

ORIGINAL

RECEIVED-FPSC

06 APR -7 AMII: 28

COMMISSION CLERK

March 30, 2006

Mr. Michael Haff
Division of Public Records and Reporting
Florida Public Service Commission
2540 Shumard Oak Blvd.
Tallahassee, FL 32399

Dear Mr. Haff:

060000-OT

In accordance with Section 186.801, Florida Statutes, Seminole Electric Cooperative, Inc. hereby submits thirty (30) copies of our 2006 Ten Year Site Plan (TYSP).

Please do not hesitate to call me if you have any questions or comments.

Sincerely,

Lane T. Mahaffey

Director of Corporate Planning

CMP ____
COM ____
CTR ___
CC: T. Woodbury
CCL ___
CPC ___
RCA ___
SCR ___
SGA ___
SEC ___

OTH KUM P. (2)

DOCUMENT NUMBER-DATE

03146 APR-78

FPSC-COMMISSION CLERI

ORIGINAL

IN PARTNERSHIP WITH THOSE WE SERVE

Ten Year Site Plan 2006 - 2015 (Detail as of December 31, 2005) April 1, 2006

> Submitted To: State of Florida Public Service Commission

DOCUMENT NUMBER-DATE

03146 APR-78

TABLE OF CONTENTS

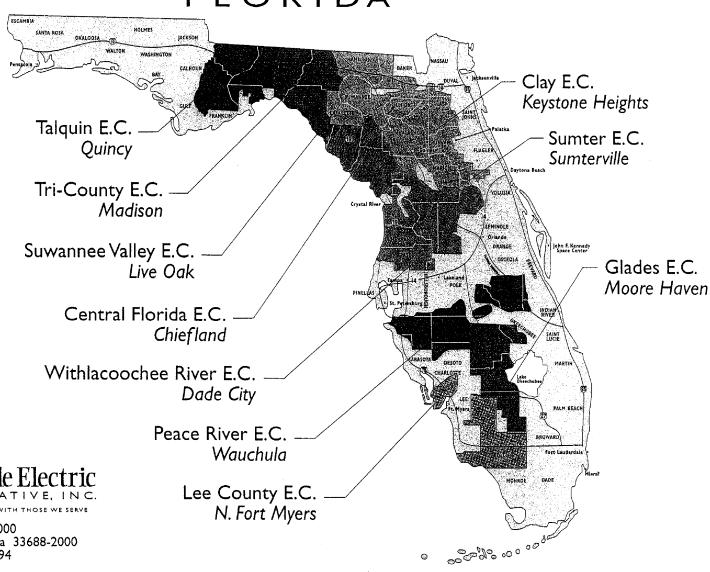
T A	ABLE OF	SCHED	DULES	iv
1.	DESCRI	PTION	OF EXISTING FACILITIES	1
	1.1	Overv	iew	1
	1.2	Owned	d Resources	2
		1.2.1	Owned Generation	2
		1.2.2	Transmission	2
	1.3	Purcha	ased Power	3
	1.4	Demar	nd Side Management and Energy Conservation	5
2.	FORECA	ST OF	ELECTRIC POWER DEMAND AND ENERGY	8
	2.1	Consu	mer Base and Related Trends	8
		2.1.1	Service Area Economy	8
		2.1.2	Population and Consumers	8
		2.1.3	Income	8
	2.2	Foreca	ast Results	9
		2.2.1	Overview	9
		2.2.2	Population and Consumers	9
		2.2.3	Usage per Consumer	9
		2.2.4	Energy Sales and Purchases	11
		2.2.5	Peak Demand	11
		2.2.6	Forecast Scenarios.	12
	2.3	Foreca	ast Assumptions	26
		2.3.1	Economic and Demographic Data	26
		2.3.2	Weather Data	27
		2.3.3	Sales and Hourly Load Data	28

	2.4	Foreca	ast Methodology	28
		2.4.1	Consumer Models	29
		2.4.2	Appliance Models	31
		2.4.3	Energy Usage Models	31
		2.4.4	Total Energy Sales and Energy Purchases	32
		2.4.5	Peak Demand Load Factor Model	32
		2.4.6	Hourly Load Profiles	33
		2.4.7	Scenarios	33
3. F	UEL RE	QUIRI	EMENTS AND ENERGY SOURCES	34
4. F	ORECA	ST OF	FACILITIES REQUIREMENTS	38
5. O	THER P	LANN	ING ASSUMPTIONS AND INFORMATION	46
	5.1	Plan F	Economics	46
	5.2	Fuel F	Price Forecast	46
		5.2.1	Coal	46
		5.2.2	Oil	46
		5.2.3	Natural Gas	46
		5.2.4	Coal/Gas Price Differential	47
	5.3	Mode	ling of Generation Unit Performance	47
	5.4	Finan	cial Assumptions	47
	5.5	Gener	ration Resource Planning Process	47
	5.6	Reliat	pility Criteria	48
	5.7	Strate	gic Concerns	51
	5.8	Procu	rement of Supply-side Resources	52
	5.9	Trans	mission Plans	52
		5.9.1	Transmission Facilities for Payne Creek	53
		5.9.2	Transmission Facilities for Seminole Generating Station	54
6. E	NVIRO	NMENT	ΓAL AND LAND USE INFORMATION	58

TABLE OF SCHEDULES

Schedule 1	
Existing Generating Facilities	7
Schedule 2.1	
History and Forecast of Energy Consumption and	
Number of Customers by Customer Class	13
Schedule 2.2	
History and Forecast of Energy Consumption and	
Number of Customers by Customer Class	14
Schedule 2.3	
History and Forecast of Energy Consumption and	
Number of Customers by Customer Class	15
Schedule 3.1.1	
History and Forecast of Summer Peak Demand (MW)	•
Base Case	16
Schedule 3.1.2	
Forecast of Summer Peak Demand (MW)	
High Case	17
Schedule 3.1.3	
Forecast of Summer Peak Demand (MW)	
Low Case	18
Schedule 3.2.1	
History and Forecast of Winter Peak Demand (MW)	
Base Case	19
Schedule 3.2.2	
Forecast of Winter Peak Demand (MW)	
High Case	20

Schedule 3.2.3
Forecast of Winter Peak Demand (MW)
Low Case21
Schedule 3.3.1
History and Forecast of Annual Net Energy for Load (GWh)
Base Case
Schedule 3.3.2
History and Forecast of Annual Net Energy for Load (GWh)
High Case23
Schedule 3.3.3
History and Forecast of Annual Net Energy for Load (GWh)
Low Case24
Schedule 4
Previous Year and 2-Year Forecast of Retail Peak Demand
and Net Energy for Load by Month25
Schedule 5
Fuel Requirements35
Schedule 6.1
Energy Sources (GWh)36
Schedule 6.2
Energy Sources (Percent)
Schedule 7.1
Forecast of Capacity, Demand & Schedule Maintenance at Time of Summer Peak41
Schedule 7.2
Forecast of Capacity, Demand & Schedule Maintenance at Time of Winter Peak43
Schedule 8
Planned and Prospective Generating Facility Additions and Changes45



Schedule 9	• .
Status Report and Specifications of Proposed Generating Facilities	55-56
Schedule 10	
Status Report and Specifications of Proposed Associated Transmission Li	ines57

Seminole's Member Distribution Cooperatives

FLORIDA

P.O. Box 272000 Tampa, Florida 33688-2000 (813) 963-0994

1. DESCRIPTION OF EXISTING FACILITIES

1.1 Overview

Seminole Electric Cooperative, Inc. (Seminole) is a corporation organized and existing under the laws of the State of Florida for the purpose of providing reliable electric power at the lowest feasible cost to its ten distribution Members' systems. This is accomplished by generating, transmitting, purchasing, and selling electric power and energy as appropriate for this purpose.

The Seminole Member Cooperatives (Members) are as follows:

- Central Florida Electric Cooperative, Inc.
 Chiefland, Florida
- Clay Electric Cooperative, Inc. Keystone Heights, Florida
- Glades Electric Cooperative, Inc.
 Moore Haven, Florida
- Lee County Electric Cooperative, Inc.
 North Fort Myers, Florida
- Peace River Electric Cooperative, Inc.
 Wauchula, Florida
- Sumter Electric Cooperative, Inc.
 Sumterville, Florida
- Suwannee Valley Electric Cooperative, Inc. Live Oak, Florida
- Talquin Electric Cooperative, Inc. Quincy, Florida
- Tri-County Electric Cooperative, Inc. Madison, Florida
- Withlacoochee River Electric Cooperative, Inc.
 Dade City, Florida

Each of Seminole's Members is engaged primarily in the distribution of retail electric power. Seminole supplies full requirements power to each of the ten Members under the terms of a long term wholesale power contract. The map at the beginning of this section indicates the counties in which each Member of Seminole provides service.

1.2 Owned Resources

- 1.2.1 Owned Generation. Seminole serves its aggregate Member loads with a combination of owned and purchased power resources. Seminole Generating Station (SGS) Units 1 & 2,600 MW class coal-fired units, began commercial operation in February 1984 and December 1984, respectively. Payne Creek Generating Station (PCGS) Units 1 3 comprise a 500 MW class gas combined cycle plant that began commercial operation in January 2002. Seminole owns an approximate 15 MW share of the Progress Energy Florida Crystal River 3 nuclear generating unit which is operated by Progress Energy Florida (PEF). Seminole is constructing a new 310 MW peaking plant scheduled for commercial operation in December 2006, and is proceeding with need certification and permitting activities associated with a planned 750 MW pulverized coal unit addition. A more detailed description of Seminole's owned facilities is provided in Schedule 1.
- 1.2.2 Transmission. Seminole's transmission facilities consist of 278 circuit miles of 230 kV transmission lines and fourteen 69 kV lines totaling 140 miles in length. In addition, Seminole receives firm transmission service from Florida Power and Light Company (FPL) and PEF. These transmission service agreements give Seminole the contractual right to serve Member load in the FPL and PEF transmission control areas. Seminole's owned generating facilities are interconnected to the grid at fifteen 230 kV transmission interconnections with the

following utilities: FPL, JEA, City of Ocala, PEF, Hardee Power Partners, L.P., Lee County Electric Cooperative, and Tampa Electric Company. Seminole's interconnections (all 230 kV) are shown in the table which follows this Section 1.

