Terry A. DavisAssistant Secretary and
Assistant Treasurer

One Energy Place Pensacola, Florida 32520-0786

Tel 850.444.6664 Fax 850.444.6026 TADAVIS@southernco.com

February 28, 2007

Mr. Tim Devlin, Director Division of Economic Regulation Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee FL 32399-0868

891000

Dear Mr. Devlin:

Attached is Gulf Power Company's Annual Distribution Service Reliability Report as required by Rule 25-6.0455, along with annual storm hardening initiatives as required in Order No. PSC-06-0781-PAA-EI.

Sincerely,

bh

Attachments

cc w/attach.:

Blanca S. Bayo

Susan D. Ridenaux

DOCUMENT NUMBER-DATE

0 1922 MAR-18

FPSC-COMMISSION CLERK

ORIGINAL

GULF POWER COMPANY

Reliability

and

Storm Hardening Initiatives

Report

O 1922 MAR-15

FPSC-COMMISSION CLERK

Table of Contents

1.0	Storm Hardened Facilities	1
1.1	2006 Storm Hardening Activities	1
1.2	Location And Scope Selection Process For Storm Hardening	2
1.3	Costs And Expected Benefits	
1.4	2007 Projected Activities And Budget Levels	
	, Q	
2.0	Wood Pole Inspection Program	
2.1	Wood Pole Inspection Description	
2.2	2006 Accomplishments	4
2.3	Projected 2007 Accomplishments	5
2.4	, ·	
	2.4.1 Inspect Wood Poles On An Eight Year Cycle	
	2.4.2 Utilize Sound And Bore Methodology With Full Excavation On All Distribution Wood	
	Poles	5
3.0	Three Year Vegetation Cycle (Storm Hardening Initiative 1)	6
3.1	Vegetation Management Program Description For 2006 and 2007	6
;	3.1.1 Transmission Vegetation Management Programs	6
	3.1.1.1 2006 Transmission Rights-of Way Vegetation Management	
	3.1.1.2 2007 Transmission Rights-of-Way Vegetation Management	
;	3.1.2 Distribution Vegetation Management (VM) Programs And Practices	
	3.1.2.1 VM Programs And Practices For 1987 – 2006	
	3.1.2.1.1 Targeted Hot Spot Pruning	
	3.1.2.1.2 Full Maintenance Pruning	ە
	3.1.2.1.3 Trouble Ticket Pruning	٥
	3.1.2.2.1 Feeder Vegetation Management	a
	3.1.2.2.2 MATS Program (Main-Line Annual Trim Schedule)	a
	3.1.2.2.3 MICS Program (Main-Line Inspection And Correction Schedule)	a
	3.1.2.2.4 Lateral Vegetation Management	
	3.1.2.2.5 SALT Program (Scheduled Annual Lateral Trims)	
	3.1.2.3 Service Drops	
	3.1.2.4 Distribution Hardening	
	3.1.2.4.1 SHARP Program (Storm Hardening Annual Removal Program)	
;	3.1.3 Definitions Of Additional Terms:	
	3.1.3.1 Managed Spot Trim	
	3.1.3.2 Spot Trim	
	3.1.4 Analysis Of The Cost And Benefits Of The Company's Program Compared To A	
	Three-Year Trim Cycle Program	12
3.2	Performance Metrics	17
3.3	Tree Clearing Practices In Utility Easements And Authorized Rights-of-way	22
3.4	Identification Of Relevant Portions Of Tariffs Pertaining To Vegetation Management Activities Within Easements And Authorized Rights-of-way	23
3.5	Tree Removal Practices For Trees That Abut And/Or Intrude Into Easements And Rights-of-ways	
3.6	Tree Clearing Practices Outside Of Utility Easements And Authorized Rights-of-way	

3.7	Identification Of Relevant Portions Of Tariffs Pertaining To Vegetation Manager Activities Outside Of Utility Easements And Authorized Rights-of-way	nent 25
3.8	Tree Removal Practices For Trees Outside Of Easements And Authorized Righ	
3.9	Identification Of Relevant Portions Of Tariffs Pertaining To Customer Vegetation Management Obligations As A Term Or Condition Of Electric Service	n
3.1		
3.1		rim, Or Mid-
3.1	·	
	3.12.1 MATS Program (Main-line Annual Trim Schedule)	28
	3.12.2 MICS Program (Main-line Inspect And Correct Schedule)	
	3.12.3 SALT Program (Scheduled Annual Lateral Trim)	
	3.12.5 Customer Ticket Activities	
	3.12.6 Projected Funding Levels (2007)	
3.1	Requirements of Applicable Orders	29
3.1	4 Community Participation	29
3.1	Storm Hardening Annual Removal Program (SHARP)	31
4.0	Joint-Use Pole Attachment Audits for the year (Storm Hardening	Initiative
	2)	31
4.1	Activity And Costs Incurred For 2006 And 2007 Projections	
4.2	Joint Use Attachment Audits – Distribution Poles	32
5.0	Six Year Inspection Cycle for Transmission Structures (Storm Ha	
- 4	Initiative 3)	
5.1	Activity And Costs Incurred For 2006 And 2007 Projections	
5.2	Transmission Circuit, Substation And Other Equipment Inspections	
5.3 5.4	Transmission Tower Structure Inspections	
5.4	Transmission Fole inspections	
6.0	Storm Hardening Activities for Transmission Structures (Storm Initiative 4)	
0.4		
6.1	Activity And Costs Incurred For 2006 And 2007 Projections	
6.2	Hardening of Existing Transmission Structures	33
7.0	Distribution Substation	35
7.1	Five Year Patterns/Trends In Reliability Performance Of Distribution Substation	s35
7.2	Distribution Substation Reliability Tracking	35
7.3	Distribution Substation Reliability Problem Identification Process	35
7.4	Distribution Substation Inspections During Normal Operations	36
8.0	Geographic Information System (GIS) (Storm Hardening Initiative	e 5)36
8.1	Activity And Costs Incurred For 2006 And 2007 Projections	
8.2	Distribution Overhead Data Input	
	Diotripation Overridad Bata Inpat	

8.4	Transmission Overhead Data Input	37
8.5	Transmission Underground Data Input	38
9.0	Post Storm Data Collection and Forensic Analysis (Storm Hardening	
	Initiative 6)	38
9.1	Activity And Costs Incurred For 2006 And 2007 Projections	38
10.0	Outage Data Differentiating Between Overhead and Underground	
	Systems (Storm Hardening Initiative 7)	40
10.1	Activity And Costs Incurred In 2006 And 2007 Projections	40
11.0	Increase coordination with Local Governments (Storm Hardening	
	Initiative 8)	40
11.1	Ongoing Programs	41
11.2	Storm Preparation	42
11.3	Storm Restoration	43
12.0	Collaborative Research (Storm Hardening Initiative 9)	44
12.1	Activity And Costs Incurred For 2006 And 2007 Projections	44
12.2	Project Planning Report	44
13.0	Disaster Preparedness and Recovery Plan (Storm Hardening Initiative	10) . 44
13.1	Activity And Costs Incurred For 2006 And 2007 Projections	
13.2	Disaster Recovery Plan Activity	45
14.0	Storm Season Ready Status	45
15.0	2006 Reliability Performance	46
15.1	•	
15.2	Data Tracking Level	47
15.3		
15.4	·	
15.5		
15.6		
15.7	Extreme Weather - Adjustments	50
15.8	Other Distribution Adjustments	50
15.9	Adjusted Reliability	50
1	5.9.1 Outage Event Causes	50
	15.9.1.1 Five Year Patterns	
	15.9.1.2 Identification And Selection/Process Improvements	
1	5.9.2 Three Percent Feeder List	60
	15.9.2.1 Five Year Patterns	
	15.9.2.2 Identification And Selection/Process Improvements	
1	15.9.2.3 2007 Activities And Budget Allowances	

15.9.3.1 15.9.3.2 15.9.3.3	Five Year Patterns	61
15.10 Overhea 15.10.1 Fi 15.10.2 Id 15.10.3 20 15.10.4 O 15.11 Reliabili 15.11.1 Fi 15.11.2 C	ad – Underground Reliability	61 61 61 62 62
APPENDIX 1 Form 102 - Actua Form 103 - Adjus		
APPENDIX 2 - V	Vood Pole Inspection Report	
APPENDIX 3 -	Distribution Operating Condition Levels and Restoration Response Guidelines	
APPENDIX 4 –	Feeder Specific Data	
APPENDIX 5 –	2007 Storm Recovery Plan	
APPENDIX 6 –	2007 Hurricane Season Preparedness Plan	
APPENDIX 7 –	PURC Report on Collaborative Research for Hurricane Hardening	

1.0 Storm Hardened Facilities

1.1 2006 Storm Hardening Activities

The following storm hardening activities were completed in the field during 2006:

Transmission

- o All critical lines were inspected.
- o Four separate aerial inspections of the total system were completed.
- o Comprehensive walking/climbing and groundline inspections as part of the 6 year inspection program were completed.
- o 230kV Right of Way (ROW) vegetation inspections completed and all hazard tree conditions corrected.
- 46kV ROW vegetation patrols and hazard tree removals were completed.
- o The repair of all known damage to the system caused by Hurricanes Ivan, Dennis and Katrina was completed.

Distribution

- o All three phase ROW vegetation trim and removal of hazardous conditions were completed.
- o All main-line three phase feeder ROW's were patrolled to identify danger trees.
- o Patrolled main line of all feeders for loose down guys, slack primary and leaning poles.
- o Additional distribution storm hardening items:
 - Improved and implemented overhead transformer installation design to minimize or prevent damage.
 - Targeted regulator bank installations in high exposure areas for added guying.
- Storm Recovery Plan was improved based on lessons learned.
 - Training completed for various storm related jobs.
 - o Pensacola being divided into smaller restoration areas.
 - Logistics: relationships with vendors and Southern Company have been improved.
 - o Door Hanger notifications created: Storm Restoration Electric Service Notices printed in English and Spanish.

1.2 Location and Scope Selection Process for Storm Hardening

Gulf is in the process of developing its Storm Hardening Plan as required in amended Rule 25-6.0342(2). The Plan will be filed with the Commission by May 4, 2007. The primary focus of the plan will be coastal areas within one mile of the Gulf of Mexico or other body of saltwater that would have high exposure to major storm (National Hurricane Center named) winds and storm surge.

1.3 Costs and Expected Benefits

Costs associated with each 2006 storm hardening activity is provided in each applicable section of this report.

1.4 2007 Projected Activities and Budget Levels

The following storm hardening activities are planned for 2007:

- Transmission
 - o Transmission Inspections
 - All critical lines will be inspected by May 1, 2007.
 - The complete transmission system has been inspected aerially once this year. Gulf Power typically performs four aerial inspections annually.
 - Comprehensive walking/climbing and groundline inspection 6 year program.
 - 75% of inspections will be complete by August 1, 2007.
 - o Vegetation Management
 - 230kV ROW vegetation inspections are 60% complete and all hazard tree conditions will be corrected before April 15, 2007.
 - 115kV ROW vegetation inspections are 15% complete and crews are currently working on hazard trees.
 Completion Date: May 15, 2007.
 - 46kV ROW vegetation patrols and hazard tree removals are scheduled. Completion Date: May 30, 2007.
- Distribution
 - o Distribution Inspections
 - All critical lines (main line three phase feeder) will be inspected up to the first protective device by June 1, 2007, repairing:
 - Loose down guys
 - Slack primary
 - Leaning poles

- Infrared inspections on critical equipment (main line three phase feeder) by June 1, 2007, to identify items that need attention.
 - Feeder switches, capacitors, regulators and automatic over current protective devices.
- Vegetation Management
 - All main line three phase Feeder ROW's were patrolled during December 2006 to identify danger trees and hazardous conditions.
 - Hazardous conditions will be corrected prior to storm season.
 - Off ROW danger tree removal will take place throughout the year.
 - Patrols were completed on schedule and without major problems.
 - Off ROW approvals for tree removals from land owners were about 40%. Additional patrols and customer/contractor communications will be necessary to enhance the program.

Gulf Power Company's complete projected storm hardening activities for 2007 and associated budget levels are provided in Sections 2.0 for the Wood Pole Inspection initiatives, 3.0 for Vegetation Management programs, 4.0 for Joint-Use Pole Attachment Audits, 5.0 and 6.0 for Transmission initiatives, 8.0 for Geographic Information System initiatives, 9.0 for Post Storm Data Collection and Forensic Analysis, 10.0 for Outage Data Differentiating between Overhead and Underground Systems, 11.0 for Increase Coordination with Local Governments, 12.0 Collaborative Research, and 13.0 for Disaster Preparedness and Recovery Plan.

2.0 Wood Pole Inspection Program

2.1 Wood Pole Inspection Description

In the early 1990's, Gulf Power began to evaluate its distribution pole inspection processes and determined it would be beneficial to begin a full ground line inspection program on its wood poles. Gulf contracted with Osmose, Inc. to complete ground line inspections on a sample of its wood poles to determine if the need for a full ground line inspection program existed. The sample found evidence of decay in poles treated with Creosote and Pentachlorophenol (Penta). There were no signs of decay in poles treated with Chromated Copper Arsenate (CCA). Gulf decided to begin a full ground line inspection program on wood poles treated with Creosote and Penta. CCA poles would be sampled periodically to determine when inspection of these poles should begin.

Gulf Power Company's distribution pole inspection program was based on a ten-year cycle, completing its first cycle in 2002. The inspection methodology utilized sound and bore with excavation to a depth of 18 inches. Decayed wood was removed from the outside of the pole, and measurements were taken to determine the poles remaining strength. The poles were then treated with preservatives. Reject poles were scheduled for replacement or reinforcement.

Based on the lessons learned during this first pole inspection cycle, Gulf has refined its pole inspection process for distribution wood poles. During its first inspection cycle, Gulf inspected all Creosote and Penta poles and excavated and bored a sample of CCA poles to determine if these poles required excavation and boring. Gulf learned that CCA poles provide superior decay resistance when compared to Creosote and Penta poles. Gulf refined its inspection process and developed an inspection matrix based on pole age, treatment type, and condition. Under this matrix, all poles (Creosote, Penta, and CCA) receive a visual inspection with sounding, boring and excavation as appropriate. CCA poles 0 to 14 years old are excavated only if visual inspection shows any indication of potential decay.

