units.

1.2 PURCHASED POWER AGREEMENTS

The City has a long-term firm capacity and energy purchase agreement with Progress for 11.4 MW. The City also has a short-term capacity and energy purchase agreement with Southern for 25 MW (system firm purchase for June through August 2005).

Schedule 1 Existing Generating Facilities As of December 31, 2004

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	<u>Plant</u>	Unit <u>No.</u>	Location	Unit <u>Type</u>	Fi <u>Pri</u>	uel <u>Alt</u>	Fuel Tr <u>Primary</u>	ansport <u>Alternate</u>	Alt. Fuel Days <u>Use</u>	Commercial In-Service <u>Month/Year</u>	Expected Retirement <u>Month/Year</u>	Gen. Max. Nameplate <u>(kW)</u>	Net Ca Summer (MW)	pability Winter <u>(MW)</u>
Ten Year April 2 Pag	Sam O. Purdom	7 8 GT-1 GT-2	Wakulla	ST CC GT GT	NG NG NG NG	F06 F02 F02 F02	PL PL PL PL	WA TK TK TK		Jun-66 Jul-00 Dec-63 May-64	3/11 12/40 5/10 5/10	50,000 247,743 15,000 15,000 Plant Total	48 233 10 10 301	50 262 10 10 332
April 2005 Page 3	A. B. Hopkins	1 2 GT-1 GT-2	Leon	ST ST GT GT	NG NG NG NG	F06 F06 F02 F02	PL PL PL PL	ТК ТК ТК ТК		May-71 Oct-77 Feb-70 Sep-72	3/16 3/22 3/15 3/17	75,000 259,250 16,320 27,000 Plant Total	76 228 12 24 340	78 238 14 26 356
	C. H. Corn Hydro Station	1 2 3	Leon/ Gadsden	HY HY HY	WAT WAT WAT	WAT WAT WAT	WAT WAT WAT	WAT WAT WAT		Sep-85 Aug-85 Jan-86	UNKNOWN UNKNOWN UNKNOWN	4,440 4,440 3,430 Plant Total	4 4 3 11	4 4 <u>3</u> 11

<u>652</u>

TOTAL SYSTEM CAPACITY AS OF DECEMBER 31, 2004

Table

<u>699</u>

CHAPTER II

Forecast of Energy/Demand Requirements and Fuel Utilization

2.0 INTRODUCTION

Chapter II includes the City of Tallahassee's forecasts of (i) demand and energy requirements, (ii) energy sources and (iii) fuel requirements. This chapter explains the City's 2005 Load Forecast and the Demand Side Management plan filed with the Florida Public Service Commission (FPSC) on March 1, 1996. Based on the forecast, the energy sources and the fuel requirements have been projected.

2.1 SYSTEM DEMAND AND ENERGY REQUIREMENTS

Historical and forecast energy consumption and customer information are presented in Tables 2.1, 2.2 and 2.3 (Schedules 2.1, 2.2, and 2.3). Figure B1 shows the historical and forecast trends of energy sales by customer class. Figure B2 shows the percentage of energy sales by customer class for the base year of 2005 and the horizon year of 2014. Tables 2.4 through 2.12 (Schedules 3.1.1 - 3.3.3) contain historical and forecast peak demands and net energy for load for base, high, and low values. Table 2.13 (Schedule 4) compares actual and two-year forecast peak demand and energy values by month for the 2004 - 2006 period.

2.1.1 SYSTEM LOAD AND ENERGY FORECASTS

The peak demand and energy forecasts contained in this plan are the results of the load and energy forecasting study performed by the City. The forecast is developed utilizing a methodology that the City first employed in 1980, and has updated and revised every one or two years. The methodology consists of approximately ten multi-variable linear regression models based on detailed examination of the system's historical growth, usage patterns and population statistics. Several key regression formulas utilize econometric variables.

Table 2.14 lists the econometric-based linear regression forecasting models that are used as predictors. Note that the City uses regression models with the capability of

separately predicting commercial customers and consumption by rate sub-class: general service non-demand (GS), general service demand (GSD), and general service large demand (GSLD). These, along with the residential class, represent the major classes of the City's electric customers. In addition to these customer class models, the City's forecasting methodology also incorporates into the demand and energy projections estimated reductions from interruptible and curtailable customers. The key explanatory variables used in each of the models are indicated by an "X" on the table. Table 2.15 documents the City's internal and external sources for historical and forecast economic, weather and demographic data. These tables summarize the details of the models used to generate the system customer, consumption and seasonal peak load forecasts. In addition to those explanatory variables listed, a component is also included in the models that reflect the acquisition of certain Talquin Electric Cooperative (TEC) customers over the study period consistent with the territorial agreement negotiated between the City and TEC and approved by the FPSC.

The customer models are used to predict number of customers by customer class which in turn serve as input into the customer class consumption models. The customer class consumption models are aggregated to form a total base system sales forecast. The effects of demand-side management programs and system losses are incorporated in this base forecast to produce the system net energy for load (NEL) requirements. Since 1992, the City has used two econometric models to separately predict summer and winter peak demand. Table 2.14 also shows the key explanatory variables used in the demand models. Utilizing the five-year average of the actual temperature at the time of seasonal peak demand, routinely updating the forecast model coefficients and making other minor model refinements have improved the accuracy of the forecast so that it is more consistent with the historical trend of growth in seasonal peak demand and energy consumption.

The most significant input assumptions for the 2005 forecast were the reductions in incremental additions for Florida State University (FSU), Florida A&M University (FAMU), Tallahassee Memorial Hospital (TMH) and the State Capitol Center. These four customers represent approximately 15% of the City's energy sales. Their incremental additions are highly dependent upon annual economic and budget constraints, which would cause fluctuations in their demand projections if they were projected using a model. Therefore, each entity submits their proposed incremental additions/reductions to the City and these modifications are included as submitted in the load and energy forecast. Based upon the 2004 submittals of incremental additions of our four large customers, their total incremental demand was projected to be 14 MW for 2005. However, based upon their submittals for the 2005 Load and Energy forecast, the incremental demand is only projected to be 3 MW due to modifications to their construction plan timelines. This results in an 11 MW reduction of projected load for 2005 and subsequent planning years. In addition to these customer class models, the City's forecasting methodology also incorporates into the demand and energy projections estimated reductions from interruptible and curtailable customers. The City believes that the inclusion of these incremental additions/reductions, the routine update of forecast model coefficients and other minor model refinements have improved the accuracy of its forecast so that they are more consistent with the historical trend of growth in seasonal peak demand and energy consumption.

2.1.2 LOAD FORECAST SENSITIVITIES

Uncertainty associated with the forecast input variables and the final forecast are addressed by adjusting selected input variables in the load forecast models, to establish "high load growth" and "low load growth" sensitivity cases. For the sensitivities to the base 2005 load forecast the key explanatory variables that were changed were Leon County population, Florida population, heating degree-days and cooling degree-days for the energy forecast. For the peak demand forecasts, the Leon County population and maximum & minimum temperature on the peak days for the summer and winter, respectively, were changed.

Sensitivities on the peak demand forecasts are useful in planning for future power supply resource needs. The graph shown in Figure B3 compares summer peak demand (multiplied by 117% for reserve margin requirements) for the three cases against the City's existing and planned power supply resources. This graph allows for the review of the effect of load growth variations on the timing of new resource additions. The highest probability weighting, of course, is placed on the base case assumptions, and the low and high cases are given a smaller likelihood of occurrence.

2.1.3 ENERGY EFFICIENCY AND DEMAND SIDE MANAGEMENT PROGRAMS

The City has a goal to improve the efficiency of customers' end-use of energy resources when such improvements provide a measurable economic and/or environmental benefit to the customers and the City utilities. On March 1, 1996 the City filed its Demand Side Management (DSM) Plan with the FPSC. This plan indicated the demand and energy reductions due to conservation efforts that are expected over the period 1997-2006. The individual program measures that were selected for inclusion in the plan were identified as cost effective in Integrated Resource Planning (IRP) studies conducted by the City. During 2005 the City is planning to prepare a new DSM Plan concurrently with an updated IRP Study.

The following menu of programs is included in the current DSM plan, which was implemented in fiscal year 1997:

Residential Programs								
HVAC Loan								
Homebuilder Rebates								
Gas Water Heater Conversion Loan								
Information and Audits								
Ceiling Insulation Loan								
Low Income Ceiling Insulation Rebate								

<u>Commercial Programs</u> Customized HVAC Loan Secured Loan Demonstrations Information and Audits Commercial Gas Conversion Rebates

Energy and demand reductions attributable to the above DSM efforts have been incorporated into the future load and energy forecasts. Table 2.16 displays the estimated energy savings associated with the menu of DSM programs. Table 2.17 shows similar data for demand savings. The figures on these tables reflect the cumulative annual impacts of the DSM plan on system energy and demand requirements.

2.2 ENERGY SOURCES AND FUEL REQUIREMENTS

Tables 2.18 (Schedule 5), 2.19 (Schedule 6.1), and 2.20 (Schedule 6.2) present the projections of fuel requirements, energy sources by resource/fuel type in gigawatt-hours, and energy sources by resource/fuel type in percent, respectively, for the period 2005-2014. Figure B4 displays the percentage of energy by fuel type in 2005 and 2014.

The City's generation portfolio includes combustion turbine/combined cycle, combustion turbine/simple cycle, conventional steam and hydroelectric units. This mix of generation types coupled with opportunities for firm and economy purchases from neighboring systems provides the City with a reasonable amount of resource diversity to satisfy its total energy requirements consistent with our energy policies that seek to balance the cost of power with the environmental quality of our community. The City's combustion turbine/combined cycle and combustion turbine/simple cycle units are capable of generating energy using natural gas or distillate fuel oil. Natural gas and residual fuel oil may be burned concurrently in the City's steam units.

The projections of fuel requirements and energy sources are taken from the results of computer simulations using Global Energy Decisions, Inc.'s PROSYM production simulation model and are based on the resource plan described in Chapter III.

Schedule 2.1 History and Forecast of Energy Consumption and Number of Customers by Customer Class

Base Load Forecast

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
		Rı	ural & Resident	tial			Commercial [2	2]			
				Average	· · · ·	Average					
		Members		No. of	Average kWh		No. of	Average kWh			
		Per		Customers	Consumption		Customers	Consumption			
<u>Year</u>	Population [3]	Household	<u>(GWh)</u>	[1]	Per Customer	<u>(GWh)</u>	[1]	Per Customer			
1995	170,796		870	71,534	12,162	1,268	14,780	85,792			
1996	175,373	-	893	72,998	12,233	1,316	15,142	86,911			
1997	177,347	_	850	74,259	11,446	1,324	15,495	85,447			
1998	180,725		940	75,729	12,413	1,396	15,779	88,472			
1999	184,239	-	926	77,357	11,970	1,419	16,183	87,685			
2000	186,839	-	971	79,108	12,274	1,457	15,891	91,687			
2001	190,575	-	959	80,348	11,936	1,459	16,988	85,884			
2002	193,941	-	1,048	81,208	12,905	1,527	16,831	90,661			
2003	200,304	_	1,035	82,219	13,030	1,555	17,289	107,870			
2004	203,106		1.063	84,496	12,580	1,604	17,553	91,352			
2005	205,908	-	1,075	85,797	12,530	1,647	17,512	94,069			
2006	208,789	-	1,089	87,106	12,496	1,687	17,756	95,000			
2007	211,669	-	1,109	88,416	12,543	1,730	18,001	96,115			
2008	214,550	-	1,131	89,726	12,605	1,771	18,246	97,080			
2009	217,430	-	1,153	91,036	12,662	1,804	18,490	97,555			
2010	220,311	-	1,173	92,335	12,699	1,834	18,734	97,877			
2011	223,056	-	1,197	93,618	12,782	1,863	18,975	98,200			
2012	225,801	-	1,221	94,901	12,865	1,893	19,216	98,534			
2013	228,546	-	1,246	96,184	12,959	1,924	19,457	98 907			
2014	231,290	-	1,270	97,467	13,030	1,956	19,699	99,296 B			

[1] Average end-of-month customers for the calendar year.

