BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 050001-EI FLORIDA POWER & LIGHT COMPANY

SEPTEMBER 9, 2005

IN RE: LEVELIZED FUEL COST RECOVERY AND CAPACITY COST RECOVERY

PROJECTIONS JANUARY 2006 THROUGH DECEMBER 2006

TESTIMONY & EXHIBITS OF:

G. YUPP J. R. HARTZOG K. M. DUBIN

DOCUMENT NUMBER-DATE

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF GERARD J. YUPP
4		DOCKET NO. 050001-EI
5		SEPTEMBER 9, 2005
6	Q.	Please state your name and address.
7	A.	My name is Gerard J. Yupp. My business address is 700 Universe
8		Boulevard, Juno Beach, Florida, 33408.
9		
10	Q.	By whom are you employed and what is your position?
11	А.	I am employed by Florida Power & Light Company (FPL) as Director
12		of Wholesale Operations in the Energy Marketing and Trading
13		Division.
14		
15	Q.	Have you previously testified in this docket?
16	А.	Yes.
17		
18	Q.	What is the purpose of your testimony?
19	Α.	The purpose of my testimony is to present and explain FPL's
20		projections for (1) the dispatch costs of heavy fuel oil, light fuel oil,
21		coal, petroleum coke, and natural gas, (2) the availability of natural
22		gas to FPL, (3) generating unit heat rates and availabilities and (4)

1

DOCUMENT NUMBER-CATE

the quantities and costs of wholesale (off-system) power and
 purchased power transactions. In addition, I present and explain
 FPL's Risk Management Plan for fuel procurement in 2006 and
 respond to certain of the "items of interest" received from the FPSC
 Staff on August 23, 2005.

6

Q. Have you prepared or caused to be prepared under your
 supervision, direction and control an Exhibit(s) in this
 proceeding?

- A. Yes, I have. It consists of the entire Appendix I and Schedules E2,
 E3, E4, E5, E6, E7, E8 and E9 of Appendix II of this filing.
- 12

13 FUEL PRICE FORECAST

14 Q. What forecast methodologies has FPL used for the 2006 15 recovery period?

Α. For natural gas commodity prices, the forecast methodology is the 16 NYMEX Natural Gas Futures contract (forward curve). For light and 17 heavy fuel oil prices, FPL utilizes Over-The-Counter (OTC) forward 18 market prices. Projections for the price of coal and petroleum coke, 19 and the availability of natural gas, are developed internally at FPL. 20 The forward curves for both natural gas and fuel oil represent 21 expected future prices at a given point in time. The basic 22 assumption made with respect to the forward curves is that all 23

available data that could impact the price of natural gas and fuel oil
 in the future is incorporated into the curve at all times. The forward
 curves represent prices at which FPL can transact its hedging
 program. The methodology allows FPL to better react to changing
 market conditions.

- 6
- Q. What are the key factors that could affect FPL's price for heavy
 fuel oil during the January through December 2006 period?
- Α. The key factors that could affect FPL's price for heavy oil are (1) 9 worldwide demand for crude oil and petroleum products (including 10 domestic heavy fuel oil), (2) non-OPEC crude oil production, (3) the 11 extent to which OPEC production matches actual demand for OPEC 12 crude oil, (4) the availability of refining capacity, (5) the price 13 relationship between heavy fuel oil and crude oil, (6) the price 14 relationship between heavy oil and natural gas and (7) the terms of 15 FPL's heavy fuel oil supply and transportation contracts. 16
- 17

World demand for crude oil and petroleum products is projected to increase slightly in 2006 over 2005 average levels primarily due to increases in demand in the U.S., China and other Pacific Rim countries. Although crude oil production and worldwide refining capacity will be adequate to meet the projected increase in crude oil and petroleum product demand, general adherence by OPEC

1		members to its most recent production accord, and limited spare
2		OPEC productive capacity, should prevent significant
3		overproduction of crude oil. When coupled with the continuation of
4		historically low domestic crude oil and petroleum product inventory
5		levels, the supply of crude oil and petroleum products will remain
6		tight during 2006.
7		
8	Q.	Please provide FPL's projection for the dispatch cost of heavy
9		fuel oil for the January through December 2006 period.
10	A.	FPL's projection for the system average dispatch cost of heavy fuel
11		oil, by month, is provided on page 3 of Appendix I.
12		
13	Q.	What are the key factors that could affect the price of light fuel
14		oil?
15	A.	The key factors are similar to those described above for heavy fuel
16		oil.
17		
18	Q.	Please provide FPL's projection for the dispatch cost of light
19		fuel oil for the January through December 2006 period.
20	A.	FPL's projection for the system average dispatch cost of light oil, by
21		month, is provided on page 3 of Appendix I.
22		
23	Q.	What is the basis for FPL's projections of the dispatch cost of

coal and petroleum coke for St. Johns' River Power Park
 (SJRPP) and coal for Plant Scherer?

A. FPL's projected dispatch cost for SJRPP is based on FPL's price
 projection for spot coal and petroleum coke delivered to SJRPP.
 The dispatch cost for Plant Scherer is based on FPL's price
 projection for spot coal delivered to the plant.

7

For SJRPP, annual coal volumes delivered under long-term contracts are fixed by July 1st of the previous year or are set by the terms of the contracts. For Plant Scherer, the annual volume of coal delivered under long-term contracts is set by the terms of the contracts. Therefore, the price of coal delivered under long-term contracts does not affect the daily dispatch decision.

14

In the case of SJRPP, FPL will continue to blend petroleum coke with coal in order to reduce fuel costs. It is anticipated that petroleum coke will represent 30% of the fuel blend at SJRPP during 2006. The lower price of petroleum coke is reflected in the projected dispatch cost for SJRPP, which is based on this projected fuel blend.

21

Q. Please provide FPL's projection for the dispatch cost of SJRPP
 and Plant Scherer for the January through December 2006

1 period.

A. FPL's projection for the system average dispatch cost of "solid fuel"
for this period, by plant and by month, is shown on page 3 of
Appendix I.

5

Q. What are the factors that can affect FPL's natural gas prices during the January through December 2006 period?

In general, the key factors are (1) North American natural gas Α. 8 9 demand and domestic production, (2) LNG and Canadian natural 10 gas imports, (3) heavy fuel oil and light fuel oil prices, and (4) the 11 terms of FPL's natural gas supply and transportation contracts. The 12 dominant factors influencing the projected price of natural gas in 2006 are: (1) projected natural gas demand in North America will 13 continue to grow moderately in 2006, primarily in the electric 14 generation sector; and (2) although domestic rig activity in the U.S. 15 has increased significantly over the past few years, 2006 domestic 16 natural gas production is at best expected to equal projected, 17 average 2005 levels, reflecting a continued decline in the Gulf of 18 Mexico region being offset by increases in Rocky Mountain 19 production. The balance of the supply to meet demand will come 20 from increased Canadian and LNG imports. 21

22

23 Q. What are the factors that affect the availability of natural gas to

1

FPL during the January through December 2006 period?

Α. The key factors are (1) the existing capacity of the Florida Gas 2 3 Transmission (FGT) pipeline system into Florida, (2) the existing capacity of the Gulfstream natural gas pipeline system into Florida, 4 (3) the limited number of receipt points into the Gulfstream natural 5 gas pipeline system, (4) the portion of FGT and Gulfstream capacity 6 that is contractually allocated to FPL on a firm basis each month, (5) 7 the assumed volume of natural gas which can move from the 8 Gulfstream pipeline into FGT at the Hardee and Osceola 9 interconnects, and (6) the natural gas demand in the State of 10 Florida. 11

12

The current capacity of FGT into the State of Florida is about 13 2,030,000 million BTU per day and the current capacity of 14 Gulfstream is about 1,100,000 million BTU per day. FPL currently 15 has firm natural gas transportation capacity on FGT ranging from 16 750,000 to 874,000 million BTU per day, depending on the month, 17 18 and 350,000 million BTU per day of firm natural gas transportation on Gulfstream. Total demand for natural gas in the state of Florida 19 20 during the January through December 2006 period (including FPL's 21 firm allocation) is projected to be between 350,000 and 550,000 million BTU per day below the total pipeline capacity into the state. 22 23 FPL projects that it could acquire, if economic, all or most of this

capacity on a non-firm basis to supplement FPL's firm allocation on
 FGT and Gulfstream. This projection is based on the current
 capability and availability of the two interconnections between
 Gulfstream and FGT pipeline systems and the availability of
 capacity on each pipeline.

6

Q. Please provide FPL's projections for the dispatch cost and
 availability of natural gas for the January through December
 2006 period.

10 A. FPL's projections of the system average dispatch cost and 11 availability of natural gas, by transport type, by pipeline and by 12 month, are provided on page 3 of Appendix I.

13

Q. Did FPL also consider the impacts of Hurricane Katrina on
 natural gas and crude oil production in the U. S. Gulf of Mexico
 region, as well as, the impact on U. S. refinery operations?

A. Yes, the forward curves that FPL utilized to develop its projections for this filing include all recently available data and assumptions that could impact the price and availability of natural gas and fuel oil in the future.

21

PLANT HEAT RATES, OUTAGE FACTORS, PLANNED
 OUTAGES, AND CHANGES IN GENERATING CAPACITY

Q. Please describe how FPL developed the projected Average Net Operating Heat Rates shown on Schedule E4 of Appendix II.

- The projected Average Net Operating Heat Rates were calculated Α. 3 by the POWRSYM model. The current heat rate equations and 4 efficiency factors for FPL's generating units, which present heat rate 5 as a function of unit power level, were used as inputs to POWRSYM 6 for this calculation. The heat rate equations and efficiency factors 7 are updated as appropriate based on historical unit performance 8 and projected changes due to plant upgrades, fuel grade changes, 9 and/or from the results of performance tests. 10
- 11

Q. Are you providing the outage factors projected for the period January through December 2006?

14 A. Yes. This data is shown on page 4 of Appendix I.

15

16 Q. How were the outage factors for this period developed?

17 A. The unplanned outage factors were developed using the historical 18 full and partial outage event data for each of the units. The historical 19 unplanned outage factor of each generating unit was adjusted, as 20 necessary, to eliminate non-recurring events and recognize the 21 effect of planned outages to arrive at the projected factor for the 22 January through December 2006 period.

23

Q. Please describe the significant planned outages for the
 January through December 2006 period.

Planned outages at FPL's nuclear units are the most significant in 3 Α. relation to the Fuel Cost Recovery Clause. Turkey Point Unit No. 3 4 is scheduled to be out of service for refueling from March 5, 2006 5 until March 30, 2006 or 25 days during the projected period. Turkey 6 Point Unit No. 4 is scheduled to be out of service for refueling from 7 October 29, 2006 until November 23, 2006 or 25 days during the 8 projected period. St. Lucie Unit No. 2 is scheduled to be out of 9 service for refueling, reactor head inspection and steam generator 10 tube sleeving from April 24, 2006 until June 23, 2006 or 60 days 11 during the projected period. 12

- 13
- Q. Please list any changes to FPL's generation capacity projected
 to take place during the January through December 2006
 period.
- A. There are no major changes to FPL's generation capacity projected
 during the January through December 2006 period.
- 19

20 WHOLESALE (OFF-SYSTEM) POWER AND PURCHASED

21 **POWER TRANSACTIONS**

22 Q. Are you providing the projected wholesale (off-system) power 23 and purchased power transactions forecasted for January

through December 2006?

A. Yes. This data is shown on Schedules E6, E7, E8, and E9 of
 Appendix II of this filing.

4

1

5 Q. In what types of wholesale (off-system) power transactions 6 does FPL engage?

Α. FPL purchases power from the wholesale market when it can 7 displace higher cost generation with lower cost power from the 8 market. FPL will also sell excess power into the market when its 9 cost of generation is lower than the market. Purchasing and selling 10 power in the wholesale market allows FPL to lower fuel costs for its 11 customers because savings and gains are credited to the customer 12 through the Fuel Cost Recovery Clause. Power purchases and 13 14 sales are executed under specific tariffs that allow FPL to transact with a given entity. Although FPL primarily transacts on a short-term 15 16 basis (hourly and daily transactions), FPL continuously searches for 17 all opportunities to lower fuel costs through purchasing and selling wholesale power, regardless of the duration of the transaction. FPL 18 can also purchase and sell power during emergency conditions 19 under several types of Emergency Interchange agreements that are 20 in place with other utilities within Florida. 21

22

23 Q. Does FPL have additional agreements for the purchase of

electric power and energy that are included in your
 projections?

Α. Yes. FPL purchases coal-by-wire electrical energy under the 1988 3 Unit Power Sales Agreement (UPS) with the Southern Companies. 4 FPL has contracts to purchase nuclear energy under the St. Lucie 5 Plant Nuclear Reliability Exchange Agreements with Orlando 6 Utilities Commission (OUC) and Florida Municipal Power Agency 7 (FMPA). FPL also purchases energy from JEA's portion of the 8 SJRPP Units. Additionally, FPL has purchased exclusive dispatch 9 rights for the output of 6 combustion turbines totaling approximately 10 950 MW (the output varies depending on the season). The 11 agreements for the combustion turbines are with Progress Energy 12 Ventures, Reliant Energy Services, and Oleander Power Project 13 L.P. FPL provides natural gas for the operation of each of these 14 three facilities as well as light fuel oil for two of the facilities. FPL 15 has also purchased 576 MW of capacity and energy from Reliant 16 Energy Services out of the Indian River facility. This agreement 17 begins on January 1, 2006 and runs through December 31, 2009. 18 Lastly, FPL purchases energy and capacity from Qualifying Facilities 19 under existing tariffs and contracts. 20

21

22 Q. Please provide the projected energy costs to be recovered 23 through the Fuel Cost Recovery Clause for the power purchases referred to above during the January through
 December 2006 period.

Α. Under the UPS agreement, FPL's capacity entitlement during the 3 period from January through December 2006 is 931 MW. Based 4 upon the alternate and supplemental energy provisions of UPS, an 5 availability factor of 100% is applied to these capacity entitlements 6 to project energy purchases. The projected UPS energy (unit) cost 7 for this period, used as an input to POWRSYM, is based on data 8 provided by the Southern Companies. For the period, FPL projects 9 to purchase 7,992,999 MWh of UPS energy at a cost of 10 \$148,265,000. The total UPS energy projections are presented on 11 12 Schedule E7 of Appendix II.

13

Energy purchases from the JEA-owned portion of the St. Johns 14 River Power Park generation are projected to be 2,991,600 MWh for 15 the period at an energy cost of \$55,449,000. FPL's cost for energy 16 purchases under the St. Lucie Plant Reliability Exchange 17 Agreements is a function of the operation of St. Lucie Unit 2 and the 18 19 fuel costs to the owners. For the period, FPL projects purchases of 449,890 MWh at a cost of \$1,661,200. These projections are 20 21 shown on Schedule E7 of Appendix II.

22

FPL projects to dispatch 142,969 MWh from its short-term

- purchased power agreements at a cost of \$15,506,263. These
 projections are shown on Schedule E7 of Appendix II.
- 3

In addition, as shown on Schedule E8 of Appendix II, FPL projects
 that purchases from Qualifying Facilities for the period will provide
 5,473,258 MWh at a cost to FPL of \$156,530,497.

7

Q. How does FPL develop the projected energy costs related to purchases from Qualifying Facilities?

A. For those contracts that entitle FPL to purchase "as-available" energy, FPL used its fuel price forecasts as inputs to the POWRSYM model to project FPL's avoided energy cost that is used to set the price of these energy purchases each month. For those contracts that enable FPL to purchase firm capacity and energy, the applicable Unit Energy Cost mechanisms prescribed in the contracts are used to project monthly energy costs.

17

Q. Please describe the method used to forecast wholesale (off system) power purchases and sales.

A. The quantity of wholesale (off-system) power purchases and sales
 are projected based upon estimated generation costs, generation
 availability and expected market conditions.

Q. What are the forecasted amounts and costs of wholesale (off system) power sales?

A. FPL has projected 2,165,000 MWh of wholesale (off-system) power
 sales for the period of January through December 2006. The
 projected fuel cost related to these sales is \$121,663,200. The
 projected transaction revenue from these sales is \$139,181,250.

7 The projected gain for these sales is \$11,512,150.

- 8
- 9 Q. In what document are the fuel costs for wholesale (off-system)
 10 power sales transactions reported?
- 11 A. Schedule E6 of Appendix II provides the total MWh of energy; total 12 dollars for fuel adjustment, total cost and total gain for wholesale 13 (off-system) power sales.
- 14

Q. What are the forecasted amounts and cost of energy being
sold under the St. Lucie Plant Reliability Exchange Agreement?
A. FPL projects the sale of 537,724 MWh of energy at a cost of
\$1,925,287. These projections are shown on Schedule E6 of
Appendix II.

- 20
- Q. What are the forecasted amounts and costs of wholesale (off system) power purchases for the January to December 2006
 period?

Α. The costs of these purchases are shown on Schedule E9 of 1 Appendix II. For the period, FPL projects it will purchase a total of 2 1,406,040 MWh at a cost of \$85,353,465. If generated, FPL 3 estimates that this energy would cost \$97,585,816. Therefore. 4 these purchases are projected to result in savings of \$12,232,351. 5 6 2006 RISK MANAGEMENT PLAN 7 Q. Has FPL completed its risk management plan as required by 8 9 Order PSC- 02-1484-FOF-EI issued on October 30, 2002? Α. 10 Yes. FPL's 2006 Risk Management Plan is provided on pages 5 and 6 of Appendix I. 11 12 Q. 13 Please describe FPL's hedging objectives. 14 Α. FPL's fuel hedging objectives are to effectively execute a well-15 disciplined and independently controlled fuel procurement strategy to manage fuel price stability (volatility minimization), to potentially 16 achieve fuel cost minimization and to achieve asset optimization. 17 18 FPL's fuel procurement strategy aims to mitigate fuel price 19 increases and reduce fuel price volatility, while maintaining the opportunity to benefit from price decreases in the marketplace for 20 21 FPL's customers.

22

23 Q. Does FPL project to incur incremental operating and

maintenance expenses with respect to maintaining an
 expanded, non-speculative financial and/or physical hedging
 program for which it is seeking recovery in the January
 through December 2006 period?

Α. Yes. FPL projects to incur incremental expenses of \$471,179 for its 5 Trading and Operations Group and \$25,306 for its Systems Group. 6 These expenses total \$496,485. The expenses projected for the 7 Trading and Operations Group are for salaries of the three 8 personnel who were added to support FPL's enhanced hedging 9 program. The expenses projected for the Systems Group are for 10 incremental annual license fees for FPL's volume forecasting 11 software. 12

13

14Q.Does FPL's hedging plan for 2006 include strategies to mitigate15the replacement fuel costs associated with the extended16outage of St. Lucie Unit No. 2 due to the reactor vessel head17inspection and steam generator tube sleeving?

A. Yes. FPL's fuel hedging strategies incorporate all of FPL's planned
 unit outages for a given time period. FPL takes steps to mitigate the
 impact of all plant outages through the procurement of fuel and
 purchased power.

22

23 **RESPONSES TO ITEMS OF INTEREST RECEIVED FROM THE**

1 FPSC STAFF ON AUGUST 23, 2005

2 Q. What actions does FPL take to minimize the occurrence,

duration and magnitude of unplanned outages at its fossil
 generating units?

A. FPL's Power Generation Division has processes, procedures and
 structure in place, such as condition-based maintenance, the Fleet
 Performance and Diagnostic Center (FPDC) and the Fleet Teams
 to continue to manage, assess and sustain the excellent
 performance of FPL's fossil generation portfolio.

10

Power Generation transitioned its major maintenance overhaul philosophy from calendar-based overhaul intervals to conditionbased overhaul intervals. By doing overhauls on a conditionbased interval, FPL can optimize the life of the existing fossil plant components while improving plant reliability and availability.

16

FPL further enhanced its fleet with the creation of the FPDC. Critical fossil plant operating parameters are monitored at the FPDC 24 hours per day, 7 days per week. Automated statistical analysis detects and alerts employees to even slight changes in performance. FPL can also analyze a unit's ability to perform according to its rated specifications and evaluate ways to improve efficiencies. The goal is to identify equipment degradation far

enough in advance of a failure so that corrective measures can be
 put in place. All of FPL's initiatives and efforts are focused on
 achieving process control and preventing failures from occurring.

4

In addition, Power Generation adopted a "Fleet Team" approach
by organizing its technical support groups around major plant
components, such as boilers, combustion turbines, and
generators. The Fleet Team approach improves the replication
and standardization of best practices across the fleet.

10

Q. What actions does FPL take to help ensure that planned maintenance outages at its fossil generating units are completed on schedule and on budget?

A. FPL's Power Generation Division uses processes and procedures
 such as major maintenance planning, major maintenance
 execution, and major maintenance performance evaluation to
 complete planned maintenance outages on schedule and on
 budget.

19

Major maintenance planning is a process used to develop an integrated plan for ensuring timely and accurate execution of all work. The integrated plan includes work identification determined by condition-based maintenance, planning review meetings, development of job procedures, integrating cost/schedule plan, and determination of manpower requirements. In addition to planning the work, safety, environmental, and quality plans are developed to help ensure that each integrated plan is executed on schedule, within estimated cost, and without incident.

- Major maintenance execution is the process of executing major
 maintenance outages with zero injuries, without environmental
 violations, within the scheduled duration, within authorized budget,
 and without failures upon unit return to service.
- 11

6

Major maintenance performance evaluation is the process of verifying that all major maintenance work performed meets the predetermined goals and objectives set forth during the planning process. This process effectively captures reasons for success and provides replication procedures for other FPL sites.

17

Q. What actions has FPL taken to minimize incremental fuel and
 purchased power costs due to the impact of the 2004
 hurricane season?

A. As a result of the 2004 hurricane season, FPL implemented several strategies to help minimize incremental fuel costs and enhance reliability during severe weather events. Initiatives

include securing spot transportation agreements with several 1 additional natural gas pipelines, extending current natural gas 2 storage agreements, adding and diversifying natural gas storage 3 agreements and setting up contracts with additional natural gas 4 suppliers. FPL continues to pursue additional natural gas storage 5 and interconnect possibilities to diversify its Gulfstream supply 6 potential. Heavy and light oil initiatives included evaluating and 7 implementing appropriate inventory strategies, contracting for 8 9 additional light oil storage and securing transportation FPL will continue to pursue, evaluate and 10 arrangements. 11 implement strategies that will help minimize incremental fuel costs 12 and enhance reliability during severe weather events that are beneficial to its customers. To date, these initiatives have proven 13 to be crucial in allowing FPL to manage its fuel supply and 14 maintain reliable operations through the devastating impact that 15 Hurricane Katrina has had on fuel supplies in the U.S. Gulf Coast. 16

17

Q. Should recent changes in the market price for natural gas
 and residual oil impact the percentage of FPL's natural gas
 and residual oil requirements that FPL plans to hedge?

A. FPL continuously monitors the natural gas and residual fuel oil
 markets in support of its hedging program and procurement plan.
 FPL re-forecasts its projected fuel requirements on a weekly basis

1 incorporating current forward curve prices. As price changes drive differences in projected requirements, FPL rebalances its hedge 2 positions to stay within percentage tolerances of its approved 3 hedging plan. The recent changes in market prices for natural gas 4 and residual fuel oil will not impact the percentage of each fuel 5 that FPL plans to hedge. FPL's hedge program was developed to 6 reduce volatility and deliver greater price certainty to its 7 FPL is not speculating on price movement and, 8 customers. therefore FPL will continue to follow its approved hedging 9 strategy. 10

11

12 Q. Has FPL adequately mitigated the price risk of natural gas, residual oil, and purchased power for 2004 through 2006?

A. Yes. Over that period, FPL continued to execute its hedging
strategy to help reduce volatility to its customers. As fuel prices
have trended upward, FPL's hedging plan has also delivered
significant savings to its customers. FPL will continue to execute
its hedging program in accordance with its Risk Management
Plan.

20

Additionally, FPL continually optimizes its fuel switching capability to help ensure that its customers receive the lowest possible cost of fuel. Finally, FPL capitalizes on all opportunities to either purchase lower cost power to offset higher generation costs or sell
 excess power to return gains to its customers that help reduce
 overall fuel costs.

4

5 Q. What actions does FPL take to optimize the equivalent 6 availability factors and heat rates for its fossil GPIF units?

Α. The actions that FPL takes to optimize the equivalent availability 7 factors of fossil GPIF units were covered in the discussion of 8 unplanned and planned outages above. The heat rate of fossil 9 units is optimized through a heat rate monitoring program. The 10 11 actual unit heat rate is compared to a target heat rate to identify any instances of degradation. 12 In order to determine the appropriate action to take, the degradation is analyzed to stratify it 13 14 into three different categories: controllable parameters, short-term 15 degradation, and long-term degradation. Controllable parameters require immediate adjustment of the unit. An example of a 16 17 controllable parameter is adjusting the main steam pressure to 18 maintain it at the design point. Short-term degradation can be 19 recovered during short notice outages of small duration. An 20 example of short-term degradation is steam turbine condenser 21 fouling or compressor fouling on a combustion turbine, both of which would require a short outage to clean the component and 22 23 return it to service. Long-term degradation can be recovered

during planned outages that are usually of longer duration. An
 example of long- term degradation is loss of steam turbine
 efficiency due to wear which would require turbine disassembly to
 recover.

5

Q. What actions does FPL take to procure natural gas and natural gas transportation for its units at competitive prices for both long term and short term deliveries?

Α. 9 FPL purchases natural gas from multiple sources on the U.S. Gulf 10 Coast, both onshore and offshore and from multiple suppliers all 11 within a well-planned and balanced portfolio of term, spot and day-12 to-day purchases. This procurement strategy helps ensure competitive prices for FPL's customers and reliability of supply 13 through diversification of sources and suppliers. FPL purchases 14 15 firm natural gas transportation on a long-term basis to meet current and projected requirements, in order to help ensure an 16 economic and reliable level of deliverability to its plants. FPL also 17 purchases interruptible 18 natural aas transportation, when economic, to provide low cost fuel delivery to its customers. 19

20

21 Q. What actions does FPL take to procure residual oil for its 22 units that burn residual oil at competitive prices?

23 A. FPL purchases residual fuel oil from multiple sources, domestic

and international, in the major U. S market hubs of New York
 Harbor and the U. S. Gulf Coast, as well as in the Caribbean,
 South America, and Europe. This helps to ensure the most
 competitive pricing and reliability of supply for FPL's customers.

5

6 Q. Does this conclude your testimony?

7 A. Yes, it does.

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION FLORIDA POWER & LIGHT COMPANY TESTIMONY OF J.R. HARTZOG DOCKET NO. 050001-EI September 9, 2005

1	Q .	Please state your name and address.
2	Α.	My name is John R. Hartzog. My business address is 700 Universe
3		Boulevard, Juno Beach, Florida 33408.
4		
5	Q.	By whom are you employed and what is your position?
6	A.	I am employed by Florida Power & Light Company (FPL) as a
7		Manager of Nuclear Finance in the Nuclear Business Unit.
8		
9	Q.	Have you testified in predecessors to this docket?
10	A.	Yes.
11		
12	Q.	Are you sponsoring an exhibit?
13	A.	Yes. It consists of Document JRH-1, which is attached to my
14		testimony.
15		
16	Q.	What is the purpose of your testimony?

My testimony presents and explains FPL's projections of nuclear fuel Α. 1 costs for the thermal energy (MMBTU) to be produced by our 2 nuclear units, the costs of disposal of spent nuclear fuel, the costs of 3 decontamination and decommissioning (D&D), and the processes 4 associated with FPL's planned and unplanned outages. I am also 5 updating the status of certain litigation that affects FPL's nuclear fuel 6 costs; plant security costs and new NRC security initiatives; the 7 inspections and repairs to the reactor pressure vessel heads since 8 the issuance of NRC Bulletin (IEB) 2002-02; and the status of the St 9 Lucie Unit 2 Steam Generators. Both nuclear fuel and disposal of 10 spent nuclear fuel costs were input values to POWERSYM used to 11 calculate the costs to be included in the proposed fuel cost recovery 12 factors for the period January 2006 through December 2006. 13

14

15 Nuclear Fuel Costs

16

17 Q. What is the basis for FPL's projections of nuclear fuel costs?

- A. FPL's nuclear fuel cost projections are developed using projected
 energy production at our nuclear units and their operating schedules,
- for the period January 2006 through December 2006.
- 21

22 Spent Nuclear Fuel Disposal Costs

4.5

2	Q.	Please provide FPL's projection for nuclear fuel unit costs and
3		energy for the period January 2006 through December 2006.
4	A.	FPL projects the nuclear units will produce 262,306,750 MMBTU of
5		energy at a cost of \$0.3305 per MMBTU, excluding spent fuel
6		disposal costs, for the period January 2006 through December 2006.
7		Projections by nuclear unit and by month are in Appendix II, on
8		Schedule E-4, starting on page 16 of the Appendix.
9		
10	Q.	Please provide FPL's projections for spent nuclear fuel disposal
10 11	Q.	Please provide FPL's projections for spent nuclear fuel disposal costs for the period January 2006 through December 2006 and
10 11 12	Q.	Please provide FPL's projections for spent nuclear fuel disposal costs for the period January 2006 through December 2006 and explain the basis for FPL's projections.
10 11 12 13	Q. A.	Please provide FPL's projections for spent nuclear fuel disposalcosts for the period January 2006 through December 2006 andexplain the basis for FPL's projections.FPL's projections for spent nuclear fuel disposal costs of
10 11 12 13 14	Q. A.	 Please provide FPL's projections for spent nuclear fuel disposal costs for the period January 2006 through December 2006 and explain the basis for FPL's projections. FPL's projections for spent nuclear fuel disposal costs of approximately \$21.9 million are provided in Appendix II, on Schedule
10 11 12 13 14	Q. A.	 Please provide FPL's projections for spent nuclear fuel disposal costs for the period January 2006 through December 2006 and explain the basis for FPL's projections. FPL's projections for spent nuclear fuel disposal costs of approximately \$21.9 million are provided in Appendix II, on Schedule E-2, starting on page 10 of the Appendix. These projections are
10 11 12 13 14 15 16	Q. A.	 Please provide FPL's projections for spent nuclear fuel disposal costs for the period January 2006 through December 2006 and explain the basis for FPL's projections. FPL's projections for spent nuclear fuel disposal costs of approximately \$21.9 million are provided in Appendix II, on Schedule E-2, starting on page 10 of the Appendix. These projections are based on FPL's contract with the U.S. Department of Energy (DOE),

generated, including transmission and distribution line losses.

Decontamination and Decommissioning Costs

Q. Please provide FPL's projection for DOE Decontamination and
 Decommissioning (D&D) costs to be paid in the period January
 2006 through December 2006 and explain the basis for FPL's
 projection.

A. FPL's projection of \$7.08 million for D&D costs is based on the
amount of Separative Work Units (SWU) purchased per the
contractual agreement with the DOE, to be paid during the period
January 2006 through December 2006 and is included in Appendix
II, on Schedule E-2 starting on page 10_of the Appendix.

10

11 Litigation Status Update

12

Q. Are there currently any unresolved disputes under FPL's
 nuclear fuel contracts?

15 A. Yes.

16

17 Spent Fuel Disposal Dispute. This dispute arose under FPL's 18 contract with the Department of Energy (DOE) for final disposal of 19 spent nuclear fuel. In 1995 FPL, along with a number of electric 20 utilities, states, and state regulatory agencies, filed suit against DOE 21 over its obligation to accept spent nuclear fuel beginning in 1998. 22 On July 23, 1996, the U.S. Court of Appeals for the District of

1 Columbia Circuit (D.C. Circuit) held that DOE is required by the 2 Nuclear Waste Policy Act (NWPA) to take title and dispose of spent 3 nuclear fuel from nuclear power plants beginning on January 31, 4 1998.

5

6 On January 11, 2002, based on the D.C. Circuit's ruling, the Court of 7 Federal Claims granted FPL's motion for partial summary judgment 8 in favor of FPL on contract liability. There is no trial date scheduled 9 at this time for the FPL damages claim.

10

17

Following a trial, the Court of Federal Claims ruled on May 21, 2004 that another nuclear plant owner, Indiana Michigan Power Company, was not entitled to any damages arising out of the Government's failure to begin disposal of spent nuclear fuel by January 31, 1998. Indiana Michigan has appealed the Court's decision to the U.S. Court of Appeals for the Federal Circuit. This appeal is pending.

Q. Has FPL resolved any of the disputes under its nuclear fuel
 contracts that you have described to the Commission
 previously?

A. Yes. FPL has entered into a settlement agreement with the U.S.
 Government of all of its uranium enrichment claims. The agreement

required the Government to pay FPL a total of \$6,845,200 to resolve
 those claims. The resolved claims are listed below:

3

1(a). <u>Uranium Enrichment Pricing Disputes – FY 1993</u>
 <u>Overcharges.</u> FPL resolved a pricing dispute concerning uranium
 enrichment services purchased from the U.S. Government, prior to
 July 1, 1993.

8

1(b). Uranium Enrichment Services Contract. DOE was required 9 under FPL's uranium enrichment services contract with DOE to 10 establish a price for enrichment services pursuant to DOE's 11 established pricing policy, based on recovery of DOE's appropriate 12 costs over a reasonable period of time. In the course of discovery in 13 the FY1993 overcharge case discussed above, FPL and the other 14 utility plaintiffs uncovered two other cost components that DOE 15 improperly included in its cost recovery calculation. 16

17

18 <u>Gaseous Centrifuge Enrichment Project (GCEP) Claim</u>. In 1976, 19 Congress first authorized the construction of GCEP as additional 20 Government uranium enrichment capacity to meet the then-21 projected future demand. This future demand never materialized 22 and, by 1985, DOE found itself in a plant over capacity position and

the highest cost worldwide producer of enrichment services. In
1985, DOE cancelled the GCEP and wrote-off the entire \$3.6 billion
from the DOE Uranium Enrichment Activity's 1986 financial
statements relating to accumulated costs of plant construction,
termination costs, and imputed interest associated with GCEP.
DOE failed to exclude the entire \$3.6 billion from its calculation in
setting the uranium enrichment services price.

8

High Assav Costs. In 1991, DOE adjusted the financial statements 9 of the Uranium Enrichment Activity by removing approximately \$1.14 10 billion in accumulated losses and other costs relating to the 11 production of High Assay uranium. DOE made this adjustment 12 based on its conclusion that the Uranium Enrichment Activity no 13 longer had any responsibility for the High Assay program, which 14 produced uranium for military purposes. Despite removing such 15 costs from the financial statements, DOE improperly included 16 approximately \$394 million of High Assay costs in calculating the 17 price for uranium enrichment services for FY1992 through FY1993. 18

19

20 FPL's settlement of \$6,845,200 will be passed on to customers 21 through the Fuel Cost Recovery Clause. FPL's litigation expense 22 regarding this case has been approximately \$400,000. FPL

- Witness K. M. Dubin will discuss the inclusion of this settlement and
 associated litigation expenses in the Fuel Cost Recovery Clause.
- 3

4 Planned and Unplanned Outages

5

6 Q. What actions does FPL take to minimize the occurrence,

7 duration, and magnitude of its unplanned outages at its

8 **nuclear units?**

One of FPL's nuclear strategic focus areas is Operational Α. 9 Excellence which includes initiatives to maintain high equipment 10 reliability. FPL has implemented a Nuclear Administrative 11 Procedure (NAP) for equipment reliability. This procedure 12 describes the integrated and coordinated process that the Nuclear 13 14 Division uses to evaluate, monitor and maintain station equipment important to safe and reliable plant operation. 15

16

FPL's equipment and systems are continuously monitored to identify issues that may impact safety, challenge reliability and threaten plant operation. Improvement action plans are developed for these conditions and work is prioritized accordingly to ensure these conditions are corrected to minimize the occurrence of unplanned outages.

FPL also has a structured human performance program and training programs to ensure that personnel conduct their activities to the highest of standards and error free. These programs minimize the potential for human performance challenges to safe and reliable operations.

7

1

8 Q. What actions does FPL take to complete its planned
 9 maintenance outages at its nuclear units on schedule and on
 10 budget?

Α. Extensive efforts are taken to carefully plan outages to optimize the 11 use of the outage time and to ensure that activities are properly 12 scheduled to avoid conflicts and delays. These schedules are 13 subject to multiple management reviews and challenges to ensure 14 they are reasonable and achievable, and ensure safe plant 15 conditions at all times. Pre-outage milestones are established for 16 17 preparatory activities, including work-order preparation, pre-outage work scope planning, required resource identification, and outage 18 Progress in achieving these milestones is material delivery. 19 monitored through regular meetings with senior management 20 overview. Extensive training is also conducted prior to the start of 21 planned outages to provide personnel with the skills and 22

knowledge needed to minimize errors and facilitate outage
 execution.

3

4 For each nuclear unit outage, a structured outage organization is put in place to manage outage execution. An outage control 5 center is staffed with representatives from all departments to 6 7 closely coordinate activities, resolve emergent issues, and monitor Schedule and activity adjustments are made as progress. 8 necessary. Meetings among key stakeholders are conducted at 9 least twice daily to assess progress and establish direction to 10 assure the outage progresses as expected. 11

12

During our planned refueling outages the budget is reviewed regularly by the site management team to ensure outage expenditures are on target with the outage budget. Variances are identified and appropriate actions are implemented to maintain the outage budget.

18

Q. What actions has FPL taken to at its nuclear units to minimize
 incremental fuel and purchased power costs due to the impact
 of the 2004 hurricane season?
Α. The 2004 hurricane season did not affect the operation of FPL's 1 Turkey Point nuclear units. However, the St. Lucie nuclear units 2 were shut down during Hurricanes Frances and Jeanne as required 3 by the site procedures shortly before the site began experiencing 4 hurricane-force winds. When the storms passed, an on-site 5 damage assessment commenced. Resources were dedicated 6 twenty-four hours a day to safely restoring the units to service as 7 soon as possible. 8

9

FEMA and NRC approval are required to restart the units following a natural disaster. Consequently, FPL worked very closely with governmental agencies to ensure that all regulatory issues for restart of the units were resolved as promptly as possible following both Hurricanes Frances and Jeanne.

15

Q. What actions does FPL take to optimize the equivalent 16 availability factors and heat rates for its nuclear GPIF units? 17 Α. The actions that FPL takes to optimize the equivalent availability 18 factors of nuclear GPIF nuclear units are explained in response to 19 the planned and unplanned outage questions above. The heat 20 21 rates are optimized by monitoring the performance of the nuclear units to detect and determine the causes of any degradation. 22

Actual generation is compared to predicted generation and reported daily. Degradation is promptly corrected either through operating adjustments or on-line maintenance where possible. Issues that cannot be addressed on-line are added to the schedules for power reductions and outages. All four nuclear units are equipped with and operate on-line condenser tube cleaning systems to maximize unit efficiency.

8

9 Turkey Point Transformer Fire

10

Q. Describe the circumstances surrounding the Turkey Point Unit 4 main transformer fire occurring on June 27, 2005.

During the Spring 2005 refueling outage at Unit 4, the main Α. 13 transformer was replaced as part of FPL's preventive maintenance 14 program because it was predicted to be reaching the end of its 15 useful life. After two weeks of being in service, the new main 16 transformer failed suddenly without warning. The failure resulted in 17 the release of transformer insulating oil which ignited, triggering the 18 deluge system. The Unit tripped due to the fire, and an Unusual 19 Event was declared. The Unusual Event was terminated after the 20 The failed transformer was severely fire was extinguished. 21 damaged and not repairable. 22

1 Q. What was the cause of the transformer fire?

A. The preliminary analysis of all available fault data indicates that the
fault occurred internal to the transformer. There is no indication
that an external fault initiated the event. The vendor is currently
investigating the cause of the failure and will issue a report upon
completion of its findings.

7

8 Q. What was the duration of the unplanned outage?

9 A. The outage duration was approximately 20 days.

10

Q. What actions did FPL take to repair the transformer in order to bring Unit 4 back on-line as quickly as possible?

A. As previously mentioned, the replacement transformer was not repairable and had to be removed from service. The original replaced transformer showed signs of aging but remained serviceable, so it was re-installed as an interim measure to restore service to Unit 4 while a new transformer is manufactured. However, due to the age of the original transformer, it required testing to ensure the safe and reliable operation of Unit 4.

20

Q. What costs, if any, has or will FPL seek to recover through the
 fuel clause resulting from the transformer fire at Turkey Point
 Unit 4?

4

5 A. FPL will not seek to recover any repair costs associated with the 6 Turkey Point 4 transformer fire through the fuel clause. FPL does 7 seek recovery via the fuel clause of the replacement power costs 8 resulting from the outage of Unit 4 while the original transformer 9 was being re-installed and tested. Ms. Dubin's testimony will 10 discuss recovery of replacement power costs associated with this 11 event.

12

13 Nuclear Plant Security Costs

14

15 Q. Please provide an update of the costs to comply with the NRC's 16 Design Basis Threat (DBT) requirements.

A. At the time that it entered into the Proposed Resolution of Issue in Docket No. 040001-EI dated November 1, 2004, FPL projected that the DBT costs would total \$40.4 million. As of July 2005, FPL has spent approximately \$44.9 million on DBT related activities and anticipates additional expenditures of \$5.4 million to complete all known required DBT actions. The increases in DBT cost from the

original estimates are reflected in the 2005 estimated/actual true-up 1 amount filed on August 9, 2005 and are the result of industry 2 experience and lessons learned during force on force (FOF) 3 exercises. The implementation of the DBT considers both defense 4 tactics and physical modifications. When an FOF drill is performed, 5 new offensive tactics are developed. Based on the results of the 6 drill, offensive strategy modifications may be necessary to address 7 any short falls identified and costs increase from these changes. 8

9

Based on the NRC's current interpretation of DBT requirements, FPL expects to complete its DBT related activities in 2005. I caution, however, the DBT process including the FOF drills, is continuing to evolve and may require additional modifications and the potential for security staff additions in the future.

15

16

Q. What is FPL's projection of the incremental security costs for
 the period January 2006 through December 2006?

A. FPL presently projects that it will incur \$21.6 in incremental nuclear
 power plant security costs in 2006.

21

Q. Please provide a brief description of the items included in this
 security projection for nuclear plant security costs.

Α. additional security personnel resulting from 1 Items include implementation of the fatigue order which limits the amount of hours 2 security personnel work in a week, personnel training and equipment 3 and additional security system modifications. This \$21.6 million 4 does not include any of the DBT costs discussed above because 5 FPL expects to incur those costs in 2005. 6

7

Q. Is there a possibility of further NRC security-related initiatives in
 2006 and beyond, in addition to those included in FPL's
 projection?

11 Α. Yes. FPL is aware of new NRC regulatory initiatives to revise requirements regarding fires, propose aircraft-threat strategy 12 revisions, make potentially significant changes in requirements for 13 protection of spent fuel pools, conduct a study in conjunction with 14 15 The Department of Homeland Security to evaluate potential threats to nuclear facilities from land, sea and air method of attack, and 16 conduct a study of buffer zones around nuclear sites. 17 Finally. Congress has approved the Energy Bill that contains a section 18 entitled "Nuclear Security" directing the NRC to revise the current 19 DBT rules. The bill also includes provisions that require: 20

- Periodic security response evaluations to assess the ability of a
 private security force of a licensed facility to defend against any
 applicable design basis threat.
- Periodic "force-on-force" drills by the NRC to help refine the
 ability to protect the plant from intruders.
- NRC assigns an employee as a federal security coordinator in
 each region.
- Fingerprinting and criminal history record checks for individuals
 who are permitted access to safeguards information and
 unescorted access to a utilization facility or other radioactive
 material.
- 12

13 It is not feasible for FPL to estimate at this time the future costs 14 required to comply with these developing regulatory requirements 15 and their ongoing interpretation, but the Commission should be 16 aware that nuclear security costs have a high potential to increase 17 significantly based on the issues mentioned above.

18

19 St Lucie Unit 2 Steam Generator Sleeving

20

21 Q. What is the current status of the St Lucie Unit 2 steam 22 generators? A. Based on the results of the 2001 refueling outage, FPL employed
 the best industry expertise available to develop tube degradation
 projections. Those projections indicated a need to replace the steam
 generators in the 2010 to 2014 timeframe.

6 Subsequently, the 2003 refueling outage inspection results indicated 7 tube plugging at 9.2%, which was higher than expected based on 8 prior experience. From this new information, FPL concluded that the 9 steam generator replacement would need to be moved up to the 10 2007 time frame. FPL ordered replacement steam generators for 11 installation in the Fall of 2007 refueling outage.

12

5

Unfortunately, the January 2005 refueling outage inspection 13 revealed that the degradation rate was even more rapid than 14 anticipated in 2003 and involved a degradation mechanism that had 15 not previously been observed as significant. This additional tube 16 degradation required FPL to increase the total number of plugged 17 tubes from 9.2% to 18.9%, which substantially exceeded 18 19 expectations. Based on these results, the current regulatory plugging limit of 30% could be exceeded at the next inspection in the 20 Spring of 2006. My Document JRH-1 illustrates the rapid progress 21

- of steam generator u-tube degradation at St. Lucie Unit 2 in recent
 years.
- 3

4	Q.	What does FPL believe is causing the accelerated steam
5		generator tube degradation at St. Lucie Unit 2?

A. The St. Lucie Unit 2 steam generator tubes are fabricated with
alloy 600 mill-annealed tube materials. All steam generator tubes
fabricated with this material are susceptible to cracking, primarily
due to stress corrosion cracking (SCC) on the outer diameter of the
tube. When inspections for these generators are performed during
each refueling outage, tubes found to have corrosion cracking are
taken out of service by plugging.

13

14 Q. What are some consequences experienced in the industry as a

15 result of accelerated tube degradation?

A. Since 1989 there have been 43 industry forced outages due to tube
 leaks and 10 due to tube burst events.

18

Q. What options did FPL consider to resolve the 30% plugging
 limit issue?

A. Various options were evaluated to minimize the impact of the
 accelerated u-tube degradation on plant operation. These included:

<u>Option 1:</u> Implementation of plugging and sleeving repairs during the Spring 2006 refueling outage and replacement of the steam generators in the Fall of 2007, as previously planned.

4 <u>Option 2:</u> Various scenarios for expediting the delivery of the 5 replacement steam generators and acceleration of installation.

6 <u>Option 3:</u> Implementation of an early refueling outage in the Fall of 7 2005 to expedite the steam generators inspection and minimize the 8 need for significant repairs. In parallel, expediting the delivery and 9 installation of the replacement steam generators in time to avoid an 10 additional inspection prior to the replacement.

11

12 Q. Which option has FPL decided to pursue and why?

FPL has decided to proceed with Option 1. The next steam Α. 13 generator inspection will be in the Spring of 2006. Any degraded 14 tubes identified during this inspection that exceed the 30% tube 15 plugging limit will be repaired using the sleeving method. Sleeving is 16 not used as the normal repair method because it is more costly and 17 takes longer to implement. However, successful implementation of 18 sleeving will allow the unit to continue to operate at 100% power until 19 the steam generators are replaced in the Fall of 2007, as currently 20 21 planned.

22

- 1 Options 2 and 3 were less economically attractive than Option 1 and 2 involved more risk.
- 3
- Q. What are the implications to exceeding the tube plugging limit
 of 30%?
- A. Tube plugging in excess of 30% will require FPL to operate the unit
 at a reduced power output of 89%.
- 8

9 Q. What alternatives exist if the 30% limit is reached?

FPL is currently pursuing NRC approval of an increased tube 10 Α. plugging limit up to 42%, as a contingency. If approved, the new 11 limit would allow the units to continue to operate beyond the 12 current 30% limit, but at a reduced power output of 89%. However, 13 should the level of degradation require tube plugging beyond 42%, 14 15 the unit would not be able to resume operation until a higher plugging limit can be analyzed and approved by the NRC. This 16 scenario could result in operation at even lower power levels and 17 significantly extended unit downtime (6-12 months) before 18 operation could resume. Moreover, FPL cannot be certain at this 19 time that the NRC will approve an increased tube plugging limit. 20

- 21
- 22 Q. What is the estimated cost to complete the sleeving project?
 - 21

A. FPL has projected that it will spend an estimated \$30 million to
 complete this project. As discussed in Ms. Dubin's testimony, FPL is
 requesting to recover the \$30 million project cost through the Fuel
 Cost Recovery Clause.

- 5
- 6

7 Reactor Pressure Vessel Head Inspection Status

8

9 Q. What is the status of the reactor heads for the St. Lucie and 10 Turkey Point Units?

A. As FPL has explained in prior testimony to the Commission, the NRC issued IEB 2002-02 on August 9, 2002 to address concerns related to visual inspections of the reactor heads. This bulletin resulted in all four FPL units being categorized as high susceptibility, requiring ultrasonic testing in addition to visual inspections until the reactor heads are replaced.

17

18 St. Lucie Unit 1 is scheduled to replace the reactor vessel head 19 during the refueling outage beginning on October 17, 2005. The 20 estimated duration of the outage is 60 days.