2.2 2006 Accomplishments

Gulf Power completed the fourth year of its second ten year cycle of the ground line pole inspection program in 2006. At the beginning of 2006, Gulf was on schedule in the ten-year cycle and there was no back log of poles that needed to be addressed. A total of 12,745 poles were inspected in 2006 with a rejection rate of 1.5% Company wide.

See Appendix 2 – Wood Pole Inspection Report for summary of pole inspections for the period January 1, 2006 through December 31, 2006.

Below is data collected from the 2006 ground line pole inspection:

District	Poles Inspected	Rejected	Percentage Rejected
Western	8,127	120	1.5%
Central	844	30	3.6%
Eastern	3,774	35	0.9%
TOTAL	12,745	185	1.5%

2.3 Projected 2007 Accomplishments

Prior to 2007, Gulf had inspected distribution poles on a ten-year cycle for an average annual inspection rate of 25,600 poles per year. Beginning in 2007, Gulf will increase the number of annual pole inspections to an average of 32,000 poles per year in order to shorten the cycle length to eight-years. Gulf will continue to use its present distribution pole inspection matrix.

2.4 Requirements of the Applicable Orders (FPSC Order No. PSC-06-0144-PAA-El and Order No. PSC-07-0078-PAA-EU)

2.4.1 Inspect Wood Poles on an Eight Year Cycle

Beginning in 2007, Gulf Power Company is increasing the number of poles inspected annually and will achieve an eight-year cycle. The number of poles inspected annually may vary from year to year, but Gulf will ensure the entire system is inspected over an eight-year time frame.

2.4.2 Utilize Sound and Bore Methodology with Full Excavation on all Distribution Wood Poles

Gulf received Commission approval to continue use of its present inspection matrix which calls for sound and selective bore on CCA poles 0 to 14 years of age. Gulf will continue to incorporate a sampling on non-excavated poles into its present inspection process to insure on-going statistical validity of its inspection matrix. A one percent sample of poles that would not normally qualify for full excavation under the present matrix will be fully excavated and inspected to determine if any modifications need to be made to the present inspection process.

3.0 Three Year Vegetation Cycle (Storm Hardening Initiative 1)

3.1 Vegetation Management Program Description for 2006 and 2007

3.1.1 Transmission Vegetation Management Programs

All transmission rights-of-way are patrolled from the ground each year to inspect and correct vegetation absits. (A vegetation absit is an abnormal situation or any condition that will pose a threat to the safety and/or operational integrity of the transmission electric system within the following 12 month period). These ground patrols are performed by Company arborists and their primary purpose is to evaluate the vegetative condition of each right-of-way. Aerial patrols are also performed throughout the year on a scheduled basis and also in response to emergencies, (i.e. severe weather, fire, and/or other emergency conditions). The aerial patrols look for any condition that could threaten the operational integrity of the line, including vegetation absits.

All 200kV and above lines are inspected and vegetation absits are corrected by May 1 of each year. The Company's 115kV rights-of-way are inspected and vegetation absits are corrected by the start of hurricane season (June 1).

3.1.1.1 2006 Transmission Rights-of Way Vegetation Management (VM)

ROW VM Activity	Expenditures	Acres	Miles
Mowing (Swamp Locations)	\$227,014	532	N/A
Danger Tree Removal	\$643,345	N/A	1,154
Side Trim	\$364,457	N/A	167
Miscellaneous	\$1,200	N/A	N/A

3.1.1.2 2007 Transmission Rights-of-Way Vegetation Management (VM)

- Program planning and budgeting activities for 2007
 VM Transmission Rights-of-Way Inspections &
 Corrections programs were completed during January 2007.
 - The VM Inspection & Correction 230kV
 Program is 85% completed, with an April 15
 scheduled program completion data targeted.
 - o The VM Inspection & Correction 115kV Program is 60% completed as of February 15, with a June 15 scheduled program completion date targeted.
- Final work-plans for 2007 Transmission ROW Floor and Side-Trim programs are being reviewed and updated, with a targeted completion date of March 15, 2007.

3.1.2 Distribution Vegetation Management (VM) Programs and Practices

3.1.2.1 VM Programs and Practices for 1987 – 2006

During this period of time, Gulf Power has utilized a reliability based vegetation management program that has been successful in improving reliability to its customers and mitigating vegetation caused damage during storms. Historically, the Company's vegetation maintenance programs targeted safety and reliability through circuit comparisons and evaluations, patrols and inspections, and extensive use of System Average Interruption Duration Index (SAIDI) reports. A circuit includes both the Main-line and Lateral lines. Feeder rights-of-way were evaluated and treated as individual maintenance units. The safety and reliability data determined the circuits' maintenance priority and work-plan for each year's scheduled Targeted Hot Spot Pruning and Full Maintenance Pruning.

Reliability based management targets vegetation based on the following priorities:

- 1) Targeted Hot Spot Pruning
- 2) Full Maintenance Pruning
- 3) Trouble Ticket Pruning

The planned portion of the vegetation management program involves the use of targeted hot spot pruning and full maintenance pruning. Each year, the vegetation reliability indices of all distribution circuits are evaluated to determine if any circuits appear to have abnormally high or deteriorating reliability caused by vegetation. Those circuits that are identified are patrolled in the field to determine the actual vegetative condition of the entire circuit. Based on the findings of the field patrol, one of several actions will be taken:

3.1.2.1.1 Targeted Hot Spot Pruning

If the field patrol determines that circuit reliability is deteriorating due to vegetative conditions in isolated area(s) of the circuit, then the isolated area(s) will be scheduled for targeted spot pruning. With targeted spot pruning, the isolated area will be systematically pruned to insure adequate clearance is re-established in the area. Once again, all pruning will insure a minimum of three years of clearance is obtained.

3.1.2.1.2 Full Maintenance Pruning

If the field patrol determines that reliability is deteriorating due to the overall condition of vegetation on the entire circuit, then the entire circuit will be scheduled for pruning. In full maintenance pruning, the three phase main feeders as well as all taps and laterals will be pruned to establish a minimum of three years of clearance on the entire circuit. In addition, small trees on the rights-of-way that will present future problems will be removed.

3.1.2.1.3 Trouble Ticket Pruning

Trouble ticket pruning is the reactive portion of the Company's vegetation management program. Each concern involving vegetation that is reported is evaluated in the field and a determination is made as to whether the situation presents a threat to safety and/or reliability. If the inspector feels a threat exists or that the condition will become a threat before the area is treated on a planned basis, the vegetation will be removed or pruned to obtain a minimum of three years of clearance. Trouble ticket reports are received from a variety of sources, including customers,

engineers, line crews, Gulf's own utility foresters, and other miscellaneous sources.

3.1.2.2 VM Programs and Practices for 2007

Gulf Power is implementing the program that received PSC approval in FPSC Order No. PSC-06-0947-PAA-EI dated November 13, 2006 in Docket No. 060198-EI.

3.1.2.2.1 Feeder Vegetation Management

Distribution feeders include the main-line primary from the substation circuit breaker to the first inservice three phase protection device. The Company has two (2) maintenance programs (MATS and MICS) in place to maintain the vegetation conditions on these rights-of-way. These two programs focus program feeder maintenance resources on areas where vegetation caused outages have the greatest impact.

3.1.2.2.2 MATS Program (Main-line Annual Trim Schedule)

This program will systematically prune the vegetation on one third (1/3) of the distribution feeder rights-of-way miles each year. This program will seek to establish a minimum of three-years of clearance between all trees and the feeder.

3.1.2.2.3 MICS Program (Main-line Inspection and Correction Schedule)

While MATS will focus on one third (1/3) of the main-line feeder rights-of-way, the MICS program will address the Company's current year's vegetation management needs on the remaining two-thirds (2/3) of its feeder rights-of-way. MICS activities will include both the inspection activities and the follow-up corrective pruning of vegetation deficiencies identified. Examples of vegetative deficiencies MICS is designed to address include: locations where landowner permission cannot be obtained to establish three-years of clearance under MATS, cases where rapid tree growth rates make it impossible to obtain three-years of clearance under MATS, etc.

3.1.2.2.4 Lateral Vegetation Management

Distribution laterals include all circuit miles not treated under MATS or MICS. Distribution circuit lateral miles will be maintained on an average six year cycle basis vegetation maintenance program, (SALT Program).

3.1.2.2.5 SALT Program (Scheduled Annual Lateral Trims)

Laterals will be managed through the use of reliability based vegetation management. Circuits will be categorized based on tree caused outages and customer density. Field inspections will determine the amount and type of vegetation management needed to improve reliability. This program will maintain the flexibility to allow work on heavily forested areas that are experiencing reliability issues more frequently than sparsely forested areas where reliability is acceptable.

Work on laterals will be documented so areas that do not present themselves as reliability problem areas can be scheduled for inspection and follow up corrective work. In the past, laterals which did not present themselves as problem areas due to low tree caused outage rates may have not received any inspection or corrective work. This approach will provide a safety net by insuring that every lateral is either pruned, or inspected with follow-up corrective action a minimum of once every six years.

3.1.2.3 Service Drops

Under Gulf Power's tariff, the service drop is placed on the customer's property under the customer's care and protection. General vegetation management activity around a customer's service drop is the responsibility of the home owner. The Company will assist the customer by temporarily removing the service drop to allow the customer to perform tree removal or vegetation management activities if necessary.

3.1.2.4 Distribution Hardening

The Storm Hardening of the Company's distribution system will include inspecting for and removing vegetation

conditions that pose a threat to the distribution primary conductors during major inclement weather conditions.

3.1.2.4.1 SHARP Program (Storm Hardening Annual Removal Program)

In addition to its normal maintenance of existing lines, the Company has implemented a program to address trees located outside the normally maintained and established pruning zone. Most of the Company's vegetation-caused storm outages result from off right-of-way trees falling into its facilities. The Company will work in cooperation with local municipalities and customers to facilitate the removal of the trees or large overhanging limbs to insure they no longer present a threat to the Company's facilities.

Since it is impractical to remove all trees that have the potential to fall into the distribution lines, trees will be prioritized based on the level of threat they impose and will focus on the greatest threat first. The program will prioritize distribution feeders based on customer density, forest type, and tree-cause outage data. Heavy emphasis will be placed on main line feeder sections but the program may also treat high priority laterals feeding critical infrastructure such as sewage lift stations, hospitals, shelters, etc.

Additional information about this program is covered in section 3.1.4 "Analysis of the cost and benefits of the Company's program compared to a three-year trim cycle program".

3.1.3 Definitions of Additional Terms:

3.1.3.1 Managed Spot Trim

A program designed to improve and/or maintain the safety and reliability of a circuit through performing spot patrols and inspections of a circuit or section of the circuit to identify and remove vegetation conditions that are causing service interruptions. The goal of a Managed Spot Trim activity is to extend the life of a circuit's last vegetation

maintenance trim by removing just the known vegetation problems found on the circuit.

3.1.3.2 **Spot Trim**

This is the reactive portion of the Company's vegetation management program. Spot trimming addresses the trimming of individual trees reported as problems by internal or external customers.

3.1.4 Analysis of the Cost and Benefits of the Company's Program Compared to a Three-Year Trim Cycle Program

<u>Docket No. 060198-El (Company's response dated September 27, 2006)</u>

In accordance with FPSC Order No.PSC-06-0351-PAA-EI, Gulf Power assessed the feasibility of a three-year vegetation management cycle and proposed an alternative approach to hardening the distribution system against future storm caused outages. The alternative approach was not approved and Gulf was required to revise the Vegetation Management Plan. The revised program received Commission approval per Order No. PSC-06-0947-PAA-EI on November 13, 2006.

Gulf Power is incorporating additional enhancements to its present reliability based program to improve the program's performance in relation to hardening the distribution system against future storms while continuing to insure day to day reliability of the system. These program enhancements will enable Gulf Power to establish a cyclical approach to segments of its vegetation management program while retaining the flexibility necessary to target resources on the areas where the greatest cost benefit will be recognized.

The Company's program consists of the following items:

INCREMENTAL PROGRAM ELEMENTS

- A three-year trim cycle on all main line feeders
- An annual inspection and corrective action program for main line feeders not treated by cyclical or other work types
- A program for removing hazard trees located outside the normally maintained pruning zone with heavy emphasis placed on main line feeders

- Increased storm hardening of new distribution lines by modifying initial vegetation clearing practices during construction
- Local coordination with code enforcement officials where customer owned trees threaten the Company's facilities but the customer refuses to assist in remediation of the problem
- Forensic forestry following storms
- Public education

NON INCREMENTAL PROGRAM ELEMENTS

A reliability based management program for all laterals which will achieve an average vegetation maintenance cycle of six years.

The overall program will achieve an effective cycle of less than three-years and will expand the scope of the Company's normal vegetation management program by addressing trees located outside the normally maintained pruning zone which pose a threat to the distribution system under storm conditions.

	Miles Treated	Cycle (Yrs.)
Three Year Trim Cycle Program	1,942	3
Gulf Power's Plan		
• 3 yr. cycle on main line feeders	615	3
 Annual inspection w/corrective pruning 	1,230	1
Storm Hardening Tree Removals	200-400	N/A
• Reliability based management of lateral (6 yr.	663	6
maximum cycle)		
Total Company Program	2,508*	2.3
	*Total does not include any mileage for hazard tree removal to prevent	
	double counting miles	

Through this program, the Company will insure main line feeders are inspected annually and pruned on a cyclical basis. Laterals will still be managed on a reliability based methodology but the Company will manage the program to insure an average cycle of six years is maintained on the laterals.

ROUTINE MAINTENANCE IMPACTS

Vegetation on main line feeders will be maintained on a three-year cycle. Each year, one third of the main line feeders will be systematically pruned, while the remaining two-thirds are either inspected with follow-up pruning to correct deficiencies, or inspected and worked for storm hardening tree removal. This will focus program resources on the area where tree caused outages have the greatest impact. Tree caused outages on main feeders

account for 49% of vegetation caused customer interruptions with an average CI of 1,305 per outage.

Laterals will be managed through the use of reliability based vegetation management. Circuits will be categorized based on tree caused outages and customer density. Field inspections will determine the amount and type of vegetation management needed to improve reliability. This program will maintain the flexibility to allow work on heavily forested areas that are experiencing reliability issues more frequently than sparsely forested areas where reliability is acceptable.

In addition, work on laterals will be documented so areas that do not present themselves as reliability problem areas can be scheduled for inspection and follow up corrective work. In the past, laterals which did not present themselves as problem areas due to low tree caused outage rates may have not received any inspection or corrective work. This approach will provide a safety net by insuring that every lateral is either pruned, or inspected with follow-up corrective action a minimum of once every six years. This component of its management of vegetation on laterals represents an incremental program to the Company's past reliability based management on laterals.