[2] Includes Traffic Control and Security Lighting use.

[3] Population data represents Leon County population served by City of Tallahassee Electric Utility not the general population of Leon County.

Schedule 2.2 History and Forecast of Energy Consumption and Number of Customers by Customer Class

Base Load Forecast

(1)	(2) (3) (4)		(5)	(6)	(7)	(8)	
		Industrial					
		Average			Street &	Other Sales	Total Sales
		No. of	Average kWh	Railroads	Highway	to Public	to Ultimate
		Customers	Consumption	and Railways	Lighting	Authorities	Consumers
<u>Year</u>	<u>(GWh)</u>	[1]	Per Customer	<u>(GWh)</u>	<u>(GWh)</u>	<u>(GWh)</u>	<u>(GWh)</u>
1995	-	-	-	-	12		2,150
1996	-	-	-	-	12		2,221
1997	-	-	-	-	12		2186
1998	-	-	-	-	12		2348
1999	-	-	-		13		2358
2000	-	-	-	-	13		2,441
2001					13		2,431
2002					13		2,588
2003					13		2,603
2004					14		2,681
2005	-	-	-		14		2,737
2006	-	-	-		14		2,790
2007	-	-	-		14		2,853
2008	-	-	-		14		2,917
2009	-	-	-		14		2,971
2010	-	-	-		15		3,021
2011	-	-	-		15		3,075
2012	-	-	-		15		3,129
2013	-	-	-		15		3,186
2014					15		3,241

[1] Average end-of-month customers for the calendar year

Schedule 2.3 History and Forecast of Energy Consumption and Number of Customers by Customer Class

Base Load Forecast

(1)	(2)	(3)	(4)	(5)	(6)
		Utility Use			Total
	Sales for	& Losses	Net Energy	Other	No. of
	Resale	(GWh)	for Load	Customers	Customers
Year	<u>(GWh)</u>	[1]	<u>(GWh)</u>	(Average No.)	[1]
1995	0	128	2,278		86,314
1996	0	111	2,332		88,140
1997	0	132	2,318		89,754
1998	0	129	2,477		91,508
1999	0	139	2,497		93,540
2000	0	155	2,596		94,999
2001	0	125	2,556		97,336
2002	0	165	2,753		98,039
2003	0	152	2,755		99,509
2004	0	160	2,840		102,049
2005	0	157	2,894		103,308
2006	0	160	2,950		104,863
2007	0	164	3,017		106,417
2008	0	167	3,084		107,971
2009	0	170	3,142		109,526
2010	0	174	3,194		111,069
2011	0	177	3,251		112,593
2012	0	180	3,309		114,117
2013	0	183	3,369		115,641
2014	0	186	3,427		117,166

[1] Average number of customers for the calendar year.

■ Curtail/Interrupt ■ Traffic/Street/Security Lights Large Demand □ History ⊡ Residential I Non-Demand I Demand

Energy Consumption By Customer Class

Total 2005 Sales = 2,769 GWh Values exclude DSM impacts

Calendar Year 2014

Total 2014 Sales = 3,308 GWh Values exclude DSM impacts

□ Residential ■ Large Demand Non DemandCurtail/Interrupt

DemandTraffic/Street/Security Lights

Schedule 3.1.1 History and Forecast of Summer Peak Demand Base Forecast (MW)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
<u>Year</u>	Total	<u>Wholesale</u>	<u>Retail</u>	Interruptible	Residential Load e <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]
1995	497		497						497
1996	500		500						500
1997	486		486						486
1998	530		530						530
1999	526		526						526
2000	550		550						550
2001	520		520						520
2002	581		581						581
2003	549		549						549
2004	566		566			1	[3]	0	565
2005	597		597			1		1	595
2006	609		609			3		1	605
2007	622		622			3		1	618
2008	632		632			3		1	628
2009	642		642			3		1	638
2010	652		652			3		1	648
2011	661		661			3		1	657
2012	671		671			3		1	667
2013	681		681			3		1	677
2014	690		690			3		1	686

[1] Values include DSM Impacts.

[2] Reduction estimated at busbar.

[3] 2004 DSM Jan - July accumulation.

Schedule 3.1.2 History and Forecast of Summer Peak Demand High Forecast (MW)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	<u>Total</u>	Wholesale	<u>Retail</u>	<u>Interruptible</u>	Residential Load <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]
1995	497		497						497
1996	500		500						500
1997	486		486						486
1998	530		530						530
1999	526		526						526
2000	550		550						550
2001	520		520						520
2002	581		581						581
2003	549		549						549
2004	566		566			1	[3]	0	565
2005	624		624			1		1	622
2006	636		636			3		1	632
2007	650		650			3		1	646
2008	660		660			3		1	656
2009	670		670			3		1	666
2010	680		680			3		1	676
2011	690		690			3		1	686
2012	700		700			3		1	696
2013	710		710			3		1	706
2014	720		720			3		1	716

[1] Values include DSM Impacts.

[2] Reduction estimated at busbar.

[3] 2004 DSM Jan - July accumulation.

Schedule 3.1.3 History and Forecast of Summer Peak Demand Low Forecast (MW)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
<u>Year</u>	<u>Total</u>	Wholesale	<u>Retail</u>	<u>Interruptile</u>	Residential Load <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]
1995	497		497						497
1996	500		500						500
1997	486		486						486
1998	530		530						530
1999	526		526						526
2000	550		550						550
2001	520		520						520
2002	581		581						581
2003	549		549						549
2004	566		566			1	[3]	0	565
2005	576		576			1		1	574
2006	587		587			3		1	583
2007	601		601			3		1	597
2008	610		610			3		1	606
2009	620		620			3		1	616
2010	629		629			3		1	625
2011	639		639			3		1	635
2012	648		648			3		1	644
2013	658		658			3		1	654
2014	668		668			3		1	664

[1] Values include DSM Impacts.

[2] Reduction estimated at bsbr. Reporting year DSM is actual at peak.

[3] 2004 DSM In -Inly accumulation.

Schedule 3.2.1 History and Forecast of Winter Peak Demand Base Forecast (MW)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Year	<u>Total</u>	Wholesale	<u>Retail</u>	<u>Interruptible</u>	Residential Load <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]
	1995 -1996	533		533						533
	1996 -1997	431		431						431
-1	1997 -1998	421		421						421
Ten	1998 -1999	513		513						513
Year	1999 -2000	497		497						497
	2000 -2001	521		521						521
	2001 -2002	510		510						510
Site Pla	2002 -2003	590		590						590
a a	2003 -2004	509		509						509
	2004 -2005	537		537			6		0	532
	2005 -2006	588		588			5		0	583
	2006 -2007	606		606			5		0	601
	2007 -2008	618		618			5		0	613
	2008 -2009	631		631			5		0	626
	2009 -2010	643		643			5		0	638
	2010 -2011	655		655			5		0	650
	2011 -2012	667		667			5		0	662
	2012 -2013	679		679			5		0	674
	2013 -2014	691		691			5		0	686
	2014 -2015	703		703			5		0	698

[1] Values include DSM Impacts.

[2] Reduction estimated at busbar. Reporting year DSM is actual at peak.

Ten Year Site Plan April 2005 Page 17

.

Schedule 3.2.2 History and Forecast of Winter Peak Demand High Forecast (MW)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	<u>Total</u>	Wholesale	<u>Retail</u>	<u>Interruptible</u>	Residential Load <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]
1995 -1996	533		533						533
1996 -1997	431		431						431
1997 -1998	421		421						421
1998 -1999	513		513						513
1999 -2000	497		497						497
2000 -2001	521		521						521
2001 -2002	510		510						510
2002 -2003	590		590						590
2003 -2004	509		509						509
2004 -2005	537		537			6		0	532
2005 -2006	636		636			5			631
2006 -2007	654		654			5			649
2007 -2008	667		667			5			662
2008 -2009	680		680			5			675
2009 -2010	692		692			5			687
2010 -2011	705		705			5			700
2011 -2012	717		717			5			712
2012 -2013	730		730			5			725
2013 -2014	742		742			5			737
2014 -2015	754		754			5			749

[1] Values include DSM Impacts.

[2] Reduction estimated at busbar.

City	Of	Talla	ahassee

Schedule 3.2.3 History and Forecast of Winter Peak Demand Low Forecast (MW)													
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)				
Year	<u>Total</u>	<u>Wholesale</u>	<u>Retail</u>	Interruptible	Residential Load <u>Management</u>	Residential Conservation [2]	Comm./Ind Load <u>Management</u>	Comm./Ind Conservation [2]	Net Firm Demand [1]				
1995 -1996	533		533						533				
1996 -1997	431		431						431				
1997 -1998	421		421						421				
1998 -1999	513		513						513				
1999 -2000	497		497						497				
2000 -2001	521		521						521				
2001 -2002	510		510						510				
2002 -2003	590		590						590				
2003 -2004	509		509						509				
2004 -2005	537		537			6		0	532				
2005 -2006	540		540			5			535				
2006 -2007	558		558			5			553				
2007 -2008	570		570			5			565				
2008 -2009	582		582			5			577				
2009 -2010	594		594			5			589				
2010 -2011	605		605			5			600				
2011 -2012	617		617			5			612				
2012 -2013	629		629			5			624				
2013 -2014	641		641			5			636				
2014 -2015	652		652			5			647				

Values include DSM Impacts.
 Reduction estimated at busbar. Reporting year DSM is actual at peak.

Schedule 3.3.1 History and Forecast of Annual Net Energy for Load Base Forecast (GWh)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
<u>Year</u>	Total <u>Sales</u>	Residential Conservation [2]	Comm./Ind Conservation [2]	Retail Sales [1]	Wholesale	Utility Use <u>& Losses</u>	Net Energy for Load [1]	Load Factor % [1]
1995	2,150			2,150		128	2,278	52
1996	2,221			2,221		111	2,332	53
1997	2,186			2,186		132	2,318	54
1998	2,349			2,349		129	2,478	53
1999	2,358			2,358		139	2,497	54
2000	2,441			2,441		155	2,596	54
2001	2,431			2,431		125	2,556	56
2002	2,588			2,588		165	2,753	54
2003	2,603			2,603		152	2,755	57
2004	2,692	11	0	2,680		160	2,840	57
2005	2,744	6	2	2,737		157	2,894	56
2006	2,805	12	3	2,790		160	2,950	56
2007	2,868	12	3	2,852		164	3,016	56
2008	2,931	12	3	2,916		167	3,083	56
2009	2,986	12	3	2,971		170	3,142	56
2010	3,037	12	3	3,022		174	3,195	56
2011	3,090	12	3	3,075		177	3,251	56
2012	3,144	12	3	3,129		180	3,309	57
2013	3,200	12	3	3,185		183	3,368	57
2014	3,256	12	3	3,241		186	3,427	57

[1] Values include DSM Impacts.

[2] Reduction estimated at customer meter. Previous year DSM is actual at peak.