St. Lucie Unit 2 performed ultrasonic inspections during the refueling 1 outage beginning on January 5, 2005. The total duration of the 2 refueling outage was approximately 41 days. 3 Indications were detected on the reactor vessel head that resulted in minor repairs on 4 2 Control Element Drive Mechanism (CEDM) nozzles. Three CEDM 5 6 nozzles were replaced; and inspections were completed on all nozzles. The repairs resulted in an additional 11 days to the outage. 7 8 The total cost of the inspections and repairs was approximately 9 \$12.2 million. FPL plans to perform ultrasonic inspections during the refueling outage in Spring 2006 while the steam generator 10 sleeving project is being implemented. The St. Lucie Unit 2 reactor 11 vessel head will be replaced in the Fall of 2007 along with the steam 12 generators. 13

14

The Turkey Point Unit 3 and 4 reactor vessel heads were replaced
 during the refueling outages beginning on September 26, 2004 and
 April 10, 2005 respectively.

18

19 **Q.** Does this conclude your testimony?

20 A. Yes it does.

21

22

FPL Nuclear – St. Lucie Unit 2 Steam Generators Tube Plugging – 1/05

PSL 2 Original SG

Docket No. 050001-El J.R, HARTZOG Exhibit No. 1 FPL Nuclear - St. Lucie Unit 2 Steam Generators Tube Plugging - 1/05

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF KOREL M. DUBIN
4		DOCKET NO. 050001-EI
5		September 9, 2005
6		
7	Q.	Please state your name and address.
8	Α.	My name is Korel M. Dubin and my business address is 9250 West
9		Flagler Street, Miami, Florida 33174.
10		
11	Q.	By whom are you employed and what is your position?
12	Α.	I am employed by Florida Power & Light Company (FPL) as Manager
13		of Regulatory Issues in the Regulatory Affairs Department.
14		
15	Q.	Have you previously testified in this docket?
16	Α.	Yes, I have.
17		
18	Q.	What is the purpose of your testimony?
19	A.	My testimony addresses the following subjects:
20		- I present for Commission review and approval the Fuel Cost
21		Recovery (FCR) factors for the period January 2006 through
22		December 2006 including an inverted fuel charge for the
23		residential rate class.
24		- I present for Commission review and approval a revised 2005

I

ľ

Į

I

- estimated/actual true-up amount, which reflects the impact of
 Hurricane Katrina and other events in the world energy
 markets on fuel prices and which is incorporated into the
 calculation of the 2006 FCR Factors.
- In response to a question posed by Staff, I explain why it is
 appropriate and consistent with Commission practice for FPL
 to recover at this time replacement fuel and purchased power
 costs associated with the 2005 outage of Turkey Point Unit
 No. 4 due to a transformer fire, rather than delaying recovery
 until FPL has sought redress against third parties.
- I present Commission review and approval FPL's projected
 incremental hedging cost for 2006, to be recovered through
 the FCR Clause.
- I present for Commission review and approval FPL's proposal
 to recover through the FCR Clause FPL's projected costs for
 the St. Lucie Unit No. 2 sleeving project and explain why that
 proposal is appropriate and consistent with Commission
 practice.
- 19-I present for Commission review and approval FPL's proposed20treatment of the settlement payment and associated litigation21expenses for FPL's claim against DOE High Assay Cost22overcharges and explain why that treatment is appropriate23and consistent with Commission practice.
- I present for Commission review and approval the Capacity

1Cost Recovery (CCR) factors for the period January 20062through December 2006.

I present Commission review and approval FPL's projected
incremental security costs for 2006, to be recovered through
the CCR Clause and, in response to a question posed by
Staff, explain why FPL should be permitted to include the
additional costs for responding to continuing Design Basis
Threat requirements.

Finally, I provide on pages 80-81 of Appendix II FPL's
proposed COG tariff sheets, which reflect 2006 projections of
avoided energy costs for purchases from small power
producers and cogenerators and an updated ten year
projection of Florida Power & Light Company's annual
generation mix and fuel prices.

15

Have you prepared or caused to be prepared under your 16 Q. 17 direction, supervision or control an exhibit in this proceeding? 18 Α. Yes, I have. It consists of Schedules E1, E1-A, E1-B, E1-C, E1-D E1-19 E, E2, E10, H1, and pages 8-11 and 78-81 included in Appendix II 20 (KMD-5) and the entire Appendix III (KMD-6). Appendix II contains 21 the FCR related schedules and Appendix III contains the CCR related 22 schedules.

23

24

FUEL COST RECOVERY CLAUSE

Q. What is the proposed levelized fuel cost recovery (FCR) factor 1 for which the Company requests approval? 2 5.869¢ per kWh. Schedule EI, Page 3 of Appendix II shows the A. 3 calculation of the twelve-month levelized FCR factor. Schedule E2, 4 Pages 10 and 11 of Appendix II indicates the monthly fuel factors for 5 January 2006 through December 2006 and also the twelve-month 6 7 levelized FCR factor for the period. 8 Q. Has the Company developed a twelve-month levelized FCR 9 factor for its Time of Use rates? 10 Yes. Schedule E1-D, Pages 6a and 6b of Appendix II, provides a 11 Α. 12 twelve-month levelized FCR factor of 6.257¢ per kWh on-peak and 5.698¢ per kWh off-peak for our Time of Use rate schedules. FCR 13 factors by rate group are presented on Schedule E1-E, Pages 7a and 14 7b of Appendix II. Schedule E1-E also reflects the seasonal demand 15 16 rider pursuant to the Stipulation and Settlement Agreement approved 17 in Docket No. 050045-EI, which incorporates a different on-peak period during the months of June through September. 18 19 20 Were these calculations made in accordance with the Q. procedures approved in predecessors to this Docket? 21 22 Α. Yes. 23 Q. Is FPL proposing an inverted rate structure for the FCR factor 24

1

applicable to residential customers?

2 A. Yes. FPL is proposing an inverted rate structure in order to send a 3 more appropriate price signal to its residential customers. The inverted rate structure recognizes that there is a certain level of 4 5 electric consumption required to maintain a standard level of household services, including lighting, refrigeration, and so forth. 6 7 Conversely, usage above 1,000 kWh is more likely to be discretionary. Charging a higher factor for usage above 1,000 kWh 8 9 provides an incentive for households to reduce discretionary electric 10 usage.

11

Q. Has the Commission previously approved a residential inverted rate structure?

- 14A.Yes. The Commission has previously recognized that inverted rates15are intuitively conservation oriented (Docket 830465-El, Order No.1613537). FPL's base residential rates effective January 1, 2006 will17incorporate an inverted rate with a 1,000 kWh threshold. The inverted18rate for fuel proposed here is consistent with the rate structure19approved for FPL's base rates.
- 20

Q. How will the inverted rate structure affect the total fuel charges
 paid by the residential rate class?

A. The inverted rate structure is not intended to alter the total fuel
 charges paid by the residential rate class, because the inverted rate

1		structure is designed on a revenue-neutral basis. As such, the use
2		of a residential inverted FCR factor is designed to have no effect on
3		the fuel charges of other rate classes.
4		
5	Q.	Has FPL revised its 2005 Estimated/Actual True-up amount that
6		was filed on August 9, 2005 to reflect the impact of Hurricane
7		Katrina and other events in the world energy markets on fuel
8		prices?
9	A.	Yes. The 2005 Estimated/actual True-up amount has been revised
10		to an under-recovery of \$761,656,548 because of the significant
11		changes in fuel prices that have resulted from Hurricane Katrina and
12		other events in the world energy markets. The calculation of the
13		revised 2005 Estimated/actual true-up amount is shown on Revised
14		Schedule E1-B, on page 4a of Appendix II.
15		
16	Q.	What is the revised net true-up amount that FPL is requesting to
17		include in the FCR factor for the January 2006 through
18		December 2006 period?
19	A.	FPL is requesting approval of a net true-up under-recovery of
20		\$769,363,690. This \$769,363,690 under-recovery represents the
21		revised estimated/actual under-recovery for the period January 2005
22		through December 2005 of \$761,656,548 plus the final true-up
23		under-recovery of \$7,707,142 that was filed on March 1, 2005 for the
24		period January 2004 through December 2004. FPL proposes to

include one-half of the total under-recovery of \$769,363,690, or
 \$384,681,845, in the calculation of the FCR factor for the January
 2006 through December 2006 period. The remainder of the true-up
 under-recovery will be included for recovery in the fuel factor for the
 January 2007 through December 2007 period.

6

Q. What adjustments are included in the calculation of the twelve month levelized FCR factor shown on Schedule E1, Page 3 of
 Appendix II?

As shown on line 29 of Schedule E1, Page 3 of Appendix II, the total 10 Α. net true-up to be included in the 2006 factor is a revised under-11 12 recovery of \$384,681,845. This amount divided by the projected retail sales of 106,064,217 MWh for January 2006 through December 13 14 2006 results in an increase of .3627¢ per kWh before applicable 15 revenue taxes. The Generating Performance Incentive Factor (GPIF) 16 Testimony of FPL Witness Pam Sonnelitter, filed on April 1, 2005, 17 calculated a reward of \$10,816,748 for the period ending December 18 2004, which is being applied to the January 2006 through December 19 2006 period. This \$10,816,748 reward divided by the projected retail 20 sales of 106,064,217 MWh during the projected period results in an 21 increase of .0102¢ per kWh, as shown on line 33 of Schedule E1, 22 Page 3 of Appendix II.

23

24 Q. On August 23, 2005 the Commission Staff requested that FPL

1 address the following question in testimony: Is it appropriate for 2 FPL to recover replacement fuel and purchased power costs 3 prior to exhausting all avenues of redress against the party or parties which manufactured, delivered, or installed the 4 5 transformer which caught fire and caused Turkey Point Unit 4 to 6 be shut down for 21 days? 7 Α. Yes. It is appropriate for FPL to recover at this time replacement fuel 8 and purchased power costs associated with the 2005 outage of 9 Turkey Point Unit No. 4 due to a transformer fire, rather than delaying 10 recovery until FPL has sought redress against third parties. 11 12 This approach is consistent with Commission practice reflected in 13 Order No. 15486, Docket No. 840001-EI-A regarding an extended 14 outage at St. Lucie No. 1 due to damage to its thermal shield. FPL 15 had previously recovered the replacement power costs associated 16 with the outage and in this Order, the Commission stated: 17 "We find that FPL acted prudently in incurring the 18 \$183,112,226 of jurisdictional replacement power costs 19 associated with SL1's 1983-84 repair outage and, 20 accordingly, it is not required to refund any portion of those 21 monies." 22 Thus, the Commission did not require FPL to postpone recovery of 23 the replacement power costs associated with the thermal shield 24 outage until its prudence review was completed.

1	
2	FPL's proposed approach for recovery of replacement power costs
3	associated with the Turkey Point Unit 4 transformer fire is also
4	consistent with Order No. 18690, Docket No. 860001-EI-B regarding
5	several outages at Crystal River Unit 3 that occurred in 1986 and
6	1987. Florida Power Corporation (now Progress Energy Florida) had
7	included replacement fuel costs for these outages in its fuel factors
8	In 1988 the Commission concluded that those replacement power
9	costs had been prudently incurred and, accordingly:
10	"ORDERED that the replacement power costs associated with
11	the outages described above have been properly recovered
12	by Florida Power Corporation through our Fuel and
13	Purchased Power Recovery Clause"
14	(Emphasis added). These orders reflect a consistent pattern of the
15	Commission's allowing prudently incurred replacement power costs
16	resulting from nuclear plant equipment failures to be recovered in the
17	course of fuel adjustment proceedings.
18	
19	Additionally, Order No. 12540 in Docket No. 830001-EU shows the
20	Commission's practice of including in subsequent recovery periods
21	the costs or credits associated with the resolution of claims against
22	vendors and insurers at the time any such claims are resolved. For
23	example, that Order states:
24	"Commissioners, what this relates to is the testimony

1 presented by Mr. Silva, where there are some payments being 2 made currently by the Company. For example, to Amoco 3 Company for natural gas, we are paying less than we are 4 being invoiced. The matter is subject to litigation. What we're 5 saying is, on those matters that related to that we would like 6 your assurance that if it is determined at a later date out of 7 this period that the company's liability exceeds the amount 8 which has been paid, that we will be able to come back to you 9 and treat that as a fuel expense. Let us pay now what we 10 think is necessary to continue the supply of that gas but don't 11 preclude us from coming back if the amount is different either 12 up or down in the future.' We find, as Chairman Gunter 13 indicated that it is fair if the risk goes both ways. If the cost 14 goes up or down, it should be subject to recovery either by the 15 customer or the Company."

(Emphasis added). Consistent with this Commission practice, should
 there be any recovery of associated fuel replacement costs via
 litigation or settlement, FPL will flow back these amounts to
 customers through the fuel clause.

20

21 Incremental Hedging Costs

Q. Has FPL included any costs in its FCR factors for the period
 January 2006 through December 2006 consistent with the
 Hedging Resolution approved in Docket No. 011605-EI?

1	Α.	Yes. As stated in the testimony of FPL witness Gerard Yupp, FPL
2		projects to incur \$496,485 in incremental O&M expenses for FPL's
3		expanded hedging program. The \$496,485 is for three (3)
4		employees who are dedicated full time to FPL's expanded hedging
5		program and for computer software license fees. FPL has included
6		\$496,485 in projected incremental hedging expenses in its FCR
7		calculations for the period January 2006 through December 2006.
8		This amount is shown on line 3a of Schedule E1, page 3 of Appendix
9		11.

10

11 St. Lucie Unit 2 Steam Generator Tube Sleeving Project

Q. Is FPL requesting recovery of the St. Lucie Unit 2 steam generator tube sleeving project, through the FCR Clause? A. Yes. As discussed in the testimony of FPL witness J. R. Hartzog, the cost of this sleeving project is estimated to be \$30 million. FPL has included this amount in the calculation of the FCR factor for 2006 on

- 17 Schedule E2, line 1c, pages 10 and 11 of Appendix II.
- 18

Q. What is the basis for requesting recovery of the sleeving project cost through the Fuel Cost Recovery Clause?

A. The Commission in Docket No. 850001-EI-B, Order No. 14546 issued July 8, 1985, addressed costs that may be appropriately included in the calculation of recoverable fuel costs.

24

1 The Commission allowed fuel-related costs that are normally 2 recovered through base rates to be recovered through the fuel clause 3 if they will result in fuel savings to customers and are not being 4 recovered elsewhere. Recovery has been on a case by case basis 5 after Commission approval.

6

The Commission has applied this concept to both nuclear and fossil 7 8 fuels. As described in Mr. Hartzog's testimony, implementation of the 9 sleeving project at St. Lucie Unit 2 will allow the unit to continue to 10 operate at 100% power until the steam generators are replaced in the 11 Fall of 2007. FPL believes it is appropriate to seek FCR Clause 12 recovery of the sleeving project cost because the project will be 13 undertaken to ensure the thermal output from St Lucie Unit No. 2, 14 which is especially important during these times of high fossil fuel 15 costs.

16

17 In 2006, nuclear generation from St. Lucie Unit No. 2 operating at its 18 full rated output is projected to save FPL's customers approximately 19 \$1.26 million per day when compared to generating an equivalent 20 amount of power using fossil fuels. FPL is undertaking the sleeving 21 project so that St. Lucie Unit No. 2 can continue operating at its full 22 rated output and thus continue to provide this low cost nuclear 23 generation to FPL's customers. Because of the large fuel savings that 24 will result from the sleeving project, especially in these times of high

1	fossil fuel costs, FPL believes that recovery of the costs associated
2	with the project through the FCR Clause is appropriate.
3	
4	Recovery of the sleeving project costs would be consistent with the
5	Commission's decision in Docket No. 850001-EI-B, Order No. 14546
6	issued July 8, 1985 and with treatment given to another nuclear plant
7	project, the thermal power uprate of Turkey Point Units 3 and 4. In
8	Order No. PSC-96-1172-FOF-EI, Docket No. 960001-EI, dated,
9	September 19, 1996, the Commission stated:
10	"We also approve Florida Power & Light Company's request
11	to recover costs associated with the thermal power uprate of
12	Turkey Point Units 3 and 4. Florida Power & Light Company's
13	thermal power uprate of Turkey Point Units 3 and 4 will result
14	in an estimated fuel savings of \$198 million, or a present
15	value of \$97 million, through the year 2011 at a cost of
16	approximately \$10 million. The savings are due to the
17	difference between low cost nuclear fuel replacing higher cost
18	fossil fuel."
19	
20	Recovery of the sleeving project is also consistent with other projects

that have been approved for recovery through the clause because
the purpose of these projects has been to keep the cost of fuel down.
For example, in Order No. PSC-95-0450-FOF-EI, Docket No.
950001-EI, dated April 6, 1995, which approved FPL's request to

recover plant modifications to burn a more economic grade of
 residual fuel oil, the Commission stated:

3 "FPL also requested recovery of approximately \$2,754,502 for modifications made to Cape Canaveral Unit #1 and #2, Fort 4 5 Myers Unit #2, Riviera Unit #3, and #4 and Sanford Unit #3. 6 #4, and #5. The modifications will enable the units to operate 7 using a more economic grade of residual fuel oil. The 8 modified units will still comply with emission constraints. FPL 9 asked to recover the costs of the modifications through the 10 Fuel and Purchased Power Cost Recovery Clause, because 11 the modifications will generate significant savings due to lower 12 fuel prices for high sulfur residual oil.

14When we established comprehensive guidelines for the15treatment of fossil fuel-related costs, we recognized that16certain unanticipated costs may be appropriate for recovery17through the fuel clause. Order No. 14546 addresses this18concern by allowing fuel-related expenditures that are not19being recovered through a utility's base rates to be recovered20through the fuel clause. Order 14546 states:

21

13

22 While it is the Commission's intent in this order to establish 23 comprehensive guidelines for the treatment of fossil fuel 24 related costs, it is recognized that certain unanticipated costs

1 may have been overlooked. If any utility incurs, or will incur, a 2 fossil fuel related cost which was not addressed in this order 3 and the utility seeks to recover such cost through its fuel 4 adjustment clause, the utility should present testimony 5 justifying such recovery in an appropriate fuel adjustment 6 hearing.

We have allowed such costs to be recovered through the fuel 8 clause in the past when those expenditures resulted in 9 significant savings to the utility's ratepayers. According to 10 FPL's projections, its ratepayers will realize over \$80 million 11 in fuel savings through 1999. We find that FPL's cost for 12 modifications fits within the policy we established in Order No. 13 14564. We approve recovery of the modification costs 14 through the fuel clause." 15

16

7

Another example is described in Order No. PSC-97-0359-FOF-EI, Docket No. 970001-EI, dated March 31, 1997, approving FPL's request to recover equipment modifications and additions to burn low gravity fuel oil, the Commission stated:

"We also approve the parties' stipulation that Florida Power
and Light Company should recover the costs of implementing
certain equipment modifications and additions at some of its
generating plants and fuel storage facilities to use "low

1 gravity" fuel oil. These modifications will allow FPL to operate 2 these plants using a heavier more economic grade of residual fuel oil called "low gravity" fuel oil. These modifications are 3 4 estimated to save FPL's ratepayers more than \$19 million over the next three years at a cost of approximately \$2 million. 5 Order No. 14546, issued July 8, 1985 allows a utility to 6 7 recover fossil-fuel related costs which result in fuel savings 8 when those costs were not previously addressed in 9 determining base rates. Thus, FPL shall be allowed to 10 recover the projected cost of the modifications through its fuel 11 clause beginning April, 1997." 12

13 Nuclear Fuel Litigation Settlement

14Q.In Mr. Hartzog's testimony, he describes a settlement of FPL's15claim against the DOE for being overcharged for High Assay16Costs in calculating the price for uranium enrichment services17during 1992 and 1993. How does FPL propose to treat the18settlement amount and associated litigation expenses incurred by19FPL?

A. FPL's portion of the settlement is estimated to be \$6,845,200, and FPL's associated litigation expenses are \$403,017. FPL proposes both to flow back this \$6,845,200 settlement to customers through the FCR Clause and to recover the \$403,017 in litigation expenses through the FCR Clause. This resulting net \$6,442,183 reduction in fuel costs

is shown on revised Schedule E1b, line A1g, page 4b of Appendix II.

2

1

3

Recovery of the litigation expenses is consistent with Order No. PSC93-0443-FOF-EI in Docket No. 930001-EI dated March 23, 1993 which
addressed the litigation costs associated with the IMC nuclear fuel
contract arbitration. In approving recovery of those litigation expenses,
the Commission stated:

9 "We find that the litigation costs incurred in the IMC contract
10 dispute were reasonably related to the cost of fuel, reasonably
11 expected to result in reduced fuel cost for the retail ratepayers,
12 and thus appropriate for recovery through the fuel clause."

FPL believes that these same characteristics apply to the litigation expenses associated with the DOE's High Assay Costs. As shown above, FPL recovered a settlement of almost \$7 million for an expenditure of only \$403,017 in litigation expenses. FPL's customers clearly benefited from FPL's litigation initiatives, so it is appropriate for FPL to recover the \$403,017 in litigation expenses through the FCR Clause.

- 20
- 21

CAPACITY COST RECOVERY CLAUSE

23

22

24 Q. Have you prepared a summary of the requested capacity

payments for the projected period of January 2006 through
 December 2006?

Page 3 of Appendix III provides this summary. 3 Α. Yes. Total Recoverable Capacity Payments are \$589,161,828 (line 16) and 4 include payments of \$195,921,936 to non-cogenerators (line1), 5 Short-term Capacity Payments of \$85,098,860 (line 2), payments of 6 \$308,181,900 to cogenerators (line 3), and \$4,254,816 relating to the 7 8 St. John's River Power Park (SJRPP) Energy Suspension Accrual 9 (line 4a), \$35,692,871 of Okeelanta/Osceola Settlement payments (line 5b), \$22,454,060 in Incremental Power Plant Security Costs (line 10 11 6), and \$6,551,137 for Transmission of Electricity by Others (line 7). 12 This amount is offset by \$4,663,115 of Return Requirements on 13 SJRPP Suspension Payments (line 4b), by Transmission Revenues 14 from Capacity Sales of \$6,005,900 (line 8), and by \$56,945,592 of 15 jurisdictional capacity related payments included in base rates (line 16 12). The resulting amount is then increased by a net under-recovery 17 of \$7,117,775 (line 13). The net under-recovery of \$7,117,775 18 includes the final over-recovery of \$5,177,060 for the January 2004 through December 2004 period that was filed with the Commission 19 20 on March 1, 2005, plus the estimated/actual under-recovery of 21 \$12,294,835 for the January 2005 through December 2005 period, 22 which was filed with the Commission on August 9, 2005.

23

24 Incremental Power Plant Security

1Q.Has FPL included a projection of its 2006 Incremental Power2Plant Security Costs in calculating its Capacity Cost Recovery3(CCR) Factors?

4 Α. Yes. FPL has included \$22,454,060 on Appendix III, page 3, Line 6 for projected 2006 Incremental Power Plant Security Costs in the 5 calculation of its CCR Factors. The continuation of this approach is 6 7 provided for in Section 14 of the Stipulation and Settlement 8 Agreement approved in Docket No. 050045-EI. Of the total amount, 9 \$21,579,060 is for nuclear power plant security, which is discussed in Mr. Hartzog's testimony. The remaining \$875,000 is for fossil 10 11 power plant security, which includes the costs of increased security measures for fossil power plants required by the Maritime 12 13 Transportation Act, Coast Guard rule and/or recommendations from 14 the Department of Homeland Security authorities.

15

16Q.On August 23, 2005, the Commission Staff requested that the17following question be addressed in testimony: Should the18Commission allow FPL to recover the \$26.0 million security cost19in 2005 and the projected 2006 amount due to continuing Design20Basis Threat (DBT) Requirements?

A. FPL should be allowed to recover through the CCR Clause the DBT
 costs it incurs in excess of \$40.4 million. The Proposed Resolution
 of Issue that was approved in Order No. PSC-04-1276-FOF-EI
 provides for security costs due to the NRC's Design Basis Threat

requirements over and above that amount to be recovered through
 the CCR clause. Specifically the order states:

3 "\$40.4 million is only an estimate of the DBT costs. The
4 actual amount of those costs almost certainly will vary. In the
5 event the Commission ultimately determines that the actual
6 amount of FPL's prudent and necessary DBT costs exceeds
7 \$40.4 million, then the variance will be recovered via FPL's
8 CCR factor pursuant to the Commission's usual procedures."

9

10 It is important to note that the \$26.0 million Staff quotes in its question 11 is the total amount of security costs to be recovered through the CCR 12 clause, not just DBT costs. The \$26 million for 2005 includes 13 approximately \$13 million for DBT costs. The remaining \$13 million 14 is for other nuclear and fossil power plant security costs either 15 required by the NRC or by the Maritime Transportation Act, Coast 16 Guard rule and/or recommendations from the Department of 17 Homeland Security authorities.

18

19 Calculation of CCR Factors

20 Q. Have you prepared a calculation of the allocation factors for 21 demand and energy?

A. Yes. Page 4 of Appendix III provides this calculation. The demand
 allocation factors are calculated by determining the percentage each
 rate class contributes to the monthly system peaks. The energy

1		allocators are calculated by determining the percentage each rate
2		contributes to total kWh sales, as adjusted for losses, for each rate
3		class.
4		
5	Q.	Have you prepared a calculation of the proposed CCR factors by
6		rate class?
7	Α.	Yes. Page 5 of Appendix III presents this calculation.
8	Q.	What effective date is the Company requesting for the new FCR
9		and CCR factors?
10	Α.	The Company is requesting that the new FCR and CCR factors
11		become effective with customer bills for January 2006 through
12		December 2006. This will provide for 12 months of billing on the FCR
13		and CCR factors for all our customers.
14		
15	Q.	What will be the charge for a Residential customer using 1,000
16		kWh effective January 2006?
17	A.	The typical 1,000 Residential kWh bill is \$105.45. This includes a
18		base charge of \$38.12, a storm restoration surcharge of \$1.68, the
19		fuel cost recovery charge from Schedule E1-E, Page 7 of Appendix
20		II for a residential customer is \$55.30, the Capacity Cost Recovery
21		charge is \$6.03, the Conservation charge is \$1.42, the Environmental
22		Cost Recovery charge is \$.26 and the Gross Receipts Tax is \$2.64.
23		A comparison of the current Residential (1,000 kWh) Bill and the
24		2006 projected Residential (1,000 kWh) Bill is presented in Schedule

E10, Page 78 of Appendix II. Pursuant to the stipulation and settlement agreement approved in Docket No. 050045-EI, the gross receipts tax embedded in each clause factor has been removed and the gross receipts tax is shown all in one line.

5

6 **Q.** Does this conclude your testimony?

7 A. Yes, it does.
APPENDIX I

FUEL COST RECOVERY

GJY-2 DOCKET NO. 050001-EI EXHIBIT_____ PAGES 1-6 SEPTEMBER 9, 2005

.

APPENDIX I

FUEL COST RECOVERY

TABLE OF CONTENTS

PAGE	DESCRIPTION	<u>SPONSOR</u>
3	Projected Dispatch Costs	G. Yupp
3	Projected Availability of Natural Gas	G. Yupp
4	Projected Unit Availabilities and Outage Schedules	G. Yupp
5,6	2006 Risk Management Plan	G. Yupp

.....

			Florida	Power a	nd Light	Compan						<u> </u>	
	Projected Dispatch Costs and Projected Availability of Natural Gas												
	January Through December 2006												
		· · · · · ·			r	r	r,		77	<u>г ·· — – – – – – – – – – – – – – – – – – </u>	Т		
Heavy Oil	January	February	<u>March</u>	<u>April</u>	<u>May</u>	June	<u>July</u>	August	September	October	November	December	
1.0% Sulfur Grade (\$/Bbl)	54.11	54.11	54.11	53.82	53.82	53.82	54.63	54.63	54.63	54.32	54.32	54.33	
1.0% Sulfur Grade (\$/mmBtu)	8.45	8.45	8.46	8.41	8.41	8.41	8.54	8.54	8.54	8.49	8.49	8.49	
Light Oil January February March April May June July August September October November December													
0.05% Sulfur Grade (\$/Bbl)	87.32	87.61	87.15	85.35	83.67	82.50	82.54	83.01	83.68	84.38	85.07	85.77	
0.05% Sulfur Grade (\$/mmBtu)	14.98	15.03	14.95	14.64	14.35	14.15	14.16	14.24	14.35	14.47	14.59	14.71	
Natural Gas Transportation	<u>January</u>	<u>February</u>	March	<u>April</u>	<u>May</u>	June	Juty	August	September	October	November	December	
Firm FGT (mmBtu/Day)	760,000	760,000	760,000	859,000	894,000	894,000	894,000	894,000	894,000	859,000	760,000	760,000	
Firm Gulfstream (mmBtu/Day)	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000	
Non-Firm FGT (mmBtu/Day)	150,000	150,000	150,000	110,000	50,000	50,000	50,000	50,000	50,000	110.000	150.000	150.000	
Non-Firm Gulfstream (mmBtu/Day)	400,000	400,000	400,000	350,000	300,000	300,000	300,000	300,000	300,000	350,000	400,000	400,000	
Total Projected Daily Availability (mmBtu/Day)	1,660,000	1,660,000	1,660,000	1,669,000	1,594,000	1,594,000	1,594,000	1,594,000	1,594,000	1.669,000	1,660,000	1.660,000	
									هه				
Natural Gas Dispatch Price	<u>January</u>	<u>February</u>	<u>March</u>	<u>April</u>	<u>May</u>	<u>June</u>	July	August	September	<u>October</u>	November	December	
Firm FGT (\$/mmBtu)	12.48	12.43	12.17	10.03	9.71	9.74	9.78	9.83	9.81	9.83	10.21	10.58	
Firm Gulfstream (\$/mmBtu)	12.19	12.14	11.89	9.80	9.49	9.52	9.56	9.60	9.58	9.61	9.97	10.33	
Non-Firm FGT (\$/mmBtu)	12.61	12.56	12.30	10.19	9.99	10.02	10.40	10.44	10.08	10.00	10.34	10.71	
Non-Firm Gulfstream (\$/mmBtu)	12.73	12.68	12.43	10.35	10.03	10.06	10.11	10.15	10.13	10.16	10.52	10.88	
ļ								······					
Solid Fuel	<u>January</u>	<u>February</u>	<u>March</u>	April	<u>May</u>	<u>June</u>	July	August	September	October	November	December	
Scherer (\$/mmBtu)	1.69	1.70	1.70	1.71	1.71	1.71	1.72	1.72	1.73	1.73	1.74	1.74	
SJRPP (\$/mmBtu)	2.02	2.03	2.02	2.02	2.03	2.02	2.02	2.03	2.02	2.02	2.03	2.02	

FLORIDA POWER & LIGHT **PROJECTED UNIT AVAILABILITIES & OUTAGE SCHEDULES** PERIOD OF: JANUARY THROUGH DECEMBER, 2006

PLANT/UNIT	PROJECTED FORCED OUTAGE FACTOR (%)	PROJECTED MAINTENANCE OUTAGE FACTOR (%)	PLANNED OUTAGE FACTOR (%)	EAF %	OVERHAUL DATE	OVERHAUL DATE	OVERHAUL DATE	OVERHAUL DATE
Cape Canaveral 1	1.3	9.1	5.8	- 83.9	10/28/06 - 11/17/06	· · · · · · · · · · · · · · · · · · ·		··· ··································
Cape Canaveral 2	1.4	8.2	11.5	78.9	03/04/06 - 04/14/06			
Cutler 5	1.0	0.2	0.0	98.8	NONE			
Cutler 6	1.3	3.3	0.0	95.4	NONE			
Lauderdale 4	0.9	2.8	2.7	93.6	02/11/06 - 02/20/06			
Lauderdale 5	0.9	2.8	2.7	93.6	09/23/06 - 10/02/06			
Lauderdale GTs	1.0	7.2	0.0	91.7	NONE			
Fort Myers 2 CC	0.9	2.5	0.0	96.6	NONE			
Ft. Myers 3	2.3	2.0	0.0	95.7	NONE			
Ft. Myers GTs	0.3	1.3	1.6	96.8	03/01/06 - 03/28/06	** 04/01/06 - 04/30/06 **	r	
Manatee 1	1.0	4.0	0.0	95.0	NONE	040100 040000		
Manatee 2	1.1	4.0	15.3	79.6	09/30/06 - 11/24/06			
Manatee 3	1.9	2.5	1.9	93.6	04/22/06 - 04/28/06			
Martin 1	1.0	4.0	0.0	95.0	NONE			
Martin 2	0.9	4.0	9.6	85.5	01/29/06 - 03/04/06			
Martin 3	0.9	2.5	20.1	76.4	04/08/06 - 04/14/06	** 10/07/06 - 12/15/06		
▲ Martin 4	0.9	2.5	2.6	93.9	09/09/06 - 09/20/06	** 09/23/06 - 09/29/06 **		
Martin 8 CC	1.9	2.5	3.8	91.7	04/29/06 - 05/05/06	09/30/06 - 10/27/06 **	t i i i i i i i i i i i i i i i i i i i	
Port Everglades 1	1.7	1.8	0.0	96.5	NONE			
Port Everglades 2	1.8	2.4	0.0	95.8	NONE			
Port Everglades 3	1.2	4.3	3.8	90.6	01/14/06 - 01/27/06			
Port Everglades 4	1.3	4.2	19.2	75.3	09/30/06 - 12/08/06			
Port Everglades GTs	1.9	9.7	0.0	88.3	NONE			
Putnam 1	1.0	2.5	11.8	84.8	03/11/06 - 04/07/06	04/07/06 - 04/24/06 **	11/18/06 - 11/29/06	**
Putnam 2	1.0	2.5	0.0	96.5	NONE			
Riviera 3	2.6	4.2	0.0	93.2	NONE			
Riviera 4	2.6	2.9	12.3	82.2	10/14/06 - 11/27/06			
Sanford 3	1.6	2.5	17.3	78.6	04/29/06 - 06/30/06			
Sanford 4 CC	1.0	2.5	3.3	93.2	04/15/06 - 04/26/06	** 04/29/06 - 05/10/06 **	05/13/06 - 05/24/06	** 05/27/06 - 06/07/06 **
Sanford 5 CC	1.0	2.5	0.4	96.1	11/11/06 - 11/16/06	**		
Turkey Point 1	1.4	3.5	19.2	75.9	02/25/06 - 05/05/06			
Turkey Point 2	1.3	3.5	0.0	95.2	NONE			
Turkey Point 3	1.2	1.2	68	90.8	03/05/06 - 03/30/06			
Turkey Point 4	1.2	1.2	6.8	90.8	10/29/06 - 11/23/06			
St. Lucie 1	1.3	1.3	0.0	97.5	NONE			
St. Lucie 2	1.0	1.0	16.4	81.5	04/24/06 - 06/23/06			
Saint Johns River Power	Park 1 2.0	1.0	0.0	97.0	NONE			
Saint Johns River Power	Park 2 1.8	1.0	12.1	85.1	02/25/06 - 04/09/06			
Scherer 4	2.0	1.0	10.1	86.9	04/22/06 - 05/28/06			

** Partial Planned Outage

2006 Risk Management Plan

- 1. Identify overall quantitative and qualitative risk management objectives.
 - A. FPL's risk management objectives are to effectively execute a well-disciplined and independently controlled fuel procurement strategy to achieve the goals of fuel price stability (volatility minimization), to potentially achieve fuel cost minimization, and to achieve asset optimization. FPL's fuel procurement strategy aims to mitigate fuel price increases and reduce fuel price volatility, while maintaining the opportunity to benefit from price decreases in the marketplace for FPL's customers. FPL plans to hedge a percentage of its residual fuel oil and natural gas purchases with a combination of fixed price transactions and options.
- 3. Identify and quantify each risk, general and specific, that the utility may encounter with its fuel procurement.
 - A. The potential risks that FPL encounters with its fuel procurement are supplier credit, fuel supply and transportation availability, product quality, delivery timing, weather, environmental and supplier failure to deliver. The utility determines acceptable levels of risk for fuel procurement by performing various analyses that include forecasted/expected levels of activity, forecasted price levels and price changes, price volatility, and Value-at-Risk (VaR) calculations. The analyses are then presented to the Exposure Management Committee for review and approval. Approval is given to remain within specified VaR limits. These VaR limits are specified in FPL's policies and procedures that were filed on a confidential basis with the Commission on June 24, 2002 as part of FPL's response to Staff's Second Request for Production of Documents in Docket No. 011605-EI.
- 4. Describe the utility's oversight of its fuel procurement activities.
 - A. The utility has a separate and independent middle office risk management department that provides oversight of fuel procurement activities at the deal level. In addition, an executive-level, Exposure Management Committee meets monthly to review performance and discuss current procurement/hedging activities and monitors daily results of procurement activity.
- 5. Verify that the utility provides its fuel procurement activities with independent and unavoidable oversight.
 - A. Please see response to No. 4.
- 6. Describe the utility's corporate risk policy regarding fuel procurement activities.
 - A. The utility has a written policy and procedures that define VaR, stop -loss, and duration limits for all forward activity by portfolio. FPL's policies and procedures were filed on a confidential basis with the Commission on June 24, 2002 as part of FPL's response to Staff's Second Request for Production of Documents in Docket No. 011605-EI. In addition, individual procurement strategies must be documented and approved by front and middle office management prior to deal execution.
- Verify that the utility's corporate risk policy clearly delineates individual and group transaction limits and authorizations for all fuel procurement activities.
 A. Please see response to No. 6.

- Describe the utility's strategy to fulfill its risk management objectives.
 A. Please see response to No. 1.
- Verify that the utility has sufficient policies and procedures to implement its strategy.
 A. Please see response to No. 6.
- 13. Describe the utility's reporting system for fuel procurement activities.
 - A. The utility has sufficient systems capability for identifying, measuring, and monitoring all types of risk associated with fuel procurement activities. These systems include: deal capture, a database for maintaining current and historical pricing, deal information, and valuation models, and a reporting system that utilizes the information in the trade capture system and the database.
- 14. Verify that the utility's reporting system consistently and comprehensively identifies, measures, and monitors all forms of risk associated with fuel procurement activities.A. Please see response to No. 13.
- 15. If the utility has current limitations in implementing certain hedging techniques that would provide a net benefit to ratepayers, provide the details of a plan for developing the resources, policies, and procedures for acquiring the ability to use effectively the hedging techniques.
 - A. FPL does not believe that there are any such limitations currently.

APPENDIX II FUEL COST RECOVERY E SCHEDULES

KMD-5 DOCKET NO. 050001-EI FPL WITNESS: K. M. DUBIN EXHIB<u>IT</u> PAGES 1-81 SEPTEMBER 9, 2005

APPENDIX II FUEL COST RECOVERY E SCHEDULES January 2006 – December 2006

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	SPONSOR
3	Schedule E1 Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin
4	Schedule E1-A Calculation of Total True-up (Projected Period)	K. M. Dubin
4a-4b	Schedule E1-B REVISED 2005 Estimated/Actual True-up Calculation	K. M. Dubin
4c-4d	REVISED Schedule E3, August-December 2005 Calculation	G. Yupp/J. Hartzog
4e-4x	REVISED Schedule E4, August-December 2005 Calculation	G. Yupp/J. Hartzog
4y	REVISED Schedule E5, August-December 2005 Calculation	G. Yupp/J. Hartzog
5	Schedule E1-C Calculation Generating Performance Incentive Factor and True-Up Factor	K. M. Dubin
6a-6b	Schedule E1-D Time of Use Rate Schedule	K. M. Dubin
7a-7b	Schedule E1-E Factors by Rate Group	K. M. Dubin
8-9	2004 Actual Energy Losses by Rate Class	K. M. Dubin
10-11	Schedule E2 Monthly Summary of Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin/ G. Yupp/J. Hartzog
12-15	Schedule E3 Monthly Summary of Generating System Data G.	Yupp/J. Hartzog
16-67	Schedule E4 Monthly Generation and Fuel Cost by Unit	G. Yupp/J. Hartzog
68-69	Schedule E5 Monthly Fuel Inventory Data	G. Yupp/J. Hartzog
70-71	Schedule E6 Monthly Power Sold Data	G. Yupp/J. Hartzog
72-73	Schedule E7 Monthly Purchased Power Data	G. Yupp
74-75	Schedule E8 Energy Payment to Qualifying Facilities	G. Yupp
76-77	Schedule E9 Monthly Economy Energy Purchase Data	G. Yupp
78	Schedule E10 Residential Bill Comparison	K. M. Dubin
79	Schedule H1 Three Year Historical Comparison	K. M. Dubin
80-81	Cogeneration Tariff Sheets	K. M. Dubin

FLORIDA POWER & LIGHT COMPANY

FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION

ESTIMATED FOR THE PERIOD: JANUARY 2006 - DECEMBER 2006

			(a)	(b)	(c)
			DOLLARS	MWH	¢/KWH
1	Fuel Cost of System Net Genera	tion (E3)	\$5,517,967,561	99,548,380	5.5430
2	Nuclear Fuel Disposal Costs (E2)	21,863,286	23,524,087	0.0929
3	Fuel Related Transactions (E2)		40,889,573	0	0.0000
За	Incremental Hedging Costs (E2)		496,485	0	
4	Fuel Cost of Sales to FKEC / CK	W (E2)	(68,849,863)	(1,093,551)	6.2960
5	TOTAL COST OF GENERATED	POWER	\$5,512,367,042	98,454,829	5.5989
6	Fuel Cost of Purchased Power (E	Exclusive of	220,881,463	11,577,458	1.9079
7	Economy) (E7) Energy Cost of Sched C & X Eco	n Purch (Florida) (E9)	22,455,000	380,000	5.9092
8	Energy Cost of Other Econ Purch	n (Non-Florida) (E9)	62,898,465	1,026,040	6.1302
9			0	0	0.0000
10			0	0	0.0000
11	Okeelanta/Osceola Settlement (E	2)	\$9,487,979	0	0.0000
12	Payments to Qualifying Facilities	(E8)	156,530,496	5,473,258	2.8599
13	TOTAL COST OF PURCHASED	POWER	\$472,253,403	18,456,756	2.5587
14	TOTAL AVAILABLE KWH (LINE	5 + LINE 13)		116,911,585	
15	Fuel Cost of Economy Sales (E6)	(121,663,200)	(2,165,000)	5.6195
16	Gain on Economy Sales (E6A)		0	0	0.0000
17	Fuel Cost of Unit Power Sales (S	L2 Partpts) (E6)	(1,925,287)	(537,724)	0.3580
18	Fuel Cost of Other Power Sales	(E6)	0	0	0.0000
18a	Revenues from Off-System Sales	5	(11,512,150)	(2,702,724)	0.4259
19	TOTAL FUEL COST AND GAINS	S OF POWER SALES	(\$135,100,637)	(2,702,724)	4.9987
19a	Net Inadvertent Interchange		0	0	+
20	TOTAL FUEL & NET POWER TI (LINE 5 + 13 + 19 + 19a)	RANSACTIONS	\$5,849,519,807 =======	114,208,861	5.1218
21	Net Unbilled Sales		(7,210,409) **	(140,780)	(0.0068)
22	Company Use		17,548,559 **	342,627	0.0165
23	T & D Losses		380,218,787 **	7,423,576	0.3567
24	SYSTEM MWH SALES (Excl sal	es to FKEC / CKW)	\$5,849,519,807	106,583,438	5.4882
25	Wholesale MWH Sales (Excl sale	es to FKEC / CKW)	\$28,495,935	519,221	5.4882
26	Jurisdictional MWH Sales		\$5,821,023,872	106,064,217	5.4882
27	Jurisdictional Loss Multiplier		-	-	1.00065
28	Jurisdictional MWH Sales Adjust Line Losses	ed for	\$5,824,807,538	106,064,217	5.4918
29	FINAL TRUE-UP EST/AC JAN 04 - DEC 04 JAN 05 \$7,707,142 \$761,	F TRUE-UP - DEC 05 656,548	384,681,845	106,064,217	0.3627
	underrecovery underr	ecovery			
30	TOTAL JURISDICTIONAL FUEL	COST	\$6,209,489,383	106,064,217	5.8545
31	Revenue Tax Factor				1.00072
32	Fuel Factor Adjusted for Taxes				5.8587
33	GPIF ***		\$10,816,748	106,064,217	0.0102
34	Fuel Factor including GPIF (Line	32 + Line 33)			5.8689
35	FUEL FACTOR ROUNDED TO I	NEAREST .001 CENTS/	«WH		5.869

** For informational Purposes Only *** Calculation Based on Jurisdictional KWH Sales

SCHEDULE E - 1A

CALCULATION OF TOTAL TRUE-UP (PROJECTED PERIOD) FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2006 - DECEMBER 2006

1.	Estimated/Actual over/(under) recovery (January 2005 - December 2005)	\$ (761,656,548)
2.	Final over/(under) recovery (January 2004 - December 2004)	\$ (7,707,142)
3.	Total over/(under) recovery (2004 Final True-up plus 2005 Estimated/Actual True-Up	\$ (769,363,690)
4.	Total over/(under) recovery to be included in the January 2006 - December 2006 projected period (Schedule E1, Line 29)	\$ (384,681,845)
		106,064,217
5.	TOTAL JURISDICTIONAL SALES (MWH) (Projected period)	

6. True-Up Factor (Lines 3/4) c/kWh:

(0.3627)

C	I CT		TION OF ACTUAL TRUE UP AMOUNT	T		T	1	· · · · · · · · · · · · · · · · · · ·		T
1	- DI									
I LA		<u>Mr</u>	OWER & LIGHT COMPANY						Į	
ю	<u>a th</u>	<u>'E E</u>	STIMATED/ACTUAL PERIOD JANUARY THROUGH DECEMBER 2005						ļ	
Ц		/			(1)	(2)	(3)	(4)	(5)	(6)
	LINI	<u> </u>			ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
	NO.	/			JAN	FEB	MAR	APR	MAY	JUN
A			Fuel Costs & Net Power Transactions						1	
	1	a	Fuel Cost of System Net Generation	\$	264,985,156	S 211,441,472	\$ 260,165,564	\$ 272,526,059	\$ 321.540.834	\$ 362.694.236
		ь	Incremental Hedging Costs	1	367,586	(261,788)	29,792	54,393	41.859	21.451
		c	Nuclear Fuel Disposal Costs	+	1.427.461	1.544.370	2.013.141	1.699.172	1 524 590	1 750 689
		d	Scherer Coal Cars Depreciation & Return	-	356 166	353 769	351 569	340 368	347 169	344.069
H	-		Cas Dinalius Dangasistian & Datum		17.600	333,103	331,007	349,300	34/,100	344,200
	+		DOE DAD End Depression		4/,309	4/,130	40,092	46,255	45,815	45,376
				+		U	U	U	0	0
\vdash	-	B	DUE Settement		0	0	0	0	0	0
	-4	B	Fuel Cost of Power Sola (Per Ab)	1	(9,434,165)	(4,745,879)	(7,796,126)	(4,757,297)	(2,567,759)	(6,507,633
\vdash	-	0	Gains from Off-System Sales		(2,688,330)	(908,475)	(1,882,490)	(688,643)	(409,050)	(956,758
\vdash	-3	a)	Fuel Cost of Purchased Power (Per A7)		17,147,338	14,901,246	17,393,966	18,957,350	19,739,412	19,635,129
	\rightarrow	D	Energy Payments to Qualifying Facilities (Per A8)	_	12,811,303	11,866,241	12,741,788	7,035,037	16,117,452	13,275,111
H	\rightarrow	c	Okeelanta Settlement Amortization including interest		815,656	816,349	816,631	817,065	816,967	816,748
\square	4		Energy Cost of Economy Purchases (Per A9)		6,975,899	10,341,762	8,298,582	11,983,242	12,385,723	6,770,289
	5		Total Fuel Costs & Net Power Transactions	s	292,811,639	\$ 245,396,197	\$ 292,179,109	\$ 308.021.999	\$ 369.583.011	1 397,889,606
	6		Adjustments to Fuel Cost							J
	T	a	Sales to Fla Keys Elect Coop (FKEC) & City of Key West (CKW)	1	(3,230,626)	(3.260.071)	(2,896,967)	(3 843 379)	(3 760 312)	(4 312 842
		Ь	Reactive and Voltage Control / Energy Imbalance Fuel Revenues	+	(57.644)	(81.924)	(49.085)	(08 643)	29 570	(15 476
H	1	c	Inventory Adjustments	+	(34 318)	(16.838)	(37 219)	561 847	(57,500)	(13,470
H	-1	d	Non Recoverable Oil/Tank Bottoms	+	0	(10,0.0)	0	JUL,047	(32,300)	(000,1)
	7	+	Adjusted Total Fuel Costs & Net Power Transactions	5	789 489 052	e 242 037 364	e 799 105 838	484,000 • 205 124 102	3-5 700 770	101 553 728
H	-+			- 🚈	205,405,052	5 242,007,004	\$ 207,173,030	\$ 303,124,192	5 303,199,110	\$ 593,553,728
	+	\rightarrow	bW/b Salar	+						
H۳	-+	+	KWE DRICS	+						
\mathbf{H}	+		Junsciegonal k with dates		,987,484,280	7,234,353,278	7,116,992,947	7,318,195,385	7,690,879,523	9,177,534,931
			Sale for Resale (excluding FKEC & CKW)	<u> </u>	48,617,536	45,822,934	46,203,422	45,123,858	42,871,896	41,423,720
H	-1		Sub-Total Sales (excluding PKEC & CKw)	8	,036,101,822	7,280,176,212	7,163,196,369	7,363,319,243	7,733,751,419	9,218,958,651
\vdash	+	\rightarrow								
\vdash	-4		Jurisdictional % of Total Sales (B1/B3)		99.39501%	99.37058%	99.35499%	99.38718%	99.44565%	99.55067%
	-+									
C+	\rightarrow		True-up Calculation							
	1		Juris Fuel Revenues (Net of Revenue Taxes)	s	312,216,887	\$ 284,800,665	\$ 280,142,015	S 288,144,028	\$ 302,920,333	\$ 361,514,371
	2		Fuel Adjustment Revenues Not Applicable to Period							·
		8	Prior Period True-up (Collected)/Refunded This Period	1-	(11,698,969)	(11,698,969)	(11,698,969)	(11,698,969)	(11.698.969)	(11.698.969)
\Box		ь	GPIF, Net of Revenue Taxes	1	(542,607)	(542,607)	(542,607)	(542.607)	(542 607)	(542 607
		c	Oil Backout Revenues, Net of revenue taxes	+	(3)	0	0	0	0	(074,007)
	3	-	Jurisdictional Fuel Revenues Applicable to Period	s	299,975,306	\$ 272,559,088	\$ 267,900,439	\$ 275 902 452	S 790 678 757	C 349 777 795
	4	8	Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)	e	280 480 052	e 242 037 364	* <u>201,00,00</u>	205 104 100	2,0,010,,57	a 343,612,133
1-+	+	ħ	Nuclear Fuel France - 100% Retail (Acct 518 111)	P	207,407,032	3 242,037,304	\$ <u>2</u> 67,173,636	\$ 305,124,192	\$ 365,799,770	\$ 393,553,728
\vdash	+	Ť	PTP Incremental Fuel a100% Retail			<u> </u>		V		U
\vdash	-+	Ť	D&D Eurod Daymonte - 100% Detail					0	0	0
\vdash	-+	÷	Adi Total Fuel Costs & Net Power Transactions - Evoluting 100% Datail Items	+	v	U	V	<u>v</u>	0	0
		° ľ	(CAa-CAb-CAa-CAA)	1						I
-+		-ť		+	289,489,052	242,037,364	289,195,838	305,124,192	365,799,770	393,553,728
\vdash	-	ť	Jurisdictional Sales % of Total K wh Sales (Line B-6)		99.39501 %	99.37058 %	99.35499 %	99.38718 %	99.44565 %	99.55067 %
F	0	ľ	Junisticuonal Total Fuel Costs & Net Power Transactions (Line C4e x C5 x							
	<u> </u>		1.00003) + (Lules C40,c,d)		287,924,702	\$ 240,670,266	\$ 287,517,261	\$ 303,451,446	\$ 364,008,411	\$ 392,040,034
	7									
	_		True-up Provision for the Month - Over/(Under) Recovery (Line C3 - Line C6)) \$	12,050,604	\$ 31,888,822	\$ (19,616,822)	s (27,548,994)	\$ (73,329,654)	\$ (42,767,239)
\square	8	'	Interest Provision for the Month (Line D10)		(274,715)	(220,644)	(192,791)	(233,492)	(342,931)	(482,543)
	9	aľ	True-up & Interest Provision Beg. of Period - Over/(Under) Recovery		(140,387,623)	(116,912,765)	(73,545,618)	(81,656,263)	(97 739 781)	(159 713 398)
		P	Deferred True-up Beginning of Period - Over/(Under) Recovery	1	(7,707,142)	(7,707,142)	(7 707 142)	(7 707 142)	(7 707 142)	(135,715,550)
	10	1	Prior Period True-up Collected/(Refunded) This Period	1	11,698,969	11.698,969	11.698.969	11,698,969	11 698 960	11 698 060
\square	11	1	End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through	1					,070,707	11,070,709
		ł	C10)	s c	(124.619.907)	S (81,252,760)	\$ (89.363.405)	\$ (105 446 923)	S (167 420 540)	¢ (108 071 353)