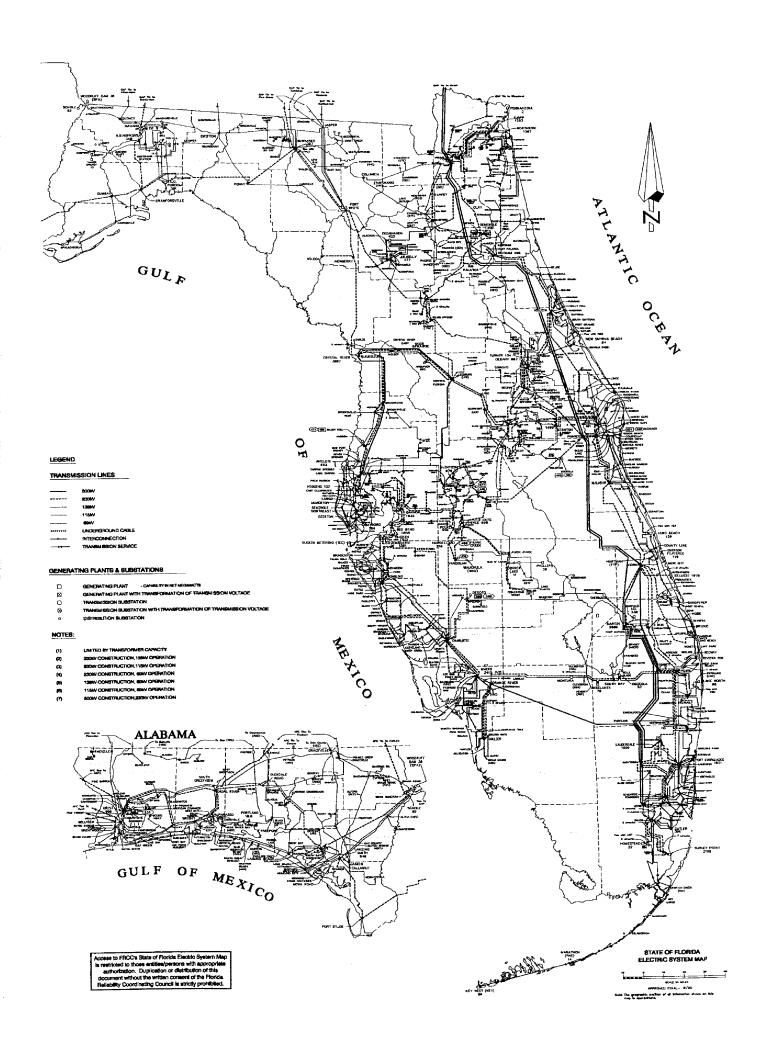
1.3 Purchased Power

Seminole's generation portfolio includes the following firm purchased power agreements¹:

- Progress Energy Florida (PEF)
 - 150 MW firm system intermediate capacity through 2013 with certain termination options.
 - 150 MW firm system intermediate capacity from June 2006 through 2013 with certain termination options.
 - 150 MW firm system intermediate capacity from December 2006 through 2013.
 Notice has been provided to convert from original peaking status to intermediate.
 - Partial Requirements Load following requirements service with certain notice options relative to the amount purchased and termination. This is primarily a peaking type resource. Quantities vary by month based upon Seminole's committed capacity designations and actual monthly coincident demands in the PEF control area (approximately 1100 MW is forecast peak demand to be purchased in winter 2006/07.)
 - Additional 150 MW of requirements load following service beginning January
 2010 and increasing with load growth through July 31, 2020.

¹ All ratings are winter unless otherwise noted.

- Lee County Resource Recovery 35 MW firm base load (waste-to-energy) capacity through April 2007 and then increasing to 55 MW through July 2020.
- Reliant Energy Florida, LLC 364 MW firm peaking capacity through 2006 and then beginning again on December 1, 2008 and extending through May 2014.
- Oleander Power Project, Limited Partnership (a subsidiary of Southern Power Company previously a subsidiary of Constellation Energy Group) - 546 MW firm peaking capacity thru 2015.
- Calpine Construction Finance Company, L.P. (a subsidiary of Calpine Corporation) –
 approximately 360 MW firm intermediate capacity for the period June 2004 through
 May 2012.
- Hardee Power Partners Limited (HPP) (a subsidiary of Invenergy LLC) 356 MW
 first call reserve capacity from the HPS to cover a forced or scheduled outage or
 reduced capability of SGS and CR3, extending through 2012. Seminole has an
 option to purchase the HPS upon termination of the purchase agreement.
- The City of Gainesville Full requirements service for a specified delivery point (approximate 19 MW peak demand in 2006) with certain notice provisions for termination beyond 2012.
- Telogia Power, LLC 12 MW biomass (wood chips) capacity through 2019.
- Bio-Energy Partners 7 MW landfill gas capacity through 2009.


1.4 Demand Side Management (DSM) and Energy Conservation

As a generation and transmission rural electric cooperative that does not serve end use customers, Seminole cannot and does not offer conservation or DSM programs directly to retail consumers. Seminole does, however, promote Member involvement in DSM through its wholesale rate signals and its residential load management and load management generator programs. The conservation and DSM offerings by Seminole's Members include direct load control, distribution system voltage reduction, contractually interruptible load, customer-based load management generator programs, consumer awareness programs, energy audits, energy surveys, time-of-use rates, lighting conversion programs, and low interest energy conservation loans.

Seminole's load management generator programs allow its Members to partner with their retail customers to install "behind the meter" customer-based DG (distributed deneration) to operate as dispatchable load management resources for Seminole's system, while providing onsite back up generation to improve customer reliability.

Seminole's coordinated DSM program reduces Seminole's peak demand, and the load forecast takes into account reductions due to DSM. While the effect of conservation is reflected in the load forecast, its value is not directly identified because of the difficulty in measuring the impact of the diverse programs of Seminole's Members.

Seminole Interconnections with Other Utilities

Utility Interconnection	Voltage (kV)	Location
FPL	230	Rice
FPL	230	Rice
FPL	230	SGS
FPL	230	SGS
FPL/Lee	230	Lee North Cape Tie Point
FPL	230	Charlotte
TECO	230	Hardee Sub
Hardee Power Partners, Limited	230	Hardee Sub
PEF	230	Vandolah
JEA	230	Firestone Tie Point
City of Ocala	230	Ocala #2 Tie Point
PEF	230	Martin West Tie Point
PEF	230	Silver Springs Tie Point
PEF	230	Silver Springs
PEF	230	Dearmin Tie Point

Note: This table describes the interconnection of physical facilities. The interconnections as described do not necessarily constitute contractual interconnections for purposes of transmission service or interconnections between control areas.

Schedule 1

Existing Generating Facilities As of December 31, 2005

As of December 31, 2005													
Alt Generator Net Capability Fuel Fuel Comm'l Expected Max Fuel Transportation Days In-Svc Retirement Nameplate Summer Winter													
				Fue	l	1 ranspoi	tation	Days	In-Svc	Retirement	Nameplate	Summer	Winter
Plant	Unit No.	Location	Unit Type	Primary	Alt	Primary	Alt	Use	Mo/Yr	Mo/Yr	MW	MW	MW
SGS	1	Palatka	ST	BIT/PC	N/A	RR	N/A	N/A	02/84	Unk	715	658	665
SGS	2	Palatka	ST	BIT/PC	N/A	RR	N/A	N/A	12/84	Unk	715	658	665
PCGS	1-3	Hardee County	CC	NG	DFO	PL	TK	N/A	01/02	Unk	587	488	541
Crystal River	3	Citrus County	ST	NUC	N/A	TK	N/A	N/A	03/77	Unk	890	15	15
TOTAL												1,819	1,886
Abbrevia	ıtions:	<u>U1</u>	Unit Type			Fuel Type				Fuel Trans	portation		
		Unk -	Unk - Unknown			BIT - Bituminous Coal			PL - Pipeline				
		N/A - N	lot app	licable		NG - Natural Gas			RR - Railroad				
			ST - Steam Turbine, including nuclear			NUC - Nuclear				TK - Truck			
		CC - Co	mbine	d Cycle	•	PC -	Petrole	um Cok	ce				
	DFO - No. 2 Diesel Fuel Oil												

2. FORECAST OF ELECTRIC POWER DEMAND AND ENERGY CONSUMPTION

2.1 Consumer Base and Related Trends

- 2.1.1 Service Area Economy. Seminole's Member systems provide electricity to Member consumers in 46 of Florida's 67 counties. The area served is bounded on the west and north by the Apalachicola River and the Georgia border respectively, extending down to the southwestern and south-central regions of Florida. The service territory encompasses a variety of geographic and weather conditions as well as a diverse mix of economic activity and demographic characteristics.
- 2.1.2 Population and Consumers. Population growth in Florida (including Seminole Members' service areas) is significantly influenced by migration from northern states. Therefore, national economic factors influencing migration have a large impact on population growth in areas served by Seminole's Members. Historically, Seminole's residential consumer growth rate has exceeded the rate of growth for Florida as a whole. For the period of 1995-2004, Seminole's residential customer growth rate was 3.0 percent compared to 2.5 percent for Florida.
- 2.1.3 Income. Statistics indicate that almost 40 percent of the income in Florida comes from non-wage sources such as dividends, interest, rent, and transfer payments. This is approximately 10 percentage points higher than national averages. This statistic is reflective of a higher population concentration of retirees. Also, these types of income are relatively stable and consequently help smooth the impacts of economic change on the Florida economy and Member service areas.

2.2 Forecast Results

- **2.2.1** Overview. Seminole's growth rates for consumers, energy, and peak demand have been higher than those for Florida as a whole during the past decade. This pattern is expected to continue in the future.
- 2.2.2 Population and Consumers. Historical and forecasted population for Seminole's Members' service area is shown on Schedule 2.1. Seminole's Members serve significant portions of the less urbanized areas of the state which are located adjacent to metropolitan areas. It is therefore reasonable to expect continued higher consumer growth rates for Seminole's Members than for Florida as a whole. The forecast of residential consumers is shown in Schedule 2.1 and the forecast of commercial consumers is shown in Schedule 2.2.
- 2.2.3 Usage per Consumer. Between 1995 and 2004, residential usage per consumer in Seminole Members' service area increased at an average annual rate of 1.5 percent. The average residential usage per consumer for Seminole's Members is approximately equal to the statewide average. Growth in average usage is consistent with Seminole's Residential Appliance Survey results which show steady increases in appliance saturations and larger homes, during the last decade. Survey results reveal growth in not only traditional appliance loads but also show significant growth in new loads such as home computers and other electronic equipment.

Table 1 below summarizes survey results for 1992 and 2002 (Seminole's latest survey).

During this period, larger homes were built and appliance saturations steadily increased.

Ta	able 1					
Homes and Electric Appliance Saturations (%)						
	1992	2002				
Single Family Homes	61	65				
Homes > 2000 sq ft	15	23				
Homes < 1200 sq ft	33	21				
Primary Space Heating	73	86				
Air Conditioning	92	97				
Heat Pump	28	57				
Water Heater	89	93				
Refrigerator	99	100				
Television	99	99				
Home Computers	13	64				
VCR	69	86				
Electric Range	77	84				
Microwave Oven	88	97				
Dishwasher	53	68				
Clothes Dryer	76	87				
Pool Pump	16	16				

SOURCE: "Residential Survey," Seminole Electric Cooperative, Inc.,
1992 and 2002

Historically, electricity prices in nominal terms have shown steady declines until 2001. At that point nominal prices began to rise. More importantly, real prices (prices adjusted for inflation) also began to rise and then level off. The current forecast of energy usage per consumer reflects a slightly declining real price of electricity. It is anticipated that future forecasts of energy usage per consumer may reflect a more levelized real price of electricity.

Residential per consumer usage on the Seminole system is expected to grow at a strong but slightly lower annual rate through 2015 (1.4 percent). The trend of larger homes and increases in electric appliance saturations are expected to continue; contributing to higher energy consumption levels in the future. Moderating factors are projections of better appliance efficiencies, home insulation, and the near saturation of air conditioning in the Members' service area.

Commercial usage per consumer is much lower on the Seminole system than in Florida as a whole, 56,510 KWh versus 80,954 KWh in 2004. This difference is even starker considering that Seminole Members' commercial usage also includes industrial consumers, whereas the Florida average does not. Seminole's Member commercial sector is dominated by small commercial loads. Commercial/industrial usage per consumer is projected to grow at an average annual growth rate of 0.7 percent through 2015.