Schedule 3.3.2 History and Forecast of Annual Net Energy for Load High Forecast (GWh)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Year	Total <u>Sales</u>	Residential Conservation [2]*	Comm./Ind Conservation [2]	Retail Sales [1]	Wholesale	Utility Use <u>& Losses</u>	Net Energy for Load [1]	Load Factor % [1]
1995	2,150	0	0	2,150	0	128	2,278	52
1996	2,221	0	0	2,221	0	111	2,332	53
1997	2,186	0	0	2,186	0	132	2,318	54
1998	2,349	0	0	2,349	0	129	2,478	53
1999	2,358	0	0	2,358	0	139	2,497	54
2000	2,441	0	0	2,441	0	155	2,596	54
2001	2,431	0	0	2,431	0	125	2,556	56
2002	2,588	0	0	2,588	0	165	2,753	54
2003	2,603	0	0	2,603	0	152	2,755	57
2004	2,692	11	0	2,680	0	160	2,840	57
2005	2,959	6	2	2,951		169	3,121	57
2006	3,028	12	3	3,013		173	3,186	58
2007	3,102	12	3	3,087		177	3,264	58
2008	3,171	12	3	3,156		181	3,337	58
2009	3,230	12	3	3,215		185	3,400	58
2010	3,288	12	3	3,273		188	3,461	58
2011	3,344	12	3	3,329		191	3,520	59
2012	3,403	12	3	3,388		194	3,583	59
2013	3,461	12	3	3,446		198	3,644	59
2014	3,520	12	3	3,505		201	3,706	59

[1] Values include DSM Impacts.

[2] Reduction estimated at customer meter. Previous year DSM is actual at peak.

11

Schedule 3.3.3 History and Forecast of Annual Net Energy for Load Low Forecast (GWh)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Voor	Total	Residential Conservation	Comm./Ind Conservation	Retail Sales	WH 1 1	Utility Use	Net Energy for Load	Load Factor %
<u>Year</u>	<u>Sales</u>	[2]*	[2]	<u>[1]</u>	<u>Wholesale</u>	<u>& Losses</u>	[1]	<u>[1]</u>
1995	2,150	0	0	2,150	0	128	2,278	52
1996	2,221	0	0	2,221	0	111	2,332	53
1997	2,186	0	0	2,186	0	132	2,318	54
1998	2,349	0	0	2,349	0	129	2,478	53
1999	2,358	0	0	2,358	0	139	2,497	54
2000	2,441	0	0	2,441	0	155	2,596	54
2001	2,431	0	0	2,431	0	125	2,556	56
2002	2,588	0	0	2,588	0	165	2,753	54
2003	2,603	0	0	2,603	0	152	2,755	57
2004	2,692	11	0	2,680	0	160	2,840	57
2005	2,625	6	2	2,617		150	2,767	55
2006	2,689	12	3	2,674		154	2,827	55
2007	2,760	12	3	2,745		158	2,903	56
2008	2,825	12	3	2,810		161	2,971	56
2009	2,880	12	3	2,865		164	3,030	56
2010	2,933	12	3	2,918		167	3,085	56
2011	2,985	12	3	2,970		170	3,140	56
2012	3,038	12	3	3,023		174	3,197	57
2013	3,092	12	3	3,076		177	3,253	57
2014	3,146	12	3	3,131		180	3,310	57

[1] Values include DSM Impacts.

[2] Reduction estimated at customer meter. Previous year DSM is actual at peak.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	200		200:		200	
	Actu Peak Demand	NEL	Forecas Peak Demand		Forecas	
Month	<u>(MW)</u>	(GWh)	(<u>MW</u>)	NEL <u>(GWh)</u>	Peak Demand (MW)	NEL <u>(GWh)</u>
January	509	232	532	242	583	247
February	445	214	444	206	487	210
March	362	197	406	205	445	209
April	378	197	416	211	457	215
May	508	245	527	252	536	257
June	518	266	557	263	566	268
July	557	280	595	280	605	286
August	565	284	585	285	595	291
September	534	255	560	265	569	271
October	491	233	503	236	512	241
November	443	202	415	209	455	213
December	480	236	448	239	491	242
TOTAL		2,841		2,893		2,950

Schedule 4 Previous Year and 2-Year Forecast of Retail Peak Demand and Net Energy for Load by Month

[1] Peak Demand and NEL include DSM impacts

2005 Electric System Load Forecast

Key Explanatory Variables

Model Name	Leon County Population	Residential <u>Customers</u>	Total <u>Customers</u>	Cooling Degree <u>Davs</u>	Heating Degree	Tallahassee Per Capita Taxable <u>Sales</u>	Price of <u>Electricity</u>	State of Florida <u>Population</u>	Minimum Winter Peak day <u>Temp.</u>	Maximum Summer Pcak day <u>Temp.</u>	Appliance Saturation	R Squared
Residential Customers	х											0.989
Residential Consumption		х		х	х	х	Х				х	0.921
Florida State University Consumption				х			х	х				0.930
State Capitol Consumption				х			x	x				0.892
Florida A & M University Consumption				х				x				0.926
Street Lighting Consumption	Х											0.961
General Service Non-Demand Customers		х										0.958
General Service Demand Customers		x										0.927
General Service Non-Demand Consumption	х			х	х	х	х					0.961
General Service Demand Consumption	х			x	х							0.990
General Service Large Demand Consumption	х			х	х							0.974
Summer Peak Demand			x							x	x	0.982
Winter Peak demand									Х		х	0.965

 R Squared, sometimes called the coefficient of determination, is a commonly used measure of goodness od fit of a linear model. If the observations fall on the model regression line, R Squared is 1. If there is no linear relationship between the dependent and independent variable, R Squared is 0. A reasonably good R Squared value could be anywhere from 0.6 to 1.

2005 Electric Load Forecast

Sources of Forecast Model Input Information

Energy Model Input Data

<u>Source</u>

- 1. Leon County Population
- 2. Talquin Customers Transferred
- 3. Cooling Degree Days
- 4. Heating Degree Days
- 5. AC Saturation Rate
- 6. Heating Saturation Rate
- 7. Real Tallahassee Taxable Sales
- 8. Florida Population
- 9. State Capitol Incremental
- 10. FSU Incremental Additions
- 11. FAMU Incremental Additions
- 12. GSLD Incremental Additions
- 13. Other Commercial Customers
- 14. Tall. Memorial Curtailable
- 15. System Peak Historical Data
- 16. Historical Customer Projections by Class
- 17. Historical Customer Class Energy
- 18. GDP Forecast
- 19. CPI Forecast
- 20. Florida Taxable Sales
- 21. Interruptible, Traffic Light Sales, & Security Light Additions
- 22. Historical Residential Real Price of Electricity
- 23. Historical Commercial Real Price Of Electricity

City Planning Office City Power Engineering NOAA reports NOAA reports Residential Utility Customer Trends City Utility Research Department of Revenue Governor's Office of Budget & Planning Department of Management Services FSU Planning Department FAMU Planning Department City Utility Services Utility Services System Planning/ Utilities Accounting. City System Planning System Planning & Customer Accounting System Planning & Customer Accounting Governor's Planning & Budgeting Office Governor's Planning & Budgeting Office Governor's Planning & Budgeting Office System Planning & Customer Accounting

Utility Services Utility Services

Banded Summer Peak Load Forecast Vs. Supply Resources (Load Includes 17% Reserve Margin)

2005 Electric System Load Forecast

Projected Demand Side Management Energy Reductions [1]

Calendar Year Basis

Year	Residential Impact (MWh)	Commercial Impact	Total Impact
<u>1 cai</u>	<u>(1V1 VV 11)</u>	<u>(MWh)</u>	<u>(MWh)</u>
2005	6,344	1,800	8,144
2006	12,687	3,321	16,008
2007	12,687	3,321	16,008
2008	12,687	3,321	16,008
2009	12,687	3,321	16,008
2010	12,687	3,321	16,008
2011	12,687	3,321	16,008
2012	12,687	3,321	16,008
2013	12,687	3,321	16,008
2014	12,687	3,321	16,008

[1] Reductions estimated at busbar.

2005 Electric System Load Forecast

Projected Demand Side Management Seasonal Demand Reductions [1]

		Resid Energy E <u>Imp</u>	fficiency	Comm Energy E <u>Imp</u>	fficiency	Demand Side Management <u>Total</u>		
<u>Summer</u>	<u>Vear</u> <u>Winter</u>	Summer <u>(MW)</u> [2]	Winter (<u>MW)</u> [3]	Summer <u>(MW)</u>	Winter <u>(MW)</u>	Summer <u>(MW)</u>	Winter <u>(MW)</u>	
2005	2004-2005	1	5	1	0	2	6	
2006	2005-2006	3	5	1	0	4	6	
2007	2006-2007	3	5	1	0	4	6	
2008	2007-2008	3	5	1	0	4	6	
2009	2008-2009	3	5	1	0	4	6	
2010	2009-2010	3	5	1	0	4	6	
2011	2010-2011	3	5	1	0	4	6	
2012	2011-2012	3	5	1	0	4	6	
2013	2012-2013	3	5	1	0	4	6	
2014	2013-2014	3	5	1	0	4	6	

[1] Reductions estimated at busbar.

[2] Summer MW reductions based upon HVAC unit replacements

[3] Winter MW reductions based upon Home Builder Rebates for Electric to Gas Appliance conversions

<u>City Of Tallahassee</u>

Schedule 5 Fuel Requirements

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
	Fuel Requirements		Units	Actual 2,003	Actual 2,004	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>
(1)	Nuclear		Billion Btu	0	0	0	0	0	0	0	0	0	0	0	0
(2)	Coal		1000 Ton	0	0	0	0	0	0	0	0	0	0	۵	0
	Residual														
(3)		Steam	1000 BBL	555	599	1,005	976	343	127	0	0	0	88	99	0
(4)		CC	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(5)		CT	1000 BBL			0	0	0	0	0	0	0	0	0	0
(4) (5) (6)		Total	1000 BBL	555	599	1,005	976	343	127	Q	0	0	88	99	0
	Distillate														
(7)		Steam	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(8)		CC	1000 BBL	5	0	0	0	0	0	0	0	0	0	0	0
(9)		CT	1000 BBL	1	12	0	0	0	0	0	0	0	0	0	0
(10)		Total	1000 BBL	5	12	0	0	0	0	0	0	0	0	0	0
	Natural Gas														
(11)		Steam	1000 MCF	5,163	6,965	2,313	2,642	5,683	7,465	8,100	7,586	5,969	5,032	6,169	5,823
(12)		CC	1000 MCF	11,125	7,499	12,729	12,828	11,726	12,512	12,737	13,289	16,180	17,330	16,317	18,170
(13)		CT	1000 MCF	84	145	489	1,622	2,632	2,610	2,879	3,056	1,925	1,842	2,038	1,989
(14)		Total	1000 MCF	16,371	14,609	15,531	17,092	20,041	22,587	23,716	23,931	24,074	24,204	24,524	25,982
(15)	Other (Specify)		Trillion Btu	0	0	0	0	0	0	0	0	0	0	0	0

