BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In Re: Petition on behalf of Citizens of the State of Florida to require Progress Energy Florida, Inc. to refund to customers \$143 million DOCKET NO. 060658 Submitted for filing: January 16, 2007

DIRECT TESTIMONY OF JOHN BENJAMIN CRISP ON BEHALF OF PROGRESS ENERGY FLORIDA

R. ALEXANDER GLENN JOHN BURNETT PROGRESS ENERGY SERVICE COMPANY, LLC P.O. Box 14042 St. Petersburg, Florida 33733 Telephone: (727) 820-5180 Facsimile: (727) 820-5519 JAMES MICHAEL WALLS Florida Bar No. 706272 DIANNE M. TRIPLETT Florida Bar No. 0872431 CARLTON FIELDS, P.A. Post Office Box 3239 Tampa, FL 33601 Telephone: (813) 223-7000 Telecopier: (813) 229-4133

ODCUMENT NUMBER-DATE

00428 JAN 165

FPSC-COMMISSION CLERK

IN RE: PETITION ON BEHALF OF CITIZENS OF THE STATE OF FLORIDA TO REQUIRE PROGRESS ENERGY FLORIDA, INC. TO REFUND CUSTOMERS \$143 MILLION

FPSC DOCKET NO. 060658

DIRECT TESTIMONY OF

JOHN BENJAMIN CRISP

1		I. INTRODUCTION AND QUALIFICATIONS
2		
3	Q.	Please state your name and business address.
4	А.	My name is John Benjamin Crisp. My business address is 299-First Avenue North,
5		PEF 121, St. Petersburg, FL 33701.
6		
7	Q.	Please tell us how you are employed and describe your background.
8	А.	I am employed by Progress Energy Florida, Inc. ("PEF" or the "Company") currently
9		serving as the Manager of Energy Efficiency Services. Prior to this role, I was PEF's
10		Director of Generation Planning for Progress Energy Florida, as well as the Director
11		of Generation Planning for both of Progress Energy's regulated utilities. My
12		background includes over 20 years of electric utility experience in generation and
13		fuels planning, load forecasting, generation construction, plant operations, system
14		grid planning and operations, fuels and power trading, and energy efficiency systems.
15		I have a bachelor's degree in Industrial Engineering from Georgia Tech, and have

1		completed post graduate marketing and management programs at Georgia Tech and			
2		Duke University.			
3					
4		II. PURPOSE AND SUMMARY OF TESTIMONY			
5					
6	Q.	What is the purpose of your testimony?			
7	А.	I am providing an analysis of the total cost to the Company if Crystal River Units 4			
8		and 5 (hereafter "CR4" and "CR5") produced 665 gross MegaWatts ("MW") of			
9		electrical energy each year from 1996 to 2005 rather than the net 722MW (winter)			
10		and 732MW (winter) of electrical energy we conservatively expected CR4 and CR5,			
11		respectively, to produce on average annually from 1996 to 2005 in our Ten Year Site			
12		Plans ("TYSPs"). This is a de-rate (or loss of MW energy load) of 57MW for CR4			
13		and 67MW for CR5 for each year or a total annual loss of load of 124MW of			
14		electrical capacity and energy. My analysis of the cost to the Company of an annual			
15		loss of 124MW during this period of time is based on the testimony of the consultant			
16		of the Office of Public Counsel ("OPC") and PEF's outside consultant, Mr. Hatt, in			
17		this proceeding.			
18		I understand that OPC's consultant has testified that the Company should have			
19		purchased and burned a 50/50 blend of Power River Basin ("PRB") sub-bituminous			

purchased and burned a 50/50 blend of Power River Basin ("PRB") sub-bituminous
coal and bituminous coal at CR4 and CR5 from 1996 to 2005 (allowing for a brief
period to ramp up to this blend in 1996), because he claims that (1) PRB coals were
the cheapest coals for those units during that time period, and (2) the CR4 and CR5
boilers were designed to accommodate a 50/50 blend of PRB coals and bituminous

1		coals. I understand that Mr. Hatt will testify that, if the Company had purchased and
2		burned a 50/50 blend of PRB coals and bituminous coals from 1996 to 2005, the units
3		would have each produced on an average annual basis only 665MW gross, rather than
4		the actual net annual energy production of 722MW (winter) and 732MW (winter) that
5		we expected the units to produce over this time period. I further understand that Mr.
6		Hatt's testimony is supported by the same design documents relied upon by OPC's
7		consultant that demonstrate the design rating of the turbines using a 50/50 blend of
8		PRB and bituminous coals is 665MW. I have, accordingly, determined the cost to the
9		Company to replace 124MW annually from 1996 to 2005, if CR4 and CR5 produced
10		only 665MW gross each rather than the net 712MW (winter) and 732MW (winter)
11		they were expected to produce annually over the 1996 to 2005 time period.
12		
12 13	Q.	Please describe how your background gives you the technical expertise necessary
	Q.	Please describe how your background gives you the technical expertise necessary to support your testimony.
13	Q. A.	
13 14	-	to support your testimony.
13 14 15	-	to support your testimony. For much of the time from 1996 to 2005 it was my job as director of resource
13 14 15 16	-	to support your testimony. For much of the time from 1996 to 2005 it was my job as director of resource planning for PEF to find the most cost-effective alternatives to meet the Company's
13 14 15 16 17	-	to support your testimony. For much of the time from 1996 to 2005 it was my job as director of resource planning for PEF to find the most cost-effective alternatives to meet the Company's obligation to serve our customers' short- and long-term needs for electric energy. I
13 14 15 16 17 18	-	to support your testimony. For much of the time from 1996 to 2005 it was my job as director of resource planning for PEF to find the most cost-effective alternatives to meet the Company's obligation to serve our customers' short- and long-term needs for electric energy. I oversaw the completion of the Company's TYSPs, which set forth the Company's
 13 14 15 16 17 18 19 	-	to support your testimony. For much of the time from 1996 to 2005 it was my job as director of resource planning for PEF to find the most cost-effective alternatives to meet the Company's obligation to serve our customers' short- and long-term needs for electric energy. I oversaw the completion of the Company's TYSPs, which set forth the Company's plans to meet customer load over a ten year period of time, presented and explained

`

To perform these responsibilities, I routinely examined and evaluated both 1 2 supply-side resources, i.e. additional generation, and demand-side resources to meet 3 the customers' demand for electric energy (or load). In the course of this evaluation I analyzed PEF system load and load service reliability requirements, integrated 4 generation dispatch economics, electric system planning and reserve margin 5 6 requirements, electric generator costs, construction and associated installation costs, 7 fuel and operating costs, generating unit start-up costs, and market replacement 8 capacity and energy. In other words, it was my responsibility to recommend a course 9 of action to build new generating plants, purchase power on the market, or employ new or expanded demand-side measures to reduce demand during peak periods in 10 order to ensure that the Company adequately met the customers' electrical energy 11 12 needs in the most cost-effective manner. I am employing the same analysis I performed over the years for PEF to determine the most cost-effective manner to 13 meet customer demand for electric capacity and energy to my analysis in this 14 15 testimony.

16

17 Q. Are you sponsoring any exhibits with your testimony?

A. Yes. The following exhibits were prepared by me or under my supervision and
 control, or they represent business records prepared at or near the time of the events
 recorded in the records, which records it was a regular practice for me or those who
 worked with me to keep to perform our responsibilities for the Company:

22

23

• Exhibit No. ____(JBC-1), which are the Babcock & Wilcox Company design documents for the boilers for CR4 and CR5;

1		• Exhibit No (JBC-2), which is the Company's 1995 TYSP;			
2		• Exhibit No (JBC-3); which is a composite exhibit of Schedule 1, Existing			
3		Generation Facilities, to the Company's TYSPs for the years 1996 to 2005;			
4		• Exhibit No (JBC-4), which is PEF's daily total load forecast with the			
5		generation;			
6		• Exhibit No (JBC-5), which is the cost estimate for the two-year "bridge"			
7		contract costs and remaining eight-year system costs following the			
8		construction of a peaking unit to replace the lost 124MW from the CR4 and			
9		CR5 de-rates over the ten-year period of time; and			
10		• Exhibit No (JBC-6), which is the summary of my calculation of the			
11		range of costs the Company would have incurred to replace 124MW of base			
12		load capacity over the time frame from 1996 to 2005.			
13		All of these exhibits are true and correct.			
14					
15	Q.	Please summarize your testimony.			
16	А.	I understand that OPC's consultant has testified that PEF should have purchased and			
17		burned a $50/50$ blend of PRB sub-bituminous and bituminous coal at CR4 and CR5			
18		from 1996 to 2005. I further understand that PEF's expert, Mr. Rod Hatt, has			
19		concluded that, if PEF had converted to a 50/50 PRB/bituminous coal blend in CR4			
20		and CR5 from 1996 to 2005, the units would not have produced the MWs they			
21		historically have been expected to produce in our TYSPs from burning bituminous			
22		coals in the units. Rather, according to Mr. Hatt, CR4 and CR5 together would have			
23		generated 124MW less than the net MW expected from the two units each year in the			

1		TYSPs. This de-rate or loss of load is consistent with the turbine rating (665MW) in		
2		the boiler design documents using an equal blend of PRB sub-bituminous and		
3		bituminous coals included in Exhibit No (JBC-1) to my testimony. Based on		
4		these conclusions, I have determined that, over the eleven-year period between 1995		
5		and 2005 when this loss of net MW load would have occurred, PEF would have		
6		incurred \$696.9 million to \$966 million to replace the lost energy and capacity		
7		associated with this MW loss of base load generating capacity.		
8				
9		III. HISTORICAL RESOURCE PLANS 1996-2005		
10				
11	Q.	Let's start at the beginning of this time period, what was PEF's generation		
12		supply to meet generation demands in 1995?		
13	А.	In 1995, PEF's own generation consisted of a nuclear generation unit, fossil steam		
14		generation units, and combustion turbine generation units with 7,400MW of electrical		
15		generation capacity. In addition, PEF purchased an additional 1,500MW of		
16		generating capacity from other investor owned utilities and qualifying facilities. This		
17		is demonstrated by the Company's 1995 TYSP in Exhibit No (JBC-2) to my		
18				
		testimony.		
19		testimony. The Company's generation capacity consisted of base load, intermediate, and		
19 20		•		
		The Company's generation capacity consisted of base load, intermediate, and		
20		The Company's generation capacity consisted of base load, intermediate, and peaking generation units. A base load unit is one of the Company's most efficient		

units. Peaking units, on the other hand, have lower capital construction costs but higher fuel costs and, thus, are operated during the periods when the demand for energy on the system is greatest or, in other words, the peak times and, hence, the name "peakers" or "peaking" units. The Company had approximately 2,700MW of natural gas and oil fired peaking generation in 1995.

1

2

3

4

5

6

7

8

9

Intermediate generation units, as the name suggests, are operated more than peakers but less than base load units, typically on a seasonal basis. At this time, approximately 1,600MW of fuel-oil fired steam capability served as the seasonal base load or intermediate generation.

In 1995, approximately 3,100MW of the total electrical generation capacity was base load generation located at the Crystal River site. This includes the nuclear unit and the four coal-fired generation units, including CR4 and CR5. This base load generating capacity provided and continues to provide the backbone of PEF's lowfuel cost, base load generation capability. CR4 and CR5 provided about one-half of this base load generation and, thus, were and are critical to supplying the base load needs of PEF's customers.

PEF also had demand-side management resources ("DSM") that were used to reduce demand during peak time periods by, for example, allowing the Company to turn off participating customers' pool motors and water heaters for a fee or credit on the customers' bills. DSM was a result of the Florida Energy Efficiency and Conservation Act ("FEECA") of 1980. Pursuant to FEECA, PEF employed a robust DSM program, with over 1,500MW of load management and conservation capability. Accordingly, at the end of 1995, PEF had generation and DSM resources

available to it equal to approximately 9,095MW of electric capacity and energy supply. This capacity was needed to meet the projected load for 1996 of 9,007MW. The load is the amount of customer demand for energy on the system, typically measured at the peak time period in the year because of the utility's obligation to supply adequate energy instantaneously at all times to meet energy demand.

6

7

Q.

1

2

3

4

5

You used the terms electric "capacity" and "energy." What do they mean?

8 Α. The term "capacity" refers to the commitment of a particular generation unit output or system of generation unit output to provide service. When a regulated utility builds 9 a generation unit, all of the energy output or "capacity" is committed to the utility to 10 provide electric service to customers. Such a commitment ensures that the customer 11 has reliable electric service. If the capacity of a unit is not committed to the utility for 12 13 service, which can occur in some contracts for purchase power from other utilities or 14 non-utility generators, then that electric service is less reliable because the purchasing utility has no right to call on that capacity for electric energy at its discretion. 15 Contracts with the generation capacity committed to the purchaser are called "firm" 16 contracts and contracts without such a commitment are called "non-firm" contracts. 17

All or some of a generation unit's capacity, however, can also be and is sometimes sold on the non-regulated market to generation buyers or between regulated utilities in wholesale transactions. The capacity charge, as a regulated or non-regulated cost, represents the fixed cost portion of the generation unit or energy supply source. This cost represents the depreciation of the asset over time. The capacity charge has typically been booked or represented on a \$/kW-month basis.

1		The term "energy" represents the actual electrical output of a generation unit			
2		or system of units. The energy charge would cover all of the variable costs to			
3		actually generate electricity, including fuel and operation and maintenance			
4		("O&M") expenses, from the generation unit or system of units. The energy charge is			
5		also a component of the cost of service. The energy charge is typically booked or			
6		represented on a \$/kWH basis.			
7		Capacity and energy are both elements of reliable electrical service to			
8		customers and must be accounted for when deciding how to provide reliable electric			
9		service to the customer, either through building a new generation unit committed to			
10		the customers' service or entering into a contract for such service.			
11					
10	•				
12	Q.	Was customer demand for energy expected to grow between 1996 and 2005?			
12	Q. A.	Yes. The State of Florida, including PEF's service territory, was and is an area of			
	-				
13	-	Yes. The State of Florida, including PEF's service territory, was and is an area of			
13 14	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use.			
13 14 15	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during			
13 14 15 16	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during the entire period of time from 1996 to 2005 when it was planning to meet customer			
13 14 15 16 17	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during the entire period of time from 1996 to 2005 when it was planning to meet customer needs.			
13 14 15 16 17 18	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during the entire period of time from 1996 to 2005 when it was planning to meet customer needs. At that time, in 1995, PEF was planning for up to 10,183MW of generation			
 13 14 15 16 17 18 19 	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during the entire period of time from 1996 to 2005 when it was planning to meet customer needs. At that time, in 1995, PEF was planning for up to 10,183MW of generation capacity resources by the end of 2005 to meet an expected load of 11,075MW. The			
 13 14 15 16 17 18 19 20 	-	Yes. The State of Florida, including PEF's service territory, was and is an area of growth both in additional residents and, thus customers, and customer energy use. PEF expected to have customer growth and an increase in customer energy use during the entire period of time from 1996 to 2005 when it was planning to meet customer needs. At that time, in 1995, PEF was planning for up to 10,183MW of generation capacity resources by the end of 2005 to meet an expected load of 11,075MW. The additional generation capacity under construction at the beginning of and planned for			

8,837MW thus ensuring that there was adequate generation capacity resources (10,183MW) to cover the firm peak demand. This data is provided in tabular form for each winter season from 1996 to 2005 at page 80 of the 1995 TYSP in Exhibit No. _____(JBC-2).

5

4

1

2

3

6

Q. How does PEF plan to meet increased energy demand on its system?

A. PEF employs a resource planning process that integrates supply-side, generation
options with demand-side DSM options into a final, optimal plan designed to deliver
reliable, cost-effective power to PEF's customers. This integrated, optimal plan is
presented to the Commission each year in the Company's TYSP.

In that plan, the need for additional resources is determined by dual reliability criteria: a minimum Reserve Margin planning criterion and a maximum Loss of Load Probability (LOLP) criterion. This reliability criteria has been used since the early 14 1990's and is a practice accepted by the Commission. By using both the Reserve 15 Margin and LOLP planning criteria, PEF's overall system is designed to have 16 sufficient capacity for peak load conditions, and the generating units are selected to 17 provide reliable service under all expected load conditions.

18PEF has found that resource additions are typically triggered to meet Reserve19Margin thresholds before LOLP becomes a factor. However, PEF still considers20LOLP a meaningful supplemental reliability measure, and the Company is committed21to adding resources when either one of the criteria would not otherwise be met.

22

23 Q. What is a Reserve Margin?

A.

Reserve Margins are "energy service that is held in reserve."

2

3

Q. Why are reserves of energy service needed?

4 Utilities require a margin of generating capacity above the firm demands of their Α. 5 customers in order to provide reliable service. At any given time during the year, 6 some generating units will be out of service and unavailable due to forced outages to repair failed equipment or periodic outages to perform maintenance (or, in the case of 7 8 the nuclear unit, refueling as well). Adequate reserves must be available to provide 9 sufficient capacity when some generating capacity is unavailable for these reasons 10 and when necessary to meet higher than projected peak demand due to the inherent uncertainties in forecasting load and/or abnormal weather. In addition, some capacity 11 12 must be available for operating reserves to maintain the balance between supply and 13 demand on a moment-to-moment basis.

14

15 Q. What was PEF's Reserve Margin from 1996 to 2005?

A. PEF's minimum Reserve Margin threshold was 15 percent up until the summer of
 2004. Then, pursuant to a Commission-approved joint proposal from the investor owned utilities in peninsular Florida – PEF, Florida Power & Light Company, and
 Tampa Electric Company – the Reserve Margin increased to at least 20 percent.
 Actual and projected Reserve Margins ranged from a high of 25% to a low of 15%
 from 1996 to 2005.

2

Q.

How does the utility provide reserves to meet or exceed its minimum Reserve Margin criteria?

A. PEF's reserves can be either physical assets, i.e. constructing generation units or
 purchasing capacity and energy under contracts with utilities with their generation
 units, or DSM programs that reduce peak load. Either way, the customers' peak
 demands for energy are satisfied.

At the end of 1995, however, virtually all of PEF's actual and projected
reserves for the period from 1996 to 2005 were in the form of DSM programs.
Remember, as I pointed out, by 2005 the Company expected DSM to reduce peak
load from 11,075MW to 8,837MW. This was acceptable because the peak periods of
demand are relatively brief and, thus, customers might find it acceptable to have
DSM measures employed to reduce their energy usage for brief periods of time.

PEF's capacity margins, or the available generation capacity from actual physical or contract generation assets above the peak demand, were about 250MW at any point in time during this same time period. This means the actual physical generation reserves to cover outages and extreme weather on peak days was only about 250MW on average. The remainder of the reserves making up the Reserve Margin was DSM.

19

20 Q. How were the reserves used by the Company?

A. Typically, outages or extreme conditions would be covered by available excess
 generation capacity, and then DSM would be used to offset the remaining need.
 There were no planning criteria, however, that addressed specific requirements for

capacity margins at this time, rather, capacity margin reserves and DSM reserves
 were treated equally under the Reserve Margin criterion. As a result, the common
 industry operating practice in 1995 and up until the latter part of the relevant time
 period was to similarly treat generation capacity equal to DSM when it came to
 reserves such that often the reserves above the firm peak load were primarily DSM.

6

Q. Did anything else have an impact on the level and type of reserves during this time frame?

9 A. Yes. During this planning horizon, PEF's firm load was showing growth faster than
10 its planned capacity additions. This increased the reliance on DSM for reserves in
11 this time period such that the reserves in the last seven years of the ten-year planning
12 period in the 1995 TYSP were almost entirely DSM. In fact, the Company projected
13 net negative capacity reserves in the winter and decreasing capacity margins in the
14 summer to the point where DSM provided all or the bulk of the reserves at all times
15 in these years. The last seven years in the 1995 TYSP were the years 1999 to 2005.

16 PEF was planning capacity additions to meet load and improve its capacity 17 margins during this planning horizon, with three new gas-fired combustion turbines 18 totaling 400MW of peaking generation planned and approximately 1,200MW of 19 additional, intermediate generation planned in the form of one gas-fired, combined 20 cycle unit and three steam repowering projects. These units were planned because 21 they were economically cost effective, easy and quick to build, required less land and 22 thus had a smaller geographic footprint from an environmental perspective, and they 23 were more flexible from an operational standpoint. The first of these additional

1		generation units, however, was not expected in 1995 to come on line until 1998 with
2		a peaker unit located at Intercession City followed by a combined cycle unit in 1999.
3		
4	Q.	Did the Company's planned Reserve Margin during this time period
5		contemplate continuing base load electric energy generating capacity from CR 4
6		and CR5?
7	А.	Yes. PEF's resource planning process and thus its Reserve Margins assumed that all
8		generation units, including base load units like CR4 and CR5, would continue to
9		produce capacity and energy consistent with the Company's minimum expectations
10		for those units. De-rates, or a loss of generating capacity and energy from the
11		expected production, were not contemplated in the resource planning process.
12		
12		
13	Q.	Would a loss of generating capacity and energy at CR4 and CR5 during this
	Q.	Would a loss of generating capacity and energy at CR4 and CR5 during this time period have an impact on the Company's resource plan?
13	Q. A.	
13 14		time period have an impact on the Company's resource plan?
13 14 15		time period have an impact on the Company's resource plan?Absolutely. A loss of 124MW of base load generation would have been a significant
13 14 15 16		time period have an impact on the Company's resource plan?Absolutely. A loss of 124MW of base load generation would have been a significant event, given the primary reliance on DSM for reserves and the slim capacity margins
13 14 15 16 17		 time period have an impact on the Company's resource plan? Absolutely. A loss of 124MW of base load generation would have been a significant event, given the primary reliance on DSM for reserves and the slim capacity margins during this time period. This loss of additional base load generation capacity from
13 14 15 16 17 18		 time period have an impact on the Company's resource plan? Absolutely. A loss of 124MW of base load generation would have been a significant event, given the primary reliance on DSM for reserves and the slim capacity margins during this time period. This loss of additional base load generation capacity from de-rates would have reduced by half the average capacity margin available during this
 13 14 15 16 17 18 19 		 time period have an impact on the Company's resource plan? Absolutely. A loss of 124MW of base load generation would have been a significant event, given the primary reliance on DSM for reserves and the slim capacity margins during this time period. This loss of additional base load generation capacity from de-rates would have reduced by half the average capacity margin available during this time period. The Company would have been required to take immediate action to add
 13 14 15 16 17 18 19 20 		 time period have an impact on the Company's resource plan? Absolutely. A loss of 124MW of base load generation would have been a significant event, given the primary reliance on DSM for reserves and the slim capacity margins during this time period. This loss of additional base load generation capacity from de-rates would have reduced by half the average capacity margin available during this time period. The Company would have been required to take immediate action to add generation capacity to provide reliable coverage of the load to ensure that the

.

IV. IMPACT OF CR4 AND CR5 DE-RATES ON RESOURCE PLANS

2

3

Q. How did you determine the de-rate would have been 124MW annually?

A. I understand that OPC's witness is testifying that the Company should have burned an
equal blend of PRB sub-bituminous and bituminous coal in the boilers for CR4 and
CR5 from 1996 to 2005. I further understand that, consistent with the boiler design
documents for this blend, PEF's consultant is testifying that, had PEF done what
OPC's witness suggests from 1996 to 2005 the maximum, reasonable annual gross
MW production from the units would have been 665MW each.

10 In our TYSPs, based on historical experience with the units, we expected and 11 planned our resource needs on the realization on average of a net 722MW from CR4 12 in the winter and net 732MW from CR5 in the winter. This is actually the net winter 13 planning numbers for 2000, and the range was from 717MW to 735MW during this 14 ten-year time period, but this 2000 planning estimate for the CR4 and CR5 units is 15 about the average for the time period. Attached as Exhibit No. ____(JBC-3) to my 16 testimony is Schedule 1, containing the Company's expectations for existing 17 generation facilities for planning purposes in the Company's TYSPs for the time 18 period 1996 to 2005. The winter ratings for these units is appropriate to use here 19 because PEF is a winter peaking utility, meaning that PEF's peak load occurs in the 20 winter.

If I could have achieved at best 665MW from CR4 and CR5 annually from 22 1996 to 2005 when I planned to achieve, based on historical data, a net 722MW and 23 732MW, respectively, from the units to meet peak load, the Company would have

- lost 57MW and 67MW from CR4 and CR5, respectively, each year. This is a total
 annual MW loss of base load capacity and energy of 124MW.
- 3
- 4

Q. Is this a conservative analysis of the expected loss of base load capacity and energy?

6 Yes, it is. As I have indicated, the average expected MW output from CR4 and CR5 A. during this ten-year period was a net 722MW and 732MW, respectively. By "net," I 7 8 mean the available MW from these units for use by Company ratepayers. The units 9 actually demonstrated the gross production capability of between 750MW and 10 770MW during this same time period. The difference between the "gross" MW 11 output of the units and the "net" MW output of the units is the MW used by the 12 Company to produce the MW from the CR4 and CR5 units and to support the facilities at Crystal River. The 665MW original design capability on a 50/50 blend of 13 14 PRB and bituminous coals is a gross MW output. Therefore, using this design basis as starting point for comparison to the net MW output expected from CR4 and CR5 15 16 for the Company's planning purposes is a conservative estimate of the expected load 17 loss.

18

Q. What course of action would PEF have likely pursued in order to mitigate the
generation capacity and energy losses from a 124MW de-rate at CR4 and CR5?
A. PEF would have to add peaking generation units to offset the 124MW de-rates at CR4
and CR5. Peaking units would have been the quickest types of generation capacity to
add. Peaking units require less space than larger generating units, thus, they can be

placed at existing PEF generation sites quickly with little to no additional
 environmental impact that might delay construction. Such units are further readily
 available on the market from existing vendors. PEF could add up to 124MW of
 peaking generation capacity in about two years.

Gas-fired, combined cycles are much larger units and require longer lead 5 times due to the added complexity in the construction of the generation units, and the 6 7 need for more land for their construction (raising environmental issues too). On average, in 1995 PEF could expect to plan, site, and construct a gas-fired combined 8 9 cycle generation unit in four to five years. Base load coal and nuclear generation 10 units are complex, large generation plants that require very long lead times to 11 adequately plan, site, design, and construct. The only practical solution, then, to replace an immediate loss of 124MW of base load generation, was to build a peaker. 12

13

Q. What would PEF have done to replace the loss of 124MW during the two year
period of time required to site, design, and construct a peaking unit?

Α. PEF would have purchased short-term capacity and energy from market-based 16 suppliers. During the mid-1990s, a fledgling market for electric capacity and energy 17 was emerging, with a supply of firm and non-firm energy contracts available. As I 18 19 have explained, a firm energy contract is one in which the generation capacity is committed to the purchaser, and a non-firm energy contract is when it is not. So, 20 there is some risk to the purchaser of energy under the contract that the generation 21 22 capacity might be unavailable when needed. All of these contracts, whether firm or 23 non-firm, carried with them contractual provisions that imposed some level of

delivery risk proportional to market fluctuations on the buyer, meaning that the seller
 might divert the capacity and energy to other buyers when it was more lucrative to do
 so because of market volatility.

4

5

6

Q. Were these types of market-based capacity and energy supply contracts cost effective?

A. No, not as a long term choice over self-build generation options. The delivery risk
and higher costs of such contracts made them unsuitable for reliable use as capacity
or reserve margin supplies over the long term.

10 In many cases, market volatility caused prices for the capacity and energy to 11 rise above the contract penalty for failure to deliver the contracted for capacity and 12 energy to the buyer, and utility buyers simply would not receive the capacity and energy they purchased. The seller could incur the penalty for failing to deliver to the 13 original buyer and still make more money selling the same capacity and energy on the 14 15 market to another purchaser. Even for contracts where the energy was backed by a specific generation unit, delivery was not guaranteed without a penalty. Price 16 17 premiums were added to the peak periods under such contracts, forcing the utility 18 buyers to compensate the seller for the opportunities lost in a volatile market when 19 the seller had to remain committed to the original purchaser. Of course, the utility buyer needs the generation capacity and energy the most during such peak periods, 20 when the buyer is at the greatest risk that the seller will not deliver or that price 21 22 premiums will be imposed on the buyer.

Additionally, the cost of purchasing these firm or non-firm contracts for 1 generation capacity and energy on the market was higher than the regulated utility's 2 cost to construct new generation. Unregulated project developers building generation 3 4 units to sell capacity and energy on the market generally incurred higher financing 5 costs because there was more risk associated with the developers and/or their projects than with traditional regulated utility projects. For example, the unregulated 6 generation project assets were "unsecured" since, unlike regulated utility projects, 7 their costs were not incorporated in customer rates. Accordingly, the developers of 8 9 such projects paid a higher interest premium for financing due to the risk of nonpayment if all the generation capacity and energy generated over the life of the unit 10 11 could not be sold. The interest premium alone could add up to five percentage points 12 to the developer's financing costs compared to a regulated utility's weighted average cost of capital. The project developers further required higher returns for investors to 13 compensate them for the additional risk associated with developing projects in the 14 non-regulated energy market, adding additional costs that must be covered by any 15 contract for the sale of capacity and energy from the generation project. 16

All of these factors, from the added delivery risk to the purchaser under such contracts to the typically higher costs of the contracts compared to the self-build generation option, made these contracts for capacity and energy unsuitable sources of long term, reliable reserves for a utility like PEF that is obligated by law to provide service to its customers.

22

- Q. Why would you use a market-based contract for generation capacity and energy 1 2 if the contract cost more than and was not as reliable as building your own 3 generation unit? PEF would have had no choice but to purchase such a contract for generation and 4 A. 5 capacity and energy if it lost 124MW of base load generation due to a de-rate at CR4 and CR5. PEF would need the contract to "bridge" across the time it takes to build a 6 7 peaking unit to replace the lost generation capacity. "Bridge" contracts were available during the relevant time period for a 8 9 "premium" above the self-generation cost to own the rights to a particular generation unit's capacity and energy for short periods of time, generally less than five years. 10 For example, a regulated utility with cost recovery under base customer rates for new 11 generation might pay \$3.75 per kW-month for a self-build generation unit. An 12 13 unregulated generation unit developer, on the other hand, might charge between \$4.50 per kW-month and \$5.30 per kW-month for a two-year, firm capacity and energy 14 purchase contract because of the developer's higher financing costs, need for a 15 greater return, lost opportunity value in a volatile market, and the added risk that at 16 the end of the two year contract term there is no purchaser available for another 17 18 contract.
- 19
- 20 Q. How long a contract would PEF likely need to replace the loss of load from CR4
 21 and CR5?

1	А.	It is likely that a two-year "bridge" contract for generation capacity and energy would		
2		cover the time to acquire the turbines and design and construct the peaking unit to		
3		replace the loss of load from CR4 and CR5.		
4				
5	Q.	So how would you replace the lost capacity and energy caused by the CR4 and		
6		CR5 de-rates?		
7	А.	The most reliable and cost-effective path would have been to secure a two-year		
8		"bridge" contract for capacity and energy on the market and, during that time period,		
9		construct appropriate peaking generation units to replace long term the lost MW from		
10		the CR4 and CR5 de-rates. In this way, PEF's customers would be exposed to the		
11		market premium costs for generation and capacity for only two years after which time		
12		the utility would have a self-build generation unit in place at typical utility regulated		
13		costs for the remainder of the relevant time period.		
14				
15	Q.	Would the costs of the "bridge" contract represent all costs of generation		
16		capacity and energy during the two-year period to bring an additional peaker		
17		on-line?		
18	А.	No. In fact, it would not be cost-effective for PEF and its customers to rely totally on		
19		the capacity and energy under the contract for the entire two-year period of time.		
20		This is because the capacity and energy being replaced is base load capacity and		
21		energy from units with a high capacity factor, on average a conservative 75%		
22		annually.		

1 The capacity factor is the measure of how much time during the year the 2 particular generation unit is operating and providing electrical energy. A capacity 3 factor of 75% means that the unit was operating 75% of the total hours for the year. The cost of capacity under available contracts at the time would have been too 4 5 expensive at a 75% capacity factor level. Rather, the most cost-effective "bridge" capacity and energy contract the Company could have obtained during this time 6 7 period would have been for a 20% capacity factor for the energy component under the 8 "bridge" contract. This 20% capacity factor, by the way, is the equivalent of a 9 peaking unit capacity factor. The remaining 55% capacity factor and associated 10 energy would have been supplied by other units in the PEF fleet. This would be true as well for the remaining eight years after the peaking unit was built and operational 11 12 at the end of the first two years. The capacity factor of the peaking unit would be 20%, thus, the remaining 55% capacity factor from the lost base load capacity would 13 14 have to be supplied by the balance of the fleet.

15 Exhibit No. (JBC-4) demonstrates why this is the case. It is a chart of the daily load forecast, in this case 2004 which is during the relevant period of time, over 16 the Company's generation resources. The generation resources are added to meet 17 load based on their incremental cost of producing electricity. The cheapest 18 generation resources on an incremental cost basis are at the bottom of the chart (the 19 20 base load units) and the most expensive are at the top (the peaking units). If 124MW 21 of base load coal capacity is lost for the entire period of time it would be a slice 22 drawn out of the base load coal level that would have to be replaced at all times by other generation (or purchased) capacity. During the peak periods of time on the 23

1		chart it is clear that all units, from base load nuclear and coal, to intermediate		
2		purchases and oil, to peaking gas and oil units, are producing electricity. At these		
3		times, up to the 20% capacity factor of the "bridge" contract and later peaking unit,		
4		the peaking capacity cost would replace the lost base load generation. At other times,		
5		the remaining 55% capacity factor, the lost 124 MW of base load generation must be		
6		made up with additional generation from intermediate oil and gas units, at an		
7		additional cost to base load generation.		
8				
9	Q.	What would it have cost PEF to build a peaker in 1995?		
9	٧٠	what would it have cost I EF to build a peaker in 1995.		
9 10	Q. A.	Based on my experience, and on costs for similar generation PEF paid during this		
		-		
10		Based on my experience, and on costs for similar generation PEF paid during this		
10 11		Based on my experience, and on costs for similar generation PEF paid during this time period such as the Intercession City peaking unit that went on line in 1998, the		
10 11 12		Based on my experience, and on costs for similar generation PEF paid during this time period such as the Intercession City peaking unit that went on line in 1998, the estimated cost to bring on-line an additional peaking unit, including direct and		
10 11 12 13		Based on my experience, and on costs for similar generation PEF paid during this time period such as the Intercession City peaking unit that went on line in 1998, the estimated cost to bring on-line an additional peaking unit, including direct and indirect construction costs, construction interest (the allowance for funds used during		
10 11 12 13 14		Based on my experience, and on costs for similar generation PEF paid during this time period such as the Intercession City peaking unit that went on line in 1998, the estimated cost to bring on-line an additional peaking unit, including direct and indirect construction costs, construction interest (the allowance for funds used during construction or "AFUDC"), start-up, and inventory costs, is \$275/kw or about \$56		

- Q. Once the peaker was operational, was the cost of the 124MW additional peaking
 unit to the system equivalent to the cost of the lost 124MW of base load capacity
 from the CR4 and CR5 de-rates over this period of time?
- A. No. The lost 124MW of base load generation from the de-rates at CR4 and CR5
 would be much more valuable in the generation system than an additional 124MW

23

.

8 This cost for the remaining eight year period of time following the end of the 9 two-year "bridge" contract is conservatively estimated to be \$527,823,360. This 10 includes a capacity cost of \$45,116,160 and an energy cost of \$482,707,200, 11 assuming that the "backfill" was provided by more efficient thus lower heat rate 12 steam driven units at all times, which would not occur in practice.

Rather, the more likely actual results is that the "backfill" from the system for the lost 124MW of base load capacity at times would have been supplied by less efficient, higher heat rate units, such as peakers. Had I used either an average heat rate or the higher heat rate of the peaking units the costs of the "backfill" energy would have been much higher to cover a loss of 124MW base load capacity and energy, ranging from \$639,518,592 (the average heat rate) to \$774,676,608 (the higher heat rate).

I also assumed that the energy cost would remain flat over the remaining eight years following the two-year bridge capacity and energy contract to replace the lost 124MW of base load capacity and energy generation from 1996 to 2005. This

1 certainly was not the case over this ten-year period of time, rather, the energy cost, 2 like most other costs, rose over this time period. 3 I have, therefore, conservatively estimated the cost to provide additional 4 capacity and energy to replace the 124MW lost from the de-rates of CR4 and CR5 at \$527,823,360. This is demonstrated by Exhibit No. ____ (JBC-5) to my testimony. 5 6 7 Q. Under your recommended resource plan to replace the lost MWs from the CR4 8 and CR5 de-rates, what incremental costs would PEF and its customers incur? 9 First, PEF would incur the costs of the 20% capacity under the two-year "bridge" Α. contract. This cost is conservatively estimated at \$11.9 million for a two-year 10 124MW purchase contract. The actual range of estimated capacity costs for this two-11 year bridge contracts was \$11.9 million to \$14.9 million. The energy cost component 12 13 in the power purchase contract is conservatively estimated at \$44.6 million for 14 124MW over the course of the two-year "bridge" contract. The range of these estimated costs were from \$44.6 million to \$63.8 million. The total capacity and 15 energy cost under the "bridge" contract is therefore estimated at \$56.5 million, which, 16 17 again, is the low-end of the total estimated costs that range up to \$78.7 million. See Exhibit No. (JBC-5) to my testimony. 18 19 Additionally, there would be the incremental generation system charges to

Additionally, there would be the incremental generation system charges to
provide the remaining 55% capacity factor associated with a loss of 124MW. This
would result in additional incremental charges from the remaining generation fleet of
about \$112.6 million over the course of the two-year "bridge" contract. See Exhibit
No. (JBC-5) to my testimony.

1		Finally, once the peaking unit was operational, there would be an additional			
2		cost to the customer to account for the peaking unit and the fact that the additional			
3		124MW of peaking capacity and energy was not equivalent in value to the system to			
4		the 124MW of lost base load capacity and energy from the CR4 and CR5 de-rates.			
5		Over the remaining eight-year period of time this estimated capacity and energy cost			
6		is \$527,823,360 for both the necessary capacity and energy. See Exhibit No.			
7		(JBC-5) to my testimony.			
8		The total incremental cost to PEF and its customers from a de-rate of 124MW			
9		at CR4 and CR5 over the time period from 1996 to 2005 is therefore conservatively			
10		estimated at about \$697 million. The range of the cost of this de-rate and loss of base			
11		load capacity and energy, however, could be up to and just over \$966 million. This is			
12		summarized in Exhibit No (JBC-6) to my testimony.			
13					
14	Q.	Do the estimates you have provided account for any fluctuations in these costs			
15		over time?			
16	А.	Yes, they do. It is true that both the capacity and energy charges can fluctuate			
17		depending on the projected use of the generation asset, the amount of fuel consumed,			
18		the projected O&M costs, among other factors. Similarly, market prices for capacity			
19		and energy can fluctuate in reaction to the costs of equipment, as well as to risks,			
20		contract performance requirements, fuel prices, and other cost factors. Accordingly, I			
21		have accounted for such fluctuations over this time period in my analysis by coming			
22		up with a range in estimated costs for each cost component scenario affected by such			
23		variables. The ranges in these scenarios are included in Exhibit Nos (JBC-5)			

1		and (JBC-6) to my testimony. As you can see, in each case with respect to			
2		each cost component, I have selected the cost at the lowest end of the range. I			
3		therefore believe that my estimate of the total cost impact to the Company for the lost			
4		of 124MW of base load generation over the time period from 1996 to 2005 is both			
5		reasonable and conservative.			
6					
7	Q.	You referenced several power plants being built at or near this time. Why			
8		wouldn't you just build bigger plants or speed up the construction plan for those			
9		plants? Wouldn't this eliminate the need and associated costs for the			
10		replacement 124MW?			
11	A.	No, it would not. Regardless of where the capacity and energy come from, the			
12		capacity and associated energy will be purely incremental dollars. Speeding up plants			
13		or building bigger plants will require relatively similar incremental dollars for			
14		construction and fuel, and the impact from construction schedules to build bigger			
15		plants will expose the customer to significantly greater purchased power expense.			
16		The estimates included in this testimony are reasonable and likely, given the need for			
17		immediate replacement capacity and associated energy for the lost 124MW of base			
18		load generation from the de-rates at CR4 and CR5.			
19					
20	Q.	Does this conclude your testimony?			
21	А.	Yes.			

Docket No. 060658 Progress Energy Florida Exhibit No. ____(JBC-1) Page 1 of 13

Crystal River Plant Unit 4

Florida Power Corporation

for

furnished on Contract

RB-588

for the

Instructions

Care and Operation

of

Babcock & Wilcox Equipment

UNIT DESCRIPTION

PLANT

This unit is installed as Unit No. 4 at the Crystal River Plant located near Crystal River, Florida, Plant elevation is 11 feet above sea level.

The unit supplies steam to a GE turbine rated at 665 MW. The consulting engineer is Black & Veatch, Kansas City, Missouri.

BOILER

This is a semi-indoor, balanced draft Carolina Type Radiant Boiler designed for pulverized coal firing. The unit has 54 Dual-Register burners arranged in three rows of nine burners each on both the front and rear walls. Furnace dimensions are 79 feet wide, 57 feet deep, and 201 feet from the centerline of the lower wall headers to the drum centerline. The steam drum is 72 inches ID.

The maximum continuous rating is 5,239,600 lb/hr of main steam flow at 2640 psig and 1005° F at the superheater outlet with a reheat flow of 4,344,700 lb/hr at 493 psig and 1005° F with a normal feedwater temperature of 546° F. This is a 5% overpressure condition. The full load rating is 4,737,900 lb/hr at 449 psig and 1005° F with a normal feedwater temperature of 535° F. Main steam and reheat steam temperatures are controlled to 1005° F from MCR load down to half load (2,368,900 lb/hr) by a combination of gas recirculation and spray attemperation.

The unit is designed for cycling service and is provided with a full boiler by-pass system. The unit can be operated with either constant or variable turbine throttle pressure from 63% of full load on down.

The design pressures of the boiler, economizer, and reheater are 2975, 3050, and 750 psig respectively.

Steam for boiler soot blowing is taken off the primary superheater outlet header. Steam for air heater soot blowing is taken off the secondary superheater outlet.

SCOPE OF SUPPLY

The major items of equipment supplied by B&W include:

- RBC unit pressure parts including boiler, primary and secondary superheater, economizer, and reheater.
- Fifty-four Dual-Register burners and lighters.
- Six MPS-89GR pulverizers and piping to burners.
- By-pass system including valves and piping.
- Two stages of superheat attemperators (first stage tandem) and one stage of reheat attemperation (2 nozzles); nozzles only, no block or control valves or spray water piping.
- Three Rothemuhle air heaters (one primary and two secondary).
- Ducts from secondary air heaters to windbox.

Exhibit No. Page 2 of 13

(JBC-1)

Progress Energy Florida

81

RB-588 Sept

- Primary air system: two TLT centrifugal PA fans and ducts from fans to pulverizers.
- Gas recirculation system: one TLT centrifugal GR fan, one dust collector and flues.
- Six Stock gravimetric coal feeders and drives.
- Bailey burner controls.
- Safety valves and ERV.
- Brickwork, refractory, insulation and lagging (BRIL).
- Seal air piping and fans.
- Erection.
- Recommended spare parts.

FUEL

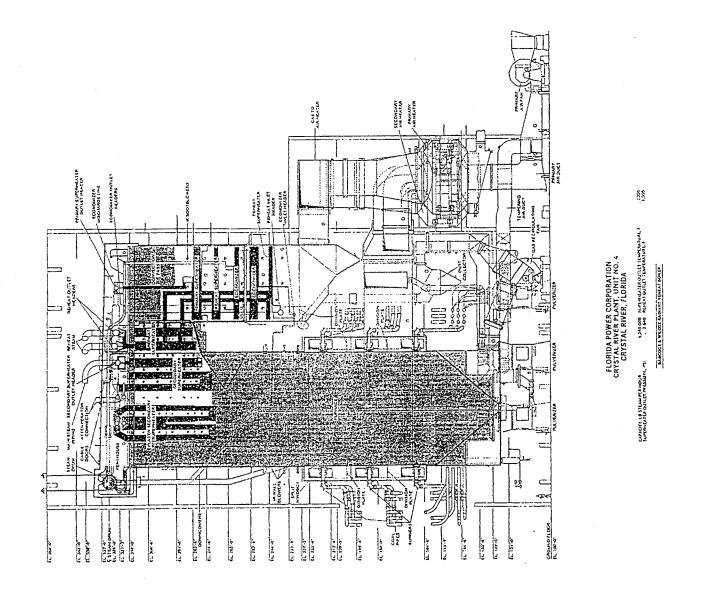
The guarantees for this unit are based on firing a 50/50 blend of Eastern bituminous and Western sub-bituminous coal. The performance coal is classified as high slagging and medium fouling. Performance was also checked on Illinois deep-mined coal which is classified as severe slagging and high fouling. The furnace and convection pass are designed for a severe slagging and severe fouling coal.