- 2.2.4 Energy Sales and Purchases. Residential energy sales are projected to grow at 4.1 percent annually between 2006 and 2015. This forecast reflects energy savings from historical conservation efforts, and incremental conservation growth at the same rate of adoption. Commercial energy sales are projected to also grow at an annual average of 4.0 percent, over the same period. The forecasts of residential, commercial, and other class sales are shown on Schedules 2.1 and 2.2.
- 2.2.5 Peak Demand. Seminole's winter peak demand is projected to increase at an average annual rate of 4.1 percent and its summer peak demand is projected to increase at an average annual rate of 3.9 percent.

Seminole as a whole and most of the Member systems are expected to continue to be winter peaking. For the Seminole system, winter peaks are expected to be approximately 25 percent higher than summer peaks. This continued winter-peaking nature of the Seminole system is due primarily to continued prominence of electric space-heating saturation in the foreseeable future.

The peak demand forecasts reflect no additional load management. However, it should be noted that many of Seminole's Members routinely assess the economics of their existing load management programs.

Schedules 2.1, 2.2, and 2.3 summarize energy usage and consumer Members by customer class. Schedules 3.1.1, 3.1.2 and 3.1.3 provide summer peak demand forecasts for base, high population and low population scenarios. Schedules 3.2.1, 3.2.2 and 3.2.3 provide similar data for winter peak demand.

2.2.6 Forecast Scenario. In lieu of economic scenarios, Seminole creates a high and low population growth scenario in addition to the base forecast. Because Seminole's system is primarily residential load, population is the primary driving force behind Seminole's load growth. Therefore, high and low population growth scenarios are developed for each Member system based on the Bureau of Economic Business Research's (BEBR) alternative scenarios.

Schedule 2.1

History and Forecast of Energy Consumption and
Number of Customers by Customer Class

	Estimated		RESIDE	NTIAL	
Year	Population Served by Members	Members Per Household	GWh	Average Number of Customers	Average KWh Consumption Per Customer
1996	1,236,409	2.20	7,266	561,981	12,929
1997	1, 267,531	2.19	7,238	578,345	12,515
1998	1,300,817	2.18	7,975	592,441	13,461
1999	1,336,626	2.20	7,993	607,059	13,167
2000	1,375,372	2.21	8,550	623,151	13,721
2001	1,414,979	2.21	8,755	640,290	13,673
2002	1,452,155	2.20	9,543	661,332	14,430
2003	1,499,453	2.19	10,016	686,140	14,598
2004	1,554,439	2.18	10,221	713,547	14,324
2005	1,612,226	2.17	10,803	744,630	14,508
2006	1,656,828	2.15	11,109	770,692	14,414
2007	1,701,431	2.14	11,599	795,654	14,578
2008	1,746,032	2.13	12,140	819,639	14,811
2009	1,790,635	2.12	12,624	843,528	14,966
2010	1,835,235	2.12	13,158	867,436	15,169
2011	1,862,072	2.10	13,658	888,317	15, 375
2012	1,896,665	2.09	14,219	909,241	15,638
2013	1,931,614	2.08	14,719	14,719 930,170	
2014	1,965,594	2.07	15,276	951,100	16,061
2015	2,004,519	2.06	15,837	972,030	16,293

Schedule 2.2
History and Forecast of Energy Consumption and
Number of Customers by Customer Class

		COMMERC			
Year	GWh	Average No. of Commercial Customers	Average KWh Consumption Per Customer	Other Sales GWh	Total Sales GWh
1996	2,681	53,223	50,379	105	10,052
1997	2,809	55,263	50,827	123	10,169
1998	2,959	57,012	51,908	117	11,051
1999	3,108	59,043	52,632	127	11,228
2000	3,415	62,842	54,339	135	12,100
2001	3,549	66,729	53,185	126	12,430
2002	3,727	68,742	54,219	163	13,433
2003	3,961	70,263 56,370		161	14,138
2004	4,195	74,239	56,510	166	14,583
2005	4,473	77,548	,548 57,677		15,417
2006	4,708	08 82,199 57,271		174	15,991
2007	4,920	85,589	57,479	180	16,698
2008	5,133	88,529	57,983	186	17,460
2009	5,324	91,489	58,197	191	18,140
2010	5,532	94,462	58,568	197	18,887
2011	5,742	97,380	58,962	202	19,602
2012	5,974	100,310	59,551	208	20,401
2013	6,180	103,151	59,911	213	21,112
2014	6,403	105,900	60,466	218	21,897
2015	6, 627	108,652	60,990	223	22,687
NOTES:	i	class includes industrial class includes lighting cus			

Schedule 2.3

History and Forecast of Energy Consumption and
Number of Customers by Customer Class

Year	Sales for Resale GWh	Utility Use & Losses GWh	Net Energy for Load GWh	Other Customers (Average Number)	Total Number of Customers	
1996	0	770	10,822	3,349	618,553	
1997	0	828	10,997	3,514	637,121	
1998	0	929	11,980	3,586	656,565	
1999	0	939	12,167	3,593	669,695	
2000	0	994	13,094	3,765	689,758	
2001	0	864	13,294	3,901	710,920	
2002	0	1,257	14,690	5,106	734,264	
2003	0	1,640	15,778	5,240	761,639	
2004	0	1,830	16,413	5,326	793,112	
2005	0	1,760	17,177	5,473	827,651	
2006	0	1,272	17,263	5,588	858,479	
2007	0	1,436	18,134	5,714	886,957	
2008	0	1,497	18,957	5,838	914,006	
2009	0	1,561	19,701	5,963	940,980	
2010	0	1,627	20,514	6,088	967,986	
2011	0	1,689	21,291	6,207	991,904	
2012	0	1,754	22,155	6,325	1,015,876	
2013	0	1,821	22,933	6,442	1,039,763	
2014	0	1,890	23,787	6,560	1,063,561	
2015	0	1,959	24,646	6,680	1,087,362	

Schedule 3.1.1
History and Forecast of Summer Peak Demand (MW)
Base Case

					Residential		Commercial		
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment 1	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
1996	2,347	2,347	0	N/A	95	N/A	N/A	N/A	2,252
1997	2,443	2,443	0	N/A	123	N/A	N/A	N/A	2,320
1998	2,756	2,756	0	N/A	150	N/A	N/A	N/A	2,606
1999	2,719	2,719	0	N/A	92	N/A	N/A	N/A	2,627
2000	2,774	2,774	0	N/A	121	N/A	N/A	N/A	2,653
2001	2,837	2,837	0	N/A	104	N/A	N/A	N/A	2,733
2002	3,140	3,140	0	66	99	N/A	N/A	N/A	2,975
2003	3,092	3,092	0	77	158	N/A	N/A	N/A	3,015
2004	3,359	3,359	0	58	74	N/A	N/A	N/A	3,227
2005	3,727	3, 727	0	62	101	N/A	N/A	N/A	3,564
2006	3,747	3,747	0	97	95	N/A	N/A	N/A	3,555
2007	3,887	3,887	0	97	95	N/A	N/A	N/A	3,655
2008	4,038	4,038	0	97	95	N/A	N/A	N/A	3,846
2009	4,192	4,192	0	97	95	N/A	N/A	N/A	4,000
2010	4,349	4,349	0 .	97	95	N/A	N/A	N/A	4,157
2011	4,497	4,497	0	97	95	N/A	N/A	N/A	4,305
2012	4,651	4,651	0	97	95	N/A	N/A	N/A	4,459
2013	4,809	4,809	0	97	95	N/A	N/A	N/A	4,617
2014	4,971	4,971	0	97	95	N/A	N/A	N/A	4,779
2015	5,133	5,133	0	97	95	N/A	N/A	N/A	4,941

NOTES: (1) Historical load management data is actual amount exercised at the time of the seasonal peak demand. Forecast data is the maximum amount available.

Schedule 3.1.2 Forecast of Summer Peak Demand (MW) High Case

			:		Resid	ential	Comm	nercial	
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
2006	3,859	3,859	0	97	95	N/A	N/A	N/A	3,667
2007	4,036	4,036	0	97	95	N/A	N/A	N/A	3,844
2008	4,215	4,215	0	97	95	N/A	N/A	N/A	4,023
2009	4,398	4,398	0	97	95	N/A	N/A	N/A	4,206
2010	4, 586	4,586	0	97	95	N/A	N/A	N/A	4,394
2011	4,769	4,769	0	97	95	N/A	N/A	N/A	4,577
2012	4,965	4,965	0	97	95	N/A	N/A	N/A	4,773
2013	5,161	5,161	0	97	95	N/A	N/A	N/A	4,969
2014	5,363	5,363	0	97	95	N/A	N/A	N/A	5,171
2015	5,568	5,568	0	97	95	N/A	N/A	N/A	5,376

Schedule 3.1.3 Forecast of Summer Peak Demand (MW) Low Case

					Residential		Comm	ercial	
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
2006	3,548	3,548	0	97	95	N/A	N/A	N/A	3,356
2007	3,661	3,661	0	97	95	N/A	N/A	N/A	3,469
2008	3,776	3,776	0	97	95	N/A	N/A	N/A	3,584
2009	3,892	3,892	0	97	95	N/A	N/A	N/A	3,700
2010	4,013	4,013	0	97	95	N/A	N/A	N/A	3,821
2011	4,110	4,110	0	97	95	N/A	N/A	N/A	3,918
2012	4,220	4,220	0	97	95	N/A	N/A	N/A	4,028
2013	4,333	4,333	0	97	95	N/A	N/A	N/A	4,141
2014	4,451	4,451	0	97	95	N/A	N/A	N/A	4,259
2015	4,569	4,569	0	97	95	N/A	N/A	N/A	4,377

Schedule 3.2.1
History and Forecast of Winter Peak Demand (MW)
Base Case

					Reside	ential	Comm	ercial	
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment 1	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
1995-96	2,896	2,896	0	N/A	165	N/A	N/A	N/A	2,731
1996-97	3,040	3,040	0	N/A	128	N/A	N/A	N/A	2,912
1997-98	2,529	2,529	0	N/A	115	N/A	N/A	N/A	2,414
1998-99	3,416	3,416	0	N/A	220	N/A	N/A	N/A	3,196
1999-00	3,148	3,148	0	N/A	180	N/A	N/A	N/A	3,209
2000-01	3,769	3,769	0	N/A	143	N/A	N/A	N/A	3,626
2001-02	3,691	3,691	0	N/A	125	N/A	N/A	N/A	3,566
2002-03	4,308	4,308	0	58	95	N/A	N/A	N/A	4,155
2003-04	3,698	3,698	0	56	85	N/A	N/A	N/A	3,531
2004-05	4,107	4,107	0	65	91	N/A	N/A	N/A	3,951
2005-06	4,390	4,390	0	59	99	N/A	N/A	N/A	4,232*
2006-07	4,840	4,840	0	97	140	N/A	N/A	N/A	4,603
2007-08	5,039	5,039	0	97	140	N/A	N/A	N/A	4,802
2008-09	5,241	5,241	0	97	140	N/A	N/A	N/A	5,004
2009-10	5,450	5,450	0 _	97	140	N/A	N/A	N/A	5,213
2010-11	5,651	5,651	. 0	97	140	N/A	N/A	N/A	5,414
2011-12	5,854	5,854	0	97	140	N/A	N/A	N/A	5,617
2012-13	6,065	6,065	0	97	140	N/A	N/A	N/A	5,828
2013-14	6,282	6,282	0	97	140	N/A	N/A	N/A	6,045
2014-15	6,500	6,500	0	97	140	N/A	N/A	N/A	6,263
2015-16	6,718	6,718	0	97	140	N/A	N/A	N/A	6,481

NOTES: (1) Historical load management data is actual amount exercised at the time of the seasonal peak demand. Forecast data is the maximum amount available. *2005-06 Peak demand is an estimate.