	CIR	ATION OF ACTIVAL TRUE UP AMOUNT	1		I	<u>r </u>	1	Т	T
HT C	DIDA	DOWED & LIGUT CONDANY					<u> </u>	<u> </u>	<u> </u>
r Lo	RIDA	POWER & LIGHT COMPANY					<u> </u>		<u> </u>
ron		STIMATED/ACTUAL PERIOD JANUARY THROUGH DECEMBER 2005				(10)		<u></u>	
H	INP			(8)	(9) ESTIMATED	(IU)			(13)
	NO				SED	ESTIMATED	ESTIMATED NOV	DEC	DEDIOD
	<u>10.</u>	Fuel Costs & Net Power Transactions	101	AUG	əlir		NUV	DEC	PERIOD
P +	+	Puer Costs & ret Power Transactions					-		
\vdash		Free Cost of System Net Generation	\$ 521,4/5,554	\$ 452,432,003	\$ 461,405,751	\$ 432,005,351	\$ 366,102,736	\$ 347,794,200	\$ 4,274,628,904
\vdash	+	Nuclear Fuel Dimonal Costs	40,08/	35,542	33,344	33,342	49,580	35,542	490,729
H	+	Nuclear Fuel Lasposal Costs	1,/0/,9/1	1,966,161	1,914,234	1,430,334	1,413,510	2,014,717	20,432,595
\vdash	+	I Scherer Coal Cars Depreciation & Return	342,768	340,567	338,367	336,167	333,966	331,766	4,126,609
-+	+	Gas Pipelines Depreciation & Return	44,938	0	0	0	0	0	323,773
\vdash	+	DOE D&D Fund Payment	0	0	0	0	6,870,000	0	6,870,000
+	+	JDOE Settlement	0	(6,442,18.3)	U (12 (00 702)	U	0	0	(6,442,183)
\vdash	-2	I Fuel Cost of Power Sold (Per Ab)	(5,131,477)	(11,685,723)	(10,680,783)	(9,052,719)	(11,995,550)	(11,672,925)	(96,028,036)
\vdash	+	Crains from Off-System Sales Deal Cost of Durchased Douter (Dec A7)	(906,003)	(499,800)	(647,400)	(286,030)	(865,100)	(2,588,200)	(13,327,399)
-+		President Cost of Purchased rower (rei A/)	33,803,330	17,342,033	10,094,/94	17,239,898	10,741,477	16,015,600	225,634,395
\vdash	+	Cheelanta Sattlement Amortization including interest	816 705	1/,040,034	10,4/1,034	10,/31,032	12,277,032	13,094,032	100,447,500
\vdash		Contential Sectionary Paralases (Der AQ)	010,/55	7 (2) 0(0	010,200	7.016 570	00,00	803,373	
++	4	Energy Cost of Economy Purchases (Per Ay)	10,160,208	7,531,969	7,403,238	7,916,570	7,311,481	6,137,696	103,216,679
┣-┼	2	Total Fuel Costs & Net Power Transactions	\$ 578,748,779	\$ 478,872,759	\$ 493,804,345	\$ 467,209,307	\$ 399,044,717	\$ 372,566,027	\$ 4,696,127,497
\vdash	4-	Adjustments to Fuel Cost	(1000.07.0)		24.400.000	(1.5.9.5.1.5.9)			
\vdash		Sales to Fla Keys Elect Coop (FKEC) & City of Key West (CKW)	(4,339,874)	(4,431,009)	(4,499,500)	(4,295,460)	(4,035,242)	(3,698,767)	(46,604,111)
-+		Reactive and voltage Control / Energy impaiance ruei Revenues	(11,158)						(284,360)
┢╌┼		Inventory Adjustmenus	(927,198)						(513,785)
\vdash	7	A diverted Total Evel Costs & Net Power Transactions	573 470 540	474 441 600	P 400 204 945	4 4/2 012 848	205 000 475	2/8 9/7 2/0	482,368
\mathbf{H}	4		5 313,410,347	\$ 4/4,441,050	\$ 487,304,043	\$ 402,913,840	\$ 393,009,473	\$ 308,807,200	\$ 4,649,207,010
	+	bill/h Calce							
P		KVVD Sales	10 049 712 521	10 1 17 226 220	10.090 100 210	0 135 044 501	0.001 205 025	0.100.000.000	100 010 000 004
\vdash		Cale for Develo (cooliding EVEC & CV30)	10,008,/13,001	10,14/,333,337	10,089,199,319	9,135,044,501	8,096,395,035	8,178,759,208	102,240,887,284
\vdash		Sub Total Sales (excluding FKEC & CKW)	10 109 302 635	30,3/1,192	31,203,399	49,087,009	44,431,203	40,400,081	343,916,873
-+	4-	Sub-Iotal Sales (Excluding FREC & CAW)	10,100,372,033	10,197,700,331	10,140,402,710	9,184,/34,310	8,140,840,277	8,219,139,889	102,/86,804,157
\vdash	4	Jurisdictional % of Total Sales (B1/B3)	99 60746%	99 50605%	99 49447%	99 45907%	99.4530796	00 5084696	N/A
	+		33.001.070	27.3000.77	22.424-170	77.4.7342.74	J7.155.455	33.JU0-1070	N/A
\mathbf{c}^{\dagger}	-	True-up Calculation						<u> </u>	
F†	1	Juris Fuel Revenues (Net of Revenue Taxes)	\$ 396,695,788	\$ 399.612.647	\$ 397,323,190	\$ 359.747.578	\$ 318 844 479	\$ 322.088.066	C 4 024 050 048
\vdash	2	Fuel Adjustment Revenues Not Applicable to Period				<i>• • • • • • • • • • • • • • • • • • • </i>	• 510,0 · ·	5 J##,000,000	
\vdash	-	Prior Period True-un (Collected)/Refinded This Period	(11 698 969)	(11 698 969)	(11 698 969)	(11 608 969)	(11 608 060)	(11 608 060)	(140 387 623)
\vdash	+	b)GPIF. Net of Revenue Taxes	(542,607)	(542 607)	(542 607)	(542 607)	(542 607)	(11,030,007)	(6 511 290)
H		c Oil Backout Revenues, Net of revenue taxes	0	(542,00.)	(0 12,00)		(072,007)	(372,007)	(5)
H	3	Jurisdictional Fuel Revenues Applicable to Period	\$ 384,454,212	\$ 387,371,071	\$ 385,081,614	\$ 347,506,002	\$ 306,602,903	\$ 309,846,490	\$ 3.877.151.131
H	4 a	Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)	e 573,470,549	¢ 474 441 690	¢ 489 304 845	e 462 913 848	e 395 009 475	e 368 867 760	¢ 4 649 207 610
	Ъ	Nuclear Fuel Expense - 100% Retail (Acct. 518.111)	0	0	0	0	0	a 300,007,200 0	δ 1,01,20 7,010 Ω
	c	RTP Incremental Fuel -100% Retail			0	0	0		
	d	D&D Fund Payments -100% Retail		0	0	0	6.870.000		6 870 000
F t	e	Adi Total Fuel Costs & Net Power Transactions - Excluding 100% Retail Items						ĭ	0,070,000
		(C4a-C4b-C4c-C4d)	573,470,549	474,441,690	489,304,845	462,913,848	388,139,475	368,867,260	4 642 337 610
H	5	Jurisdictional Sales % of Total kWh Sales (Line B-6)	99.60746 %	99.50605 %	99.49447 %	99,45902 %	99.45397 %	99.50846 %	N/A
	6	Jurisdictional Total Fuel Costs & Net Power Transactions (Line C4e x C5 x							
		1.00065) +(Lines C4b,c,d)	\$ 571,590,740	\$ 472,405,049	\$ 487,147,702	\$ 460,708,842	\$ 393,141,030	\$ 367,292,715	\$ 4,627,898,198
	7		<u> </u>						
		True-up Provision for the Month - Over/(Under) Recovery (Line C3 - Line C6)	\$ (187,136,528)	s (85,033,978)	\$ (102,066,088)	s (113,202,840)	\$ (86,538,127)	s (57,446,225)	s (750,747,067)
	8	Interest Provision for the Month (Line D10)	(800,353)	(1,177,267)	(1,414,587)	(1,692,843)	(1,949,702)	(2,127,611)	(10,909,481)
	9 a	True-up & Interest Provision Beg. of Period - Over/(Under) Recovery	(191,264,211)	(367,502,123)	(442.014.399)	(533,796,106)	(636.992.820)	(713,781,680)	(140.387.623)
\square	Ъ	Deferred True-up Beginning of Period - Over/(Under) Recovery	(7,707,142)	(7,707,142)	(7,707,142)	(7,707,142)	(7,707,142)	(7,707,142)	(7,707,142)
	10	Prior Period True-up Collected/(Refunded) This Period	11,698,969	11,698,969	11,698,969	11,698,969	11,698,969	11,698,969	140,387,623
	al i	End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through							
		C10)	\$ (375,209,265)	s (449.721.541)	\$ (541,503,248)	\$ (644,699,962)	\$ (721,488,822)	\$ (769.363.690)	\$ (769.363.690)

Florida Power & Light Company 9/9/2005 Revised Schedule E 3 Page 1 of 2

Generating System Comparative Data by Fuel Type

		Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Total
	Fuel Cost of System Net Generation (\$)		-				
1	Heavy Oil	\$123,622,975	\$122,425,250	\$114,043,750	\$67,295,000	\$47,343,175	\$474,730,150
2	Light Oil	\$511,000	\$324,000	\$59,000	\$219,000	\$0	\$1,113,000
3	Coal	\$10,386,000	\$10,083,000	\$10,269,000	\$10,281,000	\$10,203,000	\$51,222,000
4	Gas	\$310,305,030	\$321,296,481	\$301,798,601	\$282,627,736	\$282,228,031	\$1,498,255,878
5	Nuclear	\$7,607,000	\$7,337,000	\$5,835,000	\$5,680,000	\$8,020,000	\$34,479,000
6	Total	\$452,432,005	\$461,465,731	\$432,005,351	\$366,102,736	\$347,794,206	\$2,059,800,028
	System Net Generation (MWH)						
7	Heavy Oil	1,759,804	1,756,677	1,641,235	1,005,581	702,427	6,865,724
8	Light Oil	2,418	1,476	239	857	0	4,990
9	Coal	615,952	592,361	610,224	604,099	598,800	3,021,436
10	Gas	4,968,763	4,476,434	4,356,515	4,018,436	3,968,651	21,788,799
11	Nuclear	2,130,102	2,057,674	1,565,680	1,519,420	2,165,664	9,438,540
12	Total	9,477,039	8,884,622	8,173,893	7,148,393	7,435,542	41,119,489
	Units of Fuel Burned						
13	Heavy Oil (BBLS)	2,734,377	2,696,533	2,498,112	1,523,195	1,072,451	10,524,668
14	Light Oil (BBLS)	6,484	3,886	700	2,578	0	13,648
15	Coal (TONS)	329,699	319,180	326,893	320,991	319,832	1,616,595
16	Gas (MCF)	37,792,541	34,113,465	33,267,407	30,183,922	30,093,310	165,450,645
17	Nuclear (MBTU)	23,716,746	22,831,392	17,274,778	16,596,346	23,506,434	103,925,696
I	BTU Burned (MMBTU)						
18	Heavy Oil	17,500,012	17,257,810	15,987,918	9,748,448	6,863,687	67,357,875
19	Light Oil	37,802	22,657	4,078	15,031	0	79,568
20	Coal	6,242,677	6,009,916	6,191,543	6,089,570	6,056,367	30,590,073
21 (Gas	37,792,541	34,113,465	33,267,407	30,183,922	30,093,310	165,450,645
22	Nuclear	23,716,746	22,831,392	17,274,778	16,596,346	23,506,434	103,925,696
23	Total	85,289,778	80,235,240	72,725,724	62,633,317	66,519,798	367,403,857

Florida Power & Light Company 9/9/2005

4d

Generating System Comparative Data by Fuel Type

	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Total
Generation Mix (%MWH)						
24 Heavy Oil	18.57%	19.77%	20.08%	14.07%	9.45%	16.70%
25 Light Oil	0.03%	0.02%	0.00%	0.01%	0.00%	0.01%
26 Coal	6.50%	6.67%	7.47%	8.45%	8.05%	7.35%
27 Gas	52.43%	50.38%	53.30%	56.21%	53.37%	52.99%
28 Nuclear	22.48%	23.16%	19.15%	21.26%	29.13%	22.95%
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Fuel Cost per Unit						
30 Heavy Oil (\$/BBL)	45.2107	45.4010	45.6520	44.1802	44.1448	45.1064
31 Light Oil (\$/BBL)	78.8094	83.3762	84.2857	84.9496	0.0000	81.5504
32 Coal (\$/ton)	31.5015	31.5903	31.4139	32.0289	31.9011	31.6851
33 Gas (\$/MCF)	8.2107	9.4185	9.0719	9.3635	9.3784	9.0556
34 Nuclear (\$/MBTU)	0.3207	0.3214	0.3378	0.3422	0.3412	0.3318
Fuel Cost per MMBTU (\$/MMBTU)						
35 Heavy Oil	7.0642	7.0939	7.1331	6.9032	6.8976	7.0479
36 Light Oil	13.5178	14.3002	14.4679	14.5699	0.0000	13.9880
37 Coal	1.6637	1.6777	1.6586	1.6883	1.6847	1.6745
38 Gas	8.2107	9.4185	9.0719	9.3635	9.3784	9.0556
39 Nuclear	0.3207	0.3214	0.3378	0.3422	0.3412	0.3318
BTU burned per KWH (BTU/KWH)						
40 Heavy Oil	9,944	9,824	9,741	9,694	9,771	9,811
41 Light Oil	15,634	15,350	17,063	17,539	0	15,945
42 Coal	10,135	10,146	10,146	10,080	10,114	10,124
43 Gas	7,606	7,621	7,636	7,511	7,583	7,593
44 Nuclear	11,134	11,096	11,033	10,923	10,854	11,011
Generated Fuel Cost per KWH (cents/KW	/H)					
45 Heavy Oil	7.0248	6.9691	6.9487	6.6922	6.7399	6.9145
46 Light Oil	21.1332	21.9512	24.6862	25.5543	0.0000	22.3046
47 Coal	1.6862	1.7022	1.6828	1.7019	1.7039	1.6953
48 Gas	6.2451	7.1775	6.9275	7.0333	7.1114	6.8763
49 Nuclear	0.3571	0.3566	0.3727	0.3738	0.3703	0.3653
50 Total	4.7740	5.1940	5.2852	5.1215	4.6775	5.0093

Company:

4e

				Estimated	For The Pe	riod of :	Aug-05					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	 (H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2 3	385	142,042 4,046	51.0	95.0	73.7	10,036	Heavy Oil BBLS -> Gas MCF ->	209,347 126,412	6,400,015 1,000,000	1,339,824 126,412	9,478,651 1,053,393	6.6731 26.0354
4 TURKEY POINT 2 5	394	152,301 4,111	53.4	93.7	77.2	10,124	Heavy Oil BBLS -> Gas MCF ->	227,434 127,940	6,400,006 1,000,000	1,455,579 127,940	10,297,610 1,066,095	6.7614 25.9328
7 TURKEY POINT 3	693	500,620	97.1	97.5	100.0	11,298	Nuclear Othr ->	5,656,071	1,000,000	5,656,071	1,830,300	0.3656
9 TURKEY POINT 4	693	506,164	98.2	97.5	100.0	11,298	Nuclear Othr ->	5,718,708	1,000,000	5,718,708	1,990,700	0.3933
11 LAUDERDALE 4 12	425	129 247,278	78.3	94.7	80.1	8,164	Light Oil BBLS -> Gas MCF ->	 172 2,019,039	5,831,395 1,000,000	1,003 2,019,039	13,500 16,823,546	10.4651 6.8035
14 LAUDERDALE 5 15	424	134 251,310	79.7	93.6	81.2	8,117	Light Oil BBLS -> Gas MCF ->	 177 2,040,048	5,824,859 1,000,000	1,031 2,040,048	13,900 16,998,657	10.3731 6.7640
17 PT EVERGLADES 1 18	206	38,767 0	25.3	95.0	58.2	11,243	Heavy Oil BBLS -> Gas MCF ->	 64,364 23,933	 6,399,991 1,000,000	411,929 23,933	2,910,903 199,408	7.5087
20 PT EVERGLADES 2 21 22	205	29,654 0	19.5	94.4	58.0	11,310	Heavy Oil BBLS -> Gas MCF ->	49,511 18,533	6,400,032 1,000,000	316,872 18,533	2,239,177 154,445	7.5510
23 PT EVERGLADES 3 24 25	375	107,253 5,497	40.4	95.1	65.9	10,763	Heavy Oil BBLS -> Gas MCF ->	170,840 120,217	6,400,012 1,000,000	1,093,378 120,217	7,726,484 1,001,677	7.2040 18.2222
26 PT EVERGLADES 4 27 28	365	131,174 4,672	50.0	95.6	74.3	10,496	Heavy Oil BBLS -> Gas MCF ->	202,487 130,019	6,400,011 1,000,000	1,295,919 130,019	9,157,810 1,083,335	6.9814 23.1878
29 RIVIERA 3 30 31	268	109,001 0	54.7	93.8	68.3	9,967	Heavy Oil BBLS -> Gas MCF ->	 165,329 28,333	6,399,984 1,000,000	1,058,103 28,333	7,482,227 236,104	6.8644

Company:

4

Florida Power & Light

Schedule E4 Page: 2

				Estimated	For The Pe	riod of :	Au	ig-05					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)	 ((H)	(1)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>1</u>	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	72,056 0	34.7	92.8	86.7	10,575	Heavy O Gas	Dil BBLS -> MCF ->	 107,886 71,583	6,399,968 1,000,000	690,467 71,583	4,882,568 596,509	6.7761
35 ST LUCIE 1	839	608,103	97.4	97.5	100.0	10,987	Nuclear	r Othr ->	6,681,307	1,000,000	6,681,307	1,889,500	0.3107
36	714	515,215	97.0	97.5	100.0	10,986	Nuclear	r Othr ->	5,660,659	1,000,000	5,660,659	1,896,300	0.3681
38 39 CAPE CANAVERAL 1 40	394	75,824 3,790	27.2	94.2	72.1	9,557	Heavy O Gas	Dil BBLS -> MCF ->	107,816 70,874	6,400,015 1,000,000	690,024 70,874	4,868,107 590,562	6.4203 15.5821
41 42 CAPE CANAVERAL 2 43 44	394	55,471 2,875	19.9	94.7	69.8	9,694	Heavy O Gas	MCF ->	79,875 54,433	6,400,000 1,000,000	511,200 54,433	3,606,499 453,557	6.5016 15.7759
45 CUTLER 5	68	1,157	2.3	97.6	71.5	14,502	Gas	MCF ->	16,778	1,000,000	16,778	139,727	12.0767
40	138	2,740	2.7	96.6	41.6	15,050	Gas	MCF ->	41,241	1,000,000	41,241	343,671	12.5427
40 49 FORT MYERS 2	1,423	940,980	88.9	94.7	90.9	7,150	Gas	MCF ->	6,728,309	1,000,000	6,728,309	56,063,230	5.9580
5051 51 FORT MYERS 3A_B 52 53	160	517 3,445	1.7	97.1	94.5	11,323	Light Oil Gas	I BBLS -> MCF ->	 884 39,717	5,832,579 1,000,000	5,156 39,717	70,400 330,968	13.6170 9.6072
55 54 SANFORD 3 55	138	4,519 0	4.4	95.8	54.7	10,774	Heavy O Gas	NI BBLS -> MCF ->	7,320 1,840	6,399,727 1,000,000	46,846 1,840	348,886 15,324	7.7204
57 SANFORD 4	940	616,223	88.1	95.7	89.1	7,067	Gas	MCF ->	4,355,114	1,000,000	4,355,114	36,288,791	5.8889
59 SANFORD 5	940	606,451	86.7	95.2	88.7	7,116	Gas	MCF ->	4,315,624	1,000,000	4,315,624	35,959,738	5.9295
60 61 PUTNAM 1 62 63	239	21 15,350	8.7	95.3	75.1	10,773	Light Oil Gas	I BBLS -> MCF ->	 37 165,398 	5,810,811 1,000,000	215 165,398	2,900 1,378,212	13.8095 8.9786

40

Florida Power & Light

Schedule E4 Page: 3

				Estimated	For The Pe	riod of :	<i>μ</i>	\ug-05					
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)		(H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	239	 32 30,023	16.9	95.4	75.5	10,624	Light Gas	Oil BBLS -> MCF ->	 55 318,993	5,818,182 1,000,000	320 318,993	4,300 2,657,931	13.4375 8.8530
67 MANATEE 1 68	788	232,781 24,115	43.8	94.4	52.1	10,503	Heavy Gas	Oil BBLS -> MCF ->	381,455 257,034	6,400,000 1,000,000	2,441,312 257,034	17,213,518 2,170,568	7.3947 9.0009
70 MANATEE 2 71	788	196,638 23,133	37.5	95.8	48.2	10,594	Heavy Gas	Oil BBLS -> MCF ->	324,977 248,406	6,399,994 1,000,000	2,079,851 248,406	14,664,925 2,097,389	7.4578 9.0667
73 MANATEE 3	1,080	700,560	87.2	96.6	88.8	7,076	Gas	MCF ->	4,957,412	1,000,000	4,957,412	39,177,256	5.5923
74 75 MARTIN 1 76	809	212,777 91,190	50.5	95.9	59.3	10,325	Heavy Gas	Oil BBLS -> MCF ->	330,129 1,025,821	6,399,998 1,000,000	2,112,825 1,025,821	 14,927,346 8,542,318	7.0155 9.3676
77 78 MARTIN 2 79	790	199,544 85,519	48.5	96.3	55.7	10,216	Heavy Gas	Oil BBLS -> MCF ->	305,607 956,461	6,399,997 1,000,000	1,955,884 956,461	13,818,462 7,953,358	6.9250 9.3001
81 MARTIN 3	449	291,826	87.4	95.1	89.4	7,480	Gas	MCF ->	2,183,005	1,000,000	2,183,005	18,152,762	6.2204
82 83 MARTIN 4	450	296,099	88.5	94.6	89.7	7,425	Gas	MCF ->	2,198,824	1,000,000	2,198,824	17,984,824	6.0739
84 85 MARTIN 8	1,080	706,368	87.9	96.6	89.9	7,017	Gas	MCF ->	4,957,138	1,000,000	4,957,138	 39,174,637	5.5459
86 87 FORT MYERS 1-12	552	53	0.0	98.4	72.5	17,204	Light	Oil BBLS ->	 153	5,816,993	890	12,100	22.8302
88 89 LAUDERDALE 1-24 90	684	1,484 9,389	2.1	91.7	27.0	19,391	Light Gas	Oil BBLS -> MCF ->	4,854 182,552	5,829,831 1,000,000	28,298 182,552	381,900 1,521,064	25.7345 16.2005
92 EVERGLADES 1-12 93 94	342	47 617	0.3	88.3	65.4	18,630	Light Gas	Oil BBLS -> MCF ->	148 11,508	5,817,568 1,000,000	861 11,508	11,600 95,873	24.6809 15.5386

Company:

				Estimated	For The Pe	eriod of :		Aug-05					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)		(H)	 (I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 ST JOHNS 10	127	90,240	95.5	93.1	98.0	9,786	Coal	TONS ->	35,676	24,753,167	883,094	1,550,800	1.7185
96 97 ST JOHNS 20	105	75,778	97.0	93.6	98.8	9,645	Coal	TONS ->	29,529	24,753,327	730,941	1,283,600	1.6939
98 99 SCHERER 4 100 101	 621	449,934	97.4	94.2	100.0	10,287	Coal 	TONS ->	264,493	17,500,017	4,628,632	7,551,600	1.6784
102 103 TOTAL	20,003	9,477,037				9,000 =======					85,289,738	452,431,504	4.7740

<u>4</u>

				Estimated	For The Pe	riod of :	Se	p-05					
 (A)	 (B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>}</u>	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	157,573 1,438	57.4	95.0	81.2	9,880	Heavy O Gas	ii BBLS -> MCF ->	230,896 93,385	6,400,003 1,000,000	1,477,735 93,385	10,495,025 886,957	6.6604 61.6799
4 TURKEY POINT 2	394	157,814 2,192	56.4	93.7	81.8	10,022	Heavy O Gas	MCF ->	234,700 101,593	6,400,004 1,000,000	1,502,081 101,593	10,667,932 964,939	6.7598 44.0209
7 TURKEY POINT 3	693	486,760	97.6	97.5	100.0	11,217	Nuclear	Othr ->	5,460,053	1,000,000	5,460,053	1,776,200	0.3649
9 TURKEY POINT 4	693	485,097	97.2	97.5	100.0	11,217	Nuclear	Othr ->	5,441,397	1,000,000	5,441,397	1,905,000	0.3927
10 11 LAUDERDALE 4 12	425	29 223,878	73.2	94.7	74.8	8,247	Light Oil Gas	IBBLS -> MCF ->	 39 1,846,419	5,794,872 1,000,000	226 1,846,419	3,200 17,538,795	11.0345 7.8341
13 14 LAUDERDALE 5 15	424	25 174,402	57.1	71.8	77.3	8,172	Light Oil Gas	BBLS -> MCF ->	33 1, 4 25,350	5,848,485 1,000,000	193 1,425,350	2,800 13,539,090	11.2000 7.7632
10 17 PT EVERGLADES 1 18	206	43,072 0	29.0	95.0	65.2	11,094	Heavy O Gas	il BBLS -> MCF ->	70,737 25,133	6,399,975 1,000,000	452,715 25,133	3,211,639 238,701	7.4564
20 PT EVERGLADES 2 21 22	205	31,359 0	21.3	94.4	61.0	11,255	Heavy O Gas	il BBLS -> MCF ->	52,088 19,600	6,400,015 1,000,000	333,364 19,600	2,364,944 186,160	7.5415
22 23 PT EVERGLADES 3 24	375	116,029 4,138	44.5	95.1	71.1	10,652	Heavy O Gas	il BBLS -> MCF ->	183,611 104,910	6,399,998 1,000,000	1,175,110 104,910	8,336,401 996,489	7.1848 24.0814
25 26 PT EVERGLADES 4 27	365	139,442 2,768	54.1	95.6	81.1	10,373	Heavy O Gas	il BBLS -> MCF ->	213,698 107,497	6,400,008 1,000,000	1,367,669 107,497	9,702,387 1,021,092	6.9580 36.8892
20 29 RIVIERA 3 30 31	268	75,405 0	39.1	93.8	93.2	10,410	Heavy O Gas	il BBLS -> MCF ->	111,792 69,500	6,399,975 1,000,000	715,466 69,500	5,078,968 660,142	6.7356

Company:

<u>4</u>

Florida Power & Light

				Estimated	For The Pe	riod of :	Se	p-05					
(A)	(B)	(C)	(D)	(E)	(F)	 (G)	(H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F Ty	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	 113,971 0	56.7	92.8	71.0	9,963	Heavy O Gas	il BBLS -> MCF ->	173,058 28,000	6,399,993 1,000,000	1,107,570 28,000	7,862,489 265,986	6.8987
35 ST LUCIE 1	839	582,598	96.5	97.5	100.0	10,987	Nuclear	Othr ->	6,401,074	1,000,000	6,401,074	1,807,000	0.3102
37 ST LUCIE 2	714	503,220	97.9	97.5	100.0	10,986	Nuclear	Othr ->	5,528,870	1,000,000	5,528,870	1,848,300	0.3673
30 39 CAPE CANAVERAL 1 40 41	394	77,914 2,316	28.3	94.2	78.0	9,463	Heavy O Gas	il BBLS -> MCF ->	110,072 54,778	6,400,002 1,000,000	704,461 54,778	4,989,253 520,337	6.4035 22.4671
42 CAPE CANAVERAL 2 43 44	394	67,219 1,495	24.2	94.7	75.4	9,582	Heavy O Gas	il BBLS -> MCF ->	96,042 43,763	6,400,002 1,000,000	614,669 43,763	4,353,299 415,760	6.4763 27.8100
45 CUTLER 5	68	796	1.6	97.6	67.9	14,678	Gas	MCF ->	11,684	1,000,000	11,684	111,037	13.9494
47 CUTLER 6	138	2,246	2.3	96.6	37.0	15,664	Gas	MCF ->	35,176	1,000,000	35,176	334,181	14.8789
49 FORT MYERS 2	1,423	877,813	85.7	94.7	87.5	7,176	Gas	MCF ->	6,299,303	1,000,000	6,299,303	59,836,002	6.8165
51 FORT MYERS 3A_B 52 53	160	557 2,874	1.5	97.1	81.3	12,144	Light Oi Gas	I BBLS -> MCF ->	999 35,846	5,828,829 1,000,000	5,823 35,846	83,800 340,539	15.0449 11.8489
54 SANFORD 3 55 56	138	10,346 0	10.4	95.8	57.3	10,674	Heavy O Gas	il BBLS -> MCF ->	16,631 4,000	6,400,096 1,000,000	106,440 4,000	795,767 37,984	7.6915
57 SANFORD 4	940	573,978	84.8	95.7	87.0	7,094	Gas	MCF ->	4,072,288	1,000,000	4,072,288	38,681,961	6.7393
59 SANFORD 5	940	574,174	84.9	87.3	86.2	7,147	Gas	MCF ->	4,103,962	1,000,000	4,103,962	38,982,835	6.7894
50 51 PUTNAM 1 52	239	6 9,787	5.7	95.3	58.5	11,599	Light Oi Gas	I BBLS -> MCF ->	 11 113,532	6,000,000 1,000,000	66 113,532	900 1,078,403	15.0000 11.0187

4

Schedule E4 Page: 7

				Estimated	For The Pe	riod of :		Sep-05					
 (A)	(B)	(C)	(D)	(E)	(F)	(G)	. <u>-</u> -	(H)	(I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	239	8 14,552	8.5	95.4	58.8	11,385	Light Gas	Oil BBLS -> MCF ->	 13 165,699	6,076,923 1,000,000	 79 165,699	1,100 1,573,981	13.7500 10.8163
67 MANATEE 1 68	788	132,325 6,696	24.5	50.4	55.5	10,271	Heavy Gas	Oil BBLS -> MCF ->	212,088 70,560	6,399,980 1,000,000	1,357,359 70,560	9,607,930 689,676	7.2609 10.2998
70 MANATEE 2 71	788	203,412 18,537	39.1	95.8	50.5	10,493	 Heavy Gas	Oil BBLS -> MCF ->	332,942 198,237	6,399,998 1,000,000	2,130,828 198,237	15,082,949 1,937,153	7.4150 10.4502
73 MANATEE 3	1,080	616,338	79.3	96.5	81.2	7,105	Gas	MCF ->	4,379,614	1,000,000	4,379,614	40,425,455	6.5590
74 75 MARTIN 1 76	809	225,535 96,657	55.3	95.9	65.9	10,180	 Heavy Gas	Oil BBLS -> MCF ->	 345,421 1,069,227	6,399,993 1,000,000	2,210,692 1,069,227	15,679,548 10,147,170	6.9522 10.4981
77 78 MARTIN 2 79	790	205,261 87,969	51.6	96.3	60.3	10,155	 Heavy Gas	Oil BBLS -> MCF ->	312,758 976,109	6,400,006 1,000,000	2,001,653 976,109	14,196,918 9,256,118	6.9165 10.5220
80 81 MARTIN 3	449	275,388	85.2	95.1	86.8	7,515	Gas	MCF ->	2,069,635	1,000,000	2,069,635	19,621,536	7.1251
82 83 MARTIN 4	450	281,516	86.9	94.6	88.2	7,445	Gas	MCF ->	2,096,108	1,000,000	2,096,108	19,500,753	6.9270
84 85 MARTIN 8	1,080	617,426	79.4	96.5	82.2	7,040	Gas	MCF ->	4,347,291	1,000,000	4,347,291	40,127,084	6.4991
86 87 FORT MYERS 1-12	552	13	0.0	98.4	72.5	17,729	 Light	Oil BBLS ->	38	5,842,105	222	3,200	24.6154
88 89 LAUDERDALE 1-24 90	684	798 6,977	1.6	91.7	24.6	20,278	Light Gas	Oil BBLS -> MCF ->	2,620 142,394	5,829,389 1,000,000	15,273 142,394	217,400 1,352,590	27.2431 19.3864
92 EVERGLADES 1-12 93 94	342	54 83	0.1	88.3	30.7	27,657	Light Gas	Oil BBLS -> MCF ->	155 2,874	5,832,258 1,000,000	904 2,874	12,900 27,371	23.8889 32.9776

Florida Power & Light

Schedule E4 Page: 8

				Estimated I	For The Pe	riod of :		Sep-05					
 (A)	 (B)	 (C)	(D)	(E)	(F)	(G)		(H)	(1)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	ı	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 ST JOHNS 10	127	84,988	93.0	93.1	95.4	9,808	Coal	TONS ->	 34,350	24,266,579	833,557	1,494,900	1.7590
96 97 ST JOHNS 20	105	71,150	94.1	93.6	96.9	9,669	Coal	TONS ->	28,350	24,266,420	687,953	1,233,800	1.7341
99 SCHERER 4 100	621	436,223	97.6	94.2	99.6	10,289	 Coal 	TONS ->	256,480	17,499,984 	4,488,396	7,354,200	1.6859
102 103 TOTAL	20,003	 8,884,637 ======	•			9,031 =====					80,235,365	 461,466,426 ======	5.1940

4÷

				Estimated	For The Pe	eriod of :	0	ct-05					
 (A)	(B)	(C)	 (D)	 (E)	(F)			(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T)	^F uel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	171,101 1,892	60.4	95.0	81.0	9,737	Heavy C Gas)il BBLS -> MCF ->	250,858 78,958	6,399,999 1,000,000	1,605,491 78,958	11,462,195 723,168	6.6991 38.2224
4 TURKEY POINT 2	394	171,540 2,243	59.3	93.7	84.6	9,943	Heavy C Gas	Dil BBLS -> MCF ->	254,616 98,445	6,400,002 1,000,000	1,629,543 98,445	11,633,917 901,614	6.7820 40.1968
7 TURKEY POINT 3	693	503,392	97.7	97.5	100.0	11,059	Nuclea	r Othr ->	5,567,071	1,000,000	5,567,071	1,834,300	0.3644
9 TURKEY POINT 4	693	503,946	97.8	97.5	100.0	11,059	Nuclear	r Othr->	5,573,201	1,000,000	5,573,201	 1,976,300	0.3922
10 11 LAUDERDALE 4 12	425	234,248	74.1	94.7	74.8	8,227	Gas	MCF ->	1,927,274	1,000,000	1,927,274	17,650,091	7.5348
13 LAUDERDALE 5	424		0.0	0.0		0							
15 PT EVERGLADES 1	206	**************************************	0.0	0.0		0							
17 PT EVERGLADES 2 18	205	37,848 0	24.8	94.4	64.6	11,178	Heavy C Gas	Dil BBLS -> MCF ->	62,565 22,667	6,400,032 1,000,000	400,418 22,667	2,855,559 207,623	7.5448
20 PT EVERGLADES 3 21 22	375	117,337 2,644	43.0	95.1	73.6	10,587	Heavy C Gas	Dil BBLS -> MCF ->	185,165 85,208	6,400,011 1,000,000	1,185,058 85,208	8,451,114 780,395	7.2024 29.5157
22 23 PT EVERGLADES 4 24 25	365	145,969 1,979	54.5	95.6	83.9	10,304	Heavy C Gas	Dil BBLS -> MCF ->	223,185 96,174	6,400,004 1,000,000	1,428,385 96,174	10,186,343 880,772	6.9784 44.5059
26 RIVIERA 3 27 28	268	120,547 0	60.5	93.8	78.1	9,893	Heavy O Gas	MCF ->	180,900 34,833	6,399,989 1,000,000	1,157,758 34,833	8,261,907 319,010	6.8537
20 29 RIVIERA 4 30 31	279	78,545 0	37.8	94.4	86.0	10,436	Heavy O Gas	il BBLS -> MCF ->	117,705 66,417	6,400,025 1,000,000	753,315 66,417	5,375,741 608,215	6.8442

Company:

				Estimated	For The Pe	riod of :	00	x-05						
 (A)	(B)	(C)	 (D)	 (E)	(F)	(G)	((H)		(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>(</u>	uel ype		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 ST LUCIE 1	839	40,272	6.5	6.5	100.0	10,986	Nuclear	r Othr -	.>	442,468	1,000,000	442,468	125,100	0.3106
33 34 ST LUCIE 2	714	518,071	97.5	97.5	100.0	10,986	Nuclear	r Othr-	.>	5,692,039	1,000,000	5,692,039	1,898,900	0.3665
35 36 CAPE CANAVERAL 1 37 38	394	68,896 1,005	23.9	94.2	84.0	9,383	Heavy O Gas	MCF -	-> >	96,808 36,328	6,399,998 1,000,000	619,571 36,328	4,411,156 332,685	6.4026 33.1030
30 CAPE CANAVERAL 2 40 41	394	61,881 697	21.4	42.7	81.3	9,483	Heavy O Gas	MCF -	->	87,990 30,343	6,399,966 1,000,000	563,133 30,343	4,009,308 277,897	6.4791 39.8705
42 CUTLER 5	68	1,336	2.6	66.1	64.8	14,641	Gas	MCF -	>	19,560	1,000,000	19,560	179,064	13.4030
43 44 CUTLER 6	138	3,653	3.6	65.5	39.8	14,731	Gas	MCF -	>	53,820	1,000,000	53,820	492,902	13.4931
45 46 FORT MYERS 2	1,423	900,261	85.0	94.7	86.5	7,181	Gas	MCF -:	>	6,464,984	1,000,000	6,464,984	59,206,802	6.5766
47 48 FORT MYERS 3A_B	160	5,333	2.2	97.1	86.4	11,548	Gas	MCF -	>	61,591	1,000,000	61,591	564,139	10.5783
49 50 SANFORD 3 51	138	12,422 0	12.1	95.8	64.9	10,478	Heavy O Gas	il BBLS MCF -	-> >	19,726 3,920	6,400,132 1,000,000	126,249 3,920	948,556 35,933	7.6361
52 53 SANFORD 4	940	591,400	84.6	95.7	86.1	7,103	Gas	MCF -	> .	4,201,221	1,000,000	4,201,221	38,475,109	6.5058
54 55 SANFORD 5	940	488,801	69.9	95.2	85.0	 7,221	Gas	MCF -	>	3,529,874	1,000,000	3,529,874	32,326,942	6.6135
56 57 PUTNAM 1	239	12,912	7.3	69.1	65.8	11,063	Gas	MCF -	>	142,854	1,000,000	142,854	1,308,264	10.1322
58 59 PUTNAM 2	239	20,023	11.3	 95.4	64.6	10,985	Gas	MCF -:	>	219,955	1,000,000	219,955	2,014,359	10.0602
60 61 MANATEE 1 62	788		0.0	0.0		0			-					*==*====********

Company:

40

				Estimated	For The Pe	riod of :		Oct-05					
(A)	(B)	(C)	 (D)	(E)	(F)	(G)		 (H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MANATEE 2 64 65	788	218,205 14,620	39.7	95.8	57.4	10,380	Heavy Gas	Oil BBLS -> MCF ->	353,414 154,968	6,399,998 1,000,000	2,261,849 154,968	16,094,607 1,461,181	7.3759 9.9944
66 MANATEE 3	1,080	640,100	79.7	96.6	81.2	7,109	Gas	MCF ->	4,551,100	1,000,000	4,551,100	40,456,148	6.3203
67 68 MARTIN 1 69	809	224,790 96,339	53.4	95.9	68.2	10,178	Heavy Gas	/ Oil BBLS -> MCF ->	343,110 1,072,705	6,400,003 1,000,000	2,195,905 1,072,705	15,656,525 9,817,441	6.9650 10.1905
71 MARTIN 2 72 73	790	212,152 90,922	51.6	96.3	63.6	10,152	Heavy Gas	oil BBLS -> MCF ->	322,069 1,015,589	6,400,004 1,000,000	2,061,243 1,015,589	14,696,323 9,292,451	6.9273 10.2202
74 MARTIN 3	449	279,789	83.8	95.1	85.5	7,535	Gas	MCF ->	2,108,403	1,000,000	2,108,403	19,277,989	6.8902
76 MARTIN 4	450	288,952	86.3	94.6	87.9	7,448	Gas	MCF ->	2,152,361	1,000,000	2,152,361	19,310,263	6.6829
78 MARTIN 8	1,080	655,162	81.6	96.6	83.1	7,032	Gas	MCF ->	4,607,474	1,000,000	4,607,474	40,957,286	6.2515
80 FORT MYERS 1-12	552	239	0.1	98.4	72.2	17,056	Light	Oil BBLS ->	700	5,825,714	4,078	59,400	24.8536
81 82 LAUDERDALE 1-24	684	21,518	4.2	91.7	27.1	19,373	Gas	MCF ->	416,885	1,000,000	416,885	3,817,886	17.7428
83 84 EVERGLADES 1-12	342	685	0.3	88.3	58.4	19,687	Gas	MCF ->	13,489	1,000,000	13,489	123,491	18.0278
85 86 ST JOHNS 10	127	87,045	92.1	93.1	95.2	9,810	Coal	TONS ->	 34,131	25,019,923	853,955	1,449,100	1.6648
87 88 ST JOHNS 20	105	73,681	94.3	93.6	96.4	9,675	Coal	TONS ->	28,493	25,019,478	712,880	1,209,700	1.6418
90 SCHERER 4	621	449,498	97.3	94.2	99.7	10,288	Coal	TONS ->	264,268	17,500,015	4,624,694	7,609,800	1.6930
91 92 93													

Date: 9/9/2005 Company:	Florida Pow	ver & Light								Schedule E4 Page:	12	
				Estimated	For The Pe	eriod of :	Oct-05					
 (A)	(B)	(C)	(D)	 (E)	 (F)	(G)	 (H)	(i)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 TOTAL	20,003	8,173,891	**********		ay di ta ta ay ay in ni ya ya ya ya	8,897				72,725,704	432,004,968	5.2852

.