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
	Energy Sources		Units	Actual <u>2003</u>	Actual 2004	2005	<u>2006</u>	2007	2008	2009	<u>2010</u>	<u>2011</u>	<u>2012</u>	2013	2014
(1)	Annual Firm Interchange		GWh	182	205	1	0	0	0	0	0	0	0	0	0
(2)	Nuclear		GWh	0	0	0	0	0	0	0	0	0	0	0	0
	Residual														
(3)		Steam	GWh	323	355	578	569	190	70	0	0	0	49	56	0
(4)		CC	GWh	0		0	0	0	0	0	0	0	0	0	0
(5)		CT	GWh	0		0	0	0	0	0	0	0	0	0	0
(6)		Total	GWh	323	355	578	569	190	70	0	0	0	49	56	0
	Distillate														
(7)		Steam	GWh	0 4	0 0	0	0	0	0	0	0	0	0 0	0	0
(8)		CC	GWh	4		0	0	0	0	0	0	0		0	0
(9)		CT	GWh	0	3	0	0	0	0	0	0	0	0	0	0
(10)		Total	GWh	4	3	0	0	0	0	0	0	0	0	0	0
	Natural Gas														
(11)		Steam	GWh	451	620	210	241	536	702	755	708	557	471	572	537
(12)		CC	GWh	1,566	1,045	1,774	1,791	1,646	1,742	1,777	1,860	2,247	2,398	2,267	2,523
(13)		CT	GWh	2	6	48	167	272	269	298	317	201	191	213	207
(14)		Total	GWh	2,020	1.671	2,032	2,199	2,454	2,713	2,830	2,885	3,005	3,060	3,052	3,267
(15)	Hydro		GWh	30	24	18	16	18	18	18	18	18	18	18	18
(16)	Others (Specify) ⁽¹⁾		GWH	197	583	264	166	355	282	293	293	229	182	242	142
(17)	Net Energy for Load		GWh	2,755	2,841	2,893	2,950	3,017	3,083	3,141	3,196	3,252	3,309	3,368	3,427

<u>City Of Tallahassee</u> Schedule 6.1 Energy Sources

(1) Market and Intra-regional

¹Annual firm intra-region interchange and net annual non-firm inter/intra-region interchange.

<u>City Of Tallahassee</u>

Schedule 6.2 Energy Sources

(1)	(2)	(3)	(4)	5	6	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
	Energy Sources		Units	Actual 2003	Actual <u>2004</u>	2005	<u>2006</u>	<u>2007</u>	2008	2009		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>
	<u></u>					1000	2000	2001	2000	2007		2011	2012	2015	2014
(1)	Annual Firm Interchange		%	6.60	7.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(2)	Nuclear		%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Residual														
(3)		Steam	%	11.71	12.50	20.00	19.30	6.30	2.30	0.00	0.00	0.00	1.50	1.70	0.00
(4)		CC	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(5)		CT	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(6)		Total	%	11.71	12.50	20.00	19.30	6.30	2.30	0.00	0.00	0.00	1.50	1.70	0.00
	Distillate														
(7)		Steam	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(8)		CC	%	0.13	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(9)		CT	%	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(10)		Total	%	0.13	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Natural Gas														
(11)		Steam	%	16.37	21.83	7.30	8.20	17.80	22.80	24.00	22.10	17.10	14.20	17.00	15.70
(12)		CC	%	56.86	36.79	61.30	60.70	54.60	56.50	56.60	58.20	69.10	72.50	67.30	73.60
(13)		CT	%	0.09	0.21	1.70	5.70	9.00	8.70	9.50	9.90	6.20	5.80	6.30	6.00
(14)		Total	%	73.32	58.82	70.30	74.60	81.30	88.00	90.10	90.20	92.40	92.50	90.60	95.30
(15)	(Hydro		%	1.09	0.83	0.60	0.50	0.60	0.60	0.60	0.60	0.60	0.50	0.50	0.50
(16)	Others (Specify) ⁽¹⁾		%	7.15	20.51	9.10	5.60	11.80	9.10	9.30	9.20	7.00	5.50	7.20	4.20
(17)	7) Net Energy for Load			100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

¹ Annual firm intra-region interchange and net annual non-firm inter/intra-region interchange.

Generation By Resource/Fuel Type

Calendar Year 2005

Calendar Year 2014

CC - Gas 📓 Steam - Gas 🗏 Steam - Oil 📓 CT/Diesel - Gas 📓 CT/Deisel - Oil 📓 Purch 🖀 Hydro
Chapter III

Projected Facility Requirements

3.0 INTRODUCTION

The review and approval by the City Commission of the electric utility's recommended resource plan is guided by the objectives in the City's Energy Policy:

It is the policy of the City of Tallahassee to provide a reliable, economically-competitive energy system which meets citizens' energy needs and reduces total energy requirements. These requirements will be reduced through energy conservation, public education, and appropriate technologies. The energy system will protect and improve the quality of life and the environment.

3.1 PLANNING PROCESS

In August 2004 the City issued a task order to Black & Veatch Consultants to conduct a comprehensive integrated resource planning (IRP) study. The purpose of this study is to review future demand-side management (DSM) and power supply options that are consistent with the objectives of the City's Energy Policy stated above in Section 3.0. As of the time of this TYSP filing, the City and Black & Veatch have completed Phase I of the IRP study which included data collection, assumption and methodology development and a screening analysis to identify those DSM and power supply alternatives that will be subject to detailed analysis in the final Phase II. The City's proposed generation expansion plan described in Section 3.2 is based in part on the results of the 2002 IRP study, the preliminary results of the ongoing IRP study and the results of internal studies.

Electric utility planning staff will continue to review the progress and results of the current IRP Study as directed by the City Commission. This review process will include but not necessarily be limited to updating information with regard to expected conditions (existing system performance, load and energy requirements, fuel price forecasts, economic variables), DSM alternatives, power supply alternatives (electric generating equipment and new power purchase opportunities), transmission issues and any other information that would support enhancements to the IRP study assumptions or methodology. As part of this review staff will investigate options available to the City to achieve some supply resource portfolio diversity. In addition, staff will continue to review and develop means to mitigate the potential impacts of significant events in the electric utility industry including but not necessarily limited to the collapse of Enron, other former energy trading companies and merchant generators and the subsequent impact on energy sector investment and financial markets, the ongoing initiatives for the formation of regional transmission organizations (RTO) and possible federal legislation related to electric utility industry restructuring.

3.2 PROJECTED RESOURCE REQUIREMENTS

3.2.1 TRANSMISSION LIMITATIONS

The City has projected that additional resources will be required during the 2005-2014 Ten Year Site Plan time frame to maintain a reliable electric system. The City's projected transmission import capability is a major determinant of the type and timing of future power resource additions. The City has worked with its neighboring utilities, Progress and Southern, to plan and maintain sufficient transmission import capability to allow the City to make emergency power purchases in the event of the most severe single contingency, the loss of the system's largest generating unit. As has been seen in other parts of the country since the passage of the Energy Policy Act of 1992, there has been little investment in the regional transmission system around Tallahassee. Consequently, the City's internal transmission studies have reflected a gradual deterioration of the system's transmission import (and export) capability into the future, due in part to this lack of investment in facilities as well as the impact of an increasing level of unscheduled power flow-through on the City's transmission system. The prospects for significant expansion of the regional transmission system around Tallahassee hinges on (i) the City's ongoing discussions with Progress and Southern, (ii) the RTO development activities of GridFlorida, and (iii) the alternative mechanisms envisioned by proposed federal legislation on electric industry restructuring. Unfortunately, none of these efforts is expected to produce substantive improvements to the City's transmission import/export capability in the time frame of the system's short-term resource needs. The City continues to discuss the limitations of the existing transmission grid in the panhandle region with Progress, and preliminary results from a joint study of possible alternatives to address these limitations and constraints were shared with FPSC staff in March 2005. In consideration of the City's projected transmission import capability reductions and the

associated grid limitations, the results of the 2004 IRP Study and recent analysis of options tend to favor local generation alternatives as the means to satisfy future power supply requirements.

3.2.2 RESERVE REQUIREMENTS

Historically, the City has planned to maintain a load reserve margin of 17%. However, in previous Ten Year Site Plan reports, the City has discussed the possibility of increasing its reserve margin criterion. The perceived need to evaluate alternative reliability criteria/levels arose primarily from three considerations: (i) the projected deterioration of the City's transmission import capability discussed in the previous section, (ii) the stipulation made by the state's three investor-owned utilities (Florida Power & Light, Progress Energy Florida and Tampa Electric Company) to increase their respective reserve margins to 20% by 2004 in response to the FPSC's reserve margin docket of 1998, and (iii) the size of the City's individual generating units as a percent of its total supply resource capability. However, as mentioned in the previous year's Ten Year Site Plan reports, the City evaluated various reliability measures and determined that the 17% reserve margin continues to be appropriate for planning purposes. The City is currently reviewing the scheduled retirement dates for the 20 MW of gas turbines at the Purdom Plant (currently scheduled for retirement in 2008 and 2009 as shown in Schedule 1) and, if economic, may elect to postpone the retirement of those units. Assuming the base case load forecast, recognizing the peaking capacity under construction and assuming that the retirement of the Purdom CTs is delayed until 2010. additional power supply need to maintain a 17% planning reserve margin first occurs in the summer of 2010; assuming the high load forecast, additional power supply would be needed two years earlier, in the summer of 2008.

3.2.3 NEAR TERM RESOURCE ADDITIONS

In order to meet the year 2005 capacity shortfalls identified in the 2002 IRP, the City is moving forward with the addition of 94 MW (summer net) of new peaking capacity. This new capacity will utilize two (2) dual fuel simple cycle combustion turbines. Details of this project are below. The combustion turbines that are being added are General Electric LM-6000 Sprint combustion turbines with a summer rating of 47 MW (94° F, firing natural gas with chiller in service) each. The combustion turbines will be equipped with inlet chilling, and selective catalytic reduction and oxidation catalyst to reduce the emissions of oxides of nitrogen and carbon monoxide respectively.. These new generation units will be dual fuel with the ability to utilize natural gas or clean low sulfur diesel as their primary fuel and are designed to be on line and at full load withing ten (10) minutes of initiation of the start sequence. The combustion turbines are slated to be installed at the A. B. Hopkins Generation Station.

The City has purchased the prime mover equipment, main power transformers and certain other material and equipment required for the installation. All permitting has been completed. The City has awarded the installation; commissioning and start-up contract to TIC – The Industrial Company. TIC has mobilized and construction activities commenced in early February 2005. The current project schedule calls for the first of the LM-6000's to be in commercial operation in early July.

3.2.4 PURCHASED POWER ALTERNATIVES

Purchase contracts could provide some of the diversity desired in the City's power supply resource portfolio. Resource diversity, particularly with regard to fuels, has long been sought after by the City because of the system's heavy reliance on natural gas as its primary fuel source and has received even greater emphasis in light of the volatility in natural gas prices seen over recent years. The City has also attempted to address this concern by implementing an Energy Risk Management (ERM) program in an effort to limit the City's exposure to energy price fluctuations. The ERM program established a new organizational structure of interdepartmental committees and working groups and included the adoption of an Energy Risk Management Policy that, among other things, identifies acceptable risk mitigation products to prevent asset value losses, ensure price stability and provide protection against market volatility for fuels and energy to the City's electric and gas utilities and their customers.

As an additional strategy to address the City's lack of power supply diversity, planning staff continues to investigate options for joint ownership of a solid-fuel unit. Recent changes in the natural gas market and in cost and performance parameters for coal units indicate favorable economics for adding some amount of coal capacity to the City's resource portfolio. The ongoing 2004 IRP Study will assess the benefits and risks associated with including a coal-fueled unit in the City's long-range power supply plan. That analysis will focus primarily on participation in a remotely sited resource in recognition of the constraints placed on the City as a result of a 1991 charter amendment relating to pursuit of any locally sited coal plant.