With regard to day to day reliability of the system, this approach will also provide greater cost benefit since it is designed to reduce the number of outages which result in high customer interruptions.

	Annual Incremental Cost	Avoided Annual CI	Annual Cost Per Avoided CI
Three Year Trim Cycle Program	\$4,200,000	28,395	\$148
The Company Program	\$1,500,000	23,005	\$65

The Company will also incorporate an education component into its proposed program. Educational material on planting trees to avoid power outages will be developed and made available to our customers. The Company will also work closely with the municipalities it serves to educate public officials on the need for hazard tree removal and overall management of street trees with a goal of reducing storm damage to power lines and other public infrastructure.

STORM HARDENING IMPACTS

In addition to its normal maintenance of existing lines, the Company will incorporate a hazard tree program (SHARP) to address trees located outside the normally maintained and established pruning zone. As noted in earlier filings, most of the Company's vegetation caused storm outages result from off right-ofway trees falling into its facilities. The Company will work in cooperation with local municipalities and customers to facilitate the removal of the trees or large overhanging limbs to insure they no longer present a threat to the Company's facilities. Since it is impractical to remove all trees that have the potential to fall into the Company's lines, trees will be prioritized based on the level of threat they impose and will focus on the greatest threat first. The Company will prioritize its distribution feeders based on customer density, forest type, and tree cause outage data. The Company will inspect the main line feeders on a priority basis. Initially, trees that pose an imminent threat to high priority circuits will be addressed. Heavy emphasis will be placed on main line feeder sections but the program may also treat high priority laterals feeding critical infrastructure such as sewage lift stations.

A large majority of the Company's distribution lines are on franchise roadside easements and hazard trees are normally on private property where the Company does not have pruning rights. In those cases where a tree presents an imminent threat to its facilities but the owner refuses to allow corrective action, the Company will work cooperatively with local code enforcement officials to insure every effort is made to remediate the threat.

The Company will also modify its initial clearing of right-of-way for new overhead construction. In the past, the Company has focused its clearing activities to the franchise granted portion of the easement. In the future, the Company will incorporate the removal of hazard trees outside the normally established and maintained right-of-way when initially clearing for new lines. This will insure the hardening of all new lines from the day they are built. This activity will impact between twenty and thirty miles of new overhead line each year.

The incremental storm outage avoidance for hazard tree removal has been estimated using the following assumptions:

•	Number of distribution feeders on system	277
•	Total 2005 Gulf Customers	408,641
•	Average customers per feeder	1,475
•	Average time to remove failed tree (minutes)	60
•	Average cost per hazard tree removal	\$300

 Trees removed per year 		5,000
 Assume 1% of removals 	are avoided outages	50
• Avoided CMI @ 1% = 50)*60*1,475	4,425,000
 Assume 10% avoided ou 	itage rate	500
 Avoided CMI @ 10% = 5 	500*60*1,475	44,250,000

Every attempt has been made to show a very conservative estimate of avoided outage time and to show the incremental improvement in outage reduction. CMI was used instead of CI for storm related outage reduction. Under storm conditions, a feeder may have multiple trees down, so an avoided failure may not prevent an outage from occurring somewhere else on the feeder. However, by reducing the number of failed trees that require removal from the Company's lines, CMI will be significantly improved.

The removal of hazard trees will have a cumulative positive effect on outage avoidance in subsequent years. Trees removed during year one will continue to represent an avoided outage in year five of the program whereas trees that are pruned on a cyclical basis will grow back and once again represent a potential outage. While the program may have less impact in its early stages, the positive impacts will be significant in future years as the number of hazard tree removals continues to increase.

Avoidance	Year 1	Year 2	Year 3	Year 4	Year 5
Rate	Avoided	Avoided	Avoided	Avoided	Avoided
	CMI	CMI	CMI	CMI	CMI
1%	4,425,000	8,850,000	13,275,000	17,700,000	22,125,000
10%	44,250,000	88,500,000	132,750,000	177,000,000	221,250,000

Considered in the context of Hurricanes Ivan and Dennis, this could have resulted in a 20% reduction in CMI for Dennis and 7% for Ivan during year 5 of the program. This potential improvement was calculated by dividing the potential CMI Avoidance at the 10% level of avoidance (221,250,000) by the total CMI for each storm, which was 1,053,733,304 for Dennis and 3,321,886,129 for Ivan.

This program will also provide an improvement in the day to day reliability of its distribution system. While data does not exist to allow a full analysis of the impact, expert opinion and a manual search of control center notes relating to actual outages have led the Company to believe that a minimum of 15% of the Company main line feeder interruptions under normal day-to-day operation are caused by tree failures outside the pruning zone.

In order to refine the selection of hazard trees, the Company will employ the use of forensic foresters in future storms to analyze tree caused outages. Tree failures will be analyzed to insure the trees being selected for removal fit the characteristics of actual tree failures.

PROGRAM EVALUATION

The Company will evaluate the overall program on an annual basis through the analysis of annual reliability data and forensic data collected following storms. In addition, the Company will monitor vegetation management related research activities for possible program improvements.

3.2 Performance Metrics

Adjusted data includes only activities that are budgeted and included in the Company's filed vegetation management plan. Unadjusted data is to include all performance data including hurricane performance and all other vegetation caused outage events that the Company believes to be excludable pursuant to <u>25-6.0455</u>, F.A.C. The difference between unadjusted data and adjusted data are the storm reliability performance metrics.

2005 System Vegetation Management Performance Metrics

	8	Feeders	Laterals Note 4			
SYSTEM WIDE	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	1291	881	410	N/A	N/A	N/A
(B) Customer Interruptions	114,706	49,586	65,120	N/A	N/A	N/A
(C) Miles Cleared Note 1	3,815	572	3,243	N/A	N/A	N/A
(D) Remaining Miles	2,027	5,270	(3.243)	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	.22	.15	0.07	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	19.63	8.49	11.14	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	502	502	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (\$)	N/A ^{Note 3}	3.617.018	N/A	N/A	N/A	N/A
(I) Customer Minutes of Interruption	33,518,907	4,221,683	29,297,224	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2005 (\$)	N/A ^{Note 7}	2,341,994	45,202	N/A	N/A	N/A
(L) Vegetation Goal 2005 Note 8	N/A	17.11	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2006 (\$)	N/A ^{Note 7}	3,369,899	0	N/A	N/A	N/A
(N) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(O) Trim-Back Distance (ft)	10	10	0	N/A	N/A	N/A

2005 Management Region Vegetation Management Performance Metrics

0		Feeders		La	iterals Note 4	
WESTERN REGION	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	885	563	322	N/A	N/A	N/A
(B) Customer Interruptions	94,096	32,489	61,607	N/A	N/A	N/A
(C) Miles Cleared Note 1	3,142	269	2,873	N/A	N/A	N/A
(D) Remaining Miles	0	2,873	(2,873)	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	0.28	0.18	0.10	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	29.95	10.34	19.61	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	250	250	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (\$)	N/A Note 3	1.425,777	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	31,541,958	2.817,885	28,724,073	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2005 (\$)	N/A Note 7	1.170,990	45,202	N/A	N/A	N/A
(L) Vegetation Goal 2005 ^{Note 8}	N/A	N/A	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2006 (\$)	N/A Note 7	1.293,382	0	N/A	N/A	N/A
(N) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(O) Trim-Back Distance (ft)	10	10	0	N/A	N/A	N/A

2005 Management Region Vegetation Management Performance Metrics

	Feeders			Lat	erals (note-4)	
CENTRAL REGION	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	209	163	46	N/A	N/A	N/A
(B) Customer Interruptions	10,034	9020	1014	N/A	N/A	N/A
(C) Miles Cleared Note 1	578	217	361	N/A	N/A	N/A
(D) Remaining Miles	577	938	(361)	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	0.18	0.14	0.04	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	8.69	7.81	.88	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	58	58	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (\$)	N/A Note 3	828,360	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	859,867	658.036	201,831	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2005 (\$)	N/A Note 7	585,502	0	N/A	N/A	N/A
(L) Vegetation Goal 2005 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2006 (\$) (N) Vegetation Goal 2006 Note 8	N/A Note 7	1.038,259	0	N/A	N/A	N/A
(N) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(O) Trim-Back Distance (ft)	10	10	10	N/A	N/A	N/A

2005 Management Region Vegetation Management Performance Metrics

		Feeders				
EASTERN REGION	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	197	155	42	N/A	N/A	N/A
(B) Customer Interruptions	10.576	8.077	2,499	N/A	N/A	N/A
(C) Miles Cleared Note 1	95	86	9	N/A	N/A	N/A
(D) Remaining Miles	1,450	1.459	(9)	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	0.13	0.10	0.03	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)] (G) Number of Hotspot Trims Note 2	6.85	5.22	1.63	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	194	194	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (s)	N/A Note 3	1.362.881	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	1,117,082	745,762	371,320	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2005 (\$) (L) Vegetation Goal 2005 Note 8	N/A Note 7	585,503	0	N/A	N/A	N/A
(L) Vegetation Goal 2005 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2006 (\$)	N/A Note 7	1.030,734	0	N/A	N/A	N/A
(N) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(O) Trim-Back Distance (ft)	10	10	0	N/A	N/A	N/A

2005 Feeder Comparison with a Three Year Cycle Based Program

* Note 6	Three	Year Cycle Pi	rogram	Company Program		
System Wide*	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	904	617	287	1.291	881	410
(B) Customer Interruptions	80,294	34.710	45,584	114,706	49,586	65,120
(C) Miles Cleared Note 1	5,762	1.947	3,975	3.815	572	3,243
(D) Remaining Miles	956	3,895	(2,931)	2,027	5,270	(3,243)
(E) Outages per Mile [A/(C+D)]	.15	.11	0.04	0.22	0.15	0.07
(F) Vegetation CI per Mile [B/(C+D)]	13.74	5.94	7.80	19.63	8.49	11.14
(G) Number of Hotspot Trims Note 2	323	323	0	502	502	0
(H) All Vegetation Management Costs (S)	N/A Note 3	7,398.944	N/A	N/A	3,617,018	N/A
(I) Customer Minutes of Interruption	23,463,234	2,955,178	20,508,056	33,518,907	4.221,683	29,297,224
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Trim-Back Distance (ft)	10'	10`	0	10'	10'	0

2005 Lateral Comparison with a Three Year Cycle Based Program

* Note 4	Three Year C	ycle Prograi	n	Company Program		
System Wide	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	N/A	N/A	N/A	N/A	N/A	N/A
(B) Customer Interruptions	N/A	N/A	N/A	N/A	N/A	N/A
(C) Miles Cleared Note 1	N/A	N/A	N/A	N/A	N/A	N/A
(D) Remaining Miles	N/A	N/A	N/A	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	N/A	N/A	N/A	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	N/A	N/A	N/A	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	N/A	N/A	N/A	N/A	N/A	N/A
(H) All Vegetation Management Costs (S)	N/A	N/A	N/A	N/A	N/A	N/A
(I) Customer Minutes of Interruption	N/A	N/A	N/A	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Trim-Back Distance (ft)	N/A	N/A	N/A	N/A	N/A	N/A

2006 System Vegetation Management Performance Metrics

		Feeders	L	aterals Note 4		
System Wide	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	1.192	1,192	0	N/A	N/A	N/A
(B) Customer Interruptions	86,963	86,963	. 0	N/A	N/A	N/A
(C) Miles Cleared Note 1	306	306	0	N/A	N/A	N/A
(D) Remaining Miles	.20	.20	0	N/A	N/A	N/A_
(E) Outages per Mile [A/(C+D)]	14.87	14.87	0.00	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	30.09	30.09	0.00	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	667	667	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (\$)	N/A Note 3	2,180.416	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	9,852,308	9.852,308	0	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2006 (\$)	N/A Note 7	3,257,407	0	N/A	N/A	N/A
(L) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2007 (\$)	N/A Note 7	3.017,118	0	N/A Note 7	2.011,412	0
(N) Vegetation Goal 2007 (Miles)	1,844	1.844	0	662	662	0
(O) Trim-Back Distance (ft)	10	10	0	10	10	0

2006 Management Region Vegetation Management Performance Metrics

	Feeders			La	aterals Note 4	
Western Region	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	755	755	0	N/A	N/A	N/A
(B) Customer Interruptions	63.859	63,859	0	N/A	N/A	N/A
(C) Miles Cleared Note 1	143	143	0	N/A	N/A	N/A
(D) Remaining Miles	2.999	2,999	0	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	.24	.24	0.00	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	20.32	20.32	0.00	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	265	265	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (s)	N/A Note 3	1,059,348	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	7,170,903	7,170,903	0	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2006 (\$)	N/A Note 7	1,633,773	0	N/A	N/A	N/A
(L) Vegetation Goal 2006 Note 8	N/A	N/A	0.00	N/A	N/A	N/A
(M) Vegetation Budget 2007 (\$)	N/A Note 7	1,511,586	0	N/A Note 7	1,007,724	0
(N) Vegetation Goal 2007 (Miles)	945	945	0	366	366	0
(O) Trim-Back Distance (ft)	10	10	10	10	10	0

2006 Management Region Vegetation Management Performance Metrics

	Feeders			Laterals Note 4		
Central Region	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	204	204	0	N/A	N/A	N/A
(B) Customer Interruptions	9,747	9,747	0	N/A	N/A	N/A
(C) Miles Cleared Note 1	131	131	0	N/A	N/A	N/A
(D) Remaining Miles	1,030	1,030	0	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	0.18	0.18	0.00	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	8.40	8.40	0.00	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	150	150	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (S)	N/A Note 3	612,648	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	1,098,848	1,098,848	_0	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2006 (\$)	N/A Note 7	811,955	\$0	N/A	N/A	N/A
(L) Vegetation Goal 2006 Note 8	N/A	N/A	N/A	N/A	N/A	N/A
(M) Vegetation Budget 2007 (\$)	N/A Note 7	752,839	0	N/A Note 7	501,892	0
(N) Vegetation Goal 2007 (Miles)	395	395	0	127	127	0
(O) Trim-Back Distance (ft)	10	10	0	10	10	0