Company:

4q

Florida Power & Light

Schedule E4 Page: 13

				Estimated	For The Pe	riod of :	Nov-05					
(A)	(B)	(C)	 (D)	(E)	(F)	 (G)	(H)	(1)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2 3	388	158,788 701	57.1	95.0	87.4	9,867	Heavy Oil BBLS -> Gas MCF ->	230,745 97,035	6,400,004 1,000,000	1,476,769 97,035	 10,202,011 917,840	6.4249 130.9330
4 TURKEY POINT 2 5	397	149,302 1,305	52.7	93.7	89.3	10,000	Heavy Oil BBLS -> Gas MCF ->	219,980 98,212	6,399,991 1,000,000	1,407,870 98,212	9,726,102 929,149	6.5144 71.1991
7 TURKEY POINT 3	717	504,771	97.8	97.5	100.0	10,981	Nuclear Othr ->	5,543,338	1,000,000	5,543,338	1,836,500	0.3638
9 TURKEY POINT 4	717	504,197	97.7	97.5	100.0	10,981	Nuclear Othr ->	5,537,038	1,000,000	5,537,038	 1,974,000	0.3915
10 11 LAUDERDALE 4 12 13	443	59 212,390	66.6	94.7	68.8	8,252	Light Oil BBLS -> Gas MCF ->	 79 1,752,822	5,860,759 1,000,000	463 1,752,822	 6,700 16,581,311	11.3559 7.8070
14 LAUDERDALE 5	442	•	0.0	0.0		0						*********
16 PT EVERGLADES 1	207		0.0	15.8		0	***********					<i></i>
17 18 PT EVERGLADES 2 19 20	206	12,136 0	8.2	94.4	59.7	11,494	Heavy Oil BBLS -> Gas MCF ->	20,078 11,000	6,400,139 1,000,000	128,502 11,000	886,759 104,079	7.3069
21 PT EVERGLADES 3 22 23	380	54,441 1,549	20.5	95.1	73.5	10,793	Heavy Oil BBLS -> Gas MCF ->	85,650 56,171	6,399,988 1,000,000	548,159 56,171	3,782,477 531,420	6.9478 34.3073
24 PT EVERGLADES 4 25 26	370	107,978 1,575	41.1	95.6	85.1	10,497	Heavy Oil BBLS -> Gas MCF ->	164,438 97,674	6,399,987 1,000,000	1,052,401 97,674	7,261,985 923,970	6.7254 58.6648
27 RIVIERA 3 28 29	270	49,106 0	25.3	93.8	81.9	10,336	Heavy Oil BBLS -> Gas MCF ->	73,200 39,083	6,400,000 1,000,000	468,480 39,083	3,234,877 369,695	6.5875
30 RIVIERA 4 31 32	281	119,053 0	58.9	74.2	70.5	9,888	Heavy Oil BBLS -> Gas MCF ->	180,208 23,917	6,399,993 1,000,000	1,153,330 23,917	7,963,915 226,250	6.6894

				Estimated	For The Pe	eriod of :	N	ov-05					
 (A)	(B)	(C)	 (D)	(E)	(F)			(H)	(1)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	ו ד)	Fuel Гуре	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUCIE 1	853	9 (a 19 at a at a g a g a g a g a g a g	0.0	0.0		0							
34 35 ST LUCIE 2	726	510,452	97.7	97.5	100.0	10,806	Nuclea	ar Othr ->	5,515,971	1,000,000	5,515,971	1,869,400	0.3662
36 37 CAPE CANAVERAL 1 38	398	27,294 507	9.7	94.2	83.4	9,698	Heavy (Gas	Dil BBLS -> MCF ->	38,103 25,757	6,399,969 1,000,000	243,858 25,757	1,679,885 243,630	6.1548 48.0532
40 CAPE CANAVERAL 2 41	398	26,688 841	9.6	15.8	76.0	9,696	Heavy (Gas	Dil BBLS -> MCF ->	37,867 24,589	6,400,005 1,000,000	242,349 24,589	1,669,480 232,599	6.2555 27.6574
42	70	289	0.6	32.5	. 58.6	14,958	Gas	MCF ->	4,318	1,000,000	4,318	40,893	14.1499
44	142	686	0.7	95.4	34.9	15,563	Gas	MCF ->	10,673	1,000,000	10,673	100,982	14.7205
40 47 FORT MYERS 2	1,451	836,262	80.1	94.7	81.2	7,135	Gas	MCF ->	5,966,744	1,000,000	5,966,744	56,444,097	6.7496
48 49 FORT MYERS 3A_B 50	166	155 787	0.4	97.1	73.4	12,436	Light C Gas	MCF ->	284 10,060	5,823,944 1,000,000	 1,654 10,060	24,400 95,188	15.7419 12.0951
52 SANFORD 3 53	140	4,751 0	4.7	95.8	57.4	10,670	Heavy (Gas	Dil BBLS -> MCF ->	7,580 2,187	6,400,264 1,000,000	48,514 2,187	353,306 20,728	7.4365
55 SANFORD 4	950	576,335	84.3	95.7	85.1	7,057	Gas	MCF ->	4,067,289	1,000,000	4,067,289	38,475,679	6.6759
57 SANFORD 5	950	560,364	81.9	95.2	83.8	7,122	Gas	MCF ->	3,990,990	1,000,000	3,990,990	37,753,903	6.7374
59 PUTNAM 1	250	3,157	1.8	66.7	56.7	11,521	Gas	MCF ->	36,374	1,000,000	36,374	344,050	10.8980
60	250	4 6,901	3.8	95.4	56.7	11,322	Light O Gas	MCF ->	7 78,133	5,428,571 1,000,000	38 78,133	600 739,172	15.0000 10.7111

				Estimated	For The Pe	eriod of :		Nov-05					
 (A)	(B)	(C)	(D)		(F)	(G)		(H)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 MANATEE 1	795		0.0) 0.0	<u> </u>	0							
66 MANATEE 2 67	795	78,126 5,000	14.5	5 95.8	57.5	5 11,190	Heavy Gas	Oil BBLS -> MCF ->	137,161 52,351	6,399,997 1,000,000	877,830 52,351	6,043,572 507,903	7.7357 10.1581
69 MANATEE 3	1,104	622,528	78.3	96.5	80.1	7,008	Gas	MCF ->	4,362,865	1,000,000	4,362,865	40,054,817	6.4342
70 71 MARTIN 1 72	813	102,918 44,107	25.1	95.9	71.7	10,812	Heavy Gas	Oil BBLS -> MCF ->	155,773 592,710	6,400,018 1,000,000	996,950 592,710	6,877,870 5,597,048	6.6829 12.6897
74 MARTIN 2 75	804	115,000 49,286	28.4	96.3	70.0	10,937	Heavy Gas	Oil BBLS -> MCF ->	172,412 693,512	6,399,990 1,000,000	1,103,435 693,512	7,612,460 6,543,435	6.6195 13.2765
77 MARTIN 3	465	221,305	66.1	95.1	85.3	7,802	Gas	MCF ->	1,726,837	1,000,000	1,726,837	16,272,442	7.3529
79 MARTIN 4	466	235,209	70.1	94.6	88.0	7,744	Gas	MCF ->	1,821,473	1,000,000	1,821,473	16,849,275	7.1635
81 MARTIN 8	1,104	631,624	79.5	96.5	80.7	6,994	Gas	MCF ->	4,417,824	1,000,000	4,417,824	40,559,414	6.4214
83 FORT MYERS 1-12	627		0.0	98.4	~~~~~	0			~~~~~ ~~~~ *****			99 2 2 3 4 9 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
85 LAUDERDALE 1-24 86	766	643 5,708	1.2	91.7	18.9	21,382	Light Gas	Oil BBLS -> MCF ->	2,215 122,901	5,830,248 1,000,000	12,914 122,901	188,100 1,162,602	29.2535 20.3679
88 EVERGLADES 1-12 89 90	383	9 20	0.0	88.3	57.8	19,222	Light Gas	Oil BBLS -> MCF ->	25 421	5,840,000 1,000,000	 146 421	2,100 3,966	23.3333 19.8292
91 ST JOHNS 10	130	88,245	94.3	93.1	95.3	9,726	Coal	TONS ->	34,448	24,915,699	858,296	1,536,500	1.7412
93 ST JOHNS 20	112	76,117	94.4	93.6	97.0	9,568	Coal	TONS ->	29,232	24,915,504	728,330	1,303,800	1.7129
VT													

Date: 9/9/2005 Company:	Florida Pow	er & Light									Schedule E4 Page:	16	
				Estimated	For The Pe	riod of :		Nov-05					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)	 (I)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 SCHERER 4 96 97	625	439,738	97.8	94.2	100.0	10,240	Coal 	TONS ->	257,311 	 17,499,967 	4,502,934	 7,441,000 	1.6921
98 99 TOTAL	20,551 ======	7,148,407				8,762 ======					 62,633,491 	 366,103,337 ======	5.1215

4 u

				Estimated	For The Pe	riod of :	Dec-05					
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)		 (l)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2	388	126,741 961	44.2	95.0	72.1	10,026	Heavy Oil BBLS -> Gas MCF ->	 184,944 96,813	6,400,013 1,000,000	1,183,644 96,813	8,171,129 917,790	6.4471 95.5036
4 TURKEY POINT 2	397	114,888 1,935	39.6	93.7	75.7	10,202	Heavy Oil BBLS -> Gas MCF ->	170,555 100,283	6,400,018 1,000,000	1,091,555 100,283	7,535,347 950,692	6.5589 49.1313
7 TURKEY POINT 3	717	521,405	97.8	97.5	100.0	10,906	Nuclear Othr ->	5,686,449	1,000,000	5,686,449	1,893,000	0.3631
9 TURKEY POINT 4	717	521,405	97.8	97.5	100.0	10,906	Nuclear Othr ->	5,686,449	1,000,000	5,686,449	2,036,300	0.3905
11 LAUDERDALE 4	443	186,700	56.7	94.7	65.6	8,751	Gas MCF ->	1,633,945	1,000,000	1,633,945	15,489,640	8.2965
13 LAUDERDALE 5	442	151,399	46.0	81.5	62.3	8,648	Gas MCF ->	1,309,324	1,000,000	1,309,324	12,412,337	8.1984
14 15 PT EVERGLADES 1 16 17	207	2,164 0	1.4	95.0	48.5	12,003	Heavy Oil BBLS -> Gas MCF ->	3,641 2,667	6,400,165 1,000,000	23,303 2,667	 160,675 25,300	7.4248
17 18 PT EVERGLADES 2 19 20	206	7,631 0	5.0	94.4	52.3	11,723	Heavy Oil BBLS -> Gas MCF ->	12,779 7,667	6,400,188 1,000,000	81,788 7,667	563,980 72,713	7.3906
21 PT EVERGLADES 3 22 23	380	26,851 857	9.8	95.1	64.7	10,948	Heavy Oil BBLS -> Gas MCF ->	42,529 31,181	6,399,962 1,000,000	272,184 31,181	1,876,780 295,647	6.9896 34.4979
24 PT EVERGLADES 4 25 26	370	67,382 2,781	25.5	95.6	67.8	10,926	Heavy Oil BBLS -> Gas MCF ->	104,496 97,836	6,400,025 1,000,000	668,777 97,836	4,611,503 927,490	6.8438 33.3509
27 RIVIERA 3 28 29	270	98,585 0	49.1	93.8	60.6	10,046	Heavy Oil BBLS -> Gas MCF ->	150,427 27,667	6,400,021 1,000,000	962,736 27,667	6,643,041 262,266	6.7384
30 RIVIERA 4 31 32	281	28,636 0	13.7	92.8	67.9	10,601	Heavy Oil BBLS -> Gas MCF ->	43,424 25,667	6,399,986 1,000,000	277,913 25,667	1,917,618 243,341	6.6965

Date: 9/9/2005 Company: Florida Power & Light

4

Schedule E4 Page: 18

				Estimated	For The Pe	riod of :	De	ec-05					
 (A)	(B)	(C)	 (D)	 (E)	(F)	(G)	((H)	(I)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>1</u>	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUCIE 1	853	598,466	94.3		100.0	10,805	Nuclear	r Othr ->	6,466,955	1,000,000	6,466,955	2,175,500	0.3635
34 35 ST LUCIE 2	726	524,389	97.1	97.5	100.0	10,806	Nuclear	r Othr ->	5,666,580	1,000,000	5,666,580	1,915,300	0.3652
36	398	16,765 590	5.9	94.2	74.9	9,699	Heavy O Gas	NIBBLS -> MCF ->	23,571 17,483	6,399,898 1,000,000	150,852 17,483	1,038,446 165,743	6.1941 28.0921
40 CAPE CANAVERAL 2 41 42	398	10,390 169	3.6	94.7	76.7	9,686	Heavy O Gas	MCF ->	14,690 8,262	6,399,864 1,000,000	94,014 8,262	 647,210 78,284	6.2292 46.3220
43 CUTLER 5	70	162	0.3	97.6	54.4	15,403	Gas	MCF ->	2,502	1,000,000	2,502	23,651	14.5995
44	142	492	0.5	90.4	32.4	16,749	Gas	MCF ->	8,243	1,000,000	8,243	78,136	15.8813
40 47 FORT MYERS 2	1,451	832,705	77.1	94.7	78.3	7,185	Gas	MCF ->	5,983,729	1,000,000	5,983,729	 56,725,310	6.8122
48 49 FORT MYERS 3A_B	166	489	0.2	97.1	64.0	13,080	Gas	MCF ->	 6,391	1,000,000	6,391	 60,606	12.3938
50 51 SANFORD 3 52	140	1,436 0	1.4	95.8	53.5	10,920	Heavy O Gas	il BBLS -> MCF ->	2,305 933	6,398,698 1,000,000	14,749 933	 107,319 8,846	7.4735
53 54 SANFORD 4	950	542,476	76.8	95.7	78.8	7,151	Gas	MCF ->	3,879,634	1,000,000	3,879,634	36,778,629	6.7798
55 56 SANFORD 5	950	537,483	76.1	<u></u> 95.2	77.2	7,220	Gas	MCF ->	3,880,937	1,000,000	3,880,937	36,791,063	6.8451
57	250	164	0.1	95.3	49.1	12,357	Gas	MCF ->	2,023	1,000,000	2,023	 19,162	11.6844
59 60 PUTNAM 2	250	1,821	1.0	95.4	56.9	11,441	Gas	MCF ->	20,835	1,000,000	20,835	 197,568	10.8494
61 62 MANATEE 1 63 64	795	11,443 1,072	2.1	94.4	47.7	11,551	Heavy O Gas	ii BBLS -> MCF ->	 20,802 11,444	6,400,058 1,000,000	 133,134 11,444	915,987 108,374	8.0048 10.1095

4w

				Estimated	For The Pe	eriod of :		Dec-05					
 (A)	 (B)	(C)	 (D)	 (E)	(F)	(G)		(H)	(1)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MANATEE 2 66 67	795	37,327 3,264	6.9	95.8	51.7	, <u>11,285</u>	Heavy Gas	y Oil BBLS -> MCF ->	 66,195 34,441	6,399,955 1,000,000	423,645 34,441	2,914,475 333,923	7.8080 10.2305
68 MANATEE 3	1,104	603,919	73.5	96.6	75.8	7,079	Gas	MCF ->	4,275,704	1,000,000	4,275,704	39,312,452	6.5096
69 70 MARTIN 1 71	813	73,771 31,616	17.4	95.9	57.1	11,185	Heavy Gas	y Oil BBLS -> MCF ->	113,168 454,490	6,399,981 1,000,000	724,273 454,490	4,992,993 4,293,107	6.7682 13.5789
72 73 MARTIN 2 74 75	804	78,417 33,607	18.7	96.3	53.1	11,519	Heavy Gas	y Oil BBLS -> MCF ->	118,925 529,338	6,400,017 1,000,000	761,122 529,338	5,247,070 4,994,523	6.6912 14.8616
76 MARTIN 3	465	204,259	59.1	95.1	78.2	7,857	Gas	MCF ->	1,604,882	1,000,000	1,604,882	15,065,295	7.3756
78 MARTIN 4	466	210,720	60.8	94.6	80.5	7,811	 Gas	MCF ->	1,645,979	1,000,000	1,645,979	 15,192,099	7.2096
80 MARTIN 8	1,104	617,018	75.1	96.6	77.4	7,049	 Gas	MCF ->	4,349,536	1,000,000	4,349,536	39,991,349	6.4814
81 82 FORT MYERS 1-12	627		0.0	98.4		0							<u></u>
83 84 LAUDERDALE 1-24	766	1,975	0.4	91.7	18.5	21,861	 Gas	MCF ->	43,174	1,000,000	43,174	409,318	20.7250
85 86 EVERGLADES 1-12	383	16	0.0	88.3	64.5	18,133	 Gas	MCF ->	 299	1,000,000	299	2,782	17.3846
87 88 ST JOHNS 10	130	82,153	85.0	93.1	87.9	9,794	 Coal	TONS ->	32,069	25,092,052	804,677	1,416,500	1.7242
89 90 ST JOHNS 20	112	73,937	88.7	93.6	90.5	9,647	 Coal	TONS ->	28,427	25,092,060	713,292	 1,255,600	1.6982
91 92 SCHERER 4 93 94	625	442,710	95.3	94.2	97.4	10,251	 Coal 	TONS ->	 259,336 	17,500,035 	4,538,389	7,531,300	1.7012
95			****										

•••		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(Units)	(BTU/Unit)	(MMBTU)	(\$)	(C/KWH)	
	Plant Linit	Net Caph	Net	Capac FAC	Equiv Avail FAC		Avg Net	Fuel	Fuel	Fuel Heat	Fuel	As Burned	Fuel Cost	
	 (A)	(B)	(C)	(D)		 (F)	(G)	 (H)	(1)	(J)	 (K)	 (L)	 (M)	
					Estimated	For The Pe	eriod of :	Dec-05						
Date: 9/9/2005 Company:		Florida Powe	er & Light								Schedule E4 Page:	4 20		

Company: Florida Power & Light

Revised Schedule: E5 Page : 1 of 1

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : August 2005 thru December 2005

			August 2005	September 2005	October 2005	November 2005	December 2005	Total
	Heavy Oil							
1 2 3 4	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	2,797,945 50.1150 140,219,000	2,719,114 50.3921 137,022,000	2,506,289 50.4084 126,338,000	1,526,142 51.3681 78,395,000	625,683 52.0503 32,567,000	10,175,173 50.5683 514,541,000
5 6 7 8 9	Burned: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	2,734,377 45.2107 123,622,975	2,696,533 45.4010 122,425,250	2,498,112 45.6520 114,043,750	1,523,195 44.1802 67,295,000	1,072,451 44.1448 47,343,175	10,524,668 45.1064 474,730,150
10 11 12 13 14 15 16	Ending Invent Units Unit Cost Amount Light Oil	ory: (BBLS) (\$/BBLS) (\$)	4,288,612 35.6698 152,974,000	4,311,199 35.7462 154,109,000	4,319,384 35.7736 154,520,000	4,322,324 35.7840 154,670,000	3,875,563 33.9135 131,434,000	3,875,563 33,9135 131,434,000
17 18 19 20 21 22	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	21,608 78.8134 1,703,000	9,381 83.1468 780,000	2,678 84.3913 226,000	3,325 85.1128 283,000	259 81.0811 21,000	37,251 80.8837 3,013,000
24 25 26 27 28	Burned: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	6,484 78.8094 511,000	3,886 83.3762 324,000	700 84.2857 59,000	2,578 84.9496 219,000	0 0	13,648 81.5504 1,113,000
29 30 31 32 33 34	Units Unit Cost Amount Coal - SJRPP	(BBLS) (\$/BBLS) (\$/	689,430 56.7454 39,122,000	694,901 56.9534 39,577,000	696,880 57.0299 39,743,000	697,594 57.0604 39,805,000	697,854 57.0692 39,826,000	697,854 57.0692 39,826,000
35 36 37 38 39 40 41	Purchases: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	59,300 43,4739 2,578,000	60,564 43.5242 2,636,000	61,852 42.4562 2,626,000	63,400 44.6057 2,828,000	60,394 44.1766 2,668,000	305,510 43.6516 13,336,000
42 43 44 45 46	Burned: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	65,205 43,4629 2,834,000	62,699 43.5254 2,729,000	62,624 42,4598 2,659,000	63,679 44.5987 2,840,000	60,495 44.1689 2,672,000	314,702 43.6413 13,734,000
47 48 49 50 51	Ending Invent Units Unit Cost Amount	ory: (Tons) (\$/Tons) (\$)	60,846 45.3275 2,758,000	58,710 45.3926 2,665,000	57,937 45.4287 2,632,000	57,658 45,4404 2,620,000	57,557 45.4332 2,615,000	57,557 45.4332 2,615,000
52 53 54	Coal - SCHER	ER						
55 56 57 58 59	Purchases: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,511,150 1.6315 7,360,000	4,445,910 1.6386 7,285,000	4,609,325 1.6456 7,585,000	4,497,378 1.6525 7,432,000	4,536,385 1.6595 7,528,000	22,600,148 1.6456 37,190,000
60 61 62 63 64	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,628,645 1,6316 7,552,000	4,488,400 1.6384 7,354,000	4,624,708 1.6455 7,610,000	4,502,943 1.6525 7,441,000	4,538,398 1.6594 7,531,000	22,783,093 1.6454 37,488,000
65 66 67 68 69 70 71	Ending Invent Units Unit Cost Amount Gas	ory: (MBTU) (\$/MBTU) (\$)	4,695,880 1,6442 7,721,000	4,653,390 1.6442 7,651,000	4,638,043 1.6442 7,626,000	4,632,723 1.6442 7,617,000	4,630,640 1.6440 7,613,000	4,630,640 1.6440 7,613,000
72 73 74 75 76 77 78 70	Burned: Units Unit Cost Amount Nuclear	(MCF) (\$/MCF) (\$)	37,792,541 8.2107 310,305,030	34,113,465 9.4185 321,296,481	33,267,407 9.0719 301,798,601	30,183,922 9.3635 282,627,736	30,093,310 9,3784 282,228,031	165,450,645 9.0556 1,498,255,878
, 9 80 81 82 83 83	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	23,716,746 0.3207 7,607,000	22,831,392 0.3214 7,337,000	17,274,778 0.3378 5,835,000	16,596,346 0,3422 5,680,000	23,506,434 0.3412 8,020,000	103,925,696 0.3318 34,479,000

SCHEDULE E - 1C

CALCULATION OF GENERATING PERFORMANCE INCENTIVE FACTOR AND TRUE - UP FACTOR FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2006 - DECEMBER 2006

1. TOTAL AMOUNT OF ADJUSTMENTS:	395,498,593
A. GENERATING PERFORMANCE INCENTIVE REWARD (PENALTY)	\$10,816,748
B. TRUE-UP (OVER)/UNDER RECOVERED	\$ 384,681,845
2. TOTAL JURISDICTIONAL SALES (MWH)	106,064,217

3. ADJUSTMENT FACTORS c/kWh:	0.3729
A. GENERATING PERFORMANCE INCENTIVE FACTOR	0.0102
B. TRUE-UP FACTOR	0.3627
FLORIDA POWER & LIGHT COMPANY

SCHEDULE E - 1D Page 1 of 2

DETERMINATION OF FUEL RECOVERY FACTOR TIME OF USE RATE SCHEDULES

JANUARY 2006 - DECEMBER 2006

NET ENERGY FOR LOAD (%)

	•/	
		FUEL COST (%)
ON PEAK	30.60	32.76
OFF PEAK	69.40	67.24
	100.00	100.00

FUEL RECOVERY CALCULATION

TOTAL ON-PEAK OFF-PEAK

1	TOTAL FL	JEL & NET POWER TRANS	\$5,849,519,807	\$1,916,302,689	\$3,933,217,118
2	MWH SAL	ES	106,583,438	32,614,532	73,968,906
3	COST PE	R KWH SOLD	5.4882	5.8756	5.3174
4	JURISDIC	TIONAL LOSS FACTOR	1.00065	1.00065	1.00065
5	JURISDIC	TIONAL FUEL FACTOR	5.4918	5.8794	5.3208
6	TRUE-UP		0.3627	0.3627	0.3627
7					
8	TOTAL		5.8545	6.2421	5.6835
9	REVENUE	E TAX FACTOR	1.00072	1.00072	1.00072
10	RECOVER	RY FACTOR	5.8587	6.2466	5.6876
11	GPIF		0.0102	0.0102	0.0102
12	RECOVER	RY FACTOR including GPIF	5.8689	6.2568	5.6978
13	RECOVER	RY FACTOR ROUNDED	5.869	6.257	5.698
	TO NEA	REST .001 c/KWH			
	HOURS:	ON-PEAK	24.71	%	
		OFF-PEAK	75.29	%	

SCHEDULE E - 1D Page 2 of 2

FLORIDA POWER & LIGHT COMPANY

DETERMINATION OF SEASONAL DEMAND TIME OF USE RIDER (SDTR) FUEL RECOVERY FACTORS

ON PEAK: JUNE 2006 THROUGH SEPTEMBER 2006 - WEEKDAYS 3:00 PM TO 6:00 PM OFF PEAK: ALL OTHER HOURS

NET ENERGY FOR LOAD (%)		
		FUEL COST (%)
ON PEAK	23.79	25.38
OFF PEAK	76.21	74.62
	100.00	100.00

SDTR FUEL RECOVERY CALCULATION

TOTAL ON-PEAK OFF-PEAK

1 TOTAL FUEL & NET POWER TRANS	\$5,849,519,807	\$1,484,608,127	\$4,364,911,680
2 MWH SALES	106,583,438	25,356,200	81,227,238
3 COST PER KWH SOLD	5.4882	5.8550	5.3737
4 JURISDICTIONAL LOSS FACTOR	1.00065	1.00065	1.00065
5 JURISDICTIONAL FUEL FACTOR	5.4918	5.8588	5.3772
6 TRUE-UP	0.3627	0.3627	0.3627
7			
8 TOTAL	5,8545	6.2215	5.7399
9 REVENUE TAX FACTOR	1.00072	1.00072	1.00072
10 SDTR RECOVERY FACTOR	5.8587	6.2260	5.7440
11 GPIF	0.0102	0.0102	0.0102
12 SDTR RECOVERY FACTOR including GPIF	5.8689	6.2362	5.7542
13 SDTR RECOVERY FACTOR ROUNDED	5.869	6.236	5.754
TO NEAREST .001 c/KWH			
	19.86	%	
OFF-PEAK	80.14	%	

Note: All other months served under the otherwise applicable rate schedule. See Schedule E-1D, Page 1 of 2.

FLORIDA POWER & LIGHT COMPANY

SCHEDULE E - 1E Page 1 of 2

FUEL RECOVERY FACTORS - BY RATE GROUP (ADJUSTED FOR LINE/TRANSFORMATION LOSSES)

JANUARY 2006 - DECEMBER 2006

(1)	(2) RATE	(3) AVERAGE	(4) FUEL RECOVERY	(5) FUEL RECOVERY
GROUP	SCHEDULE	FACTOR	LOSS MULTIPLIER	FACTOR
Α	RS-1 first 1,000 kWh	5.869	1.00196	5.530
		5.009	1.00190	0.530
А	GS-1, SL-2, GSCU-1	5.869	1.00196	5.880
A-1*	SL-1, OL-1, PL-1	5.787	1.00196	5.798
В	GSD-1	5.869	1.00189	5.880
С	GSLD-1 & CS-1	5.869	1.00095	5.874
D	GSLD-2, CS-2, OS-2 & MET	5.869	0.99429	5.835
Е	GSLD-3 & CS-3	5.869	0.95824	5.624
А	RST-1, GST-1 ON-PEAK OFF-PEAK	6.257 5.698	1.00196 1.00196	6.269 5.709
В	GSDT-1, CILC-1(G), ON-PEAK HLTF (21-499 kW) OFF-PEAK	6.257 5.698	1.00189 1.00189	6.269 5.709
С	GSLDT-1, CST-1, ON-PEAK HLTF (500-1,999 kW) OFF-PEAK	6.257 5.698	1.00095 1.00095	6.263 5.703
D	GSLDT-2, CST-2, ON-PEAK HLTF (2,000+) OFF-PEAK	6.257 5.698	0.99533 0.99533	6.228 5.671
E	GSLDT-3,CST-3, ON-PEAK CILC -1(T) OFF-PEAK & ISST-1(T)	6.257 5.698	0.95824 0.95824	5.996 5.460
F	CILC -1(D) & ON-PEAK ISST-1(D) OFF-PEAK	6.257 5.698	0.99374 0.99374	6.218 5.662

WEIGHTED AVERAGE 16% ON-PEAK AND 84% OFF-PEAK

FLORIDA POWER & LIGHT COMPANY

DETERMINATION OF SEASONAL DEMAND TIME OF USE RIDER (SDTR) FUEL RECOVERY FACTORS

ON PEAK: JUNE 2006 THROUGH SEPTEMBER 2006 - WEEKDAYS 3:00 PM TO 6:00 PM OFF PEAK: ALL OTHER HOURS

(1)		(2)	(3)	(4)	(5) SDTR
GROUP	OTHERWI RATE	SE APPLICABLE SCHEDULE	AVERAGE FACTOR	FUEL RECOVERY LOSS MULTIPLIER	FUEL RECOVERY FACTOR
В	GSD(T)-1	ON-PEAK OFF-PEAK	6.236 5.754	1.00189 1.00189	6.248 5.765
С	GSLD(T-)1	ON-PEAK OFF-PEAK	6.236 5.754	1.00095 1.00095	6.242 5.760
D	GSLD(T)-2	ON-PEAK OFF-PEAK	6.236 5.754	0.99533 0.99533	6.207 5.727

Note: All other months served under the otherwise applicable rate schedule. See Schedule E-1E, Page 1 of 2.

Florida Power & Light Company 2004 Actual Energy Losses by Rate Class

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Line <u>No</u>	Rate Class	Delivered MWH Sales	Expansion Factor	Delivered Energy at Generation	Delivered Efficiency	Losses	Fuel Cost Recovery Multiplier
GS-1 Sec 5,891,727 1.07161996 6,313,693 0.933167 421,965 1.00196 GSD-1 Pri 671,51 1.04636243 70,265 0.955692 3,113 GSD-1 Sec 22,611,485 1.07161996 2,430,918 0.933367 1.619,434 Subbala GSD-1 22,678,636 1.07154518 24,301,183 0.933362 1.622,547 1.00189 0 Sc3, 2 Sec - 1.07161996 24,301,183 0.933562 939 0.97834 13 GSLD-1 Pri 387,545 1.04636243 21,198 0.955692 179.688 14 GSLD-1 Sec 0.979337 1.07161996 1.0442,725 0.93167 14441 15 Subtata GSLD-1 10.180,872 1.07161956 240,817 0.934002 713.355 1.00105 16 SLD Sec 1.023,277 1.07161956 240,817 0.934107 144491 1.00105 17 Sc1 Sec 1.0436243 405,511 0.04636243 40,393107 144491 1.00105 18 Subtata GSLD-1 / CS-1 1.04436243 1.07399	1	RS-1 Sec	52,490,748	1.07161996	56,250,134	0.933167	3,759,386	1.00196
5 GND-1 Pri 671.51 1.04636243 70.265 0.955692 3.113 6 GND-1 Pri 22.678.635 1.0715962 242.30.918 0.933167 1.619.434 7 Subtotal GSD-1 22.678.635 1.07154518 24.301.183 0.933232 1.622.547 1.001897 9 08-2 Pri 20.259 1.04636243 21.198 0.955692 939 0.97834 13 GSLD-1 Pri 3.87,545 1.04636243 40.05,13 0.955692 17.968 14 GSLD-1 Sec 9.793,327 1.07161996 1.0444.725 0.933167 701.398 15 Subtotal GSLD-1 10.180.872 1.07065831 10.900237 0.934605 719.355 1.00106 16 S.S. Dec 20.327 1.07161996 1.28.74 0.935662 2.837 15 Subtotal GSLD-1 10.4636243 470.399 0.955692 2.8343 16 SLD-2 Pri 449.556 1.046436243 470.399 0.955692 2.0264 <	2 3 4	GS-1 Sec	5,891,727	1.07161996	6,313,693	0.933167	421,965	1.00196
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	GSD-1 Pri GSD-1 Sec	67,151 22,611,485_	1.04636243 1.07161996	70,265 24,230,918	0.955692 0.933167	3,113 1,619,434	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	Subtotal GSD-1	22,678,636	1.07154518	24,301,183	0.933232	1,622,547	1.00189
	8 9 10	OS-2 Pri	20,259	1.04636243	21,198	0.955692	939	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	Subtotal OS-2	20,259	1.04636243	21,198	0.955692	939	0.97834
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 13	GSLD-1 Pri GSLD-1 Sec	387,545	1.04636243	405,513	0.955692	17,968	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	Subtotal GSLD-1	10,180,872	1.07065851	10,900,237	0.934005	719.365	1.00106
	16 17 18	CS-1 Pri CS-1 Sec	61,190 202 327	1.04636243	64,027 216 817	0.955692 0.933167	2,837	
20 20<	19	Subtotal CS-1	263,517	1.06575501	280,844	0.938302	17,328	0.99648
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 21 22	Subtotal GSLD-1 / CS-1	10,444,389	1.07053479	11,181,082	0.934113	736,693	1.00095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 23 24	GSLD-2 Pri GSLD-2 Sec	449,556 1.154,135	1.04636243 1.07161996	470,399 1.236,794	0.955692 0.933167	20,843 82,659	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	Subt GSLD-2	1,603,692	1.06453962	1,707,193	0.939373	103,502	0.99534
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26 27 28	CS-2 Pri CS-2 Sec	43,702 108,324	1.04636243 1.07161996	45,728 116,08 2	0.955692 0.933167	2,026 7,758	
	29	Subtotal CS-2	152,026	1.06435933	161,810	0.939532	9,784	0.99517
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 31 32	Subtotal GSLD-2 / CS-2	1,755,717	1.06452401	1,869.003	0.939387	113,286	0.99533
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 34	GSLD-3 Tm	206,339	1.02486344	211,469	0.975740	5,130	0.95824
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 36	CS-3 Tm	2,045	1.02486344	2,096	0.975740	51	0.95824
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	Subtotal GSLD-3 / CS-3_	208,384	1.02486344	213,565	0.975740	5,181	0.95824
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 39 40	ISST-1 Sec	0	1.07161996	0	0.000000	0	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41 42	SST-1 Pri SST-1 Sec	4,897 19 897	1.04636243	5,125	0.955692	227	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	Subtotal SST-1 (D)	24,795	1.06663106	26,447	0.937531	1,652	0.99730
47 CILC-1D Pri 1,096,887 1.04636243 1,147,741 0.955692 50,854 48 CILC-1D Sec 2,055,775 1.07161996 2,203,009 0.933167 147,235 49 Subtotal CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374 50 51 CILC-1G Pri 640 1.04636243 670 0.955692 30 52 CILC-1G Sec 215,071 1.07161996 230,474 0.933167 15,403 53 Subtotal CILC-1G 215,711 1.07154500 231,144 0.933232 15,433 1.00189 54 54 55 Subtotal CILC-1G 3,368,373 1.06339023 3,581,895 0.940389 213,522 0.99427 56 55 Subtotal GSD-1 & CILC-1G 22,894,347 1.07154518 24,532,328 0.933232 1.637,980 1.00189 58 CILC-1T Trn 1,468,123 1.02486344 1,504,626 0.975740 36,503 0.95824 61 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.94088	44 45 46	SST-1 Trn	101,424	1.02486344	103,946	0.975740	2,522	0.95824
48 CILC-1D Sec 2,055,775 1.07161996 2.203,009 0.933167 147,235 49 Subtotal CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374 50 51 CILC-1G Pri 640 1.04636243 670 0.955692 30 52 CILC-1G Sec 215,071 1.07161996 230,474 0.933167 15,403 53 Subtotal CILC-1G 215,711 1.07154500 231,144 0.933232 15,433 1.00189 54	47	CILC-1D Pri	1,096,887	1.04636243	1,147,741	0.955692	50,854	
49 Subtotal CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374 50 51 CILC-1G Pri 640 1.04636243 670 0.955692 30 52 CILC-1G Sec 215,071 1.07161996 230,474 0.933167 15,403 53 Subtotal CILC-1G 215,711 1.07154500 231,144 0.933232 15,433 1.00189 54	48	CILC-1D Sec	2,055,775	1.07161996	2.203,009	0.933167	147,235	0.000
51 CILC-1G Pri 640 1.04636243 670 0.955692 30 52 CILC-1G Sec 215.071 1.07161996 230.474 0.933167 15.403 53 Subtotal CILC-1G 215.711 1.07154500 231.144 0.933232 15.433 1.00189 54 Subtotal CILC-1D / CILC-1G 3.368.373 1.06339023 3.581.895 0.940389 213.522 0.99427 55 Subtotal GSD-1 & CILC-1G 22.894.347 1.07154518 24.532.328 0.933232 1.637.980 1.00189 58 CILC-1T Trn 1.468,123 1.02486344 1.504,626 0.975740 36,503 0.95824 60 Subtotal ISST-D & CILC-1D 3.152.661 1.06283226 3.350,750 0.940882 198,089 0.99374	49 50	Subtotal CILC-ID		1.06283226	3,350,750	0.940882	198,089	0.99374
53 Subtotal CILC-1G 215,711 1.07154500 231,144 0.933232 15,433 1.00189 54 Subtotal CILC-1D / CILC-1G 3,368,373 1.06339023 3,581,895 0.940389 213,522 0.99427 56 Subtotal GSD-1 & CILC-1G 22,894,347 1.07154518 24,532,328 0.933232 1,637,980 1.00189 57 Subtotal GSD-1 & CILC-1G 22,894,347 1.07154518 24,532,328 0.933232 1,637,980 1.00189 58 CILC-1T Trn 1,468,123 1.02486344 1,504,626 0.975740 36,503 0.95824 60 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374	51 52	CILC-1G Pri CILC-1G Sec	640 215,071	1.04636243 1.07161996	670 230,474	0.955692 0.933167	30 15,403	
54 Subtotal CILC-1D / CILC-1G 3,368,373 1.06339023 3,581,895 0.940389 213,522 0.99427 56 Subtotal GSD-1 & CILC-1G 22,894,347 1.07154518 24,532,328 0.933232 1,637,980 1.00189 58 CILC-1T Trn 1,468,123 1.02486344 1,504,626 0.975740 36,503 0.95824 60 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374	53	Subtotal CILC-1G	215,711	1.07154500	231,144	0.933232	15,433	1.00189
57 Subtotal GSD-1 & CILC-1G 22,894,347 1.07154518 24,532,328 0.933232 1.637,980 1.00189 58 59 CILC-1T Tm 1,468,123 1.02486344 1,504,626 0.975740 36,503 0.95824 60 61 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374	54 55 56	Subtotal CILC-1D / CILC-1G	3,368,373	1.06339023	3,581,895	0.940389	213,522	0.99427
58 59 CILC-1T Tm 60 61 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374	57	Subtotal GSD-1 & CILC-1G	22,894,347	1.07154518	24,532,328	0.933232	1,637,980	1.00189
61 Subtotal ISST-D & CILC-1D 3,152,661 1.06283226 3,350,750 0.940882 198,089 0.99374	58 59 60	CLC-1T Tm	1,468,123	1.02486344	1,504,626	0.975740	36,503	0.95824
	61	Subtotal ISST-D & CILC-1D	3,152,661	1.06283226	3,350,750	0.940882	198,089	0.99374

Florida Power & Light Company 2004 Actual Energy Losses by Rate Class

Line No 63 M 64 65 S 66 C 67 C 68 S 70 S 71 S 72 S 74 T 75 F F F S C C S M S 77 T 78 T 79 S 70 C 71 S 74 T 75 S 76 F 77 S 77 S 77 S 77 S 77 S 78 S 79 S 70 S 71 S 71 S 72 S 74 S 75 S 76 F 77 S 77 S 77 S 77 S 78 S 79 S 70 S 70 S 70 S 71 S 70 S 71 S 71 S 72 S 74 S 75 S 76 F 77 S 77 S 77 S 77 S 78 S 79 S 79 S 70 S 70 S 70 S 70 S 71 S 70 S	Rate Class	Delivered MWH Sales 93.269	Expansion Factor	Delivered Energy at <u>Generation</u> 97.593	Delivered Efficiency 0.955692	<u>Losses</u>	Fuel Cost Recovery <u>Multiplier</u> 0.97834
64 65	Subtotal OS-2, GSLD-2, CS-2, & N	1,869,245	1.06342097	1.987,795	0.940361	118,549	0.99429
66 67		100 101	1.07161006	116 015	0.033167	7.914	1 00106
68	OL-1 Sec	103,101	1.0/101990	110,212	0.933107	/,014	1.00190
69 70	SL-1 Sec	426,214	1.07161996	456,739	0.933167	30,525	1.00196
71	Subtotal OL-1 / SL-1	_535,315	1.07161996	573,654	0.933167	_38,339	1.00196
72 73 74	SL-2 Sec	62,907	1.07161996	67,413	0.933167	4,505	1.00196
75	Total FPSC	99,144,067	1.07021463	106,105,431	0.934392	6,961,364	1.00065
76	FMPA Trn FMPA Pri	540,819 0	1.02486344 1.04636243	554,266 0	0.975740 0.000000	13,447 0	
	Subtotal FMPA	540,819	1.02486344	554,266	0.975740	13,447	
	FR Tm	0	1.02486344	0	0.000000	0	
	FR Pri Subtotal FR	0 0	1.04636243 0.00000000	0 0	0.000000 0.000000	0 0	
	CONTR Tm	994,567	1.02486344	1,019,295	0.975740	24,728	
	Subtotal CONTR	994,567	1.04636243 1.02486344	1,019,295	0.000000 0.975740	24,728	
	MDWSCM Tm	5,518	1.02486344	5,656	0.975740	137	
	Subtotal MDWSCM	5,518	1.02486344	5,656	0.975740	137	
77	Total FERC Sales	1,540,904	1.02486344	1,579,217	0.975740	38,312	
78 79	Total Company	100.684.971	1.06952057	107.684.648	0.934998	6.999.676	
80 81 82	Company Use	140,543	1.07161996	150,609	0.933167	10,066	
82 83 84	Total FPL	100,825,514	1.06952349	107,835,256	0.934996	7,009,742	1.00000
85	Summary of Sales by Voltage:						
80 87 88	Transmission	3,318,836	1.02486344	3,401,354	0.975740	82,518	
89 90	Primary	2,225,098	1.04636243	2,328,258	0.955692	103,161	
91 92	Secondary	95,141,038	1.07161996	101,955,035	0.933167	6,813,998	
93	Total	100,684,971	1.06952057	107,684,648	0.934998	6,999,676	

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2006 - DECEMBER 2006

SCHEDULE E2 Page 1 of 2

LINE	(a)	(b)	(C) ESTIMATED -	(d)	(e)	(f)	(g) 6 MONTH	LINE
NO.	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	SUB-TOTAL	NO.
A1 FUEL COST OF SYSTEM GENERATION	\$364,118,015	\$347,912,262	\$415,823,602	\$406,684,095	\$534,961,252	\$521,164,745	\$2,590,663,971	A1
1a NUCLEAR FUEL DISPOSAL	2,029,615	1,831,328	1,653,950	1,800,836	1,504,727	1,568,186	10,388,642	1a
1b COAL CAR INVESTMENT	329,566	327,366	325,165	322,965	320,765	318,566	1,944,393	1b
1c NUCLEAR SLEEVING	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	15,000,000	1c
1d DOE DECONTAMINATION AND	0	0	0	0	0	0	0	1d
DECOMMISSIONING COSTS								
1e INCREMENTAL HEDGING COSTS	41,374	41,374	41,374	41,374	41,374	41,374	248,243	1e
2 FUEL COST OF POWER SOLD	(12,522,227)	(12,305,847)	(12,782,348)	(7,624,727)	(6,335,294)	(6,522,234)	(58,092,677)	2
2a REVENUES FROM OFF-SYSTEM SALES	(2,363,750)	(1,195,500)	(769,750)	(510,000)	(320,500)	(458,100)	(5,617,600)	2a
3 FUEL COST OF PURCHASED POWER	17,722,418	15,211,000	15,399,200	16,764,028	21,233,785	18,353,206	104,683,637	3
3b OKEELANTA/OSCEOLA SETTLEMENT	801,587	799,601	797,615	795,629	793,644	791,658	4,779,734	3b
3C QUALIFYING FACILITIES	14,180,208	13,363,208	15,059,208	8,008,208	10,926,208	14,887,208	76,424,248	3c
4 ENERGY COST OF ECONOMY PURCHASES	6,830,545	5,908,465	6,804,593	6,797,099	7,432,546	7,463,258	41,236,506	4
4a FUEL COST OF SALES TO FREC/CRVV	(4,932,068)	(4,903,883)	(5,023,125)	(5,381,159)	(0,005,500)	(5,889,041)	(31,854,837)	4a
5 TOTAL FUEL & NET POWER TRANSACTIONS (SUM OF LINES A-1 THRU A-4)	\$388,735,283	\$369,429,374	\$439,829,484	\$430,198,347	\$567,392,947	\$554,218,826	\$2,749,804,260	5
6 SYSTEM KWH SOLD (MWH) (Exct sales to FKEC / CKW)	8,269,527	7,842,707	7,530,721	7,732,388	8,088,656	9,629,622	49,093,621	6
7 COST PER KWH SOLD (¢/KWH)	4.7008	4.7105	5.8405	5.5636	7.0147	5.7554	5.6011	7
7a JURISDICTIONAL LOSS MULTIPLIER	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	1.00065	7a
7b JURISDICTIONAL COST (¢/KWH)	4.7039	4.7135	5.8443	5.5672	7.0192	5.7591	5.6048	7b
9 TRUE-UP (¢/KWH)	0.3895	0.4107	0.4277	0.4166	0.3983	0.3344	0.3937	9
10 TOTAL	5.0934	5.1242	6.2720	5.9838	7.4175	6.0935	5.9985	10
11 REVENUE TAX FACTOR 0.00072	0.0037	0.0037	0.0045	0.0043	0.0053	0.0044	0.0043	11
12 RECOVERY FACTOR ADJUSTED FOR TAXES	5.0971	5.127 9	6.2765	5.9881	7.4228	6.0979	6.0028	12
13 GPIF (¢/KWH)	0.0110	0.0115	0.0120	0.0117	0.0112	0.0094	0.0111	13
14 RECOVERY FACTOR including GPIF	5.1081	5.1394	6.2885	5.9998	7.4340	6.1073	6.0139	14
15 RECOVERY FACTOR ROUNDED TO NEAREST .001 ¢/KWH	5.108	5.139	6.289	6.000	7.434	6.107	6.014	15

SCHEDULE E2 Page 2 of 2

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2006 - DECEMBER 2006

(h) (i) (k) (I) (n) (i) (m) LINE LINE ESTIMATED 12 MONTH NO. JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER PERIOD NO. A1 FUEL COST OF SYSTEM GENERATION \$572,796,709 \$562,909,109 \$516.808,770 \$479,554,499 \$5,517,967,561 A1 \$407,474,256 \$387,760,247 1a NUCLEAR FUEL DISPOSAL 1,971,796 1.988.830 1,919,396 1,938,926 1,628,246 2,027,450 \$21,863,286 1a 1b COAL CAR INVESTMENT 316,364 314,164 311,963 309,763 307.563 305.363 \$3.809.573 1b 1¢ NUCLEAR SLEEVING 2,500,000 2,500,000 2,500,000 2.500.000 2.500.000 2.500.000 \$30,000,000 1c 1d DOE DECONTAMINATION AND 0 \$7.080.000 0 0 0 7.080.000 0 1d DECOMMISSIONING COSTS \$0 1e INCREMENTAL HEDGING COSTS 41.374 41.374 41.374 41.374 41.374 \$496,485 41,374 1e 2 FUEL COST OF POWER SOLD (11.451.781) (11, 326, 239)(9,655,873) (9,233,743)(12,011,832)(\$123,588,487) 2 (11.816.342)2a REVENUES FROM OFF-SYSTEM SALES (616,450) (742.050)(472.800)(410.100)(1.011.950)(2.641.200)(\$11,512,150) 2a **3 FUEL COST OF PURCHASED POWER** 19,527,550 19.621.077 18,289,530 18,191,679 23,343,280 17,224,710 \$220.881.463 3 3b OKEELANTA/OSCEOLA SETTLEMENT 789.672 787.686 \$9,487,979 785,700 783,715 781.729 779,743 3b **3c QUALIFYING FACILITIES** 15,426,208 15,479,208 14.895.208 11.295.208 14.084.208 \$156,530,496 30 8.926.208 **4 ENERGY COST OF ECONOMY PURCHASES** 7.561.969 7,561,969 7,310,378 8,042,546 7,172,781 6,467,316 \$85,353,465 4 4a FUEL COST OF SALES TO FKEC / CKW (6, 265, 919)(6, 490, 626)(\$68,849,863) (6.589.492)(6.295.088) (5.919.695)(5.434.206)4a **5 TOTAL FUEL & NET POWER TRANSACTIONS** \$602.597.492 \$592,644,502 \$546,144,154 \$506,718,778 \$440,507,450 \$411,103,173 \$5,849,519,808 5 (SUM OF LINES A-1 THRU A-4) 6 SYSTEM KWH SOLD (MWH) 10,052,473 10,528,348 10.469.109 9.491.578 8.427.894 8.520.414 106,583,437 6 (Excl sales to FKEC / CKW) 7 COST PER KWH SOLD (¢/KWH) 5.9945 5.6290 5.2167 5.3386 5.2268 4.8249 5.4882 7 7a JURISDICTIONAL LOSS MULTIPLIER 1.00065 1.00065 1.00065 1.00065 1.00065 1.00065 1.00065 7a 7b JURISDICTIONAL COST (¢/KWH) 5.9984 5.6327 5.2201 5.3421 5.2302 4.8281 5.4918 7b 9 TRUE-UP (¢/KWH) 0.3204 0.3059 0.3077 0.3395 0.3824 0.3780 0.3627 9 10 TOTAL 5.9386 5.5278 5.8545 10 6.3188 5.6816 5.6126 5.2061 11 REVENUE TAX FACTOR 0.00072 0.0045 0.0043 0.0040 0.0041 0.0040 0.0037 0.0042 11 12 RECOVERY FACTOR ADJUSTED FOR TAXES 6.3233 5.9429 5.5318 5.6857 5.6166 5.2098 5.8587 12 13 GPIF (¢/KWH) 0.0090 0.0086 0.0087 0.0095 0.0108 0.0106 0.0102 13 5.8689 14 RECOVERY FACTOR including GPIF 6.3323 5.9515 5.5405 5.6952 5.6274 5.2204 14 **15 RECOVERY FACTOR ROUNDED** 5.869 15 6.332 5.952 5.541 5.695 5.627 5.220 TO NEAREST .001 ¢/KWH

Florida Power & Light Company 9/9/2005

Generating System Comparative Data by Fuel Type

Schedule E 3 Page 1 of 4

		Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06
	Fuel Cost of System Net Generation (\$)				-	-	
1	Heavy Oil	\$34,094,250	\$44,889,250	\$60,749,750	\$75,596, 7 50	\$159,835,000	\$144,232,000
2	Light Oil	\$0	\$13,000	\$0	\$0	\$533,000	\$499,000
3	Coal	\$11,190,000	\$9,689,000	\$9,594,000	\$8,188,000	\$3,742,000	\$11,036,000
4	Gas	\$310,849,765	\$286,133,012	\$338,964,852	\$315,716,345	\$364,841,252	\$359,133,745
5	Nuclear	\$7,984,000	\$7,188,000	\$6,515,000	\$7,183,000	\$6,010,000	\$6,264,000
6	Total	\$364,118,015	\$347,912,262	\$415,823,602	\$406,684,095	\$534,961,252	\$521,164,745
	System Net Generation (MWH)						
7	' Heavy Oil	455,654	591,381	785,120	969,583	2,002,922	1,806,648
8	Light Oil	0	66	0	0	2,708	2,244
9	Coal	630,512	551,600	545,619	448,752	212,653	618,093
10	Gas	3,911,470	3,543,243	4,210,709	4,184,809	4,947,791	4,873,709
11	Nuclear	2,183,791	1,970,441	1,779,589	1,937,633	1,619,031	1,687,310
12	Total	7,181,427	6,656,731	7,321,037	7,540,777	8,785,105	8,988,004
	Units of Fuel Burned						
13	Heavy Oil (BBLS)	704,735	904,179	1,202,014	1,496,700	3,080,333	2,789,930
14	Light Oil (BBLS)	0	151	0	0	6,385	6,088
15	Coal (TONS)	335,913	293,363	302,033	234,792	88,097	329,621
16	Gas (MCF)	29,387,744	26,960,670	31,945,648	32,008,964	37,591,961	36,923,781
17	Nuclear (MBTU)	24,073,710	21,723,104	19,552,102	21,796,750	18,286,738	19,028,446
	BTU Burned (MMBTU)						
18	Heavy Oil	4,510,302	5,786,744	7,692,889	9,578,880	19,714,132	17,855,550
19	Light Oil	0	882	0	0	37,223	35,494
20	Coal	6,353,968	5,564,772	5,539,064	4,535,346	2,081,442	6,256,750
21	Gas	29,387,744	26,960,670	31,945,648	32,008,964	37,591,961	36,923,781
22	Nuclear	24,073,710	21,723,104	19,552,102	21,796,750	18,286,738	19,028,446
23	Total	64,325,724	60,036,172	64,729,703	67,919,940	77,711,496	80,100,021