Ultimate Analysis: % by Weight

	Performance	Illinois
Ash	7.90	13.00
Sulfur	0.49	4.20
Hydrogen	3,90	4.40
Carbon	58.80	62.00
Chlorine	0.03	0.02
Water	18.50	10.00
Nitrogen	1.10	1.38
Oxygen	9.28	5.00
		A
	Total 100.00	• 100.00

Higher Heating Value

10285 Btu/lb


11000 Btu/lb

RB-588 Sept 81

Progress Energy

PEF-FUEL-002659

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 4 of 13

PEF-FUEL-002660

CENTRIVER, UNIT 14. CENTRIVER, UNIT 14.						-	051-0491-4597-214								
									9-92 IN. HJ. BARCHETRIC PRESSURE.	384					
		PLORIDA POWER CORP.		P	89 55	9 . 69	72		1 1440 363 D'S'S' SIEAE	1:3	1 <u>·</u>				
						· · · · · · · · ·			TOTAL POWER, AN HOTON HOTCA OUTPUT			HCE SUMMARY	6.52 .	6994	218
	┟┙╼╍╋╼╍╼			E.R.	9	<u></u>			HO: 1* DZE 668 801168	1	+	VALUARUZ JOH	ERFORMA	9 931108	711111
	1			1 19	09-28	69.78	51.18		ICIENCE OF UNIT .	in.	·	······	- <u></u>		
JUNA .	11	NO17419239	, io	14 65	12.40	12.11	52.25		1017F HEYI FOR	17			· · ·		
					DS T	05.1	05'1		UNACC. FOR A MERS, MARGIN	ł.					
				-6	51.0	21.0	1110	·	ADTAIDAR	11					
		· · · · · · · · · · · · · · · · · · ·			0.30	0, 10	00.00		CHBRENED CONSILIERE	1.5			· · · · · · · · · · · · · · · · · · ·		
				^~	. 11'0.	11'0	11.0		BIA HI JAUTZION	Ι.					
					16 S E. 7	68'S	08 S		HS F HS 14 LAET	4		STATIC HEA	VES AND	TA SHIG	*EXCLU
						8.6	6 6		HAUT OF TALET TO FURH	┢─					
		ALANCE DRAFT	8. 5		}		j	····		1 2				. 24 K	· 601 30 -
		CHERVHE MYTTS	H S	17 61						15	582.01		8,125	055 21	197/010
			ka:		9.6	0.4	2.1		LIN HEVLES	1	100.001		00.001	100.00	
		ENERT BY CAS RECISCULATION	, []	126.	6.7	5.2	0 T		LUEL BUCHERS & MINOBOX	L.	1.01'1	┠╧╍╍╍╍╍╌┠╍	1.11	59.7	
		VIN STEAN BY SPRAY ATTEMPERATION	H	_ic	.16	0.8	9.6		TOTAL FURY, JUN AN OULLE	11	05.81	<u> </u>	30.01	0.L	1-01
				0¢							10.03		0.02	50*0	τŋ.
				-ť:	11	9°£ 6°0	27	· · · · · · · · · · · · · · · · · · ·	S ALP HEATER	1					202 8
814 3	025 541	45 HYRING LOLVE HOISINE 13, 18 & BEONIE	51		- 6°E	5.6	<u> </u>		ELURANCE & CONFECTION BANKS	6					00
	31 2167E MIN	1003H LB. COAL/PILLY - MA AR 655 THUN 200 U.S.	IC.	- 14	1097625	963/525	\$\$\$7555		- FERNING VIN HEVIEN BUT VEC	}	<u></u>			· [1 1 4 5 0 F
		10,285 BTU COAL AT 65 % THRU 200			09/56	78756	66759	·	- ENTENING ONLE - BRIVEC						OT N
Cell	87 80 03	ACTER SE S PULY. 15 5239 X LB STEAH/MR 843		46	6927292	5C5 297/197	. 655		WILL ENTERING CONCHITEN	1 -		·			- 5
				긃냢	6227092	927/092	528/578	· · · · · · · · · · · · · · · · · · ·	TEVALNO VH (INCO. CHO) BKI/SEC	13	}	·····		}	1-3-5-1-
		BUAL RECISTER	11 1	14 47	269	689	069		ITENIKO ECONOMISEK	E					
		EC. SIZE-12.5 Yu 66							ENTERING REHEATER 2	11	09.85		5'87	0.69	3
	058 729-10	35 95 nA 9'01-3215'18	d	-6:	709	865	825	i	I BITAPHOR CHIVE T	-	06.'E.		7.8 .	7 7	
	552.025-1	AL HEATING SURFACE, SQ FT PR	101 101	in sz	500T	5001	1002		CLEARING BENEVIEW J		67°0		87'0	5.0 0'0T	HSY
- 513		I ROTHERWILL RECENERATIVE NO. 1-	111	y þz	5001	\$00T	5001		TEVALNE SIBERRIVIER	1. "	- IK		·2n	14	10.2
	05 TOT	PLACE OF CONFECTOR SUBFACE		14	681		65		DRUN TO SH OUTLET	Γ.,			18-905	.714	נחבר
	185 12	EVER OF CONFECTION SUBJECT		<u>ا</u> :	<u> </u>	0Z			CCORDHITER 2	1.2	0'001				101
		BOTEGIED ENSKYCE HEVITED SOMEYCE		a loz	17	57	<u>[]</u>		85H(A118 2	1	9'27	·		. NO4842 0	154 8
	112,911	FURK. A CORV. PRESSURE PART, HIG, SURF.	10141	2 6T		······	é		STEAH AT RUL INLET		0.10			11111 3111	
	5E0 7E9	AL CONFECTION REATING SUMPACE		5 91	250	767	ሀካፖ		TINE THE TANK		5'81			11161: 15641	
,•		KONIJEK EVIEN J (CINCONEEKEIIVC)		1.4	0797	0052	5777		13.00 HS. 14-H315-					3.1437.130	
	516-111	EALER 2 (CIRCUMERENTIAL)		E.	9827101		0127201		VIE HEVIES FEVENCE LEI VEEC	1.2	1839			364151CH 3	
	10 1 52	בארריונע (כושכואת בעראבויר)	4NS *:	1 11	1685	6195	1255		THEHTIDE CHIRADE OF BIA	12	87			LIPHIN	
	21'56	NEVICO (CIBCINEEBERLINT)		ξ (t	6259	1509.	8226		FLUC CAS ENTERING AIR NEATER] 🗄					- 2115
		TOT JULE ON ETT JU TIABOUT (A	****	EL	8.912	0.882	5'526		ENC (NOT	<u> </u>					¥15
5 .	77 97	ESHERTER (PROJECTED)		. or	9889	2989	\$196		(814 031434'4 130') RH(8)41.1147 1	¥3H	1			10101	100 E
	0.00	ENERTER (CIRCINEERENTIAL)	201	36	1859	£\$09	8766		L INPUT, MABINE	1111					115 2
ì	161 87	ER COOLES (PROJECTER)		11	- 75	<u>75</u> 07	<u>57</u> 55		OL BORMERS IN OLENTICH						HIH L
			<u></u>	Ч,	CORL CORL	CONL:	LINOD		D CONCILICH						113 2
		DIST CLO Z - THURSDAY HOUSE	D	-	24	24/05	L DI		E OF FUEL	977	t	<u>}</u>		······	CX1XD
		BC 57 HB		1:					AM LEAV (AS FH3, M LB/HR			N & RESTERN	RASTER.	0 91110	\$705
		62			2 9767	8.6566	B.C.902		TH TEVAING BRY H TUTHE		ļ				YAYFA
-		LINA KIJ INGHUNAT		10	7 01 65	1 6.72514	6 89EZ		6#/81.7 75 D#1/131 KT	11	1		SV. 1203.		Tant's

•

د این سه در د این این در می که در این کاری جاری این د

. . .

Docket No. 060658 Progress Energy Florida Exhibit No. _____(JBC-1) Page 5 of 13

-

· ·

.....

•

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 6 of 13

17970	- ROC 57 RD DESEN PRESSIRE = 2975 PUIG (MANN 624)	WITE COULD SCREEN (CIECONTHEIDIAL) WITE COULD (PREJICTL) V SARDATETE (FORLATION)	1 rH404 05 '1:	12 2 10/14/ FURMACE MEATING SUPERCI	.40 .94	REMAILS 1 (CIRCUPERSIALAL)	1444	101AL FURK, A COWY, PRESSIOL PART, HEC. SUPE,	10. FACE OF PLATERS (24" CENTERS)	CENTERS)	24 AIR TYPE FORME MURLE REGEVERATIVE NO. 1- PRI. 2 - 5# C	PRIA	_	29 PUEL 17PE	31 1175 M PS 31	32 E CAPACITY OF S PULY. 15	1402 91. 462/ 204 2 46	32 A 15 42, MATINIA ANTIME MOISTUPE 15 /9 5 MEDIALNE 56 5	36 1 YTOTAL		, MAIN STEAM BY ATTEMPERATI	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SS COMPLETE	W VARIARE ARESSURE OPERATION FORSIBLE RELOW	1 63 20 er GUDP - 20 AD .	10		"CORRESPONDING TO AER. HEINOD FAS. 1.07 4.5.M.E. PIC-4.1					CAYSTAL RIVER UNIT * 4	[4]
5240	BLEND COUT-MCR	2407			6583	Ĭ	2640	П	Π	1.1	1005	606		627	1264	596	545/564	3.9	1.0	Π	6.6	1.9.6	3,9	11.2	1.38	0.10	0.30	010	12,33	82.62	T		579	69/65		
4738	1-1-1-0	20 54:50	╪╌┽┯	4-		0	2500	r r		145	1005	600		67/	3/242	535	5282/5235	3.5	2.4		142	200	3,3	9.5	4.34	0.110	0:30	0.17	\sim	87, 20	Ť		470	4 72/67 69/	1) Jks Lavk	
2.269	1 1 4		╋	-+-	3723	154	2425	-1-		++	-+-	529		599	51/241 2	459	534/5305			Γ	3.2.1	1.5	57	3.5	21.12	0.10	0.3	5.5	13.11	8 7.89			1.	74	C1 THIS 2:0	
40		20.	1 7	6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			2640	2.8		126	1005	626		678	51/570	546					9.4	4.)	2.2	12,0	4.50	110	0.30	01/0	11,66	FE-86	ľ		579	73/69	HENT GIVEN	20mm75
PREDICTED PEFFORMANG 369 4738 52		20 54 6295		6014	1903	1	2500	23		145	1005	600-	·	671	84	5.5.5	6/526	3.5	t	ł	8.4	3.5	3.6	10.3	4.50	11.0	0. 90	1031	129.11	88.33	1		-	25/21	1123 8 201 2	18451.0
PREDICT 2369 2064	L C	45	L _ l _ l		979	0	2425	0		36	1005	525	÷	599	53/249 2	459	545/5374		с, д		41	1.2.1	Ħ	3.9	4.50	+	Ηİ	01.0	11.75	88:26	T	Ħ	2	03	5111C4C2 80	205 F
14, 14, 14, 14, 14, 14, 14, 14, 14, 14,		FATES AIF LEATING (CSN., 1 30. OF ELFLES IN OFFICATION MEAT AVAIL, MEETHE (FUEL A MEATED AIP)	. CPENISY				AM AT SH CUILET	516A4 AT 512 14417	REALER 2			****	ENTERING REFEATER 2			Ι	- LEAVING ARE NEARING PART SEC.	CK BANKS	7 418 HEATER	1341	TTT. F. MAN FUAL TO A. OUTER	COLOR & LLOK H	AIR HEALER	101. FEDHAH JULAT TO FARM.	ig i	T PUSTURE IN AIR	ANDURACO CCHANSFIELE	RAPIATICS HIPS, HARGIN	CEAL PEAL 1255	_	HET EFFLETENET A.S.M.E. PTC-4.1. C	FLEE (PETICICAC) & CONFUL/FUCL INPUE)	2 101 AL PALE, M HP 104 40109 CUTPUT	1. 15 1494 720 9.5.5. 51 VI		IS APPARENTET SCALEDA DESILING A LOT J & CONTRACT ORANINGS
	d.				25	11. 2.6 1.1	18.5	31.0	7.9	J.END	W7.	0.49	58.80				Ť			0.03	15150	9,28	100.00	- 25 23/		NEAD.							08-			
0	*			-	25	11	\rightarrow			11111013	T	1.1	2.20						+.	H	10.00	5.00	-+	100011		12725 2						AST DUTY	57 - 5 III		5	
1251 AS F1820	732517	-				V	1 1000			1		++	1.10							6.02	10.00		0	7-1-2-3-5	+	VALLES						PEOPLEMOE	Size City	WILCOX COMPANY	10-320	2
		દાયકોન્ટ પામ કેટ કર	-	57A16 1421	FINEAU PU		454 SULTERE, F [46.046]	דייברי יבפתנה דייבוי יבפתנה	45:1	ENSTREN	W T C	1.1	1,40 4,00 F				~1	2	+	ci 0:05 (2.00 3		100.00		12 14.46	H.H. MOT INCLUDING UNLES & STATIC NEAD						11V BALLER BEG	1. J. J. L. S. 1941. CLASSING CONTRACT SUMMERS	BABCOCK 1 WIL	2-4657-16	
		51 3	2 - 1.2	7.	(·				15		0 51	1.113		51	513 	1 5 7 7		110			1.1		** *	1			0.00			44.61	1 1	1		012-	

1. 2

PEF-FUEL-003739

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 7 of 13

8WFP 31751-3

٠.,

THE BABCOCK & WILCOX COMPANY FOSSIL POWER GENERATION DIVISION CONTRACT INFORMATION SHEET

					•	• . ·			A.O.
TURBINE MFG:	G.E.		· · ·	•	•				
		665,000	KW	······					
			DESIG	N DAT	Α				
01.001		GUAR."	PEAK	MAX.	LOW LOAD	20% 0:		MAX CONT	1
								INPUT	+
FUEL:		Blend		Blend	Blend	Blend			+
FUEL QUANTITY	MLB/HR	4737.0		5239.6	2368.9	947.6			+
OPR. PRESS. ØS.H. OUT.	PS 1G	2500		2640	2425	2406	·		
STEAM TEMP. OS.H. OUT.	۴			1005	1005	990			
IST RENT. STEAM FLOW	MLB/HR			4344.7	2063.8	842.1			
IST REHT. ENTR. TEMP.	°F	598		604	528	410.		-	+
	PS (G	1005	<u>-</u>	1005.	1005	950			+
IST REHT ENTR. ENTH	MLB/HR	1298.7		1299.2	1279.3	1232.0			+
2ND REHT. ENTR. PRESS.	PSIG						. 		
	F PS1G						• • •		ł
2ND REHT. OUT. TEMP.	°F								T
FFEDWATER ENTH.	BTU/LB	F					· · ·	_	
FEEDWATER TEMP.	M LB/HR					947.6			+
S.H. SPRAY WATER TEMP.	° ŕ	355		362	310	265			+
1ST REHT. SPRAY WATER	TEMP. F	355		362	310	265			<u> </u>
	TEMP.	-							
PRESS. @ SOURCE			L						
OTY TYPE & SIZE CUST	STEA	M TEMI	PERATU	RE CO	NTROL			DE MARKS	+
	h	ME THOD	· · · · · · · · · · · · · · · · · · ·		KAI	NGL.			+
MAIN STEAM					.9M To	5239.6	· · ·		
IST REHT.	Gas Recirc	ulatio	n	2368	.9M To	<u>5239.6</u> M	<u> </u>		45
2ND REHT.							<u>l</u>		1
		· ·						· · · · · · · · · · · · · · · · · · ·	
SPECIAL PERFOR		DESIG	N REG	MNTS.	PERF. C				
		6-5-79	· <u> </u>	CONTRA			FILE	NO.	
4-15-80					334-05	88	R	B-588 -	
	HEAT BALANCE SPECIFIED BY: S.P. RATING: PERF. AT RATING: TERMINALS FUEL: FUEL QUANTITY MAIN STEAM FLOW OPR. PRESS. GS.H. OUT. STEAM TEMP. @S.H. OUT. IST REHT. STEAM FLOW IST REHT. ENTR. PRESS. IST REHT. OUT. PRESS. IST REHT. OUT. TEMP. IST REHT. OUT. TEMP. PRESS. 2ND REHT. OUT. TEMP. FEEDWATER FLOW S.H. SPRAY WATER TEMP. FEEDWATER FLOW S.H. SPRAY WATER TEMP. FEEDWATER FLOW S.H. SPRAY WATER TEMP. FEEDWATER FLOW S.H. SPRAY WATER TEMP. FEEDWATER SPRAY WATER PRESS. @ SOURCE IST REHT. SPRAY WATER PRESS. @ SOURCE CIY TYPE & SIZE CUST OTY TYPE & SIZE CUST OTY TYPE & SIZE CUST OTY TYPE & SIZE CUST OTY TYPE & SIZE CUST MAIN STEAM IST REHT. 2ND REHT.	MFG: G.E. NAME PLATE RATING: HEAT BALANCE — PERFOR. SPECIFIED BY: DURCHASER TAT RATING: TERMINALS FUEL: FUEL: FUEL OUANTITY MLB/HR MAIN STEAM FLOW MLB/HR OPR. PRESS. ØS.H. OUT. PSIG STEAM TEMP. ØS.H. OUT. PSIG STEAM TEMP. ØS.H. OUT. OF IST REHT. STEAM FLOW MLB/HR IST REHT. ENTR. PRESS. PSIG IST REHT. ENTR. TEMP. OF IST REHT. OUT. PRESS. PSIG IST REHT. OUT. TEMP. OF IST REHT. OUT. TEMP. OF IST REHT. OUT. PRESS. PSIG 2ND REHT. OUT. TEMP. OF FEEDWATER TEMP. OF FEEDWATER TEMP. OF FEEDWATER TEMP. OF FEEDWATER TEMP. OF FEEDWATER TEMP. OF PRESS. Ø SOURCE CITY TYPE & SIZE CUST. FEED PUMPS: OTY TYPE & SIZE CUST. START UP PUMPS: STEAN MAIN STEAM SDF AY WATER TEMP. F PRESS. Ø SOURCE CITY TYPE & SIZE CUST. START UP PUMPS: OTY TYPE & SIZE CUST. FEED PUMPS: OTY TYPE & SIZE CUST. FEED PUMPS: OTY TYPE & SIZE CUST. FEED PUMPS: OTY TYPE & SIZE CUST. START UP PUMPS: OTY	MFG: G.E. NAME PLATE RATING: 665,000 HEAT BALANCE — PERFORMANCE SPECIFIED BY: DURCHASER TURBINE RATING: PEAR.AT RATING: PEAR.AT RATING: TERMINALS LOAD FUEL: FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend FUEL: Blend ATT NG: TERMINALS LOAD STEAM FLOW MLB/HR 4737.9 OPR. PRESS. ØS.H. OUT. PSIG 2500 STEAM TEMP. ØS.H. OUT. PFIG 2500 STEAM TEMP. ØS.H. OUT. PFIG 2500 STEAM TEMP. ØS.H. OUT. OF IST REHT. STEAM FLOW MLB/HR 3959:8 474 1ST REHT. ENTR. TEMP. OF SST REHT. OUT. PRESS. PSIG 474 IST REHT. OUT. PRESS. PSIG 474 IST REHT. OUT. TEMP. OF SST REHT ENTR. ENTH 1298.7 IST REHT ENTR. TEMP. OF SND REHT. STEAM FLOW MLB/HR 2ND REHT. STEAM FLOW MLB/HR 2ND REHT. OUT. TEMP. OF ZND REHT. OUT. TEMP. OF SIG 2ND REHT. OUT. TEMP. OF SND REHT. STEAM WATER TEMP. OF SND REHT. SPRAY WATER TEMP. OF SND REHT. SPRAY WATER TEMP. OF PRESS Ø SOURCE CIV TYPE & SIZE CUST. FEED PUMPS: OTV TYPE & SIZE CUST. SEE CIS. 14.0 MAIN STEAM SPTAY Attemperat SPECIAL PERFORMANCE OR DESIG I NOT REOD. ØR REDD: SEE CIS.14.0 NO, AND DATE I. 5-25-78 2 6-5-79	MFG: G.E. NAME PLATE RATING: 665,000 KW HEAT BALANCE — PERFORMANCE DESIG SPECIFIED BY: DURCHASER CLUBINE DOLLET PERFORMANCE DATA RATING: PERF.AT. GUAR. PEAK LOAD LOAD LOAD 	MFG: G.E. NAME PLATE RATING: 665,000 KW HEAT BALANCE	MFG: G.E. NAME PLATE RATING: 665,000 KW HEAT BALINCE — PERFORMANCE DESIGN DATA SPECIFIED BY: ØPURCHASER ØTURGE DODLER DESIGN CONTINUOUS CONTROL SPECIFIED BY: ØPURCHASER ØTURGE NAME PLATE RATING: PEAK MAX. LOW LOAD CONTROL BLEND BLEN DESIGN DATA BLEND CONTINUOUS CONTROL GUART BLEND BLEN DESIGN DATA BLEND CONTINUOUS CONTROL GUART BLEND MAX. LOW LOAD MAX. LOW CONTINUOUS CONTROL MAX. LOW CONTINUE MAX. LOW CONTINUOUS CONTROL <td>MAGE: G.E. NAME: PLATE RATING: 665,000 KW HEATE RATING: 665,000 KW HEATE RATING: 665,000 KW BOLLER DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE D BOLER DESIGN CONTROL 20% 07 HEAT ENT MALE/ME 4131.9 Set 0.007 STEAM FLOW MLB/IR MILE/IR AND REM. FLOW MLE/IR AND REM. FLOW MLB/IR AND REM. FURM. MEM. MEM. MEM. 1005 STEAM TEM. MEM. MEM. 1005 <th< td=""><td>MARE -PLATE BATING: 665,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE BECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA RATING: PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA GUARA. FEAR MAX. MARE ALL DATA GUARA. FEAR MAX. MARE ALL DATA MARE ALL DATA</td><td>MMG: G. 2. NAME PLATE RATING: G65,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SYECIFIED BT: (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) PERFORMANC</td></th<></td>	MAGE: G.E. NAME: PLATE RATING: 665,000 KW HEATE RATING: 665,000 KW HEATE RATING: 665,000 KW BOLLER DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE D BOLER DESIGN CONTROL 20% 07 HEAT ENT MALE/ME 4131.9 Set 0.007 STEAM FLOW MLB/IR MILE/IR AND REM. FLOW MLE/IR AND REM. FLOW MLB/IR AND REM. FURM. MEM. MEM. MEM. 1005 STEAM TEM. MEM. MEM. 1005 <th< td=""><td>MARE -PLATE BATING: 665,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE BECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA RATING: PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA GUARA. FEAR MAX. MARE ALL DATA GUARA. FEAR MAX. MARE ALL DATA MARE ALL DATA</td><td>MMG: G. 2. NAME PLATE RATING: G65,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SYECIFIED BT: (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) PERFORMANC</td></th<>	MARE -PLATE BATING: 665,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE BECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA RATING: PERFORMANCE DESIGN DATA SPECIFIED BY: @ PURCHASER @ TURBINE Desiler Design DATA GUARA. FEAR MAX. MARE ALL DATA GUARA. FEAR MAX. MARE ALL DATA MARE ALL DATA	MMG: G. 2. NAME PLATE RATING: G65,000 KW HEAT BALANCE — PERFORMANCE DESIGN DATA SYECIFIED BT: (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) DUBBINE (D) DOIL (D) 20% 0.1 (MAX. CONT TRUE DATA (D) PERFORMANCE (D) PERFORMANC

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 8 of 13

	THE BABCOCK & FOSSIL POWER G								
BWFE	P 33027-3 CONTRACT INFO								
Ē						DIDING D	ESIGN CON	SUDITIONS	r ⁱ
2	ECONOMIZER					1.0C.	PRESS		<u>+</u> ·
3	FEED WATER ECONOMIZER NO FURIACE SUPERHE NEATERS SUCLOSURE SUPERHE	ATER	SUP	ERHEATER		ATTEMP			t
4	FP A INING A	ATTEMP	ERATOR	TT [A	TURBINE	SOURCE	.*		1
5			r m	~~++		SUDRCE	ELEVATI		' _
5 8		_	Ð+			LOCATIO			+
2				Ū		LOCATIC		EVATION	t:
8	Se se Se se					ATTEMP B&W FEE		25-9"	
9		· · · · · · · · · · · · · · · · · · ·				SOURCE		<u> </u>	+
10							SYSTEM V	ALVES	+
11						VALV		CIS	+
12		~ ~ .				C CONT			+
13		-XH				6 BLOC			 .
14						i ISOLA	<u> </u>		+
15	TO PARALLE FIRST ST	AGE	ATTEMPERATO	ន		K CHEC			T
18			, 1a	W TERMAN	• • •				1-
17	(TOTAIN P.	ARALLA 1.2/	SIDE DE	TERMINAL SIGNATED BY	Ū	<u>├</u>			1
18	FUEL	1	P.	<u>(</u> .			Pic		-
19	MAIN STEAM FLOW	MLB/HR	5241			3	38 (GUAN	+
20	AUXILIARY STEAM FLOW	MLB/HR		<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>	SKUET.	+
21	SPRAY WATER TEMPERATURE	F.	3	62	i		355		1
22			Installed		Design	Installed		Dasign .	1
23		1	Min.	Max.	Capacity	Min.	Max.	Capacity	T.
24	TOTAL SPRAY WATER FLOW AT SOURCE	MLB/HR	79,3	432.0	GA1:60	107:4	530.5	720:0	T.
25	SPRAY WATER FLOW THIS ATTEMPERATOR NOTELE	MLB/HR		108,0		26.9	132.6		
2	SPRAY WATER PRESS, AT SOURCE (Based on following)	PSIG *		1 - 41 -				10000	\top
27	DRUM PRESSURE	PSIG	2829	2829	2829	2655	2655	2655	T
28	Boller ECONOMIZER AP (Incl. Static Head)	PSI	71,2	71,2	71.2		639		T
29	Press. FEED VALVES AND PIPING AP (Incl. Static Head)	PSI .	12.7	12.7	12.7	10.1	10,1	10.1	T
30	EXPECTED PRESS AT B&W FEED INLET TERMINAL	PSIG	2912.9		2912.9		2729	2729	T
31	STEAM PRESSURE AT ATTEMPERATOR	PSIG	2785	2785	2785	2619		2619	Ī.
32	AP THRU WATER NOZZLE NOTE 4	PSI	1	35.8	35,8.	2.2	51	41	
33	REQ'D SPRAY WATER PRESS AT ATTEMP INLET	PSIG	2786	2820.8	2820,8	2621,2	2670	2660	
X	PRESS DROP AVAIL FOR ATTEMP. SYSTEM (26-33)	PSI *							
35	STATIC HEAD, SOURCE TO ATTEMP. NOZZLE.	PSI *					1		L
26	PRESS DROP AVAIL FOR PIPING AND VALVES (34-35)	PSI ·							
37	ΔP B&W PIPING	PSI	0	0	0	0	0	0	ŀ
88	Piping AP CUST PIPING	PSI *							
8	TOTAL PIPING LOSS	PSI ·							L.
40	PRESS DROP AVAIL FOR VALVES (36-39)	PSI *						ļ	1
41	△P B&W VALVES (Excluding control valve)	PSI	0	0	0	0	0	0	
22	Valves AP CUST VALVES (Excluding control valve)	PSI •						· · ·	1.
5	TOTAL VALVE LOSS (Excluding control valva)	PSI *		· ·				<u> </u>	<u> </u>
<u> </u>	PRESS DIFF. ACROSS CONTROL VALVE (40-43)	PSI •	1	1				0.00	+
45	MIN. REO'D PRESS DROP ACROSS CONTROL VALVE	PSI	40	155	195	40	242	272	4
48	1. * Indicates information to be completed by customer.	50268	ESTED CON	TROL VA	WE DP				<u>}</u>
47	 Piping and valves to be sized for design capacity. Control valve internals may be sized for "Installed may 	cimum cana	city" provid	 bd					F
48	Notes internals suitable for design capacity may be installed								+-
49	4. DESIGN CAPACITY NOZZLE PRESLURE ORDA I				TELEF	0 3170	SHOWN		-
50	I, THE THE PRESSURE ORDE I	0367,4	+* REDRI	LING ON		***		7.00	\vdash
51			<u>`</u> `	~~~~					+-
52	 							·	_
53				<u> </u>					+
54			ST STA						+
55	ATTEMEDATOD IDENTIFICATION.		(1st in Cont	1012			ist in Cont		
56		HEAM (2nd	in Control)	NO	the second s	OMP. NO.	E (2nd in Co	ومستورجها القار الجفاذات	- I
- п і	EL. NO. AND DATE 4(3-19-80) 5(4-24-80)			• • •	m	2 mil - 140.	pn	·	~ 1
				<u>34-0</u>	<u> </u>		1 AD	-585	
SUI	PERHEATER ATTEMPERATOR SYSTEM D.	ata sf	IEET 👘	· · ·	· .	FPGD	CIS-3	18.0 0	
FI	RST STAGE ATTEMPERATOR)								
			PE	FUEL	-003741				

·.