2006 Management Region Vegetation Management Performance Metrics

		Feeders		La	iterals Note 4	
Eastern Region	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	233	233	0	N/A	N/A	N/A
(B) Customer Interruptions	13,357	13,357	0	N/A	N/A	N/A
(C) Miles Cleared Note 1	32	32	0	N/A	N/A	N/A
(D) Remaining Miles	1,513	1,513	0	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	0.15	0.15	0.00	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	8.65	8.65	0.00	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	252	252	0	N/A	N/A	N/A
(H) All Vegetation Management Costs (\$)	N/A Note 3	508,419	0	N/A	N/A	N/A
(I) Customer Minutes of Interruption	1,582,577	1,582,577	0	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Vegetation Budget 2006 (\$)	N/A Note 7	811,679	\$0	N/A	N/A	N/A
(L) Vegetation Goal 2006 Note 8	N/A	N/A	0	N/A	N/A	N/A
(M) Vegetation Budget 2007 (\$)	N/A Note 7	752,693	0	N/A Note 7	501,796	0
(N) Vegetation Goal 2007 (Miles)	504	504	0	169	169	0
(O) Trim-Back Distance (ft)	10	10	0	10	10	0

2006 Feeder Comparison with a Three Year Cycle Based Program

*see Note 5	Three Y	ear Cycle Pro	gram	Company Program		
System Wide	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	834	834	0	1192	1192	0_
(B) Customer Interruptions	60,874	60.874	0	86,963	86,963	Q
(C) Miles Cleared Note 1	1,949	1,949	0	306	306	0
(D) Remaining Miles	3,899	3,899	0	5,542	5,542	0
(E) Outages per Mile [A/(C+D)]	0.14	0.14	0.00	0.20	0.20	0.00
(F) Vegetation CI per Mile [B/(C+D)]	10.41	10.41	0.00	14.87	14.87	0.00
(G) Number of Hotspot Trims Note 2	307	307	0	667	667	0
(H) All Vegetation Management Costs (S)	N/A Note 3	7,398,944	0	N/A Note 3	2.180,416	0
(I) Customer Minutes of Interruption	6,896,615	6,896,615	0	9.85208	9,852,308	0
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Trim-Back Distance (ft)	10	10	0	10	10	0

2006 Lateral Comparison with a Three Year Cycle Based Program

*Notes 4 and 5	Three Ye	ar Cycle Pro	gram	Com		
System Wide*	Unadjusted	Adjusted	Diff.	Unadjusted	Adjusted	Diff.
(A) Number of Outages	N/A	N/A	N/A	N/A	N/A	N/A
(B) Customer Interruptions	N/A	N/A	N/A	N/A	N/A	N/A
(C) Miles Cleared Note 1	N/A	N/A	N/A	N/A	N/A	N/A
(D) Remaining Miles	N/A	N/A	N/A	N/A	N/A	N/A
(E) Outages per Mile [A/(C+D)]	N/A	N/A	N/A	N/A	N/A	N/A
(F) Vegetation CI per Mile [B/(C+D)]	N/A	N/A	N/A	N/A	N/A	N/A
(G) Number of Hotspot Trims Note 2	N/A	N/A	N/A	N/A	N/A	N/A
(H) All Vegetation Management Costs (5)	N/A	N/A	N/A	N/A	N/A	N/A
(I) Customer Minutes of Interruption	N/A	N/A	N/A	N/A	N/A	N/A
(J) Outage Restoration Costs Note 3	N/A	N/A	N/A	N/A	N/A	N/A
(K) Trim-Back Distance (ft)	N/A	N/A	N/A	N/A	N/A	N/A

Notes

Tracking mechanisms are being incorporated into current vegetation management program activities that will enable the Company to report on activities that have not historically been tracked. i.e. Lateral vs. Main Line Feeder. Gulf Power Company's Vegetation Management program received FPSC approval in 2006, with program implementation beginning in January, 2007. The new program is still in its initial stages and has not been in service long enough to quantify its actual performance.

- Note 1 Miles Cleared: 2005 and 2006 miles cleared include total feeder miles cleared (historical data does not separate miles trimmed or expenses by Feeder Miles and Lateral Miles). Hotspot miles cleared are not included in Miles Cleared (historical data not available for 2005 and 2006). During major storm clearing activities, the Miles Cleared Unadjusted totals can include miles that were recorded as cleared previously during scheduled maintenance activities. Unadjusted Miles Cleared have been limited not to exceed the actual miles listed within the region and/or system.
- Note 2 Number of Hotspot Trims: Historical data not available for 2005 and 2006 (numbers are estimated).
- Note 3 Outage Restoration Cost: Historical data not available for 2005 and 2006.
- Note 4 Laterals: Historical data not available for 2005 and 2006.
- Note 5 Three (3) Year Cycle Comparison: The 2005 and 2006 Three Year Cycle unadjusted and adjusted data estimates were compiled from researching feeder performance data three years prior and three years after scheduled maintenance trimming had been performed.
- Note 6 Lateral Comparison with a Three (3) Year Cycle Base Program: During 2005 and 2006, Three Year Cycle unadjusted and adjusted data estimates were compiled from researching feeder performance data three years prior and three years after scheduled maintenance trimming had been performed.
- Note 7 Vegetation Maintenance Budgets are not developed for Unadjusted Feeder and /or Lateral activities.
- Note 8 SAIDI goals were not quantified by a specific number each year in view of the fact that annual tree related SAIDI historically fluctuates significantly. The goal was to continue a long-term downward trend in SAIDI results as measured by a trend-line analysis.

3.3 Tree Clearing Practices in Utility Easements and Authorized Rights-of-Way

Right-of-way clearing activities are accomplished through planned vegetation management programs and ticket work. These activities are described in detail within section 3.1.2 of this report. Actual pruning and clearing practices are governed by <u>American National Standards Institute standards ANSI A300 (Part I)-2001 Pruning and ANSI Z133.1-2000</u>. The actual pruning and removal of trees is governed by <u>ANSI A300</u>. This standard calls for the removal of entire limbs at specific locations on the tree to reduce the onset of decay and to train the tree to grow directionally away from power lines, thus reducing the need for future pruning. <u>ANSI</u>

<u>Z133</u> is a safety standard which covers the safety of tree workers and the general public during tree pruning activities.

The clearance between trees and electrical conductors is governed by the National Electrical Safety Code. Generally, a minimum of ten feet of clearance from the conductor is targeted anytime pruning activities are required.

Customer notification of vegetation management activities is an integral part of each of the Company's vegetation management programs. When vegetation management activities occur, appropriate local ordinances and policies are followed, and notification of customers adjacent to the right-of-way is initiated.

Customer notification is usually accomplished through the use of door hangers. The hanger provides the customer with a number to call if they would like a personal contact to review the work. If the customer does not call, the work proceeds with no further customer contact. Due to the Company's vegetation management activities in the right-of-way over the years, customers have generally come to expect this work and a small percentage of customers ask for a personal contact.

It should be noted the Company recognizes its legal right to manage vegetation in the right-of-way and is not seeking customer permission to do the work. The purpose of this customer notification is to reduce the number of customer complains regarding vegetation management activities and to make our customers more aware of the work we are doing to ensure reliability of the electrical system. If a customer has concerns about the planned work, the Company will endeavor to address their concerns and find a win-win solution that will protect the Company interests, as well as the customers.

In maintained areas, debris resulting from vegetation management activities is removed from the site. In some rural and non-maintained areas, debris may be left on site in order to reduce cost.

3.4 Identification of Relevant Portions of Tariffs Pertaining to Vegetation Management Activities within Easements and Authorized Rights-of-way

Refer to Rules and Regulations for Electric Service, Part I, Section 1.12, "Right-of-way" of Gulf Power's Tariff.

3.5 Tree Removal Practices for Trees That Abut and/or Intrude into Easements and Rights-of-ways

The Company employs Line Clearance Specialists who are International Society of Arboriculture Certified Arborists, and their training and skills in this field helps them address vegetation safety and system reliability issues with our customers and local agencies. Trees that abut or are adjacent to easements are generally located on private property and cannot be removed without owner consent. Customer notification is the strength of the Company's vegetation management programs that include tree removals on private property. Experience has shown the percentage of customers who will agree to tree removal on private property increases if they are actively involved in the process. All local governmental ordinances and policies are followed, and customer permission is solicited. The Company's Line Clearing Specialists often offer to replace tall growing trees with lower growing trees when a customer initially refuses to allow tree removal. This practice has increased the probability of obtaining customer approval for tree removal, but is not always successful. Customer satisfaction is always a consideration that is carefully planned into all work-plans.

3.6 Tree Clearing Practices Outside of Utility Easements and Authorized Rights-of-way

Right-of-way clearing activities outside the right-of-way are accomplished in a manner very similar to vegetation maintenance activities within authorized right-of-way (Section 3.3 of this report). Pruning standards and clearances are the same, but there are minor differences in the customer notification aspect.

Through the years, the Company has established a pruning zone that extends beyond the right-of-way onto private property by working diligently with its customers. The Company's customers have come to expect the Company to maintain this zone and generally do not oppose clearing activities in the established zone. The Company notifies impacted customers with door hangers of upcoming vegetation management activities. If the customer does not call the Company and request a personal contact, the work proceeds with no further customer contact.

If the work involves trees which have not previously been pruned, or requires significant pruning that may drastically alter a tree's appearance from previous pruning, the Company makes a concerted effort to meet with the customer personally to explain and review the work. If the customer

refuses to allow tree clearing activities on their property, the Company will limit the work to the right-of-way.

Generally speaking, the Company has been able to work out reasonable solutions with most customers. However, there have been specific cases where the Company has employed engineering options such as line relocations, or the use of stand-off arms to move conductors farther way from customer trees to increase clearance.

3.7 Identification of Relevant Portions of Tariffs Pertaining to Vegetation Management Activities Outside of Utility Easements and Authorized Rights-of-Way

Refer to Rules and Regulations for Electric Service, Part I, Section 1.12, "Right-of-way" of Gulf Power's Tariff.

3.8 Tree Removal Practices for Trees Outside of Easements and Authorized Rights-of-Way

The removal of private property trees that do not abut or intrude into the Company's right-of-way have not been routinely addressed by the Company vegetation management program in the past since they have minimal impact on the Company's day-to-day reliability and safety. These trees are located on private property, and it is the customers' responsibility to maintain their trees. The sheer number of trees that could potentially endanger the Company's facilities, if they were to fall, makes it economically unfeasible to address. In addition, the removal of all trees in this category would result in dramatic deforestation of the urban forest and would not be accepted by the public. Finally, private tree companies adamantly oppose the Company's involvement in managing trees located on private property since it has the appearance of a regulated utility venturing into the private tree care business.

In the past, customer requests for removal of private property trees have been treated on a case-by-case basis. In cases where it would be beneficial to the Company, the Company has assisted customers by topping large trees below conductor height to facilitate tree removal by the customer.

Under the Company's new storm hardening tree removal program (SHARP), the Company's involvement in work of this nature will be reevaluated. Trees identified as high risk threats during a storm will become candidates for removal if the customer agrees.

3.9 Identification of Relevant Portions of Tariffs Pertaining to Customer Vegetation Management Obligations as a Term or Condition of Electric Service

Refer to Rules and Regulations for Electric Service, Part I, Section 1.12, "Right-of-way" and Part VI, Section 6.2.7 "Rights-of-way and Easements" of Gulf Power's Tariff.

3.10 Company Practices Regarding Customer Trim Requests

The Company receives trim requests from customers throughout the year. These requests are received through the Company's Call-center as well as other departments and employees throughout the Company (i.e. marketing, engineering, line service, etc.). During communications with the customer, efforts are made to identify the type of vegetation concerns involved. Company employees have developed a professional communications skills set that is helpful in leading the customer to the information necessary to correctly identify their concerns (i.e. service drop, primary line, cable, phone, etc.). This process is very successful, not only in reducing unnecessary field inspections for the Company but gives onthe-spot satisfaction and closure to many of our customer's vegetation concerns.

When requests require further investigation, a customer service request (ticket) is forwarded to the Company's Forestry Services section. One of the goals within Forestry Services is to schedule and perform a field inspection of the request within two weeks. Should no vegetation maintenance work be necessary, the customer is notified of the findings and given any additional information that could be useful in assisting the customer with their concern (i.e. cable, phone, etc.).

When vegetation maintenance is necessary, the customer request (ticket) is scheduled for work. The Company employs certified arborists to work in Forestry Services as line clearance specialists and forestry services technicians to ensure customer concerns and company practices are professionally addressed and administered.

3.11 Criteria Used to Determine Tree Removal, Replacement, Spot-Trim, Demand Trim, or Mid-Cycle Trim

The Company utilizes the most cost effective treatment to address vegetation conditions on its electric distribution system. The type and/or magnitude of the condition; the proximity to primary conductors; tree species, size, health, and location; customer concerns and interactions; local ordinances and other local governmental concerns and

environmental factors are all criteria used to determine what type of vegetation management the Company will perform.

Tree removal is the preferred treatment when directional pruning will not provide long-term remediation of the condition. Tree removal is highly preferred on smaller trees and saplings which have not yet become significant maintenance issues.

Generally speaking, directional pruning is the preferred treatment on large trees with can be pruned in a manner that will train them to grow away from the conductors while providing long-term remediation of the condition. Local ordinances often govern treatment of large trees and the Company's treatment options often become limited in these cases.

Spot trimming, also known as a trouble ticket, is usually employed in response to a customer request involving an individual tree at a single location. If field inspection finds the condition can be treated by the pruning or removal of an individual tree or a small number of trees at a single location, the work will be shown as a spot trim. If field inspection finds multiple locations in the area need treatment, Managed Spot Trim will be employed.

Managed Spot-trimming is used when a circuit's vegetation concerns are inspected and found to be centered in several isolated sections within the circuit. Work-plans are developed for these isolated areas of concern and scheduled to be worked by on-system contract crews or opened up as a contract bid-work project.

When a circuit is inspected and the overall vegetation assessment indicates the need for the entire circuit to be scheduled for maintenance, work-plans are developed and the circuit is scheduled for Feeder and /or Lateral maintenance as required.

3.12 2007 Projected Activities and Budget Levels

The Company has implemented several additional Distribution Vegetation Maintenance programs for 2007:

3.12.1 MATS Program (Main-line Annual Trim Schedule)

The MATS (Main-line Annual Trim Schedule) Program will perform vegetation management on one-third of the Company's distribution main-line feeder miles each year, putting the Company's distribution main-line feeder miles on a three (3) year maintenance cycle

3.12.2 MICS Program (Main-line Inspect & Correct Schedule)

The MICS Program (Main-line Inspect & Correct Schedule) will provide an inspection and correction of vegetation deficiencies on the two-thirds of the Company's distribution main-line feeder miles each year that are not scheduled to be worked into that year's MATS program.