Schedule 3.2.2 Forecast of Winter Peak Demand (MW) High Case

					Resid	lential	Comm	ercial	
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
2006-07	5,033	5,033	0	97	140	N/A	N/A	N/A	4,796
2007-08	5,266	5,266	0	97	140	N/A	N/A	N/A	5,029
2008-09	5,504	5,504	0	97	140	N/A	N/A	N/A	5,267
2009-10	5,752	5,752	0	97	140	N/A	N/A	N/A	5,515
2010-11	5,982	5,982	0	97	140	N/A	N/A	N/A	5,745
2011-12	6,226	6,226	0	97	140	N/A	N/A	N/A	5,989
2012-13	6,483	6,483	0	97	140	N/A	N/A	N/A	6,246
2013-14	6,746	6,746	0	97	140	N/A	N/A	N/A	6,509
2014-15	7,013	7,013	0	97	140	N/A	N/A	N/A	6,776
2015-16	7,302	7,302	0	97	140	N/A	N/A	N/A	7,065

Schedule 3.2.3 Forecast of Winter Peak Demand (MW) Low Case

					Resid	ential	Commercial		
Year	Total	Whole- sale	Retail	Distributed Generation	Load Manage- ment	Conser- vation	Load Manage- ment	Conser- vation	Net Firm Demand
2006-07	4,610	4,610	0	97	140	N/A	N/A	N/A	4,373
2007-08	4,761	4,761	0	97	140	N/A	N/A	N/A	4,524
2008-09	4,915	4,915	0	97	140	N/A	N/A	N/A	4,678
2009-10	5,076	5,076	0	97	140	N/A	N/A	N/A	4,839
2010-11	5,213	5,213	0	97	140	N/A	N/A	N/A	4,976
2011-12	5,349	5,349	0	97	140	N/A	N/A	N/A	5,112
2012-13	5,497	5,497	0	97	140	N/A	N/A	N/A	5,260
2013-14	5,650	5,650	0	97	140	N/A	N/A	N/A	5,413
2014-15	5,807	5,807	0	97	140	N/A	N/A	N/A	5,570
2015-16	5,963	5,963	0	97	140	N/A	N/A	N/A	5,726

Schedule 3.3.1

History and Forecast of Annual Net Energy for Load (GWh)

Base Case

		Conse	rvation		T 4 1	T7:'1'. T7	Net	
Year	Total	Residential	Commercial	Retail	Total Sales	Utility Use & Losses	Energy for Load	Load Factor %
1996	10,822	N/A	N/A	0	10,052	770	10,822	45.1
1997	10,997	N/A	N/A	0	10,169	828	10,997	43.0
1998	11,980	N/A	N/A	0	11,051	929	11,980	56.5
1999	12,167	N/A	N/A	0	11,228	939	12,167	43.3
2000	13,094	N/A	N/A	0	12,100	994	13,094	46.5
2001	13,294	N/A	N/A	0	12,430	864	13,294	41.7
2002	14,690	N/A	N/A	0	13,433	1,257	14,690	46.9
2003	15,778	N/A	N/A	0	14,138	1,640	15,778	43.2
2004	16,413	N/A	N/A	0	14,583	1,830	16,413	52.9
2005	17,177	N/A	N/A	0	15,417	1,760	17,177	49.5
2006	17,384	N/A	N/A	0	15,991	1,272	17,263	46.4
2007	18,134	N/A	N/A	0	16,698	1,436	18,134	44.9
2008	18,957	N/A	N/A	0	17,460	1,497	18,957	44.9
2009	19,701	N/A	N/A	0	18,140	1,561	19,701	44.8
2010	20,514	N/A	N/A	0	18,887	1,627	20,514	44.8
2011	21,291	N/A	N/A	0	19,602	1,689	21,291	44.8
2012	22,155	N/A	N/A	0	20,401	1,754	22,155	44.9
2013	22,933	N/A	N/A	0	21,112	1,821	22,933	44.8
2014	23,787	N/A	N/A	0	21,897	1,890	23,787	44.8
2015	24,646	N/A	N/A	0	22,687	1,959	24,646	44.8

^{*2006} Estimated actual and forecast.

Schedule 3.3.2 Forecast of Annual Net Energy for Load (GWh) High Case

	·	Conservation				Utility Use	Net Energy for	Load
Year	Total	Residential	Commercial	Retail	Wholesale	& Losses	Load	Factor %
2006	18,055	N/A	N/A	0	16,601	1,454	18,055	45.0
2007	18,939	N/A	N/A	0	17,413	1,526	18,939	45.0
2008	19,850	N/A	N/A	0	18,250	1,600	19,850	44.9
2009	20,778	N/A	N/A	0	19,102	1,676	20,778	44.9
2010	21,731	N/A	N/A	0	19,978	1,753	21,731	44.9
2011	22,702	N/A	N/A	0	20,870	1,832	22,702	45.0
2012	23,735	N/A	N/A	0	21,818	1,917	23,735	45.1
2013	24,779	N/A	N/A	0	22,778	2,001	24,779	45.2
2014	25,859	N/A	N/A	0	23,770	2,089	25,859	45.2
2015	26,923	N/A	N/A	0	24,748	2,175	26,923	45.2

Schedule 3.3.3 Forecast of Annual Net Energy for Load (GWh) Low Case

	r	,			<u>, </u>			
:		Conservation				Utility Use	Net Energy for	Load
Year	Total	Residential	Commercial	Retail	Wholesale	& Losses	Load	Factor %
2006	16,582	N/A	N/A	0	15,248	1,334	16,582	44.7
2007	17,168	N/A	N/A	0	15,786	1,382	17,168	44.7
2008	17,771	N/A	N/A	0	16,340	1,431	17,771	44.7
2009	18,384	N/A	N/A	0	16,903	1,481	18,384	44.7
2010	19,014	N/A	N/A	0	17,482	1,532	19,014	44.7
2011	19,627	N/A	N/A	0	18,045	1,582	19,627	44.9
2012	20,245	N/A	N/A	0	18,613	1,632	20,245	44.9
2013	20,886	N/A	N/A	0	19,202	1,684	20,886	45.1
2014	21,558	N/A	N/A	0	19,820	1,738	21,558	45.3
2015	22,197	N/A	N/A	0	20,407	1,790	22,197	45.4

Schedule 4
Previous Year and 2-Year Forecast of Peak Demand
and Net Energy for Load by Month

	2005	Actual	2006 F	orecast	2007 F	orecast
Month	Peak Demand MW	NEL GWh	Peak Demand MW	NEL GWh	Peak Demand MW	NEL GWh
January	3,951	1,333	3,419*	1,309	4,603	1,554
February	3,095	1,142	4,232*	1,257	3,580	1,251
March	2,822	1,261	3,014	1,258	3,142	1,314
April	2,504	1,145	2,767	1,256	2,884	1,312
May	3,157	1,406	3,230	1,514	3,365	1,581
June	3,277	1,558	3,352	1,561	3,487	1,627
July	3,522	1,867	3,481	1,722	3,619	1,794
August	3,564	1,884	3,555	1,772	3,695	1,846
September	3,399	1,645	3,251	1,536	3,378	1,598
October	2,905	1,387	3,088	1,395	3,212	1,454
November	2,336	1,147	2,808	1,234	2,935	1,290
December	3,282	1,402	3,637	1,449	3,798	1,513
ANNUAL		17,177		17,263		18,134

^{*}January and February 2006 Peak Demands and Net Energy for Load are estimated actuals.

2.3 Forecast Assumptions

2.3.1 Economic and Demographic Data. Seminole's economic and demographic data base has four principal sources: (1) population from the "Florida Population Studies" furnished by the BEBR, (2) income and employment data furnished by Moody's Economy.com (3) electricity price data from Seminole's Member cooperatives "Financial and Statistical Reports" (RUS Form 7), and (4) appliance and housing data from the "Residential Appliance Surveys" conducted by Seminole and its Member systems since 1980.

Population is the main explanatory variable in the residential and commercial/industrial consumer models. Historical population data by county is obtained for the 46 counties served by Seminole Member systems. Combining the county forecasts yields a population forecast for each Member. Three sets of population forecasts for each county are provided by the BEBR: medium, low, and high scenarios. Historical population growth trends are analyzed to determine the most appropriate combination of scenarios for each Member system. High and low population scenarios are also developed for each Member.

Real Per Capita Income (RPCI) is an explanatory variable in the residential and commercial/industrial usage per consumer models. The Consumer Price Index for All Urban Consumers (CPI-U) published by the U.S. Bureau of Labor Statistics is used to convert historical nominal income to real values. Total non-farm employment (EMPL) is also used in the commercial/industrial energy usage model. County forecasts of RPCI and EMPL are taken from Moody's Economy.Com's, March 2005 long-term economic forecast.

The real price of electricity is used in the residential and commercial/industrial energy models. The real price is calculated by dividing KWH sales for each consumer class by the corresponding revenue, and then by deflating the result by the CPI-U. For the forecast, the real price of electricity is assumed to slightly decline in the future. This is based on system wide historical declines in retail rates.

Appliance saturations and housing data are obtained from Seminole's Residential Appliance Survey. The information from the surveys is combined with the residential consumer forecast to produce weighted appliance stock variables for space-conditioning appliances which are used in the residential energy usage model and the peak demand load factor model.

2.3.2 Weather Data. Seminole obtains hourly weather data from the National Oceanic and Atmospheric Administration (NOAA) for six weather stations located in or around Seminole's Members' service area. In order to better reflect weather conditions in each Member's service territory, different weather stations are assigned to individual Member systems based on geographic proximity.

Monthly heating and cooling degree hours (HDH, CDH) are used in the energy usage models, while the peak demand models use HDH and CDH on Seminole's peak days. Seminole uses different temperature cut-off points for air conditioning and space heating demand. In addition, there are different winter cut-off values for Members in the northern versus the southern regions.

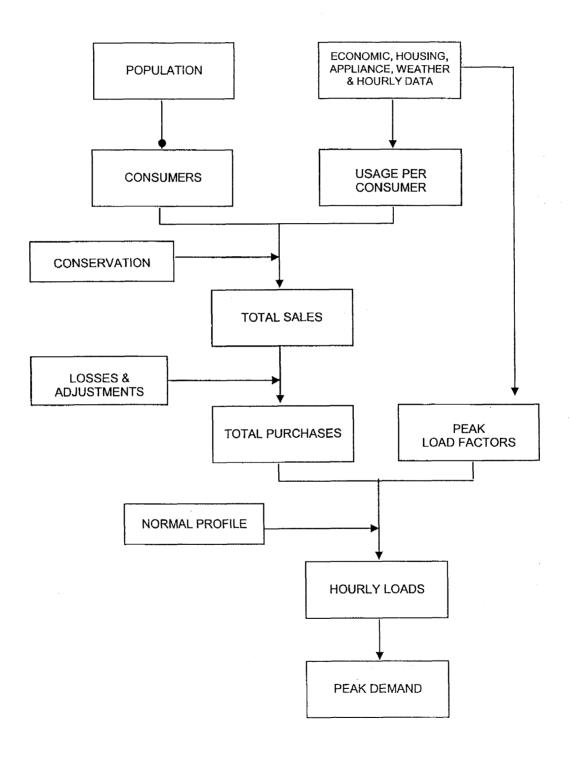
2.3.3 Sales and Hourly Load Data. Monthly operating statistics have been furnished by the Member systems to Seminole back to 1970. Included in this data are statistics by class on number of consumers, KWH sales, and revenue. This data is the basis for consumer and energy usage models.