S. 1

1. v

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 9 of 13

ow FP	330 <i>2</i> 7-3	THE BABCOC FOSSIL POWER CONTRACT IN	R GENERATI	ON DÍVISIO	N					*
BWP 33027-3 CONTRACT INFORMATION SHEET A.C.										
2		500 / CH 750					j			4-
		FEED WATER AND FURNACE SUPE	PUCATED	C 10	ERHEATER		LOC.	PRESS	TEMP	+
3	BFP		RHEATER	ERATOR			ATTEMP	2975	850	1
4				\sim	in the	O TURBINE	SOURCE	.*	. *	
5	1 5		<u>×</u> ~					ELEVATI	ONS	T
6		T		+0+			LOCATIC			┢
					Ū.		LOCATIC		EVATION	⊹
Z		0 0		1 1	_		ATTEMP		1-6"	4-
8			N	1 1				D D 22	<u>5 - 9 '</u>	1
9				1			SOURCE	l		1
10							ATTEMP	SYSTEM V	ALVES	
11							VALV	F	CIS	T
12		To No A								+
										4-
13							BLOC		·	╋
14		TO PARALE FIRST	Smarr					TION 1		÷ -
15		TO PARALLEL FIRST	JIAbt	ATTEMPERATO	RS		k CHEC	K //		
16		(TOTA4		10.00 86	W TERMINAL SIGNATED BY	Ø		·		
17		(10)	IN FARALLEL). 2	5/DE W	SIGNATED BY	Q	1-1			T
10	FUEL			<u> </u>	~ 1		f'	0.0		- <u>-</u>
18		· · · · · · · · · · · · · · · · · · ·			P.C.		ł	P, C		
19	MAIN STEA	MFLOW	MLB/HR	232	59 (RH	()	2369	RHCC	<u>-V.P</u>	÷
20	AUXILIARY	STEAM FLOW	MLB/HR							<u> </u>
2Y	SPRAY WAT	ER TEMPERATURE	F	-	310		j .	310		. -
22			1	Installed	Capacity	Design	Installed	Capacity	Design	1
23				Min.	Max.	Capacity	Min.	Max.	Capacity	
	TOTAL COD	AV WATER ELOW AT COURCE				ļ	å			+
24		AY WATER FLOW AT SOURCE	MLB/HR	239.8		493.2	312.9	466.8	561.6	
25		ER FLOW THIS ATTEMPERATOR /NSEZ		59.9	97,6	99.2	75.5	98:1.	99.1:	1
8	SPRAY WAT	ER PRESS. AT SOURCE (Based on following)	PSIG *					<u> </u>		
27	DRUM	PRESSURE	PSIG	2446	2446	2446	1960	1960	1960	T
28	Boiler FCONO	MIZER AP (Incl. Static Head)	PSI	40.3		40.3	40.3	40:3	40.3	+
~~~~		ALVES AND PIPING AP (Incl. Static Head)	PSI							÷
				2.4	2.4	2.9	2.4	2.9	2.9	÷
<u>30 [</u>	EXPEC	TED PRESS AT BOW FEED INLET TERMINAL	L PSIG	2488.7		2488.7	2002.7	2002,7	2002.7	<u>'</u> L'
31	STEAM PRE	SSURE AT ATTEMPERATOR	PSIG	2955	2455	2955	1973	1973	1973	L
32	<b>AP THRU W</b>	ATER NOZZLE NOTE 9	PSI	10.6	28.3	29.0	16.4	28.3	29:0	÷
33.	REQ'D SPRA	Y WATER PRESS AT ATTEMP INLET	PSIG	2965.6	2983.3	2479	1989.9	2001.3	199.7	Т
	PRESS DRO	PAVAIL FOR ATTEMP. SYSTEM (26-33)	PSI +							T
		AD, SOURCE TO ATTEMP. NOZZLE.	PSI +					<u> </u>		÷
35 X	the second s					i	<u> </u>	<u> </u>	}	
		PAVAIL FOR PIPING AND VALVES (34-35)	PSI •					<u> </u>	<u>-</u>	+
37		N PIPING	PSI	0	8	0	<u> </u>	0.	<u>.e.</u>	⊥
<u>।</u> 38:	Piping AP CUS	TPIPING	PSI •						:	
6		PIPING LOSS	PSI *							T
3	PRESS DRO	PAVAIL FOR VALVES (36-39)	PSI •							T
41		V VALVES (Excluding control valve)	IPSI	~	. 0	0	0	~	0	+
				<u> </u>	· · · ·			0		+
2	Valves AP CUS	TVALVES (Excluding control valve)	PSI •						<u> </u>	+-
3		VALVE LOSS (Excluding control valve)	- PSI •							+
A		ACROSS CONTROL VALVE (40-43)	PSI •						<u> </u>	+-
8	MIN. REQ'D	PRESS DROP ACROSS CONTROL VALVE -	D PSI	50	140	141	. 75	140	191	
46	1 • 1	ndicates information to be completed by custom	er. SUGGA	STEA CO.	NTROL V	ALVE A	P			T
47		ing and valves to be sized for design capacity.			- •	N	•			F
	Notes 3. Co	ntrol valve internals may be sized for "Installed r					-			F
_	1 10	ernals suitable for design capacity may be installe	ed in the contr	of valve body	٧.			<b></b>		F
49	1. DE.	SIGN CAPACITY NORTHE PRESSURE DRO	P IS BASE	O ON RE	ORILLING	, PRIFICE	70 S/Z	s 5 hours	0~	H
50								CIS	37.00	γĻ
51										
52										1
53										T
54	ATTELEDED	ATOR TYPE: USINGLE STAGE A TA	NDEM FIR	<7 c+1	ACE	D TWO	STACE			+
$\sim 1$	ALLENTER		WNSTREAM	ST STA	19E			131 in Gunt		+
	ATTEMPER	ATOR IDENTIFICATION.								1-
æ.	· · · · · · · · · · · · · · · · · · ·		STREAM (2nd		1/0			E (2nd in Co		1
56		4164/14-14-2/11		CODE			OMP. NO.	FILE N	J	
56	L. NO. AND D									
56	L, NO. AND D			3:	34-1	158	$\langle \cdot \rangle$	PR	588	•
RE		R ATTEMPERATOR SYSTEM			34-0	588	FPGD	$\frac{RB}{CIS-3}$	-588	

100 . ``____^

<u>`</u>___

PEF-FUEL-003742

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 10 of 13

	THE BABCOCK & WILCOX COMPANY FOSSIL POWER GENERATION DIVISION								
₽₩F	P 33027-3 CONTRACT INFO				•			•	
		21000000				PIPING D	ESIGN COL	PRITIONS	A.O.
2	FEED WATER ECONOMIZER					LOC.	PRESS	· · · · · · · · · · · · · · · · · · ·	+
3	FEED WATER AND FURIAGE NEATERS ENCLOSURE SUPERHEI	ATER	SUP	ERHEATER			2975	· · · · · · · · · · · · · · · · · · ·	
4					O TURBINE	SOURCE	,3		+
5		-			<b>-</b>		ELEVAT	ONS	
6			FOT	1		LOCATIC		EVATION .	
Z				U.		ATTEMP	NOZ 32	1-61	$\Box$
8				,			0022	5'-9"	
Le						SOURCE		*	<u> </u>
10							SYSTEM V		-
11						VALV		CIS	+
12		$- \rightarrow \rightarrow \rightarrow$			•	CONT			
<u>13</u> 14					· 1	6 BLOC			
15	TO PARALLEL FIRST S	TAGE	ATTEMPERATO	RS	•	K CHEC			1-
16				· · ·	~		<u> </u>		+
17	(TOTA	WUEL 2/	SIDE R	TERMINAL SIGNATED BY	U				+
18	FUEL	1	· /	· C:		farrada xamenda			
19	MAIN STEAM FLOW	MLB/HR		(25%-	- V. P.)	<b> </b>			<u>†</u>
20	AUXILIARY STEAM FLOW	MLB/HR			<u>}</u>				
2	SPRAY WATER TEMPERATURE	F		275					
22			Installed		Design	Installed	and the second data	Dasign	
23			· Min,	Max.	Capacity	Min.	Max.	Copacity	
24	TOTAL SPRAY WATER FLOW AT SOURCE	MLB/HR	159,1	262,9	Advent			ļ	
25	SPRAY WATER FLOW THIS ATTEMPERATOR NOZZLE	MLB/HR	79.5	106,9	120,1				
	SPRAY WATER PRESS. AT SOURCE (Based on following)	PSIG • PSIG		1112	110		<u> </u>		<u>+</u>
27	Boiler ECONOMIZER AP (Incl. Static Head)	PSI	1117	1117	1/12		·		+
28 23	Press. FEED VALVES AND PIPING $\Delta P$ (Incl. Static Head)	PSI	36.3	36.3	36.3			<u> </u>	╞─┤
30	EXPECTED PRESS AT B&W FEED INLET TERMINAL	PSIG	1154	1154	1154		<u> </u>		+-
31	STEAM PRESSURE AT ATTEMPERATOR	PSIG	1109		1109		·		+
32	AP THRU WATER NOZZLE NOTE 4	PSI.	18.2	32.1	33.2			<b>[</b>	$\uparrow$
33	REQ'D SPRAY WATER PRESS AT ATTEMP INLET	PSIG	1127,2		1192.2				
	PRESS DROP AVAIL FOR ATTEMP. SYSTEM (26-33)	PSI •		· · · · · ·					
65	STATIC HEAD, SOURCE TO ATTEMP. NOZZLE.	PSI •							
X	PRESS DROP AVAIL FOR PIPING AND VALVES (34-35)	PSI •		· .	••				
37	ΔP B&W PIPING	PSI .	0	0	0				
38	Piping AP CUST PIPING	PSI ·					·	ļ	
59	TOTAL PIPING LOSS	PSI ·				• •			+
10	PRESS DROP AVAIL FOR VALVES (36-39)	PSI •	~		0	·			+
		PSI •	0	0.					+
#2 85	TOTAL VALVE LOSS (Excluding control valve)	PSI •							+
A	PRESS DIFF. ACROSS CONTROL VALVE (40-43)	PSI *						h	†-i
15	MIN. REQ'D PRESS OROP ACROSS CONTROL VALVE	PSI	85	150	192				
46	1. * Indicates information to be completed by customer.	-> SOGGE	_	NTROL	······	A		And and the second s	1
47	<ol><li>Piping and valvas to be sized for design capacity.</li></ol>			•					
48	Notes 3. Control valve internals may be sized for "Installed maximitation internals suitable for design capacity may be installed in								
49	4 DESIGN CAPACITY NOZZLE PRESSORE OROP IS B.				E/C.5 70 *	517E < 41		C/5 77	Ċ,
50	CALLE AND AND CALLE ARESSANCE ORON 75 6.	~~ ~~	REURILL				~~ ~~ ~~	-13 21.00	
51				·			• •••••••	···	<u> .</u>
52					·				
53									+
54	ATTEMPERATOR TYPE: SINGLE STAGE TANDE	M FIRS	T STAC	5 <u>5</u>				<u> </u>	<u>                                     </u>
55 56	ATTEMPERATOR IDENTIFICATION:			04		T STAGE ( ND STAGE			
	EL. NO. AND DATE 4/3_ 19-80)		CODE	NO.	the second s	MP_NO.	FILE N		<u>*</u> {
	110-17-00	•	- 1	34-1	1500	~	pc	2 594	<u>~</u>
<u> </u>	DEDUCATED ATTEMPEDATOD CVCTCH -	74		$\underline{0}$	1.00	<u>,</u>		<u>1000</u>	
	PERHEATER ATTEMPERATOR SYSTEM DA	AIA SH	ISE I		· .	FPGD	CIS-3	0.0 2	
(F.	IRST STAGE ATTEMPERATOR)				00274				· •
÷ +			PE.	F-FUEL	-00374.	נ'			

.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 11 of 13

	THE BABCOCK & WILCOX COMPANY FOSSIL POWER GENERATION DIVISION												
EWFT	P 33027			CONTRAC									
				oonning	//						ESIGN CON		<u>~</u> ^
2				ECONOMI ZER						LOC.	PRESS	TEMP	+
3			FEED WATER HEATERS	ECONOMIZER AND FURHACE SNCLOSURE	SUPERHEA	TER	SUP	ERHEATER		ATTEMP	2975	850	t
4		BFP	IN IN IN	1 1					O TURBINE	SOURCE	~	-0-20	$\vdash$
5					- $M$	_					ELEVATI	ONS	t
6		$\bigcirc$	· . 0				$\overline{\mathbf{O}}$			LOCATIO		EVATION	t-
7								, O		ATTEMP		1'-6"	T.
8				VINIS	1				••	B&W'FEE	0 1 22	5'-9"	Γ
· 9			1 1 N		4 I 4 1 k		•			SOURCE		*	
10							•			ATTEMP	SYSTEM V.	ALVES	L
11										VALV	E , 😥	CIS .	
12			το						•	CONT			1
13										BLOCI			+-
14				MRALLEL SECC	wa si	TAGE	ATTEMPERATOR	~		I ISOLA			╞
15			·····	-			-			k CHEC	к //	<u> </u>	+
16			(TOTA	2	IN PA	RALEL ). $V_{i}$	SIDE B	W TERMANAL SIGNATED BY	$\bigcirc$	┝- {			+
17	مر بنو ۲	· · ·			<u></u>					┟┈┶───			+
18	FUE	N STEAM	ELOW			MLB/HR		<u>C.</u>	cel:	473	P.C.	140)	+-
20			TEAM FLOW			MLB/HR	529	$\mathcal{O}(\mathcal{N})$	(R)	7/2	8 (GL	MK/	+.
ST.			R TEMPERATURE	······		F	3	62			355		T
22							Installed		Design	Installed	······	Design	1
23		· ·	·	· · · · · · · · · · · · · · · · · · ·			Min.	Max.	Capacity	Min.	Max.	Capacity	F
24	TOT	AL SPRA	WATER FLOW AT SC	URCE		MLB/HR	79.3	432.0	641.6	107.4	530.5	720.0	Г
25	SPR.	AY WATE	R FLOW THIS ATTEM	ERATOR /NO	ZZLE	MLB/HR	13.1	153.9	153.9	16,9	185.9	185.4	T
	SPR	AY WATE	R PRESS. AT SOURCE	(Based on follo	wing)	PSIG *							T
27	Dallar	DRUM PR		·		PSIG	2829	2829	2829	2655	2655	2655	L
28	Boiler	ECONOM	ZER AP (Incl. Static H	the second s		PSI	71.2	71.2	71.2	63.9	63.9	63.9	4
29	PTESS.		LVES AND PIPING AF			PSI.	12.7	12.7	12.7	10.1	10:1	10.1	4-
30			D PRESS AT B&W FEE		MINAL	PSIG	2912.9	and the second se	29/2.9			2729	+
31			URE AT ATTEMPERA	TOR		PSIG PSI	2725	2725	2725	2570		2570	+
32 33			TER NOZZLE			PSIG	2701	42:6	42.6	25-1	63.3	63.3	+-
3			VAIL FOR ATTEMP.		(c)	PSI *	2126	2767,6	2761.10	257/	2633.3	2633.3	+-
1.1.1.1.1.1			SOURCE TO ATTEN		NI	PSI *				<u> </u>			÷
N B			VAIL FOR PIPING AN		4.35)	PSI *		·	÷		<u> </u>	[	+
37	- nc	AP B&W			100/	PSI	0	0	0	0	10	10	$\uparrow$
38	Diaina	AP CUST				PSI *			· · · · · · · ·				$\uparrow$
3	i ibiiñ		PING LOSS			PSI *							È
10	PRE	SS DROP	VAIL FOR VALVES	{36-	39)	PSI *							Γ
41		AP B&W	ALVES (Excluding co	ntrol valve)		PSI	0	0	0	0	0	0	Ē
22	Valves		VALVES (Excluding co			PSI.*							E
25		TOTAL V	ALVE LOSS (Excluding	control valve)		PSI ·							F
K			CROSS CONTROL VA			PSI *	1-		250	45		ATA	+
8	MIN	1	RESS DROP ACROSS (		{	PSI	90	1350	350	40	470	970	+-
46			icates information to be			- <del>&gt;</del> \$ <i>U</i> GG	ESTED	CONTRO	L VALV	εsP			}
47		3. Cont	g and valves to be sized of valve internals may b	e sized for "Ins	talied max	imum capa	city" provid	led					$\vdash$
48	Notes		hals suitable for design c										
49													$\vdash$
<u>50</u> 51													1
		l											+-
53								+					
54	ATT	EMPERAT	OR TYPE: DSING	LESTAGE		EM			A TWO	STAGE	·		+
55							(1st in Con:	roll			1st in Cont	rol}	t
58		•	OR IDENTIFICATION	• •			in Control)		A SECC	NDSTAG	E ( <del>2nd in O</del>		Γ
R	EL. NO	AND DAT	E413-19-80	)			CODE		C	OMP. NO.	FILEN	0.	~
1							1 3	34-0	25 R	8	RB.	-588	
SIII	PFDF	FATE	ATTEMPERA	OR SYST	FM D4	TA SH	1 ~	<i>L</i>	<u> </u>	FPGD	CIS-3	803	
			AGE ATTEMI								0.000	يتكلير بارات	

!

PEF-FUEL-003744

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 12 of 13

3       PARTES       GLEGISTE       PUPCHILATER       TO THENE ATTEMPENTS       PTOTALER		THE BABCOCK								
1       1000000000000000000000000000000000000	UNEP									Ļ
12       Image: Second S	1						PIPING D	ESIGN CO	NEITIONS	Ţ
a       br       the product of	2	ECONOMIZER					}	7	TEMP	Ī
a       brz       trongeneration       trongeneration       trongeneration         a       a       trongeneration       trongeneration       trongeneration         a       a       trongeneration       trongeneration       trongeneration         a       a       trongeneration       trongeneration       trongeneration         a       trongeneration       trongeneration       trongeneration       trongeneration       trongeneration         a       trongeneration       trongeneration       trongeneration       trongeneration       trongeneration       trongeneration         a       trongeneration	2	HEATERS ENCLOSURE SUPERHI	EATER	SU	PERHEATER					+
3       UDUES       1         3       UDUES       1         4       UDUES       1         5       UDUES       1         6       1       1         7       10       1         10       10       10       10         11       10       10       10         12       10       10       10         13       10       10       10       10         14       10       10       10       10       10         15       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10			ATTEM	PERATOR	<u> </u>	A TURNINE				4
9       IDEATION       ELEVATION         9       IDEATION       ELEVATION         10       IDEATION       ELEVATION         11       IDEATION       ELEVATION         12       IDEATION       ELEVATION         13       IDEATION       ELEVATION         14       IDEATION       ELEVATION         15       IDEATION       ELEVATION         16       IDEATION       IDEATION         170       INFAULT       STACE         18       FUEL       INFAULT       STACE         18       FUEL       INFAULT       STACE         19       MAINSTEAM FLOW       MLEMH       2.7.2.9.6.7         10       MAXULLARY STEAM FLOW       MLEMH       2.7.2.7.6.6         10       MAXULLARY STEAM FLOW       MLEMH       2.7.3.9.7.4         10       MAXULLARY STEAM FLOW       MLEMH       2.7.6.9       7.0.7         11       Installed Caracity       Design       Installed Caracity       Design         12       IDAL STEAM FLOW       MLEMH       2.7.9.7       7.7.9       7.7.9         12       MAXULLARY STEAM FLOW       MLEMH       2.7.6.9       7.9       7.9       7.9       7.9 <td></td> <td></td> <td>+&gt;</td> <td>$\leq$</td> <td>+ + + + + + + + + + + + + + + + + + +</td> <td></td> <td>SOURCE</td> <td>l.</td> <td><u> </u></td> <td></td>			+>	$\leq$	+ + + + + + + + + + + + + + + + + + +		SOURCE	l.	<u> </u>	
9       Image: Standard S	5		1 1	t a				ELEVAT	IONS	-)
2       ATTEMP NO2       22.1 ≤ 0.10         3       ATTEMP NO2       22.5 ≤ 0.10         10       10       10       10         11       10       10       10         12       10       10       10         13       10       10       10         14       10       10       10       10         13       10       10       10       10       10         14       10       10       10       10       10       10         14       10       10       10       10       10       10       10         15       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	8				1		LOCATI			ì
B       Image: Feed Orgin 22 5: 49         10       Source:         11       Image: Feed Orgin 22 5: 49         12       Image: Feed Orgin 22 5: 49         13       Image: Feed Orgin 22 5: 49         14       Image: Feed Orgin 22 5: 49         15       Image: Feed Orgin 22 5: 49         16       Image: Feed Orgin 22 5: 49         17       Image: Feed Orgin 22 5: 49         18       Image: Feed Orgin 22 5: 49         19       Image: Feed Orgin 22 5: 49         19       Image: Feed Orgin 22 5: 49         10       Image: Feed Orgin 22 5: 49         11       Image: Feed Orgin 22 5: 49         11       Image: Feed Orgin 22 5: 49         11       Image: Feed Orgin 22 5: 49         12       Image: Feed Orgin 22 5: 49         13       Image: Feed Orgin 22 5: 49         14       Image: Feed Orgin 22 5: 49         15       Image: Feed Orgin 22 5: 49         16       Free: Feed Orgin 22 5: 49         17       Image: Feed Orgin 22 5: 49         18       Feed Orgin 22 5: 49         19       Main: Feed Orgin 22 5: 49         19       Image: Feed Orgin 22 5: 49         10       Main: Feed Orgin 22 5: 49				1	. 0					
3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3		P		1 .						
10       TO       TO <td< td=""><td></td><td></td><td>J</td><td>1</td><td></td><td></td><td></td><td></td><td>5-9"</td><td></td></td<>			J	1					5-9"	
11	2		•				SOURCE	·	\$	_
12	10						ATTEMP	SYSTEM	ALVES	ł
12	11						IVAL	15	en Re	7
33       b BLOCK       //         14       b BLOCK       //         14       isselection       isselection         16       isselection       isselection         17       isselection       //         18       FUEL       P.C.       P.C.         19       MAIN STEAM FLOW       MLB/HR       2.3 G.9 (CH/CL)       2.3 G.9 (CH/CL)         20       AUXILIANY STEAM FLOW       MLB/HR       3.3 G.9 (CH/CL)       2.3 G.9 (CH/CL)         21       Installed Capacity       Design       installed Capacity       Design       installed Capacity       Design         22       Installed Capacity       Min.       Max.       Capacity       Min.       Har.         23       SPRAY WATER FLOW HAT SOURCE       MLB/HR       2.5 S.8       392.5       493.3       572.4       466.9       566.0         24       TOTAL SPRAY WATER FLOW HAT SOURCE       MLB/HR       2.5 S.8       392.5       493.3       572.4       466.9       766.0       766.0         24       DAUXILANY STEAM FLOW       Installed Capacity       Min.       Har.       2.4 G.2       4.4 G.2       2.4 G.2       4.6 G.2       77.9       71.9 3.0       71.3 5.3       72.6 G.2							1-1			4
14       1       10       PRALE       SEGMOD       STAGE       ATTORPORTOS       1       1       ISOLATION       1         15       10       10       10       10       10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		TO							<u>57.</u>	_
15       10       NO PARALEL SECOND STAGE INTERCENTSE       11         16       10       10       10       10         17       10       10       10       10         18       FUEL       P.C.       P.C.       P.C.         19       MAIN STEAM FLOW       MLB/HR       2.369 (RH/CL - V.P.         20       ADXILLARY STEAM FLOW       MLB/HR       2.369 (RH/CL - V.P.         21       ADXILLARY STEAM FLOW       MLB/HR       3.70         22       ADXILLARY STEAM FLOW       MLB/HR       3.70         23       ADXILLARY STEAM FLOW       MLB/HR       3.72.4         24       TOTAL SFRAY WATER FLOW AT SOURCE       MLB/HR       5.97.9       9.3.2       3.72.4         25       SPRAY WATER FLOW THOW AT SOURCE       MLB/HR       6.5       9.7.9       9.2.3       3.7.7       1.25.1         26       SPRAY WATER FLOW AT SOURCE       MLB/HR       6.5       9.7.9       9.2.3       3.7.7       1.25.1       1.45.1         27       SPRAY WATER FLOW AT SOURCE       MLB/HR       6.5       9.7.9       9.2.3       3.0.7       1.25.2       1.25.2       1.25.2       1.25.2       1.25.2       1.25.2       1.25.2       1.25.2       1.25.							b BLOC	K _ / /	/	
Intra	14						ii lisou	ATION	v	1
TOT       INTARLED       Y SIDE       DESIGNATION       DESIGNATION         101       INTARLED       Y SIDE       P.C.       P.C.       P.C.         101       MILB/HR       2 3 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))         101       MILD/HR       2 3 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))         102       AUXILLARY STEAM FLOW       MILB/HR       23 G 7 (CH(C, C))       24 G 7 (CH(C	15	TO PARALLEL SECOND S	TAGE	ATTEMPERATO	nes		K CHEC	K I	/	7
TOT       INTARLED       Y SIDE       DESIGNATION       DESIGNATION         101       INTARLED       Y SIDE       P.C.       P.C.       P.C.         101       MILB/HR       2 3 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))         101       MILD/HR       2 3 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))       23 G 7 (CH(C, C))         102       AUXILLARY STEAM FLOW       MILB/HR       23 G 7 (CH(C, C))       24 G 7 (CH(C	16	-				-				ㅓ
Image: FUEL       P.C.       P.C.       P.C.         IS       FUEL       MLE/HR       2.36.9 (.RHCL.)       236.9 (.RHCL.)       236.9 (.RHCL.)         IS       SPRAY WATER FLOW       MLE/HR       2.36.9 (.RHCL.)       236.9 (.RHCL.)       24.9 (.RHCL.)       24.9 (.RHCL.) <td></td> <td>ITOTAL K INP</td> <td>ARALES 1/</td> <td>SIDE N</td> <td>ESIGNATED BY</td> <td>$\overline{\mathbf{O}}$</td> <td><u>}</u>-<u></u><u></u></td> <td></td> <td></td> <td>4</td>		ITOTAL K INP	ARALES 1/	SIDE N	ESIGNATED BY	$\overline{\mathbf{O}}$	<u>}</u> - <u></u> <u></u>			4
Image: Second Secon	-+-						Latin			
19       MAIN STEAM FLOW       MLB/HR       2 3 G 9 ( 2HCC, )       23 G 9 ( 2HCC, )       3 / 0         20       AUXILLARY STEAM FLOW       MLB/HR       3 / 0       0       3 / 0       0         21       SPRAY WATER TEMPERATURE       F       3 / 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>18</td><td>FUEL</td><td></td><td></td><td>P.C.</td><td></td><td>1</td><td>P.C</td><td></td><td>٦</td></td<>	18	FUEL			P.C.		1	P.C		٦
ADXILLARY STEAM FLOW         MLB/HR           SPRAY WATER TEMPERATURE         F         3 / 0           SPRAY WATER TEMPERATURE         F         3 / 0           Installed Caseolity         Design         Installed Caseolity         Design           21         Installed Caseolity         Design         Installed Caseolity         Design           22         Installed Caseolity         Min.         Max.         Capacit           23         SPRAY WATER FLOW AT SOURCE         MLB/HR         2,5 ?         3 / 2,7         7 / 2,5 .3         7,5           25         SPRAY WATER FLOW THIS ATTEMPERATOR Acose 21         MLB/HR         4,5 ?         4 / 3 / 2,7         7 / 2,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,5         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7         7,7	19	MAIN STEAM FLOW	MLB/HR			21	2366		-1/01	1
SPRAY WATER TEMPERATURE         F         3/0         3/0           22         Installed Capacity         Design         Installed Capacity         Design           23         Min.         Max.         Capacity         Nin.         Max.         Capacity           24         TOTAL SPRAY WATER FLOW AT SOURCE         MLB/HR         23.9.3         39?.5         49.3.2         3/2.7         446.5         56.6.0           25         SPRAY WATER FLOW THIS ATTEMPERATOR Arcog2/C         MLB/HR         2.9.7         92.5         30.7         /2.5.3         /.5.1           26         SPRAY WATER PLOW THIS ATTEMPERATOR Arcog2/C         MLB/HR         4.5         97.7         92.5         30.7         /2.5.3         /.5.1           27         Boiler         ECONOMIZER AP (Ind. Static Head)         FSI         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.4.9         2.9.6 <td></td> <td></td> <td></td> <td>1~20</td> <td>· · · · · · · ·</td> <td>\$n.j</td> <td></td> <td><u> </u></td> <td></td> <td>4</td>				1~20	· · · · · · · ·	\$n.j		<u> </u>		4
22         InstallieS Capacity         Design         Capacity         Design         Capacit           23         TOTAL SPRAY WATER FLOW AT SOURCE         MLB/HR         23.97.8         39.7.7         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3         72.5.3<	1			·	2/-	·····	<u>}</u>	3.0		4
23       TOTAL SPRAY WATER FLOW AT SOURCE       MIn.       Max.       Capacit       Min.       Max.       Capacit       Capac	21	SPHAT WATER TEMPERATURE	F					The second se		1
24       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       239.8       59.5       493.2       3/2.4       466.6       561.6         25       SPRAY WATER FLOW THIS ATTEMPERATOR/MORELLE       MLB/HR       6.5       97.9       97.9       30.7       /25.3       /A5.3         26       SPRAY WATER FLOW THIS ATTEMPERATOR/MORELLE       MLB/HR       6.5       97.9       97.9       30.7       /25.3       /A5.3         27       SPRAY WATER FLOW THIS ATTEMPERATOR/MORELLE       PSIG       2496       1496.6       2446.6       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0       /96.0	22		1	Installed	Capacity	Design	Installed	Capacity	Design	٦
SPRAY WATER FLOW THIS ATTEMPERATOR / Log 2/L / MLB/HR       G, S       97.7       92.9       3/2.7       1/2.5.3       1/2.5.3         SPRAY WATER PRESS. AT SOURCE (Based on following)       PSIG       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	23		1	Min.	Max.	Capacity	Min.	f Hax.	Capacity	1
SPRAY WATER FLOW THIS ATTEMPERATOR / Log 2/L / MLB/HR       G, S       97.7       92.9       3/2.7       1/2.5.3       1/2.5.3         SPRAY WATER PRESS. AT SOURCE (Based on following)       PSIG       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	24	TOTAL SPRAY WATER FLOW AT SOURCE	MI B/HB	770 9	1000 6	102 1	717 1	1110	1	1
SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         2496         1.446         2446         1.960         1.960           DRUM PRESSURE         DRUM PRESSURE         PSIG         2496         1.446         2446         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960         1.960				1			per la companya da companya		+	4
27       DRUM PRESSURE       PSIG       2496       1494       2446       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960       /960 <td>2.201</td> <td></td> <td></td> <td>6,5</td> <td>97.7</td> <td>97.9</td> <td>30.7</td> <td>125.3</td> <td>125.3</td> <td></td>	2.201			6,5	97.7	97.9	30.7	125.3	125.3	
Boiling       CONOMIZER & [Ind, Static Head]       FSI       21.747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6       1747.6	219		PSIG *	· · ·	1	·		1	1	
20         JOURT         ECONOMIZER & DILING.         PSI         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3         40.3 <td></td> <td></td> <td>PSIG</td> <td>2996</td> <td>1446</td> <td>2446</td> <td>1960</td> <td>1960</td> <td>1960</td> <td></td>			PSIG	2996	1446	2446	1960	1960	1960	
29       Press.       FEED VALVES AND PIPING ΔP (Incl. Static Head)       PSI       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4	28	Boiler ECONOMIZER AP (Incl. Static Head)	IPSI .	1				4	+	-+
30       [EXPECTED PRESS AT B&W FEED INLET TERMINAL       PSIG       24782.7       2488.7       2488.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002.7       2002	· · ·					and the second se		to a start and the start and t		4
11       STEAM PRESSURE AT ATTEMPERATOR       PSIG       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       2493       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943       24943				2.4	<u>محمد المحمد /u>		2.4	2.9	2.4	1
22       ΔP THRO WATER NOZZLE       PSI       /       /       8       /.7       2.9.4       2.9.4         33       REQO SPRAY WATER PRESS AT ATTEMP INLET       PSIG       2.9.49       2.461       /.757.7       /.935.4       /.935.4         33       REQO SPRAY WATER PRESS AT ATTEMP. NOZZLE       PSI       2.464       2.461       /.757.7       /.935.4       /.935.4         34       PRESS DROP AVAIL FOR ATTEMP. NOZZLE       PSI       2.464       2.461       /.757.7       /.935.4       /.935.4         35       TATIC HEAD, SOURCE TO ATTEMP. NOZZLE       PSI       2.466       2.466	30	EXPECTED PRESS AT BAW FEED INLET TERMINAL	IPSIG	2488.7	2488.7	2488.7	2002.7	20027		
22       ΔP THRO WATER NOZZLE       PSI       /       /       8       /.7       2.9.4       2.9.4         33       REQO SPRAY WATER PRESS AT ATTEMP INLET       PSIG       2.9.49       2.461       /.757.7       /.935.4       /.935.4         33       REQO SPRAY WATER PRESS AT ATTEMP. NOZZLE       PSI       2.464       2.461       /.757.7       /.935.4       /.935.4         34       PRESS DROP AVAIL FOR ATTEMP. NOZZLE       PSI       2.464       2.461       /.757.7       /.935.4       /.935.4         35       TATIC HEAD, SOURCE TO ATTEMP. NOZZLE       PSI       2.466       2.466	31	STEAM PRESSURE AT ATTEMPERATOR	PSIG	2993	2943	2943	195G	1956	1956	I
33       REQ'D SPRAY WATER PRESS AT ATTEMP INLET       PSIG       2444       2461       2461       1957,7       1985,4       1985,4         4       PRESS DROP AVAIL FOR ATTEMP, NOZZLE.       PSI       PSI       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>32</td> <td>∆P THRU WATER NOZZLE</td> <td>PSI</td> <td>7</td> <td>18</td> <td>18</td> <td>1.7</td> <td></td> <td></td> <td>1</td>	32	∆P THRU WATER NOZZLE	PSI	7	18	18	1.7			1
APRESS DROP AVAIL FOR ATTEMP. SYSTEM (26-33)       PSI       PSI <t< td=""><td>23.</td><td>BEO'D SPRAY WATER PRESS AT ATTEMP INLET</td><td>PSIG</td><td>1000</td><td></td><td>the second s</td><td></td><td></td><td></td><td>$\mathbf{f}$</td></t<>	23.	BEO'D SPRAY WATER PRESS AT ATTEMP INLET	PSIG	1000		the second s				$\mathbf{f}$
STATIC HEAD, SOURCE TO ATTEMP. NOZZLE.       PSI	7		· /	-137	2101	101	1331.1	1703.4	1783.7	ł
PHESS DROP AVAIL FOR PIPING AND VALVES (34-35)       PSI       PSI       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0			PSI					L		1
AP Baw PIPING       PSI       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		STATIC HEAD, SOURCE TO ATTEMP. NOZZLE	PSI *		·			}	-24	i
Piping <u>AP CUST PIPING</u> PSI •	8	PRESS DROP AVAIL FOR PIPING AND VALVES (34-35)	PSI *						1	î
Piping <u>AP CUST PIPING</u> PSI •				2		6		A		t
ITOTAL PIPING LOSS       PSI         PRESS DROP AVAIL FOR VALVES       (36-39)       PSI         I       Image: Application of the product of					├ <u>ॅ</u>					ł
Ø       PRESS DROP AVAIL FOR VALVES       (36-39)       PSI       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	<u>الا</u>							<u> </u>		4
ΔP B&W VALVES (Excluding control valve)       PSI       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<	<u>91</u>			·				L	ļ	1
Valves       ∆P CUST VALVES (Excluding control valve)       PSI •         Yalves       TOTAL VALVE LOSS (Excluding control valve)       PSI •         Yalves       TOTAL VALVE LOSS (Excluding control valve)       PSI •         Yalves       PRESS DIFF, ACROSS CONTROL VALVE (40-43)       PSI •         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE       PSI •       1000000000000000000000000000000000000	Ю	PRESS DROP AVAIL FOR VALVES (36-39)	PSI •							
Valves       ∆P CUST VALVES (Excluding control valve)       PSI •         Yalves       TOTAL VALVE LOSS (Excluding control valve)       PSI •         Yalves       TOTAL VALVE LOSS (Excluding control valve)       PSI •         Yalves       PRESS DIFF, ACROSS CONTROL VALVE (40-43)       PSI •         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE       PSI •       1000000000000000000000000000000000000	пГ	△P B&W VALVES (Excluding control valve)	PSI	0	0	6	17	0	0	ţ
TOTAL VALVE LOSS (Excluding control valve)       PSI         PRESS DIFF, ACROSS CONTROL VALVE (40-43)       PSI         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE       PSI         4       • Indicatas information to be completed by customer.         7       2. Piping and valves to be sized for design capacity.         3       Control valve internals may be sized for "Installed maximum capacity" provided Internals suitable for design capacity may be installed in the control valve body.         9	V.		demonstration and	<u> </u>		~ <u>~</u>		ł	<u> </u>	+
2       PRESS DIFF. ACROSS CONTROL VALVE (40-43)       PSI       PSI       180       180       20       250       250         3       MIN. REQ'D PRESS DROP ACROSS CONTROL VALVE       PSI       40       180       180       40       250       250       250         6       1. * Indicatus information to be completed by customer.       2       2       2       2       3         7       3. Control valve internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.       3       3         9       9       1       1       1       1         1       1       1       1       1       1       1         2       1       1       1       1       1       1         2       1       1       1       1       1       1         2       1       1       1       1       1       1         2       3       1       1       1       1       1       1         3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td> <td></td> <td></td> <td>  </td> <td></td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td>Ļ</td>								<u> </u>	<u> </u>	Ļ
MIN. REO'D PRESS DROP ACROSS CONTROL VALVE       PSI       40       180       180       40       250       250         I.       * Indicatas information to be completed by customer.       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 <td>2-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td>ļ</td> <td>1</td>	2-							ļ	ļ	1
6 1. * Indicates information to be completed by customer.   77 2. Piping and values to be sized for design capacity.   3. Control value internals may be sized for "Installed maximum capacity" provided Internals suitable for design capacity may be installed in the control value body.   9 1   11 1   12 1   13 1   14 ATTEMPERATOR TYPE:   15 DOWNSTREAM (1st in Control)   16 ATTEMPERATOR IDEISTIFICATION:	<del>4</del>			l				·		ļ
<ol> <li>I. Indicatas information to be completed by customer.</li> <li>Piping and values to be sized for design capacity.</li> <li>Control value internals may be sized for "Installed maximum capacity" provided Internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control value internals suitable for design capacity may be installed in the control value body.</li> <li>Control /li></ol>	5	MIN. REQ'D PRESS DROP ACROSS CONTROL VALVE	PSI	.40	1801	180	40	250	250	ł
2 3 4 ATTEMPERATOR TYPE: DSINGLE STAGE D TANDEM D TWO STAGE 5 6 ATTEMPERATOR IDENTIFICATION: D UPSTREAM (1st in Control) D FIRST STAGE,(1st in Control) 6 ATTEMPERATOR IDENTIFICATION: D UPSTREAM (2nd in Control) 7 Statement of the statement of t	17 18 N 19	<ol> <li>Piping and valves to be sized for design capacity.</li> <li>Control valve internals may be sized for "Installed max</li> </ol>	imum capa n'the contro	city" provid ol valve boch	ed Y-	- <i></i>			<u> </u>	
5     DOWNSTREAM (1st in Control)     FIRST STAGE (1st in Control)       6     ATTEMPERATOR IDENTIFICATION:     UPSTREAM (2nd in Control)     SECOND STAGE (2nd in Control)	2									
ATTEMPERATOR IDENTIFICATION:					:					Ŀ
U UPST KEAM (2nd in Control) 11 SECOND STAGE (2nd in Control)					01)					L
	8		EAM (2nd	in Control)	· · ·			E (2nd in Co	ntrol)	ſ
REL. NO. AND DATE 2 (9-80) 4 (4, 24-80) CODE NO. COMP. NO. FILE NO.	REL	NO. AND DATE 2/2/9 2/19/2/11/21/201		CODE	NO.	. CC	MP.NO.	FILEN	D.	-
		$\mathcal{O}(\mathcal{O}^{*})^{*}\mathcal{O}(\mathcal{O}^{*})^{*}\mathcal{O}(\mathcal{O}^{*})$		1 1	111	Ard	OX.	1 mm	1-20	ſ
JPERHEATER ATTEMPERATOR SYSTEM DATA SHEET FPGD CIS-38.0 4				1 3	37-	1138	Λ.	1 815-	-500	

. .

...

 $\sum_{i=1}^{n}$ 

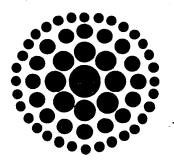
 . .

PEF-FUEL-003745

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-1) Page 13 of 13

BRP 3007-3         CONTRACT INFORMATION         SHEET           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		THE BABCOCK										
1       1       Image: Selecting Sele		FOSSIL POWER GENERATION DIVISION										
2         FEE THE         DESCRIPTION         DESCRIPTION           3         Image: Second Constraints         Seco		P 33027-3 CONTRACT INF	URMAL	ION SH	221					A.(		
3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>							h			╞		
Image: Second	2	FEED WATER AND FURNACE SUPEDU	FATT 0	<b>6</b> 10			<u> </u>			╞		
3       SOURCE	3			ERATOR		່ານອອງກະ			1820	╞		
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0				$\leq$	$  \wedge   + $		SOURCE	:	<u> </u>	╀		
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	_		<u> </u>	Fa '						╞		
a       a       a       b       b       b       B       B       B       B       B       B       B       B       SOURCE       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C </td <td></td> <td></td> <td></td> <td></td> <td>Ġ</td> <td></td> <td>h</td> <td></td> <td></td> <td>┢</td>					Ġ		h			┢		
3       Subject			· · ·		Ŭ					╞		
30       ATTEMP SYSTEM VALVES         11       To       MALLE       SECOND       STAGE         13       To       MALLE       SECOND       STAGE       VALVE       EVENTS         13       To       MAINTERNETAMPLOW       MALEL       SECOND       STAGE       Normaliant         15       To       MAINTERNETAMPLOW       MALEL       SECOND       STAGE       Normaliant         16       FUEL       BALSTEAMPLOW       MALEL       SECOND       STAGE       Normaliant         17       MAINTERNETAMPLOW       MALEL       SECOND       STAGE       Normaliant       SECOND       S		XXXN	J	5					<u>ş./-4.</u>	Ł		
Image: Second		bicik	•.						AL 1/20	╀		
12 <ul> <li>TO</li> <li>MAILE SECOND STAGE</li> <li>KTBACHARD</li> <li>SELATION</li> <li>MAIN STEAM FLOW</li> <li>SELATION</li> <li>MEDITION</li> <li>SELATION</li> <li>SELAT</li></ul>										╋		
13       13       14         14       14       15       15         15       107       2       15         16       107       2       15         17       107       2       15         18       FUEL       2       27         19       MAIN STEAM FLOW       MLB/HR       27.5         19       AUXILARY STEAM FLOW       MLB/HR       27.5         19       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       73.0         10       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       17.9         10       TOTAL SPRAY WATER PLOW AT SOURCE       MLB/HR       17.9       67.4         10       TOTAL SPRAY WATER PLOW AT SOURCE       MLB/HR       17.9       67.4       67.6         10       PRONUM PRESSURE       PSIG       7.7       7.7       7       7         10       TOTAL SPRAY WATER PLOW THIS ATTEMPERATOR       PSIG       17.5       7       7       7         10       TORAL PRONUMES AN INGL SNICHABING AP (INGL SNICHABIN										Ļ		
Image: Second Strates         Image: Second Strates         Image: Second Strates           13         Image: Second Strates         Image: Second Strates         Image: Second Strates           15         Image: Second Strates         Image: Second Strates         Image: Second Strates           16         Image: Second Strates         Image: Second Strates         Image: Second Strates           17         Image: Second Strates         Image: Second Strates         Image: Second Strates         Image: Second Strates           17         Image: Second Strates		το					h			4		
11       10       PARALLE SECONO STROSE       ATTREFERSION       1         10       10       10       2       INTRALE, I/STOE       MENDAMENTY ()         11       FUEL       A.C.       ALLIARY STEAM FLOW       MLB/HR       2/2 (2532 V.F.)         11       MAINSTEAM FLOW       MLB/HR       2/2 (2532 V.F.)       Design         12       AUXILLARY STEAM FLOW       MLB/HR       2/2 (2532 V.F.)       Design         13       MAINSTEAM FLOW       MLB/HR       2/2 (2532 V.F.)       Design         14       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       2/2 (2532 V.F.)       Design         15       FRAN WATER FLOW THIS ATTEMPERATOR       PROVE       PROVE       Design       Capacity       Design         16       FOUM PRESSURE       AP THRE PRESS. AT SOURCE (Based on following)       PSIG       1/2 (1/2 (1/2 (1/2 (1/2 (1/2 (1/2 (1/2 (							h			+		
Internal         2         INTERNAL IS, ISTORE         BEST GAMPS & O           17         INTERNAL TO W         MLB/HE         A.C.           18         FUEL         A.C.         ALXILLARY STEAM FLOW         MLB/HE         J.C. (2520, V. P.)           21         AUXILLARY STEAM FLOW         MLB/HE         J.C. (2520, V. P.)         Design           22         AUXILLARY STEAM FLOW         MLB/HE         J.C. (2520, V. P.)         Design           23         OTAL SPRAY WATER FLOW AT SOURCE         MLB/HE         J.C. (2520, V. P.)         Design           24         TOTAL SPRAY WATER FLOW AT SOURCE         MLB/HE         J.S. (262, 9)         J.S. J.         Capacity           24         SPRAY WATER PRESS. AT SOURCE (Baed on following)         PSIG         J.C. (27, 27, 17, 17, 17, 17, 17, 17, 17, 17, 17, 1		SECOND S	7005				**************************************		<u> </u>	╀		
17       A.C.         18       FUEL       A.C.         19       MAIN STEAM FLOW       MLB/HR       21.0.2.232.0.7.F.)         21       SPRAY WATER TEMPERATURE       F       27.5         22       Installed Operity       Derign       Installed Coperity       Min.       Max.         23       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       25.9.7.2.62.9       37.5.3       Capacity       Derign         24       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       25.9.7.2.62.9       37.5.3       Capacity       Min.       Max.       Capacity       Min.       Ma								<u>-k   "</u>		Ł		
17       A.C.         18       FUEL       A.C.         19       MAIN STEAM FLOW       MLB/HR       21.0.2.232.0.7.F.)         21       SPRAY WATER TEMPERATURE       F       27.5         22       Installed Operity       Derign       Installed Coperity       Min.       Max.         23       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       25.9.7.2.62.9       37.5.3       Capacity       Derign         24       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       25.9.7.2.62.9       37.5.3       Capacity       Min.       Max.       Capacity       Min.       Ma	_	(TOTA	VARALLELI.	SIDE B	W TERMINAL SIGNATED BY	$\odot$	<u> </u>			+		
19       MAIN STEAM FLOW       MLB/HR       21.0 (253°, U.A.)         21       AUXILLARY STEAM FLOW       MLB/HR       27.5         22       Installed Capacity       Design       Installed Capacity       Design         23       Installed Capacity       Design       Capacity       Design         24       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       /.59./       26.2.9       3/5.3         25       SPRAY WATER FLOW THIS ATTEMPERATOR ///rog 2 (2)       MLB/HR       /.9 (2, 2, 2, 3)       J.         27       SPRAY WATER PLOW THIS ATTEMPERATOR //rog 2 (2)       MLB/HR       /.9 (2, 2, 2, 3)       J.         28       SPRAY WATER PRESS AT SOURCE (Base on following)       PSIG       ////2       J.///2       J.         29       DAUM PRESSURE       DINET TEMPERATOR       PSIG       J.//2       J.//2       J.         20       SPRAY WATER PRESS AT DAW FRED INLET TEMPINAL       PSIG       J./.57       J.       J.         30       STEAM PRESSURE AT TEMPERATOR       PSIG       J./.1       J./.2       J./.2       J.         31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       J.O./.1       J.J.2       J.J.2       J.         32       AP PHRO WATER PRESS AT ATTEMPERATOR       PS	17						for the second	<u>}</u>		╇		
AUXILIARY STEAM FLOW       MLB/HR       Z 75         Image: Constraint of the state o	18						ļ			+		
SPRAY WATER TEMPERATURE         F         2.7.5           Z2         Installed Gaucity         Design         Installed Caucity         Design           Z3         TOTAL SPRAY WATER FLOW AT SOURCE         MLB/HR         7.9.7.7.262.9.37.53         MLB           Z4         TOTAL SPRAY WATER FLOW AT SOURCE         MLB/HR         7.9.7.7.262.9.37.53         MLB           Z5         SPRAY WATER FLOW AT SOURCE         MLB/HR         7.9.7.7.262.9.37.53         MLB           Z5         SPRAY WATER PRESS AT SOURCE (Based on following)         PSIG         7.7.7.7         T           Z6         DAUM PRESSURE         PSIG 11.27.7.7.7         T         T           Z6         SPRAY WATER PRESS AT SAW PEED INLET TERMINAL         PSIG 17.57.7.7         T         T           Z7         DAUM PRESSURE AT ATTEMPERATOR         PSIG 17.57.7.7         T         T         T           Z8         STEAM PRESS AT ATTEMPERATOR         PSIG 17.57.7.7         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T	19			1310 (	2530 V.	P.)	<b>∲</b>	····		+		
22       Installed Capacity       Design         23       OTAL SPRAY WATER FLOW AT SOURCE       Min.       Max.       Capacity         23       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR / 59./       22.2.2.9       3/5.3         25       SPRAY WATER FLOW THIS ATTEMPERATOR ///22.2.2.6       MLB/HR //.9       6.7.6       4.7.6         26       SPRAY WATER FLOW THIS ATTEMPERATOR ///22.2.2.6       MLB/HR //.9       6.7.6       4.7.6         27       Image: Series and Source (Based on following)       PSIG       7.7       7       7         27       SERAY WATER PRESS AT BOW FEED INLET TERMINAL       PSIG       1/5.5.4       1/5.5.4       1/5.5.4         29       Frees FLOW THIS ATTEMPERATOR       PSIG       1/5.5.4       1/5.5.4       1/5.5.4       1/5.5.4         21       A P TRIM WATER NOZZLE       PSI       1/1.1.3.2.2       3.7.2.2       1/1.3.2.2       1/1.3.2.2       1/1.5.4.1         21       STATIC HAD, SOURCE TO ATTEMP, NOZZLE       PSI       1/1.1.3.2.2       1/1.3.2.2       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1       1/1.5.4.1					2-7-		· · · · ·			+		
23       Min.       Max.       Capacity       Min.       Max.       Capacity         24       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR       //59,1       262.9       315.3		SPRAY WATER TEMPERATURE	r			Decigo	Installer	Canacity	1 Design	╇		