Florida Power & Light Company 9/9/2005

05	Genei	Generating System Comparative Data by Fuel Type						
		Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	
	Generation Mix (%MWH)							
24	Heavy Oil	6.34%	8.88%	10.72%	12.86%	22.80%	20.10%	
25	5 Light Oil	0.00%	0.00%	0.00%	0.00%	0,03%	0.02%	
26	Coal	8.78%	8.29%	7.45%	5.95%	2.42%	6.88%	
27	' Gas	54.47%	53.23%	57.52%	55.50%	56.32%	54.22%	
28	Nuclear	30.41%	29.60%	24.31%	25.70%	18.43%	18.77%	
29	Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
	Fuel Cost per Unit							
30) Heavy Oil (\$/BBL)	48.3788	49.6464	50.5400	50.5090	51.8889	51.6974	
31	Light Oil (\$/BBL)	0	86.0927	0.0000	0.0000	83.4769	81.9645	
32	2 Coal (\$/ton)	33.3122	33.0273	31.76 47	34.8734	42.4759	33.4809	
33	Gas (\$/MCF)	10.5775	10.6130	10.6107	9.8634	9.7053	9.7264	
34	Nuclear (\$/MBTU)	0.3316	0.3309	0.3332	0.3295	0.3287	0.3292	
	Fuel Cost per MMBTU (\$/MMBTU)							
35	i Heavy Oil	7.5592	7.7573	7.8969	7.8920	8.1076	8.0777	
36	3 Light Oil	0.0000	14.7392	0.0000	0.0000	14.3191	14.0587	
37	' Coal	1.7611	1.7411	1.7321	1.8054	1.7978	1.7639	
38	3 Gas	10.5775	10.6130	10.6107	9.8634	9.7053	9.7264	
39) Nuclear	0.3316	0.3309	0.3332	0.3295	0.3287	0.3292	
	BTU burned per KWH (BTU/KWH)							
40) Heavy Oil	9,899	9,785	9,798	9,879	9,843	9,883	
41	Light Oil	0	13,364	0	0	13,746	15,817	
42	2 Coal	10,077	10,088	10,152	10,107	9,788	10,123	
43	Gas	7,513	7,609	7,587	7,649	7,598	7,576	
44	Nuclear	11,024	11,024	10,987	11,249	11,295	11,277	
	Generated Fuel Cost per KWH (cents/KWH)							
45	i Heavy Oil	7.4825	7.5906	7.7376	7.7968	7.9801	7.9834	
46	i Light Oil	0.0000	19.6970	0.0000	0.0000	19.6824	22.2371	
47	Coal	1.7747	1.7565	1.7584	1.8246	1.7597	1.7855	
48	Gas	7.9471	8.0755	8.0501	7.5443	7.3738	7.3688	
49	Nuclear	0.3656	0.3648	0.3661	0.3707	0.3712	0.3712	
50	Total	5.0703	5.2265	5.6798	5.3931	6,0894	5.7984	

Florida Power & Light							Schedule E 3
9/9/2005	Generating Syst	tem Compa	arative Dat	a by Fuel	Туре		Page 3 of 4
	Jul-06	- Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Total
Fuel Cost of System Net Ge	neration (\$)	•	-				
1 Heavy Oil	\$173,265,250	\$161,923,250	\$149,598,000	\$120,854,875	\$66,177,875	\$48,788,625	\$1,240,004,875
2 Light Oil	\$3,299,000	\$3,114,000	\$423,000	\$250,000	\$3,460,000	\$261,000	\$11,852,000
3 Coal	\$11,504,000	\$11,308,000	\$11,136,000	\$11,315,000	\$10,970,000	\$11,238,000	\$120,910,000
4 Gas	\$376,831,459	\$378,605,859	\$347,983,770	\$339,413,624	\$320,541,381	\$319,483,622	\$4,058,498,685
5 Nuclear	\$7,897,000	\$7,958,000	\$7,668,000	\$7,721,000	\$6,325,000	\$7,989,000	\$86,702,000
6 Total	\$572,796,709	\$562,909,109	\$516,808,770	\$479,554,499	\$407,474,256	\$387,760,247	\$5,517,967,560
System Net Generation (MW	/H)						
7 Heavy Oil	2,140,061	1,999,033	1,850,417	1,499,105	830,681	614,871	15,545,476
8 Light Oil	14,379	13,763	1,865	1,088	21,084	1,265	58,462
9 Coal	634,982	629,367	611,905	628,551	614,772	625,355	6,752,161
10 Gas	5,090,140	5,100,001	4,687,104	4,564,319	4,297,004	4,257,895	53,668,194
11 Nuclear	2,121,580	2,139,907	2,065,199	2,086,213	1,751,932	2,181,461	23,524,087
12 Total	10,001,142	9,882,071	9,216,490	8,779,276	7,515,473	7,680,847	99,548,380
Units of Fuel Burned							
13 Heavy Oil (BBLS)	3,298,214	3,090,116	2,862,479	2,307,923	1,300,522	977,270	24,014,415
14 Light Oil (BBLS)	40,296	37,799	5,090	2,980	40,794	3,062	142,645
15 Coal (TONS)	340,154	335,024	327,381	335,667	325,401	332,772	3,580,218
16 Gas (MCF)	38,667,952	38,765,809	35,667,400	34,697,689	32,440,690	31,956,566	407,014,874
17 Nuclear (MBTU)	23,845,222	24,049,836	23,211,130	23,437,196	19,253,980	24,048,536	262,306,750
BTU Burned (MMBTU)							
18 Heavy Oil	21,108,568	19,776,740	18,319,868	14,770,707	8,323,337	6,254,525	153,692,242
19 Light Oil	234,923	220,370	29,674	17,373	237,830	17,854	831,623
20 Coal	6,426,080	6,368,756	6,192,599	6,367,590	6,191,615	6,305,929	68,183,911
21 Gas	38,667,952	38,765,809	35,667,400	34,697,689	32,440,690	31,956,566	407,014,874
22 Nuclear	23,845,222	24,049,836	23,211,130	23,437,196	19,253,980	24,048,536	262,306,750
23 Total	90,282,745	89,181,511	83,420,671	79,290,555	66,447,452	68,583,410	892,029,400

Florida Power & Light							Schedule E 3
9/9/2005	Generating System	em Compa	rative Data	a by Fuel T	ype		Page 4 of 4
	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Total
Generation Mix (%MWH)							
24 Heavy Oil	21.40%	20.23%	20.08%	17.08%	11.05%	8.01%	15.62%
25 Light Oil	0.14%	0.14%	0.02%	0.01%	0.28%	0.02%	0.06%
26 Coal	6.35%	6.37%	6.64%	7.16%	8.18%	8.14%	6.78%
27 Gas	50.90%	51.61%	50.86%	51.99%	57.18%	55.44%	53.91%
28 Nuclear	21.21%	21.65%	22.41%	23.76%	23.31%	28.40%	23.63%
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Fuel Cost per Unit							
30 Heavy Oil (\$/BBL)	52.5331	52.4004	52.2617	52.3652	50.8856	49.9234	51.6359
31 Light Oil (\$/BBL)	81.8692	82.3831	83.1041	83.8926	84.8164	85.2384	83.0874
32 Coal (\$/ton)	33.8200	33.7528	34.0154	33.7090	33.7123	33.7709	33.7717
33 Gas (\$/MCF)	9.7453	9.7665	9.7564	9.7820	9.8808	9.9974	9.9714
34 Nuclear (\$/MBTU)	0.3312	0.3309	0.3304	0.3294	0.3285	0.3322	0.3305
Fuel Cost per MMBTU (\$/MMBTU)							
35 Heavy Oil	8.2083	8.1876	8.1659	8.1821	7.9509	7.8005	8.0681
36 Light Oil	14.0429	14.1308	14.2549	14.3901	14.5482	14.6186	14.2517
37 Coal	1.7902	1.7755	1.7983	1.7770	1.7718	1.7821	1.7733
38 Gas	9.7453	9.7665	9.7564	9.7820	9.8808	9.9974	9.9714
39 Nuclear	0.3312	0.3309	0.3304	0.3294	0.3285	0.3322	0.3305
BTU burned per KWH (BTU/KWH)							
40 Heavy Oil	9,864	9,893	9,900	9,853	10,020	10,172	9,887
41 Light Oil	16,338	16,012	15,911	15,968	11,280	14,114	14,225
42 Coal	10,120	10,119	10,120	10,131	10,071	10,084	10,098
43 Gas	7,597	7,601	7,610	7,602	7,550	7,505	7,584
44 Nuclear	11,239	11,239	11,239	11,234	10,990	11,024	11,151
Generated Fuel Cost per KWH (cents	/KWH)						
45 Heavy Oil	8.0963	8.1001	8.0846	8.0618	7.9667	7.9348	7.9766
46 Light Oil	22.9432	22.6259	22.6810	22.9779	16.4105	20.6324	20.2730
47 Coal	1.8117	1.7967	1.8199	1.8002	1.7844	1.7971	1.7907
48 Gas	7.4032	7.4236	7.4243	7.4362	7.4596	7.5033	7.5622
49 Nuclear	0.3722	0.3719	0.3713	0.3701	0.3610	0.3662	0.3686
50 Total	5.7273	5.6963	5.6074	5.4623	5.4218	5.0484	5.5430

Company:

				Estimated	For The Pe	eriod of :	Jan-0)6 					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)	(H)		(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fue Type	e e	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	388	100,447 1,501	35.3	94.0	62.3	3 10,213	Heavy Oil E Gas M	 3BLS -> 1CF ->	147,263 98,806	6,400,019 1,000,000	942,486 98,806	7,129,561 1,055,714	7.0978 70.3340
4 TURKEY POINT 2	397	75,421 2,818	26.5	95.2	54.2	2 10,790	Heavy Oil E Gas M	BBLS -> 1CF ->	115,029 108,045	6,399,995 1,000,000	736,185 108,045	5,568,951 1,154,355	7.3838 40.9636
7 TURKEY POINT 3	717	516,242	96.8	97.5	100.0) 11,182	Nuclear (Othr ->	5,773,103	1,000,000	5,773,103	1,846,800	0.3577
9 TURKEY POINT 4	717	520,258	97.5	97.5	100.0) 11,182	Nuclear (Othr ->	5,818,004	1,000,000	5,818,004	2,002,600	0.3849
10 11 LAUDERDALE 4	443	196,066	59.5	96.2	66.0	8,668	Gas M	ICF ->	1,699,538	1,000,000	1,699,538	18,158,783	9.2616
12 13 LAUDERDALE 5	442	204,031	62.1	96.2	65.2	8,383	Gas M	ICF ->	1,710,569	1,000,000	1,710,569	 18,276,712	8.9578
14 15 PT EVERGLADES 1 16	207	4,591 0	3.0	96.5	56.5	5 11,848	Heavy Oil E Gas M	3BLS -> ICF ->	7,603 5,733	6,400,105 1,000,000	48,660 5,733	367,720 61,225	8.0096
17 18 PT EVERGLADES 2 19	206	2,682 0	1.8	95.8	58.9	11,875	Heavy Oil E Gas M	 3BLS -> 1CF ->	4,445 3,400	6,400,000 1,000,000	28,448 3,400	214,963 36,306	8.0150
20 21 PT EVERGLADES 3 22	380	11,718 262	4.2	51.7	63.7	10,947	Heavy Oil E Gas M	3BLS -> 1CF ->	18,614 12,021	6,399,968 1,000,000	119,129 12,021	900,262 128,455	7.6827 49.0287
25 24 PT EVERGLADES 4 25	370	25,485 637	9.5	93.2	61.1	11,074	Heavy Oil E Gas M	 BBLS -> ICF ->	39,867 34,131	6,400,055 1,000,000	255,151 34,131	1,928,059 364,728	7.5655 57.2572
20227 RIVIERA 3 28	283	28,772 0	13.7	93.2	51.0) 11,104	Heavy Oil E Gas M	 3BLS -> ICF ->	44,545 34,417	6,399,978 1,000,000	285,087 34,417	2,155,687 367,716	7.4923
30 RIVIERA 4 31	281	67,465 0	32.3	93.8	40.8	10,604	Heavy Oil E Gas M	 3BLS -> 1CF ->	107,322 28,583	6,400,011 1,000,000	686,862 28,583	5,193,627 305,372	7.6983

P	aa	e		
•	~3	•	• •	

				Estimated	For The Pe	riod of :	Ja	an-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)		(H)	(1)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	ן ר (Fuel Гуре	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
33 ST LUCIE 1	853	618,256	97.4	97.5	100.0	10,880	Nuclea	ar Othr->	6,726,672	1,000,000	6,726,672	2,222,500	0.3595
34 35 ST LUCIE 2	726	529,034	98.0	97.5	100.0	10,880	Nuclea	ar Othr->	5,755,933	1,000,000	5,755,933	1,912,100	0.3614
36 37 CAPE CANAVERAL 1 38	398	9,140 0	3.1	89.0	89.2	9,607	Heavy (Gas	Dil BBLS -> MCF ->	 12,681 6,650	6,399,811 1,000,000	81,156 6,650	612,349 71,081	6.6997
39 40 CAPE CANAVERAL 2 41	398	5,830 0	2.0	89.2	86.8	9,733	 Heavy (Gas	Dil BBLS -> MCF ->	 8,174 4,433	6,399,682 1,000,000	52,311 4,433	394,642 47,355	6.7692
42 43 CUTLER 5	70	216	0.4	98.8	57.9	15,234	Gas	MCF ->	3,292	1,000,000	3,292	35,200	16.2962
44 45 CUTLER 6	142	499	0.5	95.4	43.0	15,280	Gas	MCF ->	7,621	1,000,000	7,621		16.3209
40 47 FORT MYERS 2	1,451	828,003	76.7	96.6	78.6	7,183	Gas	MCF ->	5,947,710	1,000,000	5,947,710	63,548,446	7.6749
40 49 FORT MYERS 3A_B	332	175	0.1	95.7	95.8	11,440	Gas	MCF ->	2,002	1,000,000	2,002	21,312	12.1782
50 51 SANFORD 3 52	140	824 0	0.8	95.0	66.7	10,776	Heavy (Gas	Dil BBLS -> MCF ->	1,296 587	6,401,235 1,000,000	8,296 587	65,853 6,248	7.9919
53 54 SANFORD 4	950	533,434	75.5	96.4	76.7	7,186	Gas	MCF ->	3,833,411	1,000,000	3,833,411	40,958,223	7.6782
56 SANFORD 5	950	511,385	72.4	96.5	74.0	7,283	Gas	MCF ->	3,724,491	1,000,000	3,724,491	39,794,437	7.7817
58 PUTNAM 1	250	435	0.2	96.1	63.0	11,395	Gas	MCF ->	4,962	1,000,000	4,962	53,007	12.1855
59 50 PUTNAM 2	250	616	0.3	96.5	69.0	10,631	Gas	MCF ->	6,544	1,000,000	6,544	69,971	11.3590
61	795	25,306 264	4.3	95.0	59.2	11,185	Heavy (Gas	 Dil BBLS -> MCF ->	 44,257 2,774	6,400,072 1,000,000	283,248 2,774	2,135,938 29,128	8.4404 11.0334

				Estimated	For The Pe	eriod of :		Jan-06					
 (A)	(B)	(C)	 (D)		(F)	(G)		(H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
65 MANATEE 2 66	795	16,304 451	2.8	94.0	64.3	3 11,213	Heavy Gas	y Oil BBLS -> MCF ->	28,617 4,728	6,399,972 1,000,000	183,148 4,728	1,381,094 51,426	8.4709 11.4027
68 MANATEE 3	1,104	603,271	73.5	95.5	74.7	7,094	Gas	MCF ->	4,279,745	1,000,000	4,279,745	44,480,576	7.3732
70 MARTIN 1 71	813	31,248 13,392	7.4	95.0	56.8	11,193	Heavy Gas	y Oil BBLS -> MCF ->	47,735 194,160	6,400,000 1,000,000	305,504 194,160	2,308,159 2,065,114	7.3860 15.4205
73 MARTIN 2 74	804	50,422 21,610	12.0	85.4	44.9	11,587	Heavy Gas	y Oil BBLS -> MCF ->	77,286 340,066	6,399,982 1,000,000	494,629 340,066	3,736,988 3,613,113	7.4114 16.7196
76 MARTIN 3	465	168,239	48.6	95.7	73.8	7,918	Gas	MCF ->	1,332,265	1,000,000	1,332,265	14,043,832	8.3475
78 MARTIN 4	466	191,982	55.4	96.5	78.9	7,809	Gas	MCF ->	1,499,375	1,000,000	1,499,375	15,635,227	8.1441
80 MARTIN 8	1,104	631,233	76.9	95.4	78.3	7,030	Gas	MCF ->	4,438,097	1,000,000	4,438,097	46,126,368	7.3073
82 FORT MYERS 1-12	627		0.0	98.4		0							
83 84 LAUDERDALE 1-24	· 766		0.2	91.7	22.6	20,470	Gas	MCF ->	 18,702	1,000,000	18,702	199,881	21.8688
85 86 EVERGLADES 1-12	383	36	0.0	88.3	35.2	24,557	Gas	MCF ->	 884	1,000,000	884	9,416	26.1546
87 88 ST JOHNS 10	130	88,705	91.7	97.0	93.4	9,732	Coal	TONS ->	35,719	24,169,126	863,297	1,681,200	1.8953
89 90 ST JOHNS 20	130		92.7	96.8	95.1	9,589	 Coal	TONS ->	35,577	24,169,463	859,877	1,674,500	1.8675
91 92 SCHERER 4 93 94	625	452,140	97.3	96.7	99.5	10,241	 Coal 	TONS ->	 264,616 	17,500,008	4,630,782	7,834,500	1.7328
95		******			***********				*******	************			

Date: 9/9/2005 Company:	; Florida Pov	wer & Light								Schedule E4 Page:	4	
				Estimated	For The Pe	eriod of :	Jan-06		·			
 (A)	(B)	(C)	(D)	 (E)	 (F)	 (G)	 (H)	 (l)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
96 TOTAL	20,748 =======	7,181,427		** ==========		8,957 ======				64,325,710	 364,118,220 	5.0703

Date: 9/9/2005 Company: Florida Power & Light

20

Schedule E4 Page: 5

				Estimated	For The Pe	riod of :	Feb-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	(H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	388	97,923 1,071	38.0	80.5	68.1	9,962	Heavy Oil BBLS -> Gas MCF ->	143,035 70,850	6,399,993 1,000,000	915,423 70,850	7,106,616 759,296	7.2574 70.8960
4 TURKEY POINT 2	397	127,629 833	48.2	95.2	83.0	10,071	Heavy Oil BBLS -> Gas MCF ->	188,527 87,259	6,399,990 1,000,000	1,206,571 87,259	9,366,811 935,302	7.3391 112.2811
7 TURKEY POINT 3	717	473,796	98.3	97.5	100.0	11,182	Nuclear Othr ->	5,298,435	1,000,000	5,298,435	1,691,300	0.3570
9 TURKEY POINT 4	717	465,766	96.7	97.5	100.0	11,182	Nuclear Othr ->	5,208,632	1,000,000	5,208,632	1,789,200	0.3841
10 11 LAUDERDALE 4 12	443		38.5	61.8	66.4	8,643	Light Oil BBLS -> Gas MCF ->	 25 990,715	5,760,000 1,000,000	144 990,715	 2,100 10,618,474	11.6667 9.2640
13 14 LAUDERDALE 5 15	442	 18 193,722	65.2	96.2	66.4	8,304	Light Oil BBLS -> Gas MCF ->	 25 1,608,748	5,840,000 1,000,000	146 1,608,748	2,200 17,242,525	12.2222 8.9007
17 PT EVERGLADES 1 18	207	1,680 0	1.2	96.5	50.7	12,167	Heavy Oil BBLS -> Gas MCF ->	2,809 2,467	6,400,854 1,000,000	17,980 2,467	139,420 26,476	8.2988
20 PT EVERGLADES 2 21	206	649 0	0.5	95.8	43.5	12,878	Heavy Oil BBLS -> Gas MCF ->	1,108 1,267	6,398,917 1,000,000	7,090 1,267	54,939 13,531	8.4652
22 23 PT EVERGLADES 3 24	380	14,356 538	5.8	94.2	58.6	11,060	Heavy Oil BBLS -> Gas MCF ->	22,851 18,489	6,399,939 1,000,000	146,245 18,489	1,134,178 198,245	7.9004 36.8484
20 26 PT EVERGLADES 4 27	370	68,326 2,496	28.5	93.2	63.5	10,872	Heavy Oil BBLS -> Gas MCF ->	106,242 90,076	6,400,030 1,000,000	679,952 90,076	5,273,165 965,479	7.7177 38.6810
20 RIVIERA 3 30 31	283	106,945 0	56.2	93.2	65.7	9,829	Heavy Oil BBLS -> Gas MCF ->	161,626 16,833	6,400,010 1,000,000	1,034,408 16,833	8,026,967 180,380	7.5057

Ŋ

				Estimated i	For The Pe	riod of :	F	eb-06						
 (A)	(B)	(C)	 (D)	 (E)	(F)	(G)		(H)		(I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	281	30,873 0	16.4	93.8	61.0	10,649	Heavy Gas	Oil BBI MCF	 LS -> = _>	47,051 27,667	6,399,949 1,000,000	301,124 27,667	2,336,716 296,531	7.5688
35 ST LUCIE 1	853	554,109	96.7	97.5	100.0	10,880	Nuclea	ar Oth	זר	6,028,757	1,000,000	6,028,757	1,987,700	0.3587
36 37 ST LUCIE 2	726	476,770	97.8	97.5	100.0	10,880	Nuclea	ar Oth	 ห ->	5,187,280	1,000,000	5,187,280	1,720,100	0.3608
38	398	4,064 6	1.5	89.0	84.0	9,788	Heavy Gas	Oil BBL MCF	 LS -> = _>	5,651 3,670	6,400,106 1,000,000	36,167 3,670	280,095 39,417	6.8921 656.9418
42 CAPE CANAVERAL 2 43 44	398	1,384 0	0.5	89.2	82.1	9,906	Heavy Gas	Oil BBL MCF	 _S -> = _>	1,941 1,283	6,400,309 1,000,000	12,423 1,283	96,208 13,803	6.9515
45 CUTLER 5	70	57	0.1	98.8	51.2	15,719	Gas	MCF	>	902	1,000,000	902	9,656	16.9398
40 47 CUTLER 6	142	96	0.1	95.4	27.5	17,491	Gas	MCF		1,686	1,000,000	1,686	18,013	18.7639
48 49 FORT MYERS 2	1,451	777,082	79.7	96.6	80.8	7,137	Gas	MCF	 >	5,546,461	1,000,000	5,546,461	59,446,776	7.6500
5051 FORT MYERS 3A_B	332	•••••••••••••••••••••••••••••••••••••••	0.0	95.7		0					÷			
52 53 SANFORD 3 54	140	154 0	0.2	95.0	59.8	10,933	Heavy (Gas	Oil BBL MCF	 -S -> = ->	 241 133	6,410,788 1,000,000	1,545 133	 12,619 1,472	8.1942
56 SANFORD 4	950	426,146	66.8	96.4	78.6	7,750	Gas	MCF		3,302,800	1,000,000	3,302,800	35,399,200	8.3068
57	950	382,789	60.0	96.5	76.6	7,933	Gas	MCF	 >	3,037,027	1,000,000	3,037,027	32,550,736	8.5036
59 60 PUTNAM 1 61	250	45	0.0	96.1	67.0	11,170	Gas	MCF	 >	499	1,000,000	499		11.8792

22

Florida Power & Light

Schedule E4 Page: 7

				Estimated	For The Pe	riod of :		Feb-06					
 (A)	 (B)	(C)	 (D)		(F)	(G)	•	(H)	 (I)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
62 PUTNAM 2	250	74	0.0	96.5	68.0	10,556	Gas	MCF ->	 77	B 1,000,000	778	8,368	11.3081
63 64 MANATEE 1 65	795	42,712 2,105	8.4	95.0	54.5	11,152	Heavy Gas		> 74,66 22,00	3 6,399,957 2 1,000,000	477,840 22,002	3,698,275 239,430	8.6586 11.3743
67 MANATEE 2 68 69	795	13,564 600	2.7	94.0	51.8	11,376	Heavy Gas	· Oil BBLS -> MCF ->	> 24,19 6,33	0 6,399,959 0 1,000,000	154,815 6,330	1,198,182 68,862	8.8335 11.4770
70 MANATEE 3	1,104	587,669	79.2	95.5	80.5	6,998	Gas	MCF ->	4,112,94	3 1,000,000	4,112,948	42,888,726	7.2981
71 72 MARTIN 1 73	813	81,121 34,766	21.2	95.0	52.1	11,288	Heavy Gas	- Oil BBLS ->	 > 124,24 512,98	4 6,399,987 9 1,000,000	795,160 512,989	6,165,359 5,491,200	7.6002 15.7947
74 75 MARTIN 2	804	*************	0.0	0.0		0				623 7 442222222			.+ .
76 77 MARTIN 3	465	210,440	67.4	95.7	83.4	7,905	Gas	MCF ->	1,663,70	6 1,000,000	1,663,706	 17,776,630	8.4474
78 79 MARTIN 4	466	222,343	71.0	96.5	85.3	7,761	Gas	MCF ->	1,725,72	1,000,000	1,725,721	18,102,453	8.1417
81 MARTIN 8	1,104	584,971	78.9	95.4	80.7	6,990	Gas	MCF ->	4,089,43	0 1,000,000	4,089,430	42,643,492	7.2898
83 FORT MYERS 1-12	627		0.0	98.4		0			/*****	<u></u>			
84 85 LAUDERDALE 1-24 86 87	766	29 790	0.2	91.7	17.0	22,822	Light Gas	 Oil BBLS -> MCF ->	 10 18,08	2 5,813,725 7 1,000,000	 593 18,087	8,800 193,833	30.3448 24.5358
88 EVERGLADES 1-12	383		0.0	88.3		0							
90 ST JOHNS 10 91	130	80,058	91.7	97.0	93.8	9,734	Coal	TONS ->	31,30	24,891,213 	779,319	1,455,700	1.8183

Date: 9/9/2005 Company:	Florida Pov	ver & Light									Schedule E4 Page: {	8	
				Estimated	For The Pe	eriod of :		Feb-06					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)	(1)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
92 ST JOHNS 20	130	70,055	80.2	83.0	95.1	9,591	Coal	TONS ->	26,995	24,891,276	 671,940	 1,255,100	1.7916
94 SCHERER 4 95 96 97	625	401,487	95.7	96.7	98.5	10,245	 Coal 	TONS ->	235,057		4,113,500	6,978,300 	1.7381
98 TOTAL	20,748 ======	6,656,746 ======				9,019 ======					60,036,312	347,913,701	5.2265

Company:

Florida Power & Light

Schedule E4 Page: 9

				Estimated	For The Pe	eriod of :	Ma	ar-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	. <u></u> ((H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>;</u>)	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	388		0.0	0.0		0		*					
22 3 TURKEY POINT 2 4	397	163,442 5,557	57.2	95.2	70.9	9,837	Heavy O Gas	MCF ->	243,998 100,911	6,399,995 1,000,000	1,561,586 100,911	12,341,056 1,080,427	7.5507 19.4426
6 TURKEY POINT 3	717	100,954	18.9	18.9	100.0	11,182	Nuclear	Othr ->	1,128,963	1,000,000	1,128,963	359,700	0.3563
8 TURKEY POINT 4	717	526,567	98.7	97.5	100.0	11,182	Nuclear	Othr ->	5,888,563	1,000,000	5,888,563	2,019,200	0.3835
0 LAUDERDALE 4	443	219,067	66.5	96.2	69.6	8,292	Gas	MCF ->	1,816,684	1,000,000	1,816,684	19,451,471	8.8792
2 LAUDERDALE 5	442	227,782	69.3	96.2	71.2	8,178	Gas	MCF ->	1,862,967	1,000,000	1,862,967	19,947,141	8.7571
4 PT EVERGLADES 1 5	207	25,850 0	16.8	96.5	52.6	11,915	Heavy O Gas	il BBLS -> MCF ->	42,973 33,000	6,399,972 1,000,000	275,026 33,000	2,171,270 353,308	8.3995
7 PT EVERGLADES 2 8 9	206	16,460 0	10.7	95.8	51.4	11,951	Heavy O Gas	il BBLS -> MCF ->	27,541 20,467	6,399,985 1,000,000	176,262 20,467	1,391,619 219,149	8.4546
PT EVERGLADES 3	380	90,701 1,229	32.5	94.2	70.9	10,864	Heavy O Gas	il BBLS -> MCF ->	142,118 89,239	6,400,020 1,000,000	909,558 89,239	7,180,865 955,508	7.9171 77.7468
3 PT EVERGLADES 4 4 5	370	119,442 1,787	44.0	93.2	78.0	10,457	Heavy O Gas	il BBLS -> MCF ->	182,552 99,445	6,399,985 1,000,000	1,168,330 99,445	9,223,844 1,064,773	7.7224 59.5844
6 RIVIERA 3	283	93,071 0	44.2	93.2	78.6	10,196	Heavy O Gas	il BBLS -> MCF ->	138,654 61,583	6,399,996 1,000,000	887,385 61,583	7,010,092 659,380	7.5320
9 RIVIERA 4 0	281	122,268 0	58.5	93.8	64.2	9,820	Heavy O Gas	il BBLS -> MCF ->	185,988 10,417	6,399,988 1,000,000	1,190,321 10,417	9,403,120 111,556	7.6906

Company:

Florida Power & Light

Schedule E4 Page: 10

					Estimated I	or The Pe	riod of :	Ma	ar-06						
	 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		 (H)		(I)	(J)	(K)	(L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F T	uel ype		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
	2 ST LUCIE 1	853	623,033	98.2	97.5	100.0	10,880	Nuclea	r Othr	->	6,778,644	1,000,000	6,778,644	2,230,900	0.3581
	4 ST LUCIE 2	726	529,034	98.0	97.5	100.0	10,880	Nuclea	r Othr	->	5,755,933	1,000,000	5,755,933	1,905,200	0.3601
	6 CAPE CANAVERAL 1	398	258 7	0.1	89.0	80.0	9,420	Heavy C Gas	NI BBLS	5-> ->	 362 184	6,400,552 1,000,000	2,317 184	18,302 1,931	7.0936 27.5819
	9 CAPE CANAVERAL 2	398		0.0	8.6		0								-
-	1 CUTLER 5	70	299	0.6	98.8	51.5	15,468	Gas	MCF	->	4,627	1,000,000	4,627	49,529	16.5648
22	3 CUTLER 6	142	708	0.7	95.4	28.2	17,000	Gas	MCF	->	12,043	1,000,000	12,043	128,976	18.2170
	5 FORT MYERS 2	1,451	881,881	81.7	96.6	83.2	7,111	Gas	MCF	->	6,271,140	1,000,000	6,271,140	67,146,036	7.6140
4	7 FORT MYERS 3A_B	332		0.0	95.7	**	0						************		
i i	8 9 SANFORD 3 0	140	69 0	0.1	95.0	62.0	10,526	Heavy C Gas	MCF	6 -> ->	 110 27	6,409,091 1,000,000	705 27	5,805 260	8.4129
	2 SANFORD 4	950	506,190	71.6	96.4	83.7	7,699	Gas	MCF	->	3,897,173	1,000,000	3,897,173	41,727,691	8.2435
Ę	4 SANFORD 5	950	450,747	63.8	96.5	80.8	7,777	Gas	MCF	->	3,505,499	1,000,000	3,505,499	37,533,865	8.3270
Ę	5 6 PUTNAM 1	250		0.0	31.0		0								
Ę	8 PUTNAM 2	250		0.0	96.5		0				<u></u>	£ # = = = = = = = = = = = = = = = =		,	u y
: () () ()	9 0 MANATEE 1 1 2	811	28,809 1,347	5.0	95.0	56.7	10,830	Heavy O Gas	il BBLS MCF	6 -> ->	48,841 14,026	6,400,033 1,000,000	312,584 14,026	2,462,822 152,174	8.5488 11.2973

Company:

26

Florida Power & Light

Schedule E4 Page: 11

	2000	. .	
- Г	aut	7.	
	<u> </u>		

				Estimated	For The Pe	riod of :		Mar-06					
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)		(H)	(I)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 MANATEE 2 64 65	795	3,828 259	0.7	94.0	55.9	10,870	Heavy Gas	Oil BBLS -> MCF ->	 6,517 2,718	6,400,184 1,000,000	41,710 2,718	328,625 29,322	8.5848 11.3214
66 MANATEE 3	1,104	658,839	80.2	95.5	82.6	6,964	Gas	MCF ->	4,588,463	1,000,000	4,588,463	47,823,860	7.2588
67 68 MARTIN 1 69	813	52,679 22,577	12.4	95.0	61.1	10,790	Heavy Gas	Oil BBLS -> MCF ->	79,897 300,720	6,399,977 1,000,000	511,339 300,720	4,036,235 3,212,027	7.6619 14.2270
70 71 MARTIN 2 72 73	804	68,243 29,247	16.3	82.4	59.3	10,935	Heavy Gas	Oil BBLS -> MCF ->	102,464 410,363	6,399,965 1,000,000	655,766 410,363	5,176,196 4,388,876	7.5849 15.0062
73 74 MARTIN 3	465	257,261	74.4	95.7	88.1	7,760	Gas	MCF ->	1,996,593	1,000,000	1,996,593	21,334,093	8.2928
76 MARTIN 4	466	274,663	79.2	96.5	88.7	7,600	Gas	MCF ->	2,087,525	1,000,000	2,087,525	21,944,923	7.9898
78 MARTIN 8	1,104	665,283	81.0	95.4	82.9	6,955	 Gas	MCF ->	4,627,651	1,000,000	4,627,651	48,232,312	7.2499
80 FORT MYERS 1-12	627		0.0	87.3		0				<u></u>			
81 82 LAUDERDALE 1-24	766	5,952	1.0	91.7	18.3	21,977	Gas	MCF ->	130,796	1,000,000	130,796	1,400,694	23.5332
83 84 EVERGLADES 1-12	383	36	0.0	88.3	15.7	40,369	 Gas	MCF ->	1,453	1,000,000	1,453	 15,574	43.2602
85 86 ST JOHNS 10	130	91,525	94.6	97.0	96.8	9,711	Coal	TONS ->	36,304	24,482,371	888,808	1,683,500	1.8394
87 88 ST JOHNS 20	130		0.0	0.0		0		*****					4,***********
89 90 SCHERER 4 91	625	454,094	97.7	96.7	99.8	10,240	Coal 	TONS ->	 265,728 	17,500,026	4,650,247	7,910,200	1.7420

	Date: 9/9/2005 Company:	Florida Pov	wer & Light								Schedule E4 Page:	12	
					Estimated	For The Po	eriod of :	Mar-06					
	 (A)	 (B)	(C)	 (D)		 (F)	 (G)	 (H)	 (I)	(J)	(K)	 (L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94	TOTAL	20,764 ======	7,321,045				8,842 ======				64,729,761	415,823,406	5.6798

				Estimated I	For The Pe	riod of :	A	pr-06					
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)	·	 (H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	н Т)	Fuel Гуре	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385		0.0	0.0		0			************		************		
22 3 TURKEY POINT 2 4	394	139,663 3,752	50.6	95.2	72.3	10,101	Heavy C Gas	Dil BBLS -> MCF ->	209,162 110,120	6,399,987 1,000,000	1,338,634 110,120	10,577,646 1,094,242	7.5737 29.1642
6 TURKEY POINT 3	693	483,434	96.9	97.5	100.0	11,436	Nuclea	nr Othr ->	5,528,587	1,000,000	5,528,587	1,754,200	0.3629
8 TURKEY POINT 4	693	483,434	96.9	97.5	100.0	11,436	Nuclea	ur Othr ->	5,528,588	1,000,000	5,528,588	1,892,400	0.3914
10 LAUDERDALE 4	425	250,208	81.8	96.2	83.7	8,059	Gas	MCF ->	2,016,539	1,000,000	2,016,539	20,037,585	8.0084
11 12 LAUDERDALE 5	424	253,102	82.9	96.2	85.1	8,008	Gas	MCF ->	2,026,908	1,000,000	2,026,908	20,140,657	7.9575
13 14 PT EVERGLADES 1 15	206	15,162 0	10.2	96.5	76.8	11,505	Heavy C Gas	Dil BBLS -> MCF ->	24,560 17,267	6,400,122 1,000,000	157,187 17,267	1,240,830 171,554	8.1838
17 PT EVERGLADES 2 18	205	8,631 0	5.9	95.8	84.7	11,471	Heavy C Gas	Dil BBLS -> MCF ->	 13,981 9,533	6,399,900 1,000,000	89,477 9,533	706,309 94,747	8.1834
20 PT EVERGLADES 3 21 22	375	53,616 418	20.0	94.2	81.7	11,011	Heavy C Gas	Dil BBLS -> MCF ->	83,819 58,528	6,399,969 1,000,000	536,439 58,528	4,234,571 581,561	7.8980 139.1294
23 PT EVERGLADES 4 24 25	365	107,490 1,852	41.6	93.2	74.5	10,686	Heavy C Gas	Dil BBLS -> MCF ->	165,410 109,818	6,399,994 1,000,000	1,058,623 109,818	8,356,585 1,091,269	7.7743 58.9238
26 RIVIERA 3 27	281	106,533 0	52.7	93.2	63.4	9,943	Heavy C Gas	Dil BBLS -> MCF ->	162,017 22,417	6,400,020 1,000,000	1,036,912 22,417	8,190,168 222,793	7.6879
29 RIVIERA 4 30 31	279	55,564 0	27.7	93.8	83.5	10,531	Heavy C Gas	Dil BBLS -> MCF ->	83,323 51,917	6,400,010 1,000,000	533,268 51,917	4,212,104 515,853	7.5806

29

Schedule E4 Page: 14

				Estimated	For The Pe	riod of :	Α	pr-06					
 (A)	(B)	(C)	 (D)		 (F)	 (G)	·	(H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 ST LUCIE 1	839	588,639	97.5	97.5	100.0	11,062	Nuclea	ar Othr ->	6,512,095	1,000,000	6,512,095	2,139,900	0.3635
33 34 ST LUCIE 2	714	382,127	74.3	78.0	100.0	11,063	Nuclea	ar Othr->	4,227,481	1,000,000	4,227,481	1,396,800	0.3655
35 36 CAPE CANAVERAL 1 37	394	68,106 646	24.2	89.0	92.6	9,651	Heavy Gas	Oil BBLS -> MCF ->	95,202 54,258	6,400,002 1,000,000	609,293 54,258	4,802,442 539,143	7.0514 83.4587
38 39 CAPE CANAVERAL 2 40	394	16,365 186	5.8	47.6	89.2	9,845	Heavy Gas	Oil BBLS -> MCF ->	 23,197 14,490	6,399,922 1,000,000	 148,459 14,490	1,170,126 144,003	7.1502 77.4209
42 CUTLER 5	68	102	0.2	98.8	66.1	14,944	Gas	MCF ->	1,524	1,000,000	1,524	15,164	14.8663
43 44 CUTLER 6	138	239	0.2	95.4	31.3	16,554	Gas	MCF ->	3,954	1,000,000	3,954	 39,346	16.4628
45 46 FORT MYERS 2	1,423	926,283	90.4	96.6	91.8	7,140	Gas	MCF ->	6,614,243	1,000,000	6,614,243	65,723,111	7.0954
47 48 FORT MYERS 3A_B	320	427	0.2	95.7	100.0	11,339	Gas	MCF ->	4,838	1,000,000	4,838	48,067	11.2569
49 50 SANFORD 3 51 52	138	683 0	0.7	88.7	72.5	10,721	Heavy Gas	Oil BBLS -> MCF ->	 1,066 507	6,398,687 1,000,000	 6,821 507	 56,486 5,055	8.2703
53 SANFORD 4	940	354,446	52.4	85.2	96.9	8,562	Gas	MCF ->	3,035,053	1,000,000	3,035,053	30,158,110	8.5085
54 55 SANFORD 5	940	602,007	89.0	96.5	90.4	7,090	Gas	MCF ->	4,268,495	1,000,000	4,268,495	42,414,396	7.0455
56 57 PUTNAM 1	239	3,275	1.9	44.8		10,436	Gas	MCF ->	 34,183	1,000,000	34,183	339,740	10.3737
58 59 PUTNAM 2 60	239	3,840	2.2	96.5	90.3	10,280	 Gas 	MCF ->	39,474	1,000,000	39,474		10.2153
61 MANATEE 1 62 63	804	90,108 1,424	15.8	95.0	65.3	11,138	Heavy Gas	Dil BBLS -> MCF ->	157,001 14,742	6,400,017 1,000,000	1,004,809 14,742	7,915,905 150,680	8.7849 10.5815

Schedule E4 Page: 15

				Estimated	For The Pe	eriod of :		Apr-06					
 (A)	 (B)	(C)	 (D)	 (E)	(F)			(H)	 (I)	 (L)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 MANATEE 2 65	788	54,484 338	9.7	94.0	74.8	11,323	Heavy Gas	/ Oil BBLS -> MCF ->	96,446 3,524	6,400,006 1,000,000	617,255 3,524	4,862,741 35,985	8.9251 10.6463
67 MANATEE 3	1,080	510,068	65.6	73.2	86.7	7,104	Gas	MCF ->	3,623,778	1,000,000	3,623,778	35,196,309	6.9003
68 69 MARTIN 1 70	809	118,066 50,600	29.0	95.0	79.1	10,779	 Heavy Gas	/ Oil BBLS -> MCF ->	177,997 678,880	6,399,984 1,000,000	1,139,178 678,880	8,990,689 6,722,629	7.6150 13.2858
71 72 MARTIN 2 73 74	790	135,111 57,905	33.9	94.6	66.3	10,731	 Heavy Gas	Oil BBLS -> MCF ->	203,520 768,854	6,399,985 1,000,000	1,302,525 768,854	10,279,946 7,584,274	7.6085 13.0978
75 MARTIN 3	449	243,390	75.3	84.5	90.1	7,507	Gas	MCF ->	1,827,314	1,000,000	1,827,314	18,002,324	7.3965
76 77 MARTIN 4	450	284,724	87.9	96.5	90.9	7,411	Gas	MCF ->	2,110,145	1,000,000	2,110,145	20,661,906	7.2568
78 79 MARTIN 8	1,080	634,064	81.6	89.0	88.8	7,029	Gas	MCF ->	4,457,395	1,000,000	4,457,395	43,292,986	6.8279
80 81 FORT MYERS 1-12	552		0.0	90.2	~~~~	0							
82 83 LAUDERDALE 1-24	· 684	1,514	0.3	91.7	25.5	20,000	 Gas	MCF ->	 30,271	1,000,000	30,271	300,790	19.8673
84 85 EVERGLADES 1-12	342		0.0			0				<u>u-u-ususus</u> a			
86 87 ST JOHNS 10	127			 97.0	 97.1		 Coal	TONS ->	 33,948	25,004,772	848,862	1,718,100	1.9813
88 89 ST JOHNS 20	127	59,325	64.9	67.8	98.5	9,644	Coal	TONS ->	22,881	25,004,633	572,131	1,158,000	1.9520
9091 SCHERER 4 92	621	302,710	67.7	67.7	99.8	10,288	Coal	TONS ->	177,961 	17,500,020	3,114,321	5,311,900	1.7548
93 94										****			

	Date: 9/9/2005 Company:	Florida Pow	ver & Light								Schedule E4 Page:	16	
					Estimated I	For The Pe	eriod of :	Apr-06					
	 (A)	 (B)	 (C)	 (D)	 (E)	 (F)	(G)	 (H)	(I)	(J)	 (K)	 (L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
9 5	TOTAL	20,214	7,540,777		*-************		9,007				67,919,914	406,684,395	5.3931 ======

32

Florida Power & Light

Schedule E4 Page: 17

				Estimated I	For The Pe	riod of :	May-06					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)	(H)	(1)	(L)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	121,867 2,128	43.3	78.8	81.5	9,871	Heavy Oil BBLS -> Gas MCF ->	178,776 79,898	6,400,009 1,000,000	1,144,168 79,898	9,290,433 780,238	7.6234 36.6653
4 TURKEY POINT 2	394	172,054 3,567	59.9	95.2	82.5	9,954	Heavy Oil BBLS -> Gas MCF ->	255,935 110,213	6,400,012 1,000,000	1,637,987 110,213	13,300,146 1,076,260	7.7 302 30.1727
7 TURKEY POINT 3	693	503,946	97.8	97.5	100.0	11,436	Nuclear Othr ->	5,763,176	1,000,000	5,763,176	1,825,200	0.3622
9 TURKEY POINT 4	693	502,283	97.4	97.5	100.0	11,436	Nuclear Othr ->	5,744,155	1,000,000	5,744,155	1,962,200	0.3907
101 11 LAUDERDALE 4 12	425	74 276,824	87.6	96.2	88.9	7,931	Light Oil BBLS -> Gas MCF ->	 95 2,195,562	5,852,632 1,000,000	556 2,195,562	7,900 21,440,398	10.6757 7.7451
13 14 LAUDERDALE 5 15	424	75 280,318	88.9	96.2	90.1	7,886	Light Oil BBLS -> Gas MCF ->	97 2,210,639	5,824,742 1,000,000	565 2,210,639	8,000 21,587,654	10.6667 7.7011
10 17 PT EVERGLADES 1 18	206	42,447 0	27.7	96.5	68.9	10,976	Heavy Oil BBLS -> Gas MCF ->	69,443 21,467	6,399,983 1,000,000	444,434 21,467	3,605,112 209,619	8.4932
20 PT EVERGLADES 2 21 22	205	38,458 0	25.2	95.8	67.9	11,043	Heavy Oil BBLS -> Gas MCF ->	63,352 19,267	6,400,019 1,000,000	405,454 19,267	3,288,915 188,194	8.5520
23 PT EVERGLADES 3 24	375	107,605 4,074	40.0	94.2	74.4	10,565	Heavy Oil BBLS -> Gas MCF ->	170,072 91,455	6,399,989 1,000,000	1,088,459 91,455	8,829,315 893,094	8.2053 21.9218
26 PT EVERGLADES 4 27 28	365	97,749 187	36.1	93.2	95.9	10,580	Heavy Oil BBLS -> Gas MCF ->	148,015 88,935	6,399,993 1,000,000	947,295 88,935	7,684,233 868,551	7.8612 464.4658
29 RIVIERA 3 30 31	281	91,334 0	43.7	93.2	93.8	10,245	Heavy Oil BBLS -> Gas MCF ->	135,200 70,500	6,399,993 1,000,000	865,279 70,500	7,023,146 688,504	7.6895

ယ္သ

Florida Power & Light

Schedule E4 Page: 18

				Estimated	For The Pe	eriod of :	M	ay-06					
 (A)	(B)	(C)	(D)	(E)	(F)			(H)	(I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	ו ד (Fuel Гуре	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	 123,188 0	59.4	93.8	72.8	9,936	Heavy (Gas	Dil BBLS -> MCF ->	186,684 29,250	6,399,997 1,000,000	1,194,777 29,250	9,697,469 285,661	7.8721
35 ST LUCIE 1	839	612,802	98.2	97.5	100.0	11,062	Nuclea	ar Othr->	6,779,409	1,000,000	6,779,409	2,223,000	0.3628
36	714		0.0	0.0		0							**********
38 39 CAPE CANAVERAL 1 40	394	108,939 3,131	38.2	89.0	80.4	9,416	Heavy (Gas	Dil BBLS -> MCF ->	153,641 72,030	6,399,978 1,000,000	983,299 72,030	7,964,717 703,391	7.3112 22.4654
41	394	97,427 2,953	34.3	89.2	78.2	9,558	Heavy (Gas	Dil BBLS -> MCF ->	139,182 68,728	6,399,987 1,000,000	890,763 68,728	7,215,160 671,103	7.4057 22.7262
44	68	890	1.8	98.8	69.5	14,404	Gas	MCF ->	12,821	1,000,000	12,821	125,228	14.0706
46 47 CUTLER 6	138	2,324	2.3	95.4	44.6	14,418	Gas	MCF ->	33,503	1,000,000	33,503	327,203	14.0793
48	1,423	972,694	91.9	96.6	94.0	7,113	Gas	MCF ->	6,918,886	1,000,000	6,918,886	67,565,361	6.9462
50 51 FORT MYERS 3A_B 52 52	320	890 10,838	4.9	95.7	99.1	11,171	Light O Gas	il BBLS -> MCF ->	 1,522 122,141	5,828,515 1,000,000	 8,871 122,141	127,600 1,192,737	14.3371 11.0051
54 SANFORD 3	138		0.0	0.0		0							
55 56 SANFORD 4	940	489,722	70.0	75.4	91.9	7,215	Gas	MCF ->	3,533,393	1,000,000	3,533,393	34,504,781	7.0458
57 58 SANFORD 5	940	636,266	91.0	96.5	92.3	7,065	Gas	MCF ->	4,495,555	1,000,000	4,495,555	43,900,627	6.8997
59 60 PUTNAM 1 61	239	16 41,544	23.4	96.1	77.4	10,561	Light O Gas	il BBLS -> MCF ->	27 438,774	5,777,778 1,000,000	156 438,774	2,200 4,284,720	13.7500 10.3137