Hourly loads for each Member and the Seminole system, as well as the Members' monthly total energy purchases from Seminole are collected from over 180 delivery points, for the period January 1979 to the present. This data is a basis for hourly load profile forecasts and modeling peak demand.

2.4 Forecast Methodology

Seminole's Integrated Forecasting System consists of the following sub-models:

- (1) Residential Consumer Model
- (2) Appliance Model
- (3) Commercial/Industrial Consumer Model
- (4) Other Class Consumers Model
- (5) Residential Energy Usage Model
- (6) Commercial/Industrial Energy Usage Model
- (7) Other Class Energy Usage Model
- (8) Peak Demand Load Factor Model
- (9) Hourly Load Profiles and Load Management


Each model consists of ten sub-models because each Member system is modeled and forecast separately. Individual Member model results are aggregated to derive the Seminole forecast. Figure 1 on the following page shows the Integrated Forecasting System.

2.4.1 Consumer Models. For each Member, annual consumers are a function of the Member's service area population, with a first-order auto-regressive correction used when necessary. Forecasts are benchmarked using 2004 actual data. Seasonally adjusted monthly forecasts are developed from the annual data. Expected new large commercial consumers are included in the forecast.

Other consumer classes generally include irrigation, street and highway lighting, public buildings, and sales for resale, which represent less than 2 percent of Seminole's Members' total energy sales. A few Member systems include some of these classes in the commercial/industrial sector. For the others, annual consumer forecasts are projected using regression analysis against population, or a trending technique.

Figure 1
Integrated Forecasting System

- 2.4.2 Appliance Model. The Appliance Model combines the results of the Residential Consumer Model with data from the Residential Appliance Survey to yield forecasts of space-heating and air-conditioning stock variables which are used in the Residential Energy Usage Model and the Peak Demand Load Factor Model. Annual forecasts of the shares for the following home types are produced: single-family, mobiles, and multi-family homes. Each home type is segregated into three age groups. Next, annual forecasts of space-conditioning saturations are created. Finally, the air-conditioning saturations and the space-heating saturations are combined with housing type share information, resulting in weather-sensitive stock variables for heating and cooling.
- 2.4.3 Energy Usage Models. The Residential Energy Usage Model is a combination of econometric and end-use methods. For each Member system, monthly residential usage per consumer is a function of heating and cooling degree variables weighted with space-conditioning appliances, real price of electricity, and real per capita income. Forecasts are benchmarked against weather-normalized energy in the last year of the analysis period (2004). The usage per consumer forecast is multiplied by the consumer forecast to produce monthly residential energy sales forecasts.

For each Member system, monthly commercial/industrial usage per consumer is a function of heating and cooling degree variables, real price of electricity, real per capita income, total non-farm employment, and dummy variables to explain abrupt or external changes. A first order auto-regressive correction is used when necessary. Energy usage per consumer forecasts are benchmarked to the last year of the historical period 2004. Energy usage per consumer forecasts are combined with the consumer forecasts to produce monthly commercial/industrial

energy sales forecasts. Expected new large commercial loads are included in the forecast.

Historical patterns of energy usage for other classes have been quite stable for most Members and usage is held constant for the forecast period. Trending methodology is used for the Members with growth in this sector.

- 2.4.4 Total Energy Sales and Energy Purchases. Residential, Commercial/Industrial, and Other classes energy sales forecasts are summed to create total retail energy sales forecasts for each Member system. Retail energy sales forecasts are converted to Member energy purchases from Seminole at the delivery point using historical averages of the ratio of calendar month purchases to retail billing cycle sales for each Member. Therefore, these adjustment factors represent both energy losses and billing cycle sales and calendar month purchases differences. The latter, as a function of weather and billing days, often changes erratically.
- 2.4.5 Peak Demand Load Factor Model. The Seminole peak demand forecast is derived after the Member monthly peak demands and hourly load forecasts have been created. Member peak demands are derived by combining the forecasts of monthly load factors with energy purchases from Seminole. Monthly peak demand load factors are a function of heating and cooling degree variables, precipitation, air-conditioning and space-heating saturations, and heating and cooling degree hours at the time of the Member's peak demand. Two seasonal equations for each Member system are developed: one for the winter months (November through March) and the other for the summer months (April through October). The forecasted monthly load factors are combined with the energy purchases from Seminole forecasts to produce forecasts of monthly peaks by Member.

2.4.6 Hourly Load Profiles. Hourly demand forecasts are created using an algorithm that contains the following inputs: normal monthly hourly profiles, maximum and minimum monthly demands, and energy. This algorithm produces monthly hourly load forecasts by Member. Seminole peak demands are derived by summing the Members' hourly loads and identifying the monthly coincident maximum demands.

2.4.7 Scenarios. In lieu of economic scenarios, Seminole creates a high and low population growth scenario in addition to the base population forecast. Because Seminole's system is primarily residential load, population is the primary driving force behind Seminole's load growth. Therefore, high and low population growth scenarios are developed for each Member system based on the BEBR's alternative scenarios.

3. FUEL REQUIREMENTS AND ENERGY SOURCES

Seminole's nuclear, coal, oil, and natural gas requirements (two-year actual and ten-year forecast) for owned and future generating units are shown on Schedule 5. Seminole's total system energy sources in GWh and percent for each fuel type (two-year actual and ten-year forecast) are shown on Schedules 6.1 and 6.2, respectively.

Seminole has additional requirements for base load capacity in the 2014 and beyond time frame. Seminole has reflected base load capacity additions which are assumed to be from portfolio of non-gas/oil resources such as coal, nuclear, and/or biomass.

	,	····					hedule 5							
					Requirem	ents For S	Seminole	Generatii	ıg Resoui	rces	· · · · · · · · · · · · · · · · · · ·			
Fuel Requi	rements	Units	Act 2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Nuclear		Trillion BTU	1	1	1	1	1	1	1	1	1	1	1	I
Coal		1000 Tons	3,544	3,813	3,696	3,818	3,681	3,567	3,890	3,850	5,152	5,721	7,221	7,586
Residual	Total	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
	Steam	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
	CC	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
	СТ	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
	Diesel	1000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
Distillate	Total	1000 BBL	43	62	47	72	91	97	79	142	93	121	152	137
	Steam	1000 BBL	36	44	44	45	44	42	46	46 	61	68	86	90
	CC	1000 BBL	7	18	0	0	0	0	0	0	0	0	0	0
	СТ	1000 BBL	0	0	-3	27	47	54	33	96	32	53	66	47
Natural Gas	Total	1000 MCF	15,474	13,867	16,438	13,596	18,210	24,712	29,912	38,033	36,042	36,104	14,303	17,109
	Steam	1000 MCF	0	0	0	0	0	0	0	0	0	0	0	0
	СС	1000 MCF	15474	13,867	16,437	13,022	17,161	23,491	29,169	35,820	35,308	34,949	12,960	16,141
	СТ	1000 MCF	0	0	1	574	1,049	1,221	744	2,213	734	1,155	1,343	968
Other			0	0	0	0	0	0	. 0	0	0	0	0	0
	Above fuel is for owned and future generating resources (excluding purchased power contracts).													

	Schedule 6.1													
	-					Energ	y Sources	(GWh)	1					
			Act	ual								:		
Energy So	ources	Units	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Inter-Reg Intercha		GWh	0	0	0	0	0	0	0	0	0	0	0	0
Nucle	ar	GWh	125	109	119	- 110	120	110	119	110	120	110	119	110
Coa	1	GWh	9015	9784	9,284	9,573	9,198	8,948	9,769	9,695	13,208	14,763	18,693	19,663
Residual	Total	GWh	0	0	0	0	0	0	0	. 0	0	0	0	0
	Steam	GWh	0	0	0	0	0	0	0	0	0	0	0	0
	CC	GWh	0	0	0	0	0	0	0	0	0	0	0	0
	СТ	GWh	0	0	0	0	0	0.	0	0	0	0	0	0
Distillate	Total	GWh	0	127	185	150	197	295	249	260	171	225	213	166
	Steam	GWh	0	26	25	26	25	24	26	26	36	40	51	53
	CC	GWh	0	0	0	. 0	0	0	0	0	0	0	0	0
	СТ	GWh	0	101	160	124	172	271	223	234	135	185	162	113
Natural Gas	Total	GWh	2,051	3,644	5,066	4,161	5,034	6,906	7,204	8,251	6,450	5,432	3,614	3,549
	Steam	GWh	0	0	0	0	0	0	0	0	0	0	0	0
	СС	GWh	2,051	3,241	4,298	3,601	4,291	5,766	6,241	. 7,268	5,878	4,692	2,978	3,107
	СТ	GWh	0	403	768	560	743	1,140	963	983	572	740	636	442
NUG (I)		GWh		336	391	578	582	579	530	529	94	93	93	93
Hydro		GWh	0	0	0	0	0	0	0	0	0	0	0	0
Other (2)		GWħ	5222	3177	2218	3562	3826	2863	2643	2446	2112	2310	1055	1065
Net Ener Loa		GWh	16,413	17,177	17,263	18,134	18,957	19,701	20,514	21,291	22,155	22,933	23,787	24,646

NOTES: (1) NUG values include Seminole's three renewable resource purchase power contracts.

^{(2) 2004/2005 &}quot;Other" values are net interchange + PEF system purchases, 2006 and later values are PEF system purchases. PEF system purchases are served from a portfolio of fuels.

						s	chedule 6	.2						
						Energy	Sources (Percent)						
			Ac	tual										
Energy Sor	urces	Units	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Inter-Regi Interchar		%	. 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nuclea	ır .	%	0.76	0.63	0.69	0.61	0.63	0.56	0.58	0.52	0.54	0.48	0.50	0.45
Coal		%	54.93	56.96	53.78	52.79	48.52	45.42	47.62	45.54	59.62	64.37	78.58	79.78
Residual	Total	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Steam	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	CC	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	СТ	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Distillate	Total	%	0.00	0.74	1.07	0.83	1.04	1.50	1.21	1.22	0.77	0.98	0.90	0.67
	Steam	%	0.00	0.15	0.14	0.14	0.13	0.12	0.13	0.12	0.16	0.17	0.21	0.22
	cc	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	СТ	%	0.00	0.59	0.93	0.68	0.91	1.38	1.09	1.10	0.61	0.81	0.68	0.46
Natural Gas	Total	%	12.50	21.21	29.35	22.95	26.55	35.05	35.12	38.75	29.11	23.69	15.19	14.40
-	Steam	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	cc	%	12.50	18.87	24.90	19.86	22.64	29.27	30.42	34.14	26.53	20.46	12.52	12.61
	СТ	%	0.00	2.35	4.45	3.09	3.92	5.79	4.69	4.62	2.58	3.23	2.67	1.79
NUG (1)		%		1.96	2.26	3.19	3.07	2.94	2.58	2.48	.42	.41	.39	.38
Hydro		%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other (2)		%	31.82	18.50	12.85	19.64	20.18	14.53	12.88	11.49	9.53	10.07	4.44	4.32
Net Energy f	or Load	%	100	100	100	100	100	100	100	100	100	100	100	100

NOTES: (1) NUG values include Seminole's three renewable resource purchase power contracts.