33       TOTAL SPRAY WATER FLOW AT SOURCE       MLB/HR / 59, / 262, 9       315.3         25       SPRAY WATER FLOW THIS ATTEMPERATOR ///22 2.6       MLB/HR / .9       67.6       47.6         26       SPRAY WATER FLOW THIS ATTEMPERATOR //22 2.6       MLB/HR / .9       67.6       47.6         27       Boll PRUM PRESS. AT SOURCE (Based on following)       PSIG       71.7       7       7         28       Boll PRUM PRESS AT BW FEED INLET TERMINAL       PSIG       1/5.7       1/5.7       1/5.7         29       Frees. FEED VALVES AND PIPING &P lind. Static Headl       PSI       36.3       36.3       36.3         29       Frees EED PRESS AT BW FEED INLET TERMINAL       PSIG       1/5.7       1/5.7       1/5.7       1/5.7         31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       1/0.7       37.2       37.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2       1/2.2	_		+					the second s		$\mathbf{F}$		
SPRAY WATER PLOW THIS ATTEMPERATOR / Arrow 22 LE         MLB/HR         //.9         62.6         67.6           SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         PSIG         ////2         ////2           SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         ///2         ////2         ////2           SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         ///2         ////2         ////2           SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         ///2         ////2         ////2           Part Muster Press         Press         PSIG         ///2         ////2         ////2           STEAM PRESSURE AT ATTEMPERATOR         PSIG         //2         //2         //2         //2         //2           STEAM PRESSURE AT ATTEMPERATOR         PSIG         //2         //2         //2         /2         /2         /2           STEAM PRESSURE AT ATTEMPERATOR         PSIG         //2         /2         /2         /2         /2         /2         /2           Marce Core Press And Press At ATTEMPERATOR         PSIG         /2         /2         /2         /2         /2         /2         /2         /2         /2         /2         /2 <th 2<="" th="">         /2         <th <="" td=""><td></td><td></td><td>LU DAUD</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>+</td></th></th>	/2 <th <="" td=""><td></td><td></td><td>LU DAUD</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>+</td></th>	<td></td> <td></td> <td>LU DAUD</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td>			LU DAUD	+						+
SPRAY WATER PRESS. AT SOURCE (Based on following)         PSIG         ///2         ///2           DRUM PRESSURE         PRIG         ///2         ///2         ///2           23         DRUM PRESSURE         PSIG         ///2         ///2         ///2           24         Boiler         ECONOMIZER ΔP (Incl. Static Head)         PSIG         //2         7         7           25         EXPECTED PRESS AT B&W FEED INLET TERMINAL         PSIG         //57         //54         //54           30         STEAM PRESSURE AT ATTEMPERATOR         PSIG         //099         /099         /099           31         STEAM PRESSURE AT ATTEMPERATOR         PSIG         //099         /099         /099           32         ΔP THRO WATER NOZZLE         PSI         //1         3/4         2         //2           32         AP THRO WATER PRESS AT ATTEMP. NOZZLE         PSI         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2         //2 <t< td=""><td></td><td></td><td></td><td>Lex Cit</td><td></td><td></td><td><b></b></td><td></td><td>┼─────</td><td>╀</td></t<>				Lex Cit			<b></b>		┼─────	╀		
22       Boller       DRUM PRESSURE       PSIG       ///2       ///2       ///2       ///2         23       Boller       ECONOMIZER & find, Static Head       PSI       3.6,.3       3.6,.3       3.6,.3         24       Press.       FEED VALVES AND PIPING & P (Ind. Static Head)       PSI       7       7       7       7         25       TEXPRETED PRESS AT BW PEED INLET TERMINAL       PSIG       /.079       /.092       /.092         26       AP THRO WATER NOZZLE       PSIG       /.097       /.092       /.092         26       AP THRO WATER NOZZLE       PSIG       /.007       /.13.2       /.13.2          27       PRESS DROP AVAIL FOR ATTEMP. SYSTEM (26-33)       PSI             28       PRESS DROP AVAIL FOR PIPING AND VALVES (34-36)       PSI             29       PRESS DROP AVAIL FOR PIPING CONTO VALVES (34-36)       PSI              29       PRESS DROP AVAIL FOR VALVES (34-36)       PSI				1.7.	616	61.6	<b> </b>	+	<u> </u>	+		
23       Bolar       ECONOMIZER △P (Incl. Static Head]       PSI       36.3       36.3       36.3         29       Test, FEED VALVES AND PIPING ÅP (Incl. Static Head)       PSI       .7       .7       .7         30       EXPECTED PRESS AT B&W FEED INLET TERMINAL       PSIG       / 15.4       // 15.4       // 15.4         30       STEAM PRESSURE AT ATTEMPERATOR       PSIG       / 0.79       / 0.79       / 0.79         31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       / 0.79       / 0.79       / 0.79         32       AP THAD WATER NOZZLE       PSI       / .1       .3.4.2       .4.2         32       AP THAD WATER NOZZLE       PSI       / .1       .3.4.2       .4.2         33       RECID SPRAY WATER PRESS AT ATTEMP. SYSTEM (2633)       PSI				1117	1117	11/2	<u> </u>		+	t		
22       Press.       FEED VALVES AND PIPING △P (Incl. Static Head)       PSI       .7       7       .7         33       EXPECTED PRESS AT BAW FEED INLET TERMINAL       PSIG       //5.4       //5.4       //5.4       //5.4         31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       //0.99       /0.97							<b>}</b>	+	+	╞		
33       EXPECTED PRESS AT B&W FEED INLET TERMINAL       PSIG       //54       //54       //54         31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       //099       //097       //077         32       ÅP THRO WATER NOZZLE       PSI       ///1097       //029       //029       //029         32       ÅP THRO WATER NOZZLE       PSIG       //00/1       //33.2       //3.2.2								+		+		
31       STEAM PRESSURE AT ATTEMPERATOR       PSIG       //099       //099       //099         32       ÅP THRO WATER NOZZLE       PSI       ///39.2       34.2	_				f		<u> </u>	· <del>  · · · · · · ·</del>	+	+		
32     ÅP THRU WATER NOZZLE     PSI     1.1.1.34.2.34.2.34.2       33     REGD SPRAY WATER PRESS AT ATTEMP INLET     PSIG     1/00.1.1.33.2.1.33.2       34     REGD SPRAY WATER PRESS AT ATTEMP INLET     PSIG     1/00.1.1.1.33.2.1.33.2       35     RATTIC HEAD, SOURCE TO ATTEMP. NOZZLE.     PSI     1.1.1.33.2.1.33.2       37     ÅP B&W PIPING     AD DALVES (3435)     PSI     1.1.1.33.2       37     ÅP B&W PIPING     PSI     0.0.0     0.0.1.1.33.2       38     PRIDING     PSI     0.0.0     0.0.1.1.1.33.2       39     PRIDING     PSI     0.0.0     0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1							┟	+		+		
33       REQ'D SPRAY WATER PRESS AT ATTEMP INLET       PSIG       ///00./       //33.2       //33.2         PRESS DROP AVAIL FOR ATTEMP, SYSTEM (26:33)       PSI       ///33.2       ///33.2       ///33.2         36       STATIC HEAD, SOURCE TO ATTEMP, NOZZLE       PSI       ////33.2       ///33.2       ///33.2         37       ÅP BAW PIPING       PSI       ///////00       //////00       ////////00         37       ÅP BAW PIPING       PSI       ///////00       //////////00       ////////////////////////////////////	· · · · ·			1099					+	╉		
PRESS DROP AVAIL FOR ATTEMP. SYSTEM (26-33)       PSI •         STATIC HEAD, SOURCE TO ATTEMP. NOZZLE.       PSI •         PRESS DROP AVAIL FOR PIPING AND VALVES (34-36)       PSI •         AP BAW PIPING       PSI •         TOTAL PIPING LOSS       PSI •         Press DROP AVAIL FOR VALVES       (35-39)         PSI •       O         AP B&W PIPING       PSI •         TOTAL PIPING LOSS       PSI •         Press DROP AVAIL FOR VALVES       (35-39)         PSI •       O         AP B&W VALVES (Excluding control valve)       PSI •         AP TOTAL VALVE LOSS (Excluding control valve)       PSI •         AP RESS DIFF. ACROSS CONTROL VALVE (40-43)       PSI •         AP Interation to be completed by customer.       SUGGESTED CONTROL VALVE & DP         AP Interation trainformation to be completed by customer.       SUGGESTED CONTROL VALVE & DP         AP Interational may be sized for "Installed maximum capacity" provided internals auitable for design capacity may be installed in the control valve body.         AP Intermeenation tipentification				UDD 1			<u> </u>	+		+		
33       STATIC HEAD, SOURCE TO ATTEMP. NOZZLE.       PSI       PSI       PARESS DROP AVAIL FOR PIPING AND VALVES (34-36)         37       ΔP B&W PIPING       PSI       O       O       O         37       ΔP B&W PIPING       PSI       O       O       O         37       ΔP B&W PIPING       PSI       O       O       O         37       ΔP DUST PIPING       PSI       O       O       O         37       TOTAL PIPING LOSS       PSI       O       O       O         37       TOTAL PIPING LOSS       PSI       O       O       O         37       TOTAL PIPING LOSS       PSI       O       O       O       O         36       PRESS DROP AVAIL FOR VALVES       (20-39)       PSI       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O				1100.1	119212	1 22.2	1	+	1	╘		
PRESS DROP AVAIL FOR PIPING AND VALVES (34-35)       PSI       O       O         37		· · · · · · · · · · · · · · · · · · ·				<u> </u>			<u> </u>	+		
37       △P BAW PIPING       PSI       ○       ○       ○         37       △P CUST PIPING       PSI       ○       ○       ○       ○         37       TOTAL PIPING LOSS       PSI       ○       ○       ○       ○       ○         37       PRESS DROP AVAILE FOR VALVES       (36-39)       PSI       ○       ○       ○       ○       ○         36       PRESS DROP AVAILE FOR VALVES       (Excluding control valve)       PSI       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○	Ę.				<u> </u>		1		<u> </u>	+		
Piping       Decust PIPING       PSI         PRESS DROP AVAIL FOR VALVES       (35-39)       PSI         A1       Decust POR AVAIL FOR VALVES       (35-39)       PSI         A1       Decust Valves       Excluding control valve)       PSI       O       O         A1       Decust Valves       Excluding control valve)       PSI       O       O       O         A1       Decust Valves       Excluding control valve)       PSI       O       O       O         A1       Decust Valves       Excluding control valve)       PSI       O       O       O         A1       Decust Valves       Excluding control valve)       PSI       O       O       O         A1       Decust Valves       Excluding control valve)       PSI       O       O       O       O         A1       Indicates information to be completed by customer.       SUGGESTED       CONTROL       VALVE AS         A2       Piping and valves to be sized for disign expecity.       SUGGESTED       CONTROL       VALVE AS         A3       Control valve internals may be installed in the control valve body.       Minternals avitable for design capacity may be installed in the control valve body.       Minternals avitable for design capacity may be installed in the control       FIRST S		+	-1	0	0	0	1	+	1	+		
TOTAL PIPING LOSS       PSI *         PRESS DROP AVAIL FOR VALVES       (35:39)       PSI *         A1       DP B&W VALVES (Excluding control valve)       PSI *       D         A1       DP CUST VALVES (Excluding control valve)       PSI *       D       D         A1       DP B&W VALVES (Excluding control valve)       PSI *       D       D       D         A1       DP CUST VALVES (Excluding control valve)       PSI *       D       D       D         A1       AP CUST VALVES (Excluding control valve)       PSI *       D       D       D         A1       TOTAL VALVE LOSS (Excluding control valve)       PSI *       D       D       D         A1       TOTAL VALVE LOSS (Excluding control valve)       PSI *       D       D       D         A1       PRESS DIFF. ACROSS CONTROL VALVE (40:43)       PSI *       D       D       D         A1       Indicates information to be completed by customer.       > SUGGESTED CONTROL VALVE AF       Piping and valves to be sized for dosign capacity.       SUGGESTED CONTROL VALVE AF         A1       Indicates information may be sized for "Installed maximum capacity" provided internals may be provided internals may be provided internals may be provided internals may be provided internals.       DOWNSTREAM (1st in Control)       Extreme Fist of the provided internals. <td>STEP.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>Ŧ</td>	STEP.								1	Ŧ		
M       PRESS DROP AVAILE FOR VALVES       (36-39)       PSI       O       O         41       ΔP B&W VALVES (Excluding control valve)       PSI       O       O       O         41       ΔP B&W VALVES (Excluding control valve)       PSI       O       O       O         41       ΔP B&W VALVES (Excluding control valve)       PSI       O       O       O         41       ΔP B&W VALVES (Excluding control valve)       PSI       O       O       O         42       TOTAL VALVE LOSS (Excluding control valve)       PSI       O       O       O         44       TOTAL VALVE LOSS (Excluding control valve)       PSI       PSI       O       O       O         45       TOTAL VALVE LOSS (Excluding control valve)       PSI       PSI       O       7.5       7.5         46       1.       * Indicates information to be completed by customer.       SUGGESTED       CONTROL       VALVE ΔP         47       3.       Control valve to be sized for disign capacity.       3.       Control valve internals may be sized for "Installed maximum capacity" provided       internals suitable for design capacity.       3.         48       Notes       Matter       Downstream (1st in Control)       FIRST STAGE (1st in Control)         51	2			ł			1	+	+	+		
41       △P B&W VALVES (Excluding control valve)       PSI       ○       ○       ○         Valves       △P CUST VALVES (Excluding control valve)       PSI       ○       ○       ○         Valves       △P CUST VALVES (Excluding control valve)       PSI       ○       ○       ○         Valves       △P CUST VALVES (Excluding control valve)       PSI       ○       ○       ○         Valves       △P CUST VALVES (Excluding control valve)       PSI       ○       ○       ○         Valves       ○       ○       ○       ○       ○       ○       ○         Valves       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○ <td>Ŕ</td> <td></td> <td></td> <td><u>.</u></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>T</td>	Ŕ			<u>.</u>	1		1	1	1	T		
Valves       AP CUST VALVES (Excluding control valve)       PSI *         Min. REO'D PRESS DIFF. ACROSS CONTROL VALVE (40-43)       PSI *       PSI *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PSI *       PO 75 75         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       PSI *       PO 75 75       PS *         MIN. REO'D PRESS DROP ACROSS CONTROL VALVE (40-43)       PSI *       P				0	0	0	<u> </u>	1	1	T		
ITOTAL VALVE LOSS (Excluding control valve)       PSI       PRESS DIFF. ACROSS CONTROL VALVE (4043)       PSI         PRESS DIFF. ACROSS CONTROL VALVE (4043)       PSI       PSI       PO       7.5       7.5         MIN. RECOD PRESS DROP ACROSS CONTROL VALVE —       PSI       90       7.5       7.5         46       1. * Indicates information to be completed by customer.       > SUGGESTED CONTROL VALVE & PSI       90         47       2. Piping and valves to be sized for design capacity.       3. Control valve internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         48       Notes       Structure       Structure         50       51       Structure       Structure         50       51       Structure       Structure         52       53       Structure       Structure       Structure         54       ATTEMPERATOR TYPE:       StingLe Strage       TANDEM       Structure       Two STAGE         53       3       1       DOWNSTREAM (1st in Control)       FIRST STAGE (1st in Control)         56       ATTEMPERATOR IDENTIFICATION:       1       UPSTREAM (2nd in Control)       Stecond Structure         58       ATTEMPERATOR IDENTIFICATION:       1       UPSTREAM (2nd in Control)				h	<u> </u>		· · ·		1	T		
MIN. REQ'D PRESS DROP ACROSS CONTROL VALVEPSIPO7575         46       1. * Indicates information to be completed by customer504GESTED CONTROL VALVE & AP         47       2. Piping and valves to be sized for design capacity.         3. Control valve Internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         48       Notes         49       50         50       51         50       51         52       53         54       ATTEMPERATOR TYPE:	1	TOTAL VALVE LOSS (Excluding control valve)		1	1	<u> </u>				1		
MIN. REQ'D PRESS DROP ACROSS CONTROL VALVEPSIPO7575         46       1. * Indicates information to be completed by customer504GESTED CONTROL VALVE & AP         47       2. Piping and valves to be sized for design capacity.         3. Control valve Internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         48       Notes         49       50         50       51         50       51         52       53         54       ATTEMPERATOR TYPE:	À								1	T		
47       2. Piping and valves to be sized for design capacity.         48       Notes         49       3. Control valve Internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         50       50         51       51         52       53         54       ATTEMPERATOR TYPE:         58       Control internals         59       Control internals         50       Control valve body.         51       Control valve body.         52       Control internals         53       Control internals         54       ATTEMPERATOR TYPE:         55       Control internals         56       ATTEMPERATOR IDENTIFICATION:         56       Control internals         56       ATTEMPERATOR IDENTIFICATION:         57       Control internals         58       Control internals         59       Control internals         50       Control internals         58       Control internals         59       Control internals         50       Control internals         50       Control internals         50       Control internals	K		PSI	90	75	75			<u> </u>	J		
47       2. Piping and valves to be sized for design capacity.         48       Notes         49       3. Control valve Internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         50       50         51       51         52       53         54       ATTEMPERATOR TYPE:         58       Control internals         59       Control internals         50       Control valve body.         51       Control valve body.         52       Control internals         53       Control internals         54       ATTEMPERATOR TYPE:         55       Control internals         56       ATTEMPERATOR IDENTIFICATION:         56       Control internals         56       ATTEMPERATOR IDENTIFICATION:         57       Control internals         58       Control internals         59       Control internals         50       Control internals         58       Control internals         59       Control internals         50       Control internals         50       Control internals         50       Control internals	46	1. Indicates information to be completed by sustamer	>500	GESTED	CONTRO	L VELV	EAP			T		
48       Notes       3 Control valve Internals may be sized for "Installed maximum capacity" provided internals suitable for design capacity may be installed in the control valve body.         49       50       51         50       51       53         52       53       54         54       ATTEMPERATOR TYPE:       SINGLE STAGE       TANDEM         56       ATTEMPERATOR IDENTIFICATION:       0 DOWNSTREAM (1st in Control)       FIRST STAGE (1st in Control)         56       ATTEMPERATOR IDENTIFICATION:       0 UPSTREAM (2nd in control)       SECOND STAGE (2nd in Control)         58       CODE NO.       COMP. NO.       FILE NO.         3344-05585       RB-585         59       3344-05585       RB-585         59       3344-05585       RB-585		<ol><li>Piping and valves to be sized for design capacity.</li></ol>					0.01			Γ		
49       50         50       51         52       53         54       ATTEMPERATOR TYPE:         58       Control         59       Control         50       Control         54       ATTEMPERATOR IDENTIFICATION:         56       ATTEMPERATOR IDENTIFICATION:         58       CODE NO.         59       CODE NO.         60       COMP. NO.         61       UPSTREAM (2nd in Control)         55       CODE NO.         56       COMP. NO.         67       COMP. NO.         68       SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET		Notes 3. Control valve internals may be sized for "Installed ma	wimum cap	city" provi	ded					ſ		
50         51         52         53         54       ATTEMPERATOR TYPE:         58       DOWNSTREAM (1st in Control)         58       DOWNSTREAM (1st in Control)         58       ATTEMPERATOR IDENTIFICATION:         58       DUPSTREAM (2nd in Control)         59       SECOND STAGE (1st in Control)         56       ATTEMPERATOR IDENTIFICATION:         57       DUPSTREAM (2nd in Control)         58       SECOND STAGE (1st in Control)         59       CODE NO.         60       COMP.NO.         61       BUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET		internals suitable for design capacity may be installed	וו נעם כסטנו	UI VAIVE DOC	γ <b>.</b>					Γ		
51       52         52       53         54       ATTEMPERATOR TYPE:         58       DOWNSTREAM (1st in Control)         58       DOWNSTREAM (1st in Control)         58       DOWNSTREAM (1st in Control)         58       ATTEMPERATOR IDENTIFICATION:         59       DUPSTREAM (2nd in Control)         59       SECOND STAGE (1st in Control)         56       ATTEMPERATOR IDENTIFICATION:         57       DUPSTREAM (2nd in Control)         58       SECOND STAGE (1st in Control)         69       CODE NO.         70       COMP.NO.         60       SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET										L		
52         53         54       ATTEMPERATOR TYPE:         54       ATTEMPERATOR TYPE:         55       DOWNSTREAM (1st in Control)         56       ATTEMPERATOR IDENTIFICATION:         68       DOWNSTREAM (2nd in Control)         78       SECOND STAGE (2nd in Control)         78       SECOND STAGE (2nd in Control)         78       CODE NO.         79       CODE NO.         79       CODE NO.         79       CODE NO.         79       CODE NO.         70       RB-58%         60       CIS-38.0-5										ſ		
53       54       ATTEMPERATOR TYPE:       SINGLE STAGE       TANDEM       If TWO STAGE         54       ATTEMPERATOR TYPE:       SINGLE STAGE       TANDEM       If TWO STAGE         55       ATTEMPERATOR IDENTIFICATION:       ID DOWNSTREAM (1st in Control)       IF FIRST STAGE (1st in Control)         66       ATTEMPERATOR IDENTIFICATION:       ID UPSTREAM (2nd in Control)       ID SECOND STAGE (Ist in Control)         7       CODE NO.       COMP. NO.       FILE NO.         7       334-0.588       RB-588         60       CUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       FPGD CIS-38.0-5										T		
54       ATTEMPERATOR TYPE:       DSINGLE STAGE       TANDEM       D TWO STAGE         55       ATTEMPERATOR IDENTIFICATION:       DOWNSTREAM (1st in Control)       FIRST STAGE (1st in Control)         66       ATTEMPERATOR IDENTIFICATION:       D UPSTREAM (2nd in Control)       D SECOND STAGE (2nd in Control)         7       REL. NO. AND DATE 3(3.19-80)       CODE NO.       COMP. NO.         7       334-0.588       RB-588         60       CUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       FPGD							<u> </u>			T		
EXEMPERATOR IDENTIFICATION:       DOWNSTREAM (1st in Control)       FIRST STAGE (1st in Control)         B       ATTEMPERATOR IDENTIFICATION:       DUPSTREAM (2nd in Control)       ESECOND STAGE (1st in Control)         REL. NO. AND DATE 3(3.19-80)       CODE NO.       COMP. NO.       FILE NO.         SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       FPGD CIS-38.0-5		ATTEMPERATOR TYPE; DSINGLE STAGE D TAN	DEM		<u></u>	· Ø TWO	STAGE			Ţ		
Bit Matter Alter Perator Identification:       Destream (2nd in Control)       Descond Second         ReL. NO. AND DATE 3(319-80)       CODE NO.       COMP. NO.       FILE NO.         SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       FPGD       CIS-38.0_5	_	Dow		(1st in Cont	trol)	C FIRS	ST STAGE			T		
CODE NO.       COMP. NO.       FILE NO.         CODE NO.       COMP. NO.       FILE NO.         SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       CODE NO.       COMP. NO.       FILE NO.         SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET       FPGD CIS-38.0 5	56	2 0/31	REAM (2nd						the second s	Γ		
SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET FPGD CIS-38.0 5		EL. NO. AND DATE 3(12.19-96)				C	OMP. NO.	FILEN	10.	~		
SUPERHEATER ATTEMPERATOR SYSTEM DATA SHEET FPGD CIS-38.0.5					334-	058	8	IRR	-588	4		
		DEDUEATED ATTEMPEDATOD SVETEN D	ATA CI			-Kara D	EPC1		1205			
		ECOND STAGE ATTEMPERATOR STREED	AIA 31	1661		•	TT GL	- 010-5	<u>~</u>	• *		

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 1 of 106




# Florida Power CORPORATION

# Ten-Year Site Plan

DETAIL AS OF DECEMBER 31, 1995

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 2 of 106



## Florida Power CORPORATION

# Ten-Year Site Plan

1996-2005

Submitted To :

State of Florida Public Service Commission

DETAIL AS OF DECEMBER 31, 1995

#### TABLE OF CONTENTS

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 3 of 106

#### rage

List of Illustrations, Required Forms and Charts	i
Code Identification Sheet	ü

## CHAPTER 1 Description of EXISTING FACILITIES

A.	Existing Facilities Overview	1
B.	Area of Service Map	
C.	Transmission System Map	6
D.	Existing Generating Facilities (Form 1A)	8
E.	Existing Generating Facilities - Land Use and Investment (Form 1B)	9
F.	Existing Generating Facilities - Environmental Considerations (Form 1C)	10

#### CHAPTER 2 Forecast of ELECTRIC POWER DEMAND

A.	Electric Energy and Fuel Requirements
B.	Net Electrical Energy Requirements (Form 3A)
C.	Fuel Requirements (Form 3B)
D.	Forecast of Electric Demand Charts and Tables14
	History and Forecast of Energy Consumption (Chart 1)15
	History and Forecast of Energy Consumption (Form 2)
	Summer Peak Demand and Generating Capacity (Chart 2)
	Summer Peak Demand and Generating Capacity (Form 4A)
	Winter Peak Demand and Generating Capacity (Chart 3)
	Winter Peak Demand and Generating Capacity (Form 4B)
	Seasonal Peak Demand and Annual Energy (Form 4C)
E.	Peak Demand and Net Energy for Load by Month (Form 5)

<u>TABLI</u>	EOF	<u>CONTENTS</u> (continued)	Docket No. 060658 Progress Energy Florida	Page
F.	Fore	ecasting Methodology	Exhibit No (JBC-2) Page 4 of 106	
	1.	Introduction		
	2.	Forecast Assumptions		
	3.	Forecast Methodology		
	4.	Short-Term Econometric Model		
	5.	Long-Term SHAPES-PC Model		47
	6.	High and Low Forecast Scenarios		
	7.	Conservation		
CHAP	FER 3	5 Forecast of FACILITIES REQUIRE	<u>MENTS</u>	
A.	Inte	grated Resource Planning		65
B.	Gen	erating Capability Changes, Removals and	Additions (Form 6)	
C.	Cap	acity, Demand and Maintenance at Time o	f Summer Peak (Form 7A)	
D.	Cap	acity, Demand and Maintenance at Time o	f Winter Peak (Form 7B)	
СНАР	гғр А	Description and Impact Analysis of S	ITE AND FACILITY	
A.		rcession City Site		
B.		a Map - Osceola County, Florida		
C.		c County Site		
D.		a Map - Polk County, Florida		
E.		ner Plant Site		
F.		a Map - Volusia County, Florida		
G.	Hig	gins Plant Site	s	
H.	Area	a Map - Pinellas County, Florida		90
I.	Site	and Facility Forms		91
	Prop	posed Generating Facilities (Form 8A)		92
	Prop	posed Directly Associated Transmission Li	nes (Form 8B)	94

4

Î

ł

#### LIST OF ILLUSTRATIONS REQUIRED FORMS & CHARTS

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 5 of 106

<u>Form</u>		Page
1A	Existing Generating Facilities	8
1B	Existing Generating Facilities - Land Use and Investment	9
1C	Existing Generating Facilities - Environmental Considerations	10
2	History and Forecast of Energy Consumption	16
3A	Net Electrical Energy Requirements	12
3B	Fuel Requirements	13
4A	Summer Peak Demand and Generating Capacity	20
4B	Winter Peak Demand and Generating Capacity	22
4C	Seasonal Peak Demand and Annual Net Energy for Load	23
5	Peak Demand and Net Energy for Load by Month	29
6	Generating Capability Changes, Removals and Additions	77
7A	Capacity, Demand, and Maintenance at Time of Summer Peak	79
7B	Capacity, Demand, and Maintenance at Time of Winter Peak	80
8A	Proposed Generating Facilities	92
8B	Proposed Directly Associated Transmission Lines	94
Chart		

1	History and Forecast of Energy Consumption	15
2	Summer Peak Demand and Generating Capacity	19
3 .	Winter Peak Demand and Generating Capacity	21

#### FLORIDA POWER CORPORATION CODE IDENTIFICATION SHEET

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 6 of 106

#### Generating Unit Type

ST - Steam Turbine - Non-Nuclear

NP - Steam Power - Nuclear

GT - Combustion Turbine (Gas Turbine)

CC - Combined Cycle

SPP - Small Power Producer

COG - Cogeneration Facility

#### Fuel Type

UR - Nuclear (Uranium)

NG - Natural Gas

F06 - No. 6 Fuel Oil

F02 - No. 2 Fuel Oil

BIT - Bituminous Coal

MSW - Municipal Solid Waste

WH - Waste Heat

BIO - Biomass

#### **Fuel Transportation**

WA - Water TK - Truck RR - Railroad PL - Pipeline UN - Unknown

#### Air Pollution Control Strategy

CSCF - Controlled Sulfur Content of Fuel EP - Electrostatic Precipitator LNB - Low NOx Burners N - None

#### **Cooling Method**

OTF - Once-through, fresh

OTS - Once-through, saline

NDS - Natural Draft Cooling Towers (saline), closed cycle cooling system

HCT - Helper Cooling Towers

#### **Future Generating Unit Status**

A - Capability increase

FC - Conversion to alternate fuel

P - Planned but not authorized

RE - Scheduled for retirement

RP - Proposed for repowering

U - Under construction, less than 50% complete

V - Under construction, more than 50% complete

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 7 of 106

## CHAPTER 1

## Description of EXISTING FACILITIES

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 8 of 106

#### CHAPTER 1 Description of EXISTING FACILITIES

#### EXISTING FACILITIES OVERVIEW

#### **OWNERSHIP**

Florida Power Corporation (FPC) is an investor-owned electric utility with 508 preferred shareholders. The company's common stock is held by Florida Progress Corporation which has 40,523 registered common shareholders, 13,523 of whom live in Florida. In addition, millions of other people have an interest in the company due to investments made by insurance companies, mutual savings banks, and pension funds.

#### AREA OF SERVICE

The company's area of service (see Area of Service Map) encompasses approximately 20,000 square miles in 32 Florida counties. The area of service is divided into three geographical regions which are subdivided into 34 business offices. The company supplies electricity at retail to approximately 356 communities and at wholesale to 11 municipalities. Wholesale supplemental electric service also is supplied to Seminole Electric Cooperative, Inc. (SECI), Florida Municipal Power Agency (FMPA), and Walt Disney World.

#### INTERCONNECTIONS

The company is part of a nationwide interconnected power network that enables power to be exchanged between utilities.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 9 of 106

#### TRANSMISSION (See Transmission System Map)

Circuit miles of transmission lines Transmission & plant substations	4,557 83	
DISTRIBUTION		
Circuit miles of distribution lines		23,527
Overhead	17,499	
Underground	6,028	
Distribution substations		262

#### ENERGY MANAGEMENT

Florida Power customers participating in the company's Energy Management program are managing future growth and costs. As of December 31, 1995, 520,610 customers received \$39,803,548 in credits during the year. This excellent participation level provides over 951,000 KW of peak shaving capacity for use during high load periods. This program is a leader in the electric utility industry and directly benefits our environment.

#### TOTAL CAPACITY RESOURCE

Florida Power has a total capacity resource of 8,850 MW. This capacity resource includes utility and non-utility purchased power, peaking facilities, and nuclear and fossil steam plants. Additional information is shown on the following table "Power Plants, Peaking Units and Purchased Power."

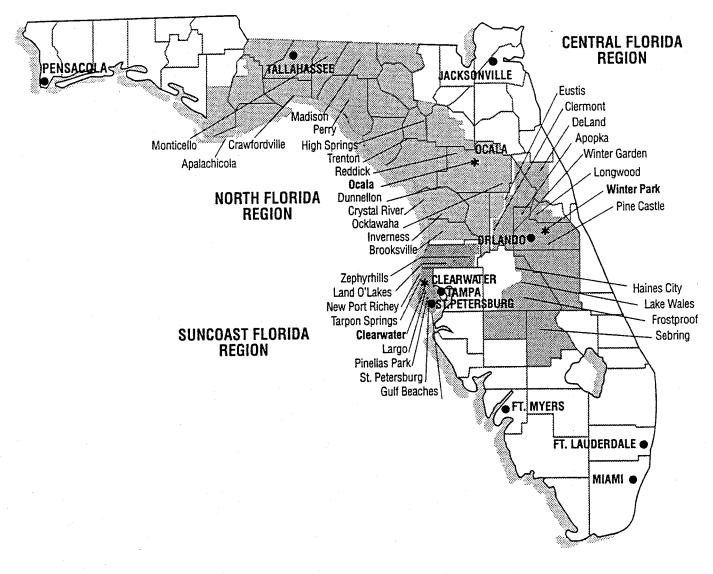
- 2 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 10 of 106

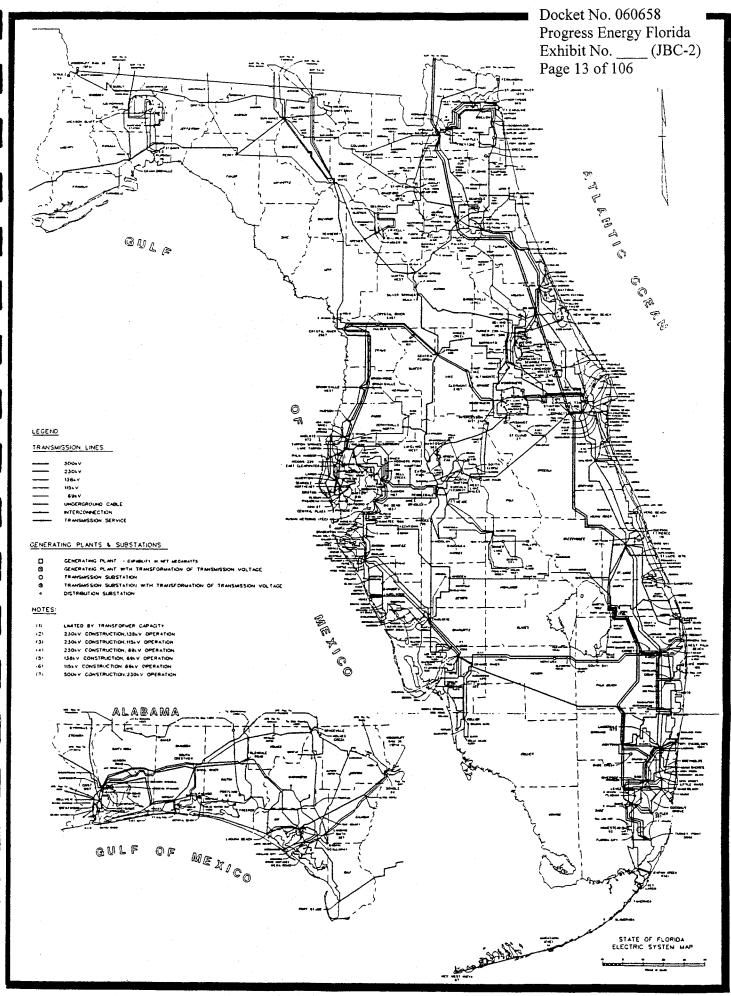
	Number Of	Net Dependabl Capability KW
Plants	Units	Winter
Nuclear Steam Plant		
Crystal River	1	755,000*
Fossil Steam Plants		
Crystal River	4	2,276,000
Anclote	2	1,034,000
Paul L. Bartow	3	449,000
Suwannee River	_3	147,000
Total Fossil	12	3,906,000
Total Steam		
(Nuclear & Fossil)	13	4,661,000
Peaking Units		
DeBary	10	786,000
Intercession City	10	750,000
Bayboro	4	232,000
Bartow	4	217,000
Suwannee	3	201,000
Turner	4	200,000
Higgins	4	158,000
Avon Park	2	64,000
University of Florida	1	42,000
Port St. Joe	1	18,000
Rio Pinar	_1	18,000
Total Peaking	44	2,686,000
Total Units	57	
Total Net Generating Capability		7,347,000
* Adjusted for sale of 9.6% total cap	аситу	
Purchased Power		
Qualifying Facilities	16	1,044,000
Investor Owned Utilities	2	459,000
Total Capacity Resource		8,850,000

### POWER PLANTS, PEAKING UNITS AND PURCHASED POWER

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 11 of 106


(This page left intentionally blank)

- 4 -




Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 12 of 106

# Florida Power Corporation • Area of Service



* Administrative Offices



-

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 14 of 106

Additional information on FPC's existing assets are shown on the following forms:

Existing Generating Facilities are shown on Form 1A.

Existing Generating Facilities - Land Use and Investment are shown on Form 1B.

Existing Generating Facilities - Environmental Considerations are shown on Form 1C.

#### FLORIDA POWER CORPORATION

#### EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1995

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 15 of 106

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
				PRIMA	RY FUEL	ALTERN	ATE FUEL	COMMERCIAL	EXPECTED	GENERATOR MAXIMUM	NET CAF M	PABILITY W
PLANT NAME	UNIT NO.	LOCATION	UNIT TYPE	FUEL TYPE	TRANSP. METHOD	FUEL TYPE	TRANSP. METHOD	IN-SERVICE (MO/YR)	RETIREMENT (MO/YR)	NAMEPLATE KW	SUMMER	WINTE
		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			<u> </u>		
				<u> </u>							1,006	1,03
ANCLOTE	1	PASCO CO.	ST	F06	PL			10/1974		556,200	503	51
	2	SECT 33,34 T26S,R15E	ST	F06	PL			10/1978		556,200	503	51
AVON PARK	P1-2	HIGHLANDS CO.	GT	F02	тк	NG	PL	12/1968	12/2004	67,580	58 58	6
											627	66
BARTOW	1	PINELLAS CO.	ST	F06	WA			09/1958		127,500	115	11
	2	SECT.20,21,22	ST	F06	WA			08/1961		127,500	117	11
	3	T30S,R16E	ST	F06	WA	NG	PL	07/1963		239,360	208	21
	P1-3		GT	F02	WA		· <del>-</del>	06/1972		167,100	138	15
	P4		GT	F02	WA			06/1972		55,700	49	
	Г <del>Т</del> ,			102				00/13/2		33,700	40	
BAYBORO	P1-4	PINELLAS CO.	GT	F02	WA			04/1973	12/2004	226,800	188 188	23 23
BATBORO	F 1-4	SECT. 30 T31S,R17E	91	102	¥¥A			04/19/5	(2)2004	220,000	100	2.
											2,961	n (
CRYSTAL	1	CITRUS CO.	ST	BIT	WA,RR			10/1966		440,550	• 369	
RIVER	2	SECT.33	ST	BIT	WA,RR			11/1969		523,800	464	4
	3 *	T17S,R16E	NP	UR				03/1977		890,460	734	7
	4 .		ST	BIT	WA,RR			12/1982		739,260	697	7
	5		ST	BIT	WA,RR			10/1984		739,260	697	7'
											656	78
DEBARY	P1-6	VOLUSIA CO.	GT	F02	TK,RR			04/1976		401,220	324	3
	P7-10	SECT.16,19-21, 28-30,T18S,R30E	GT	F02	TK,RR			11/1992		460,000	332	3
											128	1
HIGGINS	P1-2	PINELLAS CO.	GT	F02	тк	NG	PL	04/1969	12/2003	67,580	58	
	P3-4	SECT. 35,36 T25S,R16E	GT	F02	тк	NG	PL	12/1970	12/2003	85,850	70	1
											614	7
INTERCESSION	P1-6	OSCEOLA CO.	GT	F02	PL			05/1974		340,200	282	3
CITY	P7-10	SECT. 31 T25S,R28E	GT	F02	PL	NG	PL	11/1993		460,000	332	3
	i ya su										15	
PORT ST. JOE	P1	GULF CO.	GT	F02	TK			12/1970	12/2003	19,300	15	
RIO PINAR	P1	ORANGE CO.	GT	F02	тк			11/1970	12/2003	19,290	15 15	•
			01					111070	122000	13,200		
SUWANNEE	1	SUWANNEE CO.	ST	F06	тк	NG	PL	11/1953		34,500	307 33	3-
RIVER	2	SECT. 26,	ST	F06	тк	NG	PL	11/1954		37,500	33	:
IN TEIN	2	T1S,R11E	ST	F06	ТК	NG	PL	10/1956		75,000		
	P1-3	110,1111	GT	F08 F02	TK	10	FL .	10/1956		183,600	80	
	F 1+3		GI	F02				11/1900		163,600	162	2
											160	
TURNER	P1-2	VOLUSIA CO.	GT	F02	TK,WA			10/1970	12/2004	38,580	30	
	P3-4	SECT. 1, T19S,R30E	GT	F02	TK,WA			08/1974		142,400	130	1
UNIV. OF FLA.	P1	ALACHUA CO.	GT	NG	PL			01/1994		43,000	36 36	1

#### FORM 1B PAGE 1 OF 1

#### FLORIDA POWER CORPORATION

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 16 of 106

#### EXISTING GENERATING FACILITIES LAND USE AND INVESTMENT * AS OF DECEMBER 31, 1995

(1)	(2)	(3)	(4)	(5)	(6)	(7)

	LAND	AREA		PLANT CAPITAL I	NVESTMENT (\$00	0)
PLANT NAME	TOTAL	IN USE ACRES	LAND	SITE IMPROVEMENT	BUILDINGS & EQUIPMENT	TOTAL
ANCLOTE	454.34	425.56	1,869	3,940	230,498	236,307
AVON PARK	36.70	36.70	67	72	7,290	7,429
BARTOW	1,347.99	1,325.41	1,894	7,341	123,084	132,319
BAYBORO	4.52	4.52	0	325	18,877	19,202
CRYSTAL RIVER (FOSSIL)	5,527.67	4,334.51	2,415	48,681	1,166,331	1,217,427
CRYSTAL RIVER (NUCLEAR)		10.00	41	11,697	642,758	654,496 **
DEBARY	2,192.92	950.16	1,984	4,670	134,122	140,776
HIGGINS	141.82	117.37	184	1,474	28,416	30,074
INTERCESSION CITY	125.04	95.36	294	5,903	120,262	126,459
POLK COUNTY	8,110.53	8,110.53	11,013	0	0	11,013
PORT ST. JOE	<u></u>	· · ·	0	6	2,382	2,388
RIO PINAR			0	13	2,287	2,300
SUWANNEE RIVER	647.47	647.47	22	1,105	55,914	57,041
TURNER	134.97	127.27	825	1,397	35,717	37,939
UNIVERSITY OF FLORIDA					886	886
BARTOW / ANCLOTE PIPELINE			242	449	12,849	13,540

• INCLUDES CLOSING TO PLANT IN SERVICE, HELD FOR FUTURE USE & OTHER UTILITY PROPERTY; DOES NOT INCLUDE CLOSINGS TO ELECTRIC PLANT UNCLASSIFIED OR UNRECOVERED PLANT.

** FPC OWNERSHIP ONLY

#### FORM 1C

PAGE 1 OF 1

#### FLORIDA POWER CORPORATION

Docket No. 060658 Progress Energy Florida

## EXISTING GENERATING FACILITIES Exhibit No. ____ (JBC-2) Page 17 of 106 ENVIRONMENTAL CONSIDERATIONS FOR STEAM GENERATING UNITS AS OF DECEMBER 31, 1995


(1)	(2)	(3)	(4)	(5)	(6)

FLUE GAS CLEANING

					COOLING
PLANT NAME	UNIT	PARTICULATE	SO2	NOx	COOLING TYPE
*******					
ANCLOTE	1	Ν	CSCF	N	OTS,HCT
	2	Ν	CSCF	Ν	OTS,HCT
BARTOW	1	EP	CSCF	Ν	OTS
	2	N	CSCF	N	OTS
	3	Ν	CSCF	N	OTS
CRYSTAL RIVER	1	EP	CSCF	N	OTS,HCT
	2	EP	CSCF	N	OTS,HCT
	3	N/A	N/A	N/A	OTS,HCT
	4	EP	CSCF	LNB	NDS
	5	EP	CSCF	LNB	NDS
SUWANNEE RIVER	1	N	CSCF	N	OTF
	2	N	CSCF	Ν	OTF
	3	N	CSCF	N	OTF

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 18 of 106

## CHAPTER 2

## Forecast of ELECTRIC POWER DEMAND

#### **<u>CHAPTER 2</u>** Forecast of ELECTRIC POWER DEMAND

ELECTRIC ENERGY AND FUEL REQUIREMENTS

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 19 of 106

Florida Power Corporation's 1995 actual and projected energy requirements, in GWH, are shown by fuel type on Form 3A. FPC's 1995 actual and projected nuclear, coal, oil, and gas requirements are shown on Form 3B. FPC's energy and fuel requirements indicate that FPC has a diverse fuel supply which is not dependent on any one fuel source. FPC expects its fuel diversity to be further enhanced with the addition of future planned combined cycle generation units fueled by natural gas. Natural gas consumption is projected to increase as plants are added to meet future load growth. FPC's coal, nuclear, and purchased power requirements are projected to remain relatively stable over the planning horizon.

FORM 3A PAGE 1 OF 1

#### FLORIDA POWER CORPORATION

#### NET ELECTRICAL ENERGY REQUIREMENTS

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 20 of 106

				-ACTUAL-						Page 2	0 of 10	6		
	ENER	GY REQUIREME	NTS	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
(1)	INTERCHANGE	1	GWH	-115	139	176	142	128	, 159	171	186	165	173	171
(2)	NUCLEAR		GWH	6,544	5,570	6,289	5,620	6.289	5,638	6,289	5,620	6,289	5,638	6,289
(3)	COAL		GWH	13,596	15,052	14,778	14,582	14,320	14,807	15,187	15,439	15,281	15,524	16,094
(4)	RESIDUAL	TOTAL	GWH	3,772	3,070	2,866	3,467	2,671	3,202	3,297	3,373	3,584	3,641	2,831
(5)		STEAM	GWH	3,772	3,070	2,866	3,467	2,671	3,202	3,297	3,373	3,584	3,641	2,831
(6)		cc	GWH	0	0	0	0	0	0	0	0	0	·. 0	0
(7)		CT	GWH	0	0	0	0	0	0	0	0	0	0	0
(8)		DIESEL	GWH	0	0	0	0	0	0	0	0	0	0	0
(9)	DISTILLATE	TOTAL	GWH	383	312	355	491	433	575	950	1,084	1,254	1,207	809
(10)		STEAM	GWH	0	0	0	0	O	0	0	0	0	0	0
(11)		CC	GWH	0	0	0	· 0	0	0	0	0	0	0	0
(12)		СТ	GWH	383	312	355	491	433	575	950	1,084	1,254	1,207	809
(13)		DIESEL	GWH	0	0	0	0	0	0	0	٥	0	0	0
(14)	NATURAL GAS	TOTAL	GWH	1,415	1,034	1,356	2,431	5,154	4,998	4,947	4,670	4,898	6,182	7,469
(15)		STEAM	GWH	1,085	567	853	1,086	754	753	829	846	852	838	611
(16)		cc	GWH	0	0	0	696	3,935	3,703	3,742	3,530	3,795	4,846	6.475
(17)		СТ	GWH	330	467	503	649	465	542	376	294	251	498	383
(18)		DIESEL	GWH	0	0	0	0	0	0	0	0	0	0	0
(19)	OTHER INTERCH	ANGE 21												
	QF PURCHASES		GWH	6,847	7,277	7,740	7,740	7,806	7,827	7,806	7,806	7,806	7,827	7,806
	IMPORT FROM OI	JT OF STATE	GWH	1,462	1,413	1,458	1,872	1,354	2,135	1,878	2,345	2,205	2,414	2,274
	EXPORT TO OUT	OF STATE	GWH	-237	0	0	0	0	0	0	0	0	0	0
(20)	NET ENERGY FOI	RLOAD 3/	GWH	33,667	33,867	35,018	36,345	38,155	39,341	40,525	40,523	41,482	42,606	43,743

1 / NET ENERGY PURCHASED (+) OR SOLD (-) WITHIN PENINSULAR FLORIDA.

2 / NET ENERGY PURCHASED (+) OR SOLD (-).

37 SHOULD EQUAL COLUMN 10 ON FORM 4C, PAGE 1.

FORM 3B PAGE 1 OF 1

#### FLORIDA POWER CORPORATION

#### FUEL REQUIREMENTS

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 21 of 106

				-ACTUAL-					Pa	ige 21 c	DI 106			
		FUEL REQUIRE	MENTS	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
		<u> </u>		·		·			·				•	
(1)	NUCLEAR		TRILLION BTU	68	59	67	60	67	60	67	60	67	60	67
(2)	COAL		1,000 TON	5,138	5,627	5,517	5,436	5,353	5,552	5,678	5,774	5,716	5,775	5,991
(3)	RESIDUAL	TOTAL	1,000 BBL	6,140	4,748	4,464	5,361	4,206	4,962	5,116	5,223	5,546	5,658	4,461
(4)		STEAM	1,000 BBL	6,140	4,748	4,464	5,361	4,206	4,962	5,116	5,223	5,546	5,658	4,461
(5)		сс	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0.
(6)		ст	1,000 BBL	0	0	0	0	0	o	o	0	0	. 0	. 0
(7)		DIESEL	1,000 BBL	0	0	٥	0	0	0	0	O	0	0	0
(8)	DISTILLATE	TOTAL	1,000 BBL	1,025	1,037	1,143	1,420	1,298	1,597	2,363	2,623	2,990	2,892	2,057
(9)		STEAM	1,000 BBL	141	388	404	397	399	402	387	378	396	394	387
(10)	I	сс	1,000 BBL	0	0	0	0	0	O	o	0	0	0	0
(11)	I	СТ	1,000 BBL	884	649	739	1,023	899	1,195	1,976	2,245	2,594	2,498	1,670
(12)		DIESEL	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0
(13)	NATURAL GA	S TOTAL	1,000 MCF	14,414	11,036	14,169	23,370	39,109	38,543	37,579	35,113	36,448	45,769	53,750
(14)		STEAM	1,000 MCF	10,272	5,870	8,658	11,171	7,885	7,817	8,566	8,547	8,579	8,438	6,280
(15)		CC	1,000 MCF	0	0	0	4,553	25,828	24,358	24,635	23,258	25,026	32,198	43,412
(16)		СТ	1,000 MCF	4,142	5,166	5,511	7,646	5,396	6,368	4,378	3,308	2,843	5,133	4,058
(17)		DIESEL	1,000 MCF	٥	0	0	0	0	0	0	0	O	0	0

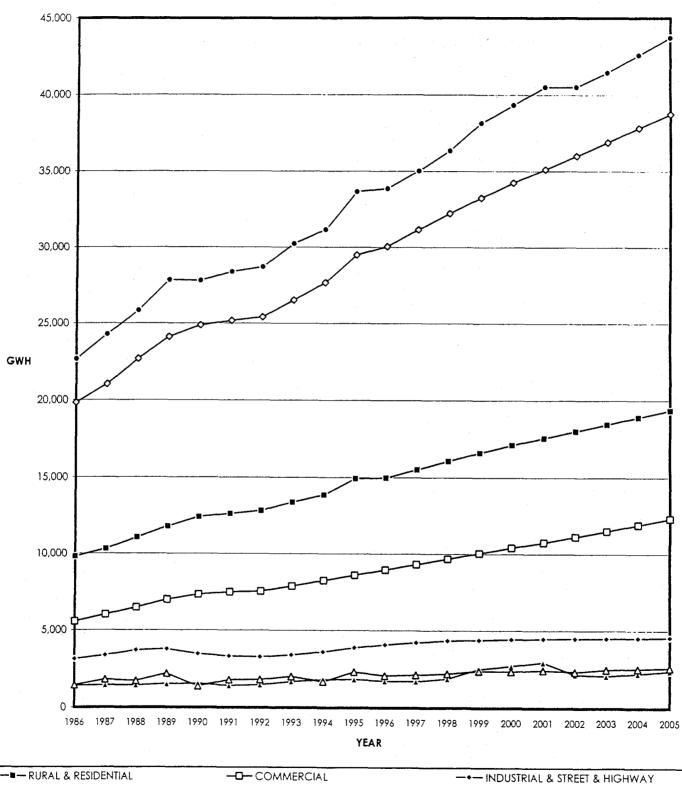
Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 22 of 106

#### FORECAST OF ELECTRIC DEMAND CHARTS AND TABLES

FPC's History and Forecast of Energy Consumption is shown on Chart 1. Related information on energy consumption and customer class is shown on Form 2.

FPC's Summer Peak Demand and Generating Capacity is shown on Chart 2 and includes historical and forecasted information. Additional data is shown on Form 4A to support Chart 2.

FPC's Winter Peak Demand and Generating Capacity is shown on Chart 3 and includes historical and forecasted information. Additional data is shown on Form 4B to support Chart 3.