Company:

<u>34</u>

Florida Power & Light

Schedule E4 Page: 19

					/lay-06	N	iod of :	or The Per	Estimated F				
(M)	(L)		(J)	(I)	(H)		 (G)	 (F)	(E)	(D)	(C)	(B)	 (A)
Fuel Cosi per KWH (C/KWH)	As Burned Fuel Cost (\$)	Fuel Burned (MMBTU)	Fuel Heat Value (BTU/Unit)	Fuel Burned (Units)	Fuel Type		Avg Net Heat Rate (BTU/KWH)	Net Out FAC (%)	Equiv Avail FAC (%)	Capac FAC (%)	Net Gen (MWH)	Net Capb (MW)	Plant Unit
) 14.0000 2 10.0412	2,800 4,670,362		5,909,091 1,000,000	 33 478,251	Oil BBLS -> MCF ->	Light (Gas	10,281	80.7	96.5	26.2	20 46,512	239	63 PUTNAM 2 64
3 8.3817 2 10.6530	22,999,898 1,976,032	2,840,883 196,004	6,400,000 1,000,000	443,888 196,004	Oil BBLS -> MCF ->	Heavy Gas	10,366	57.1	95.0	49.0	274,406 18,549	804	66 MANATEE 1 67
5 8.4001 1 10.6989	20,700,535 1,906,541	2,556,874 189,125	6,399,993 1,000,000	399,512 189,125	Oil BBLS -> MCF ->	Heavy Gas	10,391	58.3	94.0	45.1	246,433 17,820	788	69 MANATEE 2 70
ŧ 6.723	47,582,834	4,985,157	1,000,000	4,985,157	MCF ->	Gas	7,044	91.5	95.5	88.1	707,708	1,080	71 72 MANATEE 3
7 7.9821 4 10.7325	20,066,827 11,563,384	2,474,253 1,184,667	6,400,001 1,000,000	386,602 1,184,667	Oil BBLS -> MCF ->	Heavy Gas	10,188	68.6	95.0	59.7	251,397 107,742	809	73 74 MARTIN 1 75
2 7.9126 2 10.674	 18,168,692 10,504,420	2,240,208 1,079,657	6,400,009 1,000,000	350,032 1,079,657	Oil BBLS -> MCF ->	Heavy Gas	10,120	64.7	94.6	55.8	229,618 98,407	790	76 77 MARTIN 2 78
5 7.2317	22,037,515	2,268,044	1,000,000	2,268,044	MCF ->	Gas	7,442	91.9	95.7	91.2	304,733	449	79 80 MARTIN 3
5 7.1399	21,977,925	2,269,993	1,000,000	2,269,993	MCF ->	Gas	7,374	93.3	96.5	92.0	307,817	450	81 82 MARTIN 4
7 6.6686	40,392,467	4,232,162	1,000,000	4,232,162	MCF ->	Gas	6,987	92.6	80.0	75.4	605,707	1,080	83 84 MARTIN 8
) 23.4477	136,700	9,506	5,831,902	1,630	 Dil BBLS ->	Light (16,303		98.4	0.1	583	552	85 86 FORT MYERS 1-12
) 23.5653 I 17.4361	247,200 801,361	17,375 82,064	5,830,537 1,000,000	2,980 82,064	Dil BBLS -> MCF ->	Light (Gas	17,614	34.5	91.7	1.1	1,049 4,596	684	87 88 LAUDERDALE 1-24 89
18.1188	135,891	13,923	1,000,000	13,923	MCF ->	Gas	18,572	67.8	88.3	0.3	750	342	90 91 EVERGLADES 1-12 92
- F 7 F 2) 5 5 7 0 0 F 1	47,582,834 20,066,827 11,563,384 	4,985,157 	1,000,000 6,400,001 1,000,000 6,400,009 1,000,000 1,000,000 1,000,000 1,000,000 5,831,902 5,830,537 1,000,000 1,000,000	4,985,157 386,602 1,184,667 350,032 1,079,657 2,268,044 2,269,993 4,232,162 1,630 2,980 82,064 13,923	MCF -> Oil BBLS -> MCF -> Oil BBLS -> MCF -> MCF -> MCF -> MCF -> Dil BBLS -> Dil BBLS -> Dil BBLS -> MCF ->	Gas Heavy Gas Heavy Gas Gas Gas Light (Gas Light (Gas Gas	7,044 10,188 10,120 7,442 7,374 6,987 16,303 17,614 18,572	91.5 68.6 64.7 91.9 93.3 92.6 81.3 34.5 67.8	95.5 95.0 94.6 95.7 96.5 80.0 98.4 91.7 88.3	88.1 59.7 55.8 91.2 92.0 75.4 0.1 1.1	707,708 251,397 107,742 229,618 98,407 304,733 307,817 605,707 583 1,049 4,596 750	1,080 809 790 449 450 1,080 552 684 342	70 71 72 MANATEE 3 73 74 MARTIN 1 75 76 77 MARTIN 2 78 79 80 MARTIN 3 81 82 MARTIN 4 83 84 MARTIN 8 85 86 FORT MYERS 1-12 87 88 LAUDERDALE 1-24 89 91 EVERGLADES 1-12 92

Florida Power & Light

Schedule E4 Page: 20

				Estimated I	For The Pe	riod of :		May-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)		 (H)	(I)	 (J)	(K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
93 ST JOHNS 10	127	91,538	96.9	97.0	99.4	9,774	Coal	TONS ->	35,581	25,147,607	894,777	1,622,200	1.7722
94 95 ST JOHNS 20	127	91,316	96.7	96.8	99.6	9,637	Coal	TONS ->	34,995	25,147,621	880,041	1,595,500	1.7472
96 97 SCHERER 4 98	621	29,799	6.5	9.4	100.0	10,289	Coal	TONS ->	17,517	17,500,257	306,552	524,300	1.7595
100 101 TOTAL	20,214	8,785,114 ======	* -			8,846 ======					 77,711,531 	 534,961,457 ======	6.0894

с С

36

Schedule E4 Page: 21

				Estimated	For The Pe	eriod of :	Jun-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	151,161 3,909	56.0	94.0	76.1	9,890	Heavy Oil BBLS -> Gas MCF ->	 222,592 109,161	6,400,001 1,000,000	1,424,589 109,161	11,523,927 1,068,175	7.6236 27.3261
4 TURKEY POINT 2 5	394	155,684 3,816	56.2	95.2	79.4	10,026	Heavy Oil BBLS -> Gas MCF ->	232,100 113,840	6,400,013 1,000,000	1,485,443 113,840	12,016,228 1,113,889	7.7183 29.1900
7 TURKEY POINT 3	693	487,314	97.7	97.5	100.0	11,436	Nuclear Othr ->	5,572,969	1,000,000	5,572,969	1,761,600	0.3615
9 TURKEY POINT 4	693	482,325	96.7	97.5	100.0	11,436	Nuclear Othr ->	5,515,907	1,000,000	5,515,907	1,880,900	0.3900
10 11 LAUDERDALE 4 12	425	71 250,186	81.8	96.2	84.2	8,048	Light Oil BBLS -> Gas MCF ->	 93 2,013,676	5,827,957 1,000,000	542 2,013,676	7,600 19,704,381	10.7042 7.8759
13 14 LAUDERDALE 5 15	424	 73 256,523	84.1	96.2	85.5	8,000	Light Oil BBLS -> Gas MCF ->	 95 2,052,322	5,852,632 1,000,000	 556 2,052,322	7,800 20,082,543	10.6849 7.8287
10 17 PT EVERGLADES 1 18	206	37,208 0	25.1	96.5	62.5	11,146	Heavy Oil BBLS -> Gas MCF ->	61,366 22,000	6,400,010 1,000,000	392,743 22,000	3,173,930 215,303	8.5302
20 PT EVERGLADES 2 21 22	205	29,093 0	19.7	95.8	61.3	11,252	Heavy Oil BBLS -> Gas MCF ->	48,328 18,067	6,399,954 1,000,000	309,297 18,067	2,499,553 176,823	8.5916
23 PT EVERGLADES 3 24 25	375	108,525 4,760	42.0	94.2	69.8	10,658	Heavy Oil BBLS -> Gas MCF ->	172,167 105,586	6,400,013 1,000,000	1,101,871 105,586	8,904,584 1,033,212	8.2051 21.7061
26 PT EVERGLADES 4 27	365	127,730 999	49.0	93.2	88.6	10,523	Heavy Oil BBLS -> Gas MCF ->	194,369 110,673	6,400,002 1,000,000	1,243,962 110,673	10,052,888 1,083,044	7.8704 108.4128
29 RIVIERA 3 30	281	117,230 0	58.0	93.2	70.8	9,877	Heavy Oil BBLS -> Gas MCF ->	176,859 26,000	6,400,008 1,000,000	1,131,899 26,000	9,152,616 254,385	7.8074

37

Company:

Florida Power & Light

Schedule E4 Page: 22

.

	 (B)	(C)		Estimated For The Period of :			Jun-06						
 (A)			 (D)	(E)	(F)	 (G)		(H)	(I)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T)	⁻ uel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	 66,087 0	32.9	93.8	92.6	10,491	Heavy C Gas	Dil BBLS -> MCF ->	98,667 61,917	6,399,992 1,000,000	631,468 61,917	5,106,076 605,822	7.7263
35 ST LUCIE 1	839	580,584	96.1	97.5	100.0	11,062	Nuclea	r Othr->	6,422,991	1,000,000	6,422,991	2,102,200	0.3621
36 37 ST LUCIE 2	714	137,086	26.7	22.7	100.0	11,062	Nuclea	r Othr ->	1,516,578	1,000,000	1,516,578	519,600	0.3790
38 39 CAPE CANAVERAL 1 40	394	76,159 2,796	27.8	89.0	76.8	9,478	Heavy C Gas	Dil BBLS -> MCF ->	107,760 58,678	6,400,009 1,000,000	 689,665 58,678	5,565,250 574,174	7.3074 20.5356
41 42 CAPE CANAVERAL 2 43	394	63,196 2,583	23.2	89.2	73.5	9,625	Heavy C Gas	Dil BBLS -> MCF ->	90,647 53,026	6,399,991 1,000,000	580,140 53,026	4,681,444 518,817	7.4078 20.0858
44 45 CUTLER 5	68	856	1.8	98.8	71.0	14,313	Gas	MCF ->	12,258	1,000,000	12,258	119,959	14.0139
46 47 CUTLER 6	138	2,227	2.2	95.4	42.9	14,636	Gas	MCF ->	32,598	1,000,000	32,598	318,986	14.3236
48 49 FORT MYERS 2	1,423	921,968	90.0	96.6	92.1	7,136	Gas	MCF ->	6,579,252	1,000,000	6,579,252	 64,379,775	6.9829
50 51 FORT MYERS 3A_B 52 53	320	425 2,860	1.4	95.7	100.0	11,181	Light O Gas	il BBLS -> MCF ->	 727 32,496	5,829,436 1,000,000	4,238 32,496	60,100 317,981	14.1412 11.1182
53 54 SANFORD 3	138		0.0	0.0		0				**************			
55 56 SANFORD 4	940	599,470	88.6	90.8	90.5	7,049	Gas	MCF ->	4,226,215	1,000,000	4,226,215	41,354,626	6.8985
57 58 SANFORD 5	940	600,503	88.7	96.5	90.2	7,095	Gas	MCF ->	4,260,833	1,000,000	4,260,833	41,693,404	6.9431
59 60 PUTNAM 1 61 62	239	13 21,099	12.3	96.1	69.5	10,969	Light O Gas	ii BBLS -> MCF ->	23 231,452	5,869,565 1,000,000	135 231,452	1,900 2,264,849	14.6154 10.7344

Company:

Florida Power & Light

Schedule E4 Page: 23

		 (C)		Estimated For The Period of :			Jun-06						
 (A)	 (B)		(D)	(E)	(F)	(G)	. <u></u>	(H)	(1)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
63 PUTNAM 2 64 65	239	 15 29,914	17.4	96.5	74.3	10,617	Light Gas	Oil BBLS -> MCF ->	 26 317,627	5,769,231 1,000,000	150 317,627	2,100 3,108,077	14.0000 10.3900
66 MANATEE 1 67 68	804	243,594 20,628	45.7	95.0	53.7	10,419	Heavy Gas	/ Oil BBLS -> MCF ->	395,955 218,837	6,400,003 1,000,000	2,534,113 218,837	20,438,896 2,211,974	8.3906 10.7232
69 MANATEE 2 70 71	788	213,243 20,834	41.3	94.0	52.1	10,458	Heavy Gas	/ Oil BBLS -> MCF ->	347,759 222,533	6,399,995 1,000,000	2,225,656 222,533	17,951,066 2,249,343	8.4181 10.7965
72 MANATEE 3	1,080	682,647	87.8	95.5	88.5	7,082	Gas	MCF ->	4,835,154	1,000,000	4,835,154	46,240,781	6.7737
73 74 MARTIN 1 75	809	211,838 90,787	52.0	95.0	63.5	10,269	Heavy Gas	/ Oil BBLS -> MCF ->	326,932 1,015,346	6,399,991 1,000,000	2,092,362 1,015,346	16,905,772 9,935,378	7.9805 10.9436
76 77 MARTIN 2 78	790	205,902 88,243	51.7	94.6	59.6	10,177	Heavy Gas	/ Oil BBLS -> MCF ->	314,428 981,233	6,400,006 1,000,000	2,012,341 981,233	 16,259,270 9,596,824	7.8966 10.8755
79	449	284,181	87.9	95.7	89.8	7,474	Gas	MCF ->	2,124,023	1,000,000	2,124,023	20,767,911	7.3080
81 82 MARTIN 4	450	290,277	89.6	96.5	91.0	7,407	 Gas	MCF ->	2,150,129	1,000,000	2,150,129	20,880,200	7.1932
83 84 MARTIN 8	1,080	684,214	88.0	95.4	90.1	7,017	 Gas	MCF ->	4,801,304	1,000,000	4,801,304	45,916,938	6.7109
85 86 FORT MYERS 1-12	552	166	0.0	98.4	100.0	15,226	 Light	 Oil BBLS ->	428	5,827,103	2,494	 35,400	21.3253
87 88 LAUDERDALE 1-24 89 00	684	1,480 7,233	1.8	91.7	30.0	18,466	 Light Gas	Oil BBLS -> MCF ->	4,691 133,550	5,830,527 1,000,000	27,351 133,550	383,600 1,306,887	25.9189 18.0684
91 EVERGLADES 1-12 92	342	205	0.1	88.3	58.1	19,867	Gas	MCF ->	4,079	1,000,000	4,079	39,886	19.4565

Company:

Florida Power & Light

Schedule E4 Page: 24

				Estimated For The Period of :			Jun-06						
 (A)	 (B)	 (C)	 (D)	(E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
93 ST JOHNS 10		87,865	96.1	97.0	98.6	9,779	 Coal	TONS ->	35,098	24,482,791	859,297	1,627,600	1.8524
94 95 ST JOHNS 20	127	88,491	96.8	96.8	99.1	9,640	Coal	TONS ->	 34,845	24,482,135	853,080	1,615,800	1.8259
97 SCHERER 4 9899	621	441,737	98.8	96.7	99.9	10,287	Coal 	TONS ->	259,678	17,500,012 	4,544,368	7,792,800	1.7641
100 101 TOTAL	20,214	 8,988,013 ======				8,912 =======					80,100,070	521,164,849	5.7984

Company:

40 1 Florida Power & Light

Schedule E4 Page: 25

				Estimated	For The Pe	eriod of :	Jul-06					
 (A)	(B)	(C)	 (D)	 (E)	 (F)		(H)	 (I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2 2	385	172,112 4,818	61.8	94.0	78.4	9,780	Heavy Oil BBLS -> Gas MCF ->	 253,461 108,349	6,399,998 1,000,000	1,622,150 108,349	13,330,951 1,061,977	7.7455 22.0419
4 TURKEY POINT 2	394	173,651 3,625	60.5	95.2	83.2	9,964	Heavy Oil BBLS -> Gas MCF ->	258,227 113,812	6,400,005 1,000,000	1,652,654 113,812	13,581,625 1,115,571	7.8212 30.7744
7 TURKEY POINT 3	693	500,065	97.0	97.5	100.0) 11,436	Nuclear Othr ->	5,718,794	1,000,000	5,718,794	1,811,100	0.3622
9 TURKEY POINT 4	693	502,837	97.5	97.5	100.0) 11,436	Nuclear Othr ->	5,750,495	1,000,000	5,750,495	1,956,900	0.3892
10 11 LAUDERDALE 4 12	425	625 264,324	83.8	96.2	85.4	8,020	Light Oil BBLS -> Gas MCF ->	 819 2,120,336	5,829,060 1,000,000	4,774 2,120,336	67,000 20,782,826	10.7200 7.8626
13 14 LAUDERDALE 5 15	424	634 268,547	85.3	96.2	86.7	7,969	Light Oil BBLS -> Gas MCF ->	 825 2,140,335	5,830,303 1,000,000	4,810 2,140,335	67,500 20,978,772	10.6467 7.8120
17 PT EVERGLADES 1 18	206	59,782 0	39.0	96.5	68.7	10,956	Heavy Oil BBLS -> Gas MCF ->	97,812 29,000	6,399,982 1,000,000	625,995 29,000	5,139,501 284,202	8.5971
20 PT EVERGLADES 2 21 22	205	46,835 0	30.7	95.8	66.6	11,068	Heavy Oil BBLS -> Gas MCF ->	77,250 24,000	6,399,974 1,000,000	494,398 24,000	4,059,022 235,216	8.6666
23 PT EVERGLADES 3 24	375	136,133 4,723	50.5	94.2	75.5	10,554	Heavy Oil BBLS -> Gas MCF ->	214,869 111,473	6,399,993 1,000,000	1,375,160 111,473	11,290,122 1,092,631	8.2934 23.1343
25 26 PT EVERGLADES 4 27	365	131,803 407	48.7	93.2	95.1	10,473	Heavy Oil BBLS -> Gas MCF ->	199,690 106,696	6,400,010 1,000,000	1,278,018 106,696	10,492,632 1,045,848	7.9608 256.9651
29 RIVIERA 3 30 31	281	100,259 0	48.0	93.2	93.6	10,206	Heavy Oil BBLS -> Gas MCF ->	148,450 73,167	6,399,980 1,000,000	950,077 73,167	7,804,744 717,167	7.7846

41

Florida Power & Light

Schedule E4 Page: 26

				Estimated	For The Pe	riod of :	Ju	ul-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)		 (H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T	⁼ uel ⊽ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4	279	125,601 0	60.5	93.8	72.9	9,916	Heavy C Gas	Dil BBLS -> MCF ->	190,392 27,000	6,399,991 1,000,000	1,218,507 27,000	10,009,897 264,668	7.9696
35 ST LUCIE 1	839	611,459	98.0	97.5	100.0	11,062	Nuclea	r Othr ->	6,764,558	1,000,000	6,764,558	2,210,000	0.3614
37 ST LUCIE 2	714	507,218	95.5	97.5	100.0	11,063	Nuclea	r Othr ->	5,611,374	1,000,000	5,611,374	1,918,500	0.3782
38 39 CAPE CANAVERAL 1 40	394	108,726 3,837	38.4	89.0	78.2	9,434	Heavy C Gas	Dil BBLS -> MCF ->	153,687 78,335	6,400,001 1,000,000	983,597 78,335	8,063,837 767,857	7.4167 20.0119
2 CAPE CANAVERAL 2	394	87,068 3,232	30.8	89.2	76.0	9,580	Heavy C Gas	Dil BBLS -> MCF ->	124,694 67,042	6,400,027 1,000,000	798,045 67,042	6,542,615 657,161	7.5144 20.3330
5 CUTLER 5	68	1,579	3.1	98.8	73.8	14,353	Gas	MCF ->	22,664	1,000,000	22,664	222,093	14.0654
7 CUTLER 6	138	4,070	4.0	95.4	46.2	14,362	Gas	MCF ->	58,453	1,000,000	58,453	572,912	14.0765
9 FORT MYERS 2	1,423	959,925	90.7	96.6	92.8	7,129	Gas	MCF ->	6,843,355	1,000,000	6,843,355	67,076,232	6.9877
50	320	1,209 2,221	1.4	95.7	93.9	11,132	Light Oi Gas	il BBLS -> MCF ->	2,066 26,130	5,831,075 1,000,000	 12,047 26,130	171,000 256,153	14.1439 11.5332
4 SANFORD 3 5	138	10,163 0	9.9	95.0	64.4	10,552	Heavy C Gas	Dil BBLS -> MCF ->	16,220 3,440	6,399,938 1,000,000	103,807 3,440	892,221 33,760	8.7791
7 SANFORD 4	940	616,878	88.2	96.4	91.1	7,046	Gas	MCF ->	4,346,819	1,000,000	4,346,819	42,606,090	6.9067
9 SANFORD 5	940	621,496	88.9	96.5	90.9	7,086	Gas	MCF ->	4,404,257	1,000,000	4,404,257	43,168,985	6.9460
0	239	124 32,314	18.2	96.1	76.6	10,666	Light Oi Gas	il BBLS -> MCF ->	211 344,777	5,838,863 1,000,000	1,232 344,777	17,300 3,379,372	13.9516 10.4579

				Estimated	For The Pe	eriod of :		Jul-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	 (G)	. <u>-</u> -	(H)	(I)	 (J)	(К)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	239	155 41,479	23.4	96.5	79.3	10,391	Light Gas	Oil BBLS -> MCF ->	257 431,123	5,821,012 1,000,000	1,496 431,123	21,100 4,225,667	13.6129 10.1875
67 MANATEE 1 68	804	268,455 18,598	48.0	95.0	57.3	10,419	Heavy Gas	Oil BBLS -> MCF ->	436,616 196,548	6,400,001 1,000,000	2,794,343 196,548	22,897,618 1,989,104	8.5294 10.6953
70 MANATEE 2 71	788	252,969 19,213	46.4	94.0	58.3	10,454	Heavy Gas	/ Oil BBLS -> MCF ->	412,769 203,898	6,399,999 1,000,000	2,641,721 203,898	21,646,881 2,063,332	8.5571 10.7392
73 MANATEE 3	1,080	701,327	87.3	95.5	89.4	7,072	Gas	MCF ->	4,960,021	1,000,000	4,960,021	47,512,011	6.7746
74 75 MARTIN 1 76	809	241,753 103,609	57.4	95.0	69.1	10,258	 Heavy Gas	/ Oil BBLS -> MCF ->	371,608 1,164,600	6,400,002 1,000,000	2,378,292 1,164,600	19,522,201 11,410,572	8.0753 11.0131
77 78 MARTIN 2 79	790	224,750 96,321	54.6	94.6	64.7	10,190	 Heavy Gas	/ Oil BBLS -> MCF ->	342,469 1,080,042	6,400,010 1,000,000	2,191,805 1,080,042	17,991,484 10,578,207	8.0051 10.9822
80 81 MARTIN 3	449	295,011	88.3	95.7	90.6	7,465	Gas	MCF ->	2,202,419	1,000,000	2,202,419	21,578,948	7.3146
82 83 MARTIN 4	450	299,870	89.6	96.5	91.6	7,399	Gas	MCF ->	2,218,936	1,000,000	2,218,936	21,684,434	7.2313
84 85 MARTIN 8	1,080	714,890	89.0	95.4	91.0	7,007	Gas	MCF ->	5,009,776	1,000,000	5,009,776	47,987,773	6.7126
86 87 FORT MYERS 1-12	552	107	0.0	98.4	72.5	16,941	 Light	Oil BBLS ->	305	5,832,787	1,779	25,300	23.6449
88 89 LAUDERDALE 1-24 90	684	11,343 7,561	3.7	91.7	27.9	18,606	 Light Gas	Oil BBLS -> MCF ->	35,299 145,949	5,830,024 1,000,000	205,794 145,949	2,888,000 1,430,528	 25.4606 18.9198
92 EVERGLADES 1-12 93 94	342	183 264	0.2	88.3	66.5	18,228	Light Gas	Oil BBLS -> MCF ->	508 5,195	5,832,677 1,000,000	2,963 5,195	41,600 50,890	22.7322 19.2765

				Estimated	For The Pe	eriod of :		Jul-06					
 (A)	 (B)	 (C)	(D)	(E)	 (F)	(G)		(H)	(1)	(J)	(K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 ST JOHNS 10	127	91,014	96.3	97.0	99.0	9,777	Coal	TONS ->	37,301	23,856,599	889,875	1,757,700	1.9312
90 97 ST JOHNS 20	127	92,018	97.4	96.8	99.6	9,637	Coal	TONS ->	37,173	23,856,347	886,812	1,751,700	1.9036
98 99 SCHERER 4 100 101	621	451,950	97.9	96.7	100.0	10,287	Coal	TONS ->	265,679	17,499,983	4,649,378	7,994,300	1.7688
102 103 TOTAL	20,214 ======	10,001,140 ======				9,027 ======					90,282,697 ======	572,795,309	5.7273

44

Company:

Florida Power & Light

Schedule E4 Page: 29

				Estimated I	For The Pe	riod of :	Aug	J-06					
 (A)	(B)	(C)	(D)	(E)	(F)	(G)	 (H	 1)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fu Tyr	iel pe	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	156,421 4,482	56.2	94.0	76.2	9,884	Heavy Oil Gas I	BBLS -> MCF ->	230,496 115,319	6,400,007 1,000,000	1,475,176 115,319	12,091,550 1,132,704	7.7301 25.2723
4 TURKEY POINT 2 5	394	162,630 3,801	56.8	95.2	80.5	10,046	Heavy Oil Gas I	BBLS -> MCF ->	242,288 121,473	6,400,003 1,000,000	1,550,644 121,473	12,710,139 1,193,083	7.8154 31.3887
7 TURKEY POINT 3	693	503,946	97.8	97.5	100.0	11,436	Nuclear	Othr ->	5,763,176	1,000,000	5,763,176	1,822,300	0.3616
9 TURKEY POINT 4	693	503,946	97.8	97.5	100.0	11,436	Nuclear	Othr ->	5,763,176	1,000,000	5,763,176	1,957,800	0.3885
1 LAUDERDALE 4	425	562 261,637	82.9	96.2	84.8	8,026	Light Oil I Gas I	BBLS -> MCF ->	 736 2,100,265	5,834,239 1,000,000	4,294 2,100,265	 60,600 20,629,687	10.7829 7.8849
4 LAUDERDALE 5 5	424	578 264,245	84.0	96.2	86.6	7,967	Light Oil I Gas I	BBLS -> MCF ->	752 2,105,661	5,832,447 1,000,000	4,386 2,105,661	61,900 20,682,668	10.7093 7.8271
7 PT EVERGLADES 1 8	206	52,120 0	34.0	96.5	64.1	11,100	Heavy Oil Gas I	BBLS -> MCF ->	85,773 29,600	6,400,021 1,000,000	548,949 29,600	4,495,142 290,698	8.6246
0 PT EVERGLADES 2 1 2	205	41,223 0	27.0	95.8	61.5	11,205	Heavy Oil Gas I	BBLS -> MCF ->	68,465 23,733	6,400,044 1,000,000	438,179 23,733	3,588,114 233,118	8.7042
3 PT EVERGLADES 3 4	375	124,807 5,455	46.7	94.2	70.5	10,662	Heavy Oil Gas I	BBLS -> MCF ->	197,934 122,076	6,400,012 1,000,000	1,266,780 122,076	10,373,229 1,199,081	8.3114 21.9813
6 PT EVERGLADES 4 7	365	133,255 1,211	49.5	93.2	88.9	10,523	Heavy Oil Gas N	BBLS -> MCF ->	202,804 117,159	 6,400,007 1,000,000	1,297,947 117,159	10,628,404 1,150,798	7.9760 95.0287
9 RIVIERA 3 0	281	123,470 0	59.1	93.2	70.2	9,856	Heavy Oil Gas N	BBLS -> MCF ->	186,451 23,750	6,399,998 1,000,000	1,193,286 23,750	9,777,154 233,318	7.9186

45

Company:

Florida Power & Light

Schedule E4 Page: 30

...

				Estimated	For The Pe	eriod of :	AL	Jg-06					
 (A)	(B)	(C)	 (D)	 (E)	(F)	(G)	•	 (H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T)	⁻ uel jype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	79,981 0	38.5	93.8	91.8	10,474	Heavy C Gas	Dil BBLS -> MCF ->	 119,469 73,167	6,400,028 1,000,000	764,605 73,167	6,264,742 718,649	7.8328
35 ST LUCIE 1	839	612,802	98.2	97.5	100.0	11,062	Nuclea	r Othr ->	6,779,409	1,000,000	6,779,409	2,210,800	0.3608
37 ST LUCIE 2	714	519,213	97.8	97.5	100.0	11,063	Nuclear	 r Othr ->	5,744,076	1,000,000	5,744,076	1,967,300	0.3789
39 CAPE CANAVERAL 1 40 41	394	96,461 3,985	34.3	89.0	75.0	9,513	Heavy C Gas)il BBLS -> MCF ->	136,745 80,435	6,400,000 1,000,000	875,168 80,435	7,156,141 790,124	7.4187 19.8274
42 CAPE CANAVERAL 2 43 44	394	77,366 3,411	27.6	89.2	72.4	9,647	Heavy O Gas)il BBLS -> MCF ->	111,127 68,053	6,399,993 1,000,000	711,212 68,053	5,815,486 668,466	7.5168 19.5974
45 CUTLER 5	68	1,866	3.7	98.8	69.3	14,692	Gas	MCF ->	27,416	1,000,000	27,416	269,306	14.4323
7 CUTLER 6	138	4,336	4.2	95.4	47.4	14,427	Gas	MCF ->	62,553	1,000,000	62,553	614,385	14.1694
I9 FORT MYERS 2	1,423	966,714	91.3	96.6	92.5	7,123	Gas	MCF ->	6,886,655	1,000,000	6,886,655	67,643,648	6.9973
51 FORT MYERS 3A_B 52 53	320	1,995 2,592	1.9	95.7	100.0	11,107	Light Oi Gas	I BBLS -> MCF ->	3,410 31,068	5,829,326 1,000,000	19,878 31,068	283,700 305,093	14.2206 11.7706
54 SANFORD 3 55	138	12,922 0	12.6	95.0	58.9	10,727	Heavy O Gas	Dil BBLS -> MCF ->	20,862 5,093	6,400,058 1,000,000	133,518 5,093	1,144,727 49,983	8.8587
57 SANFORD 4	940	625,736	89.5	96.4	90.5	7,047	Gas	MCF ->	4,409,581	1,000,000	4,409,581	43,312,855	6.9219
59 SANFORD 5	940	621,475	88.9	96.5	90.2	7,093	Gas	MCF ->	4,408,384	1,000,000	4,408,384	43,300,959	6.9674
51 PUTNAM 1 52 53	239	123 32,984	18.6	96.1	73.8	10,811	Light Oil Gas	 I BBLS -> MCF ->	211 356,708	5,838,863 1,000,000	1,232 356,708	17,400 3,503,775	14.1463 10.6227

Company:

				Estimated I	For The Pe	riod of :		Aug-06					
 (A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	(1)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	239	138 39,708	22.4	96.5	74.4	10,601	Light Gas	Oil BBLS -> MCF ->	232 421,049	5,840,517 1,000,000	1,355 421,049	 19,200 4,135,654	13.9130 10.4152
67 MANATEE 1 68	804	254,512 21,805	46.2	95.0	54.7	10,428	Heavy Gas	Oil BBLS -> MCF ->	414,051 231,750	6,399,999 1,000,000	2,649,926 231,750	21,657,342 2,350,504	8.5094 10.7797
70 MANATEE 2 71 72	788	235,720 23,071	44.2	94.0	53.7	10,467	Heavy Gas	Oil BBLS -> MCF ->	384,780 246,381	6,400,010 1,000,000	2,462,596 246,381	20,126,405 2,499,054	8.5383 10.8320
73 MANATEE 3	1,080	699,641	87.1	95.5	89.0	7,073	Gas	MCF ->	4,949,053	1,000,000	4,949,053	47,504,502	6.7898
74 75 MARTIN 1 76	809	230,915 98,964	54.8	95.0	64.1	10,266	 Heavy Gas	Oil BBLS -> MCF ->	356,814 1,102,993	6,400,004 1,000,000	2,283,611 1,102,993	18,696,169 10,831,412	8.0966 10.9448
77 78 MARTIN 2 79	790	217,231 93,098	52.8	94.6	60.4	10,170	Heavy Gas	Oil BBLS -> MCF ->	332,053 1,031,043	6,400,008 1,000,000	2,125,142 1,031,043	17,398,707 10,121,459	8.0093 10.8718
81 MARTIN 3	449	296,516	88.8	95.7	89.8	7,472	Gas	MCF ->	2,215,719	1,000,000	2,215,719	21,757,990	7.3379
82 83 MARTIN 4	450	298,522	89.2	96.5	91.2	7,404	Gas	MCF ->	2,210,401	1,000,000	2,210,401	21,633,208	7.2468
84 85 MARTIN 8	1,080	715,900	89.1	95.4	90.9	7,005	Gas	MCF ->	5,015,080	1,000,000	5,015,080	48,138,176	6.7241
86 87 FORT MYERS 1-12	552	100	0.0	98.4	90.6	15,777	Light	Oil BBLS ->	266	5,830,827	1,551	22,100	22.1000
88 89 LAUDERDALE 1-24 90	684	9,934 8,668	3.7	91.7	27.5	18,849	Light Gas	Oil BBLS -> MCF ->	30,977 170,065	5,830,035 1,000,000	180,597 170,065	2,548,800 1,670,416	25.6573 19.2711
92 EVERGLADES 1-12 93 94	342	333 178	0.2	88.3	44.4	21,833	Light Gas	Oil BBLS -> MCF ->	1,209 4,122	5,830,438 1,000,000	7,049 4,122	99,500 40,486	29.8799 22.7449

Florida Power & Light

Schedule E4 Page: 32

				Estimated I	For The Pe	eriod of :		Aug-06					
 (A)	(B)	 (C)	 (D)	(E)	 (F)			 (H)	(I)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MVV)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 ST JOHNS 10	127	90,626	95.9	97.0	99.1	9,776	 Coal	TONS ->	36,167	24,498,770	886,047	 1,691,500	1.8665
96 97 ST JOHNS 20	127	91,775	97.1	96.8	99.4	9,638	Coal	TONS ->	 36,108	24,498,643	884,597	 1,688,700	1.8400
98 99 SCHERER 4 100 101	621	446,966	96.8	96.7	100.0	10,287	 Coal 	TONS ->	 262,748 	17,500,023	4,598,096	7,927,300	1.7736
102 103 TOTAL	20,214 =======	9,882,072	************			9,025					 89,181,463	 562,907,609 ======	5.6963

				Estimated	For The Pe	riod of :	Sep-06					
 (A)	(B)	(C)	 (D)	 (E)	(F)	 (G)	 (H)	(I)	(J)	(К)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	385	151,943 4,199	56.3	94.0	76.2	9,903	Heavy Oil BBLS -> Gas MCF ->	223,803 114,025	6,400,013 1,000,000	1,432,342 114,025	 11,710,850 1,119,468	7.7074 26.6603
4 TURKEY POINT 2	394	155,794 3,962	56.3	95.2	79.1	10,030	Heavy Oil BBLS -> Gas MCF ->	232,331 115,546	6,399,998 1,000,000	1,486,918 115,546	12,157,041 1,134,487	7.8033 28.6342
7 TURKEY POINT 3	693	487,314	97.7	97.5	100.0	11,436	Nuclear Othr ->	5,572,969	1,000,000	5,572,969	1,758,800	0.3609
9 TURKEY POINT 4	693	487,869	97.8	97.5	100.0	11,436	Nuclear Othr ->	5,579,309	1,000,000	5,579,309	 1,891,900	0.3878
10 11 LAUDERDALE 4 12	425	63 256,362	83.8	96.2	84.4	8,043	Light Oil BBLS -> Gas MCF ->	 82 2,062,053	5,853,659 1,000,000	480 2,062,053	6,800 20,245,146	10.7937 7.8971
13 14 LAUDERDALE 5 15	424	64 186,439	61.1	70.5	85.6	7,998	Light Oil BBLS -> Gas MCF ->	 84 1,491,194	5,821,429 1,000,000	489 1,491,194	7,000 14,640,497	10.9375 7.8527
16 17 PT EVERGLADES 1 18	206	46,541 0	31.4	96.5	61.5	11,172	Heavy Oil BBLS -> Gas MCF ->	 76,848 28,133	6,400,023 1,000,000	491,829 28,133	4,017,284 276,262	8.6317
20 PT EVERGLADES 2 21	205	36,350 0	24.6	95.8	56.9	11,392	Heavy Oil BBLS -> Gas MCF ->	 60,776 25,133	6,400,043 1,000,000	388,969 25,133	3,177,083 246,724	8.7403
22 23 PT EVERGLADES 3 24	375	115,844 5,131	44.8	94.2	69.2	10,646	Heavy Oil BBLS -> Gas MCF ->	 183,864 111,193	6,399,991 1,000,000	1,176,728 111,193	9,611,532 1,091,731	8.2970 21.2772
20 26 PT EVERGLADES 4 27	365	116,723 1,060	44.8	90.1	89.0	10,547	Heavy Oil BBLS -> Gas MCF ->	177,605 105,697	6,400,006 1,000,000	1,136,673 105,697	9,284,290 1,037,761	7.9541 97.9020
20 29 RIVIERA 3 30	281	93,245 0	46.1	93.2	89.0	10,270	Heavy Oil BBLS -> Gas MCF ->	138,444 71,667	6,399,981 1,000,000	 886,039 71,667	7,241,437 703,623	7.7660

				Estimated	For The Pe	eriod of :	Se	ep-06					
 (A)	 (B)	(C)	 (D)	(E)	(F)	(G)		 (H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T)	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	279	112,160 0	55.8	93.8	67.5	9,977	Heavy C Gas	Dil BBLS -> MCF ->	170,849 25,667	6,400,020 1,000,000	1,093,437 25,667	8,936,420 252,030	7.9676
35 ST LUCIE 1	839	583,940	96.7	97.5	100.0	11,062	Nuclear	r Othr ->	6,460,118	1,000,000	6,460,118	2,102,800	0.3601
36 37 ST LUCIE 2	714	506,076	98.5	97.5	100.0	11,063	Nuclear	r Othr ->	 5,598,735	1,000,000	5,598,735	1,914,200	0.3782
38 39 CAPE CANAVEF AL 1 40	394	83,485 3,540	30.7	89.0	74.4	9,522	Heavy C Gas	Dil BBLS -> MCF ->	118,398 70,960	6,400,015 1,000,000	757,749 70,960	6,180,306 696,714	7.4029 19.6812
42 CAPE CANAVERAL 2 43 44	394	60,128 2,762	22.2	89.2	71.0	9,664	Heavy O Gas)it BBLS -> MCF ->	86,428 54,682	6,399,975 1,000,000	553,137 54,682	4,511,495 536,804	7.5032 19.4353
45 CUTLER 5	68	1,457	3.0	98.8	64.5	14,824	Gas	MCF ->	21,601	1,000,000	21,601	212,078	14.5558
40 47 CUTLER 6	138	2,977	3.0	95.4	40.3	15,048	Gas	MCF ->	44,801	1,000,000	44,801	439,777	14.7725
40 49 FORT MYERS 2	1,423	927,312	90.5	96.6	92.1	7,138	Gas	MCF ->	6,619,650	1,000,000	6,619,650	64,991,519	7.0086
5051 51 FORT MYERS 3A_B 52 52	320	368 1,659	0.9	95.7	96.0	11,364	Light Oi Gas	il BBLS -> MCF ->	629 19,364	5,831,479 1,000,000	3,668 19,364	52,800 190,149	14.3478 11.4617
55 54 SANFORD 3 55	138	6,237 0	6.3	95.0	58.2	10,737	Heavy O Gas	Dil BBLS -> MCF ->	10,076 2,480	6,400,060 1,000,000	64,487 2,480	551,540 24,332	8.8430
57 SANFORD 4	940	602,207	89.0	96.4	90.7	7,047	Gas	MCF ->	4,243,836	1,000,000	4,243,836	41,665,834	6.9189
59 SANFORD 5	940	598,237	88.4	96.5	90.4	7,091	Gas	MCF ->	4,242,371	1,000,000	4,242,371	41,651,515	6.9624
61 PUTNAM 1 62 63	239	12 20,133	11.7	96.1	72.2	10,894	Light Oi Gas	il BBLS -> MCF ->	20 219,337	5,950,000 1,000,000	119 219,337	1,700 2,153,424	14.1667 10.6960

50

Florida Power & Light

Schedule E4 Page: 35

				Estimated	For The Pe	eriod of :	:	Sep-06					
 (A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	(1)	 (J)		(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	239	 17 28,508	16.6	96.5	73.6	10,670	Light Gas	Oil BBLS -> MCF ->	29 304,199	5,896,552 1,000,000	 171 304,199	2,400 2,986,616	14.1176 10.4764
67 MANATEE 1 68	804	243,282 20,350	45.6	95.0	54.1	10,459	Heavy Gas	Oil BBLS -> MCF ->	397,104 215,881	6,399,986 1,000,000	2,541,460 215,881	20,718,393 2,185,679	8.5162 10.7404
69 70 MANATEE 2 71	788	207,500 20,054	40.1	90.9	52.5	10,485	Heavy Gas	Oil BBLS -> MCF ->	 339,336 214,172	6,400,002 1,000,000	2,171,751 214,172	17,704,513 2,169,057	8.5323 10.8161
73 MANATEE 3	1,080	671,198	86.3	95.5	88.4	7,084	Gas	MCF ->	4,754,981	1,000,000	4,754,981	45,622,814	6.7972
74 75 MARTIN 1 76	809	215,992 92,568	53.0	95.0	63.4	10,295	Heavy Gas	Oil BBLS -> MCF ->	 333,330 1,043,590	6,400,003 1,000,000	2,133,313 1,043,590	17,421,576 10,234,835	8.0658 11.0566
77 78 MARTIN 2 79	790	205,194 87,940	51.5	94.6	59.6	10,204	Heavy Gas	Oil BBLS -> MCF ->	313,287 986,180	6,400,001 1,000,000	2,005,037 986,180	16,374,039 9,665,996	7.9798 10.9916
80 81 MARTIN 3	449	282,735	87.5	95.7	89.9	7,475	Gas	MCF ->	2,113,639	1,000,000	2,113,639	20,662,810	7.3082
82 83 MARTIN 4	450	194,000	59.9	65.9	91.0	7,499	Gas	MCF ->	 1 ,454,882	1,000,000	1,454,882	14,164,330	7.3012
84 85 MARTIN 8	1,080	659,065	84.8	94.6	90.2	7,017	Gas	MCF ->	4,624,752	1,000,000	4,624,752	44,373,037	6.7327
86 87 FORT MYERS 1-12	552		0.0	98.4		0			*********				**********
88 89 LAUDERDALE 1-24 90	684	1,147 12,223	2.7	91.7	25.9	19,744	Light Gas	Oil BBLS -> MCF ->	 3,572 243,149	5,829,787 1,000,000	20,824 243,149	296,300 2,387,230	25.8326 19.5306
91 92 EVERGLADES 1-12 93 94	342	194 1,027	0.5	88.3	46.5	21,717	Light Gas	Oil BBLS -> MCF ->	673 22,584	5,829,123 1,000,000	3,923 22,584	55,800 221,691	28.7629 21.5862

				Estimated	For The Pe	eriod of :		Sep-06					
(A)	(B)	(C)	 (D)	(E)	 (F)			 (H)	(I)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	1	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
95 ST JOHNS 10	127	88,374	96.7	97.0	98.4	9,780	 Coal	TONS ->	36,085	23,953,914	864,377	1,710,900	1.9360
96 97 ST JOHNS 20	127	88,770	97.1	96.8	99.4	9,638	 Coal	TONS ->	35,718	23,954,477	855,606	1,693,500	1.9077
98 99 SCHERER 4 100 101	621	434,761	97.3	96.7	99.9	10,287	 Coal 	TONS ->	255,577	17,500,018	4,472,602	7,731,500	1.7783
102 103 TOTAL	20,214 ======	9,216,492				9,051 ======					83,420,658	516,808,170	5.6074

52 2

Florida Power & Light

Schedule E4 Page: 37

				Estimated	For The Pe	riod of :	Oct-06					
 (A)	(B)	(C)	 (D)	 (E)	 (F)	 (G)	 (H)	(I)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2	385	145,965 4,011	52.4	94.0	73.9	9,951	Heavy Oil BBLS -> Gas MCF ->	215,125 115,683	6,400,014 1,000,000	1,376,803 115,683	 11,276,417 1,139,349	7.7254 28.4056
4 TURKEY POINT 2	394	152,158 4,251	53.4	95.2	76.3	10,073	Heavy Oil BBLS -> Gas MCF ->	227,382 120,285	6,400,001 1,000,000	1,455,245 120,285	11,918,855 1,184,626	7.8332 27.8670
7 TURKEY POINT 3	693	504,500	97.9	97.5	100.0	11,436	Nuclear Othr ->	5,769,516	1,000,000	5,769,516	1,818,600	0.3605
9 TURKEY POINT 4	693	453,496	88.0	91.2	100.0	11,436	Nuclear Othr ->	5,186,217	1,000,000	5,186,217	1,755,000	0.3870
10 11 LAUDERDALE 4 12	425	9 256,847	81.2	96.2	83.3	8,074	Light Oil BBLS -> Gas MCF ->	 11 2,073,902	6,090,909 1,000,000	67 2,073,902	1,000 20,425,537	11.1111 7.9524
13 14 LAUDERDALE 5 15	424	9 244,083	77.4	90.0	84.3	8,070	Light Oil BBLS -> Gas MCF ->	 12 1,969,909	5,583,333 1,000,000	 67 1,969,909	1,000 19,401,385	11.1111 7.9487
17 PT EVERGLADES 1 18 19	206	53,498 0	34.9	96.5	61.0	11,235	Heavy Oil BBLS -> Gas MCF ->	88,421 35,200	6,399,984 1,000,000	565,893 35,200	4,630,232 346,693	8.6550
20 PT EVERGLADES 2 21 22	205	47,580 0	31.2	95.8	60.9	11,265	Heavy Oil BBLS -> Gas MCF ->	79,072 29,933	6,399,965 1,000,000	506,058 29,933	4,140,710 294,804	8.7026
23 PT EVERGLADES 3 24 25	375	122,797 4,915	45.8	94.2	69.4	10,728	Heavy Oil BBLS -> Gas MCF ->	194,792 123,458	6,400,006 1,000,000	1,246,670 123,458	10,200,570 1,215,980	8.3069 24.7402
26 PT EVERGLADES 4	365		0.0	0.0		0			*	****************		■■₽ ₩₩ ₽₩ ₩₩₩₩₩₩₩₩₩₩₩
27 28 RIVIERA 3 29 30	281	117,851 0	56.4	93.2	69.1	9,924	Heavy Oil BBLS -> Gas MCF ->	178,076 29,917	6,400,015 1,000,000	1,139,689 29,917	9,330,650 294,604	7.9173

Company:

				Estimated	For The Pe	riod of :	00	ct-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)		(H)	(I)	(J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T	fuel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31 RIVIERA 4 32	279	40,819 0	19.7	39.3	88.4	10,352	Heavy C Gas)il BBLS -> MCF ->	61,103 31,500	6,400,013 1,000,000	391,060 31,500	3,201,640 310,231	7.8435
34 ST LUCIE 1	839	614,144	98.4	97.5	100.0	11,062	Nuclear	r Othr ->	6,794,260	1,000,000	6,794,260	2,207,500	0.3594
36 ST LUCIE 2	714	514,072	96.8	97.5	100.0	11,063	Nuclear	r Othr ->	5,687,203	1,000,000	5,687,203	1,940,500	0.3775
37 38 CAPE CANAVERAL 1 39	394	83,518 3,199	29.6	77.5	75.8	9,487	Heavy C Gas	Dil BBLS -> MCF ->	118,288 65,690	6,399,990 1,000,000	757,042 65,690	6,185,340 647,007	7.4060 20.2253
40 41 CAPE CANAVERAL 2 42 43	394	70,499 3,110	25.1	89.2	72.0	9,674	Heavy O Gas)il BBLS -> MCF ->	101,278 63,989	6,399,988 1,000,000	648,178 63,989	5,295,896 630,178	7.5120 20.2630
44 CUTLER 5	68	1,649	3.3	98.8	63.2	14,593	Gas	MCF ->	24,070	1,000,000	24,070	237,005	14.3727
45 46 CUTLER 6	138	3,713	3.6	95.4	36.2	15,136	Gas	MCF ->	56,202	1,000,000	56,202	553,547	14.9083
47 48 FORT MYERS 2	1,423	953,284	90.1	96.6	91.4	7,149	Gas	MCF ->	6,815,157	1,000,000	6,815,157	67,121,409	7.0411
49 50 FORT MYERS 3A_B	320	1,307	0.6	95.7	82.5	11,482	Gas	MCF ->	15,004	1,000,000	15,004	147,753	11.3047
51 52 SANFORD 3 53	138	7,536 0	7.3	95.0	62.2	10,636	Heavy O Gas	MCF ->	12,079 2,853	6,399,868 1,000,000	77,304 2,853	 662,385 28,148	8.7896
54 55 SANFORD 4	940	623,531	89.2	96.4	90.7	7,046	Gas	MCF ->	4,393,778	1,000,000	4,393,778	43,273,618	6.9401
56 57 SANFORD 5	940	618,358	88.4	96.5	90.1	7,097	Gas	MCF ->	4,388,902	1,000,000	4,388,902	43,225,636	6.9904
58 59 PUTNAM 1 60 61	239	118 18,712	10.6	96.1	68.9	10,950	Light Oi Gas	BBLS -> MCF ->	209 204,985	5,818,182 1,000,000	1,216 204,985	17,500 2,018,853	14.8305 10.7891
49	320 138 940 940 239	1,307 7,536 0 623,531 618,358 118 18,712	0.6 7.3 89.2 88.4 10.6	95.7 95.0 96.4 96.5 96.1	82.5 62.2 90.7 90.1 68.9	11,482 10,636 7,046 7,097 10,950	Gas Heavy O Gas Gas Gas Light Oi Gas	MCF -> MCF -> MCF -> MCF -> MCF -> MCF ->	15,004 12,079 2,853 4,393,778 4,388,902 4,388,902 209 204,985	1,000,000 6,399,868 1,000,000 1,000,000 1,000,000 5,818,182 1,000,000	15,004 77,304 2,853 4,393,778 4,388,902 1,216 204,985	43,273,618 43,225,636 17,500 2,018,853	1 1 1