^{(2) 2004/2005 &}quot;Other" values are net interchange + PEF system purchases, 2006 and later values are PEF system purchases. PEF system purchases are served from a portfolio of fuels.

4. FORECAST OF FACILITIES REQUIREMENTS

Seminole's load is located primarily within three control areas: PEF, FPL, and Seminole Direct Serve (SDS). Seminole is obligated to serve all loads in the FPL and SDS areas, and load up to a specified capacity commitment level in the PEF area, during the term of the PEF Partial Requirements Contract (through 2013). Seminole must also supply appropriate reserves for the load it is responsible for serving. Seminole meets its total committed load obligation using a combination of owned generation and purchased capacity resources. Member loads in the PEF control area in excess of the specified PEF capacity commitment level are served through partial requirement (PR) purchases from PEF. PEF has the contractual obligation to plan to meet these requirements.

In March 2002, Seminole issued an all-source RFP for peaking capacity which resulted in: (1) a contract for 150 MW of system peaking capacity for the period from December 2006 through 2013 with PEF with the option to convert to system intermediate (Seminole has opted to convert the capacity to system intermediate), and (2) 310 MW of self-build aero-derivative peaking capacity to be built at the Payne Creek site.

In late 2003, Seminole issued an RFP for full requirements power purchases wherein a seller would serve a portion of Seminole's load requirement. As a result, a purchased power contract was executed with PEF for requirements service for a 150 MW portion of Seminole's load beginning January 2010, and expanding with load growth.

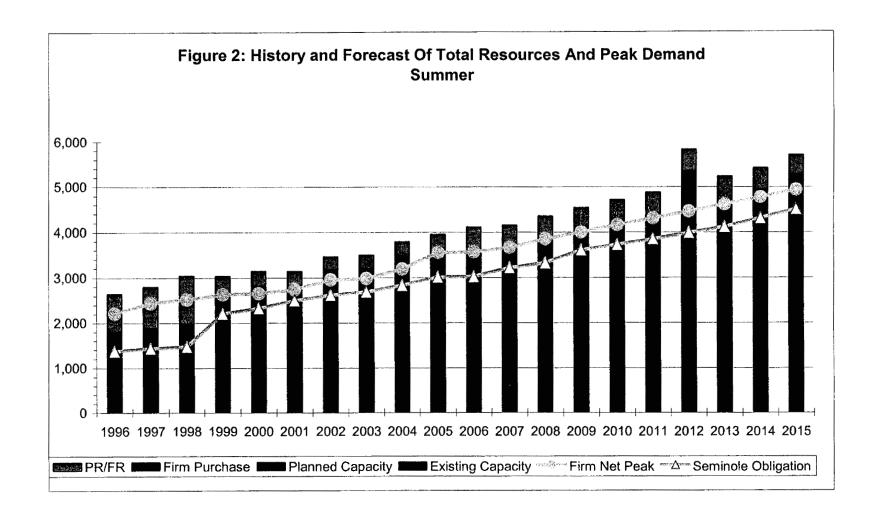
In April 2004, Seminole issued another all-source RFP for base load capacity for the 2009-2012 time frame. Concurrently, Seminole hired an engineering consultant to prepare a feasibility study and cost estimate for a third coal unit at Seminole Generating Station (SGS). The self-build SGS unit has since been evaluated as the most economical and best alternative. Seminole began the permitting and need petition process for a 750 MW pulverized coal unit during 2005 with a commercial operation date of May 1, 2012.

Seminole has a FERC-filed qualifying facility program which complies with the requirements of the Public Utility Regulatory Policies Act (PURPA). When competitively bidding for power supplies, Seminole continues to solicit proposals from QF and renewable energy facilities. Seminole also evaluates all unsolicited QF and renewable energy proposals for applicability to the cooperative's needs. As a result of Seminole's market interactions, purchased power contracts have been made for renewable energy. In 1999, Seminole entered into a power purchase agreement with a renewable energy facility, Lee County Resource Recovery, for approximately 35 MW of capacity which increases to 55 MW in April 2007. More recently, Seminole has signed contracts with Telogia Power, LLC, a 12 MW biomass (wood chip) burning facility, and with Bio-Energy Partners, a 7 MW landfill methane gas burning facility.

Schedules 7.1, 7.2 and 8 include the addition of approximately 3,100 MW of capacity by 2015 at PCGS, SGS and yet unspecified site. Such capacity is needed to replace expiring purchased power contracts and/or to maintain Seminole's reliability criteria. This incremental capacity need would be larger (by approximately 1400 MW) except for the assumption for these reporting purposes that Seminole's full requirements and partial requirements purchases from PEF are extended through 2015. These needs are specified for planning purposes and represent

the most economic mix of resource types for Seminole needs. The addition of this capacity, at sites to be determined by Seminole, is Seminole's "Backstop" expansion plan as requested by Florida Public Service Commission staff. Future economic studies, in conjunction with Seminole's competitive bidding process, will further optimize the amount, type, and timing of such capacity. The units at unknown sites are shown for purposes of identifying capacity need, and in consideration of Seminole's competitive bidding process for purchased alternatives, do not represent at this time a commitment for construction by Seminole. Therefore, no Schedule 9 is included for these units.

Schedule 7.1

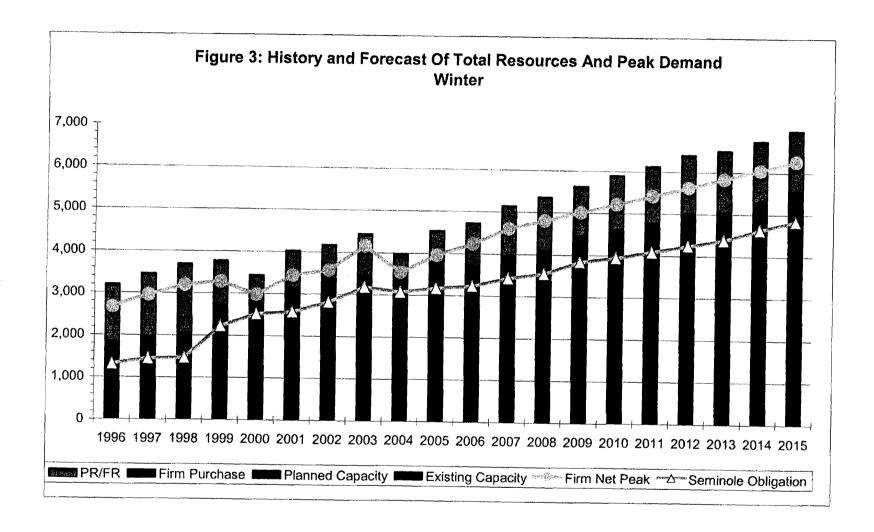

Forecast of Capacity, Demand and Scheduled Maintenance at Time of Summer Peak

	Total	Firm	Capacity Imp	port	Firm	m Capa		Capacity Available		Firm Winter Demand		u - i			
	Installed Capacity	PR and FR	Other Purchases	Total	Capacity Export	QFs	Total	Less PR and FR	Total	Obligation	Reserve Ma Mainte		Scheduled Maintenance		largin After enance
Year	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	% of Pk	MW	MW	% of Pk
2006	1,824	537	1,743	2,280	0	Ó	4,104	3,567	3,555	3,018	549	18.2%	0	549	18.2%
2007	2,094	447	1,607	2,054	0	0	4,148	3,701	3,655	3,208	493	15.4%	0	493	15.4%
2008	2,206	534	1,607	2,141	0	0	4,347	3,813	3,846	3,312	501	15.1%	0	501	15.1%
2009	2,222	402	1,913	2,315	-, 0	0	4,537	4,135	4,000	3,598	537	14.9%	0	537	14.9%
2010	2,369	439	1,907	2,346	0	0	4,715	4,276	4,157	3,718	558	15.0%	0	558	15.0%
2011	2,510	464	1,907	2,371	0	0	4,881	4,417	4,305	3,841	576	15.0%	0	576	15.0%
2012	3,372	474	1,993	2,467	0	0	5,703	5,229	4,459	3,985	1,244	31.2%	0	1,244	31.2%
2013	3,508	500	1,227	1,727	0	0	5,235	4,735	4,617	4,117	618	15.0%	0	618	15.0%
2014	4,482	472	471	943	0	0	5,425	4,953	4,779	4,307	646	15.0%	0	646	15.0%
2015	4,810	435	471	906	0	0	5,716	5,281	4,941	4,506	775	17.2%	0	775	17.2%

NOTES:

- Total installed capacity and the associated reserve margins are based on Seminole's "backstop" plan. It is anticipated that the short term reserve surpluses due to timing of large unit additions can be avoided by strategically timed purchase capacity.
- 2 Capacity Import/Other Purchases includes a firm purchase power contract from Hardee Power Partners Limited for 287 MW of first-call capacity from the Hardee Power Station to back up Seminole Generating Station and Crystal River #3.
- 3 Capacity Import/PR and FR includes partial requirements and full requirements purchases. PEF PR is shown continuing through 2015, beyond the scheduled contract expiration date.
- 4 Seminole's firm obligation demand does not include PR and FR purchases.
- 5 Seminole is not responsible for supplying reserves for FR and PR purchases. Percent reserves are calculated on Seminole's Obligation.

Schedule 7.2


Forecast of Capacity, Demand and Scheduled Maintenance at Time of Winter Peak

	Total	Firm	Capacity Imp	oort	Firm	:	Capacity Available		System Firm Winter Peak Demand						
	Installed Capacity	PR and FR	Other Purchases	Total	Capacity Export	QFs	Total	Less PR and FR	Total	Obligation	Reserve Ma Mainte	-	Scheduled Maintenance		fargin After enance
Year	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	% of Pk	MW	MW	% of Pk
2005/06	1,891	1,005	1,830	2,835	0	0	4,726	3,721	4,232	3,227	494	15.3%	0	494	15.3%
2006/07	2,201	1,181	1,766	2,947	О	0	5,148	3,967	4,603	3,422	545	15.9%	0	545	15.9%
2007/08	2,313	1,268	1,786	3,054	o	0	5,367	4,099	4,802	3,534	565	16.0%	0	565	16.0%
2008/09	2,313	1,172	2,150	3,322	0	0	5,635	4,463	5,004	3,832	631	16.5%	0	631	16.5%
2009/10	2,488	1,272	2,143	3,415	0	0	5,903	4,631	5,213	3,941	690	17.5%	0	690	17.5%
2010/11	2,648	1,336	2,143	3,479	0	0	6,127	4,791	5,414	4,078	713	17.5%	0	713	17.5%
2011/12	2,776	1,386	2,243	3,629	О	0	6,250	4,864	5,617	4,231	633	15.0%	Ō	633	15.0%
2012/13	3,681	1,455	1,372	2,827	0	0	6,508	5,053	5,828	4,373	680	15.5%	0	680	15.5%
2013/14	4,399	1,422	922	2,344	0	0	6,743	5,321	6,045	4,623	698	15.1%	0	698	15.1%
2014/15	5,005	1,431	558	1,989	0	0	6,994	5,563	6,263	4,832	731	15.1%	0	731	15.1%

NOTES:

- Total installed capacity and the associated reserve margins are based on Seminole's "backstop" plan. It is anticipated that the short term reserve surpluses due to timing of large unit additions can be avoided by strategically timed purchased capacity.
- Capacity Import/Other Purchases includes a firm purchase power contract from Hardee Power Partners Limited for 287 MW of first-call capacity from the Hardee Power Station to back up Seminole Generating Station and Crystal River #3.
- 3 Capacity Import/PR and FR includes partial requirements and full requirements purchases. PEF PR is shown continuing through 2015, beyond the scheduled contract expiration date
- 4 Seminole's firm obligation demand does not include PR and FR purchases.
- 5 Seminole is not responsible for supplying reserves for FR and PR purchases. Percent reserves are calculated on Seminole's Obligation.