FPC's History and Forecast of Base, High, and Low Demand and Energy requirements are shown on Form 4C. Additional information on the methodology, models and high and low scenarios are discussed in the following write-up on forecasting.

FPC's Previous Year Actual and Two-Year Forecast of Peak Demand and Energy by Month is shown on Form 5.

FLORIDA POWER CORPORATION

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 23 of 106

### HISTORY AND FORECAST OF ENERGY CONSUMPTION



→ RURAL & RESIDENTIAL → COMMERCIAL → INDUSTRIAL & STREET & HIGHWAY → TOTAL SALES TO ULTIMATE CONSUMERS → SALES FOR RESALE → UTILITY USE & LOSSES → NET ENERGY FOR LOAD

#### FLORIDA POWER CORPORATION

#### Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 24 of 106

FORM 2 PAGE 1 OF 3

HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS AS OF DECEMBER 31, 1995

_____

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		RURA	AND RESIDEN	ITIAL			COMMERCIAL	
YEAR	FPC POPULATION	MEMBERS PER HOUSEHOLD	GWH	AVERAGE # OF CUST	AVERAGE KWH/ CUST	GWH	AVERAGE # OF CUST	AVERAGE KWH/ CUST
				••••••••••••••••••••••••••••••••••••••	<u>_,</u>			
1986	2,162,572	2.48	9,819	872,441	11,255	5,573	96,843	57,547
1987	2,236,354	2.46	10,319	908,640	11,357	6,016	102,657	58,603
1988	2,302,453	2.45	11,066	941,440	11,754	6,479	106,899	60,609
1989	2,404,525	2.46	11,787	977,448	12,059	6,990	111,079	62,928
1990	2,492,186	2.47	12,416	1,007,806	12,320	7,329	113,595	64,519
1991	2,537,012	2.46	12,624	1,029,901	12,257	7,489	114,657	65,318
1992	2,588,540	2.47	12,826	1,050,077	12,214	7,544	116,727	64,630
1993	2,653,485	2.46	13,373	1,076,657	12,420	7,885	119,811	65,810
1994	2,720,931	2.47	13,863	1,100,537	12,597	8,252	122,987	67,097
1995	2,780,048	2.47	14,938	1,124,679	13,282	8,612	126,189	68,248
1996	2,830,076	2.47	14,977	1,145,203	13,078	8,960	128,513	69,721
1997	2,888,173	2.47	15,526	1,169,503	13,276	9,326	131,576	70,879
1998	2,947,724	2.47	16,075	1,194,896	13,453	9,686	134,856	71,825
1999	3,008,143	2.46	16,617	1,221,139	13,608	10,058	138,246	'4
2000	3,066,360	2.46	17,127	1,246,982	13,735	10,432	141,584	81، ۲۵, ۵81
2001	3,123,758	2.46	17,579	1,272,342	13,816	10,770	144,859	74,348
2002	3,177,118	2.45	18,023	1,296,471	13,902	11,135	147,976	75,249
2003	3,227,173	2.45	18,467	1,319,593	13,994	11,523	150,963	76,330
2004	3,275,138	2.44	18,919	1,342,129	14,096	11,918	153,875	77,452
2005	3,321,177	2.43	19,359	1,364,071	14,192	12,326	156,709	78,655

#### FLORIDA POWER CORPORATION FLORIDA POWER CORPORATION FLORIDA POWER CORPORATION Page 25 of 106

HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS AS OF DECEMBER 31, 1995

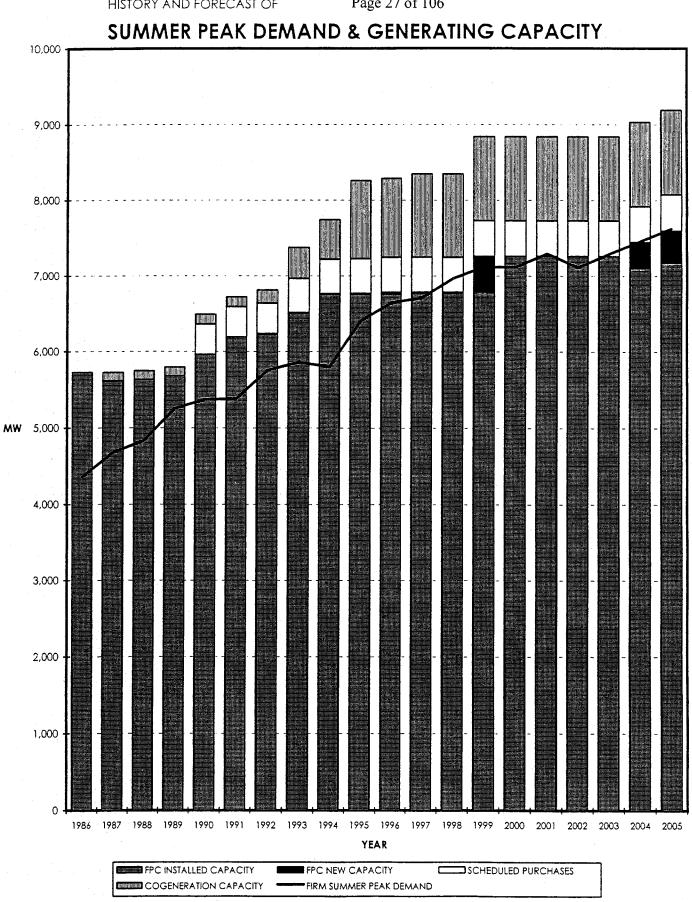
(10)	(11)	(12)	. (13)	(14)	(15)	(16)	(17)
		INDUSTRIÄL				OTHER SALES TO	TOTAL SALES TO
YEAR	GWH	AVERAGE # OF CUST	AVERAGE KWH/ CUST	OTHER CLASSIFICATION (SPECIFY):	STREET & HIGHWAY GWH	ULTIMATE CONSUMERS GWH	ULTIMATE CONSUMERS GWH
1986	3,122	2,705	1,154,159		16	1,301	19,831
1987	3,349	2,877	1,164,060		19	1,336	21,039
1988	3,681	2,942	1,251,190		19	1,447	22,692
1989	3,766	3,021	1,246,607		19	1,561	24,123
1990	3,456	3,115	1,109,470		21	1,658	24,880
1991	3,303	3,124	1,057,288		23	1,740	25,179
1992	3,254	3,137	1,037,445		24	1,765	25,414
1993	3,381	3,107	1,088,123		25	1,865	26,528
1994	3,580	3,186	1,123,539		26	1,954	27,675
1995	3,864	3,143	1,229,532		27	2,058	29,499
1996	4,049	3,248	1,246,613		29	2,042	30,057
1997	4,196	3,281	1,278,878		31	2,079	31,158
1998	4,320	3,314	1,303,561		32	2,132	32,245
1999	4,359	3,347	1,302,360		34	2,187	33,255
2000	4,414	3,380	1,305,917		36	2,243	34,252
2001	4,438	3,413	1,300,322		37	2,293	35,117
2002	4,457	3,446	1,293,384		39	2,344	35,998
2003	4,471	3,479	1,285,139		40	2,397	36,898
2004	4,489	3,512	1,278,189		41	2,450	37,817
2005	4,512	3,545	1,272,779		43	2,504	38,744

#### Docket No. 090988

FORM 2 Progress Energy Florida PAGE 3 OF 3

FLORIDA POWER CORPORATION Exhibit No. ____ (JBC-2)

Page 26 of 106


HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS AS OF DECEMBER 31, 1995

	· · · · · · · · · · · · · · · · · · ·	·······			
(18)	(19)	(20)	(21)	(22)	(23)
	SALES	UTILITY	NET		
	FOR	USE &	ENERGY	OTHER	TOTAL
	RESALE	LOSSES	FOR LOAD	CUSTOMERS	NO. OF
YEAR	GWH	GWH	GWH	(AVERAGE NO.)	CUSTOMERS
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
1986	1,408	1,446	22,685	8,438	980,427
1987	1,441	1,812	24,292	9,047	1,023,221
1988	1,432	1,724	25,848	9,691	1,060,972
1989	1,529	2,195	27,847	10,269	1,101,817
1990	1,548	1,377	27,805	10,983	1,135,499
1991	1,411	1,799	28,389	11,555	1,159,237
1992	1,471	1,817	28,702	12,229	1,182,170
1993	1,695	2,020	30,243	15,077	1,214,652
1994	1,819	1,680	31,174	17,181	1,243,891
1995	1,846	2,322	33,667	19,484	1,273,495
1996	1,728	2,082	33,867	18,391	1,295,355
1997	1,722	2,138	35,018	18,979	1,323,339
1998	1,885	2,215	36,345	19,564	1,352,630
1999	2,505	2,395	38,155	20,147	1,382,87'
2000	2,718	2,371	39,341	20,737	1,412,683
2001	2,965	2,443	40,525	21,322	1,441,936
2002	2,172	2,353	40,523	21,908	1,469,801
2003	2,092	2,492	41,482	22,494	1,496,529
2004	2,241	2,548	42,606	23,082	1,522,598
2005	2,396	2,603	43,743	23,668	1,547,993

FLORIDA POWER CORPORATION HISTORY AND FORECAST OF

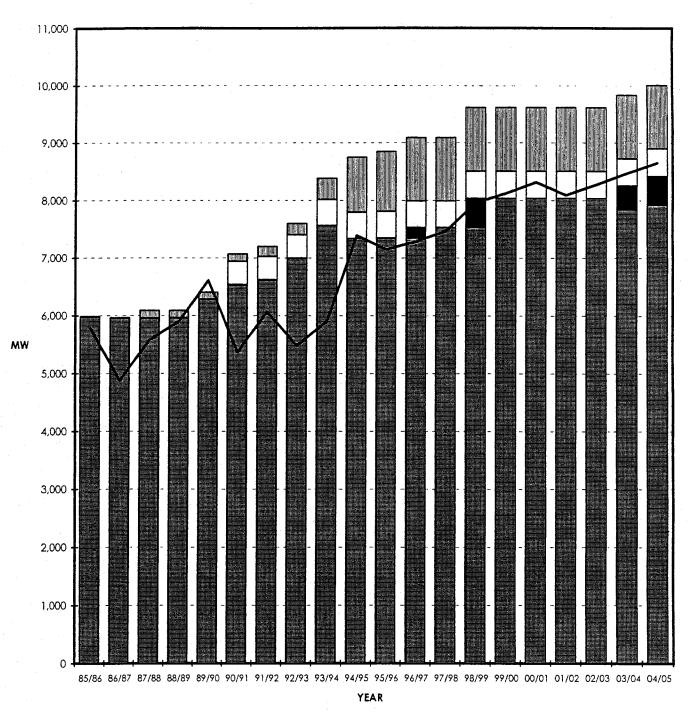
Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 27 of 106

CHART 2



#### FORM 4A PAGE 1 OF 1

#### FLORIDA POWER CORPORATION


#### Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 28 of 106

#### HISTORY AND FORECAST OF SUMMER PEAK DEMAND & GENERATING CAPACITY

	FPC	FPC	FIRM	FIRM	FIRM SUMMER	
	INSTALLED	NEW	SCHEDULED	COGENERATION	PEAK	
YEAR	CAPACITY	CAPACITY	PURCHASES	CAPACITY	DEMAND	
1986	5,731	0	0	0	4,357	
1987	5,617	0	0	111	4,680	
1988	5,633	0	. 0	117	4,837	
1989	5,678	0	0	121	5,256	
1990	5,963	.0	400	131	5,374	
1991	6,192	0	400	134	5,383	
1992	6,240	0	400	177	5,754	
1993	6,516	0	450	412	5,864	
1994	6,767	0	452	527	5,804	
1995	6,771	0	457	1,034	6,408	
1996	6,771	17	459	1,044	6,644	
1997	6,788	0	459	1,105	6,714	
1998	6,788	0	459	1,105	6,966	
1999	6,788	474	469	1,115	7,121	
2000	7,262	0	469	1,115	7,116	
2001	7,262	Ó	469	1,115	7,297	
2002	7,262	0	469	1,115	7,113	
2003	7,262	0	469	1,115	7,290	
2004	7,104	347	469	1,115	7,458	
2005	7,175	424	479	1,115	7,628	

#### NOTE: FPC INSTALLED CAPACITY COLUMN INCLUDES EXTENDED COLD SHUTDOWN AND RETIRED CAPACITY.

FLORIDA POWER CORPORATION HISTORY AND FORECAST OF Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 29 of 106



## WINTER PEAK DEMAND & GENERATING CAPACITY

 FPC INSTALLED CAPACITY
 FPC NEW CAPACITY
 SCHEDULED PURCHASES

 Image: Cogeneration Capacity
 Firm Winter Peak Demand

## FLORIDA POWER CORPORATION

#### FORM 4B PAGE 1 OF 1

## Docket No. 090988

HISTORY AND FORECAST OF WINTER PEAK DEMAND & GENERATING CAPACITY Progress Energy Florida Exhibit No. ____ (JBC-2) Page 30 of 106

YEAR	FPC INSTALLED CAPACITY	FPC NEW CAPACITY	FIRM SCHEDULED PURCHASES	FIRM COGENERATION CAPACITY	FIRM WINTER PEAK DEMAND
85/86	5,989	0	0	0	5,792
86/87	5,966	0	0	0	4,881
87/88	5,961	0	0	132	5,582
88/89	5,966	0	0	127	5,900
89/90	6,289	0	0	121	6,614
90/91	6,543	0	400	131	5,370
91/92	6,627	0	400	177	6,068
92/93	7,002	0	400	200	5,484
93/94	7,563	0	452	373	5,905
94/95	7,337	0	457	960	7,392
95/96	7,347	0	459	1,044	7,148
96/97	7,347	184	459	1,105	7,288
97/98	7,531	0	459	1,105	7,466
98/99	7,531	507	469	1,115	7,961
99/00	8,038	0	469	1,115	8,122
00/01	8,038	0	469	1,115	8,317
01/02	8,038	0	469	1,115	8,092
02/03	8,038	0	469	1,115	8,276
03/04	7,844	414	469	1,115	8,472
04/05	7,926	498	479	1,115	8,657

NOTE: FPC INSTALLED CAPACITY COLUMN INCLUDES EXTENDED COLD SHUTDOWN AND RETIRED CAPACITY.

FORM 4C PAGE 1 OF 6

#### FLORIDA POWER CORPORATION

HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD

					AS OF DE	CEMBER 31, 1995	D	1		
							Do	cket No. 09	0988	
							Pro	gress Energ	gy Florida	
					(BA	ASE CASE)	Ext	Exhibit No (JBC-2)		
							Pag	Page 31 of 106		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		SUMMER PEAK DEMAND (MW)					ANNUAL NET ENERGY FOR LOAD			
	FIRM			GWH			LOAD			
				LOAD						FACTOR
YEAR	RETAIL	WHOLESALE	TOTAL	MGT. *	INTERRUPT	TOTAL	RETAIL	WHOLESALE	TOTAL	(%) 
1986	4,038	319	4,357	110	177	4,644	21,277	1,408	22,685	43.3
1987	4,233	447	4,680	250	266	5,196	22,851	1,441	24,292	54.5
1988	4,337	500	4,837	250	, 222	5,309	24,416	1,432	25,848	47.6
1989	4,633	623	5,256	300	276	5,832	26,318	1,529	27,847	51.8
1990	4,733	641	5,374	342	230	5,946	26,257	1,548	27,805	46.6
1991	4,699	684	5,383	335	207	5,925	26,978	1,411	28,389	53.5
1992	4,927	827	5,754	417	186	6,357	27,231	1,471	28,702	46.8
1993	5,016	848	5,864	591	274	6,729	28,548	1,695	30,243	55.5
1994	5,003	801	5,804	615	262	6,681	29,355	1,819	31,174	51.2
1995	5,522	886	6,408	436	284	7,128	31,821	1,846	33,667	49.8
1996	5,359	1,285	6,644	0	314	6,958	32,139	1,728	33,867	51.7
1997	5,492	1,222	6,714	0	317	7,031	33,296	1,722	35,018	52.6
1998	5,632	1,334	6,966	0	327	7,293	34,460	1,885	36,345	53.2
1999	5,735	1,386	7,121	0	370	7,491	35,650	2,505	38,155	52.3
2000	5,873	1,243	7,116	0	373	7,489	36,623	2,718	39,341	52.7
2001	6,009	1,288	7,297	D	376	7,673	37,560	2,965	40,525	53.2
2002	6,177	936	7,113	0	340	7,453	38,351	2,172	40,523	54.9
2003	6,305	985	7,290	0	343	7,633	39,390	2,092	41,482	54.9
2004	6,422	1,036	7,458	0	346	7,804	40,365	2,241	42,606	55.0
2005	6,540	1,088	7,628	0	350	7,978	41,347	2,396	43,743	55.4

· LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

4

#### FLORIDA POWER CORPORATION

HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD

AS OF DECEMBER 31, 1995 Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) (BASE CASE) Page 32 of 106 (12) (13) (14) (15) (16) (17) (18) WINTER PEAK DEMAND (MW) FIRM LOAD YEAR RETAIL WHOLESALE TOTAL MGT.* INTERRUPT TOTAL 5,792 1985-86 5,082 710 0 185 5,977 503 4,881 0 206 1986-87 4,378 5,087 377 4,869 713 5,582 229 1987-88 6,188 639 5,900 237 1988-89 5,261 0 6,137 958 1989-90 5,656 6,614 203 0 6,817 1990-91 4,574 796 5,370 490 196 6,056 1991-92 5,063 1,005 6,068 704 210 6,982 4,608 876 5,484 585 150 1992-93 6,219 1,004 5,905 851 1993-94 4,901 199 6,955 1,169 7,392 50 280 7,722 1994-95 6,223 1,250 1995-96 ** 5,898 7,148 0 314 7,462 1,265 7,288 7,605 1996-97 6,023 0 317 1997-98 6,145 1,321 7,466 0 327 7,793 1998-99 6,239 1,722 7,961 0 369 8,330 1,755 373 1999-00 6,367 8,122 0 8,495 2000-01 6,494 1,823 8,317 0 376 8,693 6,655 2001-02 1,437 340 8,432 8,092 0 1,506 6,770 8,276 0 343 8,619 2002-03 1,579 2003-04 6,893 8,472 0 346 8,818 1,656 9,006 2004-05 7,001 8,657 0 349 2005-06 7,105 1,732 8,837 0 352 9,189

LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

** FORECAST ESTIMATE.

FORM 4C PAGE 3 OF 6

#### FLORIDA POWER CORPORATION

# HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD

					AS OF DE	CEMBER 31, 1995				
					(HIGH LC	DAD FORECAST)	P E	Docket No. Progress End Exhibit No. Page 33 of 1	ergy Flori (JBC	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		SUMMER F	PEAK DEMA	AND (MW)			ANNUAL	NET ENERGY F	OR LOAD	
		FIRM						GWH		LOAD
YEAR	RETAIL	WHOLESALE	TOTAL	LOAD MGT. *	INTERRUPT	TOTAL	RETAIL	WHOLESALE	TOTAL	FACTOR (%)
1986	4,038	319	4,357	110	177	4,644	21,277	1,408	22,685	43.3
1987	4,233	447	4,680	250	266	5,196	22,851	1,441	24,292	54.5
1988	4,337	500	4,837	250	222	5,309	24,416		25,848	47.6
1989	4,633	623	5,256	300	276	5,832	26,318	1,529	27,847	51.8
1990	4,733	641	5,374	342	230	5,946	26,257	1,548	27,805	46.6
1991	4,699	684	5,383	335	207	5,925	26,978	1,411	28,389	53.5
1992	4,927	827	5,754	417	186	6,357	27,231	1,471	28,702	46.8
1993	5,016	848	5,864	591	274	6,729	28,548	1,695	30,243	55.5
1994	5,003	801	5,804	615	262	6,681	29,355	1,819	31,174	51.2
1995	5,522	886	6,408	436	284	7,128	31,821	1,846	33,667	49.8
1996	5,523	1,285	6,808	. 0	314	7,122	32,783		34,511	52.7
1997	5,667	1,222	6,889	0	317	7,206	34,198	1,722	35,920	52.5
1998	5,885	1,334	7,219	0	327	7,546	35,610		37,495	53.0
1999	6,031	1,386	7,417	0	370	7,787	37,036		39,541	52.0
2000	6,273	1,243	7,516	0	373	7,889	38,432	2,718	41,150	52.2
2001	6,423	1,288	7,711	0	376	8,087	39,667	2,965	42,632	53.0
2002	6,641	936	7,577	0	340	7,917	40,642		42,814	54.4
2003	6,853	985	7,838	0	343	8,181	42,088	2,092	44,180	54.4
2004	7,042	1,036	8,078	0	346	8,424	43,318	2,241	45,559	54.3
2005	7,204	1,088	8,292	0	350	8,642	44,772	2,396	47,168	55.0

* LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

#### FLORIDA POWER CORPORATION

HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD

	AS OF	DECEMBER	31, 1995		Docket No. 090988
	(HIGH	LOAD FOR	ECAST)		Progress Energy Florida Exhibit No (JBC-2) Page 34 of 106
(14)	(15)	(16)	(17)	(18)	

WINTER PEAK DEMAND (MW)

(13)

(12)

		FIRM				
YEAR	RETAIL	WHOLESALE	TOTAL	LOAD MGT. *	INTERRUPT	TOTAL
	****					
1985-86	5,082	710	5,792	0	185	5,977
1986-87	4,378	503	4,881	0	206	5,087
1987-88	4,869	713	5,582	377	229	6,188
1988-89	5,261	639	5,900	0	237	6,137
1989-90	5,656	958	6,614	203	0	6,817
1990-91	4,574	796	5,370	490	196	6,056
1991-92	5.063	1,005	6,068	704	210	6,982
1992-93	4,608	876	5,484	585	150	6,219
1993-94	4,901	1,004	5,905	851	199	6,955
1994-95	6,223	1,169	7,392	50	280	7,722
1995-96 **	5,898	1,250	7,148	0	314	7,462
1996-97	6,222	1,265	7,487	0	317	7,804
1997-98	6,429	1,321	7,750	0	327	8,077
1998-99	6,582	1,722	8,304	0	369	8,673
1999-00	6,840	1,755	8,595	0	373	8,968
2000-01	6,982	1,823	8,805	. 0	376	9,181
2001-02	7,202	1,437	8,639	0	340	8,979
2002-03	7,418	1,506	8,924	0	343	9,267
2003-04	7,626	1,579	9,205	0	346	9,551
2004-05	7,783	1,656	9,439	0	349	9,788
2005-06	8,006	1,732	9,738	0	352	10,090

• LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

** FORECAST ESTIMATE.

#### FORM 4C PAGE 5 OF 6

#### FLORIDA POWER CORPORATION

HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD

AS OF DECEMBER 31, 1995

					AS OF DE	CEMBER 31, 1995		ket No. 090		
					(LOW LOAD FORECAST)		Progress Energy Florida Exhibit No (JBC-2) Page 35 of 106			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		SUMMER I	PEAK DEMA	ND (MW)			ANNUAL	NET ENERGY F	OR LOAD	
		FIRM						GWH		LOAD
YEAR	RETAIL	WHOLESALE	TOTAL	LOAD MGT. *	INTERRUPT	TOTAL	RETAIL	WHOLESALE	TOTAL	FACTOR (%)
1986	4,038	319	4,357	110	177	4,644	21,277	1,408	22,685	43.3
1987	4,233		4,680	250	266	5,196	22,851		24,292	54.5
1988	4,337		4,837	250	222	5,309	24,416		25,848	47.6
1989	4,633	623	5,256	300	276	5,832	26,318	1,529	27,847	51.8
1990	4,733	641	5,374	342	230	5,946	26,257	1,548	27,805	46.6
1991	4,699	684	5,383	335	207	5,925	26,978	1,411	28,389	53.5
1992	4,927	827	5,754	417	186	6,357	27,231	1,471	28,702	46.8
1993	5,016	848	5,864	591	274	6,729	28,548	1,695	30,243	55.5
1994	5,003	801	5,804	615	262	6,681	29,355	1,819	31,174	51.2
1995	5,522	886	6,408	436	284	7,128	31,821	1,846	33,667	49.8
1996	5,227	1,285	6,512	0	314	6,826	31,455	1,728	33,183	50.6
1997	5,280	1,222	6,502	0	317	6,685	32,419	1,722	34,141	52.9
1998	5,379	1,334	6,713	0	327	7,040	33,296	1,885	35,181	53.5
1999	5,424	1,386	6,810	0	370	7,180	34,195	2,505	36,700	52.6
2000	5,534	1,243	6,777	0	373	7,150	34,901	2,718	37,619	52.9
2001	5,575	1,288	6,863	0	376	7,239	35,570	2,965	38,535	53.8
2002	5,720	936	6,656	0	340	6,996	36,094	2,172	38,266	55.4
2003	5,798	985	6,783	0	343	7,126	36,883	2,092	38,975	55.5
2004	5,852	1,036	6,888	0	346	7,234	37,441	2,241	39,682	55.5
2005	5,882	1,088	6,970	0	350	7,320	38,184	2,396	40,580	56.3

* LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

#### FORM 4C PAGE 6 OF 6

#### FLORIDA POWER CORPORATION

HISTORY AND FORECAST OF SEASONAL PEAK DEMAND AND ANNUAL NET ENERGY FOR LOAD AS OF DECEMBER 31, 1995

			(LOW LOAD FORE			Docket No. 090988 Progress Energy Florida Exhibit No (JBC-2)
(12)	(13)	(14)	(15) (16)	(17)	(18)	Page 36 of 106

WINTER PEAK DEMAND (MW)

		FIRM				
YEAR	RETAIL	WHOLESALE	TOTAL	LOAD MGT. *	INTERRUPT	TOTAL
1985-86	5,082	710	5,792	0	185	5,977
1986-87	4,378	503	4,881	0	206	5,087
1987-88	4,869	713	5,582	377	229	6,188
1988-89	5,261	639	5,900	0	237	6,137
1989-90	5,656	958	6,614	203	0	6,817
1990-91	4,574	796	5,370	490	196	6,056
1991-92	5,063	1,005	6,068	704	210	6,982
1992-93	4,608	876	5,484	585	150	6,219
1993-94	4,901	1,004	5,905	851	199	6,955
1994-95	6,223	1,169	7,392	50	280	7,722
1995-96 **	5,898	1,250	7,148	0	314	7,462
1996-97	5,783	1,265	7,048	0	317	7,365
1997-98	5,861	1,321	7,182	0	327	7,509
1998-99	5,877	1,722	7,599	0	369	7,968
1999-00	5,966	1,755	7,721	0	373	8,094
2000-01	5,979	1,823	7,802	. 0	376	8,178
2001-02	6,112	1,437	7,549	0	340	7,889
2002-03	6,170	1,506	7,676	0	343	8,019
2003-04	6,219	1,579	7,798	0	346	8,144
2004-05	6,221	1,656	7,877	0	349	8,226
2005-06	6,294	1,732	8,026	0	352	8,378

* LOAD MANAGEMENT THAT WAS AVAILABLE BUT NOT EXERCISED.

** FORECAST ESTIMATE.

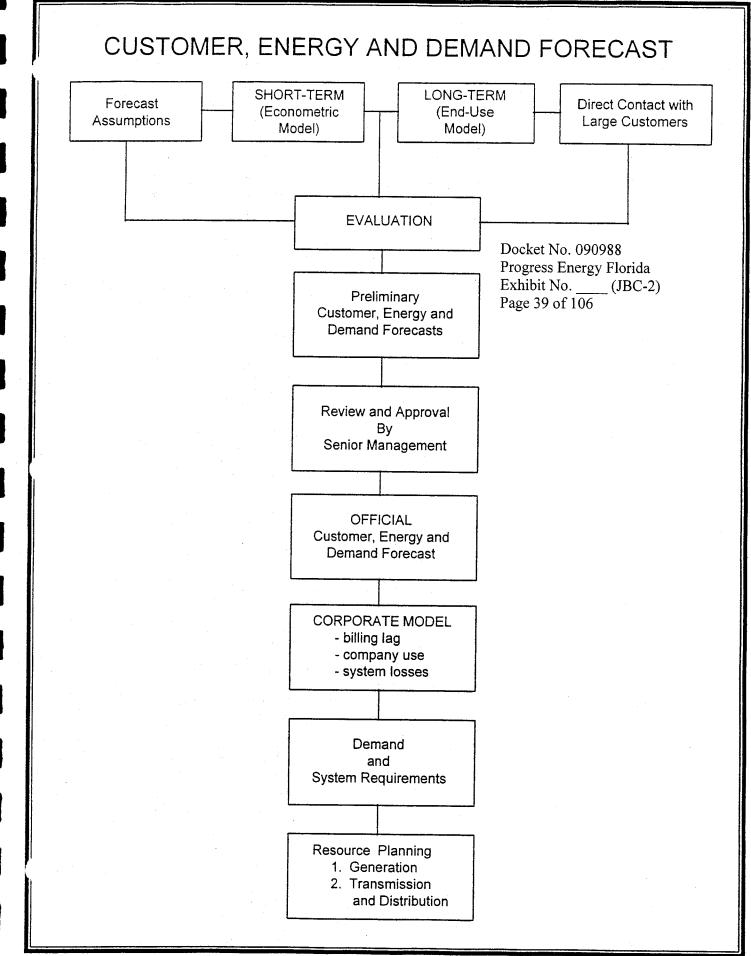
FORM 5 PAGE 1 OF 1

### FLORIDA POWER CORPORATION

(1)

PREVIOUS YE	AND N	ET ENERGY	O-YEAR FORECA FOR LOAD BY M EMBER 31, 1995	ONTH ] ]	PEAK DEMAND Docket No. 090988 Progress Energy Florida Exhibit No (JBC-2) Page 37 of 106	
(2)	(3)		(4)	(5)	(6)	(7)
ACTUAL					FORECAST	

	1995	5	199	96	1997		
MONTH	PEAK DEMAND (MW)	NEL (GWH)	PEAK DEMAND (MW)	NEL (GWH)	PEAK DEMAND (MW)	NEL (GWH)	
JAN	7,081	2,611	7,148	2,596	7,288	2,700	
FEB	7,722	2,350	6,410	2,319	6,552	2,410	
MAR	5,064	2,251	5,319	2,474	5,424	2,568	
APR	5,487	2,357	4,507	2,377	4,599	2,464	
MAY	6,851	3,213	5,205	2,887	5,314	2,984	
JUN	6,814	3,015	6,314	3,195	6,389	3,292	
JUL	6,840	3,364	6,490	3,466	6,566	3,575	
AUG	7,128	3,442	6,644	3,486	6,714	3,600	
SEP	6,654	3,167	6,242	3,275	6,319	3,380	
ост	6,108	2,801	5,134	2,746	5,250	2,836	
NOV	5,553	2,340	4,974	2,411	5,071	2,490	
DEC	6,977	2,756	6,229	2,635	6,344	2,719	
TOTAL		33,667		33,867		35,018	


Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 38 of 106

# FORECASTING METHODOLOGY

# **INTRODUCTION**

The need for accurate forecasts of long-range electric energy consumption, customer growth, peak demand and system load shape is an important planning function for any electric utility. Risks involved with being in an over-or-under capacity situation can have a significant financial impact on a utility operating in either a competitive marketplace or the regulatory arena. Accurate projections of a utility's future growth require forecasting methodologies with the ability to account for a variety of factors influencing electric energy usage in both the short-term and long-term planning horizons. Florida Power Corporation's forecasting system utilizes the System for Hourly and Annual Peak and Energy Simulation (SHAPES-PC) end-use forecasting system as well as short-term econometric models to achieve this end. This chapter will describe the underlying methodology of both the econometric and end-use models including the assumptions incorporated in each. Also included is a description as to how Demand-Side Management (DSM) impacts affect the forecast, the development of high and low forecast scenarios, and a review of the DSM programs.

The following flow diagram entitled "Customer, Energy and Demand Forecast" gives a general description of FPC's forecasting process. Highlighted in the diagram is the blending of short-term and long-term modeling techniques based on a set of assumptions. Add to this some direct contact with large customers and the forecaster has the tools to mold a most likely scenario of the future.



Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 40 of 106

1

### FORECAST ASSUMPTIONS

The first step in any forecasting effort is the development of assumptions upon which the forecast is based. The Load Forecasting section of the Business Planning Department develops these assumptions based on discussions with a number of departments within FPC, as well as through the research efforts of a number of external sources. These assumptions specify major factors that influence the level of customers, energy sales, or peak demand over the forecast horizon. The following set of assumptions form the basis for the forecast presented in this document.

#### **GENERAL ASSUMPTIONS**

- Normal weather conditions are assumed. Normal weather is based on a ten-year average of service-area-weighted degree days in order to project kilowatt-hour sales. Similarly, a tenyear average of service area weighted temperature at hour of system peak is used to forecast megawatt peak demand.
- 2. The population projection produced by the Bureau of Economic and Business Research (BEBR) at the University of Florida provides the basis for development of the customer forecast. This forecast uses "Population Studies," Bulletin No. 111, February 1995.
- 3. FPC's largest electric consumers, its phosphate mining customers, have experienced a significant improvement of late. Improved market conditions for phosphate rock have firmed market prices and allowed for expansion of operations at some mining sites. New mining operations with scheduled openings in the 1995-1996 period include Mobil Chemical Company in South Ft. Meade and C.F. Industries in Ft. Green. As a result, a significant increase in phosphate energy consumption is assumed in this forecast over the next few years. Beyond this time period, a trend level of production is assumed.
- 4. Florida Power Corporation supplies capacity and energy service to wholesale customers on a full and partial requirements basis. Full requirements customers' demand and energy are assumed to grow at rates dictated by projected population levels as well as projected economic activity. Partial requirements customers' load is assumed to reflect the current contractual obligations received by FPC as of June 1, 1995. The forecast of energy and demand from partial requirements customers reflect their ability to receive dispatched energy from the Florida broker system any time it is more economical to do so. FPC's arrangement with Seminole Electric Cooperative, Incorporated is to serve "supplemental" service over and above annual levels of self-generation and firm purchase contracts. SECI's projection of their system's supplemental demand and energy requirements has been

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 41 of 106

incorporated into this forecast. This forecast also includes three wholesale bulk power contracts. The first is a multi-part contract with SECI to serve 455 MW for three years beginning in 1999 and ending in 2001. An option to extend this load for an additional seven years exists, but is not assumed in the forecast. A second piece of the SECI contract involves 150 MW of stratified intermediate demand that is assumed to be served throughout the forecast horizon. The other two bulk power contracts are summer firm contract sales at varying annual capacity levels with Georgia Power Company and Oglethorpe Power Corporation for the 1996-1999 and 1997-1998 periods, respectively.

- 5. This forecast incorporated all cost effective amounts of demand and energy reductions from FPC'S dispatchable and non-dispatchable DSM programs as approved by the Florida Public Service Commission.
- 6. The expected energy and demand impacts of self-service cogeneration are subtracted from the forecast. The forecast assumes that FPC will supply the supplemental load of self-service cogeneration customers. This forecast assumes an increase of 6 MW of self-service capacity by a large phosphate customer. Supplemental load is defined as the cogeneration customers' total load less their normal generation output. While FPC offers "standby" service to all cogeneration customers, this forecast does not assume an unplanned need for standby power.
- 7. The economic outlook for this 20 year forecast attempts to describe the short-term outlook for the current business cycle as well as the long-term trend behavior for the economy. It is important to note, however, that identification of the long-term trend in economic/demographic conditions represents the primary focus of this forecast. The purpose of the short term outlook is only to show how the current business cycle is expected to evolve and eventually blend into the long-term. Beyond the short-term time horizon, only the long-run trends in economic and demographic conditions that cut through the peaks and troughs of future business cycles are considered in this forecast.

#### SHORT-TERM

The basis for the customer, energy, and demand forecasts during the first five years of this twenty year forecast reflects a soft landing from the strong growth in economic activity experienced in 1993 and 1994. During those years seven consecutive interest rate hikes by the Federal Reserve Board (FED) began to constrain growth in the national economy in a bid to restrain inflationary pressures. Recent declines in interest rates have been influenced by slackening growth in the national economy, which slowed significantly during the first half of

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 42 of 106

1995. The FED has been trying to attain a natural rate of Gross Domestic Product (GDP) growth of 2.5 percent -- far lower than the torrid rate experienced in 1994. It is assumed that interest rates have peaked for the current business cycle and will remain at the lower second quarter of 1995 level for the remainder of 1995 and 1996. No economic recession is predicted for the short-term forecast horizon, but growth will be lower than that experienced in 1993-1994. Federal government efforts to balance the federal budget will place downward pressure on interest rates in the next few years. A streamlined Federal government will lessen the demand for credit in the marketplace, thereby reducing the so called "crowding-out" effect. This is expected to aid home building as well as other capital intensive industries.

Personal income growth is expected to continue to increase, but not at the pace experienced in recent years. As interest rates fall, so will the return on interest-bearing accounts, and, correspondingly, income levels of Florida retirees. Employment growth will moderate from the strong pace experienced over the past two years, resulting in reduced growth in total wages. The strong employment growth in the service sector will continue. Export-related job growth is also expected to fare well in the year ahead. The weak dollar will encourage American exports, as well as attract more foreign tourists to Florida.

The cost of electricity is projected to decline in real dollar terms, which will result in greater average use by retail customers. Also contributing to this trend, according to home builders' surveys, is the demand for larger living quarters and increased median square footage in new construction of homes and apartments. Bigger areas mean greater central air conditioning use,

- 34 -

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 43 of 106

and this, along with increased use of washers and dryers in multi-family dwellings, will boost average electricity consumption per customer.

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 44 of 106

#### LONG-TERM

The long-term economic outlook assumes that changes in economic and demographic conditions will follow a trended behavior pattern. The main focus involves identifying these trends. No attempt is made to predict business cycle fluctuations during this period.

## **Population Growth Trends**

This forecast assumes Florida will experience slower in-migration and population growth over the long term, as reflected in the BEBR projections.

o Florida's climate and low cost of living have historically attracted a major share of the retirement population from the eastern half of the United States. This will continue to occur, but at less than historic rates for two reasons. First, Americans entering retirement age during the 1990s were born during the Great Depression era of the 1930s. This decade experienced a low birth rate due to the economic conditions at that time. Sixty years later, there now exists a smaller pool of retirees capable of moving to Florida. Second, the enormous growth in population and corresponding development of the 1980s made portions of Florida less desirable for retirement living. This diminished quality of retiree life, along with increasing competition from neighboring states for the retirement population, is expected to cause a slight decline in Florida's share of these prospective new residents over the long term.

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 45 of 106

o With the bulk of Florida's in-migrants under age 45, the baby boom generation born between 1945 and 1963 helped fuel the rapid population increase Florida experienced during the 1980s. Coupling this with two other events of the 1980s -- airline deregulation that lowered airfares, thereby increasing accessibility to Florida, and a recession in the oil-producing states that historically pulled a percentage of their labor pools from Florida -- one begins to realize that these conditions will not recur in the foreseeable future. In fact, slower population in-migration to Florida can be expected as the baby boom generation enters the 40's and 50's age bracket. This age group has been significantly characterized as immobile when studies concerning interstate population flows or job changes are conducted.

#### **Economic Growth Trends**

o Florida's rapid population growth of the 1980s created a period of strong job creation, especially in the service sector industries of the state economy. While the service-oriented economy expanded to support the increasing population level, there were also significant numbers of corporations migrating to Florida capitalizing on the low cost/low tax business environment. In this situation, increased job opportunities in Florida created greater inmigration among the nation's working age population. Florida's ability to attract businesses from other states because of its "comparative advantage" is expected to continue throughout the forecast period. Of long-term concern, however, is the passage of the North American Free Trade Agreement (NAFTA). At risk here is the by-passing of Florida by companies looking to relocate to a lower cost foreign environment. Mexico is

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 46 of 106

expected to attract a formidable share of American manufacturing jobs that may have moved to Florida. Also, the stability of Florida's citrus and vegetable industry may be threatened when faced with greater competition from Mexico as tariffs are eliminated.

- o The forecast assumes negative growth in real electricity prices. That is, the change in the nominal, or current dollar, price of electricity over time is expected to be less than the overall rate of inflation. This also implies that fuel price escalation will track at or below the general rate of inflation throughout the forecast horizon.
- Real per capita personal incomes are assumed to increase throughout the forecast period and thereby boost the average customer's ability to purchase electricity -- especially since the price of electricity is expected to increase at a rate below general inflation. As incomes grow faster than the cost of electricity, consumer ability to make additional purchases of electricity will improve.

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 47 of 106

#### FORECAST METHODOLOGY

The long-term forecast of MWh sales is produced utilizing SHAPES-PC, a large scale end-use computer model. FPC has also developed short-term econometric models as a supplement to the long-term SHAPES-PC methodology. These short-term models are expressly designed to better capture the short-term business cycle fluctuations preceding the long-term trend path of customers' energy usage and peak demand. In particular, the monthly periodicity studied in this approach better captures near-term perturbations than the end-use forecasting framework. Also, easier and more timely model updates enable the short-term econometric model to more readily incorporate the most recent projections of input variables. Output from these short-term econometric models is used to develop the first five years of the load forecast. The SHAPES-PC model output is then used as the basis for the long-term forecast.

#### SHORT-TERM ECONOMETRIC MODEL

In the short-term econometric models, energy sales in major revenue classes that have historically shown a relationship to weather and economic/demographic indicators are modeled using monthly equations. Sales are regressed against "driver" variables that best explain monthly fluctuations over a historical sample period. Forecasts of these input variables are either derived internally or come from a review of the latest projections made by several independent forecasting concerns. These include Data Resources Incorporated (DRI), Blue Chip Economic Indicators, and the University of Florida's Bureau

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 48 of 106

of Economic and Business Research. Internal company forecasts are used for projections of electric price, weather conditions and the average number of monthly billing days. Projections of FPC's energy efficiency program impacts (conservation program reductions) and direct load control reductions are also incorporated into the short-term energy forecast. Specific sectors are modeled as follows:

#### Residential Sector

Residential KWh usage per customer is modeled as a function of real Florida personal income, cooling degree days, heating degree days, the real price of electricity to the residential class and the average number of billing days each sales month. This equation significantly captures short-term movements in customer usage. Projections of KWh usage per customer combined with the customer forecast provides the forecast of total residential energy sales. The residential customer forecast is developed by correlating annual net new customers with FPC service area population growth. County population projections are developed by the University of Florida's BEBR.

#### Commercial Sector

Short-term commercial KWh use per customer is forecast based on commercial (non-agricultural, nonmanufacturing and non-governmental) employment, the average number of billing days each month and heating and cooling degree days. The measure of cooling degree days utilized here differs slightly from that used in the residential sector reflecting the dissimilar behavior patterns of this class with respect to its cooling needs. Commercial customers are projected as a function of the number of residential customers served.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 49 of 106

### Industrial Sector

Energy sales to this sector are separated into two sub-sectors. A significant portion of the industrial energy use, 32 percent in 1995, was consumed by the phosphate mining industry. Because this one industry dominates such a significant share of the total industrial class, it is separated and modeled apart from the rest of the class. The term "non-phosphate industrial" is used to refer to those customers who comprise the remaining 68 percent of total industrial class sales. Both groups are impacted by changes in short-term economic activity. However, adequately explaining this behavior requires separate explanatory variables. Non-phosphate industrial energy sales are modeled using the U.S. industrial production index for manufacturing, excluding motor vehicles, the real price of electricity to the industrial class, and the average number of sales month billing days. The particular industrial production index used in this equation best characterizes the industry make-up of the FPC service area which lacks a significant automotive manufacturing sector.

The industrial phosphate energy sales sub-sector is modeled using phosphate mining employment and the real industrial price of electricity. Since this sub-sector is comprised of only five customers, model results are heavily supplemented with information received from direct customer contact. FPC industrial customer representatives provide phosphate customer information regarding customer production schedules, area mine-out and start-up predictions, and changes in self-generation or energy supply situations over the near-term forecast horizon.

- 41 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 50 of 106

#### Other Retail Sectors

# Street Lighting

Electricity sales to the street lighting class are projected to increase due to growth in the service area population base. Residential customers provide an excellent source of FPC specific data with which to capture the trends in historic and future population growth over time. A linear regression model based on the number of residential customers is used to forecast street lighting MWh sales.

#### Public Authorities

Energy sales to public authorities (SPA), comprised mostly of government operated services, is also projected using the short-term monthly econometric approach. The level of government services, and thus energy use, can be tied to the population base, as well as to the state of the economy. Factors affecting population growth will impact the need for additional governmental services (i.e., schools, city services, etc.) thereby increasing SPA energy usage. Monthly government employment has been determined to be the best indicator of the level of government services provided. This variable, along with heating and cooling degree days and the average number of sales month billing days, result in a significant level of explained variation over the historical sample period. Intercept shift variables are also included in this model to account for the large change in school-related energy use in the months of January, July and August.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 51 of 106

#### Sales For Resale Sector

The Sales For Resale sector encompasses all sales to other electric companies. This includes sales to other utilities (municipal or investor owned) as well as power agencies (Rural Electric Authority (REA) or Municipal).

Seminole Electric Cooperative, Incorporated is a wholesale, or sales for resale, customer of FPC on a supplemental contract basis. FPC provides service within a contractual framework for those energy requirements above the level of generation capacity served by SECI's own facilities or firm purchase obligations. SECI provides FPC with a forecast of monthly supplemental peak demands and energy for their load within the FPC control area. Monthly supplemental demands are calculated from the total demand levels they project in FPC's control area less their own resources. Beyond supplemental service, FPC has signed a bulk power agreement with SECI for intermediate and peaking generation. From the forecaster's standpoint, this contract has two pieces that impact the load and energy forecast directly. First, a 455 MW structured capacity contract beginning in 1999 and ending in 2001 is incorporated in the forecast. An option to extend this sale for seven additional years beginning in 2002 (upon proper notification) exists in the contract, but is not assumed in this forecast. Second, the remaining 150 MW piece of the contract involves the sale of intermediate capacity on a long-term basis that is assumed to be served throughout the forecast horizon. Monthly projections of demand and energy were supplied to FPC by SECI.

A second bulk power contract customer is Oglethorpe Power Corporation (OPC). This customer has contracted with FPC to supplement its summer demand by 50 MW in 1997 and 275 MW in 1998.

- 43 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 52 of 106

Using information provided by the customer, it is projected that the full contracted MW amount will be required on-peak, but it will have a low load factor since this energy will be primarily used to help OPC meet summer peaking conditions. A four year contract demand agreement with Georgia Power Company (GPC) is also included in the forecast. This contract is for FPC to supply GPC summer peaking capacity of 400 MW in 1996, 300 MW in 1997, and 150 MW in both 1998 and 1999. The full amount of demand contracted is expected to be used by the customer, but with a low load factor.

The municipal sales for resale class includes a number of customer types divergent not only in scope of service, (i.e., full or partial requirement), but also in composition of ultimate consumers. Each category is modeled separately in order to accurately reflect the individual profiles. The majority of customers in this class are municipalities whose full energy requirements are met by FPC. The eight full requirements customers are modeled individually using local weather station data and population growth trends for that vicinity. Since the ultimate consumers of electricity in this sector are, to a large degree, residential and commercial customers, it is assumed that their use patterns will follow those of the FPC retail-based residential and commercial customer classes. FPC serves partial requirements service to three municipalities (New Smyrna Beach, Kissimmee and St. Cloud), a power authority (Florida Municipal Power Agency), a utility district (Reedy Creek Improvement District) and an investor-owned utility (Georgia Power Company). In each case, these customers contract with FPC for a specific level and type of demand needed to provide their particular electrical system with an appropriate level of reliability. The terms of each contract are subject to change each year. This means that the level and type of demand under contract can increase or decrease for each year of their contract. The demand forecasts for the partial requirement wholesale customers are derived using their

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 53 of 106

historical coincident demand to contract demand relationship (including transmission delivery losses). The demand projections for the Florida Municipal Power Agency also include a "losses service" MW amount to account for the transmission losses FPC incurs when "wheeling" power to their service area from other suppliers.

The methodology for projecting MWh energy usage for the partial requirement (PR) customers differs slightly from customer to customer. This category of service is sporadic in nature and exceptionally difficult to forecast because PR customers are capable of "brokering" their FPC capacity to purchase energy from other lower cost resources. For example, FMPA utilizes FPC's wholesale energy service only when more economical energy is unavailable. The forecast for FMPA is derived using annual historical load factor calculations to provide the expected level of energy sales based on the level of contracted MWs nominated by FMPA. Average monthly to annual energy ratios are applied to the forecast in order to obtain monthly profiles.

The remaining municipal PR customers are comprised of the Reedy Creek Improvement District (RCID) and the cities of New Smyrna Beach, Kissimmee and St. Cloud. Recent growth trends and historic load factor calculations are utilized to provide the expected level of MWh sales to these cities based on the MW level and stratification (base, intermediate, peaking) of power contracted as well as the individual profile of each contract. Again, these cities have alternative sources of supply to meet their needs. Purchases of energy from FPC will depend heavily on the price of available energy from other sources in the marketplace.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 54 of 106

# Demand-Side Management

Each projection of every retail class-of-business MWh energy sales forecast is reduced by estimated future energy savings due to FPC-sponsored and Florida Public Service Commission (FPSC)-approved dispatchable and non-dispatchable Demand-Side Management programs. Estimated energy savings for every non-dispatchable DSM program are calculated by FPC's Marketing and Demand-Side Management Department on a program-by-program basis and aggregated for each class-of-business on the program. Dispatchable DSM program energy savings are estimated within the Generation Planning Department's production costing models. These models determine the most cost-effective means to meet system requirements.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 55 of 106