3.12.3 SALT Program (Scheduled Annual Lateral Trim)

The SALT Program (Scheduled Annual Lateral Trim) will perform vegetation management on approximately one-sixth of the Company's distribution lateral circuit miles each year, putting the Company's distribution lateral circuit miles on a six (6) year average maintenance cycle.

3.12.4 SHARP Program (Storm Hardening Annual Removal Program)

The SHARP Program (**S**torm **H**ardening **A**nnual **R**emoval **P**rogram) will perform an inspection of the Company's distribution system each year to identify and remove vegetation conditions (Danger Trees) that will pose hazards to the Company's distribution system under severe weather conditions. This will be an annual program.

3.12.5 Customer Ticket Activities

Activities and expenses within these activities are expected to decline as benefits from the above programs are realized.

(See section 3.10 of this report)

3.12.6 Projected Funding Levels (2007)

The Company's 2007 projection to support Distribution Vegetation Management programs is \$3,192,705. The Company has projected of an additional funding of \$1,500,000 to support the Storm Hardening Annual Removal Program (SHARP). The total projected for 2007 Distribution Vegetation Management is \$4,692,705.

3.13 Requirements of Applicable Orders

On April 25, 2006, the FPSC issued Order No. PSC-06-0351-PAA-El that required investor owned electric utilities to file plans and estimated implementation costs for ongoing storm preparedness initiatives on or before June 1, 2006. A three-year vegetation management cycle for distribution circuits was one of the ten initiatives. Gulf Power submitted the Storm Preparedness Plan on June 1, 2006 as required in the order; and the Commission approved all parts of the plan except the vegetation management plan. By Order No. PSC-06-0781-PAA-El, the FPSC required Gulf's revised vegetation management plan to include an appropriate means of evaluating the effectiveness of the plan in achieving compliance with the original Order No. PSC-06-0351-PAA-El. Gulf submitted its revised vegetation management plan and the Commission approved the revised plan in Order No. PSC-06-0947-PAA-El. Gulf is currently implementing the revised vegetation management plan requirements.

3.14 Community Participation

Through the years, Company Line Clearance Specialists and Forestry Services Technicians have communicated routinely with members of the community; local municipal, county, state, and federal officials; and military leaders concerning area vegetation projects, needs, and concerns. Vegetation management programs and work-plans concerning: 1) new customer and Company construction projects; 2) utility right-of-way maintenance; 3) major initial clearing projects (i.e. road additions and resizing projects, new distribution feeders, water and sewer projects, military projects and missions, etc.); and 4) storm preparation and recovery activities, are some of the examples of the activities discussed routinely with the Company's customers and local governmental agencies within NW Florida. Routine communications can range from office and field visits, to phone and radio conversations.

In the Company's Western Region, the Line Clearance Specialist routinely communicates with The City of Pensacola Parks and Recreations' supervisor (responsible for the City's Urban Forest and Tree ordinances) on

vegetation related issues. Both the City supervisor and the Line Clearance Specialist have each other's Southern Linc radio numbers programmed into their radios. When faced with special vegetation issues, a hazard to the Company's distribution system or safety issue for the City, both parties are able to discuss their needs and /or concerns instantly, and develop a plan that provides the best solution for both parties. In many cases, work is shared. The Company's contract line clearance tree crews may remove the hazard tree condition near the conductors with the City's crews cleaning up and removing the debris.

Another example is the joint vegetation inspections performed between Panama City and the Company's Eastern Region Line Clearance Specialist. When vegetation management activities are occurring in Panama City, the City and the Company meet monthly and patrol vegetation conditions within the City. The affects of Company vegetation maintenance activities on the City's urban forest and residents' trees are reviewed for compliance and future vegetation project plans. Special vegetation needs and concerns, from both parties, are also reviewed during these day long field trips together. The Company and the City split the expense of an outside Consulting Arborist to be part of these vegetation inspections. The involvement of a third, outside party into this vegetation inspection process, has enhanced the education and benefits of this joint endeavor for the Company and the City.

In many of the municipalities the Company serves, the Line Clearing Specialist will deliver maps of areas scheduled for vegetation management activities to the city before work begins. This allows the city to respond appropriately to any customer who may ask questions.

The method and frequency of communication between the municipality and the Company will vary, based on the needs of the governmental agency. However, anytime the Company feels its vegetation management activities may result in public concern, an effort will be made to address the situation with the appropriate governmental agency before work begins.

As an educational tool for the community, the Company's Line Clearance Specialists and Forest Services Technicians talk with local community groups, home-owner associations, and local schools to help develop public awareness about living and working safely around electrical conductors. Questions and answers regarding why utilities prune trees around power lines and what trees should or should not be planted under the power lines are always part of each presentation. Company Forestry Services employees enjoy talking with these groups and have experienced considerable success and satisfaction from the attendees.

3.15 Storm Hardening Annual Removal Program (SHARP) Note 9

The Company's distribution Storm Hardening Annual Removal Program (SHARP) targets trees and/or vegetation conditions (damaged or healthy) that may pose a threat to the Company's electrical Distribution System under storm conditions. Growth patterns, structural integrity of the tree, health, soil conditions, and locations are some of the factors that are evaluated to determine if the tree is a candidate for removal.

		2005	2006	2007
a)	Number of SHARP trees removed:	N/A	1,173	3,500*
b)	Expenditures on SHARP tree removals:	N/A \$1,500,000*	\$528,000	
c)	Number of requests for removals denied:	N/A	400*	2,500*
d)	Avoided CI (estimated) with SHARP			
	trees removed:	N/A	2,297	N/A
e)	Avoided CMI (estimated) with SHARP			
	trees removed:	N/A	779,786	N/A

^{*} Estimated

Note 9 2006 avoided CI (2,297) & CMI (779,786) estimates are based on 1.76 breaker outages avoided:

- (A) Average number of customers interrupted (CI) per Breaker outage equals 1,305
- (B) Estimated Breaker outages avoided by the SHARP program equal <u>1.76</u>
- (C) Estimated customer minutes of interruption (CMI) estimated to be avoided equals $\underline{779,786}$ i.e. $(1,305 \times 1.76 = 2,297 \text{ CI})$; $(2,297 \times 339.48 = 779,786 \text{ CMI})$

4.0 Joint-Use Pole Attachment Audits for the Year (Storm Hardening Initiative 2)

Gulf Power Company's Joint Use Inventory audit and the data collected are as follows:

Gulf performs its Joint Use Inventory audits every five years, covering the overhead distribution system as this is the most cost-effective plan for the economies of scale Gulf's small system represents.

- a) Percent of system audited: 100% feeders: 100% laterals: 100%
- b) Date audit conducted? May 1, 2006 through December 31, 2006
- c) Date of previous audit? 2001
- d) List of audits conducted annually: None

4.1 Activity and Costs Incurred for 2006 and 2007 Projections

1	2006 Joint Use Pole Audit	\$368,100
2	2007 Pole Strength and Loading Engineering and	
	Replacements	\$380,000

4.2 Joint Use Attachment Audits - Distribution Poles

CANNI 1 C	242.002
(A) Number of company owned distribution poles	243,993
(B) Number of company distribution poles leased: 9 Telecomm attachers on our poles	105,511
(C) Number of owned distribution pole attachments: 9 CATV, numerous Government and other	
3 rd party attachers on our poles	153,779
(D) Number of leased distribution pole attachments: Foreign poles Gulf Power is attached to	61,040
(E) Number of authorized attachments: Sum of all attachments to Gulf Power Company poles	255,831
(F) Number of unauthorized attachments: Our best estimate based on Joint Use Pole Inventory	6,090
results	
(G) Number of distribution poles strength tested:	5
(H) Number of distribution poles passing strength test	5
(I) Number of distribution poles failing strength test (overloaded)	0
(J) Number of distribution poles failing strength test (other reasons)	0
(K) Number of distribution poles corrected (strength failure)	0
(L) Number of distribution poles corrected (other reasons)	0
(M) Number of distribution poles replaced: M=I + J	0
(N) Number of apparent NESC violations involving electric infrastructure: Note 1	0
(O) Number of apparent NESC violations involving 3 rd party facilities: Note 1	0

Note 1: Gulf Power does not collect this type of data as part of our Joint Use process. When Gulf becomes or is made aware of NESC violations, Gulf has corrective measures that are taken.

5.0 Six Year Inspection Cycle for Transmission Structures (Storm Hardening Initiative 3)

5.1 Activity and Costs Incurred for 2006 and 2007 Projections

In 2004, Gulf Power adopted the Southern Company Transmission Line Inspection Standards. Gulf contracts ground line inspections and uses a combination of Company employees and contractors to perform comprehensive walking and aerial inspections. Gulf Power Company's transmission inspection program is based on two alternating twelve-year cycles which results in a structure being inspected at least every six years.

In 2006, Gulf Power spent a total of \$135,458 on a combination of wood ground line treatment and steel ground line inspection contractors. In addition to this amount, Gulf Power spent \$216,511 on a combination of comprehensive walking inspections, aerial inspections and emergency inspections. The number of structures inspected and the amount of dollars

spent shown in Table 5.4 are for the comprehensive walking and the wood ground line treatment inspections.

In 2007, Gulf Power plans to continue its inspection schedule at the rate such that one sixth of the system's structures will be addressed. The projected expenditure for these inspections is \$325,645. The breakdown of this amount is shown in the 2007 columns of Table 5.3 and Table 5.4

5.2 Transmission Circuit, Substation and Other Equipment Inspections

	2006 Activity		2006 Budget		20	007
	Goal	Budget	Budget	Actual	Goal	Budget
(A) Total Transmission Circuits						
(B) Planned Transmission circuit inspections						
(C) Completed Transmission circuit inspections			N/A	Note 2		
(D) Percent of transmission circuit inspections						
completed						
(E) Planned transmission substation inspections	32				32	
(F) Completed transmission substation	32				N/A	
inspections						
(G) Percent transmission substation inspections						
completed	100				N/A	
(H) Planned transmission equipment inspections						
(other equipment)	N/A	N/A	N/A	N/A	N/A	N/A
(I) Completed transmission equipment						
inspections (other equipment)	N/A	N/A	N/A	N/A	N/A	N/A
(J) Percent of transmission equipment						
inspections completed (other equipment)	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

Note 1 Substation inspection budget dollars are not tracked separate from general Maintenance.

Note 2 Gulf Transmission does not inspect by circuit

5.3 Transmission Tower Structure Inspections

	2006	Activity	2006 Budget		20	007
	Goal	Budget	Budget	Actual	Goal	Budget
(A) Total Transmission tower structures	2,487		2,487		2,487	
(B) Planned Transmission tower structure	138		\$15,000	\$13,943	320	\$80,000
inspections						
(C) Completed Transmission tower structure						
inspections			138	130		
(D) Percent of transmission tower structure						
inspections completed	5.5%			94.2%	12.9%	

5.4 Transmission Pole Inspections

	2006 Activity		2006 I	Budget	2007	
	Goal	Budget	Budget	Actual	Goal	Budget
(A) Total number of Transmission Poles	13,235		13,235		13,235	
(B) Number of transmission poles strength	2,374		\$121,515	\$121,833	4,597	\$240,645
tested	<u> </u>					
(C) Number of transmission poles passing						
strength test	1,718					
(D) Number of transmission poles failing						
strength test (overloaded)	0					
(E) Number of transmission poles failing						
strength test (other reasons)	656					
(F) Number of transmission poles corrected						
(strength failure)	0					
(G) Number of transmission poles corrected			}	Į.		
(other reasons)	61	N/A	N/A	N/A	N/A	N/A
(H) Total transmission poles replaced	61	N/A	N/A	N/A	422	N/A

6.0 Storm Hardening Activities for Transmission Structures (Storm Hardening Initiative 4)

6.1 Activity and Costs Incurred for 2006 and 2007 Projections

Gulf Power Company's method of selecting each hardening activity, how it knows the activity is better than other activities, which other activities it considered and what input, if any, did local communities and governments have, are as follows:

Gulf Power Company has chosen two hardening activities: installation of guys on H-frame structures and the replacement of wooden cross arms with steel cross arms. Historically, wooden cross arms have been a common failure point in general for transmission outages. Gulf's installation of guys on H-frame structures adds additional strength capacity to the existing structure.

Gulf Power Company believes that the two activities chosen are the best alternatives for existing transmission assets most at risk. Gulf did not seek input from local communities or governments in regards to these transmission storm hardening activities due to the minimal physical impact of these activities.

6.2 Hardening of Existing Transmission Structures

	Activity		Current Budget		Nex	t Year
	Goal	Actual	Budget	Actual	Goal	Budget
(A) Transmission structures scheduled for						
hardening	N/A	N/A	N/A	N/A	300	\$600,000
(B) Transmission structures hardening completed	134	134	0	N/A	N/A	N/A
(C) Percent Transmission structures hardening						
completed	N/A	N/A	N/A	N/A	N/A	N/A

7.0 Distribution Substation

7.1 Five Year Patterns/Trends in Reliability Performance of Distribution Substations

The data collected for the past five years does not show any trends or patterns for distribution substation reliability. Each substation related outage is reviewed and actions are taken to reduce the possibility of a trend occurring in the future.

7.2 Distribution Substation Reliability Tracking

Each abnormal substation related outage is reviewed and actions are taken to reduce possible future outages from happening as a result of a similar system disturbance.

7.3 Distribution Substation Reliability Problem Identification Process

In order to promote substation reliability, inspections are done which include visual checks on all equipment including breakers, regulators, transformers and battery banks. The substation is verified to have the proper signs installed, the fence is checked for security and proper grounding, eye wash system checked, yard lights checked, and weed problems noted. A visual inspection of all structures, buss work, switches and capacitor banks is also completed. Any abnormal condition is repaired immediately or recorded as an abnormal situation to be repaired at some time scheduled in the future based on priority.

Along with station inspections, equipment maintenance is performed on a regular cycle to maintain substation reliability. A detailed battery inspection is completed every six months with capacity, integrity and resistance tests performed as indicated from inspections. Oil Breakers preventative diagnostics are performed every two years. 12kV vacuum breakers have a preventative diagnostic performed every four years.

Preventative diagnostics are performed every year on regulators. Transformers have a dissolved gas analysis performed every year and power factor testing is performed every six years.

7.4 Distribution Substation Inspections During Normal Operations

In 2004, 2005 and 2006, Gulf inspected all of its 109 distribution substations at least once annually.