Schedule 8 Planned and Prospective Generating Facility Additions and Changes

				F	uel		uel nsport	Construction	Comm'l In-	Expected	Maximum			
Plant Name	Unit No.	Location (County)	Unit Type	Pri	Alt	Pri	Alt	Start Mo/Yr	Service Mo/Yr	Retirement Mo/Yr	Nameplate (MW)	Summer (MW)	Winter (MW)	Status
PCGS	4	Hardee	СТ	NG	DFO	PL	TK	02/2006	12/2006	Unk	62	54	62	U
	5	Hardee	CT	NG	DFO	PL	TK	02/2006	12/2006	Unk	62	54	62	U
	6	Hardee	CT	NG	DFO	PL	TK	02/2006	12/2006	Unk	62	54	62	υ
	7	Hardee	CT	NG	DFO	PL	TK	02/2006	12/2006	Unk	62	54	62	υ
	8	Hardee	CT	NG	DFO	PL	TK	02/2006	12/2006	Unk	62	54	62	ับ
SGS	1 (1)	Putnam	ST	BIT		RR	-	1/2009	1/2009	Unk	•	+7	+7	P
ļ	2 (1)	Putnam	ST	ВІТ		RR		1/2009	1/2009	Unk	-	+9	+9	P
	3	Putnam	ST	BIT		RR		9/2008	5/2012	Unk	750	750	750	P
SEC Peaking	1	Unk	СТ	NG	DFO	PL	TK	(2)	11/2007	Unk	112	112	112	P
SEC Peaking	2	Unk	CT	NG	DFO	PL	TK	(2)	11/2009	Unk	62	62	62	P
SEC Peaking	3	Unk	CT	NG	DFO	PL	TK	(2)	5/2014	Unk	256	256	256	P
SEC Intermediate	1	Unk	CC	NG	-	PL	DFO	(2)	11/2009	Unk	97	85	97	P
SEC Intermediate	2	Unk	СС	NG		PL	DFO	(2)	11/2010	Unk	160	141	160	P
SEC Intermediate	3	Unk	CC	NG		PL	DFO	(2)	11/2011	Unk	106	112	128	Р
SEC Intermediate	4	Unk	СС	NG		PL	DFO	(2)	11/2012	Unk	177	136	155	P
SEC Intermediate	5	Unk	СС	NG		PL	DFO	(2)	11/2014	Unk	180	158	180	P
SEC Base	1	Unk	ST	(3)		(4)		(2)	11/2013	Unk	680	680	680	P
SEC Base	2	Unk	ST	(3)		(4)	-	(2)	11/2014	Unk	170	170	170	P
Total												2,948	3,076	
Abbreviations	Unk:	Unknowr	1						-					
	U: P:	Regulatory approval received. Under construction. Planned, but not under construction.												

- SGS 1-2 net rating change due to turbine blade upgrades, carbon burnout, SCR'S.
- Future resource which may be existing or new as determined by future Request for Proposal results.
- (1) (2) (3) Future base capacity blocks to be derived from a portfolio of various non-gas/oil resources such as biofuel, coal, nuclear sources.
- (4) Base capacity fuel transport options include rail, water, truck and/or pipeline.

5. OTHER PLANNING ASSUMPTIONS AND INFORMATION

5.1 Plan Economics

Power supply alternatives are compared against a base case scenario which is developed using the most recent load forecast, fuel forecast, operational cost assumptions, PR rate projections and financial assumptions. Various power supply options are evaluated to determine the overall effect on the Present Worth of Revenue Requirements (PWRR). The option with the lowest PWRR is normally selected, all other things being equal. Sensitivity analyses are done to test how robust the selected generation option is when various parameters change from the base study assumptions (e.g., load forecast, fuel price, capital costs of new generation, etc).

5.2 Fuel Price Forecast

- 5.2.1 Coal. Coal prices at the mine which have increased in recent years are projected to decrease over the next few years. Thereafter, coal prices are expected to increase due, in part, to increasing demand for coal production to support new and existing coal fired generation. Solid fuels, such as coal, will experience greater delivered price volatility in the future as supply and transportation imbalances affect the short-term coal markets. There may also be upward pressure on coal transportation costs to support the expansion of track facilities.
- **5.2.2** Oil. Global economic growth is expected to average approximately 3% annually which will result in steady growth in oil demand. Oil prices are expected to reflect a continuation of tight supplies in the future.
- 5.2.3 Natural Gas. Continued price volatility is expected. Natural gas prices are forecast to decline over the next few years and then increase over the long term. The demand for natural gas for the production of electricity continues to increase. Increasing demand for

natural gas will have to be met by a combination of expanded access to new supply areas and non-traditional sources such as deep water drilling and liquified natural gas (LNG). Supply and demand are expected to remain in balance over the long term but short term imbalances will have a significant impact on prices.

5.2.4 Coal/Gas Price Differential. Seminole's underlying fuel price forecast assumes that a significant spread will continue to exist within the forecast period and beyond between coal and gas. This coal/gas price differential is the primary economic driver for Seminole's strategy to add coal capacity to the generation mix in 2012 to meet base load needs.

5.3 Modeling of Generation Unit Performance

Existing units are modeled with forced outage rates and heat rates for the near term based on recent historical data. The long term rates are based on a weighting of industry average data and expected or manufacturers' design performance data.

5.4 Financial Assumptions

Expansion plans are evaluated based on Seminole's forecast of Rural Utilities Service (RUS) guaranteed loan fund rates.

5.5 Generation Resource Planning Process

Seminole's primary long-range planning goal is to develop the most cost-effective way to meet its Members' load requirements while maintaining high system reliability. Seminole's optimization process for resource selection is based primarily on total revenue requirements. For a not-for-profit cooperative, revenue requirements translate directly into rates to our Member distribution cooperatives. The plan with the lowest revenue requirements is generally selected, assuming that other factors such as reliability impact, initial rate impact, and strategic

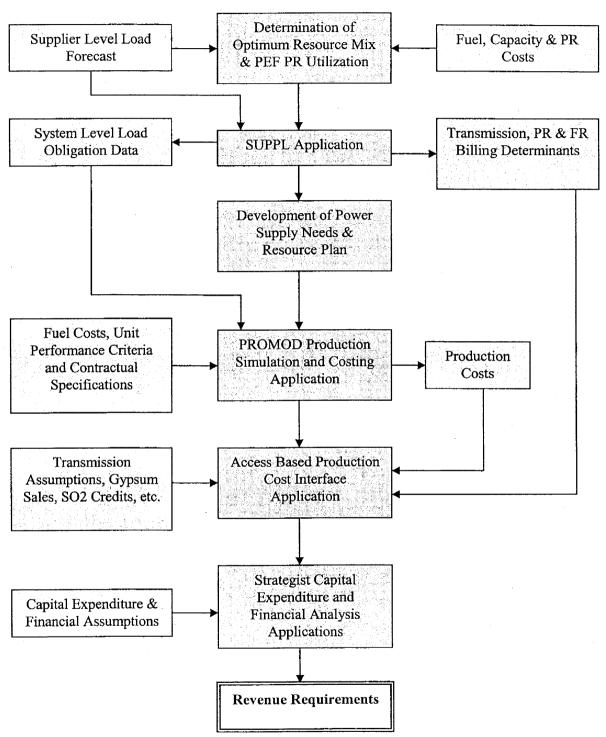
considerations are neutral. Seminole also recognizes that planning assumptions change over time so planning decisions must be robust and are, therefore, tested over a variety of sensitivities. A flow chart of Seminole's planning process is shown in Figure 4.

The impact of DSM and conservation in Seminole's planning process is included in the load forecast. Given the nature of Seminole's power supply arrangements, reduction in peak demand does not usually affect the operation of Seminole's generating resources in the PEF area, but instead reduces the amount of PR purchases required from PEF. However, in Seminole's direct serve area and the FPL area, DSM reduces peak demand and Seminole resource needs to meet the demand.

Conservation and DSM programs will continue to be implemented at the discretion of Seminole's Member systems, based on their determination of the value and/or cost effectiveness of specific programs.

5.6 Reliability Criteria

The total amount of generating capacity and reserves required by Seminole is affected by Seminole's load forecast and its reliability criteria. Reserves serve two primary purposes: to provide replacement power during generator outages and to account for load forecast uncertainty. Seminole has two principal reliability criteria: (1) a minimum reserve margin of 15% during the peak season, and (2) a 1% Equivalent Unserved Energy (EUE) limitation. Both the minimum reserve margin and EUE criteria serve to ensure that Seminole has adequate generating capacity to provide reliable service to its Members and to limit Seminole's reliance on interconnected neighboring systems for emergency purchases.



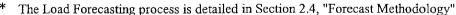

In addition to these two primary reserve criteria, Seminole also adheres to an additional criterion to ensure that it maintains winter reserve capacity to cover weather sensitivity during the winter season. This additional criterion was implemented due to the amount of Seminole's weather-sensitive load in conjunction with the restrictions on the use of Hardee Power Station capacity through the winter season of 2012.

Figure 4

Resource Planning Process

5.7 Strategic Concerns

In the current rapidly changing utility industry, strategic and risk related issues are becoming increasingly important and will continue to play a companion role to economics in Seminole's power supply planning decision process.

Seminole values flexibility as a hedge against a variety of risks, as evidenced by a generation portfolio which includes as much purchased capacity as owned capacity. Owned and/or other long-term purchased resources contribute stability to a power supply plan while short-term purchase arrangements add flexibility. For purchased power agreements, system-type capacity versus unit-specific power is also a consideration. System capacity, which is sourced from many generating units, are more reliable, and agreements can be structured to reduce Seminole's reserve requirements. Flexibility in fuel supply is another significant strategic concern. A portfolio that depends on diverse fuel requirements is better protected against extreme price fluctuations, supply interruptions and transportation instability. Seminole believes that the existing and future diversity in its power supply plan has significant strategic value, leaving Seminole in a good position to respond to market and industry changes.

Seminole's recent decision to add a third coal unit at the Seminole Generating Station was for reliability and economic reasons, but also to avoid an over-reliance on natural gas for Seminole's future energy needs. Only a few years ago, gas combined cycle was considered to be an economic choice for base load capacity. But rising prices, increased volatility, and gas supply concerns have made coal-fired generation more attractive. The addition of the third coal unit is consistent with Seminole's fuel and portfolio diversity goals.

5.8 Procurement of Supply-side Resources

Seminole plans to continue to use its all-source RFP process in conjunction with the evaluation of self-build alternatives, as the primary means of making decision on future power supply needs. In its purchased power bids, Seminole solicits proposals from utilities, independent power producers, qualifying facilities, renewable energy providers, and power marketers. Options which are proposed through the RFP process are compared to Seminole's self-build alternatives. Seminole's evaluation among its options includes an assessment of life cycle cost, reliability, strategic and risk elements.

5.9 Transmission Plans

The following table lists all 69 kV and above projects for new, upgraded, or reconfigured transmission facilities planned by Seminole over the ten year planning horizon.