#### LONG-TERM SHAPES-PC MODEL

# Energy Forecast

In the SHAPES-PC model the projections of the various economic and demographic parameters are combined with consumption estimates and patterns of electricity usage to produce projections of annual energy consumption. The basic concept underlying the model's structure involves breaking out numerous end-use categories for electricity consumption in order to establish homogeneous groups to forecast. SHAPES-PC is partitioned into three consumer categories: residential, commercial and industrial. SHAPES-PC has the capability to forecast hourly demand values for "typical" days in the year and then compute annual projections of MWh by summing the appropriate demand values.

# Residential Sector

The electricity consuming units in the residential sector are major household appliances. A total of seventeen major household appliances is explicitly treated in the model. The first step in estimating demand is to predict the number of units of each appliance type in the service area in a given year. The appliance stock is estimated as the saturation rate for a given appliance multiplied by the total number of residential customers. Appliance saturation rates are projected using an S-shaped logistic saturation function based on historical data from appliance saturation surveys and service area real personal income. The second major factor in the demand estimation equation is the connected load of the appliance. The term connected load is defined here as the power requirements or wattage of the appliance. This will tend to change over time as relative energy prices, appliance efficiencies, appliance features and technologies change.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 56 of 106

The last factor in the demand equation is the probability of the appliance operating at a given time. This term is called the use factor. It is necessary to distinguish between temperature, or weather sensitive use factors, and temperature insensitive use factors. The temperature insensitive use factors depend only on time, i.e., time of day, type of day and season. The type of day is important since weekday energy usage for many appliances differs from that of weekend and holiday usage. Similarly, there are seasonal variations in the use of many temperature insensitive appliances such as lighting. For other appliances, such as air conditioners, electric space heaters, and heat pumps, use factors depend not only on time of day, but also on temperature. These use factors indicate the probability of a space conditioning device operating at a given time of day, day type and temperature. Combining the heating and cooling use factors with the expected occurrence of temperature conditions in a given period yields the energy requirements for that period. By specifying a temperature profile for a given day, the model is capable of simulating the weather sensitive load corresponding to that temperature profile.

# Industrial Sector

The industrial sector model is designed to forecast energy consumption levels associated with manufacturing industries. Electric energy consumption in the industrial sector is significantly tied to the level of economic activity. The major driving forces affecting energy consumption are the real price of electricity, the level of economic activity in the service area, and the technologies, or processes, of the industries involved. Since energy requirements for a given measure of economic activity vary from one industry to another, it is necessary to assess the mix of the industrial sector. To capture the effect of industrial mix, the industrial sector is dis-aggregated into twelve categories. Thus, by projecting energy

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 57 of 106

usage independently for each 2-digit Standard Industrial Code (SIC) category, the model captures changes in energy consumption due to changes in the industrial base.

There are numerous ways of measuring economic activity in the industrial sector. Due to the ready availability of historic employment data on a 2-digit SIC level, employment was used as this measure of activity. The level of annual energy consumption in any one of the twelve industries is calculated by multiplying the projected level of economic activity (expressed in employment) by the projected energy intensity (expressed as KWh usage per employee) of that sector. The calculation of energy intensity for each sector also incorporates the industrial production index for the sector to "normalize" the level of electric energy used per unit of output.

# Commercial Sector

In the commercial sector, forecasts of annual energy consumption are derived for those customers falling into private, non-manufacturing business-types. Historic commercial energy sales are categorized into ten separate "building types" (e.g., retail, office, grocery, etc.) which are modeled individually. Future commercial electricity consumption is determined by multiplying the floor space in each of these ten building categories times the energy intensities per square foot by category. This is done for three distinct end-uses: base (non-weather sensitive), heating and cooling. Floor space projections are developed based on a combination of historic and projected floor space per employee and employment projections by building type. Energy intensity per square foot is projected by building type using time trends with considerations for the three end-uses (i.e., weather sensitivity and base use). The model also factors in the influence of electric price on energy usage decisions. Projections of KWh

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 58 of 106

usage per square foot along with projected square footage for each building type yield commercial sector energy sales.

#### Customer Forecast

An increasing service area population translates directly into a greater number of homes requiring electricity and, consequently, into a greater number of commercial establishments to service these residences. Service area population serves as the driver for residential and (implicitly) commercial customers, which comprise 98.3 percent of FPC total customers. The Bureau of Economic and Business Research at the University of Florida provides population estimates and projections for the FPC service area that are used in the development of the residential customer forecast. To determine future residential customer growth or change, a regression is performed against historic growth in residential customers. Future commercial and street lighting customers are modeled as a function of total residential customers. Industrial and public authority sector customers are forecast via a time-series approach given their relatively stable nature.

In the short-term, deviations from trend in the most recent time periods are scrutinized. This analysis, along with any specific input from regional field personnel regarding growth expectations, forms the basis for developing a short-term outlook that is consistent with recent history as well as the long-term projections for all customer classes.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 59 of 106

## Peak Demand Forecast

The forecast of peak demand also employs a dual methodology framework. The SHAPES-PC end-use model is used to develop class-of-business load shapes and an econometric approach is used to project specific dis-aggregated pieces of the demand forecast. Both techniques provide a unique perspective as to the make-up of total system demand.

The SHAPES-PC end-use model uses FPC load research sampled class of business load shapes to develop a weather normalized 8,760 hour (yearly) load shape for the residential, commercial, industrial, and "all other" classes to calibrate historic benchmarks. Projections in MW demand and energy are then based upon growth in residential customers, manufacturing employees, commercial floor space, increased saturation of class end-uses or energy intensity, and price elasticity.

The econometric approach to projecting seasonal peak demand employs a dis-aggregation technique that separates winter and summer peak hour system demand into five major components. These components consist of potential firm retail load, demand-side management program capability, wholesale demand, company use demand, and interruptible demand.

Potential firm retail load refers to projections of FPC retail hourly seasonal peak demand (excluding interruptible/curtailable/standby services) before the cumulative effects of any conservation activity or the activation of FPC's Load Management (LM) program. The historical values of this series are constructed to show the size of FPC's retail peak demand had no utility-induced conservation or load control ever taken place. The value of constructing such a "clean" series enables the forecaster to

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 60 of 106

observe and correlate the underlying trend in retail peak demand in the service area to total system customer levels and coincident weather conditions without the impacts of year-to-year variation in load control amounts.

Demand-Side Management and load control estimates are provided by both FPC's Marketing and Demand-Side Management Department and the Generation Planning Department, and include FPC's DSM programs that have been approved by the Florida Public Service Commission. Projections of dispatchable and cumulative non-dispatchable DSM are subtracted from the projection of potential firm retail demand.

Sales For Resale demand projections represent load supplied by FPC to other electric utilities such as Seminole Electric Cooperative, Incorporated, the Florida Municipal Power Agency, and other electric distribution companies. The SECI supplemental demand and energy projection is based on their projection of demand and energy that they expect FPC to serve. For the partial requirements customers demand projections, historical ratios of coincident-to-contract levels of demand are applied to future MW contract levels. The full requirement municipal demand forecast is estimated for individual cities using linear econometric equations modeling both weather and economic impacts specific to each locale. The seasonal (winter and summer) projections become the January and August peak values, respectively. The non-seasonal peak months are calculated using monthly allocation factors derived from applying the historical relationship between each winter month (November to March) relative to the winter peak, and each summer month (April to October) in relation to the summer peak demand.

- 52 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 61 of 106

FPC "company use" at the time of system peak is estimated using load research metering studies and is assumed to remain stable over the forecast horizon. The interruptible load component is developed from historic trends, as well as the incorporation of specific information obtained from FPC's industrial service representatives.

Each of the peak demand components described above is a positive value except for the DSM program MW impacts. Since DSM program impacts represent a reduction in peak demand, they are assigned a negative value. Total system peak demand is then calculated as the arithmetic sum of these five components.

Both the end-use methodology and the dis-aggregated econometric methodology supply necessary information that go into the final projection of system peak demand.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 62 of 106

#### HIGH AND LOW FORECAST SCENARIOS

The high and low bandwidth scenarios around the base MWh energy sales forecast are developed using a Monte Carlo simulation applied to a multivariate regression model that closely replicates the base MWh energy forecast in aggregate. This model accounts for variation in Gross Domestic Product, service area population and electric price. The base forecasts for these variables were developed based on input from Data Resources Inc., the Bureau of Economic and Business Research at the University of Florida and internal company sources. Variation around the base forecast predictor variables used in the Monte Carlo simulation was based on an 80 percent confidence interval calculated around variation in each variable's historic growth rate. In addition, qualitative variables accounting for shifts in wholesale load and the total number of degree days (weather) were also incorporated into the model. The DSM forecast utilized in the high and low scenarios is assumed to be identical to the DSM forecast used in the base case.

The Monte Carlo simulation was produced through the estimation of 1,000 scenarios for each year of the forecast horizon. These simulations allowed for random normal variation in the growth trajectories of the economic input variables (while accounting for cross-correlation amongst these variables), as well as simultaneous variation in the equation (model error) and coefficient estimates. These scenarios were then sorted and rank ordered from one to a thousand, while the simulated scenario with no variation was adjusted to equal the base forecast.

The low scenario was chosen from among the ranked scenarios resulting in a bandwidth forecast reflecting an approximate occurrence probability of .10. The high scenario similarly represents a

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 63 of 106

bandwidth forecast with an approximate occurrence probability of .90. In both scenarios the high and low peak demand bandwidth forecasts are projected from the energy forecasts using the load factor implicit in the base forecast scenario.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 64 of 106

# **CONSERVATION**

In June 1994, FPC participated in FPSC hearings in Docket No. 930549-EG. A final order, PSC-94-1313-FOF-EG, was issued on October 25, 1994. Pursuant to this order, the FPSC approved the following DSM goals for FPC, and required that FPC submit for approval a DSM plan designed to meet the goals:

Year	Cumulative Summer MW Goal	Cumulative Winter MW Goal	Cumulative GWh Goal
1994	11	43	12
1995	30	86	24
1996	50	133	38
1997	71	184	60
1998	93	236	78
1999	116	290	100
2000	140	343	127
2001	164	395	145
2002	188	445	169
2003	209	483	184

# **Residential Conservation Goals**

# **Commercial/Industrial Conservation Goals**

	Cumulative Summer MW	Cumulative Winter MW	Cumulative GWh
Year	Goal	Goal	Goal
1994	0.3	0.05	2
1995	3	3 -	19
1996	8	7	40
1997	15	13	71
1998	24	20	110
1999	35	29	155
2000	48	39	207
2001	61	48	255
2002	74	56	299
2003	84	64	336

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 65 of 106

FPC's DSM plan was submitted to the FPSC on February 22, 1995, and approved on November 1, 1995. This plan was designed to efficiently acquire all cost-effective DSM resources necessary to meet the Commission-established goals. The DSM plan consists of four residential programs, nine commercial and industrial programs, and one research and development program. These programs were designed using the end-use measures identified during FPC's Integrated Resource Planning process. Following is a brief description of these programs.

#### **Residential Programs**

# Home Energy Check Program

This energy audit program provides customers with an analysis of their current energy use and recommendations on how they can save on their electricity bill through low-cost or no-cost energy-saving practices and measures. The program provides customers with three types of energy audits: Level 1 - customer-completed mail-in audit; Level 2 - free walk-through audit; and Level 3 - paid walk-through audit. The Home Energy Check Program serves as the foundation of the Home Energy Improvement Program in that the audit is a prerequisite for participation in the retrofit of water heaters, heating and air conditioning units.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 66 of 106

# Home Energy Improvement Program

This is the umbrella program to improve energy efficiency for existing homes. It combines efficiency improvements to the thermal envelope with upgraded home energy equipment and appliances. The program provides incentives for ceiling insulation upgrades, reduced duct leakage, high efficiency electric heat pumps, heat recovery units, and dedicated heat pump water heaters.

#### **Residential New Construction Program**

This program promotes energy efficient new home construction in order to provide customers with more efficient cooling and heating consumption combined with improved environmental comfort. The program provides education and information to the design community on energy efficient building design and construction, pays for the cost of duct testing on model homes, provides financial incentives for energy efficient equipment, provides an FPC 'seal-of-approval' on qualifying energy efficient homes, and provides cooperative advertising to the more energy efficient developers and builders.

#### **Residential Energy Management Program**

This is a voluntary customer program that allows FPC to reduce peak demand and thus defer generation construction. Peak demand is reduced by interrupting service to selected electrical equipment with radio controlled switches installed on the customer's premises. These interruptions are at FPC's option, during specified time periods, and coincident with

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 67 of 106

hours of peak demand. Participating customers receive a monthly credit on their electricity bill.

### Commercial/Industrial (C/I) Programs

# **Business Energy Check Program**

This energy audit program provides commercial and industrial customers with an assessment of the current energy usage at their facility, recommendations on how they can improve the environmental conditions of their facility while saving on their electricity bill, and information on low-cost energy efficiency measures. The Business Energy Check consists of two types of audits: Level 1 - free walk-through audit, and Level 2 - paid walk-through audit. In most cases, this program is a prerequisite for participation in the other C/I programs.

#### **Better Business Program**

This is the umbrella efficiency program for existing commercial and industrial customers. The program provides customers with information, education, and advice on energyrelated issues and incentives on efficiency measures that are cost-effective to FPC and its customers. The Better Business Program promotes energy efficient lighting, heating, ventilation, air conditioning (HVAC), motors, and water heating equipment, as well as some building retrofit measures (in particular, roof insulation upgrade, duct leakage test and repair, and window film retrofit).

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 68 of 106

## Commercial/Industrial New Construction Program

The primary goal of this program is to foster the design and construction of energy efficient buildings. The new construction program will: 1) provide education and information to the design community on all aspects of energy efficient building design; 2) require that the building design, at a minimum, surpass the state energy code; 3) provide financial incentives for specific energy efficient equipment; and 4) provide energy design awards to building design teams. Incentives will be provided for high efficiency HVAC equipment, motors, heat recovery units, and duct leakage testing and repair.

## **Energy Monitor Program**

This program will assist customers in managing their energy use by providing services to improve the operation and maintenance (O&M) of building and process systems. FPC will provide four types of O&M services -- energy accounting, load monitoring, commissioning assistance, and energy project assistance -- each with its own fee schedule for services.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 69 of 106

## **Innovation Incentive Program**

This program promotes a reduction in demand and energy by subsidizing energy conservation projects for customers in FPC's service territory. The intent of the program is to encourage legitimate energy efficiency measures that reduce KW demand and/or KWh energy, but are not addressed by other programs. Energy efficiency opportunities are identified by FPC representatives during a Business Energy Check audit. If a candidate project meets program specifications, it will be eligible for an incentive payment, subject to FPC approval.

## Commercial Energy Management Program (Rate Schedule GSLM-1)

This direct load control program reduces FPC's demand during peak or emergency conditions. The program is available to customers who have electric space cooling equipment suitable for interruptible operation, and are eligible for service under the Rate Schedule GS-1, GST-1, GSD-1, or GSDT-1. The program is also applicable to customers who have any of the following electrical equipment installed on permanent residential structures and utilized for domestic (household) purposes: 1) water heater(s), 2) central electric heating systems(s), 3) central electric cooling system(s), and/or 4) swimming pool pump(s). The customer will receive a monthly credit on their bill depending on the type of equipment in the program and the interruption schedule.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 70 of 106

## Standby Generation Program (Rate Schedule GSLM-2)

This demand control program reduces FPC's demand based upon the indirect control of customer generation equipment. This is a voluntary program available to all commercial, industrial and agricultural customers who have on-site generation capability and are willing to reduce their FPC demand when FPC deems it necessary. The customers participating in the Standby Generation program receive a monthly credit on their electricity bill according to the demonstrated ability of the customer to reduce demand at FPC's request.

## Interruptible Service Program (Rate Schedule IS-1)

This direct load control program reduces FPC's demand at times of capacity shortage during peak or emergency conditions. The program is available throughout the entire territory served by FPC to any qualified non-residential customer who is willing to have their power interrupted. FPC will have remote control of the circuit breaker or disconnect switch supplying the customer's equipment. Customers participating in the Interruptible Service program receive a monthly interruptible demand credit based on their billing demand.

## Curtailable Service (Rate Schedule CS-1)

This direct load control program reduces FPC's demand at times of capacity shortage during peak or emergency conditions. The program is available throughout the entire territory served by FPC to any qualified non-residential customer who is willing to curtail

- 62 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 71 of 106

the greater of 25 KW or 25 percent of their average annual billing demand. Customers participating in the Curtailable Service program receive a monthly curtailable demand credit based on their curtailable demand amount.

## **Research and Development Program**

## **Technology Development Program**

The purpose of this program is to establish a system to 'pursue research, development, and demonstration projects jointly with others as well as individual projects" (Rule 25-17.001, {5}(f), Florida Administrative Code). FPC will undertake certain development and demonstration projects which have promise to become cost-effective demand and energy efficiency programs. In most cases, each demand reduction and energy efficiency project that is proposed and investigated under this program requires field testing with actual customers.

## Low Income Pilot

FPC will pilot and evaluate a customized DSM program targeted toward the low income market segment as one of the first projects to be implemented under the Technology Development Program. The low income pilot will be initiated in early 1996 as FPC begins working with the Florida Department of Community Affairs (DCA) and local weatherization providers to develop an integrated delivery of weatherization and Rate Impact Measure (RIM) cost-effective DSM services by weatherization providers. (This page left intentionally blank)

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 72 of 106

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 73 of 106

# CHAPTER 3

# Forecast of FACILITIES REQUIREMENTS

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 74 of 106

## **CHAPTER 3** Forecast of FACILITIES REQUIREMENTS

## INTEGRATED RESOURCE PLANNING OVERVIEW

Florida Power Corporation employs an Integrated Resource Planning (IRP) process to determine the most cost-effective mix of generation and Demand-Side Management programs that will reliably satisfy our customer's future energy needs as required by the Energy Policy Act of 1992 (EPACT).

FPC's IRP process incorporates state-of-the-art computer hardware and models to evaluate future generation alternatives and cost-effective conservation and dispatchable demand-side management programs on a consistent and integrated basis. Integrated resource planning involves a wide diversity of departments and company resources. A full range of generation and demand side alternatives are considered for incorporation into the company's resource mix. The IRP process is carried out in full or in part every few years. This allows the company the flexibility to re-evaluate resources that are in the current plan prior to their construction or implementation, and to evaluate the addition of new resources not previously examined.

An overview of FPC's IRP process is shown in Figure 1. The process begins with the development of various forecasts, including demand and energy, fuel prices, and economic assumptions. Future supply- and demand-side resource alternatives are identified and extensive cost and operating data is collected to enable these to be modeled in detail. These alternatives are optimized together to determine the most cost-effective plan for FPC to pursue over the next ten years that meets the company's reliability criteria. This is called the Integrated Optimal Plan. This plan is then evaluated within the company's financial model to determine its effect on the overall financial health of the

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 75 of 106

corporation. The current 1996 Ten-Year Site Plan involves a modified IRP process which incorporates the DSM Goals established in the 1994 Conservation Goals Hearings prior to supply-side evaluations. This process is discussed further in the section titled 1996 Ten-Year Site Plan Modified IRP Process.

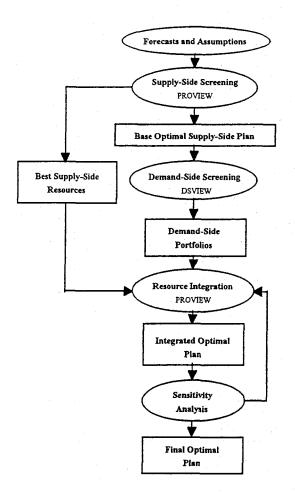



Figure 1

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 76 of 106

## THE IRP PROCESS

## Forecasts and Assumptions:

The evaluation of possible supply-side and demand-side alternatives, and development of the optimal plan, is the longest and most demanding part of the IRP process. These steps together comprise the integration process and begin with the development of forecasts and collection of input data. Base forecasts that reflect FPC's view of the most likely future scenarios are developed, along with high and low forecasts that reflect alternative future scenarios. Computer models used in the process are brought up-to-date to reflect this data, along with the latest operating parameters and maintenance schedules for FPC's existing generating units. This establishes a consistent starting point for all further analysis.

FPC plans its resources to meet dual reliability criteria of 15 percent reserve margin over forecasted firm peak demand and 0.1 days per year Loss of Load Probability (LOLP). The reserve margin criterion is deterministic and provides a measure of FPC's ability to meet its forecasted seasonal peak load. The LOLP is a probabilistic criterion, which is a measure of FPC's ability to meet its load throughout the year taking into consideration unit failures, unit maintenance, and assistance from other utilities.

## Supply-Side Screening:

Potential supply-side resources are screened to determine those that are the most cost-effective. Data used for the screening analysis is compiled from various industry sources and FPC's experiences. Resource options are "pre-screened" to set aside those that do not warrant a detailed cost-

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 77 of 106

effectiveness analysis. Typical screening criteria are costs, fuel source, technology maturity, environmental parameters, and overall resource feasibility.

Economic evaluation of generation alternatives is performed using the PROVIEW optimization program. The optimization program evaluates revenue requirements for specific resource plans generated from combinations of future resource additions which meet system reliability criteria and other system constraints. All resource plans are then ranked by system revenue requirements. Multiple optimization runs may be required to screen a large selection of future resource additions. The screening process proceeds until all of the alternatives that are left can be evaluated in a single optimization run. The final optimization run then produces an optimal supply-side resource plan which is called the "Base Optimal Supply-Side Plan."

## Demand-Side Screening:

Like supply-side resources, data about large numbers of potential demand-side resources is collected. These resources are "pre-screened" to eliminate those alternatives that are still in research and development, addressed by other regulation (building code), or not applicable to FPC's customers. The demand-side screening model, DSVIEW, is updated with cost data and load impact parameters for each potential DSM measure to be evaluated.

The base optimal supply-side plan is used as the basis for screening future demand-side resources. The future supply-side alternatives that are selected for the base optimal supply-side plan are the stream of avoidable units that future demand-side programs are screened against. Each future demand-side

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 78 of 106

alternative is individually added to the base optimal supply-side plan and the amount of generation in the plan is reduced to equalize the reliability between the cases. The system is then re-dispatched over the ten year planning period. Comparison of this case, with the demand-side program included, to the base optimal supply-side plan is used to determine the benefit or detriment that the addition of this demand-side resource provides to the overall system. DSVIEW calculates the benefits and costs for each demand-side measure evaluated and reports the appropriate ratios for the Rate Impact Measure (RIM), the Total Resource Cost Test (TRC), and the Participant Test.

Demand-side programs that pass the RIM test are then bundled together into portfolios. Portfolios of DSM programs are considered together, rather than individually, in the integration process that follows. This is necessary to reduce the number of possible future scenarios and make the optimization solvable with the computing resources available.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 79 of 106

## **Resource Integration and Final Optimal Plan:**

The cost-effective generation alternatives as determined by the supply-side screening and the demandside portfolios developed in the demand-side screening process are optimized together to formulate an integrated optimal plan. The optimization program considers all possible future mixes of supply-side and demand-side alternatives that meet the company's reliability criteria in each year over a ten year period. The economic operation of each future scenario is additionally evaluated over forty years. The program will again consider many tens or hundreds of thousands of combinations, and report those that provide the lowest rates to FPC's ratepayers.

The plan that provides the lowest rates is further tested using sensitivity analysis. The economics of the plan are evaluated under high and low forecast scenarios to ensure that the plan does not unduly burden the company or the ratepayers if the future unfolds in a way very different from the base forecast. If the plan is judged robust under sensitivity analysis, it becomes the final optimal plan.

The final optimal plan passes from the optimization process to the company financial model. It is evaluated to ensure that the company can finance it adequately and that it will not have a detrimental impact on the company's stock or bond rating. A plan that has a detrimental impact on the company's financial health will be returned to the integration process. At this point, it may be necessary to reassess part of the screening process, or it may only be necessary to repeat the integration and sensitivity analyses with appropriate constraints included.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 80 of 106

## 1996 TEN-YEAR SITE PLAN MODIFIED IRP PROCESS

FPC's 1996 Ten-Year Site Plan Demand-Side Management projections are consistent with the late 1994 results of the FPSC Conservation Goals Hearing. FPC's DSM goals projections were integrated as a group prior to determining the supply-side expansion plan. The DSM Goals and the supply-side plan were then combined to form the optimal plan. The 1996 IRP process was modified slightly by projecting the DSM expansion plan prior to supply-side evaluations to ensure consistency with FPC's DSM goals. This process will be reviewed periodically to balance the impacts of the DSM goals on the IRP process and future resources.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 81 of 106

## 1996 IRP RESULTS

Future DSM requirements were projected based on the DSM goals for residential and commercial/industrial customers as established in the 1994 Conservation Goals Hearings. Future DSM requirements are summarized in the following tables.

	Cumulative Summer MW	Cumulative Winter MW	Cumulative GWh
Year	Goal	Goal	Goal
1994	11	43	12
1995	30	86	24
1996	50	133	38
1997	71	184	60
1998	93	236	78
1999	116	290	100
2000	140	343	127
2001	164	395	145
2002	188	445	169
2003	209	483	184

### **Residential Conservation Goals**

### **Commercial/Industrial Conservation Goals**

	Cumulative Summer MW	Cumulative Winter MW	Cumulative GWh
Year	Goal	Goal	Goal
1994	0.3	0.05	2
1995	3	3	19
1996	8	7	40
1997	15	13	71
1998	24	20	110
1999	35	29	155
2000	48	39	207
2001	61	48	255
2002	74	56	299
2003	84	64	336

FPC's DSM programs include load management and interruptible loads to defer new capacity additions. These resources are shown on Forms 7A and 7B.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 82 of 106

FPC has made a substantial commitment to include cogeneration into its resource mix. The company has contracted for over 1,100 MW of capacity provided by Qualifying Facilities (QF), which represents a significant portion of the state-wide QF capacity available. The following table shows FPC's contracts for firm capacity provided by QFs.

QUALIFYIN	G FACILITY GENERATI AS OF DECEMBER 31, 2		TRACTS		
FACILITY NAME	LOCATION (COUNTY)	TYPE	FUEL TYPE	CONTRACT START DATE (MO/YR)	FIRM CAPACITY - MW
BAY COUNTY RES. RECOV.	BAY	SPP	MSW	04/1988	11.0
CARGILL	POLK	COG	WH	10/1992	15.0
CFR-BIOGEN	POLK	COG	NG	06/1995	74.
DADE COUNTY RES. RECOV.	DADE	SPP	MSW	11/1991	43.0
ECOPEAT	POLK	COG	NG	07/1995	40.2
EL DORADO	POLK	COG	NG	07/1994	114.2
GENERAL PEAT 1	POLK	COG	NG	01/1995	57.2
GENERAL PEAT 2	POLK	COG	NG	01/1995	57.2
GENERAL PEAT 3	POLK	COG	NG	01/1995	57.2
LAKE COGEN	LAKE	COG	NG	07/1993	110.0
LAKE COUNTY RES. RECOV.	LAKE	SPP	MSW	01/1995	12.8
LFC JEFFERSON	POLK	COG	NG	01/1995	8.5
LFC MADISON	POLK	COG	NG	01/1995	8.5
MULBERRY	POLK	COG	NG	07/1994	79.2
ORLANDO COGEN	ORANGE	COG	NG	10/1993	79.2
* PANDA KATHLEEN	POLK	COG	NG	01/1997	74.9
PASCO COGEN	PASCO	COG	NG	07/1993	109.0
PASCO COUNTY RES. RECOV.	PASCO	SPP	MSW	01/1995	23.0
PINELLAS COUNTY RES. RECOV. 1	PINELLAS	SPP	MSW	01/1995	40.0
PINELLAS COUNTY RES. RECOV. 2	PINELLAS	SPP	MSW	01/1995	15.8
PINELLAS COUNTY RES. RECOV. 3	PINELLAS	SPP	MSW	01/1999	40.0
RIDGE GENERATING STATION	POLK	SPP	BIO	05/1994	39.0
ROYSTER	POLK	COG	NG	07/1994	30.8
TIMBER ENERGY 1	LIBERTY	SPP	BIO	04/1992	12.8
TIMBER ENERGY 2	POLK	COG	NG	01/1995	6.0
US AGRICHEM	POLK	COG	WH	01/1997	5.1

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 83 of 106

FPC has long-term contracts for approximately 460 MW of firm purchased power with other utilities, including a contract with Southern Company for approximately 400 MW of purchased power through 2010. The remaining firm purchased power is from Tampa Electric Company and will be supplied through 2011.

Changes in FPC's existing resources (shown on Form 6, page 1) include a 19 MW upgrade of capacity at Crystal River 3, peaking gas conversions at Intercession City P8 and P10, and plant retirements consistent with FPC's latest plant Depreciation and Dismantlement filing. This plant Depreciation and Dismantlement filing includes 158 MW and 276 MW of combustion turbine retirements in years 2003 and 2004, respectively. Consideration for potential life extensions of these facilities will be included in future Depreciation and Dismantlement and IRP studies.

FPC capacity additions currently under construction include a 165 MW combustion turbine at the Intercession City (IC) site which is scheduled to be in-service by September 1996 and a 470 MW combined cycle plant at the Polk County site scheduled for November 1998. These two units are included on Form 6, page 2. The combustion turbine unit at IC incorporates a unique ownership arrangement between FPC and Georgia Power. FPC owns two-thirds of the unit and Georgia Power one-third. The output of the unit will be available to FPC from October through May of each year, and to Georgia Power June through September. Thus, the ratepayers of both companies will derive the maximum benefit from the unit's capacity, since it is available to each company at their time of highest need. Combined cycle generation will be added at the Polk County site in 1998 and will be owned by FPC. This generation will be a high efficiency combined cycle plant of approximately 470 MW fueled

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 84 of 106

by natural gas with distillate oil back-up. The in-service date of this plant is scheduled for November of 1998. The Polk County unit will be one of the most efficient combined cycle plants in the nation.

The remaining resources shown on Form 6, page 2, are considered to be planned supply-side resource additions. Included in the planned supply-side resource additions are combined cycles (CC) fueled by natural gas and combustion turbines fueled by interruptible gas and distillate oil. The combined cycle plants are repowering projects at FPC's Turner and Higgins sites. Capacity additions proposed for 2003 are a 165 MW combustion turbine (with interruptible gas) and a 249 MW CC repowering of Turner Unit 3. Capacity additions proposed for 2004 include a 249 MW CC repowering of Turner Unit 4 and a 249 MW CC repowering of the Higgins plant. The final capacity addition is a 165 MW combustion turbine (fueled by distillate) in 2005. FPC's expansion plan over the next ten years meets or exceeds FPC's reliability criteria and complies with the 1990 Clean Air Act Amendments. FPC's Forecast of Demand and Capacity for the summer and winter peaks are shown on Forms 7A and 7B, respectively.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 85 of 106

FPC's proposed future bulk transmission line additions are shown below.

1996-2005										
LINE OWNERSHIP	TERMINALS	TERMINALS	LINE LENGTH CKT. MILES	COMMERCIAL IN-SERVICE DATE (MO/YR)	NOMINAL OPERATING VOLTAGE					
FPC	BARCOLA #1	POLK GEN	3	12/1997	230					
FPC	FORT MEADE	POLK GEN	6	12/1997	230					
FPC	POLK GEN	TIGER BAY	4	12/1997	230					
FPC	FORT MEADE	TIGER BAY	2	12/1997	230					
FPC	SILVER SPRINGS NORTH	SILVER SPRINGS #3	6	06/1998	230					
FPC	LAKE BRYAN	INTERCESSION CITY	10	05/2000	230					
FPC	CENTRAL FLORIDA	SILVER SPRINGS	3	05/2002	230					
FPC	TAYLOR CREEK	HOLOPAW	1	11/2002	230					
FPC	TURNER	DEBARY	3	12/2003	230					
FPC	TURNER	LAKE EMMA	3	12/2003	230					
FPC	WINDERMERE	LAKE BRYAN	10	12/2003	230					
FPC	INTERCESSION CITY	GIFFORD	12	11/2004	230					

Docket No. 060658 FORM 6 Progress Energy Florida PAGE 1 OF 2 Exhibit No. ____ (JBC-2) Page 86 of 106

#### EXISTING GENERATING CAPABILITY CHANGES AND REMOVALS

(JANUARY 1, 1996 THROUGH DECEMBER 31, 2005)

. (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
				PRIMA	RY FUEL	ALTERN	ATE FUEL	COMMERCIAL	GENERATOR MAXIMUM	NET CAF			
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	IN-SERVICE	NAMEPLATE	<u> </u>			
PLANT NAME	NO		TYPE	TYPE	METHOD	TYPE	METHOD	(MO/YR)	, KW	SUMMER		STATUS	NOTES
CRYSTAL RIVER	3	CITRUS CO.	NP	UR				05/1996		17	19	A	
INTER. CITY	P8	OSCEOLA CO.	GT	F02	PL	NG	PL	05/1996				FC	1
INTER. CITY	P10	OSCEOLA CO.	GT	F02	PL	NG	PL	05/1996				FC	1
HIGGINS	P1-4	PINELLAS CO.	GT	F02	тк	NG	ΡĹ	(12/2003)		(128)	(158)	RE	2
PORT ST. JOE	P1	GULF CO.	GT	F02	тк			(12/2003)		(15)	(18)	RE	2
RIO PINAR	P1	ORANGE CO.	GT	F02	тк			(12/2003)		(15)	(18)	RE	2
AVON PARK	P1-2	HIGHLANDS CO.	GT	F02	тк	NG	PL	(12/2004)		(58)	(64)	RE	2
BAYBORO	P1-4	PINELLAS CO.	GT	F02	WA			(12/2004)		(188)	(232)	RE	2
TURNER	P1-2	VOLUSIA CO.	GT	F02	TK,WA			(12/2004)		(30)	(36)	RE	2

#### NOTES :

1/ FUEL CONVERSION TO NATURAL GAS

27 RETIREMENT DATES AND CAPACITIES ARE IN PARENTHESES AND ARE CONSISTENT WITH THE LATEST PLANT DEPRECIATION AND DISMANTLEMENT FILING. CONSIDERATION FOR POTENTIAL LIFE EXTENSIONS OF THESE FACILITIES WILL BE INCLUDED IN FUTURE DEPRECIATION AND DISMANTLEMENT AND IRP STUDIES.

Docket No. 060658 Progress Energy Florida Exhibit No. (JBC-2) Page 87 of 106

FUTURE GENERATING CAPABILITY UNDER CONSTRUCTION AND PLANNED

(JANUARY 1, 1996 THROUGH DECEMBER 31, 2005)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	. (9)	(10)	(11)	(12)	(13)	(14)
		-		PRIMA	RY FUEL	ALTERN	ATE FUEL	COMMERCIAL	GENERATOR	NET CAP			
PLANT NAME	UNIT NO.	LOCATION		FUEL TYPE	TRANSP. METHOD	FUEL TYPE	TRANSP METHOD	IN-SERVICE (MO/YR)	NAMEPLATE KW	SUMMER	WINTER	STATUS	NOTES
INTER CITY	P11	OSCEOLA CO.	GT	F02	PL			08/1996		135	165	V	1,2
POLK COUNTY	1	POLK CO.	сс	NG	PL	F02	тк	11/1998		474	507	U	1
COMB. TURBINE	P1	UNKNOWN	GT	F02	UN	NG	PL	11/2003		135	165	P	
TURNER	3	VOLUSIA CO.	сс	NG	PL	F02	TK,WA	11/2003		212	249	RP	
TURNER	4	VOLUSIA CO.	сс	NG	PL	F02	TK,WA	11/2004		212	249	RP	
HIGGINS	1-3	PINELLAS CO.	сс	NG	PL	F02	WA	11/2004	•	212	249	RP	
COMB. TURBINE	P2	UNKNOWN	GT	F02	UN.			11/2005		135	165	P	

NOTES :

1 / UNDER CONSTRUCTION

27 SUMMER CAPABILITY OWNED BY GEORGIA POWER COMPANY.

## Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 88 of 106

PAGE 1 OF 1

_ . .

FORM 7A

### FORECAST OF CAPACITY, DEMAND AND SCHEDULED MAINTENANCE

### AT TIME OF SUMMER PEAK

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
		·		· · · · · · · · · · · · · · · · · · ·	<u> </u>					****************
TOTAL PEAK DEMAND	7,837	7,945	8,244	8,481	8,519	8,742	8,558	8,770	8,980	9,186
INTERRUPTIBLE LOAD	314	317	328	370	373	376	340	343	346	350
LOAD MANAGEMENT *	639	659	679	699	719	.741	761	778	801	815
QF LOAD SERVED BY QF GEN	72	72	72	72	72	72	72	72	72	72
CONSERVATION	168	183	199	218	238	255	271	287	303	320
FIRM PEAK DEMAND	6,644	6,714	6,966	7,122	7,117	7,298	7,114	7,290	7,458	7,629
GENERATION CAPACITY	6,788	6,788	6,788	7,262	7,262	7,262	7,262	7,262	7,451	7,599
QF CAPACITY PURCHASE	1,044	1,105	1,105	1,115	1,115	1,115	1,115	1,115	1,115	1,115
FIRM PURCHASE POWER (INTER-STATE)	409	409	409	409	409	409	409	409	409	409
FIRM PURCHASE POWER (INTRA-STATE)	50	50	50	60	60	60	60	60	60	70
TOTAL CAPACITY RESOURCE	8,291	8,352	8,352	8,846	8,846	8,846	8,846	8,846	9,035	9,193
RESERVE MARGIN BEFORE MAINT. (MW)	1,647	1,638	1,386	1,724	1,729	1,548	1,732	1,556	1,577	1,564