3.2.5 RENEWABLE RESOURCES

As part of its continuing commitment to explore clean energy alternatives, the City has continued to invest in opportunities to develop viable solar photovoltaic (PV) projects as part of our efforts to offer "green power" to our customers. The City believes that offering a green power alternative to its customers is a sound business strategy: it will provide for a measure of supply diversification, reduce dependence on fossil fuels, promote cleaner energy sources, and enhance the City's already strong commitment to protecting the environment and the quality of life in Tallahassee. Currently we have a portfolio of 40kW of solar PV dedicated to supporting our *Green For You* program, a retail offering which uses tradable renewable certificates (green tags) to promote development of green power projects.

The City's existing solar power resources consist of both solar PV and solar thermal installations: a 10 kW PV system on the Trousdell Aquatics Center bathhouse; an 18 kW PV system located behind the Florida Public Service Commission conference center; a 6 kW PV system at the FAMU/FSU Engineering School; a 6 kW PV system at the Center for Advanced Power Systems (CAPS); and several solar domestic hot water systems at various City facilities. The City is also developing some integrated solar energy systems at the Jack McLean Park, including a solar pool heating system, a 6 kW PV system, and a solar domestic hot water system. In addition to these solar energy resources, the City also operates an 11 MW hydroelectric generating station at Lake Talquin, which represents the largest component of our renewable energy portfolio.

3.2.6 FUTURE POWER SUPPLY RESOURCES

The City's currently proposed resource addition to meet system needs in the summer of 2010 and beyond is represented in this report as an increasing ownership/purchase of capacity and energy from the equivalent of a new 1-on-1 combined cycle (CC) unit. Possible CC alternatives include a self -built unit; an asset modification (repowering of an existing conventional oil and gas-fired steam unit to combined cycle operation); an alliance purchase by wire (if transmission is available) or a combination thereof. The City will be continuing its evaluation of the different CC alternatives and update the FPSC in future TYSP reports.

The CC ownership/purchase reflected in this report begins with 25 MW in 2010. The CC ownership/purchase increases to 100 MW by the summer of 2011, to 125 MW by the summer of 2013 to meet the balance of needs throughout the 2005-2014 study period.

Tables 3.1 and 3.2 (Schedules 7.1 and 7.2) provide information on the resources and reserve margins during the next ten years for the City's system. The City has specified its planned capacity additions, retirements and changes on Table 3.3 (Schedule 8). These capacity resources have been incorporated into the City's dispatch simulation model in order to provide information related to fuel consumption and energy mix (see Tables 2.18, 2.19 and 2.20). Figure C compares seasonal net peak load and the system reserve margin based on summer peak load requirements. Table 3.4 provides the City's generation expansion plan. The additional supply capacity required to maintain the City's 17% reserve margin criterion is included in the "Resource Additions" column.

In addition to this future combined cycle unit addition, as a part of the 2004 IRP study the City is evaluating some other alternatives that would increase the effective capacity of our existing power supply resources and thereby defer the need for new resource additions, such as inlet chilling on Purdom Unit 8 or steam turbine upgrades at Hopkins Unit 2. These alternatives could provide a very cost-effective increase in system capacity with relatively short lead times, and would give the City more flexibility in meeting its future power supply requirements.

The City is also reviewing the scheduled retirement dates for the gas turbines at the Purdom Plant and may elect to extend the life of those units. Currently these units are projected to retire in 2008 and 2009 (see Schedule 1). Postponing these planned retirements may give the City additional flexibility in future power supply plans. For example, if delaying the retirement of this 20 MW of peaking capacity proves economic, absent any other changes on the system the first year in which resources would need to be added to maintain a 17% reserve margin (using the base case load forecast) is 2010, a deferral of two years compared to the generation expansion that would be required if their retirement was not delayed. The assessment of this retirement deferral should be completed during the IRP study.

Summer Reserve Margin

Ten Year Sit Plan April 2005 Page 40

Schedule 7.1 Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Summer Peak

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
2005	Total Installed Capacity <u>(MW)</u> 699	Firm Capacity Import (<u>MW)</u> 36	Firm Capacity Export <u>(MW)</u>	QF <u>(MW)</u>	Total Capacity Available <u>(MW)</u> 735	System Firm Summer Peak Demand (<u>MW)</u> 595		e Margin laintenance <u>% of Peak</u> 24	Scheduled Maintenance <u>(MW)</u>		e Margin aintenance <u>% of Peak</u> 24
2006	746 [1]	11			757	605	152	25		152	25
2007	746 [1]				757	618	139	22		139	22
2008	746 [1]	11			757	628	129	21		129	21
2009	746 [1]	11			757	638	119	19		119	19
2010	751 [1]	11			762	648	114	18		114	18
2011	778 [1]	11			789	657	132	20		132	20
2012	778 [1]	11			789	667	122	18		122	18
2013	803 [1]	11			814	677	137	20		137	20
2014	803 [1]	11			814	686	128	19		128	19

[1] All installed and firm import capacity changes are included in the proposed generation expansion plan.

Ten Year Site Plan April 2005 Page 41

<u>City Of Tallahassee</u>

Schedule 7.2 Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Winter Peak

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Total	Firm	Firm		Total	System Firm					
	Installed	Capacity	Capacity		Capacity	Winter Peak		e Margin	Scheduled		ve Margin
	Capacity	Import	Export	QF	Available	Demand	Before M	laintenance	Maintenance	After M	laintenance
<u>Year</u>	<u>(MW)</u>	<u>% of Peak</u>	<u>(MW)</u>	<u>(MW)</u>	<u>% of Peak</u>						
2004/05	699	11			710	532	178.5	34		178.5	34
2005/06	799	11			810	583	227	39		227	39
2006/07	799 [1]				810	601	209	35		209	35
2007/08	799	. 11			810	613	197	32		197	32
2008/09	799	11			810	626	184	29		184	29
2009/10	789 [1]] 11			800	638	162	25		162	25
2010/11	804 [1]] 11			815	650	165	25		165	25
2011/12	829 [1]] 11			840	662	178	27		178	27
2012/13	829 [1]	11			840	674	166	25		166	25
2013/14	854 [1]	11			865	686	179	26		179	26
2014/15	854 [1]	11			865	698	167	24		167	24

[1] All installed capacity changes are included in the proposed generation expansion plan. (see Section 3.1 for details).

[2] 2004/05 winter is actual peak

Ten Year Site Plan April **20**05 Pa**ge** 42

Schedule 8 Planned and Prospective Generating Facility Additions and Changes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
<u>Plant Name</u>	Unit <u>No.</u>	Location	Unit Type	F <u>Pri</u>	⁷ uel <u>Alt</u>	<u>Fuel Transp</u> <u>Pri</u>	ortation <u>Alt</u>	Const, Start <u>Mo/Yr</u>	Commercial In-Service <u>Mo/Yr</u>	Expected Retirement <u>Mo/Yr</u>	Gen. Max. Nameplate <u>(kW)</u>	<u>Net Ca</u> Summer <u>(MW)</u>	<u>pability</u> Winter <u>(MW)</u>	<u>Status</u>
Hopkins [1]	3	Hopkins	GT	NG	DFO	PL	тк	Unknown	Jul-05			47	50	U
Hopkins [1]	4	Hopkins	GT	NG	DFO	PL	тк	Unknown	Sep-05			47	50	u
Hopkins [2]	Α	Undetermined	СС	NG	DFO	PL	тк	Unknown	May-10 May-11 May-13			25 75 25	25 75 25	P P P

[1] [2] The generating unit Combustion Turbines 3 and 4 are located at the Hopkins plant.

This combined cycle capability is reflected as an alliance ownership/purchase beginning with 25 MW in May 2010, increasing to 100 MW in May 2011, and 125 MW in May 2013. This capacity could take the form of a new, self-build unit; an asset modification (repowering of an existing conventional oil and gas-fired steam unit to combined cycle operation); an alliance purchase "by wire" (if transmission is available) and/or joint generation project; or a combination thereof. The City's back up plan for this capacity would be to self-build a combined cycle unit.

- Acronym Definition
- Internal Combustion IC
- GT Gas Turbine
- PRI Primary Fuel
- ALT Alternate Fuel
- NG Natural Gas
- DFO Diesel Fuel Oil
- PL Pipeline
- ΤK Truck
- Ρ Planned
- kW Kilowatts
- MW Megawatts

Generation Expansion Plan

<u>Year</u> 2005 2006 2007 2008 2009	<u>Load For</u> Fcst Peak Demand <u>(MW)</u> 597 609 622 632 642	DSM [1] (<u>MW)</u> 2 4 4 4 4 4	<u>ustments</u> Net Peak Demand <u>(MW)</u> 595 605 618 628 638	Existing Capacity Net (<u>MW)</u> 652 652 652 652 652 652		Firm Imports (<u>MW)</u> 11 11 11 11 11	Southern Purchase (MW) (MW) 25 [2	<u>(M</u>)	orts Cumulativ	S	Total Capacity <u>(MW)</u> 735 757 757 757 757 757	Res <u>%</u> 24 25 22 21 19	New <u>Resources</u> [3]
2010 2011 2012 2013 2014	652 661 671 681 690	4 4 4 4	648 657 667 677 686	632 584 584 584 584 584	[4] [5] [6]	11 11 11 11 11			119 194 194 219 219		762 789 789 814 814	18 20 18 20 19	[7] [7] [7]

Ten Year Site Plan April 2005 Page 44

[1] DSM = Demand Side Management

[2] Purchase in summer 2005 for 25 MW from Southern Company June 1 - Aug 30..

[3] New resources are to be (2) 47 MW (Summer Net) GE LM6000 aeroderivative ct's

[4] Purdom CT 1 official retirement currently scheduled for 5/1/2010.

[5] Purdom CT 2 official retirement currently scheduled for 5/1/2010

[6] Purdom 7 official retirement currently scheduled for March 2011.

[7] This combined cycle capability is reflected as an alliance ownership/purchase beginning with 25 MW in May 2010, increasing to 100 MW in May 2011, and 125 MW in May 2013. This capacity could take the form of a new, self-build unit; an asset modification (repowering of an existing conventional oil and gas-fired steam unit to combined cycle operation); an alliance purchase "by wire" (if transmission is available) and/or joint generation project; or a combination thereof. The City's back up plan for this capacity would be to self-build a combined cycle unit.

Chapter IV

Proposed Plant Sites and Transmission Lines

4.1 PROPOSED PLANT SITE

The City's proposed resource addition to meet system needs in the summer 2010 and beyond is an increasing ownership/purchase of capacity and energy from a new 1-on-1 combined cycle unit beginning with 50 MW in 2010. The ownership increases to 100 MW by the summer of 2011 and to 125 MW by the summer of 2013 to meet the balance of needs throughout the 2005-2014 study period. This is a proposed resource addition as previously mentioned and is not final. Other possible combined cycle opportunities include a self-built unit, an asset modification (repowering of an existing conventional oil and gas-fired steam unit to combined cycle operation) and an alliance purchase by wire (if transmission is available) or a combination thereof. In addition to the CT units previously discussed, any of the contemplated combined cycle unit options could be accommodated at the City's existing Hopkins Plant Site. It is also possible that a new "green field" site might be identified if the self-build option is pursued (see Tables 4.1 -4.3: Schedule 9).

4.2 TRANSMISSION LINE ADDITIONS/UPGRADES

Internal studies of the transmission system have identified a number of system improvements and additions that will be required to reliably serve future load. The attached transmission system map (Figure D1) shows the planned transmission additions covered by this Ten Year Site Plan.