8.0 Geographic Information System (GIS) (Storm Hardening Initiative 5)

8.1 Activity and Costs Incurred for 2006 and 2007 Projections

Gulf Power's Geographic Information System (GIS) is a database for distribution, transmission, and land records. The distribution side of the system is using **DistGIS** which is the abbreviation for the company's <u>Distribution Geographic Information System</u>. The system is designed to be a complete electronic model of Gulf Power's electrical system over-laid on a representation of the land base. DistGIS is actually a system composed of many parts. The base GIS software is ArcGIS/ArcMap from Environmental Systems Research Institute (ESRI). It also provides consistent, high-quality data to other systems. For example, it feeds data to the outage management systems (TCMS) in place at Gulf Power to ensure optimum response to incidents, such as the recent hurricanes. The ArcGIS platform serves as an enabling technology for addressing future Gulf Power Company business needs.

All major overhead and underground distribution equipment is in the new GIS system. The system is updated with any additions and changes as the associated work orders are completed.

Transmission uses the same software as distribution to map the GIS Data. All data that is mapped on the Transmission Mapping tools is pulled from the Common Transmission Database (CTDB). Transmission collects data for the CTDB through various means. The method in which the majority of our data is collected is through inspections on field computers using the Transmission Lines Inspection System (TLIS). This data is transferred into the CTDB and then extracted into various Mapping programs. Transmission uses Transview, TLIS Maps, and individual ESRI Maps. All updates made to the transmission system are captured in the CTDB and are then available in GIS format.

At the current rate of data collection and population of the CTDB, Gulf will complete the initial mapping of its transmission system into the GIS within the next six (6) years.

8.2 Distribution Overhead Data Input

	2006	2006 Activity		2006 Budget		007
	Goal	Actual	Budget	Actual	Goal	Budget
(A) Total number of system wide OH assets for						
input	N/A	N/A	N/A	N/A	N/A	N/A
(B) Number of OH assets currently on system	N/A	140.650	N/A	N/A	N/A	N/A
(C) Percent of OH assets already on system	N/A	100%	N/A	N/A	N/A	N/A
(D) Annual OH assets targeted for input (goal)	-	N/A	N/A	N/A	N/A	N/A
(E) Annual OH assets input to system (actual)	N/A	-	N/A	N/A	N/A	N/A
(F) Annual percent of OH assets input	N/A	N/A	N/A	N/A	N/A	N/A

8.3 Distribution Underground Data Input

	2006 /	2006 Activity		2006 Budget		007
	Goal	Actual	Budget	Actual	Goal	Budget
(A) Total number of system wide UG assets for						
input	N/A	30,502	N/A	N/A	N/A	N/A
(B) Number of UG assets currently on system	N/A	30.502	N/A	N/A	N/A	N/A
(C) Percent of UG assets already on system	N/A	100%	N/A	N/A	N/A	N/A
(D) Annual UG assets targeted for input (goal)	N/A	N/A	N/A	N/A	N/A	N/A
(E) Annual UG assets input to system (actual)	N/A	N/A	N/A	N/A	N/A	N/A
(F) Annual percent of UG assets input	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

Assets Defined

Note: Each location typically has multiple pieces of equipment. For example, one location may represent a transformer station with pole cutout, arrestor, and associated conductor.

8.4 Transmission Overhead Data Input

	2006 Activity		2006 Budget		2	2007	
	Goal	Actual	Budget	Actual	Goal	Budget	
(A) Total number of system wide OH transmission assets for input		9,798			9798		
(B) Number of OH transmission assets currently on system		2,979	N/A Note 1		4374		
(C) Percent of OH transmissions assets already on system		23.3%			44.6%	N/A Note 1	
(D) Annual OH transmission assets targeted for input	1,064				1,064		
(E) Annual OH transmission assets input to system		1,395					
(F) Annual percent of OH transmission assets input		10.9%					

Notes:

^{8.2 (}B) Number of OH assets currently on system = Number of geographic locations of equipment.

^{8.3 (}B) Number of UG assets currently on system = Number of geographic locations of equipment.

^{1.} This data is captured as part of the inspection process and, therefore, is not tracked separately.

8.5 Transmission Underground Data Input

	2006 A	ctivity	2006 Budget		2	007
	Goal	Actual	Budget	Actual	Goal	Budget
(A) Total number of system wide UG						
transmission assets for input		0				
(B) Number of UG transmission assets currently						
on system	N/A Note 2	3		N/A	Note 2	
(C) Percent of UG transmission assets already	IN/A			N/A		
on system		100				
(D) Annual UG transmission assets targeted for						
input		0				
(E) Annual UG transmission assets input to						
system		0				
(F) Annual percent of UG transmission assets						
input		0				

Notes:

9.0 Post Storm Data Collection and Forensic Analysis (Storm Hardening Initiative 6)

9.1 Activity and Costs Incurred for 2006 and 2007 Projections

Distribution:

Gulf has assigned Power Delivery's Asset Management Coordinator the responsibility of post storm forensic data collection. The Coordinator has contracted with Osmose, Inc. to perform this service.

Working in coordination with its Contractor, Gulf has developed a list of items defining the data to be collected. General information about the pole will be collected such as pole age, height, class, species, and manufacturer. Additional information such as the number of conductors, style of construction and equipment on the pole, CATV, and third party attachments will be recorded. Specifics about what caused the damage to the pole/wire and the location of the failure will be included in the report.

Gulf has finalized the data that will be collected and the database that will store the data is being developed. This database will be placed on handheld computers to facilitate the rapid collection of forensic data in the field after a storm.

Gulf will send the contractor an electronic file that has our infrastructure on it. This will be uploaded to the hand held computers used by the contractor. Working from this file will allow the contractor to know what was in the field

Gulf Power Company defines an underground transmission asset as the complete installation from termination to termination.

^{2.} Gulf Power Company already has GIS data on the location of all of its underground transmission facilities.

prior to the storm. The contractor will collect and input the forensic data into the hand held. This data will be returned to Gulf to be used in a program that will allow Gulf to run queries and view data in a map view.

The restoration and forensic data collection processes will occur simultaneously, but forensic data collectors will work independently of the restoration process to ensure sufficient forensic data is collected. Personnel will be spread across our system, ranging from areas with extensive damage to areas with lower damage levels to collect forensic data. This will ensure sampling of damage caused by various wind field strengths.

The Asset Management Coordinator will assign circuits to the contractor based on the extent of damage and path of the storm. The contractor will collect data by circuit. The goal will be to collect as much forensic data as possible without hindering the restoration process.

Final reports have not been formatted at this time and are still in the development phase. Once the database is completed, final reports will be formatted and code developed to extract the reports from the database.

Transmission:

Gulf Power Company's Transmission department's forensics team will be led by the transmission engineering function. Utilizing an aerial patrol with a fixed wing aircraft, the team will capture an initial assessment of the level of damage to the transmission system. A follow-up aerial patrol utilizing helicopters will capture GPS coordinates for each failure and record these failures with the Transmission Line Inspection Tool (TLIS). When ground crews arrive on the scene, the construction inspector with the crew will be responsible for assessing all damage and making a determination as to the cause of the failure. Gulf Power's Transmission Engineering department will review all findings of the field inspectors and determine if additional information should be gathered.

Gulf Power's existing Common Transmission Database (CTDB) will be utilized to capture all forensics information. The Transmission Line Inspection System (TLIS) tool will be used to track all facility failures and create work orders to associate those failures with the affected facilities. TLIS utilizes geographic mapping software to track the location of facilities.

Final reports for forensics have not been formatted at this time and are still in the development phase with our consultants. Once the database is completed, a format will be determined and software developed to extract the reports from the database.

10.0 Outage Data Differentiating Between Overhead and Underground Systems (Storm Hardening Initiative 7)

There is no data available for this section since, in 2006, Gulf was not impacted by any storm named by the National Hurricane Center or tornado recorded by the National Weather Service

10.1 Activity and Costs Incurred in 2006 and 2007 Projections

Beginning in the first quarter of 2007, Gulf will implement additional record keeping such as recording the number of overhead (OH) and underground (UG) customers on its system at the end of each year. This will allow Gulf to calculate the SAIDI and SAIFI indices as experienced by overhead and underground customers.

Gulf will also collect the following data on outages as they occur:

- UG cable is:
 - o Direct Buried
 - Direct Buried but Cable Injected
 - o In Conduit
- Pole type is:
 - o Concrete
 - o Wood

The data will be collected as each outage occurs. The Outage Management Software used to collect the outage data and the Outage Management Software database used to store the outage data will be revised to capture this information. The costs for this are minimal as it utilizes existing systems and processes.

11.0 Increase Coordination with Local Governments (Storm Hardening Initiative 8)

For years, Gulf Power has emphasized the importance of coordinating with local governments in major projects. In regards to vegetation management needs, see Section 3.14 for a description of local government coordination activities.

Gulf Power currently has seven Overhead to Underground Distribution conversion projects underway, in addition to ten projects in the estimating process. For each of these projects, Gulf has held numerous meetings with the

governmental entities involved to review the scope of the projects, the steps involved in the design and to discuss the coordination of activities involved with the implementation of them.

11.1 Ongoing Programs

a) Number of city/county liaison initiated.

Gulf Power Company has several employees with local government liaison responsibilities in NW Florida.

District Managers are located in Pensacola, Ft. Walton, and Panama City. Local Managers, who report to the District Managers, are located in Milton, Crestview, Niceville, and Chipley. These positions interact with city and county personnel on a daily/weekly basis regarding numerous issues, including emergency preparedness as needed. Due to the regularity of interaction, it would not be feasible to document all liaisons initiated. These Gulf Power employees are also actively involved in specific government-business committees that focus on emergency preparedness needs in NW Florida. Examples of those include:

- Executive Board Member of BRACE (Be Ready Alliance for Coordinating for Emergencies). BRACE is an Escambia County organization unique to Florida but part of a federal government directive that encourages communities to develop more effective preparedness programs for various types of disasters. The federal government organization is called COAD (Communities Organized and Active in Disasters). BRACE meets on a monthly basis.
- Member of Okaloosa County Emergency Management Committee. This Committee is a coordinated effort between government and business to address emergency preparedness issues on a monthly basis.
- Member of Walton County Mitigating Committee. This
 Committee provides an interactive dialogue between Walton
 County officials and businesses in order to coordinate efforts on
 many issues, including emergency preparedness and
 infrastructure needs.

Gulf Power's Line Clearance Specialists and Forest Services Technicians communicate on a daily basis with local governmental officials, community groups, and homeowner associations to ensure local area involvement and communications regarding vegetation management projects are effectively maintained.

Gulf Power's County Emergency Operations Center (EOC) Representatives are assigned to County EOCs in NW Florida. The EOC Representatives assist city and county agencies and officials during emergencies that warrant activation of the County EOCs. Gulf Power provides 24-hour coverage throughout the duration of the EOC activation.

- b) Number of periodic communications initiated with cities/counties.
 - Unknown. Gulf Power personnel communicate with local government personnel on a daily/weekly basis.
- c) Number of restoration training and assistance programs conducted.
 - Santa Rosa County in January 2006
 - Gulf Power Escambia County EOC Reps participated in EOC Training on 7/5/06 and 7/7/06
 - National Incident Management System (NIMS) Training to EOC Reps (Fall 2006). NIMS was developed by FEMA so responders from different jurisdictions and disciplines can effectively work together in responding to all types of emergencies. Gulf Power EOC Reps completed all required certification courses for 2006.
- d) Number of city/county problem resolution plans.

Gulf Power has developed a single Emergency Operations Plan. There is no need for multiple plans.

11.2 Storm Preparation

- a) Number of communication links and contingency plans established.
 - Gulf Power Company has 12 employees dedicated to the county EOCs throughout NW Florida. All actions are based on the Company's central Emergency Operations Plan.
- b) Number of operational contingency plans developed for emergency services.
 - All Gulf Power contingency plans are incorporated into its central Emergency Operations Plan.
- c) Number of public communication plans developed prior to, during and after the storm.

Gulf Power's Emergency Operations Plan includes ongoing communications, pre-storm communications, and post-storm communications supplied by the Corporate Communications Department. Company News Releases are delivered to the County EOCs at least twice daily during storm restoration events to keep local government agencies and officials apprised of the latest Company restoration activities.

d) Number of city/county mitigation guidelines prepared and distributed.
 Not Applicable.

11.3 Storm Restoration

a) Number of emergency communication links maintained.

Gulf has employees assigned to each county EOC. Depending on how many counties are impacted by a storm and activate their emergency operations centers, Gulf will maintain a communication link with them. No NW Florida EOCs were activated during 2006 due to a lack of hurricanes making landfall.

b) Number of priority emergency services restored.

Gulf Power always restores priority emergency services as quickly as possible. There were no hurricane-related outages to priority emergency services during 2006.

c) For each tropical storm, hurricane and other emergency event impacting the utility's service area, what community coordination action did the utility pursue not otherwise in a) and b) above?

None.

In the last tropical storm which did not come ashore in Florida as a hurricane, did the Company trigger its storm response Plan? If yes, did the Company include Initiative #8 (Increased Coordination with Local Government) in that storm response? If yes, what did the Company do? If not, why not?

Gulf Power's service area was not threatened by a hurricane and no county emergency operation centers opened during 2006.

Are the companies planning to do a post mortem assessment of that effort along with a review of the overall storm response plan implementation? If yes, when will this assessment be available?

Not applicable for 2006. Gulf Power routinely performs post mortem assessments (storm critiques) following each hurricane restoration effort. The Company will perform these assessments following any future hurricane events.

12.0 Collaborative Research (Storm Hardening Initiative 9)

12.1 Activity and Costs Incurred for 2006 and 2007 Projections

1	2006 Collaborative Research	\$1,218
2	2007 Collaborative Research Projections	\$15,000

12.2 Project Planning Report

As a member of PURC, Gulf is participating in the research activities for Storm Hardening as described by PURC management in Appendix 7.

13.0 Disaster Preparedness and Recovery Plan (Storm Hardening Initiative 10)

See Appendix 5 for the plan submitted by Gulf Power Company in 2006. Gulf is in the process of updating the plan for the 2007 storm season and expects it to be completed by May 31, 2007. This is Gulf's standard procedure.