RESERVE MARGIN BEFORE MAINT. (%)	25%	24%	20%	24%	24%	21%	24%	21%	21%	21%
SCHEDULED MAINTENANCE	0	0	0	0	0	0	0	0	0	0
NET CAPACITY RESOURCE	8,291	8,352	8,352	8,846	8,846	8,846	8,846	8,846	9,035	9,193
RESERVE MARGIN AFTER MAINT. (MW)	1,647	1,638	1,386	1,724	1,729	1,548	1,732	1,556	1,577	1,564
RESERVE MARGIN AFTER MAINT. (%)	25%	24%	20%	24%	24%	21%	24%	21%	21%	21%
	-									

* LOAD MANAGEMENT = TOTAL OF LOAD CONTROL PROGRAMS : LOAD MANAGEMENT, HEATWORKS & VOLTAGE REDUCTION.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 89 of 106 - - ----

PAGE 1

#### FORECAST OF CAPACITY, DEMAND AND SCHEDULED MAINTENANCE

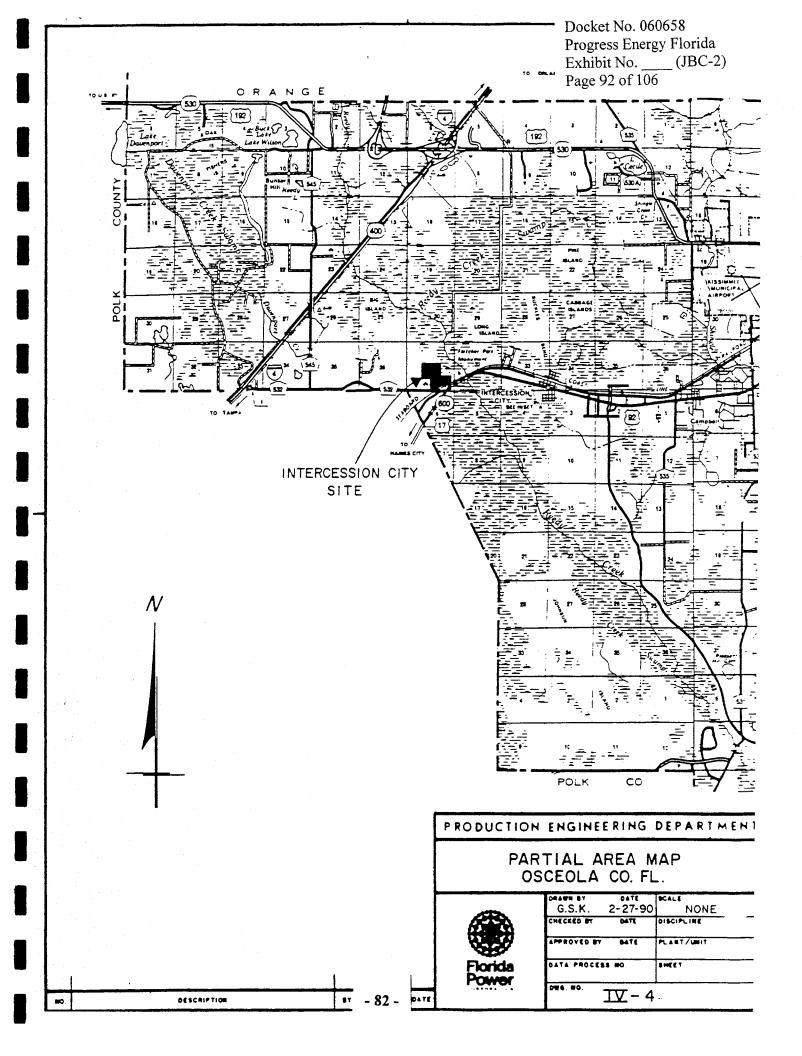
#### AT TIME OF WINTER PEAK

	1996/97	1997/98	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05	2005/0
TOTAL PEAK DEMAND	9,007	9,249	9,841	10,065	10,321	10,116	10,357	10,597	10,838	11,07
INTERRUPTIBLE LOAD	317	328	370	373	376	340	343	346	350	35:
LOAD MANAGEMENT *	1,116	1,151	1,183	1,220	1,257	1,293	1,327	1,350	1,381	1,41:
QF LOAD SERVED BY QF GEN	72	72	72	72	72	72	72	72	72	72
CONSERVATION	214	232	255	278	299	319	339	357	378	40(
FIRM PEAK DEMAND	7,288	7,466	7,961	8,122	8,317	8,092	8,276	8,472	8,657	8,837
GENERATION CAPACITY	7,531	7,531	8,038	8,038	8,038	8,038	8,038	8,258	8,424	8,589
QF CAPACITY PURCHASE	1,105	1,105	1,115	1,115	1,115	1,115	1,115	1,115	1,115	1,115
FIRM PURCHASE POWER (INTER-STATE)	409	409	409	409	409	409	409	409	409	409
FIRM PURCHASE POWER (INTRA-STATE)	50	50	60	60	60	60	60	60	70	70
TOTAL CAPACITY RESOURCE	9,095	9,095	9,622	9,622	9,622	9,622	9,622	9,842	10,018	10,183
RESERVE MARGIN BEFORE MAINT. (MW)	1,807	1,629	1,661	1,500	1,305	1,530	1,346	1,370	1,361	1,346
RESERVE MARGIN BEFORE MAINT. (%)	25%	22%	21%	18%	16%	19%	16%	16%	16%	15%
SCHEDULED MAINTENANCE	0	0	O	0	0	Ó	0	0	0	0
NET CAPACITY RESOURCE	9,095	9,095	9,622	9,622	9,622	9,622	9,622	9,842	10,018	10,183
RESERVE MARGIN AFTER MAINT. (MW)	1,807	1,629	1,661	1,500	1,305	1,530	1,346	1,370	1,361	1,346
RESERVE MARGIN AFTER MAINT. (%)	25%	22%	21%	18%	16%	19%	16%	16%	16%	15%

* LOAD MANAGEMENT = TOTAL OF LOAD CONTROL PROGRAMS : LOAD MANAGEMENT, HEATWORKS & VOLTAGE REDUCTION.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 90 of 106

# CHAPTER 4


# Description and Impact Analysis of SITE AND FACILITY

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 91 of 106

## CHAPTER 4 Description and Impact Analysis of SITE AND FACILITY

## INTERCESSION CITY SITE:

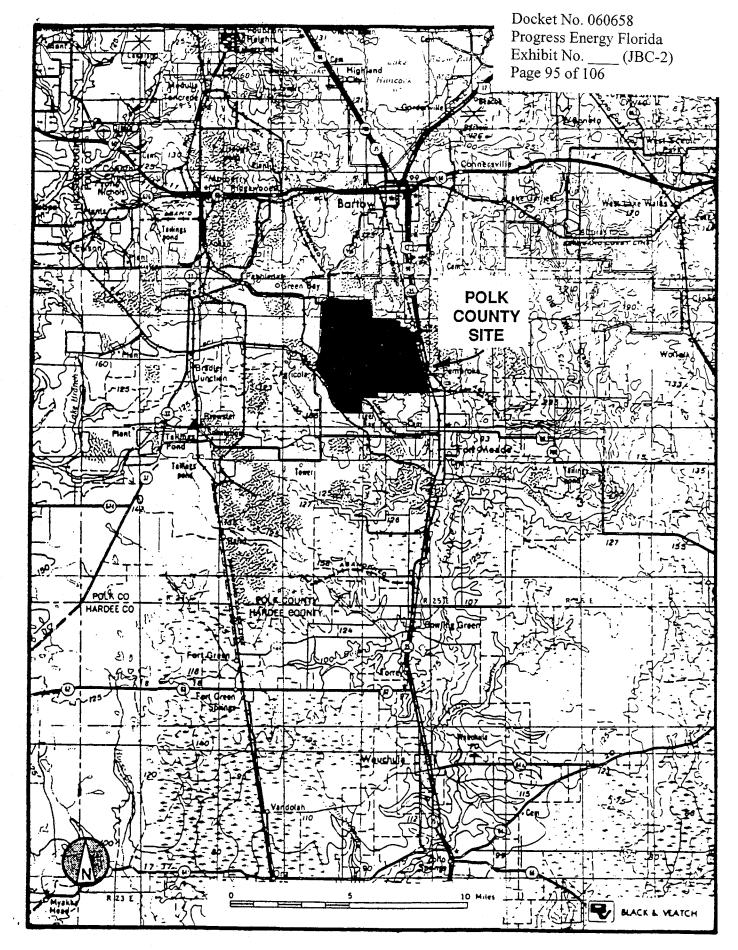
Intercession City was chosen as the primary site for installation of a combustion turbine peaking unit addition by September 1996. The seasonal ratings for the Intercession City capacity addition are projected to be 135 MW summer (dedicated to service for Georgia Power) and 165 MW winter (dedicated to service for FPC). The Intercession City Site consists of 165 acres in Osceola County (reference DWG IV-4), two miles west of Intercession City. The site is immediately west of Reedy Creek and the adjacent Reedy Creek Swamp. The site is adjacent to a secondary effluent pipeline from a municipal waste-water treatment plant, an oil pipeline, and a natural gas lateral serving the Kissimmee Utility Authority Cane Island facility. The Florida Department of Environmental Protection air rules currently list all of Osceola County as attainment for ambient air quality standards. The environmental impact on the site will be minimized by FPC's close coordination with regulatory agencies to ensure compliance with all applicable environmental regulations. The existing 230 kV grid will accommodate this combustion turbine addition. A status report for specifications of proposed generating facilities is shown on Form 8A, page 1 for Intercession City Peaking Unit #11.



Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 93 of 106

## POLK COUNTY SITE:

In 1990, FPC completed a state-wide search for a new 3,000 MW coal capable power plant site. As a result of this work, a large tract of mined out phosphate land in south-central Polk County was selected as the primary alternative. This 8,200 acre site is located near the cities of Fort Meade and Homeland, south of S.R. 640 and west of U.S. 17/98 (reference the Polk County Site map). It is an area which has been extensively mined and remains predominantly unreclaimed.


Site certification was approved by the governor and cabinet on January 25, 1994, in accordance with the rules of the Power Plant Siting Act. Due to the thorough screening during the selection process, and the disturbed nature of the site, there were no major environmental limitations. As would be the situation at any location in the state, air emissions and water consumption were significant issues during the licensing process.

As generation units are added, the extensive network of on-site clay settling ponds will be converted to cooling ponds and combustion waste storage areas to support power plant operations. Given the disturbed nature of the property, considerable development has been required in order to make it usable for electric utility application. The site is serviced by an industrial rail network and an adequate road system.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 94 of 106

Construction of site improvements began in October 1994. The first combined cycle unit, with a capacity of 470 MW, is scheduled for commercial operation by November 1998. A status report for specifications of proposed generating facilities is shown on Form 8A, page 2 for Polk County Unit #1.

The transmission improvements associated with the first unit at this site are the rebuilding of the existing 230/115 kV double circuit Barcola - Ft. Meade line by increasing the conductor sizes and converting the line to double circuit 230 kV operation. The new lines will be relocated on the plant site to clear plant facilities, and looped into the plant substation. (Form 8B, pages 1 and 2.)



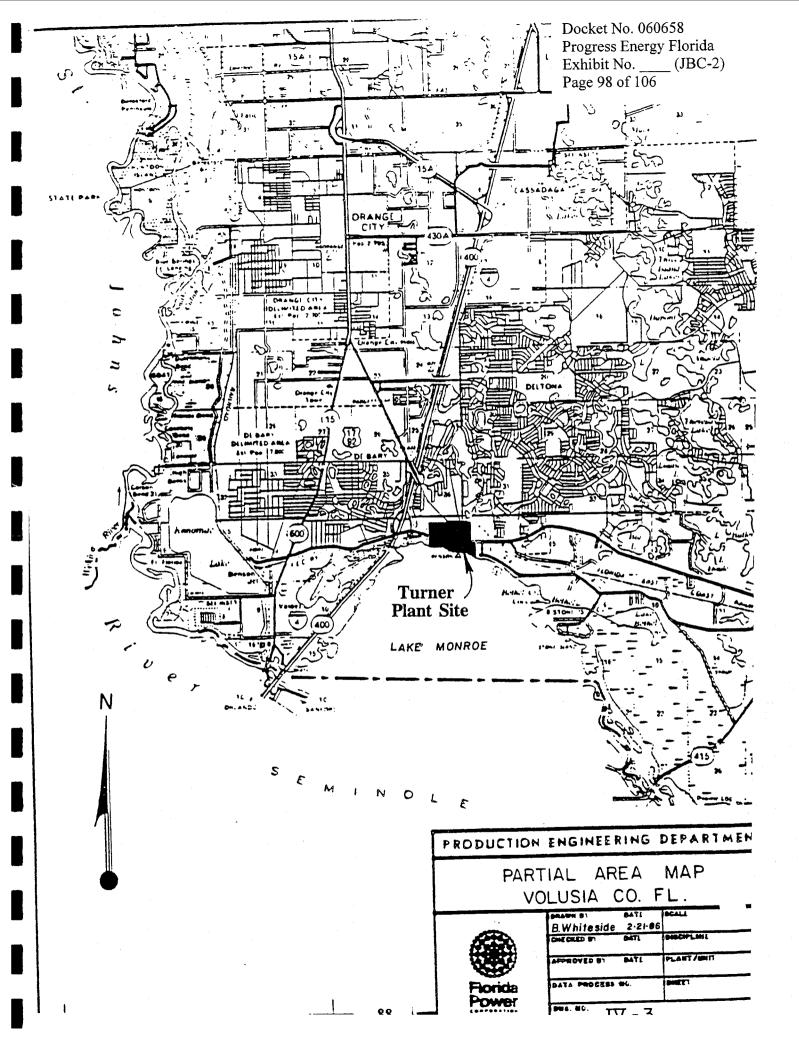
# POLK COUNTY SITE

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 96 of 106

(This page left intentionally blank)

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 97 of 106

## TURNER PLANT SITE:


The Turner Plant Site consists of approximately 117 acres in Deltona (on Lake Monroe) in Volusia County (reference DWG IV-3). The George E. Turner Fossil Steam Plant is currently in extended cold shutdown.

FPC expects to repower this facility using natural gas as the primary fuel. Turner has an existing metering station and is connected to the Florida Gas Transmission system. No. 2 Fuel Oil, for which there is already delivery and storage equipment at Turner, will serve as the backup fuel. The planned repowering at Turner will use two combustion turbine/HRSG trains to feed steam to the existing steam turbines for units 3 and 4. The resulting total net dependable capability is expected to be approximately 498 MW.

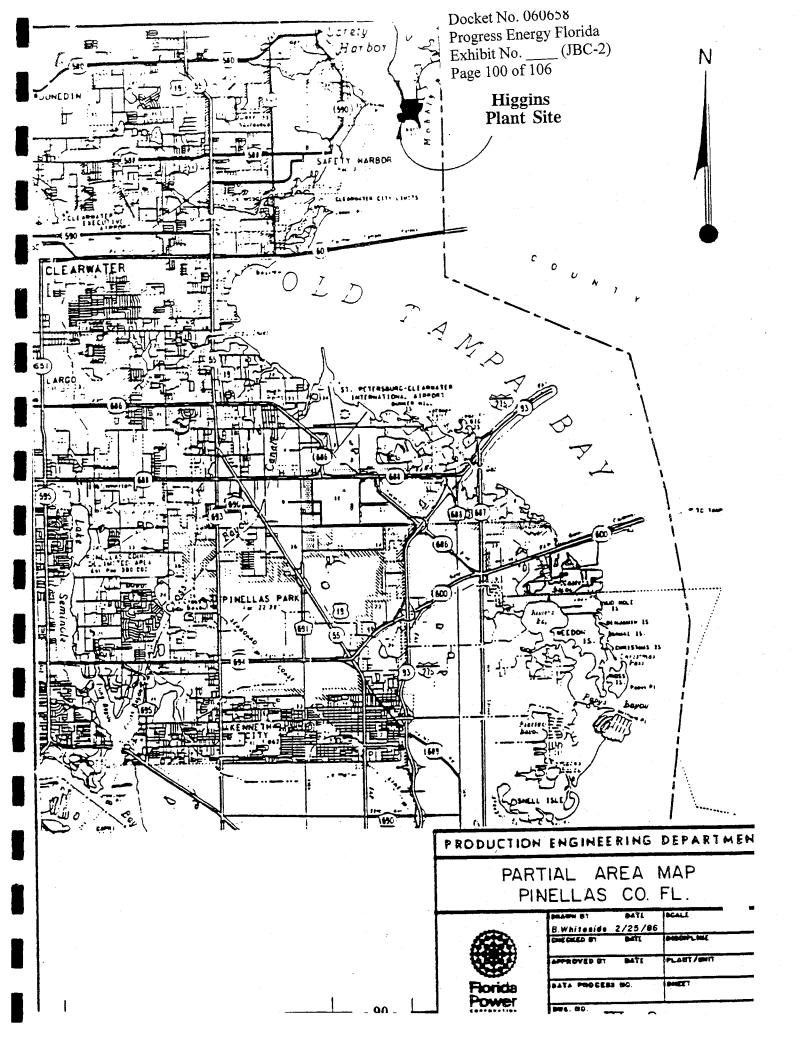
Environmental permits for Turner Plant will be maintained. The Florida Department of Environmental Protection air rules currently list Turner Plant in an area designated as attainment. FPC will coordinate closely with regulatory agencies to ensure compliance with all applicable environmental regulations. (Individual permits will be obtained and/or modified as necessary.)

The transmission improvement associated with the Turner repowering is a loop of the 230 kV DeBary - Lake Emma line into Turner Plant. (Form 8B, page 3.)

- 87 -



Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 99 of 106


## **HIGGINS PLANT SITE:**

The Higgins Plant Site consists of approximately 142 acres in Oldsmar (on Tampa Bay) in Pinellas County (reference DWG IV-2). The A. W. Higgins Fossil Steam Plant is currently in extended cold shutdown.

FPC expects to repower this facility using natural gas as the primary fuel. Higgins has an existing metering station and is connected to the Florida Gas Transmission system. No. 2 Fuel Oil, for which there is already delivery and storage equipment at Higgins, will serve as the backup fuel. The planned repowering at Higgins will be accomplished utilizing two of the existing three steam turbines. The repowering will utilize one combustion turbine/Heat Recovery Steam Generator (HRSG) combination to feed steam to two of the existing three steam turbines. The third steam turbine may be utilized as an operational or standby spare turbine. The resulting total net dependable capability is expected to be approximately 249 MW.

Environmental permits for Higgins Plant will be maintained. The Florida Department of Environmental Protection (DEP) air rules currently list Higgins Plant in an area designated as non-attainment for ozone, but is expected to be redesignated as attainment. DEP will develop a maintenance plan once this happens. FPC will coordinate closely with regulatory agencies to ensure compliance with all applicable environmental regulations. (Individual permits will be obtained and/or modified as necessary.) The existing 230/115 kV grid can accommodate the Higgins repowering.

- 89 -



Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 101 of 106

## SITE AND FACILITY FORMS

The Intercession City Peaking Unit #11 is projected to be in-service by September 1996. A status report for this unit is shown on Form 8A, page 1. FPC's Polk County Unit #1 is projected to be inservice by November 1998. A status report for this unit is shown on Form 8A, page 2. Directly associated transmission lines with Polk County are shown on Form 8B, pages 1 and 2. Directly associated transmission lines with Turner Plant are shown on Form 8B, page 3.

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 102 of 106

> Form 8A Page 1 of 2

## FLORIDA POWER CORPORATION

## STATUS REPORT SPECIFICATIONS OF PROPOSED GENERATING FACILITIES

(1)	Plant Name & Unit	Intercession City P11
(2)	<u>Status</u>	Under Construction
(3)	Anticipated Construction Timing	Construction Start Date 10/94 Expected Commercial In-Service Date by 9/96
(4)	<u>Capacity</u>	Summer 135 MW (Owned by Georgia Power) Winter 165 MW
(5)	Type	Combustion Turbine
(6)	Primary and Alternate Fuel	Primary - Distillate Oil
(7)	Air Pollution Control Strategy	Water Injection
(8)	Cooling Method	Air
(9)	Total Site Area	165 Acres
(10)	Anticipated Capital Investment	\$40,000,000
(11)	Certification Status	Filed 6/94 Received 7/94
(12)	Status with Federal Agencies	Environmental Protection Agency Approval Obtained 8/92

- 92 -

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 103 of 106

> Form 8A Page 2 of 2

## FLORIDA POWER CORPORATION

## STATUS REPORT SPECIFICATIONS OF PROPOSED GENERATING FACILITIES

(1)	Plant Name & Unit	Polk County Unit #1
(2)	<u>Status</u>	Under Construction
(3)	Anticipated Construction Timing	Construction Start Date 8/95
		(Cooling Pond Dams) Expected Commercial In-Service Date 11/98
(4)	Capacity	Summer 474 MW Winter 507 MW
(5)	Type	Combined Cycle
(6)	Primary and Alternate Fuel	Primary - Natural Gas Alternate - Distillate Oil
(7)	Air Pollution Control Strategy	Dry Low NO _x Combustion
(8)	Cooling Method	Cooling Ponds
(9)	Total Site Area	8,200 Acres
(10)	Anticipated Capital Investment	\$300,000,000
(11)	Certification Status	Filed 8/92 Received 2/94 (DEP/EPA)
(12)	Status with Federal Agencies	Department of Environmental Protection Air Permit Approval Obtained 2/94

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 104 of 106

> Form 8B Page 1 of 3

# FLORIDA POWER CORPORATION

# STATUS REPORT AND SPECIFICATIONS OF PROPOSED DIRECTLY ASSOCIATED TRANSMISSION LINES

## POLK COUNTY SITE

(1) Point of Origin and Termination

(2) <u>Number of Lines</u>

(3) <u>Right-of-Way</u>

(4) Line Length

(5) <u>Voltage</u>

(6) Anticipated Construction Timing

(7) Anticipated Capital Investment

(8) <u>Substations</u>

(9) Participation

Polk Power Plant - Barcola Substation

1 (Double Circuit Construction)

Existing Transmission Line & Polk Plant Site

Approximately 3 miles

230 kV

Late 1997 in-service, start construction late 1996

\$1,800,000

N/A

N/A

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 105 of 106

> Form 8B Page 3 of 3

# FLORIDA POWER CORPORATION

# STATUS REPORT AND SPECIFICATIONS OF PROPOSED DIRECTLY ASSOCIATED TRANSMISSION LINES

# TURNER PLANT SITE

(1) Point of Origin and Termination

Turner Plant to the point along the DeBary - Lake Emma 230 kV line adjacent to the DeBary - Altamonte 230 kV line structure DA-31

(2) Number of Lines

(3) <u>Right-of-Way</u>

(4) Line Length

(5) Voltage

(6) Anticipated Construction Timing

(7) Anticipated Capital Investment

(8) Substations

(9) Participation

2 (230 kV loop into Turner Plant)

Existing 115 kV transmission corridor

3 miles x 2 circuits

230 kV

Late 2003 in-service, start construction late 2002

\$2,000,000 (230 kV loop into Turner Plant)

Turner Plant Substation Expansion

N/A

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-2) Page 106 of 106

> Form 8B Page 2 of 3

# FLORIDA POWER CORPORATION

# STATUS REPORT AND SPECIFICATIONS OF PROPOSED DIRECTLY ASSOCIATED TRANSMISSION LINES

# POLK COUNTY SITE

(1) Point of Origin and Termination Polk Power Plant - Ft. Meade Substation 2 (2) Number of Lines Existing Transmission Line & Polk Plant Site (3) <u>Right-of-Way</u> Approximately 6 miles (4) Line Length 230 kV (5) <u>Voltage</u> Late 1997 in-service, start construction late 1996 (6) Anticipated Construction Timing \$5,300,000 (7) Anticipated Capital Investment (8) Substations N/A N/A (9) Participation

# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 1 of 10

#### FLORIDA POWER CORPORATION

...

#### SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1996

(1)	(2)	(3)	(4)	(5)	(6)	თ	(8)	(9)	(10)	(11)	(12)	(13)	(14)
				FUI	a.	FUEL TRA	NSPORT.	ALT. FUEL	COMMERCIAL	EXPECTED	GEN. MAX.	NET CAP	BILITY
PLANT NAME	UNIT NO.	LOCATION	UNIT	PRIMARY	ALT.	PRIMARY	ALT.	DAYS USE	IN-SERVICE MONTH/YEAR	RETIREMENT			WINTER MW
												1,006	1,034
ANCLOTE	1	PASCO CO.	ST	F06		PL.			10/1974		\$56,200	503	,
10102012	2	SECT.33,34 TZ6S,R15E	ST	F06		PL			10/1978		556,200	503	-517 517
		[205,RIJE										58	64
AVON PARK	<b>P</b> 1	HIGHLANDS CO.	στ	F02	NG	TK	PL.		12/1968	12/2004	33,790	29	32
	P2		GT	F02		TK			12/1968	12/2004	33,790	29	32
												627	666
BARTOW	1	PINELLAS CO.	ST	F06		WA			09/1958		127,500	115	117
	2	SECT.20,21,22	ST	P06		WA.			08/1961		127,500	117	119
	3	T305,R16E	ST	F06	NG	WA	PL.		07/1963		239,360	205	213
	P1-4		στ	F02		WA	•-		06/1972		222,800	187	217
											••••		
BAYBORO	P1-4	PINELLAS CO. SECT. 30	GT	F02		WAJTK			04/1973	12/2004	226,800	188 188	232 232
		T315,RI7E											
												2,961	3,031
CRYSTAL	1	CITRUS CO.	ST	BIT		WA,RR			10/1966		440,550	369	373
RIVER	2	SECT.33	ST	BIT		WA,RR			11/1969		523,800	464	469
	3•	T175,R16E	NP	UR					03/1977		890,460	734	755
	4		ST	BIT		WARR			12/1982		739,260	697	717
	5		ST	BIT		WA,RR			10/1984		739,260	697	717
				<u></u>								656	786
DEBARY	P1-6	VOLUSIA CO.	ថា	F02		TK,RR			04/1976		401,220	324	390
	<b>P</b> 7-10	SECT. 16, 19-21, 28-30, T18S, R30E	GT	F02		TK.RR			11/1992		460,000	332	396
HIGGINS	P1-2	PINELLAS CO.	GT	F02	NG	TK	PL		04/1969	12/2003	67,580	128 58	158
110000	P3-4	T255,R16E	ст СТ	F02	NG	TK	PL		12/1970	12/2003	85,850	38 70	74 84
			•••								6,60	10	•••
												614	744
INTERCESSION	P1-6	OSCEOLA CO.	GI	F02		PL,TK			05/1974		340,200	282	348
CITY	P7-10	SECT. 31 T255,R28E	στ	F02	NG	PL,TK	PL.		11/1993		460,000	332	396
												15	18
PORT ST. JOE	Pi	GULF CO.	GT	P02		TK			12/1970	12/2003	19,300	15	18
												15	18
<b>RIO PINAR</b>	Pl	ORANGE CO.	ਯ	F02		TK			11/1970	12/2003	19,290	15	18
												307	348
SUWANNEE	1	SUWANNEE CO.	51	F06	NG	TK	PL.		11/1953	12/1998	34,500	33	34
RIVER	2	SECT. 26,	ST	F06	NG	TK	PL		11/1954	12/1998	37,500	32	33
	• 3	TIS,RI1E	ST	F06	NG	TK	PL		10/1956	12/1998	75,000	80	80
	P1-3		ជា	F02		TK			11/1980		183,600	162	201
												160	200
TURNER	P1-2	VOLUSIA CO.	Gĩ	P02		тк			10/1970	12/2004	38,580	30	36
	P3-4	SECT. 1. T195,R30E	στ	F02		тк			08/1974		142,400	130	164
1919/	<b>.</b> .		~									36	42
UNIV. OF FLA.	Pi	ALACHUA CO.	GT	NG		PL			01/1994		43,000	36	42
* REPRESENTS 90.4 \$ 1	FPC OWNE	ERSHIP OF UNIT				-						6,771	7,341

#### FLORIDA POWER CORPORATION

#### SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1997

# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 2 of 10

C

PLANT NAME													
PLANT NAME				FU	I.	FUEL TRA	NSPORT.	ALT. FUEL	COMMERCIAL	EXPECTED	GEN. MAX.	NET CAP.	ABILITY
	UNIT NO.	LOCATION		PRIMARY	ALT.	PRIMARY	ALT.	DAYS USE		RETIREMENT		SUMMER MW	WINTER MW
												1,006	1,034
ANCLOTE	1	PASCO CO.	ST	F06		PL.			10/1974		556,200	503	517
	2	SECT.33,34 T26S,R15E	ST	F06		PL			10/1978		556,200	503	517
												58	64
AVON PARK	PI	HIGHLANDS CO.	GT	F02	NG	TK	PL		12/1968	12/2004	33,790	29	32
	P2		GT	F02		TK			12/1968	12/2004	33,790	29	32
				-								627	666
BARTOW	1	PINELLAS CO.	ST	F06		WA			09/1958		127,500	115	117.
	2	SECT.20,21,22	ST ST	F06	NG	WA WA	DI		08/1961 07/1963		127,500	117	119
	3	T30S,R16E	GT	F06	NG	WA	PL.				239,360	208	213
	P1, P3			F02		WA			06/1972		111,400	92	106
	P2, P4		GT	F02	NG	WA	PL		06/1972		111,400	95	111
BAYBORO	PI-P4	PINELLAS CO. SECT. 30	σr	F02		WA,TK			04/1973		226,800	188 188	232 232
		T31S,R17E										2,961	3,031
CRYSTAL	ľ	CITRUS CO.	ST	BIT		WA,RR			10/1966		440,550	369	373
RIVER	2	SECT.33	ST	BIT		WA,RR			11/1969		523,800	464	469
	3 =	T175,R16E	NP	UR		TK			03/1977		890,460	734	755
	4	11/0,000	ST	BIT		WA,RR			12/1982		739,260	697	717
	5		ST	BIT		WA,RR			10/1984		739,260	697	717
												656	786
DEBARY	P1-P6	VOLUSIA CO.	GT	F02		TK,RR			04/1976		401,220	324	390
D LD ALL	P7, P9	SECT.16,19-21,	GT	F02	NG	TK,RR	PL		11/1992		230,000	166	198
		28-30,T185,R30E	GT	F02		TK,RR			11/1992		230,000	166	198
												128	148
HIGGINS	P1-P2	PINELLAS CO.	GT	F02	NG	TK	PL		04/1969	12/2003	67,580	58	64
100000	P3-P4	T255,R16E	GT	F02	NG	тк	PL		12/1970	12/2003	85,850	70	84
												757	912
in monorement		0000001 4 000	~	-		21 777/			05/1974		340.200	282	
INTERCESSION	PI-P6	OSCEOLA CO.	GT	P02	NO	PL,TK							348
CITY	P7-P10	SECT. 31	GT	F02	NG	PL,TK	PL		11/1993		460,000	332	396
	P11	T255,R28E	GT	F02		PL,TK			01/1997		165.000	143	168
	751	ORANGE CO.	OT	F02		TK			11/1970	12/2003	19,290	15 15	18 18
RIO PINAR	P1	OKANGE CO.	U1	172		11			11/19/0	122005	17,230	15	19
												307	348
SUWANNEE	1	SUWANNEE CO.	ST	F06	NG	тк	PL.		11/1953	04/2000	34,500	33	34
RIVER	2	SECT. 26,	ST	F06	NG	TK	PL.		11/1954	04/2000	37,500	32	33
	3	T1S,R11E	ST	F06	NG	TK	PL.		10/1956	04/2000	75,000	80	80
	P1		GT	F02	NG	TK	PL.		11/1980		61,200	54	67
	P2, P3		GT	F02		TK			11/1980		122,400	108	134
												206	236
TIGER BAY	1	POLK CO.	cc	NG		PL			08/1997		233,000	206	236
	<b>.</b>		-	-					10/1000	10 000 1	30 200	160	200
TURNER	P1-P2	VOLUSIA CO.	GT	P02		TK			10/1970	12/2004	38,580	30	36
	P3-P4	SECT. 1, T19S,R30E	GT	F02		ТК			08/1974		142,400	130	164
	-		~~			<b>1</b> 17			01/1004		10 000	36	42
(')FFLA.	<b>P</b> 1	ALACHUA CO.	GT	NG		PL			01/1994		43,000	36	42

#### FLORIDA POWER CORPORATION

# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 3 of 10

#### SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1998

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
				FU	<b>I</b> .	FUEL TRA	NSPORT.	ALT.				NET CAP	ABILITY
PLANT NAME	UNIT NO.	LOCATION	UNIT TYPE	PRIMARY	ALT.	PRIMARY	ALT.	FUEL DAYS USE	COMMERCIAL IN-SERVICE MONTH/YEAR	EXPECTED RETIREMENT MONTH/YEAR		SUMMER MW	WINTER MW
										······			
ANCLOTE	1	PASCO CO.	ST	F06		PL			10/1974		<b>\$</b> \$6.000	1,006	1,034
	2	SECT.33,34 T26S,R15E	ST	F06	NG	PL	PL.		10/1978		556,200 556,200	503 503	517 517
			14.14									58	64
AVON PARK	P1	HIGHLANDS CO.	GT	NG	F02	PL.	TK		12/1968	12/2004	33,790	29	32
	P2		GT	F02		ТК			12/1968	12/2004	33,790	29	32
BARTOW	1	PINELLAS CO.	ST	F06		WA			09/1958		127 600	627	666
	.2	SECT.20,21,22	ST	F06		WA			08/1961		127,500 127,500	115 117	117
	3.	T305,R16E	ST	NG	<b>F06</b>	PL	WA		07/1963		239,360	208	. 119 213
	P1, P3		GT	F02		WA			06/1972		111,400	92	106
	P2, P4		GT	NG	F02	PL.	WA		06/1972		111,400	95	111
												100	
BAYBORO	P1-P4	PINELLAS CO.	GT	F02		WA,TK			04/1973		226,800	188 188	232 232
		SECT. 30 T31S.R17E											
												2,961	3,031
CRYSTAL	1	CITRUS CO.	ST	BIT		WA,RR			10/1966		440,550	369	373
RIVER	2	SECT.33	ST	BIT		WA,RR			11/1969		523,800	464	469
	3 *	T175,R16E	NP	UR		тк			03/1977		890,460	734	755
	4		ST	BIT		WARR			12/1982		739,260	697	717
	.5		ST	BIT		WA,RR			10/1984		739,260	697	717
DEBARY	Pi-P6	VOLUSIA CO.	GT	F02		TK,RR			04/1976		101 300	656	786
DEDAR	P7, P9	SECT. 16, 19-21,	GT	NG	FOZ	PL	TK.RR		11/1992		401,220 230,000	324 166	390 198
	P8, P10		GT	F02		TK,RR			11/1992		230,000	166	198
												128	148
HIGGINS	P1-P2	PINELLAS CO.	GT	NG	F02	pl	TK		04/1969	12/2003	67,580	58	64
	<b>P3-</b> P4	T255,R16E	GT	NG	F02	PL	TK		12/1970	12/2003	85,850	70	84
												757	912
INTERCESSION	P1-P6	OSCEOLA CO.	GT	F02		PL,TK			05/1974		340,200	282	348
CITY	P7-P10	SECT. 31	GT	NG	F02	PL.	PL,TK		11/1993		460,000	332	396
	P11	T255,R28E	GT	F02		PL,TK			01/1997		165,000	143	168
510 mil 8	<b>b</b> 1	OR LAYOF CO	~	-					1.1.1000			15	18
RIO PINAR	P1	ORANGE CO.	GT	F02		TK			11/1970	12/2003	19,290	15	18
			_			-	_					307	348
SUWANNEE	1	SUWANNEE CO.	ST	NG	F06	PL	TK		11/1953	12/2001	34,500	33	-34
RIVER	2	SECT. 26,	ST	NG	F06	PL	TK		11/1954	12/2001	37,500	32	33
	3	TIS,RHE	ST	NG	F06	PL	TK		10/1956	12/2001	75,000	80	80
	P1, P3 P2		GT GT	NG F02	F02	PL TK	ТК		11/1980		122,400 61,200	108 54	134 67
												206	246
TIGER BAY	1	POLK CO.	сс	NG		PL			08/1997		233,000	206	246 246
			_			_						160	200
TURNER	P1-P2	VOLUSIA CO.	GT	P02		TK			10/1970	12/2004	38,580	30	36
	P3-P4	SECT. 1. T195,R30E	GT	F02		TK			08/1974		142,400	130	164
NIV. OF FLA.	Pl	ALACHUA CO.	GT	NG		PL.			01/1994		43,000	36 36	42 42
						- 2							
• REPRESENTS 90.4 % F	PC OWNER	SHIP OF UNIT										7,105	7,727

#### FLORIDA POWER CORPORATION

# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 4 of 10

#### SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1999

(1)	(2)	(3)	(4)	(5)	(6)	Ø	(8)	(9)	(10)	(11)	(12)	(13)	(14)
				FU	E1.	FUEL TRA	NSPORT.	ALT.		EXPECTED	CEN LAN	NET CAP	BILITY
PLANT NAME	UNIT NO.	LOCATION	UNIT	PRIMARY	ALT.	PRIMARY	ALT.	FUEL DAYS USE	COMMERCIAL IN-SERVICE MONTH/YEAR	RETIREMENT MONTH/YEAR	GEN. MAX. NAMEPLATE KW	SUMMER MW	WINTE
FLOAT MADE												993	1.044
ANCIOTE	1	PASCO CO.	57	F06	NG	PL.	PL		10/1974		556,200	498	522
ANCLOTE	2	SECT.33.34	51	F06	NG	PL	PL		10/1978		556,200	495	522
		T265.RISE										52	64
AVON PARK	Pl	HIGHLANDS CO.	ст	NG	F02	PL	тк		12/1968	12/2006	33,790	26	32
	P2		СТ	F02		TK			12/1968	12/2006	33,790	26	32
		·									•	631	671
BARTOW	1	PINELLAS CO.	् इत	F06		WA			09/1958		127,500	121	123
	2	SECT.20,21,22	ST	F06		WA .			06/1961		127,500	119	121
	3	T305.R16E	ST	NG	F06	PL	WA		07/1963	,	239,360	204	208
	P1, <b>P3</b>		СТ	F02		₩A			06/1972		111,400	92	106
	P2		CT	NG	P02	PL.	₩A		06/1972		55,700	46	53
	<b>P</b> 4		CT	NG	F02	PL	WA		06/1972		55,700	49	60
BAYBORO	P1-P4	PINELLAS CO.	ст	F02		WA,TK			04/1973		226,800	184	232 232
BAIBORO	1144	SECT. 30	Ç1	rut _.					Q2(3)3		210,000	184	232
		T315,R17E										3,047	3,098
CRYSTAL	1	CITRUS CO.	ST.	BIT		WA RR			10/1966		440,550	379	383
RIVER	2	SECT.33	ST	BIT		WA,RR			11/1969		523,800	474	479
	3 -	T175,R16E	NP	UR		TK			03/1977		890,460	765	782
	4		ST	BIT		WA.RR			12/1982		739,260	712	722
	5		ST	BIT		WA,RR		•	10/1984		739,260	717	732
												643	762
DEBARY	P1-P6	VOLUSIA CO.	CT	F02		TK.RR			04/1976		401.220	324	390
	P7-P9	SECT.16,19-21,	СТ	NG	F02	PL	TK,RR		11/1992		345,000	240	279
	P10	28-30,T185,R30E	ст	P02		TK,RR			11/1992		115,000	79	93
110000		<b>N</b> N <b>T</b> I 1 10 00	~		-							122	134
HIGGINS	P1-P2 P3-P4	PINELLAS CO. T255,R16E	ст ст	NG NG	F02 F02	PL PL	тк тк		04/1969 12/1970	12/2005 12/2005	67,580 85,850	54 68	64 70
												482	529
NES ENERGY COMPLEX	L	POLK CO.	сс	NG	F02	PL.	тк		04/1999		546,550	482	529
												789	912
INTERCESSION	P1-P6	OSCEOLA CO.	CT	F02		PL,TK			05/1974		340,200	294	366
CITY	P7-P10	SECT. 31	CT	NG	F02	PL.	PL,TK		11/1993		460,000	352	376
	<b>P</b> 11	T255,R28E	СТ	F02		PL.,TK			01/1997		165,000	143	170
												13	16
RIO PINAR	Pl	ORANGE CO.	CT	F02		тк			11/1970	12/2005	19,290	13	16
STR1/ + 1/51777		PLEV ANNEE CO	<b>67</b>	NG	F06					45 5000		307	347
SUWANNEE	1	SUWANNEE CO.	ST	NG	F06	PL PL	TK		11/1953	12/2003	34,500	32	33
RIVER	2 3	SECT. 26, TIS,RIIE	ST ST	NG	F06	PL	ТК ТК		11/1954 10/1956	12/2003	37,500	31 80	32
	P1, P3	119,8112	CT	NG	F02	PL	TK		11/1980	12/2003	75,000 122,400	80 110	81 134
	P2		СТ	P02		TK	14		11/1980		61,200	54	67
												207	223
TIGER BAY	1	POLK CO.	CC	NG		PL			08/1997		278,223	207	223
MALE IN A HOUSE			~	1000		<b>*</b> *			10/1000	-		154	194
TURNER	P1-P2	VOLUSIA CO.	СТ	F02		TK			10/1970	12/2006	38,580	26	32
	P3	SECT. 1,	СТ	F02		TK			08/1974		71,200	65	82
	P4	T195,R30E	CT	P02		TK			08/1974		71,200	63	80
												35	41
UNIV. OF FLA.	PI	ALACHUA CO.	СТ	NG		PL			01/1994		43,000	35	41

# Docket No. 090988 Progress Energy Florida

### FLORIDA POWER CORPORATION

Exhibit No. ____(JBC-3) Page 5 of 10

#### SCHEDVLE I EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 2000

(1)	(1)	(3)	(4)	(5)	(6)	(7)	(6)	(9)	(01)	(III)	(12)	(13)	(14)
								ALT.		-			
	UNIT	LOCATION	UNIT					FUEL	COM'L IN-	EXPECTED	GEN. MAX.		ABILITY
PLANT NAME	NO.	(COUNTY)	TYPE	PRI.	EUEL ALI		TRANSPORT ALT.	DAYS <u>USE</u>	SERVICE	MOLIVEAR	NAMEPLATE KW	SUMMER MX	WINTER MW
												993	1,044
ANCLOTE	1	PASCO	গ	rf0	NO	PL	PL.		10/1974		\$\$6,200	498	522
	2		<b>S</b> T	RFO	NO		PL.		10/1978		556,200	495	522
AVON PARK	Pl	HIGHLANDS	GT	NG	DF	) PL	тх	3	12/1968	12/2006	33,790	52 26	54 32
	P2		GT	DFO		. τκ			13/1968	12/2006	33,790	26	32
•													
												631	671
BARTOW	1	PINELLAS	ST	RFO		₩A			09/1958		127,500	121	123
	2		51	RFQ		WA			08/1961		127.500	119	121
	3 P1, P3		ऽ। ज	RFO DFO	NG	₩A ₩A	PL.		07/1963 06/1972		239,360	204	208
	P1. F5		άr	NG	DF		WA	8	06/1972		\$11,400 55,700	92 46	106 53
	P4		ज	NG	DFC	-	WA	\$	06/1972		55,700	49	60
BAYBORD	P1-P4	PINELLAS	GT	DFO		WATK	:		04/1973		226,800	184 184	232 232
												3,067	3,123
CRYSTAL	1	CITRUS	ST	BIT		WA.RR			10/1966		440,550	379	383
RIVER	2		57	BIT		WA.RR			11/1969		523.800	486	491
	3 •		इन इन	NUC		TK WA,RR			03/1977		890.460	765	782
	4 5		51	BIT BIT		WA.RR			12/1982 10/1984		739,260 739,260	720 717	735 732
			••			1000	•		101.704		(27.000	*11	
												667	762
DEBARY	P1-P6	VOLUSIA	GT	DFO		TK.RR			04/1976		401.220	324	390
	P7-29		GT	NG	DFC		TK.RR	\$	11/1992		345.000	258	279
	P10		GL	DFO		TK.RR			11/1992		115.000	85	93
												122	134
HIGGINS	P1-P2	PINELLAS	ចា	NG	DFC		TK	1	G4/1969	12/2005	67,580	\$4	64
	P3-P4		CT	NG	DFC	PL PL	TK	1	12/1970	12/2005	\$5,850	68	70
												482	529
HINES ENERGY COMPLEX	4	POLK	<b>cc</b>	NG	DFC	PL	TK.	6	04/1999		\$46,550	482	529
												1,029	1,194
INTERCESSION	P1-P6	OSCEOLA	GT	DFQ		PL,TX			05/1974		340.200	294	366
CITY	P7-P10		GT	NG	DFO		PL,TK	s	11/1993		460,000	352	376
	P11 **		GT	DFO		PL_TK			01/1997		165,000	143	170
	P12-P14		GT	NG	DPO	M	PLTK	\$	12/2000		345,000	240	282
												13	16
<b>RIO PINAR</b>	Pi	ORANGE	σī	DFO		TK			\$1/1970	12/2005	19,290	13	16
			ST	RFO	NG	тк	PL		11/1953	12/2003	34,500	307 32	347 33
SUWANNEE RIVER	1 2	SUWANNEE	51 ST	RFO	NG	. ικ π	РL РL		11/1955	12/2003	37,500	31	32
ALVER.	3		डा डा	250	NG	тк	PL		10/1956	12/2003	75,000	80	81
	P1, P3		GT	NG	DFO		TX	10	11/1980		122,400	110	134
	P2		GT	DFO		TK			11/1980		61,200	54	67
												207	223
TIGER BAY	1	POLK	cc	NG		PL.			08/1997		278,223	207	223
	-												
			~						10/1970	12/2006	30 604	154	194 32
TURNER	P1-P2	VOLUSIA	ст ст	DFO DFO		ТК ТК			06/1974	14400	38,580 71,200	26 65	32 82
	P3		ज ज	DPO		TK			08/1974		71,200	00 63	82 80
	<b>P4</b>		0.	500		14			vu 17/4		اللغير و م	63	<b>~</b> ~
												35	41
UNIV. OF FLA.	21	ALACHUA	ল	NG		рі,			01/1994		43.000	35	41
· REPRESENTS 91.8% FPC OW						AA148 4						7,943	8,574

- SUMMER CAPABILITY JUNE THROUGH SEPTEMBER) OWNED BY GEORGIA POWER COMPANY

- 7 -

# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 6 of 10

#### FLORIDA POWER

#### SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 2001

١

(1)	(2)	(3)	(4)	(5)	(6)	თ	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1-7				<b>~</b> ,				ALT.	,	(/	- ()		
								FUEL	COMT. IN-	EXPECTED	GEN. MAX.	NET CAP	ABUITY
	UNIT	LOCATION	UNIT	FU	F1	FUEL TRA	NUMBER	DAYS	SERVICE	RETIREMENT	NAMEPLATE		
PLANT NAME	NO.	COUNTY		ESI.		ERI.	ALT	USE	MO.YEAR	MO/YEAR	KW	MW	MW
	1.000					100	Land St.	10750		STATE FOR THE STATE		991	1,044
ANCLOTE	1	FASCO	ST	RFO	20	PL.	<b>PL</b>		10/1974		\$56,200	496	\$21
10-00010	2		डा डा	RFO		PL.	n		10/1978		556,200	495	522
	•				140	•=					570,200		244
												52	64
AVON PARK	PI	HIGHLANDS	GT	NG	DFO	PL.	TK	3	12/1961		33,790	26	32
· · ·	P1		στ	DFO		TK			12/1968		33,790	26	32
												631	671
BARTOW	ŧ	PONELLAS	ូ 57 ្	NF0		WA			09/1958		127.500	121	123
	2		. 51	S.FO		WA			06/1961		127,500	119	121
	3		. 51	RFO	NG	WA	rt.		07/1963		239,360	204	298
	F1. P3		OT	DFO		. WA			06/1972		111,400	92	106
	22		GT	NG	DFO	r.	WA	8	06/1972		55,700	46	53
	.84		GT	NG	Dro	胆	WA		06/1972		\$5,700	49	60
·													
												184	232
BAYBORO	P1-P4	PINELLAS	GT	DFO		WA,TK			04/1973		226,800	164	232
												3,067	3,123
CRYSTAL	1	CITRUS	\$T	вп		WA.RR			10/1966		440,550	379	383
RIVER	2		গ	BIT		WARR			11/1969		\$23,800	486	491
	3•		<b>S</b> 7	NUC		TK			03/1977		890,460	765	782
	4	•	ST	BIT		WA,RR			12/1982		739,260	720	735
	5		st	817		WA.RR			10/1984		739,260	717	732
												667	762
	P1-P6		а	DFO		TK-RR			04/1976		401,220	967 324	390
DEBARY		VOLUSIA					TK.88					258	279
	P7-P9		στ		DFO	PL.	1 K.,KR		11/1992		345,000	85	275 93
	PIC		GT	DFO		TK.RR			11/1447		115,000	83	*3
												122	134
HIGGINS	P1-P2	PINELLAS	GT	NG	DFO	PL.	тк	1	04/1969		67.580	54	64
	P3-P4		GT		DFO	PL.	TK	1	12/1970		\$5,850	68	. 70
												442	529
IGNES ENERGY COMPLEX	1	POLK	œ	NG	₽FO	PL.	TK	6	04/1949		546.550	483	529
												1,039	1,194
INTERCESSION	P1-P6	OSCEOLA	σĩ	DFO		PL,TK			05/1974		340,200	394	366
CITY	P7-P10		OT	NG	<b>D</b> FO	PL.	PL,TK	5	11/1993		460,000	352	376
	Pil **		67	DFO		PL,TK			01/1997		165,000	145	170
•	P12-P14		στ	NG	DFO	PL.	PL.TK	5	12/2000		345,000	240	282
												IJ	. 16
RIO PINAR	Pi	ORANGE	στ	DFO		тк			11/1970		19,290	13	16
												307	347
SUWANNEE	ı	SUWANNEE	ST	REO	NG	TK	r.		11/1953	12/2005	34,500	32	33
RIVER	2		ST	EFO		т	PL.		11/1954	12/2005	37,500	31	32
	3		51 51	RFO		TK.	FL.		10/1956	12/2005	75,000	80	#1
	PL 13		στ		DFO	n.	TK	10	11/1940		122,400	110	134
	P2		GT.	DFO		π			11/1980		61.200	54	67
	••		•••										
												207	223
TIGER BAY	1	POLK	œ	NO		п.			08/1997		278,223	207	223
										,			
												154	[94
TURNER	P1-P2	VOLUSIA	στ	DFO		TK			10/1970		38,580	26	32
	P3		ст	DfO		TK			06/1974		71,200	65	\$2
	P4		न	DfO		TK			08/1974		71,200	63	80
									01/1994		43.000	35	रा र।
UNTV. OF FLA.	<b>P1</b>	ALACITUA	στ	NG		r.			u1/1994		-3.000	35 7,543	<u>91</u> 2.574

* REPRESENTS 91.78% FLORIDA POWER OWNERSHIP OF UNIT

** SUMMER CAPABILITY (ARE THROUGH SEPTEMBER) OWNED BY GLORGIA POWER COMPANY

۰.

#### PROGRESS ENERGY FLORIDA

*												1.0	$\sim 1$		P E P D
					PROGR	ESS ENER	CY FLOR	DA				mp	, []	13	ogr ogr chil
												-	7 CK	12	7 ct
				E.		SCHEDU CENERAT	INC FACI								Docket No. 090988 Progress Energy Florida Exhibit No (JBC-2 Page 7 of 10
															) erg
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) ALT.	(10)	(11)	(12)	(13)	(1,4)		098 97 F
	UNIT	LOCATION	UNIT	FU	21	EUEL TRA	NEDODT	FUEL DAYS	COM'L IN- SERVICE	EXPECTED RETIREMENT	GEN. MAX. NAMEPLATE	NET CAP SUMMER	ABILITY WINTER		(JE log 8
PLANTNAME	NO.	(COUNTY)	TYPE	PRL	ALL	PRL	ALT	USE	MO.YEAR	MOLYEAR	KW	MW	MW		88 Norida (JBC-3)
ANG 077		01600			10		ni					993	1.044		<del>م</del> رئ
ANCLOTE	1 2	PASCO	ST ST	rfo RFQ	NG NG	PL PL	PL PL		10/1974 10/1978		556,200 556,200	498 495	522 522		-
												52	64		
AVON PARK	21	HIGHLANDS	СТ	NG	DFO	PL.	TK	3	12/1958		33.790	26	32		
	PZ		CT	DFO		тк			12/1968		33,790	26	32		
												631	671		
BARTOW	1	PINELLAS	ST	RFO		WA			09/1958		127,500	121	123		
	2 3		5T 5	rfo Rfo	NG	WA WA	PL.		08/1961 07/1963		127.500 239,360	119 204	121		
	P1, P3		GT	DFO	ne	WA	14		06/1972		111.400	92	106		
	P2		CT	NG	DFO	PL	WA	8	06/1972		55,700	46	53		
	P4		CT	NG	DFO	PL	WA	8	05/1972		55,700	49	60		
											∧ <b>≵</b>	184	232		
BAYBORO	P1-P4	PINELLAS	GT	DFO		WATK			04/1973		226.800	184	232		
												3.067	3,123		
CRYSTAL	ł	CITRUS	ST	BIT		WARR	•		10/1968		440,550	379	383		
RIVER	2		ST	817		WARR			11/1969		523,800	488	491		
	3.		ST	NUC		TK			03/1977		890,460	765	782		
	4 \$		ST ST	BIT BIT		WA.RR WA.RR			12/1982 10/1984		739,260 739,260	720 717	735 732		1
	•		<b>Q</b> 1			111111			1011041		100,000				1
000 + 01/	P1-P6	VOLUSIA	CT	DFO		`TK.RR			64/1976		401,220	667 324	762 390		1
DEBARY	P7-P9	PULUSIA	GT	NG	DFO	PL	TK.RR	8	11/1992		345.000	258	278		1
	P10		GT	DFO		TK.RR			11/1992		115,000	85	93		
												132	134		
HICCINS	P1-P2	PINELLAS	GT	NG	DFO	PL	тк	1	04/1969		67.580	54	64		
	P3-P4		GT	NG	DFO	PL	ТК	1	12/1970		85,850	68	70		
												482	529		
HINES ENERCY COMPLEX	1	POLK	CC,	NG	DFO	FL	тк	6	04/1999		\$48,550	482	529		
												1,041	1,206		
INTERCESSION	P1-P6	OSCEOLA	CT	DFO		PLTK		_	05/1974		340,200	294	386		1
CITY	P7-P10 P11 **		GT CT	NG DFO	DFO	PL PL,TK	PL.TK	5	11/1993 01/1997		460,000 165,000	352 143	376 170		1
	P12-P14		GT	NG	DFO	PL	PL.TK	5	12/2000		345,000	252	294		1
												13	16		
RIO PINAR	Pi	ORANGE	GT	DFO		TK			11/1970		19,290	13	16		
												307	347	$\ell_{i}$	-
SUWANNEE	1	SUWANNEE	ST	RFO	NG	тк	PL		11/1953		34,500	32	33		1
RIVER	2		ST	RFO	NG	тк	P1.		11/1954		37,500	31	32		
	3		ST	rfo	NG	TK	PL		10/1956		75,000	60	81		1
	P1, P3		CT	NG	DPO		TK	10	11/1980		122,400	110	134 67		
	PZ		GT	DFO		TK			11/1980		61,200	54			
		DOI 10	~	110					09/1007		170 171	207 207	223 223		]
TICER BAY	1	POLK	20	NG		PL			08/1997		278,223	201	223		1
	· · ·										44 000	154	194		
TURNER	P1-P2 P3	VOLUSIA	CT CT	DFO DFO		TK TK			10/1970 08/1974		38,580 71,200	26 65	32 82		
	P3 P4		GT	DFO		TK			08/1974		71,200	63 63	80		
												35	41		
UNIV. OF FLA.	<b>P</b> 1	ALACHUA	CT	NG		PL			01/1994		43,000	35 <u>35</u>	11 11		
												7,955	8,586		
															.1

· REPRESENTS 91.78% PEF OWNERSHIP OF UNIT

** SUMMER CAPABILITY (JUNE THROUGH SEPTEMBER) OWNED BY GEORGIA POWER COMPANY

1 - 5

# April 7004 Docket No. 090988

Progress Energy Florida

## PROGRESS ENERGY FLORIDA

#### SCHEDULE 1 EXISTING GENERATING FACILITIES

#### AS OF DECEMBER 31, 2003

TEAM         I         PASCO         ST         RFO         NG         PL         10/74         556,200         498         522           ANCLOTE         2         PASCO         ST         RFO         NG         PL         10/78         556,200         495         522           BARTOW         1         PINELLAS         ST         RFO         WA         09/58         127,500         121         123					EX	ISTING	GENERA	TING FA	ACILITIES			Flogress	Energ	y Flori
(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(						AS C	F DECEM	BER 31,	2003			Exhibit I	NO	(JB0
(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(												Page 8 of	f 10	
NAMENUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBERNUMBER	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	-		(14)
ANT MAME         NO.         COURNTY TYPE PEL ALT.         PEL ALT.         PAL ALT.         DATE MALE         MO./TEAR         MO./TEAR         MAY.         MAY.           EAM         NACLOTE         1         PASCO         ST         NPO<										COM'L IN-	EXPECTED	GEN. MAX.	NET CAP	ABILITY
EAMANCLOTE1PASCOSTNOPLPLPL1073556,00495521ANCLOTE2PASCOSTNOPLPL1073556,00495521BARTOW1PINELLASSTNOWA-00/93117,00119121121BARTOW3PINELLASSTNOWA-00/9323,956204208CRYSTAL RIVER1CTIRUSSTNUWAR-00/9323,956204208CRYSTAL RIVER3CTIRUSSTNUTK10/9623,900466491CRYSTAL RIVER3CTIRUSSTNUTK10/9723,900466791CRYSTAL RIVER3CTIRUSSTNUTKPL10/94792,6071772CRYSTAL RIVER5CTIRUSSTNUTKPL10/94792,6071772SUWANGE RIVER5SUWANGE RIVER5SUWANGE RIVER10SUWANGE RIVER716716716716SUWANGE RIVER1SUWANGE RIVER5SUWANGE RIVER1POLKCTNG7KPL10/9471772.00SUWANGE RIVER2SUWANGE RIVER1POLKCTNGFKPL10/94716716716SUWANGE RIVER1POLKCTNGFKPL10/9471671		UNIT	LOCATION	UNIT	ÉU	EL	FUEL TRA	NSPORT	ALT. FUEL	SERVICE	RETIREMENT	NAMEPLATE	SUMMER	WINTER
ACCOTEIPACOSTPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPLPL	LANTNAME	NO.	(COUNTY)	TYPE	PRL	ALL	PRI.	ALT.	DAYS USE	MO./YEAR	MO./YEAR	KW	MW	MW
ANCLOTE2PASCSTFIPNPLPLIOTA55,00049552,00049552BARTOW1PNELLASSTFOWA-08/58127.600121121BARTOW3PINELLASSTFOWAPL07/63229,360204208CRYSLA LEVER1CTTRUSSTBTWAR-10/63239,360204381CRYSLA LEVER2CTTRUSSTBTWAR-10/64739,360720735CRYSLA LEVER3CTTRUSSTBTWAR-10/64739,360720735CRYSLA LEVER5CTTRUSSTBTWAR-10/64739,260711722CRYSLA LEVER5CTTRUSSTBFNOTKPL11/6473,003132SUWANGE REVER2SUWANGESTBFNOTKPL11/6473,00322221SUWANGE REVER2SUWANGESTBFNOTKPL10/6473,00465233SUWANGE RIVER2SUWANGESTPORTK604/9746,55046,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,5546,55	TEAM													
BARTOW         1         PRELLAS         ST         RFO         WA         ORIGINAL         ORIGINAL         121.00         121.01           BARTOW         2         PRELLAS         ST         RFO         WA         PL         ORIGINAL         121.00         110         121.00           CRYSTAL RIVER         1         CITRUS         ST         BIT         WA.R         1066         445.00         7.00         7.00           CRYSTAL RIVER         2         CITRUS         ST         BIT         WA.R         12.02         73.60         7.60         7.60         7.80           CRYSTAL RIVER         3         CITRUS         ST         BIT         WA.RE         12.02         73.60         7.00         7.80           SUWANNEE RIVER         1         SUWANNEE SINGY COMPLEX         3         SUWANNEE RIVER         3         SUWANNEE RIVER         3         SUWANNEE RIVER         4         POLK         CC         NG         FK         FL         11073         37.60         31.6         32.1           SUWANNEE RIVER         1         POLK         CC         NG         FK         FL         11074         39.600         16.6         52.1           SUWANNEE RIVER	ANCLOTE	1	PASCO	ST	RFO	NG	PL	PL		10/74		\$56,200	498	522
DARTOW         2         PPELLAS         ST         RFO         WA         BUT         BUT         DURATION         119         121           BARTOW         3         PPELLAS         ST         RFO         WA         PL         07/03         239.80         204         208           CKYSTAL RIVER         1         CITRUS         ST         BIT         WARR         11/69         523.80         466         491           CKYSTAL RIVER         3         CITRUS         ST         BIT         WARR         10/06         450.40         79.60         72.60         73.60         73.60         73.60         73.60         73.60         73.60         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.20         73.70 <t< td=""><td>ANCLOTE</td><td>2</td><td>PASCO</td><td>ST</td><td>RFO</td><td>NG</td><td>PL</td><td>PL</td><td></td><td>10/78</td><td></td><td>556,200</td><td>495</td><td>522</td></t<>	ANCLOTE	2	PASCO	ST	RFO	NG	PL	PL		10/78		556,200	495	522
BARTOW         3         PNELLAS         ST         RFO         NG         WA         PL         07/63         239,460         204         208           CRYSTAL RIVER         1         CITRUS         ST         BIT         WA.RR         10/66         440.53         379         383           CRYSTAL RIVER         3         CITRUS         ST         BIT         WA.RR         10/66         440.53         79         363           CRYSTAL RIVER         4         CITRUS         ST         BIT         WA.RR         10/22         79,260         70.9         735           SUWANNEE RIVER         1         SUWANNEE ST         ST         NG         TK         PL         11/34         31.500         12         33           SUWANNEE RIVER         1         SUWANNEE ST         ST         NG         TK         PL         11/34         31.500         12         32           SUWANNEE RIVER         1         SUWANNEE ST         ST         NG         TK         PL         11/34         31.500         12         32           SUWANNEE NUER         1         POLK         CC         NG         DFO         PL         TK         6         12/06	BARTOW	1	PINELLAS	ST	RFO		WA			09/58		127,500	121	123
CRYSTAL RIVER       1       CITRUS       ST       BIT       WA,RX       1066       440.559       379       383         CRYSTAL RIVER       2       CITRUS       ST       BIT       WA,RX       1169       33.80       466       491         CRYSTAL RIVER       4       CITRUS       ST       BUT       WA,RX       1262       79.20       726       735         CRYSTAL RIVER       5       CITRUS       ST       BIT       WA,RX       1262       79.20       73       33         SUWANNE RIVER       1       SUWANNE ST       RFO       NG       TK       PL       11/53       34.500       32       33         SUWANNE RIVER       3       SUWANNE ST       RFO       NG       TK       PL       11/44       37.500       31       32         SUWANNE RIVER       2       VOLK       CC       NG       DFO       PL       TK       6       12/93       598.00       316       522         INNES ENERGY COMPLEX       1       POLK       CC       NG       DFO       PL       TK       6       12/93       33/90       26       32         AVON PARK       P1       HIGHLANDS       GT	BARTOW	2	PINELLAS	ST	RFO		WA			08/61		127,500	119	121
CRYSTAL RIVER       2       CITRUS       ST       BIT       WA,RR       11/69       \$33,800       456       491         CRYSTAL RIVER       3       CITRUS       ST       NUC       TK       30,377       890,460       769       785         CRYSTAL RIVER       4       CITRUS       ST       BIT       WA,RR       1084       739,260       717       712         SUWANNE RIVER       1       SUWANNE RIVER       2       SUWANNE RIVER       3       SUWANNE RIVER       4       710,00       11       31       32         SUWANNE RIVER       3       SUWANNE RIVER       3       SUWANNE RIVER       1       POLK       CC       NG       TK       PL       10/36       550,00       481       539         MINES ENERGY COMPLEX       1       POLK       CC       NG       PL       TK       6       04/99       546,50       482       539         MINES ENERGY COMPLEX       1       POLK       CC       NG       PL       TK       6       12/05       533,000       6       532         MOND RAK       <	BARTOW	3	PINELLAS	ST	RFO	NG	WA	PL		07/63		239,360	204	208
CRYSTAL RIVER       3 *       CITRUS       ST       NUC       TK       0407       \$90,460       769       788         CRYSTAL RIVER       4       CITRUS       ST       BIT       WARR       1282       779,260       720       735         SUWANNEE RIVER       1       SUWANNEE ST       BIT       WARR       10644       772,20       31       33         SUWANNEE RIVER       2       SUWANNEE ST       RFO <ng< td="">       TK       PL       11/53       34,500       32       33         SUWANNEE RIVER       3       SUWANNEE ST       RFO<ng< td="">       TK       PL       11/54       37,500       31       32         SUWANNEE RIVER       3       SUWANNEE ST       RFO<ng< td="">       TK       PL       11/54       37,600       31       32         SUMANNEE RIVER       1       POLK       CC       NG       DFO       PL       TK       6       10/93       56,550       451       522         INISS ENERGY COMPLEX       1       POLK       CC       NG       DFO       PL       TK       6       12/03       598,000       16       522         TIGER BAY       1       POLK       CC       NG       DFO</ng<></ng<></ng<>	CRYSTAL RIVER	1	CITRUS	ST	BIT		WA,RR			10/66		440,550	379	383