Over the last decade, the City has experienced significant growth and development, and a corresponding increase in the demand for electricity. This has been especially true in the fast growing eastern portion of the City and adjacent Leon County where development has outpaced the construction of electric transmission lines and substations. The only acceptable and permanent way of providing a reliable source of electricity and providing for continuing growth to the eastern part of Tallahassee is to reinforce this area with the proper substation and transmission infrastructure. The City is currently planning and is in some cases in the process of constructing several new substations on the east side of its system. These are intended to serve future load in this rapidly growing area. The new substations (14, 15, 17, and 18) will be connected to the City's 115 kV transmission system, which is the standard voltage throughout the City's service territory. When complete, the area will be served by two reliable "loops" between substations 7 and 9 and between substations 9 and 5. The anticipated in-service dates for these new substations and lines are shown on Figure D1.

In the mid 1990's, the Electric Utility determined which areas would be the most beneficial to locate substation facilities to support this load growth and, after several years of negotiation with the landowner, the City obtained property for two proposed substations and selected a tentative transmission line route. Concern about environmental issues and public acceptance prompted further investigation and an effort to obtain more community input to the process.

To provide information and involve the residents of the area in the transmission line route selection process, Electric Utility staff conducted numerous public workshops. In addition, an independent route study was conducted from June 2002 to June 2003. The Final Report from the route consultant was submitted to the City in late September 2003. On December 10, 2003 the City Commission considered the issue and requested staff to conduct a another public workshop, which was held on January 6, 2004. On February 11, 2004 the City Commission held a public hearing on the route selection and requested staff to consider a further route option and return with a recommendation.

During the spring and summer of 2004, staff participated in several meetings and discussions with citizens representing a broad spectrum of the community concerned with the locations of the transmission line. Staff worked simultaneously with representatives of Powerhouse, Inc., to develop routes and design alternatives on the Welaunee Plantations property that would address the needs of the Electric Utility and be acceptable to Powerhouse, including the acquisition of a portion of Welaunee property by the City. Following determination of a potential route and conceptual approval of Welaunee property acquisition by the City Commission, staff conducted further public information initiatives to get feedback from residents and stakeholders near the newest route option, through Welaunee property.

The final route recommendation that addressed citizen concerns to the extent possible and best met the City's siting criteria was approved by the City Commission on February 9, 2005. The transmission line and substation design is proceeding and construction is expected to be complete by early 2007.

As discussed in Section 3.2, the City has been working with its neighboring utilities, Progress and Southern, to identify improvements to assure the continued reliability and commercial viability of the transmission systems in and around Tallahassee. At a minimum, the City attempts to plan for and maintain sufficient transmission import capability to allow for emergency power purchases in the event of the most severe single contingency, the loss of the system's largest generating unit. The City's internal transmission studies have reflected a gradual deterioration of the system's transmission import (and export) capability into the future. This reduction in capability is driven by lack of investment in facilities in the panhandle region as well as the impact of an increasing level of unscheduled power flow-through on the City's transmission system. The City is committed to continue to work with Progress and Southern and the developing GridFlorida RTO as well as existing and prospective regulatory bodies in an effort to pursue improvements to the regional transmission systems that will allow the City to continue to provide reliable and affordable electric service to the citizens of Tallahassee in the future. The City will provide the FPSC with information regarding any such improvements as it becomes available.

In addition to the transmission improvements described above and shown in Figure D1, the City is currently conducting additional studies of its transmission system to identify further improvements and expansions to provide increased reliability and respond more effectively to certain critical contingencies both on the system and in the surrounding grid in the panhandle. While these evaluations are not yet complete, preliminary results indicate that additional infrastructure projects may be included in subsequent Ten Year Site Plan filings; these projects generally address either (i) improvements in capability to deliver power from the Hopkins Plant (on the west side of the City's service territory) to the load center, or (ii) the strengthening of the system on the east side of the City's service territory to improve the voltage profile in that area and enhance response to contingencies.

Schedule 9 Status Report and Specifications of Proposed Generating Facilities

(1)	Plant Name and Unit Number:	Hopkins	3
(2)	Capacity a.) Summer: b.) Winter:	47 50	
(3)	Technology Type:	СТ	
(4)	Anticipated Construction Timing a.) Field Construction start - date: b.) Commercial in-service date:	Feb-05 Jul-05	
(5)	Fuel a.) Primary fuel: b.) Alternate fuel:	NG DFO	
(6)	Air Pollution Control Strategy:	NO _x - Selective Ca CO - Oxidation cat SO ₂ - Low sulfur fi	
(7)	Cooling Status:	Closed loop radiate	ors/fin fan coolers
(8)	Total Site Area:	7.13 acres	
(9)	Construction Status:	Under construction	a, less than 50% completed
(10)	Certification Status:	Florida Site Certifi	cation issued
(11)	Status with Federal Agencies:	All permits issued	except for Title V
(12)	Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor: Equivalent Availability Factor (EAF): Resulting Capacity Factor (%): Average Net Operating Heat Rate (ANOHR):	5.78 % 2.24 % 88.20 % 5 - 45 % 10.166 M))
(13)	Projected Unit Financial Data Book Life (Years) Total Installed Cost (In-Service Year \$/kW) Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW): Fixed O & M (\$/kW-Yr): Variable O & M (\$/MWH): K Factor:	678 Included in construin Included in construin Note 1 Note 1 No calculation	

¹ TAL does not typically calculate fixed vs. variable O&M. TAL's FY 2006 O&M budget for this unit is \$600,000 and \$1 million has been included in FY 2010 of TAL's 5-year operating budget for the replacement of the SCR catalvst.

Schedule 9 Status Report and Specifications of Proposed Generating Facilities

(1)	Plant Name and Unit Number:	Hopkins 4
(2)	Capacity a.) Summer: b.) Winter:	47 50
(3)	Technology Type:	СТ
(4)	Anticipated Construction Timinga.) Field Construction start - date:b.) Commercial in-service date:	Feb-05 Sep-05
(5)	Fuel a.) Primary fuel: b.) Alternate fuel:	NG DFO
(6)	Air Pollution Control Strategy:	NO_x - Selective Catalytic Reduction (SCR) CO - Oxidation catalyst SO ₂ - Low sulfur fuel oil
(7)	Cooling Status:	Closed loop radiators/fin fan coolers
(8)	Total Site Area:	7.13 acres
(9)	Construction Status:	Under construction, less than 50% completed
(10)	Certification Status:	Florida Site Certification issued
(11)	Status with Federal Agencies:	All permits issued except for Title V
(12)	Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor: Equivalent Availability Factor (EA Resulting Capacity Factor (%): Average Net Operating Heat Rate (5 - 45 %
(13)	Projected Unit Financial Data Book Life (Years) Total Installed Cost (In-Service Ye Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW): Fixed O & M (\$/kW-Yr): Variable O & M (\$/MWH): K Factor:	,

¹ TAL does not typically calculate fixed vs. variable O&M. TAL's FY 2006 O&M budget for this unit is \$600,000 and \$1 million has been included in FY 2010 of TAL's 5-year operating budget for the replacement of the SCR catalyst.

Schedule 9 Status Report and Specifications of Proposed Generating Facilities

(1)	Plant Name and Unit Number:	Combined Cycle A
(2)	Capacity a.) Summer: b.) Winter:	Note [1]
(3)	Technology Type:	Combined Cycle
(4)	Anticipated Construction Timing a.) Field Construction start - date: [1] b.) Commercial in-service date:	Unknown Unknown
(5)	Fuel a.) Primary fuel: b.) Alternate fuel:	Natural Gas No. 2 Diesel Fuel
(6)	Air Pollution Control Strategy:	Unknown
(7)	Cooling Status:	Unknown
(8)	Total Site Area:	Unknown
(9)	Construction Status:	Planned
(10)	Certification Status:	
(11)	Status with Federal Agencies:	N/A
(12)	Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor: Equivalent Availability Factor (EAF): Resulting Capacity Factor (%): Average Net Operating Heat Rate (ANOHR): Projected Unit Financial Data Book Life (Years) Total Installed Cost (In-Service Year \$/kW) Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW): Fixed O & M (\$kW-Yr):	Data dependent on selected unit manufacturer, nature of contracts, etc. To be determined.
	Variable O & M (\$/MWH): K Factor:	

[1] This combined cycle capability is reflected as an alliance ownership/purchase beginning with 25 MW in May 2010, increasing to 100 MW in May 2011, and 125 MW in May 2013. This capacity could take the form of a new, self-build unit; an asset modification (repowering of an existing conventional oil and gas-fired steam unit to combined cycle operation); an alliance purchase "by wire" (if transmission is available) and/or joint generation project; or a combination thereof. The City's back up plan for this capacity would be to self-build a combined cycle unit.

Schedule 10 Status Report and Specifications of Proposed Directly Associated Transmission Lines

(1)	Point of Origin and Termination:	
(2)	Number of Lines:	
(3)	Right-of -Way:	
(4)	Line Length:	No facility additions on improvements
(5)	Voltage:	No facility additions or improvements to report at this time.
(6)	Anticipated Capital Timing:	
(7)	Anticipated Capital Investment:	
(8)	Substations:	
(9)	Participation with Other Utilities:	

APPENDIX A Supplemental Data

The following Appendix represents supplemental data typically requested by the Florida Public Service Commission.

City of Tallahassee Ten Year Site Plan

Existing Generating Unit Operating Performance

(1)	(2) (3)		(4	4)	(!	5)	(6)		
	Unit		Planned Outage <u>Factor (POF)</u>		Forced Outage Factor (FOF)		Equivalent Availability <u>Factor (EAF)</u>		et Operating (ANOHR)
Plant Name	<u>No.</u>	<u>Historical</u>	<u>Projected</u>	<u>Historical</u>	Projected	<u>Historical</u>	Projected	<u>Historical</u>	Projected
Existing Units									
Corn	1 (1)	NA	0.076	NA	0.036	NA	0.882	NA	NA
Corn	2 (1)	NA	0.076	NA	0.036	NA	0.882	NA	NA
Corn	3 (1)	NA	0.076	NA	0.036	NA	0.882	NA	NA
Hopkins	1	0.070	0.066	0.002	0.023	0.907	0.901	12,870	12,406
Hopkins	2	0.010	0.119	0.002	0.031	0.981	0.830	10,937	10,838
Hopkins	GT-1 (2)	0.165	0.052	0.002	0.028	0.831	0.890	NA	15,991
Hopkins	GT-2 (2)	0.107	0.046	0.002	0.022	0.890	0.881	NA	14,903
Purdom	7	0.000	0.066	0.018	0.023	0.940	0.901	14,777	13,342
Purdom	8	0.039	0.086	0.143	0.024	0.802	0.847	7,414	7,506
Purdom	GT-1 (2)	0.076	0.052	0.154	0.028	0.770	0.890	NA	21,272
Purdom	GT-2 (2)	0.117	0.052	0.018	0.028	0.865	0.890	NA	20,797
Future Units									
Hopkins	GT-3	NA	0.058	NA	0.022	NA	0.882	NA	9,921
Hopkins	GT-4	NA	0.058	NA	0.022	NA	0.882	NA	9,967
Unsited	CC A	NA	0.086	NA	0.024	NA	0.847	NA	7,304

NOTES: Historical - average of past three fiscal years Projected - average of next ten fiscal years

(1) The City does not track the planned outage, forced outage or equivalent availability factors for the Corn Hydro units.