13.1 Activity and Costs Incurred for 2006 and 2007 Projections

1	2006 Storm Bunker Construction	\$382,000
2	2007 Disaster Preparedness and Recovery Projections	-0-

13.2 Disaster Recovery Plan Activity

Sections of Gulf's 2007 Storm Procedures Manual have been sent out to appropriate management in the company for revisions. Revisions will be returned and incorporated in the 2007 Manual by June 1. Training schedules are being developed now, with plans for the training to be completed by June 1, 2007.

14.0 Storm Season Ready Status

The following is an overview of Gulf Power Company's 2007 Hurricane Preparedness Briefing.

Transmission Inspections

- All critical lines will be inspected by May 1, 2007;
- The complete transmission system has been inspected aerially once this year. Gulf Power typically performs four aerial inspections annually;
- Comprehensive walking/climbing and ground-line inspection six year program ensures:
 - o 75% of inspections will be complete by August 1, 2007.

Vegetation Management - Transmission

- 230kV ROW vegetation inspections are 60% complete and all hazard tree conditions will be corrected before April 15, 2007;
- 115kV ROW vegetation inspections are 15% complete and crews are currently working on hazard trees. Completion date: May 15, 2007;
- 46kV ROW vegetation patrols and hazard tree removals are scheduled.
 Completion date: May 30, 2007;

Vegetation Management – Distribution

- All feeder ROW (main-line three phase) were patrolled during December 2006 to identify danger trees and hazardous conditions.
 - o Hazardous conditions will be corrected prior to storm season;
 - o Off ROW danger tree removal will take place throughout the year;
 - o Patrols were completed on schedule and without major problems;
 - o Off ROW approvals for tree removals from land owners were about 40%. Additional patrols and customer/contractor communications will be necessary to enhance the program.

Summary: Gulf Power Company is fully prepared for the 2007 Hurricane Season. The following summarizes our intent for the 2007 season. Please refer to the attachment labeled 2007 Storm Recovery Plan, Appendix 5 for details.

Storm Recovery Plan

Gulf Power Company uses the plans described in its Storm Recovery Plan to respond to any natural disaster that may occur in NW Florida. These plans have proven to be very effective previously in recovering from multiple storms that have impacted Gulf Power and its customers. As part of its annual operations, Gulf Power has developed and refined it's planning and preparations for the possibility of a natural disaster in the Florida panhandle. This planning is updated annually to build on what works well and to improve in areas that do not work as well as intended. In these updates, Gulf strives for continuous improvement by building on experiences from recovery efforts within NW Florida as well as serving to assist other utilities that have suffered weather related natural disasters. Gulf's plan has been encapsulated within a detailed and proprietary Storm Recovery Procedure manual as an element of its Natural Disaster Preparedness and Recovery Program. The Manual will follow the guidelines and philosophy set forth in the Storm Recovery Plan.

The restoration procedure establishes a plan of action to be utilized for the operation and restoration of generation, transmission, and distribution facilities during major disasters. Such disasters include hurricanes, tornadoes, and storms that could cause widespread outages to our customers.

The overall objective is to restore electric service to our customers as quickly as possible consistent with protecting the safety of everyone involved.

The company garners support from the Southeastern Electric Exchange (SEE) Mutual Assistance Group and The Southern Company for distribution, logistics and the Transmission Emergency Restoration Plan.

In the logistics and support areas, contracts are negotiated and confirmed with vendors for services such as food, lodging, materials, transportation, fuel and other support functions. Staging sites are secured, and if needed, agreements are negotiated and signed. Gulf Power's Supply Chain Management department ensures that materials on hand, along with available supplies from the material vendors, are sufficient to meet the anticipated demands of the storm season.

15.0 2006 Reliability Performance

15.1 Overall Performance

Gulf Power's indices show a major increase for 2006. The contributors to this increase are:

1. A storm event which impacted the company indices on May 8, 2006.

- 2. A storm event which impacted the company indices on November 15, 2006.
- 3. The continued carry over effects of the 2004 and 2005 storm season.

Please see Appendix 1 for 2006 Actual Data and Adjusted Data.

15.2 Data Tracking Level

Gulf collects outage data down to the customer meter level using a Trouble Call Management System (TCMS).

15.3 Critical Review of Detailed Reliability Data

Although Gulf was not impacted by any storm named by the National Hurricane Center or tornado recorded by the National Weather Service, Gulf's reliability indices showed major declines in reliability.

Gulf Power's actual and adjusted reliability reports only reflect a difference due to transmission and planned outages which were excluded.

Gulf experienced a major storm which was not excludable from FPSC reporting. At approximately 11:00 P.M. on Monday, May 8, 2006, a band of severe storms with damaging straight line winds moved through NW Florida. These storms first impacted the Pensacola District and moved across the system with the greatest impact in the Panama City District. NOAA's National Weather Service Storm Prediction Center reported winds of 70 MPH in Escambia and Bay Counties. In Bay County, wind gusts from the severe thunderstorm peaked around 90 MPH based upon damage surveyed as reported by the National Weather Service. There were unofficial reports of hail and tornados as reported by the local news.

The number of customers interrupted was 49,197 or 12% of Gulf's total customers. The Panama City District was most severely impacted with 32,504 customers out or 32% of the District's customers affected. These reported outages and associated restoration work spanned approximately a three day time period.

The May 8 storm event's impact on company indices are as follows:

- o SAIDI = 69.02
- o SAIFI = 0.1165
- \circ CAIDI = 592.43
- o N = 473
- \circ CMI = 27,183,258
- \circ CI = 45,884

This storm moved very quickly through NW Florida inflicting heavy damage. Its impact was initially under estimated by operational personnel as Gulf proceeded with its restoration efforts resulting in the delay of getting the needed resources into full operation. Gulf's storm critique of this event resulted in new guidelines to address the possible range of severe weather which can be encountered. These guidelines provide the Distribution Operation Center (DOC) and the affected areas the needed direction to achieve optimum restoration effectiveness. Attached in Appendix 3 are the new guidelines entitled, "Distribution Operating Condition Levels and Restoration Response Guidelines".

Gulf experienced another major storm which was not excludable from FPSC reporting on November 15, 2006. Although it was not as severe as the May 8 storm, tornado type winds and damage was associated with it.

This November 15 storm event's impact on company indices are as follows:

- \circ SAIDI = 7.34
- \circ SAIFI = 0.0838
- o CAIDI = 177.25
- 0 N = 314
- o CMI = 6,019,312
- \circ CI = 33,960

In addition, Gulf Power continues to experience the carry over effects of the 2004 and 2005 storm season. Gulf experienced the 2004 carry over effects of Ivan, a "residual negative effect" that continues after a major hurricane. In addition, from 2005, Gulf had several storms with their after affects: Arlene, Cindy, Dennis, and Katrina. Each of these storms has contributed and compounded this "residual negative effect". Gulf under estimated how long this would continue to impact its system due to having never experienced storms of this magnitude and frequency.

The impacts of these storms continue to manifest themselves in different ways which were not anticipated.

An example of this is shown in Gulf's summary of the scrapping data for overhead and underground transformers shown below. It is interesting to note that in 2004, in the fourth quarter alone (post Ivan) the totals were: 1317 OH's and 145 padmounts.

YEAR	OVERHEADS	% OH CHANGE Compared to 99 - 03 Average of 1523	PADMOUNTS	% UG CHANGE Compared to 99 - 03 Average Of 226
1999	1,509		214	
2000	1,639		180	
2001	1,727		220	
2002	1,516		272	
2003	1,224		246	
2004	1,967	29%	244	8%
2005	3,004	97%	433	92%
2006	2,212	45%	333	47%

Another example is illustrated in the number of feeder outages caused by trees in 2006. There has been a 32% increase which based on Gulf's experience is due to the after affects of the storms weakening trees and causing them to be more susceptible to wind damage and insect infestation.

15.4 Identification and Selection of Detailed Reliability Data

The identification and selection of detailed reliability data is part of Gulf's Trouble Call Management System (TCMS) process. Gulf's outage data collection captures information down to the customer meter level. As a result, Gulf can review data and the resulting reliability indices at the system level and by its three districts - Western, Central and Eastern.

15.5 Generation Events – Adjustments

There were no generation events excluded from distribution reliability reporting in 2006.

15.6 Transmission Events – Adjustments

Please see Appendix 1 for Transmission excluded events and associated outage causes and resolutions.

15.7 Extreme Weather - Adjustments

There is no data available for this section since, in 2006, Gulf was not impacted by any storm named by the National Hurricane Center or tornado recorded by the National Weather Service.

15.8 Other Distribution Adjustments

Please see Appendix 1 for Planned Outage excluded events.

15.9 Adjusted Reliability

15.9.1 Outage Event Causes

15.9.1.1 Five Year Patterns

Below are trend tables showing the percentage change in N for five years for the top ten causes of outage events.

Prior to Hurricane Ivan's impact on Gulf in 2004, Gulf showed a 9% decrease in N. For 2006, if you remove the N associated with the May 8 and November 15 storm events, Gulf's system N decreased by 6%.

As expected, predominately due to the May 8 and November 15 storm events, the weather driven outage causes of lightning, tree, and wind/rain showed the highest system increases. The Eastern and Central Districts were most impacted by the May 8 storm event.

Cause	(AII)						_
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	2,377	2,739	2,544	2,097	2,371	2,404
	% Change		15%	-7%	-18%	13%	1%
Eastern	Ν	1,595	1,743	1,863	1,572	1,719	2,273
	% Change		9%	7%	-16%	9%	32%
Western	N	6,287	6,486	5,587	5,214	5,548	5,199
	% Change		3%	-14%	-7%	6%	-6%
Company	N	10,259	10,968	9,994	8,883	9,638	9,876
	% Change		7%	-9%	-11%	8%	2%

Cause	Lightning						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	311	443	458	334	361	427
	% Change		42%_	3%	-27%	8%	18%
Eastern	N	333	292	413	275	270	461
	% Change		-12%	41%	-33%	-2%	71%
Western	N	985	1,130	956	932	1,220	1,419
	% Change		15%	-15%	-3%	31%	16%
Company	N	1,629	1,865	1,827	1,541	1,851	2,307
	% Change		14%	-2%	-16%	20%	25%

Cause	Deterioration						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	414	446	394	400	439	497
	% Change		8%	-12%	2%	10%	13%
Eastern	N	293	292	325	319	343	365
	% Change		0%	11%	-2%	8%	6%
Western	N	836	939	875	892	852	1,052
	% Change		12%	-7%	2%	-4%	23%
Company	N	1,543	1,677	1,594	1,611	1,634	1,914
	% Change		9%	-5%	1%	1%	17%

Cause	Animal						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	1,018	1,082	811	556	532	611
	% Change		6%	-25%	-31%	-4%	15%
Eastern	N	384	452	349	264	264	412
	% Change		18%	-23%	-24%	0%	56%
Western	N	2,602	2,540	1,840	1,192	690	586
	% Change		-2%	-28%	-35%	-42%	-15%
Company	N	4,004	4,074	3,000	2,012	1,486	1,609
	% Change		2%	-26%	-33%	-26%	8%

Cause	Tree						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	127	132	169	197	170	217
	% Change		4%	28%	17%	-14%	28%
Eastern	N	190	223	207	211	170	249
	% Change		17%	-7%	2%	-19%	46%
Western	Ň	760	757	630	785	640	827
	% Chảnge		0%	-17%	25%	-18%	29%_
Company	N	1,077	1,112	1,006	1,193	980	1,293
	% Change		3%	-10%	19%	-18%	32%

Cause	Unknown						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	251	348	474	330	518	218
	% Change		39%	36%	-30%	57%	-58%
Eastern	N	156	217	315	243	368	274
	% Change		39%	45%	-23%	51%	-26%
Western	N	516	585	827	817	1,351	495
	% Change		13%	41%	-1%	65%	-63%
Company	N	923	1,150	1,616	1,390	2,237	987
	% Change		25%	41%	-14%	61%	-56%

Cause	Wind/Rain						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	21	29	30	28	38	172
	% Change		38%	3%	-7%	36%	353%
Eastern	N	17	34	29	29	41	251
	% Change		100%	-15%	0%	41%	512%
Western	N	54	63	36	61	156	257
	% Change		17%	-43%	69%	156%	65%
Company	N	92	126	95	118	235	680
, -	% Change		37%	-25%	24%	99%	189%

Cause	Vehicle						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	52	69	50	59	85	62
	% Change		33%	-28%	18%	44%	-27%
Eastern	N	45	62	51	58	52	65
	% Change		38%	-18%	14%	-10%	25%
Western	N	110	115	126	186	287	157
	% Change		5%	10%	48%	54%	-45%
Company	N	207	246	227	303	424	284
	% Change		19%	-8%	33%	40%	-33%

Cause	Overload						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	39	73	38	51	66	46
	% Change		87%	-48%	34%	29%	-30%
Eastern	N	58	60	76	53	84	65
	% Change		3%	27%	-30%	58%	-23%
Western	N	103	88	87	108	104	112
	% Change		-15%	-1%	24%	-4%	8%
Company	N	200	221	201	212	254	223
, ,	% Change		11%	-9%	5%	20%	-12%

Cause	Dig In						
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	41	32	24	51	52	50
	% Change		-22%	-25%	113%	2%	-4%
Eastern	N	22	24	22	33	40	32
	% Change		9%	-8%	50%	21%	-20%
Western	N	54	34	35	36	44	62
	% Change		-37%	3%	3%	22%	41%
Company	N	117	90	81	120	136	144
	% Change		-23%	-10%	48%	13%	6%

Cause	Contami	nation/C	orrosic	n			
Region	Data	2001	2002	2003	2004	2005	2006
Central	N	23	12	6	21	32	36
	% Change		-48%	-50%	250%	52%	13%
Eastern	N	13	7	15	24	28	29
	% Change		-46%	114%	60%	17%	4%
Western	N	24	36	16	18	58	72
	% Change		50%	-56%	13%	222%	24%
Company	N	60	55	37	63	118	137
	% Change		-8%	-33%	70%	87%	16%

The SAIDI and SAIFI trend tables showing the percentage change for five years for the top ten causes are shown below. They show the same trends as mentioned for N. Gulf is still in the process of analyzing data to determine the need for any specific improvement activities beyond current programs and storm hardening initiatives which are underway.