				Estimated	For The Pe	riod of :		Oct-06						
(A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)		(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
62 PUTNAM 2 63	239	2 31,475	17.7	96.5	74.9	10,606	Light Gas	Oil BBLS MCF	-> ->	3 333,854	5,666,667 1,000,000	 17 333,854	200 3,288,124	10.0000 10.4468
65 MANATEE 1 66	804	238,967 19,696	43.3	95.0	54.0	10,466	Heavy Gas	Oil BBLS	;-> ->	390,351 209,190	6,399,996 1,000,000	2,498,245 209,190	20,401,741 2,108,324	8.5375 10.7043
67 68 MANATEE 2	788		0.0	0.0		0			-				. <u></u>	
70 MANATEE 3	1,080	683,374	85.1	95.5	87.4	7,098	Gas	MCF	->	4,850,900	1,000,000	4,850,900	46,709,919	6.8352
71 72 MARTIN 1 73	809	221,784 95,050	52.7	95.0	62.8	10,292	Heavy Gas	Oil BBLS MCF	; -> ->	342,315 1,070,099	6,400,003 1,000,000	2,190,817 1,070,099	 17,922,454 10,469,727	8.0810 11.0150
74 75 MARTIN 2 76 77	790	196,131 84,056	47.7	94.6	56.7	10,240	Heavy Gas	Oil BBLS MCF	-> ->	299,641 951,631	6,400,005 1,000,000	1,917,704 951,631	15,688,184 9,303,631	7.9988 11.0684
78 MARTIN 3	449	56,687	17.0	18.5	90.2	7,466	Gas	MCF	->	423,272	1,000,000	423,272	4,150,031	7.3210
80 MARTIN 4	450	298,679	89.2	96.5	90.6	7,413	Gas	MCF	->	2,214,337	1,000,000	2,214,337	21,496,303	7.1971
81 82 MARTIN 8	1,080	540,097	67.2	74.6	88.3	7,042	Gas	MCF	->	3,803,609	1,000,000	3,803,609	 36,625,376	6.7813
83 84 FORT MYERS 1-12	552	 91	0.0	98.4	99.4	15,388	Light	Oil BBLS	-> -	237	5,818,565	 1,379	20,000	21.9780
85 86 LAUDERDALE 1-24 87	684		2.8	91.7	28.3	19,094	Light Gas	Oil BBLS MCF	-> ->	2,377 257,194	5,829,196 1,000,000	13,856 257,194	 198,800 2,535,433	23.8369 18.9778
89 EVERGLADES 1-12 90 91	342	47 880	0.4	88.3	33.9	26,114	Light Gas	Oil BBLS MCF	-> ->	156 23,291	5,839,744 1,000,000	911 23,291	13,100 229,792	27.8723 26.1128

				Estimated I	For The Pe	riod of :		Oct-06					
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)		(H)	(I)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	1	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
92 ST JOHNS 10	127	88,898	94.1	97.0	95.8	9,797	 Coal	TONS ->	35,575	24,482,670	870,971	 1,649,700	1.8557
93 94 ST JOHNS 20	127	88,980	94.2	96.8	96.6	9,655	 Coal	TONS ->	35,091	24,482,317	859,109	1,627,200	1.8287
95 96 SCHERER 4 97 98	621	450,673	97.6	96.7	99.3	10,290	 Coal 	TONS ->	265,000	17,500,000	4,637,500	 8,037,900 	1.7835
99 100 TOTAL	20,214	8,779,300				9,032 ========					79,290,791	 479,556,100 ======	5.4624

56

				Estimated	For The Pe	riod of :	Nov-06					
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)	(H)	(1)	(J)	(К)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1	388	99,656 7,311	38.3	94.0	50.7	9,984	Heavy Oil BBLS -> Gas MCF ->	 149,484 111,281	6,400,016 1,000,000	956,700 111,281	7,609,768 1,107,514	7.6360 15.1486
4 TURKEY POINT 2	397	94,198 5,047	34.7	95.2	58.3	10,250	Heavy Oil BBLS -> Gas MCF ->	142,520 105,146	6,399,979 1,000,000	912,125 105,146	7,255,232 1,046,501	7.7021 20.7351
7 TURKEY POINT 3	717	501,329	97.1	97.5	100.0	11,182	Nuclear Othr ->	5,606,330	1,000,000	5,606,330	1,763,800	0.3518
9 TURKEY POINT 4	717	135,370	26.2	22.8	100.0	11,182	Nuclear Othr ->	1,513,836	1,000,000	1,513,836	534,100	0.3945
10 11 LAUDERDALE 4 12	443	2,793 230,486	73.2	96.2	78.1	8,203	Light Oil BBLS -> Gas MCF ->	 3,721 1,891,991	5,829,616 1,000,000	21,692 1,891,991	313,900 18,829,688	11.2388 8.1696
13 14 LAUDERDALE 5 15	442	578 247,985	78.1	96.2	79.7	8,016	Light Oil BBLS -> Gas MCF ->	 757 1,988,150	5,826,948 1,000,000	4,411 1,988,150	63,800 19,786,714	11.0381 7.9790
10 17 PT EVERGLADES 1 18 19	207	21,392 0	14.4	96.5	41.0	12,384	Heavy Oil BBLS -> Gas MCF ->	. 36,718 29,933	6,399,995 1,000,000	234,995 29,933	1,867,308 297,857	8.7290
20 PT EVERGLADES 2 21 22	206	18,277 0	12.3	95.8	36.0	12,667	Heavy Oil BBLS -> Gas MCF ->	31,977 26,867	6,400,069 1,000,000	204,655 26,867	1,626,255 267,350	8.8978
22 23 PT EVERGLADES 3 24 25	380	59,219 2,998	22.7	94.2	54.2	11,286	Heavy Oil BBLS -> Gas MCF ->	95,008 94,189	6,400,008 1,000,000	608,052 94,189	4,831,672 937,436	8.1590 31.2687
26 PT EVERGLADES 4	370		0.0	0.0		0	₩ = # # 4 # # # # # # # = = = =	******	*******			******
27 28 RIVIERA 3 29 30	283	54,276 0	26.6	93.2	70.0	10,519	Heavy Oil BBLS -> Gas MCF ->	81,414 49,917	6,399,993 1,000,000	521,049 49,917	4,142,837 496,788	7.6329

Company:

۸ 57

				Estimated	For The Pe	eriod of :	No	ov-06					
(A)	(B)	(C)	 (D)	 (E)	(F)		. <u>.</u>	(H)	 (I)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T <u>1</u>)	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31 RIVIERA 4 32	281	2,068 0	1.0	9.4	30.7	11,797	Heavy O Gas	NIBBLS -> MCF ->	 3,422 2,500	6,399,766 1,000,000	21,900 2,500	174,128 24,853	8.4201
34 ST LUCIE 1	853	601,878	98.0	97.5	100.0	10,880	Nuclear	Othr ->	6,548,478	1,000,000	6,548,478	2,123,700	0.3528
36 ST LUCIE 2	726	513,355	98.2	97.5	100.0	10,880	Nuclear	Othr ->	5,585,337	1,000,000	5,585,337	1,903,500	0.3708
37 38 CAPE CANAVERAL 1 39	398	15,718 1,084	5.9	38.6	55.7	10,050	Heavy O Gas	ii BBLS -> MCF ->	 22,593 24,279	6,399,947 1,000,000	 144,594 24,279	1,147,215 241,620	7.2987 22.2896
40 41 CAPE CANAVERAL 2 42 43	398	68,172 2,023	24.5	89.2	71.1	9,912	Heavy O Gas	il BBLS -> MCF ->	 96,855 75,919	6,399,969 1,000,000	619,869 75,919	4,918,266 755,662	7.2145 37.3535
44 CUTLER 5	70	626	1.2	98.8	47.3	15,507	Gas	MCF ->	9,697	1,000,000	9,697	96,592	15.4300
46 CUTLER 6	142	1,575	1.5	95.4	23.8	17,353	Gas	MCF ->	27,337	1,000,000	27,337	272,029	17.2717
48 FORT MYERS 2	1,451	909,597	87.1	96.6	88.8	7,092	Gas	MCF ->	6,451,179	1,000,000	6,451,179	64,203,536	7.0585
50 FORT MYERS 3A_B 51 52	332	9,800 5,964	6.6	95.7	95.0	10,818	Light Oil Gas	BBLS -> MCF ->	 16,546 74,070	5,829,868 1,000,000	96,461 74,070	1,411,000 740,840	14.3980 12.4219
53 SANFORD 3 54 55	140	14,455 0	14.3	95.0	45.9	11,194	Heavy Oi Gas	il BBLS -> MCF ->	23,767 9,707	6,400,050 1,000,000	152,110 9,707	1,267,440 96,589	8.7682
56 SANFORD 4	950	593,184	86.7	96.4	88.3	7,020	Gas	MCF ->	4,164,711	1,000,000	4,164,711	41,448,090	6.9874
58 SANFORD 5	950	549,841	80.4	91.7	87.6	7,125	Gas	MCF ->	3,917,757	1,000,000	3,917,757	38,990,371	7.0912
60 PUTNAM 1 61 62	250	3,503 15,565	10.6	76.9	45.1	12,938	Light Oil Gas	BBLS -> MCF ->	7,191 204,777	5,830,204 1,000,000	41,925 204,777	608,200 2,038,029	17.3623 13.0937

Date: 9/9/2005 Company: Florida F

			Estimated	For The Pe	riod of :		Nov-06						
(B)	(C)	(D)	(E)	(F)	(G)	•	(H)	(I)		(J)	 (K)	(L)	 (M)
Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burne (Units	d S)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
250	2,369 26,330	16.0	96.5	52.1	11,797	Light Gas	 Oil BBLS -> MCF ->	4 312	,481 ,428	5,830,618 1,000,000	 26,127 312,428	379,000 3,109,382	15.9983 11.8093
811	133,019 7,496	24.1	95.0	52.7	11,330	Heavy Gas	- Oil BBLS>	> 236 78	,524 ,376	6,400,019 1,000,000	1,513,758 78,376	12,004,484 797,326	9.0246 10.6367
795		0.0	18.8		0		/ *						
1,104	664,633	83.6	95.5	85.2	6,997	Gas	MCF ->	4,650	 ,909	1,000,000	4,650,909	45,179,023	6.7976
813	127,759 54,755	31.2	95.0	56.9	11,094	 Heavy Gas	· Oil BBLS -: MCF ->	> 194 782	,103 ,581	6,399,989 1,000,000	1,242,257 782,581	9,869,166 7,782,665	7.7248 14.2136
804	122,471 52,488	30.2	94.6	46.4	11,007	Heavy Gas		> 186 734	,136 ,624	6,400,009 1,000,000	1,191,272 734,624	9,464,105 7,317,071	7.7276 13.9405
465		0.0	0.0		0								유 및 프 ¹⁴ ⁴⁴ 47 명 17 64 44 44 44 44 44 44 44 44 44 44 44 44
466	251,661	75.0	96.5	90.7	7,671	Gas	MCF ->	1,930	 ,747	1,000,000	1,930,747	19,084,363	7.5834
1,104	664,331	83.6	95.4	85.5	6,985	Gas	MCF ->	4,640	,484	1,000,000	4,640,484	45,077,719	6.7854
627		0.0	98.4	30.4	25,656	 Light	 Oil BBLS ->		616	5,826,299	3,589	 52,500	37.5000
766	1,804 2,024	0.7	91.7	16.0	23,507	Light Gas	 Oil BBLS -> MCF ->	6 49	,928 ,614	5,830,254 1,000,000	40,392 49,614	584,300 495,466	32.3891 24.4795
383	96 52	0.1	88.3	17.8	36,650	Light Gas		2	 554 ,193	5,832,130 1,000,000	3,231 2,193	46,700 21,933	48.6458 42.1783
	(B) Net Capb (MW) 250 811 795 1,104 813 804 465 466 1,104 627 766 383	(B) (C) Net Capb Net Gen (MW) 250 2,369 26,330 811 133,019 7,496 795 1,104 664,633 813 127,759 54,755 804 122,471 52,488 465 466 251,661 1,104 664,331 627 140 766 1,804 2,024 383 96	$\begin{array}{c cccc} (B) & (C) & (D) \\ \hline Net & Net & Capac \\ Capb & Gen & FAC \\ (MW) & (MWH) & (\%) \\ \hline 250 & 2,369 & 16.0 \\ 26,330 & 26,330 & 24.1 \\ \hline 7,496 & 26,340 & 24.1 \\ \hline 7,496 & 26,340 & 24.1 \\ \hline 7,496 $	Estimated(B)(C)(D)(E)Net Capb (MW)Net Gen (MWH)Capac FAC (%)Equiv Avail FAC (%)2502,369 26,33016.096.5811133,019 7,49624.195.07950.018.81,104664,63383.695.5813127,759 54,75531.295.0804122,471 52,48830.294.64650.00.00.0466251,66175.096.51,104664,33183.695.46271400.098.47661,804 2,0240.791.7383960.188.3520.188.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Estimated For The Period of : (B) (C) (D) (E) (F) (G) Net Capb (MW) Net (MW) Capac (MWH) Equiv (%) Net (%) Avg Net Out FAC (%) Avg Net Heat Rate (%) 250 2,369 26,330 16.0 96.5 52.1 11,797 811 133,019 7,496 24.1 95.0 52.7 11,330 795 0.0 18.8 0 1,104 664,633 83.6 95.5 85.2 6,997 813 127,759 52,488 31.2 95.0 56.9 11,094 465 0.0 0.0 0 0 0 465 0.0 0.0 0 0 466 251,661 75.0 96.5 90.7 7,671 1,104 664,331 83.6 95.4 85.5 6,985 627 140 0.0 98.4 30.4 25,656 766 1,804 0.7 91.7 16.0 <	Estimated For The Period of : Image: Constraint of the second seco	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimated For The Period of : Nov-06 (B) (C) (D) (E) (F) (G) (H) (I) <

Florida Power & Light

Schedule E4 Page: 44

v

				Estimated	For The Pe	eriod of :		Nov-06					
 (A)	 (B)	 (C)	 (D)	(E)	 (F)	(G)		(H)	(1)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
93 ST JOHNS 10	130	86,938	92.9	97.0	95.6	9,716	Coal	TONS ->	 34,133	24,748,835	844,752	1,572,600	1.8089
94 95 ST JOHNS 20	130		95.1	96.8	97.1	9,577	Coal	TONS ->	34,443	24,748,860	852,425	1,586,900	1.7830
96 97 SCHERER 4 98 99	625	438,831	97.6	96.7	99.5	10,241	 Coal 	TONS ->	256,825	17,499,967 	4,494,429	7,810,600	1.7799
100 101 TOTAL	20,764	 7,515,523 ======				8,841		*****			 66,448,114 ======	407,475,482	 5.4218

Company:

	~9	۰.	

				Estimated	For The Pe	riod of :	Dec-06					
 (A)	(B)	(C)	 (D)	(E)	(F)	(G)	 (H)	(1)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2	388	82,797 4,922	30.4	94.0	49.2	10,621	Heavy Oil BBLS -> Gas MCF ->	124,191 136,897	6,399,997 1,000,000	794,822 136,897	6,206,275 1,379,756	7.4958 28.0324
4 TURKEY POINT 2 5	397	73,768 4,027	26.3	95.2	52.6	10,903	Heavy Oil BBLS -> Gas MCF ->	112,471 128,446	6,400,023 1,000,000	719,817 128,446	5,620,606 1,294,588	7.6193 32.1477
7 TURKEY POINT 3	717	515,669	96.7	97.5	100.0	11,182	Nuclear Othr ->	5,766,689	1,000,000	5,766,689	1,810,700	0.3511
9 TURKEY POINT 4	717	521,405	97.8	97.5	100.0	11,182	Nuclear Othr ->	5,830,833	1,000,000	5,830,833	2,053,600	0.3939
10 11 LAUDERDALE 4 12	443	60 224,496	68.1	96.2	74.9	8,385	Light Oil BBLS -> Gas MCF ->	 80 1,882,499	5,800,000 1,000,000	464 1,882,499	6,800 18,973,243	11.3333 8.4515
14 LAUDERDALE 5 15 16	442	60 232,121	70.6	96.2	73.7	8,184	Light Oil BBLS -> Gas MCF ->	80 1,899,718	5,850,000 1,000,000	468 1,899,718	6,800 19,146,822	11.3333 8.2486
17 PT EVERGLADES 1 18 19	207	7,707 0	5.0	96.5	38.9	12,431	Heavy Oil BBLS -> Gas MCF ->	13,314 10,600	6,400,030 1,000,000	85,210 10,600	664,645 106,793	8.6239
20 PT EVERGLADES 2 21 22	206	4,419 0	2.9	95.8	38.8	12,564	Heavy Oil BBLS -> Gas MCF ->	7,654 6,533	6,399,660 1,000,000	48,983 6,533	382,082 65,829	8.6463
23 PT EVERGLADES 3 24 25	380	27,972 2,966	10.9	94.2	44.6	11,765	Heavy Oil BBLS -> Gas MCF ->	46,002 69,600	6,400,048 1,000,000	294,415 69,600	2,296,536 701,452	8.2101 23.6498
26 PT EVERGLADES 4 27 28	393	12,692 2,635	5.2	69.1	34.6	12,988	Heavy Oil BBLS -> Gas MCF ->	21,319 62,627	6,399,972 1,000,000	136,441 62,627	1,064,279 631,143	8.3854 23.9523
29 RIVIERA 3 30 31	283	72,290 0	34.3	93.2	43.0	10,479	Heavy Oil BBLS -> Gas MCF ->	113,876 28,750	6,400,005 1,000,000	728,807 28,750	5,688,517 289,805	7.8690

Company:

61

Florida Power & Light

Schedule E4 Page: 46

				Estimated	For The Pe	riod of :	De	ec-06					
 (A)	(B)	(C)	 (D)	 (E)	 (F)	(G)		 (H)	(1)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T)	^r uel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
32 RIVIERA 4 33	281	32,540 0	15.6	93.8	50.0	10,993	Heavy C Gas)il BBLS -> MCF ->	50,514 34,417	6,400,067 1,000,000	 323,293 34,417	2,523,358 346,868	7.7546
35 ST LUCIE 1	853	618,256	97.4	97.5	100.0	10,880	Nuclea	r Othr ->	6,726,672	1,000,000	6,726,672	2,177,400	0.3522
36 37 ST LUCIE 2	726	526,131	97.4	97.5	100.0	10,880	Nuclea	r Othr ->	5,724,341	1,000,000	5,724,341	 1,947,400	0.3701
38 39 CAPE CANAVERAL 1 40	398	31,744 1,936	11.4	89.0	62.1	9,859	Heavy C Gas)il BBLS -> MCF ->	 45,212 42,697	6,400,004 1,000,000	289,357 42,697	2,253,618 430,322	7.0994 22.2274
41 42 CAPE CANAVERAL 2 43	398	17,707 801	6.3	89.2	66.1	9,797	Heavy C Gas)il BBLS -> MCF ->	25,288 19,482	6,400,111 1,000,000	161,846 19,482	1,260,491 196,445	7.1186 24.5250
45 CUTLER 5	70	110	0.2	98.8	47.3	16,051	Gas	MCF ->	1,773	1,000,000	1,773		16.1930
47 CUTLER 6	142	295	0.3	95.4	23.9	18,996	Gas	MCF ->	5,599	1,000,000	5,599	56,397	19.1175
49 FORT MYERS 2	1,451	899,777	83.4	96.6	85.6	7,134	Gas	MCF ->	6,419,467	1,000,000	6,419,467	64,700,008	7.1907
50 51 FORT MYERS 3A_B 52	332	259 493	0.3	95.7	96.4	11,271	Light Oi Gas	il BBLS -> MCF ->	 439 5,916	5,835,991 1,000,000	2,562 5,916	37,800 59,838	14.5946 12.1375
53 54 SANFORD 3 55	140	2,286 0	2.2	95.0	49.9	11,066	Heavy C Gas)il BBLS -> MCF ->	3,710 1,547	6,400,809 1,000,000	 23,747 1,547	194,453 15,625	8.5063
57 SANFORD 4	950	591,687	83.7	96.4	85.9	7,055	Gas	MCF ->	4,174,907	1,000,000	4,174,907	42,077,747	7.1115
59 SANFORD 5	950	591,157	83.7	96.5	85.2	7,106	Gas	MCF ->	4,201,043	1,000,000	4,201,043	42,341,161	7.1624
61 PUTNAM 1 62 63	250	137 2,903	1.6	96.1	62.2	11,096	Light Oi Gas	IBBLS -> MCF ->	264 32,200	5,825,758 1,000,000	1,538 32,200	22,500 324,578	16.4234 11.1808

Company:

91 -----

93 -----

92 EVERGLADES 1-12

90

392

383

0.0

88.3

				Estimated	For The Pe	eriod of :		Dec-06						
 (A)	 (B)	(C)	 (D)	(E)	(F)			(H)		(I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
64 PUTNAM 2 65	250	322 3,948	2.3	96.5	62.3	10,913	Light Gas	Oil BBLS MCF	-> ->	569 43,278	5,829,525 1,000,000	3,317 43,278	48,500 436,131	15.0621 11.0469
67 MANATEE 1 68	811	75,329 10,044	14.2	95.0	42.2	11,683	Heavy Gas	y Oil BBLS MCF) -> ->	 138,971 108,085	6,400,019 1,000,000	889,417 108,085	6,923,659 1,107,982	9.1912 11.0313
70 MANATEE 2 71	795	18,017 3,020	3.6	94.0	38.3	11,716	Heavy Gas	y Oil BBLS MCF) -> ->	33,388 32,802	6,400,024 1,000,000	213,684 32,802	1,663,408 336,976	9.2324 11.1582
73 MANATEE 3	1,104	644,900	78.5	95.5	80.3	7,041	Gas	MCF ·	->	4,541,268	1,000,000	4,541,268	44,652,112	6.9239
74 75 MARTIN 1 76	813	79,725 34,168	18.8	95.0	46.9	11,582	Heavy Gas	y Oil BBLS MCF	} -> ->	 124,299 523,598	6,400,003 1,000,000	795,514 523,598	6,204,099 5,260,037	7.7819 15.3946
77 78 MARTIN 2 79	804	75,879 32,520	18.1	94.6	40.1	11,595	Heavy Gas	y Oil BBLS MCF	; -> ->	117,058 507,812	6,400,024 1,000,000	749,174 507,812	5,842,697 5,099,141	7.7000 15.6800
81 MARTIN 3	465	84,260	24.4	49.4	84.1	7,720	Gas	MCF ·	->	650,506	1,000,000	650,506	6,507,795	7.7235
82 83 MARTIN 4 84	466	234,023	67.5	96.5	87.5	7,723	Gas	MCF ·	->	1,807,542	1,000,000	1,807,542	17,919,374	7.6571
85 MARTIN 8	1,104	650,305	79.2	95.4	80.9	7,024	Gas	MCF ·	->	4,567,773	1,000,000	4,567,773	44,912,341	6.9064
87 FORT MYERS 1-12 88	627		0.0	98.4		0								
89 LAUDERDALE 1-24	766	435	0.2	91.7	16.6	22,865	Light	Oil BBLS	->	1,645	5,829,179	9,589	139,900	32.1609

Gas MCF ->

0

9,327

1,000,000

9,327

94,530

24.1148

Schedule E4

Page:	48
-------	----

				Estimated For The Period of :				Dec-06					
(A)	(B)	 (C)	 (D)	(E)	(F)	(G)		(H)	(1)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
94 ST JOHNS 10	130	 86,761	89.7	97.0	91.8	9,742	Coal	TONS ->	 34,549	24,465,571	845,261	1,597,700	1.8415
95 96 ST JOHNS 20	130	88,480	91.5	96.8	93.6	9,596	Coal	TONS ->	34,706	24,465,914	849,114	1,605,000	1.8140
97 98 SCHERER 4 99 100	625	450,114	96.9	96.7	98.6	5 10,245	Coal 	TONS ->	263,517	 17,499,975 	4,611,541 	8,035,400	1.7852
101 102 TOTAL	20,787	 7,680,867 ======			*********	8,929 ======					68,583,625	 387,760,874 ===#===	5.0484

Page:	49
-------	----

				Estimated	For The Pe	eriod of :	Jan-06		Thru	Dec-06			
(A)	 (B)	(C)	(D)	(E)	(F)	(G)	(H)		(1)	 (J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	Fuel Type)		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TURKEY POINT 1 2 3	419	1,280,292 38,352 0	36.0	75.9	64.1	9,969	Heavy Oil BBLs Gas MCF	S -> ->	1,888,226 1,060,269 0	6,400,007 1,000,000	12,084,659 1,060,269 0	97,276,348 10,604,191 0	7.5980 27.6496 0.0000
5 TURKEY POINT 2	395	1,646,092 45,056	48.8	95.2	73.7	10,099	Heavy Oil BBLS Gas MCF	\$ -> ->	2,459,970 1,335,096	6,400,000 1,000,000	15,743,809 1,335,096	126,414,335 13,423,332	7.6797 29.7926
8 TURKEY POINT 3	703	5,578,509	90.6	90.8	99.8	11,340	Nuclear Othr	->	63,262,707	1,000,000	63,262,707	20,024,100	0.3590
10 TURKEY POINT 4	703	5,585,556	90.7	90.8	99.9	11,338	Nuclear Othr	->	63,327,715	1,000,000	63,327,715	21,695,800	0.3884
12 LAUDERDALE 4 13	433	2,801,124 4,275	74.0	93.6	79.5	8,162	Gas MCF Light Oil BBLS	-> }->	22,863,760 5,662	1,000,000 5,830,625	22,863,760 33,013	229,297,219 473,700	8.1859 11.0807
14 15 LAUDERDALE 5 16 17	432	2,858,898 2,089	75.7	93.6	79.9	8,068	Gas MCF Light Oil BBLS	-> }->	23,067,120 2,727	1,000,000 5,829,850	23,067,120 15,898	231,914,090 226,000	8.1120 10.8186
18 PT EVERGLADES 1 19 20	206	367,978 0	20.4	96.5	60.8	11,287	Heavy Oil BBLS Gas MCF	S -> ->	607,640 264,400	6,400,008 1,000,000	3,888,901 264,400	31,512,394 2,639,991	8.5637 0.0000
20 21 PT EVERGLADES 2 22 23	205	290,657 0	16.2	95.8	58.8	11,372	Heavy Oil BBLS Gas MCF	S -> ->	483,949 208,200	6,399,993 1,000,000	3,097,270 208,200	25,129,567 2,071,791	8.6458 0.0000
23 24 PT EVERGLADES 3 25 26	377	973,293 37,469	30.6	90.6	68.8	10,761	Heavy Oil BBLS Gas MCF	S -> ->	1,542,110 1,007,307	6,400,001 1,000,000	9,869,506 1,007,307	79,787,435 10,028,385	8.1977 26.7645
20 27 PT EVERGLADES 4 28 29 30	369	940,695 13,271 0	29.5	75.3	81.1	10,616	Heavy Oil BBLS Gas MCF	S -> ->	1,437,873 925,257 0	6,400,003 1,000,000	9,202,392 925,257 0	73,988,380 9,303,394 0	7.8653 70.1032 0.0000

Florida Power & Light

Schedule E4

				Estimated	For The Pe	riod of :	Ja	in-06	Thru	Dec-06			
 (A)	 (B)	(C)	 (D)		 (F)	(G)		 (H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MVV)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH	F T	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31 RIVIERA 3 32	282	1,105,276 0	44.8	93.2	70.3	10,105	Heavy C Gas)ii BBLS -> MCF ->	1,665,612 508,918	6,400,000 1,000,000	10,659,917 508,918	85,544,014 5,108,463	7.7396 0.0000
33 34 RIVIERA 4 35	280	858,614 0	35.0	82.2	68.3	10,196	Heavy C Gas)il BBLS -> MCF ->	1,304,784 404,002	6,400,003 1,000,000	8,350,622 404,002	67,059,296 4,038,093	7.8102 0.0000
37 ST LUCIE 1	845	7,219,902	97.6	97.5	100.0	10,987	Nuclea	r Othr->	79,322,063	1,000,000	79,322,063	25,938,400	0.3593
38 39 ST LUCIE 2 40	719	5,140,116	81.6	81.5	100.0	10,971	Nuclear	r Othr->	56,394,271	1,000,000	56,394,271	19,045,200	0.3705
42 CAPE CANAVERAL 1 43	396	686,318 24,167	20.5	83.9	76.5	9,525	Heavy C Gas)il BBLS -> MCF ->	970,220 557,866	6,399,996 1,000,000	6,209,404 557,866	50,229,612 5,502,779	7.3187 22.7698
44 45 CAPE CANAVERAL 2 46 47	396	565,142 21,061	16.9	78.9	73.8	9,668	Heavy C Gas)il BBLS -> MCF ->	 808,811 491,127	6,399,991 1,000,000	5,176,383 491,127	41,901,831 4,839,798	7.4144 22.9799
48 49 CUTLER 5	69	9,707	1.6	98.8	64.4	14,695	Gas	MCF ->	142,645	1,000,000	142,645	1,409,621	14.5217
50 51 CUTLER 6	140	23,059	1.9	95.4	39.1	15,020	Gas	MCF ->	346,350	1,000,000	346,350	3,423,012	14.8446
52 53 FORT MYERS 2	1,435	10,924,520	86.9	96.6	88.6	7,132	Gas	MCF ->	77,913,155	1,000,000	77,913,155	783,545,858	7.1724
54 55 FORT MYERS 3A_B 56	325	28,536 14,946	3.1	95.7	100.0	11,056	Gas Light Oi	MCF -> il BBLS ->	333,029 25,339	1,000,000 5,829,946	 333,029 147,725	3,279,923 2,144,000	11.4940 14.3450
57 58 SANFORD 3 59 60 61	139	55,329 0 0	4.5	78.6	55.8	10,821	Heavy C Gas	 Dil BBLS -> MCF ->	89,427 26,374 0	6,400,081 1,000,000	572,340 26,374 0	4,853,530 261,472 0	8.7721 0.0000 0.0000

Company:

Florida Power & Light

Schedule E4 Page: 51

				Estimated	For The Pe	eriod of :		Jan-06		Thru	Dec-06			
 (A)	(B)	(C)	(D)	(E)	(F)	(G)	• ••	(H)	-	 (I)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MVV)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
62 SANFORD 4	944	6,562,631	79.3	93.2	87.7	7,247	Gas	MCF	- ->	47,561,677	1,000,000	47,561,677	478,486,866	7.2911
63 64 SANFORD 5	944	6,784,261	82.0	96.1	86.8	7,201	Gas	MCF	->	48,854,614	1,000,000	48,854,614	490,566,092	7.2309
66 PUTNAM 1 67	244	189,009 4,046	9.0	84.8	68.6	10,982	Gas Light	MCF Oil BBLS	-> S->	 2,072,654 8,156	1,000,000 5,830,432	2,072,654 47,553	20,365,693 688,700	10.7750 17.0217
69 PUTNAM 2 70	244	252,404 3,038	12.0	96.5	71.8	10,654	Gas Light	MCF Oil BBLS	-> 3->	2,688,605 5,630	1,000,000 5,830,906	2,688,605 32,828	26,430,620 475,300	10.4716 15.6452
71 72 MANATEE 1 73	804	1,918,499 142,306	29.3	95.0	54.8	10,602	Heavy Gas	/ Oil BBL MCF	S -> ->	3,178,222 1,508,215	6,400,002 1,000,000	20,340,626 1,508,215	164,254,971 15,298,339	8.5616 10.7503
74 75 MANATEE 2 76 77	791	1,262,062 105,660 0	19.7	79.6	55.1	10,525	Heavy Gas	/ Oil BBL MCF	S -> ->	2,073,314 1,126,211 0	6,400,000 1,000,000	13,269,210 1,126,211 0	107,563,451 11,409,899 0	8.5228 10.7987 0.0000
78 79 MANATEE 3	1,090	7,815,275	81.8	93.6	85.3	7,054	Gas	MCF	.>	55,132,377	1,000,000	55,132,377	541,393,468	6.9274
80 81 MARTIN 1 82	811	1,864,277 798,978	37.5	95.0	63.2	10,482	Heavy Gas	/ Oil BBL MCF	S -> ->	2,865,876 9,574,223	6,399,998 1,000,000	18,341,600 9,574,223	148,108,706 94,978,980	7.9446 11.8876
85 84 MARTIN 2 85 86 97	796	1,730,952 741,835	35.5	85.5	57.9	10,416	Heavy Gas	/ Oil BBL MCF	S -> ->	2,638,374 8,871,505	6,400,004 1,000,000	16,885,603 8,871,505	136,380,308 87,773,011	7.8789 11.8319
87 88 MARTIN 3 89	456	2,483,453	62.2	76.4	87.6	7,577	Gas	MCF	->	18,817,500	1,000,000	18,817,500	188,619,878	7.5951
91 MARTIN 4 92	457	3,148,561	78.7	93.9	89.4	7,521	Gas	MCF	->	23,679,733	1,000,000	23,679,733	235,184,646	7.4696

Florida Power & Light

Schedule E4

-	
Page:	52

				Estimated	For The Pe	eriod of :		Jan-06	Thru	Dec-06			
(A)	(B)	 (C)	 (D)	(E)	(F)	(G)		(H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MVV)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH))	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
93 MARTIN 8	1,090	7,750,060	81.2	91.7	86.5	5 7,007	Gas	MCF ->	54,307,513	1,000,000	54,307,513	533,718,987	6.8866
94 95 FORT MYERS 1-12 96 07	583	 1,187 0	0.0	96.8	67.8	3 17,100	Light	Oil BBLS ->	 3,482 0	5,829,408	20,298 0	292,000	24.5998 0.0000
98 LAUDERDALE 1-24 99	718	65,227 28,055	1.5	91.7	25.3	19,351	Gas Light	MCF -> Oil BBLS ->	1,288,768 88,571	1,000,000 5,830,023	1,288,768 516,371	12,817,049 7,295,700	19.6499 26.0050
101 EVERGLADES 1-12 102 103	359	3,428 853	0.1	88.3	42.0	22,378	Gas Light	MCF -> Oil BBLS ->	77,724 3,100	1,000,000 5,831,290	77,724 18,077	765,558 256,700	22.3325 30.0938
104 105 ST JOHNS 10	128	1,059,018	94.3	97.0	96.6	9,760	Coal	TONS ->	421,769	24,505,459	10,335,643	19,768,400	1.8667
107 ST JOHNS 20 108	128	937,880	83.5	85.1	97.4	9,622	Coal	TONS ->	368,532	24,488,327	9,024,732	17,251,900	1.8395
110 SCHERER 4	622	4,755,262	87.2	86.9	99.5	5 10,267	Coal	TONS ->	2,789,903	17,500,005	48,823,316	83,889,000	1.7641
112	0	0	0.0	0.0	0.0) 0		. <u></u> #====#	0		0	0	0.0000
114 TOTAL	20,474	99,548,516			<u></u>	8,961			€== <i>=\$₩+k</i> = <i>n</i> <u>+</u> <i>n</i> <u></u>		892,030,646	5,517,969,572	5.5430

Schedule: E5 Page : 1 of 2

Company: Florida Power & Light

ŧ

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : January 2006 thru June 2006

			January 2006	February 2006	March 2006	April 2006	May 2006	June 2005
	Heavy Oil							
	B							
1 2	Purchases: Units	(BBLS)	498.550	822,530	1,174,660	1.476.979	3.073.582	3.294,276
34	Unit Cost Amount	(\$/BBLS) (\$)	54.1390 26,991,000	54.1281 44,522,000	54.1289 63,583,000	53.8044 79,468,000	53,7942 165,341,000	53.8018 177,238,000
5	Burned:							
7	Units	(BBLS)	704,735	904,179	1,202,014	1,496,700	3,080,333	2,789,930
8 9 10	Unit Cost Amount	(\$/BBLS) (\$)	48.3788 34,094,250	49.5464 44,889,250	50.5400 60,749,750	50.5090 75,596,750	51.8889 159,835,000	51.6974 144,232,000
11	Ending Invento	ory:						
12	Units	(BBLS)	3,669,374	3,587,730	3,560,369	3,540,650	3,533,901	4,038,251
14	Amount	(\$)	120,282,000	115,866,000	114,386,000	113,325,000	112,961,000	140,100,000
15 16	Light Oil					,		
18								
19	Purchases:	(00) 0)						
20	Units Unit Cost	(BBLS) (\$/BBLS)	93 75 2688	185 86 4865	0 0000	4	6,385 83 3203	6,089 81,9511
22	Amount	(\$)	7,000	16,000	0.0000	0.0000	532,000	499,000
23	-							
24 25	Burnea:	(BBLS)	0	151	0	0	6 385	6 088
26	Unit Cost	(\$/BBLS)	ō	86.0927	ō	ō	83.4769	81.9645
27	Amount	(\$)	0	13,000	0	0	533,000	499,000
28 29	Ending Invento	ייזע:						
30	Units	(BBLS)	697,947	697,981	697,993	697,998	698,000	698,000
31	Unit Cost	(\$/BBLS) (\$)	57.0731 39 834 000	57.0761 39.838.000	57.0751	57.0761	57.0759 39.839.000	57.0759 39.839.000
33	Anoun	(0)	55,554,555	00,000,000	03,000,000	00,000,000	00,000,000	00,000,000
34	Coal - SJRPP							
35								
37	Purchases:							
38	Units Unit Cost	(Tons)	71,261	58,293	36,299	56,829	70,576	69,944 46 3657
40	Amount	(\$)	3,354,000	2,710,000	1,683,000	2,876,000	3,218,000	3,243,000
41	D							
42 43	Units	(Tons)	71,297	58.306	36,304	56.831	70.577	69.944
44	Unit Cost	(\$/Tons)	47.0707	46.4961	46.3585	50.6062	45.5956	46.3657
45	Amount	(\$)	3,356,000	2,711,000	1,683,000	2,876,000	3,218,000	3,243,000
47	Ending Invento	ory:						
48	Units	(Tons)	57,522	57,508	57,503	57,501	57,502	57,501
49 50	Amount	(\$/10ns) (\$)	2,613,000	2,613,000	2,612,000	2,612,000	2.612,000	2,612,000
51								
52 53	Coal - SCHER	EK	-					
54								
55 56	Purchases: Units	(MBTU)	4.630.063	4,113,253	4,650,153	3,114,283	306.600	4.544.365
57	Unit Cost	(\$/MBTU)	1.6918	1.6965	1.7010	1.7057	1.7091	1.7149
58	Amount	(\$)	7,833,000	6,978,000	7,910,000	5,312,000	524,000	7,793,000
60	Burned:							
61	Units	(MBTU)	4,630,798	4,113,515	4,650,258	3,114,318	306,618	4,544,365
62	Amount	(\$/MBIU) (\$)	7.834.000	1.6964	7.910.000	5.312.000	524.000	7.793.000
64		(**		-,	.,	-,,		
65	Ending Invento	MRTUN	4 629 958	4 629 660	4 629 608	4 629 363	4 629 433	4 629 328
67	Unit Cost	(\$/MBTU)	1.6441	1.6442	1.6442	1.6443	1.6443	1.6443
68	Amount	(\$)	7,612,000	7,612,000	7,612,000	7,612,000	7,612,000	7,612,000
59 70	Gas							
71								
72	Burned'							
74	Units	(MCF)	29,387,744	26,960,670	31,945,648	32,008,964	37,591,961	36,923,781
75 70	Unit Cost	(\$/MCF)	10.5775	10.6130	10.6107	9.8634	9.7053 364 841 252	9.7264
, 0 77		(#7	310,049,703	200,100,012	000, 904 ,002	010,710,040	004,041,202	JJJ, 133,/45
78	Nuclear							
, g 80			-					
81	Burned:		94 079 749	04 700 404	10 652 400	21 700 750	10 006 700	10 000 440
83	Unit Cost	(\$/MBTU)	0.3316	0.3309	0.3332	0.3295	0.3287	0.3292
84	Amount	(\$)	7,984,000	7,188,000	6,515,000	7,183,000	6,010,000	6,264,000

Company: Florida Power & Light

Schedule: E5 Page : 2 of 2

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : July 2006 thru December 2006

			July 2006	August 2006	September 2006	October 2006	November 2006	December 2006	Total
	Heavy Oil								
1234	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	3,480,613 54.6154 190,095,000	3,156,080 54,6231 172,395,000	2,886,333 54.6195 157,650,000	2,316,553 54.3199 125,835,000	1,303,641 54.3547 70,859,000	477,319 54.3410 25,938,000	23,961,116 54.2510 1,299,915,000
5 6 7 8 9	Burned: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	3,298,214 52.5331 173,265,250	3,090,116 52,4004 161,923,250	2,862,479 52,2617 149,598,000	2,307,923 52.3652 120,854,875	1,300,522 50.8856 66,177,875	977,270 49.9234 48,788,625	24,014,415 51,6359 1,240,004,875
11 12 13 14	Ending Invent Units Unit Cost Amount	tory: (BBLS) (\$/BBLS) (\$)	4,220,653 35,5542 150,062,000	4,286,618 35.8476 153,665,000	4,310,477 35.9517 154,969,000	4,319,114 35.9882 155,437,000	4,322,231 36.0013 155,606,000	3,822,277 33.6056 128,450,000	3,822,277 33.6056 128,450,000
17 18 19	Purchases:								
20 21 22 23	Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	40,296 81.8940 3,300,000	37,800 82.3545 3,113,000	5,091 83.0878 423,000	3,010 83.7209 252,000	40,794 84.8164 3,460,000	3,078 85.4451 263,000	142,837 83.0667 11,865,000
24 25 26 27 28	Burned: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	40,296 81.8692 3,299,000	37,799 82.3831 3,114,000	5,090 83.1041 423,000	2,980 83.8926 250,000	40,794 84.8164 3,460,000	3,062 85.2384 261,000	142,645 83.0874 11,852,000
29 30 31 32 33	Ending Inven Units Unit Cost Amount	tory: (BBLS) (\$/BBLS) (\$)	698,000 57.0759 39,839,000	698,000 57.0759 39,839,000	698,000 57,0759 39,839,000	698,000 57.0774 39,840,000	698,000 57.0788 39,841,000	698,000 57.0788 39,841,000	698,000 57.0788 39,841,000
34 35 36	Coal - SJRPF								
37 38 39 40 41	Purchases: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	74,476 47.1158 3,509,000	72,276 46.7652 3,380,000	71,804 47,4068 3,404,000	70,667 46.3724 3,277,000	68,577 46.0796 3,160,000	69,256 46.2487 3,203,000	790,258 46.8417 37,017,000
42 43 44 45 46	Burned: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	74,476 47,1293 3,510,000	72,277 46.7645 3,380,000	71,804 47,4068 3,404,000	70,667 46.3724 3,277,000	68,577 46.0796 3,160,000	69,256 46.2487 3,203,000	790,316 46.8433 37,021,000
47 48 49 50	Ending Inven Units Unit Cost Amount	tory: (Tons) (\$/Tons) (\$)	57,501 45.4253 2,612,000	57,501 45.4253 2,612,000	57,501 45,4253 2,612,000	57,501 45.4253 2,612,000	57,501 45.4253 2,612,000	57,502 45.4245 2,612,000	57,502 45.4245 2,612,000
52 53	Coal - SCHEI	RER							
55 56 57 58	Purchases: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,649,383 1.7194 7,994,000	4,598,090 1.7240 7,927,000	4,472,598 1.7287 7,732,000	4,637,500 1.7333 8,038,000	4,494,420 1.7379 7,811,000	4,611,548 1.7424 8,035,000	48,822,253 1.7182 83,887,000
60 61 62 63	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,649,383 1.7194 7,994,000	4,598,108 1.7240 7,927,000	4,472,615 1.7287 7,732,000	4,637,500 1.7333 8,038,000	4,494,438 1.7379 7,811,000	4,611,548 1.7424 8,035,000	48,823,460 1.7182 83,888,000
65 67 68 59 70	Ending Invent Units Unit Cost Amount Gas	tory: (MBTU) (\$/MBTU) (\$)	4,629,328 1.6441 7,611,000	4,629,328 1.6441 7,611,000	4,629,328 1.6441 7,611,000	4,629,328 1.6441 7,611,000	4,629,555 1.6440 7,611,000	4,629,520 1.6440 7,611,000	4,629,520 1.6440 7,611,000
71 72 73 74 75 76 77 78 79	Burned: Units Unit Cost Amount Nuclear	(MCF) (\$/MCF) (\$)	38,667,952 9.7453 376,831,459	38,765,809 9.7665 378,605,859	35,667,400 9.7564 347,983,770	34,697,689 9,7820 339,413,624	32,440,690 9.8808 320,541,381	31,956,566 9,9974 319,483,622	407,014,874 9.9714 4,058,498,685
30 31 32 33 34	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	23,845,222 0.3312 7,897,000	24,049,836 0.3309 7,958,000	23,211,130 0.3304 7,668,000	23,437,196 0.3294 7,721,000	19,253,980 0.3285 6,325,000	24,048,536 0.3322 7,989,000	262,306,750 0.3305 86,702,000

POWER SOLD

		Estimated for	the Period o	of: January 2006	thru Decembe					
(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWH Sold	(5) MWH Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWH) Ce	(7B) Total Cost ents / KWH	(8) Total \$ For Fuel Adjustment (6) * (7A)	(9) Total Cost \$ (6)*(7B)	(10) \$ Gain From Off System Sales
January 2006	St.Lucie Rel.	OS	275,000 46,046	**************************************	275,000 46,046	4.494 0.358	5.609 0.358	12,357,250 164,977	15,425,000 164,977	2,363,750 0
Total			321,046	0	321,046	3.900	4.856	12,522,227	15,589,977	2,363,750
February 2006	St.Lucie Rel.	OS	245,000 41,269		245,000 41,269	4.963 0.358	5.706 0.358	12,158,300 147,547	13,978,750 147,547	1,195,500 0
Total			286,269	0	286,269	4.299	4.935	12,305,847	14,126,297	1,195,500
March 2006	St.Lucie Rel.	OS	225,000 46,402		225,000 46,402	5.607 0.357	6.222 0.357	12,616,750 165,598	14,000,000 165,598	 769,750 0
Total			271,402	0	271,402	4.710	5.219	12,782,348	14,165,598	769,750
April 2006	St.Lucie Rel.	OS	135,000 43,841		135,000 43,841	5.530 0.362	6.169 0.362	7,465,900 158,827	8,327,500 158,827	 510,000 0
Total			178,841	0	178,841	4.263	4.745	7,624,727	8,486,327	510,000
May 2006	St.Lucie Rel.	OS	95,000 45,640		95,000 45,640	6.495 0.362	7.126 0.362	6,170,300 164,994	6,770,000 164,994	320,500 0
Total			140,640	0	140,640	4.505	4.931	6,335,294	6,934,994	320,500
June 2006	St.Lucie Rel.	OS	95,000 43,241		95,000 43,241	6.701 0.361	7.495 0.361	6,366,200 156,034	7,120,000 156,034	458,100 0
Total			138,241	0	138,241	4.718	5.263	6,522,234	7,276,034	458,100