CRYSTAL RIVER       4       CITRUS       ST       BIT       WA.RR       10262       799.260       720       735         CRYSTAL RIVER       5       CITRUS       ST       BIT       WA.RR       1064       799.260       717       732         SUWANDE RIVER       1       SUWANDE ST       RPO NG       TK       PL       11/53       34500       31       32         SUWANDE RIVER       2       SUWANDE ST       RPO NG       TK       PL       11/54       375.00       80       RK         SUWANDE RIVER       2       SUWANDE ST       RPO NG       TK       PL       11/54       375.00       80       81       4371         OMENEDCYCCH        HINS SERGY COMPLEX       2       POLK       CC       NG       DP       TK       6       04/99       546.50       482       329         HINES ENERGY COMPLEX       1       POLK       CC       NG       DP       TK       6       12/03       598.000       516       582         INGS ENERGY COMPLEX       1       POLK       CC       NG       DP       TK       5       12/68       33.790       26       32         MON PAK       P1	CRYSTAL RIVER	• 2	CITRUS	ST	BIT		WA,RR			11/69		523,800	486	491
CRYSTAL RIVER       S       CITRUS       ST       BIT       WARR       UNARNE       1084       792.60       717       732         SUWANNE ENRER       1       SUWANNE ENRER       1       SUWANNE ENRER       1       34.50       31       32       33         SUWANNE ENRER       3       SUWANNE ENRER       SUMANNE ENRE	CRYSTAL RIVER	3•	CITRUS	ST	NUC		TK			03/27		890,460	769	788
SUWANNEE RIVER       1       SUWANNEE       ST       RFO       NG       TK       PL       11/53       34.50       32       33         SUWANNEE RIVER       2       SUWANNEE       ST       RFO       NG       TK       PL       11/54       37,500       B2       81       4,771         SUWANNEE RIVER       3       SUWANNEE       ST       RFO       NG       TK       PL       10/54       37,500       B2       4,651       4,771         OMEINED-LYCLE         NG       DFO       PL       TK       6       04/99       546.550       452       522       222       222       1,205       1,304       10/16       582       1,304       11,301       10/16       582       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304       1,304 <td< td=""><td>CRYSTAL RIVER</td><td>4</td><td>CITRUS</td><td>ST</td><td>вп</td><td></td><td>WARR</td><td></td><td></td><td>12/82</td><td></td><td>739,260</td><td>720</td><td>735</td></td<>	CRYSTAL RIVER	4	CITRUS	ST	вп		WARR			12/82		739,260	720	735
SUWANNEE RIVER         2         SUWANNEE         ST         RFO         NG         TK         PL         11/54         37,500         31         32           SUWANNEE RIVER         3         SUWANNEE         ST         RFO         NG         TK         PL         10/26         75,000         82         81           OMENCE/CYCLE           POLK         CC         NG         DFO         PL         TK         6         04/99         546.50         482         529           INNES ENERGY COMPLEX         1         POLK         CC         NG         DFO         PL         TK         6         04/99         546.50         482         529           INDES ENERGY COMPLEX         1         POLK         CC         NG         DFO         PL         TK         6         04/99         546.50         482         529           INDES ENERGY COMPLEX         1         POLK         CC         NG         DFO         TK         6         10/97         11.80         92         10           AVON PARK         P1         HIGHLANDS         GT         NG         DFO         TK         3         12/68         33,790         26	CRYSTAL RIVER	5	CITRUS	ST	вп		WARR			10/84		739,260	717	732
SUWANNEE RIVER         2         SUWANNEE         ST         RFO         NG         TK         PL         11/54         37,500         31         32           SUWANNEE         N         RFO         NG         TK         PL         11/54         37,500         80         RE           OMENED-CYCLE         I         POLK         CC         NG         DFO         PL         TK         6         04/99         546.53         452         529           INNES ENERGY COMPLEX         1         POLK         CC         NG         DFO         PL         TK         6         04/99         546.53         452         529           INNES ENERGY COMPLEX         1         POLK         CC         NG         DFO         PL         TK         6         04/99         546.53         452         529           INSE SENERGY COMPLEX         1         POLK         CC         NG         DFO         TK         6         04/99         546.53         450         33.730         26         32           OMENDIT         Italista         ST         DFO         VA         8         06/72         35,700         46         32           BARTOW         P1<				ST		NG		PL						
ALGENERATION         PALE         POLK         CC         NG         DFO         PL         TK         6         04/99         546.550         48.22         259           HNESS ENERGY COMPLEX         1         POLK         CC         NG         DFO         PL         TK         6         12/03         598.000         516         582.           TIGER BAY         1         POLK         CC         NG         PL         TK         6         12/03         598.000         516         582.         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         1,205         32         202         222         1,205         1,205         1,205         1,205         1,205         31,200         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         36	SUWANNEE RIVER	2	SUWANNEE	ST	RFO	NG	TK.	PL		11/54		37,500	31	32
	SUWANNEE RIVER	3	SUWANNEE	ST	RFO	NG	тк	PL		10/56	4	75,000	80	81
HINES ENERGY COMPLEX       I       POLK       CC       NG       DFO       PL       TK       6       04/99       546.550       482       529         HINES ENERGY COMPLEX       2       POLK       CC       NG       DFO       PL       TK       6       12/03       398,000       31.6       522         TIGER BAY       1       POLK       CC       NG       PL       TK       6       12/03       398,000       31.6       522       1,334         OMBUSTION TURENE        NG       DFO       PL       TK       3       12/68       33.790       26       32         BARTOW       P1       HIGHLANDS       GT       DFO       TK       NG       3672       55,700       49       60         BARTOW       P2       PNELLAS       GT       NG       DFO       PL       WA       8       0672       55,700       49       60         BARTOW       P1.4       PNELLAS       GT       NG       DFO       PL       WA       8       0672       55,700       49       60         BARTOW       P1.4       PNELLAS       GT       DFO       KLR       8       10/75       51.00 <td></td> <td>4,651</td> <td>4,771</td>													4,651	4,771
HINES ENERGY COMPLEX       2       POLK       CC       NG       DFO       PL       TK       6       12/03       598,000       516       582         TIGER BAY       1       POLK       CC       NG       PL       08/97       278.223       202       223       1,205       1,334         OMBUSTION TURENE       AVON PARK       P1       HIGHLANDS       GT       NG       DFO       TK       3       12/68       33,790       26       32         AVON PARK       P2       HIGHLANDS       GT       NG       DFO       TK       3       12/68       33,790       26       32         BARTOW       P1, P3       PINELLAS       GT       NG       DFO       TK       3       06/72       55,700       46       60         BARTOW       P4       PINELLAS       GT       NG       DFO       WA       8       06/72       55,700       49       60         BARTOW       P4       PINELLAS       GT       NG       DFO       TK,RR       8       10/92       15,000       228       232         DEBARY       P1-P6       VOLUSIA       GT       DFO       TK,RR       8       10/92       15,	OMBINED-CYCLE													
TIGER BAY     I     POLK     CC     NG     PL     08/97     278.223     202     221       L205     L,205     L,304       OMBUSTION TUREINE     AVON PARK     PI     HIGHLANDS     GT     NG     DFO     TK     3     12/68     33,790     26     32       AVON PARK     P2     HIGHLANDS     GT     DFO     TK     12/68     33,790     26     32       BARTOW     P1, P3     PINELLAS     GT     DFO     WA     5/72-6/72     111.400     92     106       BARTOW     P2     PINELLAS     GT     NG     DFO     VA     5/72-6/72     111.400     92     106       BARTOW     P4     PINELLAS     GT     NG     DFO     VA     8     06/72     55,700     46     53       BARTOW     P4     PINELLAS     GT     NG     DFO     TK,RR     12/75-04/76     401.220     324     390       DEBARY     P1-P4     VOLUSIA     GT     NG     DFO     TK,RR     12/75-04/76     401.20     245     272       DEBARY     P1-P4     VOLUSIA     GT     NG     DFO     TK,RR     12/75-04/76     401.20     324     390       DE	HINES ENERGY COMPLEX	1	POLK	cc	NG	DFO	PL	TK	6	04/99		546,550	482	529
AVON PARK         PI         HIGHLANDS         GT         NG         DFO         PL         TK         3         12/68         33,790         26         32           AVON PARK         P2         HIGHLANDS         GT         DFO         TK         12/68         33,790         26         32           BARTOW         P1, P3         PINELLAS         GT         DFO         WA         5/72-6/72         111.400         92         106           BARTOW         P2         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           BARTOW         P4         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           BAYBORO         P1 +9         PNELLAS         GT         NG         DFO         TK.RR         10/73         264,800         184         232           DEBARY         P1-9         VOLUSIA         GT         DFO         TK.RR         10/92         115.00         65         93           HIGGINS         P1-92         PNELLAS         GT         NG         DFO         T	HINES ENERGY COMPLEX	2	POLK	сс	NG	DFO	PĹ	тк	6	12/03		598,000	\$16	582
AVON PARK         PI         HIGHLANDS         GT         NG         PCO         PL         TK         3         12/68         33,790         26         32           AVON PARK         P2         HIGHLANDS         GT         DCO         TK         12/68         33,790         26         32           BARTOW         P1,9         PINELLAS         GT         DCO         FL         WA         8         06/72         11/100         92         060           BARTOW         P4         PINELLAS         GT         NG         DFO         FL         WA         8         06/72         55,700         46         33           BARTOW         P4         PINELLAS         GT         NG         DFO         FL         WA         8         06/72         55,700         49         60           BARTOW         P1-4         PINELLAS         GT         NG         DFO         TK         04/73         26.800         184         232           DEBARY         P1-9         VOLUSIA         GT         DFO         TK         R         10/92         15.000         64         35           DEBARY         P10         VOLUSIA         GT         DF	TIGER BAY	1	POLK	cc	NG		PL			08/97		278,223	207	223
AVON PARK       P1       HIGHLANDS       GT       NG       DFO       TK       3       12/68       33,790       26       32         AVON PARK       P2       HIGHLANDS       GT       DFO       TK       12/68       33,790       26       32         BARTOW       P1, P3       PINELLAS       GT       DFO       WA       5/72-6/72       111.400       92       106         BARTOW       P2       PINELLAS       GT       NG       DFO       WA       8       06/72       55,700       46       53         BARTOW       P4       PINELLAS       GT       NG       DFO       PL       WA       8       06/72       55,700       46       53         BARTOW       P1-P4       PINELLAS       GT       DFO       TK,RR       12/75-04/76       401,220       324       390         DEBARY       P1-P4       VOLUSIA       GT       DFO       TK,RR       10/92       115.000       85       93         DEBARY       P10       VOLUSIA       GT       DFO       TK       03/69-04/69       67.580       54       64         HIGGINS       P1-P2       PINELLAS       GT       NG       DFO <td></td> <td>1,205</td> <td>1,334</td>													1,205	1,334
AVON PARK       P2       HIGHLANDS       GT       DFO       TK       12/68       33,790       26       32         BARTOW       P1, P3       PINELLAS       GT       DFO       WA       5/72-6/72       111.400       92       106         BARTOW       P2       PNELLAS       GT       NG       DFO       PL       WA       8       06/72       55,700       46       53         BARTOW       P4       PINELLAS       GT       NG       DFO       PL       WA       8       06/72       55,700       46       53         BAYBORO       P1-P4       PNELLAS       GT       DFO       WA,TK       04/73       226,800       184       232         DEBARY       P1-P6       VOLUSIA       GT       DFO       TK,RR       12/75-04/76       041,220       324       390         DEBARY       P1-P9       VOLUSIA       GT       DFO       TK,RR       8       10/92       115,000       85       93         DEBARY       P1-P2       PNELLAS       GT       DFO       PL       TK       1       10/92       115,000       143       100         DEBARY       P1-P2       PNELLAS       GT	OMBUSTION TURBINE													
BARTOW         PI, P3         PINELLAS         GT         DFO         WA         5/72-6/72         11.400         92         106           BARTOW         P2         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           BARTOW         P4         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           BARTOW         P4         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           DEBARY         P1-P4         VOLUSIA         GT         DFO         TK,RR         04/73         226,800         124         390           DEBARY         P1-P6         VOLUSIA         GT         DFO         TK,RR         10/92         115,000         85         93           HIGGINS         P1-P2         PINELLAS         GT         NG         DFO         TK         1         12/70-01/71         85.850         68         70           NTERCESSION CITY         P1-P6         OSCEOLA         GT         NG	AVON PARK	Pl	HIGHLANDS	GT	NG	DFO	PL	TK	3	12/68		33,790	26	32
BARTOW         P2         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         46         53           BARTOW         P4         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         49         60           BAYBORO         P1-P4         PINELLAS         GT         DFO         WA,TK         64/73         226,800         184         232           DEBARY         P1-P6         VOLUSIA         GT         DFO         TK,RR         12/75-04/76         401,220         324         390           DEBARY         P1-P2         VOLUSIA         GT         DFO         TK,RR         8         10/92         345,000         258         279           DEBARY         P10         VOLUSIA         GT         DFO         TK         03/69-04/69         67.580         54         64           HIGGINS         P1-P2         PNELLAS         GT         DFO         PL         TK         1         12/70-01/71         85.850         68         70           NTERCESSION CITY         P1-P6         OSCEOLA         GT         DFO         PL,TK	AVON PARK	P2	HIGHLANDS	GT	DFO		TK			12/68		33,790	26	32
BARTOW         P4         PINELLAS         GT         NG         DFO         PL         WA         8         06/72         55,700         49         60           BAYBORO         PI-P4         PINELLAS         GT         DFO         WA,TK         04/73         226,800         184         232           DEBARY         PI-P6         VOLUSIA         GT         DFO         TK,RR         12/75-04/76         401,220         324         390           DEBARY         P1-P6         VOLUSIA         GT         DFO         TK,RR         8         10/92         115.000         85         93           DEBARY         P10         VOLUSIA         GT         DFO         TK         03/69-04/69         67.580         54         64           HIGGINS         P1-P2         PINELLAS         GT         NG         DFO         TK         1         12/70-01/71         85.850         68         70           NTERCESSION CITY         P1-P6         OSCEOLA         GT         NG         DFO         PL,TK         1         12/70-01/71         85.850         68         70           NTERCESSION CITY         P1-P1-P0         OSCEOLA         GT         NG         DFO	BARTOW	P1, P3	PINELLAS	GT	DFO		WA			5/72-6/72		111,400	92	106
BAYBORO       PI-P4       PINELLAS       GT       DFO       WA,TK       04/73       226,800       184       232         DEBARY       PI-P6       VOLUSIA       GT       DFO       TK,RR       12/75-04/76       401,220       324       390         DEBARY       P7-P9       VOLUSIA       GT       NG       DFO       TK,RR       8       10/92       345,000       258       279         DEBARY       P10       VOLUSIA       GT       DFO       TK,RR       8       10/92       115,000       85       93         DEBARY       P10       VOLUSIA       GT       DFO       TK       03/69-04/69       67,580       54       64         HIGGINS       P1-P2       PINELLAS       GT       NG       DFO       PL       TK       1       12/70-01/71       85,850       68       70         NTERCESSION CITY       P1-P6       OSCEOLA       GT       NG       DFO       PL       TK       10/97       165,000       352       376         NTERCESSION CITY       P1-P10       OSCEOLA       GT       NG       DFO       PL,TK       5       10/97       165,000       143       170         NTERCESSION CITY<	BARTOW	P2	PINELLAS	GT	NG	DFO	PL	WA	8	06/72		55,700	46	53
DEBARY         PI-P6         VOLUSIA         GT         DFO<,         TK.RR         12/75-04/76         401,220         324         390           DEBARY         P1-P9         VOLUSIA         GT         NG         DFO         PL         TK,RR         8         10/92         345,000         258         279           DEBARY         P10         VOLUSIA         GT         DFO         TK,RR         10/92         115,000         85         93           HIGGNS         P1-P2         PINELLAS         GT         DFO         TK         03/69-04/69         67.580         54         64           HIGGNS         P3-P4         PINELLAS         GT         NG         DFO         TK         1         12/70-01/71         85.850         68         70           INTERCESSION CITY         P1-P6         OSCEOLA         GT         NG         DFO         PL         TK         105/74         340,000         352         376           INTERCESSION CITY         P1-P6         OSCEOLA         GT         NG         DFO         PL         TK         01/97         165,000         143         170           INTERCESSION CITY         P12-P14         OSCEOLA         GT         NG	BARTOW	P4	PINELLAS	GT	NG	DFO	PL	WA	8			55,700	49	60
DEBARY         P7-P9         VOLUSIA         GT         NG         DF0         PL         TK,RR         8         10/92         345,000         258         279           DEBARY         P10         VOLUSIA         GT         DF0         TK,RR         8         10/92         115,000         85         93           HIGGNS         P1-P2         PNELLAS         GT         DF0         TK         03/69-04/69         67,580         54         64           HIGGNS         P3-P4         PNELLAS         GT         NG         DF0         PL         TK         1         12/70-01/71         85,850         68         70           INTERCESSION CITY         P1-P6         OSCEOLA         GT         NG         DF0         PL         TK         5         10/93         460,000         352         376           INTERCESSION CITY         P1-P1         OSCEOLA         GT         NG         DF0         PL         PL,TK         5         10/93         460,000         352         376           INTERCESSION CITY         P1 +         OSCEOLA         GT         NG         DF0         PL         TK         10/97         165,000         143         170	BAYBORO	P1-P4	PINELLAS	GT	DFO		WA,TK			04/73		226,800	184	232
DEBARY         P10         VOLUSIA         GT         DFO         TK.R         10/92         115.000         85         93           HIGGNS         P1-P2         PINELLAS         GT         DFO         TK         03/69-04/69         67.580         54         64           HIGGNS         P3-P4         PINELLAS         GT         NG         DFO         TK         12/70-01/71         85.850         68         70           INTERCESSION CITY         P1-P6         OSCEOLA         GT         DFO         PL         TK         1         12/70-01/71         85.850         68         70           INTERCESSION CITY         P1-P6         OSCEOLA         GT         DFO         PL         TK         05/74         340,200         294         366           INTERCESSION CITY         P1-P6         OSCEOLA         GT         DFO         PL,TK         5         10/93         460,000         352         376           INTERCESSION CITY         P11         ***         OSCEOLA         GT         DFO         PL,TK         5         10/93         450,000         252         294           RIO PINAR         P1         ORANGE         GT         DFO         TK         11	DEBARY	P1-P6		GT										
HIGGNS       PI-P2       PINELLAS       GT       DFO       TK       03/69-04/69       67.580       54       64         HIGGNS       P3-P4       PINELLAS       GT       NG       DFO       PL       TK       I       12/70-01/71       85.850       68       70         INTERCESSION CITY       P1-P6       OSCEOLA       GT       NG       DFO       PL       TK       I       12/70-01/71       85.850       68       70         INTERCESSION CITY       P1-P6       OSCEOLA       GT       NG       DFO       PL       TK       I       12/70-01/71       85.850       68       70         INTERCESSION CITY       P1-P6       OSCEOLA       GT       NG       DFO       PL       TK       5       10/93       460.000       352       376         INTERCESSION CITY       P11       OSCEOLA       GT       NG       DFO       PL,TK       5       10/93       460.000       352       272       294         RIO PINAR       P1       ORANGE       GT       DFO       PL       TK       10       10/70       13       16         SUWANNEE RIVER       P1       SUWANNEE       GT       DFO       TK <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TK,RR</td><td>t 8</td><td></td><td></td><td></td><td></td><td></td></th<>								TK,RR	t 8					
HIGGINS       P3-P4       PINELLAS       GT       NG       DFO       PL       TK       I       12/70-01/71       85.850       68       70         INTERCESSION CITY       P1-P6       OSCEOLA       GT       DFO       PL,TK       05/74       340,200       294       366         INTERCESSION CITY       P7-P10       OSCEOLA       GT       NG       DFO       PL       PL,TK       05/74       340,200       294       366         INTERCESSION CITY       P7-P10       OSCEOLA       GT       NG       DFO       PL       PL,TK       05/74       340,200       352       376         INTERCESSION CITY       P1-P1       OSCEOLA       GT       NG       DFO       PL       PL,TK       01/97       165,000       143       170         INTERCESSION CITY       P12-P14       OSCEOLA       GT       NG       DFO       PL       PL,TK       5       12/00       345,000       252       294         RIO PINAR       P1       ORANGE       GT       DFO       TK       11/70       19,290       13       16         SUWANNEE RIVER       P1       SUWANNEE       GT       DFO       TK       10/80       61,200       55	DEBARY	P10		GT	DFO									
INTERCESSION CITY       PI-P6       OSCEOLA       GT       DFO       PL,TK       05/74       340,200       294       366         INTERCESSION CITY       P7-P10       OSCEOLA       GT       NG       DFO       PL       PL,TK       05/74       340,200       294       366         INTERCESSION CITY       P7-P10       OSCEOLA       GT       NG       DFO       PL       PL,TK       5       10/93       460,000       352       376         INTERCESSION CITY       P11       ***       OSCEOLA       GT       DFO       PL       PL,TK       01/97       165,000       143       170         INTERCESSION CITY       P12-P14       OSCEOLA       GT       NG       DFO       PL       PL,TK       5       12/00       345,000       252       294         RIO PINAR       P1       ORANGE       GT       DFO       TK       11/70       19,290       13       16         SUWANNEE RIVER       P1       SUWANNEE       GT       DFO       TK       10/80       61,200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       DFO       TK       10/80       61,200       55       67      <	HIGGINS													
INTERCESSION CITY         P7-P10         OSCEOLA         GT         NG         DFO         PL         PLTK         5         10/93         460,000         352         376           INTERCESSION CITY         P11         •••         OSCEOLA         GT         DFO         PL,TK         01/97         165,000         143         170           INTERCESSION CITY         P11         ••         OSCEOLA         GT         DFO         PL,TK         01/97         165,000         143         170           INTERCESSION CITY         P12-P14         OSCEOLA         GT         NG         DFO         PL         PL,TK         5         12/00         345,000         252         294           RIO PINAR         P1         ORANGE         GT         DFO         PL         TK         11/70         19.290         13         16           SUWANNEE RIVER         P1         SUWANNEE         GT         DFO         TK         10/80         61.200         55         67           SUWANNEE RIVER         P3         SUWANNEE         GT         DFO         TK         10/80         61.200         55         67           TURNER         P1-P2         VOLUSIA         GT         DF								TK.	i					
INTERCESSION CITY       P11 ***       OSCEOLA       GT       DFO       PL,TK       01/97       165,000       143       170         INTERCESSION CITY       P12-P14       OSCEOLA       GT       NG       DFO       PL       PL,TK       5       12/00       345,000       252       294         RIO PINAR       P1       ORANGE       GT       DFO       PL       PL,TK       5       12/00       345,000       252       294         RIO PINAR       P1       ORANGE       GT       DFO       PL       TK       11/70       19.290       13       16         SUWANNEE RIVER       P1       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         SUWANNEE RIVER       P2       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         TURNER       P1-P2       VOLUSIA       GT       DFO       TK       10/70       38.580       26       32         TURNER       P3       VOLUSIA       GT       DFO       <														
INTERCESSION CITY       P12-P14       OSCEOLA       GT       NG       DFO       PL       PL,TK       5       12/00       345,000       252       294         RIO PINAR       P1       ORANGE       GT       DFO       TK       11/70       19.290       13       16         SUWANNEE RIVER       P1       SUWANNEE       GT       NG       DFO       PL       TK       10/80       61.200       55       67         SUWANNEE RIVER       P2       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       DFO       TK       10/80       61.200       55       67         SUWANNEE       GT       DFO       TK       10/70       38.580       26       32         TURNER       P1       YOLUSIA       GT       DFO       TK       08/74       71.200       65       82         TURNER       P4       YOLUSIA       GT       DFO       TK       08/74       71.200       63 <t< td=""><td>INTERCESSION CITY</td><td></td><td></td><td></td><td></td><td></td><td></td><td>PL,TK</td><td>ζ 5</td><td></td><td></td><td></td><td></td><td></td></t<>	INTERCESSION CITY							PL,TK	ζ 5					
RIO PINAR         PI         ORANGE         GT         DFO         TK         11/70         19,290         13         16           SUWANNEE RIVER         P1         SUWANNEE         GT         NG         DFO         PL         TK         10         10/80         61,200         55         67           SUWANNEE RIVER         P2         SUWANNEE         GT         DFO         TK         10/80         61,200         54         67           SUWANNEE RIVER         P3         SUWANNEE         GT         DFO         TK         10/80         61,200         55         67           SUWANNEE RIVER         P3         SUWANNEE         GT         NG         DFO         PL         TK         10         11/80         61,200         55         67           SUWANNEE RIVER         P3         SUWANNEE         GT         NG         DFO         TK         10/70         38,580         26         32           TURNER         P3         VOLUSIA         GT         DFO         TK         08/74         71,200         65         82           TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71,200         63	INTERCESSION CITY													
SUWANNEE RIVER       P1       SUWANNEE       GT       NG       DFO       PL       TK       10       10/80       61,200       55       67         SUWANNEE RIVER       P2       SUWANNEE       GT       DFO       TK       10       10/80       61,200       55       67         SUWANNEE RIVER       P2       SUWANNEE       GT       DFO       TK       10/80       61,200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       NG       DFO       PL       TK       10       11/80       61,200       55       67         SUWANNEE RIVER       P3       SUWANNEE       GT       NG       DFO       PL       TK       10       11/80       61,200       55       67         SUWANNEE       P3       SUWANNEE       GT       DFO       TK       10/70       38,580       26       32         TURNER       P3       VOLUSIA       GT       DFO       TK       08/74       71,200       65       82         TURNER       P4       VOLUSIA       GT       DFO       TK       08/74       71,200       63       80         UNIV. OF FLA.       P1       ALACHUA	INTERCESSION CITY							PL,TK	L 5					
SUWANNEE RIVER         P2         SUWANNEE         GT         DFO         TK         10/80         61,200         54         67           SUWANNEE RIVER         P3         SUWANNEE         GT         NG         DFO         PL         TK         10         11/80         61,200         55         67           TURNER         P3         SUWANNEE         GT         NG         DFO         PL         TK         10         11/80         61,200         55         67           TURNER         P1-P2         VOLUSIA         GT         DFO         TK         10/70         38.580         26         32           TURNER         P3         VOLUSIA         GT         DFO         TK         08/74         71.200         65         82           TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71.200         63         80           UNIV. OF FLA.         P1         ALACHUA         GT         NG         PL         01/94         43,000         35         41           2,619         3,069         S0         S0         S0         S0         S0	RIO PINAR													
SUWANNEE RIVER         P3         SUWANNEE         GT         NG         DFO         PL         TK         10         11/80         61,200         55         67           TURNER         P1         P2         VOLUSIA         GT         DFO         TK         10/70         38.580         26         32           TURNER         P3         VOLUSIA         GT         DFO         TK         08/74         71,200         65         82           TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71,200         63         80           UNIV. OF FLA.         P1         ALACHUA         GT         NG         PL         01/94         43,000         35         41           2,619         3,069         3         3         3         3         3         3	SUWANNEE RIVER							TK	10					
SOURAULE IS FAX         PI-P2         VOLUSIA         GT         DFO         TK         10/70         38.580         26         32           TURNER         P3         VOLUSIA         GT         DFO         TK         08/74         71.200         65         82           TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71.200         63         80           UNIV. OF FLA.         P1         ALACHUA         GT         NG         PL         01/94         43,000         35         41           2,619         3,069	SUWANNEE RIVER													
TURNER         P3         VOLUSIA         GT         DFO         TK         08/74         71,200         65         82           TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71,200         63         80           UNIV. OF FLA.         P1         ALACHUA         GT         NG         PL         01/94         43,000         25         41           2,619         3,069								тк	10					
TURNER         P4         VOLUSIA         GT         DFO         TK         08/74         71,200         63         80           UNIV. OF FLA.         P1         ALACHUA         GT         NG         PL         01/94         43,000         35         41           2,619         3,069														
UNIV. OF FLA. P1 ALACHUA GT NG PL 01/94 43,000 35 41 2,619 3,069														
2,619 3,069														
	UNIV. OF FLA.	Pl	ALACHUA	GT	NG		PL			01/94		43,000		
						_							2,619	3,069
	** SUMMER CAPABILITY (JUN	E THROUG	H SEPTEMBE	R) OW	NED B	Y GEC	orgia pov	ver co	MPANY		TOTAL RE	SOURCES (MW	) 8,475	9,174

#### PROGRESS ENERGY FLORIDA

.

Apn1 2005 Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 9 of 10

#### SCHEDULE 1 EXISTING GENERATING FACILITIES

AS OF DECEMBER 31, 2004

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	UNIT	LOCATION	UNIT	FU	Ft	FILEI TRA	NSDODT	ALT, FUEL	COM'L IN-	EXPECTED	GEN. MAX. NAMEPLATE	NET CAP	
PLANT NAME	NO.			PRL		PRI	ALT.	DAYS USE	MO./YEAR	MO/YEAR	KW	MW MW	MW
STEAM		10000111	يحيل الم	1 1 2 2 2	080.	<u>1.121</u>	Dbil.	0010 000	MOTIONS	MOTIEAN	<u>KU</u>	<u>pre</u>	<u>MM</u>
ANCLOTE	i	PASCO	ST	RFO	NG	PL	PL		10/74		556,200	498	522
ANCLOTE	2	PASCO	ST	RFO	NG	PL	PL		10/78		556,200	495	
BARTOW	1	PINELLAS	ST	RFO	nu	WA	r.		09/58				522
BARTOW	2	PINELLAS	ST	RFO		WA			08/61		127,500	121	123
BARTOW	3	PINELLAS	ST	RFO	MO	WA	PL				127,500	119	121
CRYSTAL RIVER	1	CITRUS	ST	BIT	nu	WARR	PL.		07/63		239,360	204	208
CRYSTAL RIVER	2	CITRUS	ST	BIT		WA,RR			10/66		440,550	379	383
CRYSTAL RIVER	- 3 *	CITRUS	ST	NUC		TK			11/69		523.800	486	491
CRYSTAL RIVER	4	CITRUS	ST	BIT		WA,RR			03/77		890,460	769	788
CRYSTAL RIVER	+ 5	CITRUS	ST	ВП					12/82		739,260	720	735
SUWANNEE RIVER	J	SUWANNEE	ST	RFO	NC	WARR	01		10/84		739.260	717	732
	•				NG	TK	PL		11/53		34,500	32	33
SUWANNEE RIVER	2	SUWANNEE	ST	RFO		TK	<u>.</u> .		11/54		37,500	31	32
SUWANNEE RIVER	3	SUWANNEE	ST	RFO	NG	TK	PL		10/56		75.000	<u>80</u>	81
COMPANYED GUOLE												4,651	4,771
COMBINED-CYCLE			~~										
HINES ENERGY COMPLEX	1	POLK	CC	NG	DFO		TK	6	04/99		546,550	482	529
HINES ENERGY COMPLEX	2	POLK	CC	NG	DFO		тк	6	12/03		598,000	516	582
TIGER BAY	1	POLK	cc	NG		PL.			08/97		278,223	<u>207</u>	223
COMPLICATION TUDDBUT												1,205	1,334
COMBUSTION TURBINE AVON PARK	PI	HIGHLANDS	GT	NG	DFO	PL	тк	3	12/68		33,790	26	32
AVON PARK	P1 P2	HIGHLANDS		DFO	UFU	TK	IK.	2	12/68		33,790	26	32 32
BARTOW	P1, P3	PINELLAS	GT	DFO		WA			5/72-6/72		111,400	26 92	32 106
BARTOW	P2	PINELLAS	GT	NG	DFO		WA	8	06/72		55,700	¥2 46	53
BARTOW	P4	PINELLAS	GT	NG	DFO		WA	8	06/72		55,700	40	55 60
	P1-P4	PINELLAS	GT	DFO	Dro	WA,TK	"^	o	04/73		226.800	184	232
BAYBORO DEBARY	P1-P6	VOLUSIA	GT	DFO		TK			12/75-04/76		401,220	324	390
DEBARY	P7-P9	VOLUSIA	GT	NG	DFO		τv	0	10/92			258	279
			GT	DFO	DFU		тк	8	10/92		345,000		
DEBARY	P10	VOLUSIA	GT	NG	DEC	TK	-				115,000	85	93
HIGGINS	P1-P2	PINELLAS	GT	NG	DFO		TK		03/69-04/69		67.580	54	64 70
HIGGINS	P3-P4	PINELLAS		DFO	DFO		тк	1	12/70-01/71		85,850	68	70
INTERCESSION CITY	P1-P6	OSCEOLA OSCEOLA	GT		000	PL,TK	DI 771/		05/74		340.200	294	366
INTERCESSION CITY	P7-P10		GT	NG	DFC		PL_TK	5	10/93		460,000	352	376
INTERCESSION CITY	P11 **	OSCEOLA	GT	DFO	000	PLTK	DI 774		01/97		165,000 345,000	143 252	170 294
INTERCESSION CITY	P12-P14		GT	DFO	DFC		PL,TK	5	12/00		19,290		
RIO PINAR	PI	ORANGE	GT		DEC	TK	716	10	11/70			13 55	16 67
SUWANNEE RIVER	PI	SUWANNEE		NG			TK	10	10/80		61,200		
SUWANNEE RIVER	P2	SUWANNEE		DFO		TK	-		10/80		61,200	54	67
SUWANNEE RIVER	P3	SUWANNEE			DFC		тк	10	11/80		61.200 38,580	55 26	67 32
TURNER	P1-P2	VOLUSIA	GT	DFO		TK			10/70			26	
TURNER	P3	VOLUSIA	GT CT	DFO		TK			08/74		71,200	65 63	82 80
TURNER	P4	VOLUSIA	GT	DFO		TK			08/74		71,200	-63 28	80 4 I
UNIV: OF FLA,	PI	ALACHUA	GT	NG		PL			01/94		43,000	35	41
-			011170 C		r							2,619	3,069
REPRESENTS APPROXIMAT							100 001	(DA MV		TOTIL BOO	OUDCESSA	• • · · · ·	0 174
** SUMMER CAPABILITY (JUNE	THROUG	H SEPTEMBE	K) OWI	VED B	Y GEO	JKGIA POV	VER CON	IFANY		TOTAL RES	OURCES (MW	) 8,475	9,174

1-5

•

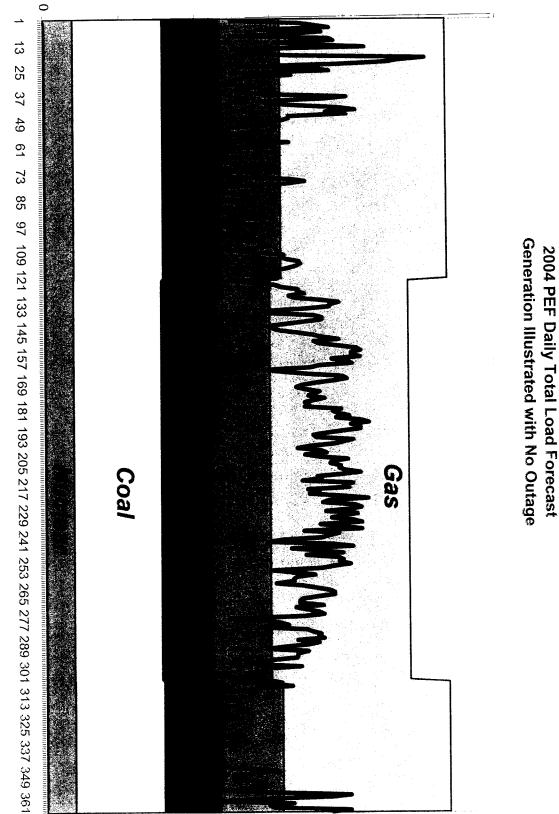
# Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-3) Page 10 of 10

.

#### PROGRESS ENERGY FLORIDA

#### SCHEDULE } EXISTING GENERATING FACILITIES

AS OF DECEMBER 31, 2005


(1).	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) COM'L IN-	(11) EXPECTED	(12) GEN. MAX.	(13) NET CAP	(14) ABII ITY
	UNIT	LOCATION	UNIT	FU	EL.	FUEL TRA	NSPORT	ALT. FUEL	SERVICE	RETIREMENT		SUMMER	WINTER
PLANTNAME	NO.	(COUNTY)	TYPE	PRI.	ALT.	PRL	ALT.	DAYS USE	MO./YEAR	MO/YEAR	KW	MW	MW
STEAM						4.132		STORAGE AND			-	Bardagi da	
ANCLOTE	1	PASCO	ST	RFO	NG	PL	PL		10/74		556,200	498	522
ANCLOTE	2	PASCO	ST	RFO	NG	PL	PL.		10/78		\$56.200	495	522
BARTOW	1	PINELLAS	ST	RFO		WA			09/58		127,500	121	123
BARTOW	2	PINELLAS	ST	RFO		WA			08/61		127,500	119	121
BARTOW	3	PINELLAS	ST	RFO	NG	WA	PL		07/63		239,360	204	208
CRYSTAL RIVER	1	CITRUS	ST	BIT		WA			10/66		440,550	379	383
CRYSTAL RIVER	2	CITRUS	ST	вп		WA			11/69		523,800	486	491
CRYSTAL RIVER	3.	CITRUS	ST	NUC		TK			03/77		890,460	769	788
CRYSTAL RIVER	4	CITRUS	ST	BIT		WA			12/82	-	739,260	720	735
CRYSTAL RIVER	5	CITRUS	ST	BIT		WA			10/84		739,260	717	732
SUWANNEE RIVER	1	SUWANNEE	ST	RFO	ŇĠ	TK/RR	PL		11/53		34,500	32	33
SUWANNEE RIVER	2	SUWANNEE	ST	RFO	NG	TK/RR	PL.		11/54		37,500	31	32
SUWANNEE RIVER	3	SUWANNEE	ST	RFO	NG	TK/RR	PL.		10/56		75,000	80	81
												4,651	4,771
COMBINED-CYCLE													
HINES ENERGY COMPLEX	1	POLK	сс	NG	DFO	PL	TK	2***	04/99		546,550	482	529
HINES ENERGY COMPLEX	2	POLK	CC	NG	DFO	PL	TK	-	12/03		598,000	516	582
HINES ENERGY COMPLEX	3	POLK	cc	NG	DFO	PL	тк		11/05		589,900	501	576
TIGER BAY	1	POLK	cc	NG		PL			08/97		278,223	207	223
												1,706	1,910
COMBUSTION TURBINE													
AVON PARK	<b>P</b> 1	HIGHLANDS	GT	NG	DFO	PL	тк	3***	12/68		33,790	26	32
AVON PARK	P2	HIGHLANDS	GT	DFO		тк			12/68		33,790	26	32
BARTOW	P1, P3	PINELLAS	GT	DFO		WA			05/72, 06/72		111,400	92	106
BARTOW	P2	PINELLAS	GT	NG	DFO	PL	WA	8	06/72		55,700	46	53
BARTOW	P4	PINELLAS	GT	NG	DFO	PL	WA	8	06/72		55,700	49	60
BAYBORO	P1-P4	PINELLAS	GT	DFO		WA			04/73		226,800	184	232
DEBARY	P1-P6	VOLUSIA	GT	DFO		TK			12/75-04/76		401,220	324	390
DEBARY	P7-P9	VOLUSIA	GT	NG	DFO	PL.	TK	8	10/92		345,000	258	279
DEBARY	P10	VOLUSIA	GT	DFO		TK			10/92		115,000	85	93
HIGGINS	P1-P2	PINELLAS	GT	NG	DFO	PL	TK		03/69, 04/69		67,580	54	64
HIGGINS	P3-P4	PINELLAS	GT	NG	DFO	PL	TK	1	12/70, 01/71		85,850	68	70
INTERCESSION CITY	P1-P6	OSCEOLA	GT	DFO		PL,TK			05/74		340,200	294	366
INTERCESSION CITY	P7-P10	OSCEOLA	σī	NG	DFO	PL.	PL,TK	5	10/93		460,000	352	376
INTERCESSION CITY	P11 **	OSCEOLA	GT	DFO		PL,TK			01/97		165,000	143	170
INTERCESSION CITY	P12-P14	OSCEOLA	GT	NG	DFO	PL.	PL,TK	5	12/00		345,000	252	294
RIO PINAR	P1	ORANGE	GT	DFO		TK			11/70		19,290	13	16
SUWANNEE RIVER	P1, P3	SUWANNEE	GT	NG	DFO	PL	тк	9***	10/80, 11/80		122,400	110	134
SUWANNEE RIVER	P2	SUWANNEE	GT	DFO		TK			10/80		61,200	54	67
TURNER	P1-P2	VOLUSIA	GT	DFO		TK			10/70		38,580	26	32
TURNER	P3	VOLUSIA	GT	DFO		тк			08/74		71,200	65	82
TURNER	P4	VOLUSIA	GT	DFO		ΤK			08/74		71,200	63	80
UNIV. OF FLA.	Pl	ALACHUA	OT	NG		PL			01/94		43,000	<u>35</u>	41
· · · ·												2,619	3,069
* REPRESENTS APPROXIMATELY 9	.sv. Pep own	ERSHIP OF UNIT											
** SUMMER CAPABILITY (RUNE THRO	UCH SEPTEM	BER) OWNED BY C	ieorgia p	OWER CO	MPANY					TOTAL RE	SOURCES (MW	8,976	9,750
*** FOR ENTIRE PLANT													

*** FOR ENTIRE PLANT

.

Docket No. 090988 Progress Energy Florida Exhibit No. ____ (JBC-4) Page 1 of 1

MW



Day

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-5) Page 1 of 2

Scenario 1		Two Year B	ridge Cost - Lo	w Capacity	cost, Low	heat rate,	actual fu	el, TAG O&M,	no esc				
Capacity	Ter m	Cap. Cost	Total Cap	Energy	Unit Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost	Bridge Cap
kW	(Mo)	(\$/ kw-mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW-mo)	cost / yr	for 2 years	and Energy
124000	24	4	\$11,904,000	124	0.2	8760	11	3	5.4	1.5	\$22,305,715	\$44,611,430	\$56,515,430

Scenario 2		Two Year B	ridge Cost - Mi	d Capacity	cost, Reali	zed heat ra	ate, actua	I fuel, TAG O	&M, no esc				
Capacity kW	Ter m (Mo)	Cap. Cost (\$/ kw-mo)	Total Cap cost	Energy MW	Unit Cap Factor	hours per vear	heat rate	NG Fuel (\$/mmbtu)	Var. O&M (\$/MWH)	Fixed O&M (\$/kW-mo)	Energy cost / yr	Energy cost for 2 years	Bridge Cap and Energy
124000	24	4.5	\$13,392,000	124	0.2	8760	13	3	5.4	1.5	\$25,955,482	\$51,910,963	\$65,302,963

Scenario 3		Two Year B	ridge Cost - Ca	pacity prer	n, Realized	heat rate,	volatility	premium (fue	el & O&M)				
Capacity	Ter m	Cap. Cost	Total Cap	Energy	Unit Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost	Bridge Cap
kW	(Mo)	(\$/ kw-mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW-mo)	cost / yr	for 2 years	and Energy
124000	24	5	\$14,880,000	124	0.2	8760	13	4.5	5.75	2	\$31,924,296	\$63,848,592	\$78,728,592

	Balance of Energy Costs provided by Fleet @ medium backfill heatrate (steam efficiency driven)											
Capacity	Ter m	Cap. Cost	Total Cap	Energy	Unit Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost
kW	(Mo)	(\$/ kw-mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW-mo)	cost / yr	for 2 years
124000	24			124	0.55	8760	11.5	3	4.2	4.6	\$56,312,170	\$112,624,339

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-5) Page 2 of 2

Scenario A		Eight Yea	ar Self Build Ca	pacity plu	s fleet ener	gy back-fi	ll, low ba	ck-fill heat rat	te (remaining	fleet avera	age, steam effic	iency driven)	
Capacity	Term	Cap. Cost	Total Cap	Energy	Fleet Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost	Fleet Cap
kW	(Mo)	(\$/ kw- mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW- mo)	cost / yr	for 8 years	and Energy
124000	96	3.79	\$45,116,160	124	0.75	8760	10	3	3	7.7	\$60,338,400	\$482,707,200	\$527,823,360

Scenario B		Eight Ye	ar Self Build Ca	pacity plu	s fleet ener	rgy back-fi	ll, mediu	m back-fill h	eat rate, bal	anced back-f	ill heat rate (av	erage of units)	
Capacity	Term	Cap. Cost	Total Cap	Energy	Fleet Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost	Fleet Cap
κW	(Mo)	(\$/ kw- mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW-mo)	cost / yr	for 8 years	and Energy
124000	96	3.79	\$45,116,160	124	0.75	8760	11.5	3	4.2	4.6	\$74,300,304	\$594,402,432	\$639,518,592

Scenario C		Eight Yea	ar Self Build Ca	pacity plus	s fleet ener	gy back-fi	ll, high b	oack-fill heat	rate (peakin	g unit heat			
Capacity	Term	Cap. Cost	Total Cap	Energy	Fleet Cap	hours per	heat	NG Fuel	Var. O&M	Fixed O&M	Energy	Energy cost	Fleet Cap
kW	(Mo)	(\$/ kw- mo)	cost	MW	Factor	year	rate	(\$/mmbtu)	(\$/MWH)	(\$/kW-mo)	cost / yr	for 8 years	and Energy
124000	96	3.79	\$45,116,160	124	0.75	8760	13	3	5.4	1.5	\$91,195,056	\$729,560,448	\$774,676,608

Docket No. 060658 Progress Energy Florida Exhibit No. ____ (JBC-6) Page 1 of 1

	Scenario 1-A	Scenario 2-B	Scenario 3-C
2 yr Bridge cap	\$11,904,000	\$13,392,000	\$14,880,000
20% energy	\$44,611,430	\$51,910,963	\$63,848,592
55% energy	\$112,624,339	\$112,624,339	\$112,624,339
8 yr fleet cap	\$45,116,160	\$45,116,160	\$45,116,160
8 yr fleet energy	\$482,707,200	\$594,402,432	\$729,560,448
Total	<u>\$696,963,130</u>	<u>\$817,445,894</u>	<u>\$966,029,539</u>
	20% energy 55% energy 8 yr fleet cap 8 yr fleet energy	2 yr Bridge cap       \$11,904,000         20% energy       \$44,611,430         55% energy       \$112,624,339         8 yr fleet cap       \$45,116,160         8 yr fleet energy       \$482,707,200	2 yr Bridge cap\$11,904,000\$13,392,00020% energy\$44,611,430\$51,910,96355% energy\$112,624,339\$112,624,3398 yr fleet cap\$45,116,160\$45,116,1608 yr fleet energy\$482,707,200\$594,402,432