(2) The projected values for these units reflect their respective full load average net heat rates based on the City's internal tests and measurements. Because these units are typically operated at full load the projected values provide a reasonable estimate of historical operating experience.

				Base Case	,				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Residual C	il (By Sulfur C	ontent)			
	Less Tha	an 0.7%	Escalation	0.7 - 2	2.0%	Escalation	Greater Th	nan 2.0%	Escalation
Year	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
2002 (1)	NA	NA	NA	34.77	552	-	NA	NA	NA
2003 `´	NA	NA	NA	32.39	514	-6.8%	NA	NA	NA
2004	NA	NA	NA	31.76	504	-1.9%	NA	NA	NA
2005 (2)	NA.	NA	NA	37.06	588	16.7%	NA	NA	NA
2006	NA	NA	NA	40.76	647	10.0%	NA	NA	NA
2007	NA	NA	NA	41.51	659	1.8%	NA	NA	NA
2008	NA	NA	NA	43.24	686	4.2%	NA	NA	NA
2009	NA	NA	NA	43.97	698	1.7%	NA	NA	NA
2010	NA	NA	NA	44.22	702	0.6%	NA	NA	NA
2011	NA	NA	NA	43.98	698	-0.6%	NA	NA	NA
2012	NA	NA	NA	43.73	694	-0.6%	NA	NA	NA
2013	NA	NA	NA	44.47	706	1.7%	NA	NA	NA
2014	NA	NA	NA	43.97	698	-1.1%	NA	NA	NA

Nominal, Delivered Residual Oil Prices

ASSUMPTIONS: heat content - 6.3 MMBtu/BBL, ash content - Not Available

(1) Actual fiscal year average cost of oil burned.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Residual O	il (By Sulfur C	content)			
_	Less Tha	an 0.7%	Escalation	0.7 - 2	0%	Escalation	Greater Th	Greater Than 2.0%	
Year	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
2002 (1)	NA	NA	NA	34.77	552	-	NA	NA	NA
2003	NA	NA	NA	32.39	514	-6.8%	NA	NA	NA
2004	NA	NA	NA	31.76	504	-1.9%	NA	NA	NA
2005 (2)	NA	NA	NA	37.06	588	16.7%	NA	NA	NA
2006	NA	NA	NA	41.69	662	12.5%	NA	NA	NA
2007	NA	NA	NA	43.49	690	4.3%	NA	NA	NA
2008	NA	NA	NA	46.39	736	6.7%	NA	NA	NA
2009	NA	NA	NA	48.34	767	4.2%	NA	NA	NA
2010	NA	NA	NA	49.83	791	3.1%	NA	NA	NA
2011	NA	NA	NA	50.79	806	1.9%	NA	NA	NA
2012	NA	NA	NA	51.78	822	1.9%	NA	NA	NA
2013	NA	NA	NA	53.95	856	4.2%	NA	NA	NA
2014	NA	NA	NA	54.70	868	1.4%	NA	NA	NA

Nominal, Delivered Residual Oil Prices High Case

ASSUMPTIONS: heat content - 6.3 MMBtu/BBL, ash content - Not Available

(1) Actual fiscal year average cost of oil burned.(2) Consensus forecast of City's Wholesale Energy Services and System Planning Divisions.

A-3

-

(10)		Escalation	%	NA	NA	NA	NA	AN	AN	A	AN	AN	AN	AN	AN	NA	
(6)		an 2.0%	c/MBTU	NA	AN	NA	AN	AN	AN	AN	AN	AN	AN	NA	AN	AN	
<u> </u>		Greater Than 2.0%	\$/BBL	NA	NA	AN	NA	NA	AN	NA	NA	AN	NA	NA	NA	AN	
(2)	itent)	Escalation	%	1	-6.8%	-1.9%	16.7%	7.5%	-0.7%	1.7%	-0.8%	-1.9%	-3.1%	-3.1%	-0.8%	-3.6%	
(9)	Residual Oil (By Sulfur Content)	%0	c/MBTU	552	514	504	588	632	628	639	633	621	602	584	579	558	
(5)	Residual Oi	0.7 - 2.0%	\$/BBL	34.77	32.39	31.76	37.06	39.84	39.57	40.23	39.91	39.14	37.94	36.78	36.48	35.16	
(4)		Escalation	%	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
(3)		0.7%	c/MBTU	M	A	NA	NA	NA	NA	NA	NA	AN	NA	AN	NA	NA	
(2)		Less Than 0.7%	\$/BBL	NA	AN	NA			NA								
(1			Year	2002 (1)	2003	2004	2005 (2)	2006	2007	2008	2009	2010	2011	2012	2013	2014	

ASSUMPTIONS: heat content - 6.3 MMBtu/BBL, ash content - Not Available

Actual fiscal year average cost of oil burned.
 Consensus forecast of City's Wholesale Energy Services and System Planning Divisions.

Nominal, Delivered Distillate Oil and Natural Gas Prices Base Case										
(1)	(2)	(3)	(4)	(5)	(6)	(7)				
		Distillate Oil			Natural Gas (3)					
Year	\$/BBL	c/MBTU	Escalation %	c/MBTU	\$/MCF	Escalation %				
2002 (1 2003 2004) 35.20 36.44 39.08	607 628 674	- 3.5% 7.2%	393 555 644	4.09 5.77 6.70	- 41.2% 16.0%				
2005 (2 2006 2007 2008 2009 2010 2011 2012 2013	 51.85 50.05 62.60 62.76 61.93 56.03 58.63 61.93 64.53 	894 863 1079 1082 1068 966 1011 1068 1113	32.7% -3.5% 25.1% 0.3% -1.3% -9.5% 4.6% 5.6% 4.2%	733 717 681 646 616 591 634 686 693	7.62 7.46 7.08 6.72 6.41 6.15 6.59 7.13 7.21	13.8% -2.2% -5.0% -5.2% -4.6% -4.0% 7.2% 8.2% 1.0%				
2014	64.82	1118	0.5%	616	6.41	-11.0%				

Nominal Delivered Distillete Oil and Netural Cas Prices

ASSUMPTIONS FOR DISTILLATE OIL:

heat content - 5.8 MMBtu/BBL; ash content, sulfur content - Not Available

- (1) Actual average cost of distillate oil and gas burned.
- (2) Consensus forecast of City's Wholesale Energy Services and System Planning Divisions.

(3) Delivered gas price reflects 3/3/04 supply cost at Henry Hub increased by 3.25% for compression losses, \$0.0364 usage fee and seasonal interruptible transportation fees.

Nominal, Delivered Distillate Oil and Natural Gas Prices High Case

(5)

(6)

(7)

(4)

		()		、 7	()	~ /
		Distillate Oil			Natural Gas	(3)
Year	\$/BBL	c/MBTU	Escalation %	c/MBTU	\$/MCF	Escalation %
2002 (1)	35.20	607	-	465	4.84	-
2003	36.44	628	3.5%	372	3.87	-20.0%
2004	39.08	674	7.2%	530	5.52	42.6%
2005 (2)	51.85	894	32.7%	733	7.62	38.2%
2006	51.35	885	-1.0%	735	7.65	0.3%
2007	65.51	1129	27.6%	717	7.46	-2.5%
2008	67.31	1160	2.8%	698	7.26	-2.7%
2009	68.10	1174	1.2%	683	7.10	-2.1%
2010	63.31	1092	-7.0%	673	7.00	-1.5%
2011	67.84	1170	7.1%	738	7.67	9.7%
2012	73.35	1265	8.1%	817	8.49	10.7%
2013	78.26	1349	6.7%	845	8.79	3.5%
2014	80.58	1389	3.0%	773	8.04	-8.5%

ASSUMPTIONS FOR DISTILLATE OIL:

(1)

(2)

(3)

heat content - 5.8 MMBtu/BBL; ash content, sulfur content - Not Available

- (1) Actual average cost of distillate oil and gas burned.
- (2) Consensus forecast of City's Wholesale Energy Services and System Planning Divisions.
- (3) Delivered gas price reflects 3/3/04 supply cost at Henry Hub increased by 3.25% for compression losses, \$0.0364 usage fee and seasonal interruptible transportation fees.

Low Case									
(1)	(2)	(3)	(4)	(5)	(6)	(7)			
		Distillate Oil			Natural Gas (
-			Escalation		······································	Escalation			
Year	\$/BBL	c/MBTU	%	c/MBTU	\$/MCF	%			
2002 (1)	35.20	607	_	465	4.84	-			
2003	36.44	628	3.5%	372	3.87	-20.0%			
2004	39.08	674	7.2%	530	5.52	42.6%			
2005 (2)	51.85	894	32.7%	733	7.62	38.2%			
2006	48.76	841	-6.0%	699	7.27	-4.7%			
2007	59.76	1030	22.6%	646	6.72	-7.5%			
2008	58.42	1007	-2.2%	597	6.20	-7.7%			
2009	56.19	969	-3.8%	554	5.77	-7.1%			
2010	49.43	852	-12.0%	518	5.39	-6.5%			
2011	50.49	870	2.1%	542	5.64	4.7%			
2012	52.07	898	3.1%	573	5.96	5.7%			
2013	52.95	913	1.7%	565	5.87	-1.5%			
2014	51.87	894	-2.0%	488	5.08	-13.5%			

Nominal, Delivered Distillate Oil and Natural Gas Prices

ASSUMPTIONS FOR DISTILLATE OIL:

heat content - 5.8 MMBtu/BBL;

ash content, sulfur content - Not Available

- (1) Actual average cost of distillate oil and gas burned.
- (2) Consensus forecast of City's Wholesale Energy Services and System Planning Divisions.

(3) Delivered gas price reflects 3/3/04 supply cost at Henry Hub increased by 3.25% for compression losses, \$0.0364 usage fee and seasonal interruptible transportation fees.

Nominal, Delivered Coal Prices (1) Base Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		Low Sulfur C	oal (< 1.0%)		Medium Sulfur Coal (1.0 - 2.0%)				High Sulfur Coal(>2.0%)			
-			Escalation	% Spot			Escalation	% Spot			Escalation	% Spot
Year	\$/Ton	c/MBTU	%	Purchase	<u>\$/Ton</u>	c/MBTU	%	Purchase	\$/Ton	C/MBTU	%%	Purchase
2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2005 (2)	73.43	306		NA	NA	NA	NA	NA	NA	NA	NA	NA
2006	65.54	273	-10.7%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2007	58.71	245	-10.4%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2008	51.55	215	-12.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2009	52.21	218	1.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2010	52.90	220	1.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2011	53.59	223	1.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012	54.78	228	2.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2013	55.98	233	2.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2014	57.19	238	2.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA

ASSUMPTIONS:

Low Sulfur Coal - Central Appalachian 0.7% sulfur coal delivered by rail to Ga. Power Co. Scherer Plant, heat content - 24 MMBtu/ton, ash content unknown

(1) Coal is not currently a part of the City's generation fuel mix. However, it's forecast price is important to the City's resource planning efforts as it will allow for the evaluation of coal-based purchase options.