POWER SOLD

		Estimated for	the Period o	f: January 2006	thru Decembe					
(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWH Sold	(5) MWH Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWH) C	(7B) Total Cost ents / KWH	(8) Total \$ For Fuel Adjustment (6) • (7A)	(9) Total Cost \$ (6)*(7B)	(10) \$ Gain From Off System Sales
July 2006	St.Lucie Rel.	OS	155,000 45,540		155,000 45,540	7.282 0.360	8.005 0.360	11,287,750 164,031	12,407,500 164,031	 616,450 0
Total			200,540	0	200,540	5.710	6.269	11,451,781	12,571,531	616,450
August 2006	St.Lucie Rel.	OS	155,000 45,640		155,000 45,640	7.201 0.360	8.005 0.360	11,162,150 164,089	12,407,500 164,089	 742,050 0
Total			200,640	0	200,640	5.645	6.266	11,326,239	12,571,589	742,050
September 2006	St.Lucie Rel.	OS	140,000 43,491	*** *********************************	140,000 43,491	6.786 0.359	7.434 0.359	9,499,800 156,073	10,407,500 156,073	472,800 0
Total			183,491	0	183,491	5.262	5.757	9,655,873	10,563,573	472,800
October 2006	St.Lucie Rel.	OS	150,000 45,740	#++-+=== ;, 4 43==+==	150,000 45,740	6.047 0.358	6.600 0.358	9,069,900 163,843	9,900,000 163,843	410,100 0
Total			195,740	0	195,740	4.717	5.141	9,233,743	10,063,843	410,100
November 2006	St.Lucie Rel.	OS	235,000 44,827	******	235,000 44,827	4.961 0.352	5.650 0.352	11,658,700 157,642	13,277,500 157,642	1,011,950 0
Total			279,827	0	279,827	4.223	4.801	11,816,342	13,435,142	1,011,950
December 2006	St.Lucie Rel.	OS	260,000 46,046		260,000 46,046	4.558 0.351	5.831 0.351	11,850,200 161,632	15,160,000 161,632	2,641,200 0
Total			306,046	0	306,046	3.925	5.006	12,011,832	15,321,632	2,641,200
Period	St.Lucie Rel.	OS	2,165,000 537,724	0 0	2,165,000 537,724	5.620 0.358	6.429 0.358	121,663,200 1,925,287	139,181,250 1,925,287	11,512,150 0
Total			2,702,724	0	2,702,724	4.573	5.221	123,588,487	141,106,537	11,512,150

Purchased Power

(Exclusive of Economy Energy Purchases)

Estimated for the Period of : January 2006 thru December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2006 January	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		670,134 46,304 268,236 720			670,134 46,304 268,236 720	1.855 0.360 1.881 11.058		12,431,000 166,800 5,045,000 79,618
Total		<u> </u>	985,394			985,394	1.799		17,722,418
2006 February	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		594,645 41,730 223,175 0			594,645 41,730 223,175 0	1.855 0.359 1.806 0.100		11,030,000 150,000 4,031,000 0
Total			859,550			859,550	1.770		15,211,000
2006 March	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		683,551 46,304 138,999 0			683,551 46,304 138,999 0	1.855 0.359 1.837 0.100		12,679,000 166,200 2,554,000 0
Total			868,854			868,854	1.772		15,399,200
200 6 April	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		660,506 33,443 217,111 1,075			660,506 33,443 217,111 1,075	1.855 0.364 1.969 10.626		12,252,000 121,800 4,276,000 114,228
Total			912,135			912,135	1.838		16,764,028
2006 May	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		691,385 0 276,187 34,554			691,385 0 276,187 34,554	1.855 0.000 1.759 10.273		12,825,000 0 4,859,000 3,549,785
Total			1,002,126			1,002,126	2.119		21,233,785
2006 June	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		665,903 11,999 264,618 10,583			665,903 11,999 264,618 10,583	1.855 0.378 1.839 10.299		12,352,000 45,300 4,866,000 1,089,906
Total			953,103	 		953,103	1.926		18,353,206
Period Total	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		3,966,124 179,780 1,388,326 46,932			3,966,124 179,780 1,388,326 46,932	1.855 0.362 1.846 10.299		73,569,000 650,100 25,631,000 4,833,536
Total			5,581,162			5,581,162	1.876		104,683,636

ł

Purchased Power

(Exclusive of Economy Energy Purchases)

Estimated for the Period of : January 2006 thru December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2006 July	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		691,120 44,395 273,774 12,410			691,120 44,395 273,774 12,410	1.855 0.377 1.917 10.405		12,820,000 167,300 5,249,000 1,291,250
Total			1,021,699			1,021,699	1.911		19,527,550
2006 August	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		688,825 45,444 274,538 15,273			688,825 45,444 274,538 15,273	1.855 0.378 1.853 10.381		12,777,000 171,600 5,087,000 1,585,477
Total			1,024,080		<u></u>	1,024,080	1.916		19,621,077
2006 September	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		666,901 44,295 264,228 6,430			666,901 44,295 264,228 6,430	1.855 0.377 1.922 10.475		12,371,000 167,000 5,078,000 673,530
Total			981,854			981,854	1.863	<u></u>	18,289,530
2006 October	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs	·	673,892 44,994 263,404 6,593			673,892 44,994 263,404 6,593	1.855 0.376 1.842 10.168		12,500,000 169,300 4,852,000 670,379
Total			988,883			988,883	1.840		18,191,679
2006 November	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		653,217 44,932 264,865 53,915			653,217 44,932 264,865 53,915	1.855 0.369 1.796 11.693		12,117,000 166,000 4,756,000 6,304,280
Total			1,016,929			1,016,929	2.295		23,343,280
2006 December	Sou. Co. (UPS + R) St. Lucie Rel. SJRPP PPAs		652,920 46,050 262,465 1,416			652,920 46,050 262,465 1,416	1.855 0.369 1.827 10.439		12,111,000 169,900 4,796,000 147,810
Total			962,851			962,851	1.789		17,224,710
Period Total	Sou. Co. (UPS + R) St. Lucie Rei. SJRPP PPAs		7,992,999 449,890 2,991,600 142,969			7,992,999 449,890 2,991,600 142,969	1.855 0.369 1.853 10.846		148,265,000 1,661,200 55,449,000 15,506,263
Total			11,577,458			11,577,458	1.908		220,881,463

Energy Payment to Qualifying Facilities

Estimated for the Period of : January 2006 thru December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2006 January	Qual. Facilities		510,715			510,715	2.777	2.777	14,180,208
Total			510,715			510,715	2.777	2.777	14,180,208
2006 February	Qual. Facilities		475,431			475,431	2.811	2.811	13,363,208
Total			475,431			475,431	2.811	2.811	13,363,208
2006 March	Qual. Facilities		533,330			533,330	2.824	2.824	15,059,208
Total			533,330			533,330	2.824	2.824	15,059,208
2006 April	Qual. Facilities		232,227			232,227	3.448	3.448	8,008,208
Total	**************		232,227			232,227	3.448	3.448	8,008,208
2006 May	Qual. Facilities		397,006			397,006	2.752	2.752	10,926,208
Total			397,006			397,006	2.752	2.752	10,926,208
2006 June	Qual. Facilities		523,361			523,361	2.845	2.845	14,887,208
Total			523,361			523,361	2.845	2.845	14,887,208
Period Total	Qual. Facilities		2,672,070			2,672,070	2.860	2.860	76,424,248
Total			2,672,070			2,672,070	2.860	2.860	76,424,248

Energy Payment to Qualifying Facilities

Estimated for the Period of : January 2006 thru December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2006 July	Qual. Facilities		532,272			532,272	2.898	2.898	15,426,208
Total			532,272			532,272	2.898	2.898	15 ,4 26,208
2006 August	Qual. Facilities		541,002			541,002	2.861	2.861	15,479,208
Total			541,002			541,002 	2.861	2.861	15,479,208
2006 September	Qual. Facilities		518,198			518,198	2.874	2.874	14,895,208
Total			518,198			518,198	2.874	2.874	14,895,208
2006 October	Qual. Facilities		408,158			408,158	2.767	2.767	11,295,208
Total		<u>.</u>	408,158			408,158	2.767	2.767	11,295,208
2006 November	Qual. Facilities		293,097			293,097	3.045	3.045	8,926,208
Total			293,097			293,097	3.045	3.045	8,926,208
2006 December	Qual. Facilities		508,461			508,461	2.770	2.770	14,084,208
Total			508,461	<u></u>		508,461	2.770	2.770	14,084,208
Period Total	Qual. Facilities		5,473,258			5,473,258	2.860	2.860	156,530,497
Total			5,473,258			5,473,258	2.860	2.860	156,530,497
Economy Energy Purchases

			Estimated F						
	(1) Month	(2) Purchase From	(3) Type & Schedule	(4) Total MWH Purchased	(5) Transaction Cost (Cents/KWH)	(6) Total \$ For Fuel ADJ (4) * (5)	(7A) Cost If Generated (Cents / KWH)	(7B) Cost If Generated (\$)	(8) Fuel Savings (7B) - (6)
1	January 2006	Florida Non-Elorida	C	60,000 71 920	5.100 5.243	3,060,000	5.759	3,455,400 4 141 873	395,400 371 328
3 4	Total	Non Florida	0	131,920	5.178	6,830,545	5.759	7,597,273	766,728
5 6 7 8	February 2006	Florida	 C C	40,000	5.600	2,240,000	6.598	2,639,200	399,200
9 10 11	Total			104,960	5.629	5,908,465	6.598	6,925,261	1,016,796
12 13 14	March 2006	Florida Non-Florida	C C	30,000 87,916	5.850 5.744	1,755,000 5,049,593	6.951 6.951	2,085,300 6,111,041	330,300 1,061,448
15 16 17	Total			117,916	5.771	6,804,593	6.951	8,196,341	1,391,748
18 19 20	April 2006	Florida Non-Florida	C C	20,000 91,560	6.300 6.048	1,260,000 5,537,099	6.936 6.936	1,387,200 6,350,602	127,200 813,503
21 22 23	Total			111,560	6.093	6,797,099	6.936	7,737,802	940,703
24 25 26	May 2006	Florida Non-Florida	C C	20,000 95,976	6.700 6.348	1,340,000 6,092,546	7.486 7.486	1,497,200 7,184,763	157,200 1,092,217
27 28 29	Total			115,976	6.409	7,432,546	7.486	8,681,963	1,249,417
30 31 32	June 2006	Florida Non-Florida	C C	20,000 92,880	6.900 6.550	1,380,000 6,083,258	7.296 7.296	1,459,200 6,776,525	79,200 693,267
33 34 35	Total	***********************************		112,880	6.612	7,463,258	7.296	8,235,725	772,467
36 37 38	Period Total	Florida Non-Florida	C C	190,000 505,212	5.808 5.978	11,035,000 30,201,506	6.591 6.898	12,523,500 34,850,865	1,488,500 4,649,359
39 40 41	Total			695,212	5.932	41,236,506	6.814	47,374,365	6,137,859

Economy Energy Purchases

Estimated For the	Period of : Januar	v 2006 Thru December 2006

	(1) Month	(2) Purchase From	(3) Type & Schedule	(4) Total MWH Purchased	(5) Transaction Cost (Cents/KWH)	(6) Total \$ For Fuel ADJ (4) * (5)	(7A) Cost If Generated (Cents / KWH)	(7B) Cost If Generated (\$)	(8) Fuel Savings (7B) - (6)
1 2	July 2006	Florida Non-Florida	c c	20,000 90,644	7.000 6.798	1,400,000 6,161,969	7.653 7.653	1,530,600 6,936,985	130,600 775,016
3 4 5	Total		-	110,644	6.835	7,561,969	7.653	8,467,585	905,616
6 7 8 9	August 2006	Florida Non-Florida	C C	20,000 90,644	7.000 6.798	1,400,000 6,161,969	7.577 7.577	1,515,400 6,868,096	115,400 706,127
10 11	Total			110,644	6.835	7,561,969	7.577	8,383,496	821,527
12 13 14	September 2006	Florida Non-Florida	с с	20,000 92,880	6.600 6.450	1,320,000 5,990,378	7.425 7.425	1,485,000 6,896,340	165,000 905,962
16 17	Total			112,880	6.476	7,310,378	7.425	8,381,340 	1,070,962
18 19 20 21	October 2006	Florida Non-Florida	C C	30,000 95,976	6.500 6.348	1,950,000 6,092,546	7.433 7.433	2,229,900 7,133,896	279,900 1,041,350
22 23	Total			125,976	6.384	8,042,546	7.433	9,363,796	1,321,250
24 25 26 27	November 2006	Florida Non-Florida	с с	50,000 77,400	5.600 5.650	2,800,000 4,372,781	6.292 6.292	3,146,000 4,870,008	346,000 497,227
28 29	Tota!			127,400	5.630	7,172,781	6.292	8,016,008	843,227
30 31 32 33	December 2006	Florida Non-Florida	C C	50,000 73,284	5.100 5.345	2,550,000 3,917,316	6.164 6.164	3,082,000 4,517,226	532,000 599,910
34 35	Total			123,284	5.246	6,467,316	6.164 	7,599,226	1,131,910
37	Period	Florida	С	380,000	5.909	22,455,000	6.714	25,512,400	3,057,400
38 39	Total	Non-Florida	С	1,026,040	6.130	62,898,465	7.024	72,073,416	9,174,951
40 41	Total			1,406,040	6.070	85,353,465	6.940	97,585,816	12,232,351

SCHEDULE E10

COMPANY: FLORIDA POWER & LIGHT COMPANY

RESIDENTIAL 1,000 KWH BILL

		PROPOSED	DIFFERENCE FROM CURRENT			
	<u>SEP 16,2005 - DEC 2005</u>	<u>JAN 06 - DEC 06</u>	<u>\$</u>	<u>%</u>		
BASE	\$40.22	\$38.12	(\$2.10)	-5.22%		
FUEL	\$40.09	\$55.30 *	\$15.21	37.94%		
CONSERVATION	\$1.48	\$1.42	(\$0.06)	-4.05%		
CAPACITY PAYMENT	\$6.97	\$6.03	(\$0.94)	-13.49%		
ENVIRONMENTAL	\$0.25	\$0.26	\$0.01	4.00%		
STORM RESTORATION SURCHARGE	<u>\$1.68</u>	<u>\$1.68</u>	<u>\$0.00</u>	<u>0.00%</u>		
SUBTOTAL	\$90.69	\$102.81	\$12.12	13.36%		
GROSS RECEIPTS TAX	<u>\$0.93</u>	<u>\$2.64</u>	<u>\$1.71</u>	<u>183.87%</u>		
TOTAL	\$91.62	\$105.45	\$13.83	15.09%		

* Based on FPL's proposed RS-1 inverted fuel charge of \$0.0553 for the first 1,000 kWh and \$0.0653 for all additional kWh.

Company: Florida Power & Light Company

Schedule H1

GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE

			PERIOD	
		ACTUAL	ESTIMATEDIACTUAL	PROJECTED
	ACTUAL	ACTOAL	LAN DEC	PROJECTED
	JAN - DEC	JAN - DEC	JAN - DEC	JAN - DEC
	2003 - 2003	2004 - 2004	2005 - 2005	2006 - 2006
	(COLUMN 1)	(COLUMN 2)	(COLUMN 3)	(COLUMN_4)
FUEL COST OF SYSTEM N	ET GENERATION (\$)			
HEAVY OIL	669,789,553	880,989,788	1,008,549,294	1,240,004,875
LIGHT OIL	17,235,168	18,481,297	10,122,241	11,852,000
COAL	101.539.662	106,401,206	108,288,999	120,910,000
GAS	1 205 960 702	2 053 469 036	3 120 146 109	4 058 498 68
NUCLEAR	70 877 008	60 760 690	78 021 606	86 707 00
NUCLEAR	10,011,900	69,760,000	78,031,508	00,702,00
	°	0	······································	
TOTAL (\$)	2,065,402,993	3,129,102,007	4,325,138,149	5,517,967,56
SYSTEM NET GENERATION	N			
HEAVY OIL	18,708,283	19,708,832	17,034,677	15,545,47
LIGHT OIL	188,173	198,926	95.071	58,46
COAL	5 977 062	6 315 303	6 388 902	6 752 16
GAR	34 545 974	40,969,969	48 121 246	53 668 19
GAS	34,343,324	40,809,909	40,121,240	00,000,19
NUCLEAR	25,295,157	23,012,886	21,980,934	23,524,08
OTHER	0	0	0	
TOTAL (MWH)	84,714.599	90,205,916	93,620,830	99,548,38
UNITS OF FUEL BURNED				
HEANY OF ARE	30 700 600	21 250 002	26 602 224	24 014 44
INEAVT OIL (BOI)	29,/90,006	31,230,093	20,003,221	24,014,41
	472,694	406,123	174,233	142,64
COAL (TON)	760,021	731,272	682,684	3,580,21
GAS (MCF)	286,112,118	311,056,697	363,245,711	407,014,87
NUCLEAR (MMRTII)	276 217 818	252 278 261	241 273 213	262.306.75
OTHER (TONS)			~	
DINER (IONS)	_10]	0	<u> </u>	
BIUS BURNED (MMBTU)				
HEAVY OIL	190,168,594	198,910,244	170,129,288	153,692,24
LIGHT OIL	2,704.322	2,322,003	937.184	831,62
COAL	59 238 746	83 111 557	64 802 853	68 183 91
	000,200,740	00,111,00/	07,002,000	107,044,07
GAS	296,722,566	322,377,181	370,791,077	407,014,67
NUCLEAR	276,217,616	252,278,261	241,273,213	262,306,75
OTHER	0	0	0	1
TOTAL (MARTIN	825 051 844	838 000 246	847 933 615	892 029 40
	1 020,001,044]	000,000,240		002,010,10
GENERATION MIX (%MVVH)) 			
HEAVY OIL	22.08	21.85	18.20	15.6
LIGHT OIL	0.22	0.22	0.10	0.0
COAL	7.06	7.00	6.82	6.7
GAS	40.78	45.42	51,40	53.9
NUCLEAR	29.86	25.51	23.48	23.6
OTUER	20.00	20.01	0.00	0.0
	0.00	0.00	0.00	0.0
TOTAL (%)	100.00	100.00	100.00	100.0
FUEL COST PER UNIT				
HEAVY OIL (\$/Bbl)	22,4832	28 1916	37,9108	51.635
	36 1015	16 6080	58 0060	82 087
		+3.5006	30.0300	33.007
CUAL (\$/TON)	34.5097	40.5611	44.0009	33.771
GAS (\$MCF)	4.2150	6.6016	8.5896	9.971
NUCLEAR (\$/MMBTU)	0.2566	0.2765	0.3234	0.330
OTHER (S/TON)	0.0000	0.0000	0.0000	0.000
FUEL COST PED MMDTU	MMBTH	3.0000		
UENNOU		1.1001	E 0204	0.000
	3.5221	4,4291	0.0201	0.000
LIGHT OIL	5.3732	7.9592	10.8007	14.251
COAL	1.7141	1.6859	1.6711	1.773
GAS	4.0643	6.3698	8.4148	9.971
NUCLEAR	0.2566	0.2765	0.3234	0.330
OTHER	0.0000	0.000	0.0000	0.000
		0.0000	0.0000	
TOTAL (PERIODE)		0.7000	E 4000	
TUTAL (\$/MMBTU)	2.5034	3./296	5.1008	0.185
BTU BURNED PER KWH (B	TU/KWH)			
HEAVY OIL	10,165	10,092	9,987	9,88
LIGHT OIL	14,371	11,673	9,858	14,22
COAL	9 911	9 993	10.143	10.09
CAR	0.500	7 000	7 705	7 60
0.00	6,569	7,509	1,105	/,08
NUCLEAR	10,920	10,962	10,976	
OTHER	0	0	0	(
TOTAL (BTU/KWH)	9,739	9,301	9,057	8,96
GENERATED EVEL COST P				
UENCOU		,	r 0000 I	7.070
HEAVT OIL	3.5802	4.4700	5.9206	/.9/6
	9.1592	9.2906	10.6470	20.273
COAL	1.6988	1.6848	1.6950	1.790
GAS	3.4909	5.0121	6.4839	7.5623
NUCLEAR	0.2802	0 3031	0.3550	0.368
OTHER	0.0000	0.0000	0.0000	0.000
		0.0000		0.000(
	+			
ITOTAL (C/KWH)	2.4381	3.4688	4.6198	5.5430

DIFFERENCE (%) FROM PRIOR PERIOD (COLUMN 2) (COLUMN 3) (COLUMN 4) (COLUMN 1) (COLUMN 2) (COLUMN 3) 31.5 14.5 23.0 7.2 (45.2) 17.1 4.8 1.8 11.7 70.3 52.0 30.1 11.9 11.1 (1.6) 0.0 0.0 0.0 51.5 38.2 27.6 5.4 (13.6) (8.7) (38.5) 5.7 (52.2) 5.7 1.2 5.7 18.6 11.5 17.5 (9.0) (4.5) 7.0 0.0 0.0 0.0 6.5 3.8 6.3 4.9 (14.9) (9.7) (57.1) (18.1) (14.1) (3.8) (6.6) 424.4 12.1 16.8 8.7 8.7 (8,7) (4.4) 0.0 0.0 0.0 4.6 (14.5) (9.7) (14.1) (11.3) (59.6) 6.5 2.7 5.2 8.7 15.0 9.8 8.7 (8.7) (4.4) 0.0 0.0 0.0 1.7 5.2 1.1 • . . . -. . . . -• 25.4 34.5 36.2 24.8 27.7 43.0 17.5 8.5 (23.3) 16.1 56.6 30.1 2.2 0.0 7.8 17.0 0.0 0.0 36.1 25.8 33.9 24.9 32.0 35.7 (0.9) 6.1 (1.7) 56.7 32.1 18.5 7.8 2.2 0.0 0.0 0.0 49.0 36.8 21.3 (1.0) 44.3 (0.7) (1.0) (18.8) (15.6) 0.8 1.5 (0.4) (8.4) (1.6) (2.1) 4.9 0.4 0.1 0.0 0.0 0.0 (4.5) (2.6) (1.1) 34.7 24.9 32.5 1.4 14.6 90.4 (0.8) 0.6 5.7 43.6 29.4 16.6 8.2 17.1 3.8

0.0

42.3

0.0

33.2

0.0

20.0

Note: Scherer coal is reported in MMBTU's only. Scherer coal is not included in TONS.

Customer <u>Rate Schedule</u>	Charge(\$)	Customer <u>Rate Schedule</u>	Charge(\$)
GS-1	8.37	CST-1	102.27
GST-1	11.44	GSLD-2	158.05
GSD-1	32.54	GSLDT-2	158.05
GSDT-1	38.58	CS-2	158.05
RS-1	5.25	CST-2	158.05
RST-1	8.32	GSLD-3	371.88
GSLD-1	38.12	CS-3	371.88
GSLDT-1	38.12	CST-3	371.88
CS-1	102.27	GSLDT-3	371.88

(Continued from Sheet No. 10.102)

B. Interconnection Charge for Non-Variable Utility Expenses:

The Qualifying Facility shall bear the cost required for interconnection, including the metering. The Qualifying Facility shall have the option of (i) payment in full for the interconnection costs upon completion of the interconnection facilities (including the time value of money during the construction) and providing a surety bond, letter of credit or comparable assurance of payment acceptable to the Company adequate to cover the interconnection costs, (ii) payment of monthly invoices from the Company for actual costs progressively incurred by the Company in installing the interconnection facilities, or (iii) upon a showing of credit worthiness, making equal monthly installment payments over a period no longer than thirty-six (36) months toward the full cost of interconnection. In the latter case, the Company shall assess interest at the rate then prevailing for the thirty (30) days highest grade commercial paper rate, such rate to be specified by the Company thirty (30) days prior to the date of each installment payment by the Qualifying Facility.

C. Interconnection Charge for Variable Utility Expenses:

The Qualifying Facility shall be billed monthly for the cost of variable utility expenses associated with the operation and maintenance of the interconnection facilities. These include (a) the Company's inspections of the interconnection facilities and (b) maintenance of any equipment beyond that which would be required to provide normal electric service to the Qualifying Facility if no sales to the Company were involved.

In lieu of payments for actual charges, the Qualifying Facility may pay a monthly charge equal to a percentage of the installed cost of the interconnection facilities necessary for the sale of energy to the Company. The applicable percentages are as follows:

Equipment Type	<u>Charge</u>
Metering Equipment	0.124%
Distribution Equipment	0.253%
Transmission Equipment	0.114%

D. <u>Taxes and Assessments</u>

The Qualifying Facility shall be billed monthly an amount equal to any taxes, assessments or other impositions, for which the Company is liable as a result of its purchases of As-Available Energy produced by the Qualifying Facility. In the event the Company receives a tax benefit as a result of its purchases of As-Available Energy produced by the Qualifying Facility, the Qualifying Facility shall be entitled to a refund in an amount equal to such benefit.

TERMS OF SERVICE

(1) It shall be the Qualifying Facility's responsibility to inform the Company of any change in the Qualifying Facility's electric generation capability.

(Continue on Sheet No. 10.104)

FLORIDA POWER & LIGHT COMPANY

(Continued from Sheet No. 10.100)

ESTIMATED AS-AVAILABLE AVOIDED ENERGY COST

For informational purposes only, the estimated incremental As-Available Energy costs for the next five periods are as follows. In addition, As-Available Energy cost payments will include .0022¢/kWh for variable operation and maintenance expenses.

Applicable Period	On-Peak ¢/KWH	Off-Peak ¢/KWH	Average ¢/KWH
October 1, 2005 – March 31, 2006	6.89	5.12	5.65
April 1, 2006 – September 30, 2006	7.08	6.50	6.67
October 1, 2006 – March 31, 2007	6.74	5.31	5.73
April 1, 2007 – September 30, 2007	7.35	6.56	6.80
October 1, 2007 – March 31, 2008	6.45	5.02	5.44
April 1, 2008 – September 30, 2008	6.97	6.44	6.59

A MW block size ranging from 42 MW to 47 MW has been used to calculate the estimated As-Available Energy cost.

DELIVERY VOLTAGE ADJUSTMENT

The Company's actual hourly As-Available Energy costs shall be adjusted according to the delivery voltage by the following multipliers:

Delivery Voltage	Adjustment Factor
Transmission Voltage Delivery	1.0000
Primary Voltage Delivery	1.0210
Secondary Voltage Delivery	1.0456

For informational purposes the Company's projected annual generation mix and fuel prices are as follows:

PROJECTED ANNUAL GENERATION MIX AND FUEL PRICES

		Genera (tion by F %)	uel Type			Price by Fuel Type (\$/MMBTU)			
			_		Purchased					
Year	<u>Nuclear</u>	<u>Oil</u>	<u>Gas</u>	<u>Coal</u>	Power	<u>Nuclear</u>	<u>Oil</u>	<u>Gas</u>	<u>Coal</u>	
2006	20	13	47	6	13	.33	7.72	8.26	1.77	
2007	20	13	48	6	13	.41	6.64	7.09	1.83	
2008	20	12	48	6	13	.42	6.37	6.72	1.82	
2009	19	11	51	6	13	.41	6.11	6.34	1.83	
2010	19	10	55	5	11	.43	6.49	6.08	1.86	
2011	18	9	57	6	10	.43	7.21	6.27	1.89	
2012	18	7	57	8	10	.44	7.52	6.44	2.05	
2013	17	6	54	13	10	.44	7.66	6.62	2.18	
2014	17	6	53	14	9	.44	8.18	6.81	2.24	
2015	17	9	51	14	9	.45	9.47	7.12	2.27	

NOTE: The Company's forecasts are for illustrative purposes, and are subject to frequent revision. Amounts may not add to 100% due to rounding.

(Continued on Sheet No. 10.102)

APPENDIX III

CAPACITY COST RECOVERY

KMD-6 DOCKET NO. 050001-EI FPL WITNESS: K. M. DUBIN EXHIBIT PAGES 1-9 SEPTEMBER 9, 2005

APPENDIX III CAPACITY COST RECOVERY

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	<u>SPONSOR</u>
3	Projected Capacity Payments	K. M. Dubin
4	Calculation of Energy & Demand Allocation % By Rate Class	K. M. Dubin
5	Calculation of Capacity Recovery Factor	K. M. Dubin
6-7	Capacity Costs - 2005 Estimated/Actual	G. J. Yupp
8-9	Capacity Costs – 2006 Projections	G. J. Yupp

4b. RETURN REQUIREMENTS ON SJRPP SUSPENSION LIABILITY	(\$369,473)	(\$372,949)	(\$376,425)	(\$379,902)	(\$383,378)	(\$386,855)	(\$390,331)	(\$393,808)	(\$397,284)	(\$400,760)	(\$404,237)	(\$407,713)	(\$4,663,115)
56, OKEELANTA SETTLEMENT	\$3,015,493	\$3,008,023	\$3,000,552	\$2,993,082	\$2,985,612	\$2,978,141	\$2,970,671	\$2,963,200	\$2,955,730	\$2,948,259	\$2,940,789	\$2,933,319	\$35,692,871
6. INCREMENTAL PLANT SECURITY COSTS	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$1,871,172	\$22,454,060
7. TRANSMISSION OF ELECTRICITY BY OTHERS	\$559,399	\$559,399	\$551,723	\$546,605	\$532,519	\$541,650	\$543,529	\$543,493	\$543,178	\$543,309	\$529,493	\$556,840	\$6,551,137
8. TRANSMISSION REVENUES FROM CAPACITY SALES	(\$704,000)	(\$624,950)	(\$613,500)	(\$351,600)	(\$279,200)	(\$295,700)	(\$503,300)	(\$503,300)	(\$434,900)	(\$420,000)	(\$606,850)	(\$668,600)	(\$6,005,900)
9. SYSTEM TOTAL	\$52,355,942	\$52,424,046	\$50,397,625	\$50,548,600	\$53,739,328	\$60,373,489	\$60,156,822	\$60,145,838	\$54,570,457	\$50,211,583	\$50,294,470	\$52,268,369	\$647,486,565
10. JURISDICTIONAL % *													98.62224%
11. JURISDICTIONALIZED CAPACITY PAYMENTS													\$638,565,754
12. SJRPP CAPACITY PAYMENTS INCLUDED IN THE 1988 TAX SAVINGS REFUND DOCKET													(\$56,945,592)
13. FINAL TRUE-UP ~ overrecovery/(underrecovery) EST \ ACT TRUE-UP ~ overrecovery/(underrecovery) JANJARY 2004 · DECEMBER 2004 JANJARY 2005 · DECEMBER 2005 \$5,177,060 (\$12,294,835)												(\$7,117,775)	
14. TOTAL (Lines 10+11+12)													\$588,737,937
15. REVENUE TAX MULTIPLIER													1.00072
16. TOTAL RECOVERABLE CAPACITY PAYMENTS													<u>\$589,161,828</u>
<u>*CALCULATION OF JURISDICTIONAL %</u> AVG. 12 CP <u>AT GEN.(MW)</u> <u>%</u> FFSC 17,509 98.62224% EFSC 245 4 37736W													
TOTAL <u>17.753</u> <u>100.00000%</u>													

FLORIDA POWER & LIGHT COMPANY	
PROJECTED CAPACITY PAYMENTS	
JANUARY 2006 THROUGH DECEMBER 2006	

MAY

\$354,568

JUNE

\$354,568

JANUARY FEBRUARY MARCH APRIL

\$5,620,130 \$5,620,130

\$354,568

\$354,568

\$354,568

\$354,568

1. CAPACITY PAYMENTS TO NON-COGENERATORS

2. SHORT TERM CAPACITY PAYMENTS

* BASED ON 2004 ACTUAL DATA

ω

CAPACITY PAYMENTS TO COGENERATORS
4a. SJRPP SUSPENSION ACCRUAL

PROJECTED

\$16,326,828 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328 \$16,328

\$25,681,825 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,881 \$25,88

\$354,568

\$3,600,882 \$3,506,022 \$6,649,382 \$13,301,860 \$13,301,860 \$13,301,860 \$7,669,340 \$3,306,382 \$3,600,882 \$5,620,130 \$86,098,860

\$354,568

\$354,568

JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER TOTAL

\$354,568

\$354,568

\$354,568

\$4,254,816

FLORIDA POWER & LIGHT COMPANY CALCULATION OF ENERGY & DEMAND ALLOCATION % BY RATE CLASS JANUARY 2006 THROUGH DECEMBER 2006

	(1) AVG 12CP	(2) Projected	(3) Projected	(4) Demand	(5) Energy	(6) Projected	(7) Projected	(8) Percentage	(9) Percentage
Rate Schedule	Load Factor	Sales at	AVG 12 CP	Loss	Loss	Sales at	AVG 12 CP	of Sales at	of Demand at
	at Meter	Meter	at Meter	Expansion	Expansion	Generation	at Generation	Generation	Generation
	(%)	(kwh)	(KW)	Factor	Factor	(kwh)	(KW)	(%)	(%)
RS1/RST1	64.519%	56,154,546,406	9,935,579	1.09027740	1.07161996	60,176,332,773	10,832,537	53.01343%	57.80473%
GS1/GST1	68.112%	6,302,963,545	1,056,372	1.09027740	1.07161996	6,754,381,542	1,151,739	5.95040%	6.14592%
GSD1/GSDT1/HLTF(21-499 kW)	75.086%	24,261,580,778	3,688,553	1.09017966	1.07154518	25,997,379,942	4,021,185	22.90286%	21.45790%
OS2	78.263%	21,673,112	3,161	1.05769961	1.04636243	22,677,930	3,343	0.01998%	0.01784%
GSLD1/GSLDT1/CS1/CST1/HLTF(500-1,999 kW)	81.947%	11,173,396,179	1,556,496	1.08886439	1.07053479	11,961,509,332	1,694,813	10.53771%	9.04388%
GSLD2/GSLDT2/CS2/CST2/HLTF(2,000+ kW)	86.522%	1,878,264,232	247,814	1.08130610	1.06452401	1,999,457,372	267,963	1.76146%	1.42991%
GSLD3/GSLDT3/CS3/CST3	94.572%	222,929,191	26,909	1.03012884	1.02486344	228,471,978	27,720	0.20128%	0.14792%
ISST1D	95.018%	0	0	1.09027740	1.07161996	0	0	0.00000%	0.00000%
ISST1T	163.661%	0	0	1.03012884	1.02486344	0	0	0.00000%	0.00000%
SST1T	163.661%	108,503,253	7,568	1.03012884	1.02486344	111,201,017	7,796	0.09796%	0.04160%
SST1D1/SST1D2/SST1D3	95.018%	26,525,298	3,187	1.07106785	1.06663106	28,292,706	3,413	0.02492%	0.01821%
CILC D/CILC G	91.773%	3,603,481,527	448,232	1.07966661	1.06339023	3,831,907,050	483,941	3.37579%	2.58241%
CILC T .	95.481%	1,570,596,934	187,778	1.03012884	1.02486344	1,609,647,377	193,436	1.41805%	1.03222%
MET	68.606%	99,779,318	16,603	1.05769961	1.04636243	104,405,330	17,561	0.09198%	0.09371%
OL1/SL1/PL1	272.948%	572,679,081	23,951	1.09027740	1.07161996	613,694,334	26,113	0.54065%	0.13934%
SL2, GSCU1	100.665%	67,298,145	7,632	1.09027740	1.07161996	72,118,035	8,321	0.06353%	0.04440%
TOTAL		106,064,217,000	17,209,835			113,511,476,718	18,739,881	100.00%	100.00%

(1) AVG 12 CP load factor based on actual calendar data.

(2) Projected kwh sales for the period January 2006 through December 2006.

(3) Calculated: Col(2)/(8760 hours * Col(1))

(4) Based on 2004 demand losses.

(5) Based on 2004 energy losses.

(6) Col(2) • Col(5).

(7) Col(3) • Col(4).

(8) Col(6) / total for Col(6)

(9) Col(7) / total for Col(7)

FLORIDA POWER & LIGHT COMPANY CALCULATION OF CAPACITY PAYMENT RECOVERY FACTOR JANUARY 2006 THROUGH DECEMBER 2006

Rate Schedule	(1) Percentage of Sales at Generation (%)	(2) Percentage of Demand at Generation (%)	(3) Energy Related Cost (\$)	(4) Demand Related Cost (\$)	(5) Total Capacity Costs (\$)	(6) Projected Sales at Meter (kwh)	(7) Billing KW Load Factor (%)	(8) Projected Billed KW at Meter (kw)	(9) Capacity Recovery Factor (\$/kw)	(10) Capacity Recovery Factor (\$/kwh)
RS1/RST1	53.01343%	57.80473%	\$24.025.763	\$314,366,201	\$338,391,964	56.154.546.406	_	-	-	0.00603
GS1/GST1	5.95040%	6.14592%	\$2,696,728	\$33,424,101	\$36,120,829	6,302,963,545	-	-	-	0.00573
GSD1/GSDT1/HLTF(21-499 kW)	22.90286%	21.45790%	\$10,379,610	\$116,697,008	\$127,076,618	24,261,580,778	50.71007%	54,571,326	2.33	-
OS2	0.01998%	0.01784%	\$9,054	\$97,016	\$106,070	21,673,112	-	-	-	0.00489
GSLD1/GSLDT1/CS1/CST1/HLTF(500-1,999 kW)	10.53771%	9.04388%	\$4,775,705	\$49,184,408	\$53,960,113	11,173,396,179	64.34642%	23,786,906	2.27	-
GSLD2/GSLDT2/CS2/CST2/HLTF(2,000+ kW)	1.76146%	1.42991%	\$798,295	\$7,776,434	\$8,574,729	1,878,264,232	65.76459%	3,912,386	2.19	-
GSLD3/GSLDT3/CS3/CST3	0.20128%	0.14792%	\$91,219	\$804,450	\$895,669	222,929,191	71.58393%	426,608	2.10	-
ISST1D	0.00000%	0.00000%	\$ 0	\$0	\$0	0	0.00000%	0	**	-
ISST1T	0.00000%	0.00000%	\$0	\$0	\$0	0	0.00000%	0	**	-
SST1T	0.09796%	0.04160%	\$44,398	\$226,244	\$270,642	108,503,253	12.54678%	1,184,643	**	-
SST1D1/SST1D2/SST1D3	0.02492%	0.01821%	\$11,296	\$99,047	\$110,343	26,525,298	60.90224%	59,663	**	-
CILC D/CILC G	3.37579%	2.58241%	\$1,529,912	\$14,044,235	\$15,574,147	3,603,481,527	75.45559%	6,541,962	2.38	-
CILCT	1.41805%	1.03222%	\$642,661	\$5,613,619	\$6,256,280	1,570,596,934	77.98620%	2,758,825	2.27	-
MET	0.09198%	0.09371%	\$41,684	\$509,630	\$551,314	99,779,318	58.20329%	234,839	2.35	-
OL1/SL1/PL1	0.54065%	0.13934%	\$245,021	\$757,814	\$1,002,835	572,679,081	-	-	-	0.00175
SL2, GSCU1	0.06353%	0.04440%	\$28,794	\$241,480	\$270,274	67,298,145	-	-	-	0.00402
TOTAL			\$45,320,140	\$543,841,688	\$589,161,828	106,064,217,000		93,477,158		

Note:There are currently no customers taking service on Schedules ISST1(D) and ISST1(T). Should any customer begin	
taking service on these schedules during the period, they will be billed using the applicable SST1 factor.	

(1) Obtained from Page 2, Col(8)
(2) Obtained from Page 2, Col(9)
(3) (Total Capacity Costs/13) * Col (1)
(4) (Total Capacity Costs/13 * 12) * Col (2)
(5) Col (3) + Col (4)
(6) Projected kwh sales for the period January 2006 through December 2006
(7) (kWh sales / 8760 hours)/((avg customer NCP)(8760 hours))
(8) Col (6) / ((7) *730) For GSD-1, only 83.265% of KW are billed due to 10 KW exemption
(9) Col (5) / (8)
(10) Col (5) / (6)

Totals may not add due to rounding.

CAPACITY RECOVERY FACTORS FOR STANDBY RATES

Demand ≕	(Total col 5)/(Dor	<u>c 2, Total col 7)(.10) (Doc 2, col 4)</u>
Charge (RDD)		12 months
Sum of Daily		
Demand =	(Total col 5)/(Dor	c 2, Total col 7)/(21 onpeak days) (Doc 2, col
Charge (DDC)		12 months
	CAPACITY REC	OVERY FACTOR
	RDC	SDD
	<u>** (\$/kw)</u>	<u>** (\$/kw)</u>
ISST1D	\$0.29	\$0.14
ISST1T	\$0.27	\$0.13
SST1T	\$0.27	\$0.13
SST1D1/SST1D2/SST	\$0.28	\$0.13

Florida Power & Light Company Schedule E/A12 - Capacity Costs Page 1 of 2

Estimated/Actual 2005

	Capacity	Terr	n	Contract
Contract	MW	Start	End	Туре
Cedar Bay	250	1/25/1994	12/31/2024	QF
Indiantown	330	12/22/1995	12/1/2025	QF
Florida Crushed Stone	136	4/1/1992	10/31/2005	QF
Palm Beach Solid Waste Authority	47.5	4/1/1992	3/31/2010	QF
Broward North - 1987 Agreement	45	4/1/1992	12/31/2010	QF
Broward North - 1991 Agreement	11	1/1/1993	12/31/2026	QF
Broward South - 1987 Agreement	50.6	4/1/1991	8/1/2009	QF
Broward South - 1991 Agreement	3.5	1/1/1993	12/31/2026	QF
Bio-Energy	10	5/1/1998	1/1/2005	QF
Southern Co UPS	930	7/20/1988	5/31/2010	UPS
JEA - SJRPP	381	4/2/1982	9/30/2021	JEA

OF = Qualifying Facility UPS= Unit Power Sales Agreement with Southern Company

JEA = SJRPP Purchased Power Agreements

ł

2005 Capacity	2005 Capacity in Dollars													
	January	February	March	April	May	June	July	August	September	October	November	December	Year-to-date	
	actual	actual	actual	actual	actual	actual	actual	estimated	estimated	estimated	estimated	estimated	est/act	
Cedar Bay	9,161,819	8,707,500	9,030,000	9,030,000	9,030,000	9,030,000	9,030,000	9,066,335	9,066,335	9,066,335	9,066,335	9,066,335	108,350,994	
ICL	10,228,493	10,149,775	9,906,595	9,815,155	10,450,770	9,827,706	10,578,837	10,377,056	10,377,056	10,377,056	10,377,056	10,377,056	122,842,613	
FCS	4,292,145	3,726,518	3,699,887	3,776,167	4,002,741	3,918,051	3,993,777	5,777,824	5,777,824	5,777,824	0	0	44,742,758	
SWAPBC	1,789,741	1,557,735	1,557,735	1,557,735	1,792,650	1,792,650	1,792,650	1,769,731	1,769,731	1,769,731	1,769,731	1,769,731	20,689,552	
BN-SOC	1,655,325	1,571,400	1,571,400	1,571,400	1,656,450	1,656,450	1,656,450	1,635,188	1,635,188	1,635,188	1,635,188	1,635,188	19,514,813	
BN-NEG	272,360	272,360	272,360	260,341	260,244	259,506	247,568	272,360	272,360	272,360	272,360	272,360	3,206,539	
BS-SOC	1,861,322	1,767,104	1,767,104	1,767,104	1,862,535	1,862,535	1,862,535	1,838,678	1,838,678	1,838,678	1,838,678	1,838,678	21,943,627	
BS-NEG	86,660	86,660	86,660	86,660	86,660	86,660	86,660	86,660	86,660	86,660	86,660	86,660	1,039,920	
SoCo	9,140,451	10,517,742	9,268,728	8,289,787	9,546,168	10,278,989	9,950,817	9,643,177	9,643,177	9,643,177	9,643,177	9,643,177	115,208,565	
SJRPP	6,136,281	6,035,949	8,250,290	5,281,694	6,598,511	6,240,001	6,207,909	6,294,689	6,294,689	6,294,689	6,294,689	6,294,689	76,224,078	
Total	44,624,597	44,392,743	45,410,759	41,436,043	45,286,729	44,952,548	45,407,203	46,761,697	46,761,697	46,761,697	40,983,873	40,983,873	533,763,458	

1 Florida Power & Light Company

2 Docket No. 050001-EI

3 Schedule E/A 12

4 Page 2 of 2

5		
6	Contract	

6	Contract	Counterparty	Identification	Contract End Date
7	1	Desoto County Generating Company, LLC - Progress Energy Ventures	Other Entity	May 31, 2007
8	2	Reliant Energy Services	Other Entity	February 28, 2007
9	3	Oleander Power Project L.P.	Other Entity	May 31, 2007
10	4	Progress Energy Florida, Inc.	Other Entity	May 31, 2005
11	5	Calpine Energy Services	Other Entity	April 30, 2005

12

13	Ca	nacity	in	М	w
13	υa	pacity	ю	M	83

14	Contract	<u>Jan-05</u>	Feb-05	Mar-05	Apr-05	<u>May-05</u>	<u>Jun-05</u>	Jul-05	Aug-05	<u>Sep-05</u>	Oct-05	<u>Nov-05</u>	Dec-05
15	1	361	361	361	312	312	320	322	322	322	322	373	373
16	2	468	468	468	468	468	467	468	468	468	468	468	468
17	3	157	157	157	157	157	156	156	156	156	156	156	156
18	4	150	150	150	150	150	-	-	-	-	-	•	-
19	5	150	150	150	150	-	-	-	-	-	-	-	-
20	Total	1,286	1,286	1,286	1,237	1,087	943	946	946	946	946	997	997

.

21

22 Capacity in Dollars

23	Contract	<u>Jan-05</u>	Feb-05	<u>Mar-05</u>	<u>Apr-05</u>	<u>May-05</u>	<u>Jun-05</u>	<u>Jul-05</u>	<u>Aug-05</u>	<u>Sep-05</u>	<u>Oct-05</u>	<u>Nov-05</u>	Dec-05
24	1												
25	2												
26	3												
27	4												
28	5												
29	Total	5,883,435	5,937,967	3,590,187	3,479,937	5,997,657	11,738,190	11,458,660	11,458,660	5,826,140	1,463,182	1,757,682	3,776,930
30													
31	Total SI	hort Term Capa	city Payments	for 2005	72,368,627	(1)							

31 32

33 (1) August 9, 2005 Estimated/Actual True-Up Filing, Appendix II, page 3, line 2

Florida Power & Light Company Schedule E12 - Capacity Costs Page 1 of 2

Projected 2006

	Capacity	Terr	n	Contract
Contract	MW	Start	End	Туре
Cedar Bay	250	1/25/1994	12/31/2024	QF
Indiantown	330	12/22/1995	12/1/2025	QF
Florida Crushed Stone	136	4/1/1992	10/31/2005	QF
Palm Beach Solid Waste Authority	47.5	4/1/1992	3/31/2010	QF
Broward North - 1987 Agreement	45	4/1/1992	12/31/2010	QF
Broward North - 1991 Agreement	11	1/1/1993	12/31/2026	QF
Broward South - 1987 Agreement	50.6	4/1/1991	8/1/2009	QF
Broward South - 1991 Agreement	3.5	1/1/1993	12/31/2026	QF
Bio-Energy	10	5/1/1998	1/1/2005	QF
Southern Co UPS	930	7/20/1988	5/31/2010	UPS
JEA - SJRPP	381	4/2/1982	9/30/2021	JEA

QF = Qualifying Facility

UPS= Unit Power Sales Agreement with Southern Company

JEA = SJRPP Purchased Power Agreements

42,008,653

Total

2006 Capacity	2006 Capacity in Dollars													
	January	February	March	April	Мау	June	July	August	September	October	November	December	Year-to-date	
Cedar Bay	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	9 402 638	112 831 660	
ICL	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	10,387,197	124,646,361	
SWAPBC	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	1,865,325	22,383,900	
BN-SOC	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	1,723,613	20,683,350	
BN-NEG	276,980	276,980	276,980	276,980	276,980	276,980	276,980	276,980	276,980	276,980	276,980	276,980	3,323,760	
BS-SOC	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	1,937,942	23,255,305	
BS-NEG	88,130	88,130	88,130	88,130	88,130	88,130	88,130	88,130	88,130	88,130	88,130	88,130	1,057,560	
SoCo	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	10,047,842	120,574,102	
SJRPP	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	6,278,986	75,347,835	

1 Florida Power & Light Company

2 Docket No. 050001-EI

3 Schedule E12

4 Page 2 of 2

5

6	Contract	Counterparty	Identification	Contract End Date
7[1	Desoto County Generating Company, LLC - Progress Energy Ventures	Other Entity	May 31, 2007
8	2	Reliant Energy Services	Other Entity	February 28, 2007
9	3	Oleander Power Project L.P.	Other Entity	May 31, 2007
10	4	Reliant Energy Services	Other Entity	December 31, 2009
11				

12

13 Capacity in MW

14	Contract	<u>Jan-06</u>	Feb-06	<u>Mar-06</u>	<u>Apr-06</u>	<u>May-06</u>	<u>Jun-06</u>	<u>Jul-06</u>	<u>Aug-06</u>	<u>Sep-06</u>	<u>Oct-06</u>	<u>Nov-06</u>	Dec-06
15	1	373	373	373	322	322	322	322	322	322	322	373	373
16	2	468	468	468	468	468	468	468	468	468	468	468	468
17	3	156	156	156	156	156	156	156	156	156	156	156	156
18	4	576	576	576	576	576	576	576	576	576	576	576	576
19	Total	1,573	1,573	1,573	1,522	1,522	1,522	1,522	1,522	1,522	1,522	1,573	1,573

20

21

22 Capacity in Dollars

23	Contract	<u>Jan-06</u>	Feb-06	<u>Mar-06</u>	Apr-06	<u>Μaγ-06</u>	<u>Jun-06</u>	<u>Jul-06</u>	<u>Aug-06</u>	<u>Sep-06</u>	<u>Oct-06</u>	<u>Nov-06</u>	Dec-06
24	1												
25	2												
26	3												
27	4												
28	Total	5,620,130	5,620,130	3,600,882	3,506,022	6,649,382	13,301,860	13,301,860	13,301,860	7,669,340	3,306,382	3,600,882	5,620,130
29													

30

31 Total Short Term Capacity Payments for 2006 85,098,860 (1)

32

33 (1) September 9, 2006 Projection Filing, Appendix III, page 3, line 2