Status	Line Terminal From	Line Terminal To	Circuit	Line Miles	Comm'l In-Svc Date	Nominal Voltage (kV)	Capacity MVA
Upgrade	Payne Creek	Hardee	1	.3	2006	230	1195
Upgrade	Payne Creek	Hardee	2	.3	2006	230	1195
Upgrade	Hardee	Vandolah	1	8.7	2006	230	1195
Reconfigure and Upgrade	Hardee	Vandolah	2	8.7	2006	230	1195
Reconfigure	Vandolah	Charlotte	1	49	2006	230	796

The existing 230 kV Hardee/Charlotte transmission line will be looped through the PEF Vandolah substation and reconductored from Hardee to Vandolah, creating a Hardee/Vandolah circuit #2 and a Vandolah/Charlotte circuit #1.

5.9.1 Transmission Facilities for Payne Creek Generating Station Expansion.

In 2006, Seminole will add five aeroderivative peaking generators at PCGS, with a nominal output of 310 MW.

I. Substation

- 1. Construction of the new Payne Creek Peaker switchyard.
- Upgrade the PCGS/Hardee circuit #1 and PCGS/Hardee circuit #2 line terminals
 at the existing Payne Creek switchyard to 3000 amps and modify the line bus to a
 ring bus configuration.
- Upgrade the PCGS/Hardee circuit #1, PCGS/Hardee circuit #2, and the Hardee/Vandolah circuit #1 line terminals in the Hardee switchyard to 3000 Amps.
- 4. Upgrade the Hardee/Vandolah circuit #1 line terminal in the Vandolah switchyard to 3000 Amps.

II. Transmission

- 1. Reconductor the 230 kV Hardee/Vandolah circuit #1 line to 3000 Amps.
- Reconductor the 230 kV PCGS/Hardee circuit #1 and PCGS/Hardee circuit #2
 lines to 3000 Amps.

5.9.2 Transmission Facilities for Seminole Generating Station Expansion.

In 2012, Seminole will add a third coal-fired generating unit at SGS, with a nominal output of 750 MW.

I. Substation

- 1. Upgrade the fault duty of all breakers at SGS to 63 kA.
- 2. Upgrade SGS/Silver Springs North circuit #1 and SGS/Silver Springs North circuit #2 line terminals at SGS to 3000 Amps.
- 3. Upgrade the SGS/Silver Springs North circuit #1 and SGS/Silver Springs North circuit #2 line terminals at the Silver Springs North switchyard to 3000 Amps.

П. Transmission

1. N/A

	Schedule 9 Status Report and Specifications of Proposed Generating Facilities								
1	Plant Name & Unit Number	Payne Creek Generating Station Units No. 4, 5, 6, 7,8							
2	Capacity								
	a. Summer (MW):	54							
	b. Winter (MW):	62							
3	Technology Type:	Aero-derivative Gas Turbine							
4	Anticipated Construction Timing								
	a. Field construction start-date:	November 2005							
	b. Commercial in-service date:	December 2006							
5	Fuel								
	a. Primary fuel:	Natural Gas							
	b. Alternate fuel:	Distillate Oil							
6	Air Pollution Control Strategy	Low Nox Comb. w/ water injection, Natural Gas, LS #2							
7	Cooling Method:	N/A							
8	Total Site Area:	Approximately 9.1 acres							
9	Construction Status:	In progress							
10	Certification Status:	Final							
11	Status With Federal Agencies	EPA: PSD Permit Submittal august 2004December 2003							
		RUS: FONSI Approved October 2004							
12	Projected Unit Performance Data								
	Planned Outage Factor (POF):	0.5							
	Forced Outage Factor (FOF):	3.0							
	Equivalent Availability Factor (EAF):	96.5							
	Resulting Capacity Factor (%):	1% - 10%							
	Average Net Operating Heat Rate (ANOHR):	10,900 Btu/KWh (HHV)							
13	Projected Unit Financial Data (\$2007)								
	Book Life (Years):	30							
	Total Installed Cost (In-Service Year \$/kW):	N/A							
	Direct Construction Cost (\$/kW):	N/A							
	AFUDC Amount (\$/kW):	N/A							
	Escalation (\$/kW):	N/A							
	Fixed O&M (\$/kW-Yr):	N/A							
_	Variable O&M (\$/MWH):	N/A							
	K Factor:	N/A							

	Schedule 9 Status Report and Specifications of Proposed Generating Facilities								
1	Plant Name & Unit Number	Seminole Generating Station Unit No. 3							
2	Capacity								
	a. Summer (MW):	750							
	b. Winter (MW):	750							
3	Technology Type:	Pulverized Coal							
4	Anticipated Construction Timing								
	a. Field construction start-date:	September 2008							
	b. Commercial in-service date:	May 2012							
5	Fuel								
	a. Primary fuel:	Coal							
	b. Alternate fuel:								
6	Air Pollution Control Strategy	Precipitator, SCR, Wet Scrubber, Wet ESP, Combustion Controls							
7	Cooling Method:	Cooling towers							
8	Total Site Area:	Approximately 172.8 acres							
9	Construction Status:	Planned							
10	Certification Status:	Applied for March 2006							
11	Status With Federal Agencies	Permits applied fro March 2006							
12	Projected Unit Performance Data								
	Planned Outage Factor (POF):	7.5							
	Forced Outage Factor (FOF):	3.5							
	Equivalent Availability Factor (EAF):	90							
	Resulting Capacity Factor (%):	85%							
	Average Net Operating Heat Rate (ANOHR):	9,300 BTu/KWh (HHV)							
13	Projected Unit Financial Data (\$2007)								
	Book Life (Years):	30							
	Total Installed Cost (In-Service Year \$/kW):	N/A							
	Direct Construction Cost (\$/kW):	N/A							
	AFUDC Amount (\$/kW):	N/A							
	Escalation (\$/kW):	N/A							
	Fixed O&M (\$/kW-Yr):	N/A							
	Variable O&M (\$/MWH):	N/A							
	K Factor:	N/A							

Schedule 10

Status Report and Specifications of Proposed Associated Transmission Lines

(1)	Point of Origin and Termination:	SEE NOTE
(2)	Number of Lines:	
(3)	Right-of-Way:	
(4)	Line Length:	
(5)	Voltage:	
(6)	Anticipated Construction Timing	
(7)	Anticipated Capital Investment:	
(8)	Substations:	
(9)	Participation with other Utilities:	
Note:	Seminole is not planning to build any additi with the future capacity.	onal transmission lines in conjunction

6. ENVIRONMENTAL AND LAND USE INFORMATION

Seminole Generating Station - Putnam County, Florida

The Seminole Generating Station (SGS) is located in a rural unincorporated area of Putnam County approximately 5 miles north of the City of Palatka. The site is 1,978 acres bordered by U.S. 17 on the west, and is primarily undeveloped land on the other sides. The site was certified in 1979 (PA78-10) for two 650 MW coal fired electric generating units (SGS Units 1 & 2). On March 9, 2006, Seminole submitted a supplemental site certification application pursuant to the Florida Electrical Power Plant Siting Act for an additional 750 MW coal fired electrical generating unit (SGS Unit 3) to be located adjacent to the existing units. SGS Unit 3 is scheduled to go into commercial operation in May 2012.

A significant portion of the site has previously been cleared of vegetation and graded to accommodate Units 1 and 2. Units 1 and 2 went into commercial operation in February and December of 1984, respectively. The area around SGS Unit 3 includes mowed and maintained grass fields and upland pine flatwoods. Areas further away from the existing units include live oak hammocks, wetland conifer forest, wetland hardwood/conifer forest and freshwater marsh. A small land parcel located on the St. Johns River is the site for a water intake structure, wastewater discharge structure, and pumping station to supply the facility with cooling and service water.

The primary water uses for SGS Unit 3 will be for cooling water, wet flue gas desulfurization makeup, steam cycle makeup, and process service water. Cooling and service

water will be pumped from the St. Johns River and groundwater supplied from on-site wells will be for steam cycle makeup and potable use. The site is not located in an area designated as a Priority Water Resource Caution Area by the St. Johns River Water Management District

State listed species that are likely to occur on the site include the bald eagle, the indigo snake, and the gopher tortoise. No known listed plants occur on the site. The site has not been listed as a natural resource of regional significance by the regional planning council.

SGS Unit 3 will impact one small shrub wetland area and a portion of forested wetlands and wetland prairie associated with a new pipeline supplying water from the river. Mitigation for these impacts will be in accordance with the requirements of the Florida Department of Environmental Regulation.

The local government future land use for the area where the existing units and proposed SGS Unit 3 is located is designated as industrial use.

Water conservation measures that will be incorporated into the design of SGS Unit 3 will include the collection, treatment and recycling of plant process wastewater streams from SGS Unit 3 as well as SGS Units 1 and 2. This wastewater reuse will minimize groundwater and service water uses. Small amounts of recirculated condenser cooling water (cooling tower blowdown) will be withdrawn from the closed cycle cooling tower and discharged to the St. Johns River. Site stormwater will be reused to the maximum extent possible and any not reused

will be treated in wet detention ponds and released to onsite wetlands.

The primary fuels for SGS Unit 3 will be bituminous coal and petcoke. No. 2 (distillate) fuel oil will be used for startups and flame stabilization. Coal and petcoke are currently delivered to the site by unit trains and oil is delivered by truck. SGS Unit 3 will utilize the same delivery systems. Coal and petcoke for SGS Unit 3 will be stored in an existing 52 acre lined coal storage area. Coal pile stormwater will be collected, treated and reused. No. 2 fuel oil will be stored in a tank with adequately sized secondary containment.

Unit 3 is designed so that solid waste from the FGD system will be treated to produce wallboard grade synthetic gypsum and sold for use in producing wallboard. Flyash will be reused as an additive for cement and concrete. Any solid wastes that are not recycled will be stored in a double lined landfill equipped with leachate collection or transported to a permitted landfill facility.

Unit 3 will utilize advanced supercritical coal boiler technology with state of the art emission controls meeting the EPA requirement for Best Available Control Technology. Air emission control systems will include Selective Catalytic Reduction (SCR) for NOx control, wet Flue Gas Desulfurization (FGD) systems for SO2 control, dry electrostatic precipitators (ESP-the collection and removal fine particulate matter) and a wet ESP for acid gas removal. These technologies will also remove more than 90% of the mercury contained in the flue gas.

Noise emissions during operation of SGS Unit 3 will not result in sound levels in excess of the Putnam County Noise Control Ordinance. Intermittent noise sources during startup, testing, maintenance, and emergency conditions may result in elevated noise levels for short durations but are not expected to cause a nuisance.

Additional information concerning SGS Unit 3 can be found in the "Site Certification Application and Environmental Analysis, Seminole Generating Station Unit 3" submitted to the FDEP.

Payne Creek Generating Station - Hardee County, Florida

The Payne Creek Generating Station (PCGS) is located in Hardee and Polk Counties about nine miles northwest of Wauchula, 16 miles south-southwest of Bartow, and 40 miles east of Tampa Bay. The site is bordered by County Road 663 on the east, CF Industries on the south, and Mosaic, Inc. on the north and west. Payne Creek flows along the sites south and southwestern borders. The site was originally strip-mined for phosphate and was reclaimed as pine flatwoods, improved pasture, and a cooling reservoir with a marsh littoral zone. A more detailed description of environmental and land use is available in the site certification application PA-89-25SA.

Seminole has modified the site certification and is currently constructing 310 MW of combustion turbine peaking units at the PCGS that will begin commercial operation in 2006.