([1]		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		_		Low Sulfur Co	oal (< 1.0%)		Medium Sulfur Coal (1.0 - 2.0%)					High Sulfur Co	oal (> 2.0%)	
					Escalation	% Spot			Escalation	% Spot			Escalation	% Spot
<u>Y</u>	ear	_	\$/Ton	c/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase
2	002		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	003		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	004		45.39	306		NA	NA	NA	NA	NA	NA	NA	NA	NA
2	005	(2)	45.74	306	0.0%	NA	NA	NA	NA	NA	NA	NA	NA	NA
	006	. ,	46.09	281	-8.2%	NA.	NA	NA	NA	NA	NA	NA	NA	NA
2	007		46.48	258	-7.9%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	800		46.68	233	-9.7%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	009		47.66	242	3.8%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	010		48.68	252	3.8%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	011		49.72	261	3.8%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	012		50.80	273	4.7%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	013		51.92	286	4.7%	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	014		52.92	300	4.7%	NA	NA	NA	NA	NA	NA	NA	NA	NA

Nominal, Delivered Coal Prices (1) High Case

ASSUMPTIONS:

Low Sulfur Coal - Central Appalachian 0.7% sulfur coal delivered by rail to Ga. Power Co. Scherer Plant, heat content - 24 MMBtu/ton, ash content unknown

(1) Coal is not currently a part of the City's generation fuel mix. However, it's forecast price is important to the City's resource planning efforts as it will allow for the evaluation of coal-based purchase options.

Low Case													
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
		Low Sulfur C	oal (< 1.0%)		Me	Medium Sulfur Coal (1.0 - 2.0%)				High Sulfur Coal (> 2.0%)			
Year	\$/Ton	c/MBTU	Escalation %	% Spot Purchase	\$/Ton	c/MBTU	Escalation %	% Spot Purchase	\$/Ton	c/MBTU	Escalation %	% Spot Purchase	
2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2005 ((2) 45.74	306		NA	NA	NA.	NA	NA	NA	NA	NA.	NA.	
2006	46.09	265	-13.2%	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	
2007	46.48	231	-12.9%	NA	NA	NA.	NA	NA	NA	NA	NA.	NA.	
2008	46.68	197	-14.7%	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	
2009	47.66	195	-1.2%	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	
2010	48.68	192	-1.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2011	49.72	190	-1.2%	NA	NA	NA	NA	NA	NA	NA	NA.	NA	
2012	50.80	190	-0.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2013	51.92	189	-0.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2014	52.92	188	-0.3%	NA	NA	NA	NA	NA	NA	NA	NA	NA	

Nominal, Delivered Coal Prices (1)

ASSUMPTIONS:

Low Sulfur Coal - Central Appalachian 0.7% sulfur coal delivered by rail to Ga. Power Co. Scherer Plant, heat content - 24 MMBtu/ton, ash content unknown

(1) Coal is not currently a part of the City's generation fuel mix. However, it's forecast price is important to the City's resource planning efforts as it will allow for the evaluation of coal-based purchase options.

(1)	(2)	(3)	(4)	(5)
	Nucle		Firm Purc	
	(b. a	Escalation	* ** ** * *	Escalation
<u>Year</u>	c/MBTU	%	\$/MWh	%
2002	NA	NA	38.77	-
2003	NA	NA	42.22	8.9%
2004	NA	NA	45.74	8.3%
2005	NA	NA	52.26	14.3%
2006 2007	NA NA	NA NA	42.00 42.00	·19.6% 0.0%
2007 2008	NA	NA	42.00	0.0%
2009	NA	NA	43.26	3.0%
2010	NA	NA	44.56	3.0%
2011	NA	NA	45.89	3.0%
2012	NA	NA	47.27	3.0%
2013	NA	NA	48.69	3.0%
2014	NA	NA	50.15	3.0%

Nominal, Delivered Nuclear Fuel and Firm Purchases

(1) Historical data is for all purchases, firm and non-firm

Financial Assumptions Base Case

AFUDC RATE	5.25%	
CAPITALIZATION RATIOS: DEBT PREFERRED ASSETS EQUITY	173.06% N/A 63.44% 120.37%	(1) (2) (3)
RATE OF RETURN (6) DEBT PREFERRED ASSETS EQUITY	-5.54% N/A -2.03% -3.86%	(4) (2) (5) (5)
INCOME TAX RATE: STATE FEDERAL EFFECTIVE	N/A N/A N/A	(7) (7) (7)
OTHER TAX RATE: Sales Tax (< \$5,000) Sales Tax (> \$5,000)	7.00% 6.00%	(8) (8)
DISCOUNT RATE:	2.75% - 5.25%	
TAX DEPRECIATION RATE:	N/A	(7)

- (1) Plant-in-service compared to total debt
- (2) No preferred "stock" in municipal utilities
- (3) Net plant-in-service compared to total assets / net plant-in-service compared to total fund equity
- (4) Net income compared to total debt
- (5) Net income compared to total assets / net income compared to total fund equity
- (6) The Electric Utility had a net loss for fiscal 2004 which generated negative Rates of Return.
- (7) Municipal utilities are exempt from income tax

(8) Municipal utilities are exempt from other taxes except Florida sales tax on expansion of electric transmission and distribution (T&D) tangible personal property used in the T&D system (7% on first \$5,000 and 6% thereafter). Sales tax is no longer charged for T&D system maintenance.

Financial Escalation Assumptions

(1)	(2)	(3)	(4)	(5)
Veer	General Inflation	Plant Construction Cost	Fixed O&M Cost	Variable O&M Cost
<u>Year</u>	%	%	%	%
2005	2.5	2.5	2.5	2.5
2006	2.5	2.5	2.5	2.5
2007	2.5	2.5	2.5	2.5
2008	2.5	2.5	2.5	2.5
2009	2.5	2.5	2.5	2.5
2010	2.5	2.5	2.5	2.5
2011	2.5	2.5	2.5	2.5
2012	2.5	2.5	2.5	2.5
2013	2.5	2.5	2.5	2.5
2014	2.5	2.5	2.5	2.5

	Calendar Year 2002								
		Hour _	Daily To	emp. (°F)	Peak Demand				
Month	Date	Ending	Min.	Max.	(MW)				
January	4-Jan	9:00 A.M.	21	51	510				
February	28-Feb	8:00 A.M.	18	53	489				
March	5-Mar	8:00 A.M.	21	61	500				
April	25-Apr	6:00 P.M.	62	89	453				
May	8-May	5:00 P.M.	70	94	490				
June	3-Jun	4:00 P.M.	70	97	535				
July	19-Jul	4:00 P.M.	75	101	580				
August	23-Aug	5:00 P.M.	72	96	535				
September	4-Sep	6:00 P.M.	70	95	524				
October	7-Oct	5:00 P.M.	69	91	498				
November	11-Nov	7:00 P.M.	75	86	391				
December	2-Dec	8:00 A.M.	29	62	422				

Monthly Peak Demands and Date of Occurrence for 2001 - 2003

		Calendar Year 2003								
		Hour	Daily Te	emp. (°F)	Peak Demand					
Month	Date	Ending	Min.	Max.	(MW)					
January	24-Jan	8:00 A.M.	18	43	590					
February	12-Feb	8:00 A.M.	31	70	408					
March	20-Mar	8:00 P.M.	66	83	365					
April	30-Apr	6:00 P.M.	64	86	429					
May	7-May	4:00 P.M.	70	90	487					
June	16-Jun	4:00 P.M.	70	93	515					
July	10-Jul	4:00 P.M.	71	93	539					
August	26-Aug	4:00 P.M.	74	93	549					
September	2-Sep	4:00 P.M.	72	90	517					
October	6-Oct	5:00 P.M.	62	86	428					
November	6-Nov	4:00 P.M.	70	86	421					
December	18-Dec	8:00 A.M.	26	66	452					

	Calendar Year 2004								
Month	Date	Hour _ Ending	Daily T Min.	emp. (°F) Max.	Peak Demand (MW)				
MODU	Date	Linuing	WITH.	IVIAX.					
January	29-Jan	8:00 A.M.	23	58	509				
February	19-Feb	8:00 A.M.	28	66	445				
March	11-Mar	8:00 A.M.	.30	69	362				
April	29-Apr	9:00 P.M.	57	.84	378				
May	26-May	5:00 P.M.	63	94	508				
June	18-Jun	4:00 P.M.	74	95	518				
July	12-Jul	4:00 P.M.	74	97	557				
August	3-Aug	4:00 P.M.	76	97	565				
September	9-Sep	5:00 P.M.	69	93	534				
October	1-Oct	3:00 P.M.	65	88	491				
November	3-Nov	4:00 P.M.	63	85	443				
December	15-Dec	8:00 A.M.	29	51	480				

|--|

Historical and Projected Heating and Cooling Degree Days

	Year	Heating Degree Days <u>(HDD)</u>	Cooling Degree Days <u>(CDD)</u>
History	1995	1,614	2,807
	1996	1,807	2,470
	1997	1,427	2,515
	1998	1,272	3,148
	1999	1,461	2,768
	2000	1,640	2,757
	2001	1,429	2,451
	2002	1,418	2,813
	2003	1,642	2,551
	2004	1,613	2,722
Forecast	2005	1,450	2,667
	2006	1,450	2,667
	2007	1,450	2,667
	2008	1,450	2,667
	2009	1,450	2,667
	2010	1,450	2,667
	2011	1,450	2,667
	2012	1,450	2,667
	2013	1,450	2,667
	2014	1,450	2,667

<u>Year</u>		Residential Real Price of Electricity <u>(\$/MWh)</u>	Commercial Real Price of Electricity <u>(\$/MWh)</u>	System-Wide Real Price of Electricity <u>(\$/MWh)</u>	<u>Deflator (1)</u>
1995 1996		53.66 55.24	48.78 46.92	50.30	1.524 1.569
				47.66	
1997 1998		55.14	46.75	47.80	1.605
1998		52.98	45.96	45.06	1.630
		51.32	42.87	43.67	1.666
2000		52.47	45.63	43.62	1.722
2001		52.48	44.04	43.17	1.771
2002		45.22	37.08	42.50	1.799
2003		50.55	41.94	43.29	1.840
2004		56.25	47.70	48.01	1.889
2005	(2)	56.25	47.70	48.01	
2006		56.25	47.70	48.01	
2007		56.25	47.70	48.01	
2008		56.25	47.70	48.01	
2009		56.25	47.70	48.01	
2010		56.25	47.70	48.01	
2011		56.25	47.70	48.01	
2012		56.25	47.70	48.01	
2013		56.25	47.70	48.01	
2014		56.25	47.70	48.01	

(1) Deflator is CPI Index per U. S. Dept. of Labor Bureau of Labor Stats. ('82 Dollar

(2) For the City's 2005 Load Forecast, it was assumed that the future real price of e would remain constant at the FY 2004 level. While fuel prices are projected to i in real terms, as in past load forecasts, it was assumed that these price increase would be offset by more efficient generation, reduced operation and maintenanc and the effects of competition.

Loss of Load Probability, Reserve Margin, and Expected Unserved Energy Base Case Load Forecast											
(1)	(2)	(3)	(4)	(5)	(6)	(7)					
	Annual Isolated Annual Assisted										
	Loss of	Reserve	Expected	Loss of	Reserve	Expected					
	Load	Margin %	Unserved	Load	Margin %	Unserved					
	Probability	(Including	Energy	Probability	(Including	Energy					
Year	(Days/Yr)	Firm Purch.)	(MWh)	<u>(Days/Yr)</u>	Firm Purch.)	(MWh)					
2003											
2004											
2005											
2006			See note (1)	below							
2007											
2008											
2009											
2010											
2011 2012											
2012											

(1) The City provides its projection of reserve margin with and without supply resource additions in Tables 3.1 and 3.2 (Schedules 7.1 and 7.2, respectively) on pages 40 and 41 and in Table 3.4 (Generation Expansion Plan) on page 43 of the City's 2004 Ten Year Site Plan. The City does not currently evaluate isolated and assisted LOLP and EUE reliability indices.

A - 17