Cause	(All)						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	64.19	101.26	67.29	75.37	121.09	174.13
	% Change		58%	-34%	12%	61%	44%
Eastern	SAIDI	57.90	77.26	74.39	68.53	78.74	331.38
	% Change		33%	-4%	-8%	15%	321%
Western	SAIDI	95.77	88.81	83.57	116.50	129.79	157.55
	% Change		-7%	-8%	39%	11%	21%
Company	SAIDI % Change	78.55	89.17 14%	77.18 -13%	93.91 22%	114.87 22%	205.12 79%

Cause	Lightning						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	11.99	29.79	20.30	20.90	22.86	37.07
	% Change		148%	-32%	3%	9%	62%
Eastern	SAIDI	13.62	12.96	15.86	19.05	21.41	52.12
	% Change		-5%	22%	20%	12%	143%
Western	SAIDI	21.30	24.76	29.66	26.90	40.01	44.79
	% Change		16%	20%	-9%	49%	12%
Company	SAIDI	17.07	23.18	23.92	23.40	30.97	44.61
	% Change		36%	3%	-2%	32%	44%

Cause	Lightning						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.128	0.295	0.229	0.201	0.292	0.261
	% Change		131%	-22%	-12%	46%	-11%
Eastern	SAIFI	0.130	0.117	0.145	0.119	0.178	0.290
	% Change		-10%	24%	-18%	50%	62%
Western	SAIFI	0.212	0.219	0.294	0.197	0.288	0.306
	% Change		3%	34%	-33%	46%	7%
Company	SAIFI	0.171	0.213	0.241	0.179	0.262	0.290
	% Change		25%	13%	-26%	46%	11%

Cause	Deterioration						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	15.57	16.95	9.57	13.70	23.54	42.01
	% Change		9%	-44%	43%	72%	78%
Eastern	SAIDI	10.20	12.94	10.99	13.08	8.71	16.14
	% Change		27%	-15%	19%	-33%	85%
Western	SAIDI	9.05	10.17	8.05	10.76	9.51	13.61
	% Change		12%	-21%	34%	-12%	43%
Company	SAIDI	10.98	12.57	9.15	12.10	12.93	21.62
	% Change		14%	-27%	32%	7%	67%

Cause	Deterioration						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.122	0.121	0.089	0.100	0.184	0.159
	% Change		0%	-26%	12%	84%	-14%
Eastern	SAIFI	0.066	0.117	0.104	0.120	0.059	0.115
	% Change		78%	-11%	15%	-51%	94%
Western	SAIFI	0.093	0.095	0.063	0.071	0.061	0.104
	% Change		3%	-34%	13%	-15%	71%
Company	SAIFI	0.094	0.107	0.080	0.091	0.092	0.121
	% Change		15%	-26%	14%	2%	31%

Cause	Animal						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	7.10	10.44	5.83	5.66	4.81	7.49
	% Change		47%	-44%	-3%	-15%	56%
Eastern	SAIDI	4.10	4.68	6.05	1.80	3.58	9.51
	% Change		14%	29%	-70%	99%	166%
Western	SAIDI	8.39	9.09	7.16	6.41	2.84	3.23
	% Change		8%	-21%	-10%	-56%	13%
Company	SAIDI	7.02	8.36	6.55	5.07	3.53	5.90
	% Change		19%	J22%	-23%	-30%	67%

Cause	Animal						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.119	0.172	0.088	0.077	0.063	0.103
	% Change		45%	-49%	-12%	-18%	62%
Eastern	SAIFI	0.080	0.061	0.093	0.024	0.035	0.105
	% Change		-24%	52%	-74%	42%	203%
Western	SAIFI	0.137	0.144	0.110	0.079	0.037	0.042
	% Change		5%	-23%	-29%	-54%	15%
Company	SAIFI	0.119	0.131	0.100	0.065	0.043	0.073
	% Change		10%	-23%	-35%	-34%	71%

Cause	Tree						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	2.31	6.82	3.80	7.47	6.28	10.79
	% Change		195%	-44%	97%	-16%	71%
Eastern	SAIDI	11.73	10.84	10.39	10.23	8.87	15.49
	% Change		-8%	-4%	-2%	-13%	75%
Western	SAIDI	21.15	24.43	14.93	28.96	15.58	36.55
	% Change		15%	-39%	94%	-46%	135%
Company	SAIDI	14.09	16.64	10.98	18.72	11.52	24.61
	% Change		18%	-34%	70%	-39%	114%

Cause	Tree						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.036	0.064	0.048	0.086	0.086	0.101
	% Change		75%	-25%	80%	1%	17%
Eastern	SAIFI	0.130	0.103	0.133	0.123	0.103	0.131
	% Change		-21%	30%	-8%	-16%	28%
Western	SAIFI	0.267	0.309	0.182	0.333	0.184	0.332
	% Change		16%	-41%	83%	-45%	81%
Company	SAIFI	0.175	0.197	0.136	0.216	0.138	0.222
	% Change		12%	-31%	59%	-36%	60%

Cause	Unknown						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	8.00	10.45	11.87	11.30	23.73	14.00
	% Change		31%	14%	-5%	110%	-41%
Eastern	SAIDI	4.40	9.43	11.57	12.65	17.65	26.24
	% Change		114%	23%	9%	40%	49%
Western	SAIDI	9.26	7.28	9.23	16.87	27.49	11.15
	% Change		-21%	27%	83%	63%	-59%
Company	SAIDI	7.76	8.61	10.47	14.37	24.08	15.65
	% Change		11%	22%	37%	67%	-35%

Cause	Unknown						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.131	0.123	0.154	0.153	0.352	0.208
	% Change		-6%	25%	-1%	131%	-41%
Eastern	SAIFI	0.044	0.126	0.141	0.145	0.180	0.119
	% Change		190%	11%	3%	24%	-34%
Western	SAIFI	0.157	0.121	0.137	0.172	0.335	0.129
	% Change		-23%	13%	25%	95%	-62%
Company	SAIFI	0.123	0.123	0.142	0.160	0.301	0.147
	% Change		0%	16%	13%	88%	-51%

Cause	Wind/Rain						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	1.20	8.65	2.42	0.73	1.32	47.53
	% Change		618%	-72%	-70%	82%	3494%
Eastern	SAIDI	1.85	1.29	1.77	1.42	4.58	189.18
	% Change		-30%	37%	-20%	223%	4028%
Western	SAIDI	1.30	2.12	0.60	1.62	4.33	20.87
	% Change		63%	-72%	169%	167%	382%
Company	SAIDI	1.41	3.58	1.35	1.34	3.62	69.69
	% Change		154%	-62%	-1%	170%	1826%

Cause	Wind/Rain						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.006	0.061	0.022	0.008	0.012	0.243
	% Change		841%	-64%	-62%	44%	1960%
Eastern	SAIFI	0.008	0.010	0.023	0.013	0.040	0.342
	% Change		18%	143%	-46%	221%	752%
Western	SAIFI	0.018	0.030	0.005	0.016	0.051	0.138
	% Change		68%	-82%	191%	229%	169%
Company	SAIFI	0.013	0.033	0.014	0.013	0.038	0.216
	% Change		162%	-58%	-7%	197%	463%

Cause	Vehicle						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	5.69	6.90	7.83	9.44	12.29	6.54
	% Change		21%	14%	20%	30%	-47%
Eastern	SAIDI	3.17	5.13	5.33	6.45	5.94	8.36
	% Change		62%	4%	21%	-8%	41%
Western	SAIDI	9.74	6.01	8.04	15.62	19.03	15.43
	% Change		-38%	34%	94%	22%	-19%
Company	SAIDI	7.12	6.02	7.33	11.74	14.04	11.36
	% Change		-15%	22%	60%	20%	-19%

Cause	Vehicle						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.043	0.067	0.104	0.043	0.061	0.067
	% Change		57%	55%	-59%	44%	9%
Eastern	SAIFI	0.021	0.034	0.065	0.041	0.048	0.072
	% Change		67%	89%	-37%	18%	50%
Western	SAIFI	0.079	0.051	0.059	0.113	0.163	0.093
	% Change		-35%	14%	93%	44%	-43%
Company	SAIFI	0.056	0.051	0.072	0.077	0.108	0.081
	% Change		-8%	40%	7%	41%	-25%

Cause	Overload						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	2.46	8.02	1.76	1.38	4.42	1.81
	% Change		226%	-78%	-21%	219%	-59%
Eastern	SAIDI	1.50	8.02	8.55	1.29	4.40	1.51
	% Change		434%	7%	-85%	240%	-66%
Western	SAIDI	3.91	1.93	1.69	4.22	2.81	4.49
	% Change		-51%	-12%	149%	-34%	60%
Company	SAIDI	2.96	4.96	3.37	2.76	3.62	3.05
	% Change		68%	-32%	-18%	31%	-16%

Cause	Overload						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.018	0.081	0.022	0.020	0.058	0.025
	% Change		348%	-73%	-11%	196%	-56%
Eastern	SAIFI	0.016	0.056	0.085	0.013	0.029	0.015
	% Change		245%	53%	-85%	132%	-47%
Western	SAIFI	0.036	0.020	0.019	0.037	0.036	0.045
	% Change		-43%	-9%	99%	-3%	26%
Company	SAIFI	0.027	0.045	0.036	0.026	0.040	0.033
	% Change		68%	-20%	-26%	51%	-18%

Cause	Dig In						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	1.84	0.49	0.53	1.00	1.99	1.58
	% Change		-73%	9%	88%	99%	-21%
Eastern	SAIDI	1.02	1.53	1.17	0.63	1.34	2.43
	% Change		51%	-23%	-47%	114%	81%
Western	SAIDI	2.25	0.22	0.61	1.45	3.08	1.30
	% Change		-90%	180%	139%	112%	-58%
Company	SAIDI	1.84	0.61	0.73	1.13	2.37	1.65
	% Change		-67%	20%	56%	110%	-30%

Cause	Dig In						
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.039	0.003	0.007	0.005	0.020	0.009
	% Change		-94%	182%	-25%	277%	-57%
Eastern	SAIFI	0.007	0.007	0.011	0.004	0.006	0.010
	% Change		-6%	59%	-67%	61%	79%
Western	SAIFI	0.018	0.003	0.004	0.013	0.030	0.012
	% Change		-85%	42%	240%	125%	-60%
Company	SAIFI	0.021	0.004	0.006	0.009	0.021	0.011
	% Change		-82%	74%	37%	143%	-50%

Cause	Contamin	ation/Corro	sion]			
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIDI	4.18	0.16	0.02	0.11	0.29	1.61
	% Change		-96%	-88%	483%	157%	460%
Eastern	SAIDI	0.11	1.72	0.04	0.32	0.18	3.85
	% Change		1464%	-98%	661%	-43%	2008%
Western	SAIDI	5.17	0.17	0.07	0.10	0.17	0.53
	% Change		-97%	-57%	36%	68%	218%
Company	SAIDI	3.68	0.54	0.05	0.16	0.20	1.64
	% Change		-85%	-91%	204%	29%	711%

Cause	Contamina	ation/Corros	sion				
Region	Data	2001	2002	2003	2004	2005	2006
Central	SAIFI	0.041	0.001	0.000	0.002	0.002	0.033
	% Change		-98%	-90%	1478%	58%	1225%
Eastern	SAIFI	0.001	0.048	0.000	0.003	0.001	0.034
	% Change		4514%	-99%	870%	-60%	2416%
Western	SAIFI	0.024	0.002	0.001	0.001	0.001	0.004
	% Change		-93%	-53%	-6%	-5%	416%
Company	SAIFI	0.023	0.013	0.001	0.002	0.001	0.019
	% Change		-44%	-96%	208%	-17%	1307%

15.9.1.2 Identification and Selection/Process Improvements

Gulf continues to focus its process improvement efforts on the top ten outage causes system wide through its existing programs and the new storm hardening efforts.

15.9.1.3 2007 Activities and Budget Allowances

In general, it is not practical to provide an itemized list of all activities that Gulf has included in its budget that are related to distribution reliability. Gulf's budget and accounting systems do not separately categorize and track capital expenditures or O & M expenses on the basis that they are related specifically to distribution reliability. Virtually all distribution functional capital projects and O & M expenses have been or will be undertaken as part of Gulf's commitment to provide customers with reliable and high quality electric service. For example, the past construction of a new distribution feeder as an additional distribution source to an area has an impact on distribution reliability and quality of service.

Gulf's Vegetation Management Program is an exception to the above. The activities and budgets are provided in section 3.0.

15.9.2 Three Percent Feeder List

15.9.2.1 Five Year Patterns

Gulf's Three Percent Feeder Report, contained eight feeders for the last five years. In the time period from 1999 to 2005, there were no repeat feeders.

In 2006, Gulf had one feeder with five outages. It was determined that customer problems were backing up into Gulf's system due to the customer's over current protection device not functioning correctly. This has been corrected.

Also, in 2006, Gulf had two feeders that were listed in 2005. A review of outage causes did not discern any pattern.

15.9.2.2 Identification and Selection/Process Improvements

Gulf continues to focus its process improvement efforts on the top ten outage causes system wide through its existing programs and the new storm hardening efforts.

15.9.2.3 2007 Activities and Budget Allowances

Please see the response to 15.9.1.3 for 2007 Activities and Budget allowances.

15.9.3 Regional Reliability Indices

15.9.3.1 Five Year Patterns

Please see tables given in 15.9.1.1. As expected predominately due to the May 8 and November 15 storm events, the weather driven outage causes of lightning, tree, and wind/rain showed the highest system increases. The Eastern and Central Districts were most impacted by the May 8 storm event.

15.9.3.2 Identification and Selection/Process Improvements

Gulf continues to focus its process improvement efforts on the top ten outage causes system wide through its existing programs and the new storm hardening efforts.

15.9.3.3 2007 Activities and Budget Allowances

Please see the response to 15.9.1.3 for 2007 Activities and Budget allowances.

15.10 Overhead – Underground Reliability

15.10.1 Five Year Patterns

Gulf does not have the customer data to do a five year analysis of trends. As outlined in Section 10.0 beginning in the first quarter of 2007, Gulf will implement added record keeping such as recording the number of overhead (OH) and underground (UG) customers on its system at the end of each year. This will allow Gulf to calculate the SAIDI and SAIFI indices as experienced by overhead and underground customers.

15.10.2 Identification and Selection/Process Improvements

Gulf continues to focus its process improvement efforts on the top ten outage causes system wide through its existing programs and the new storm hardening efforts.

15.10.3 2007 Activities and Budget Allowances

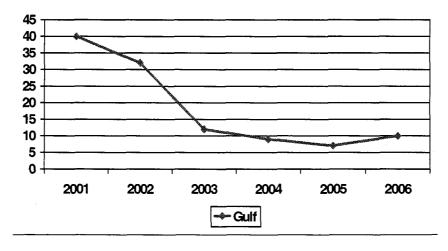
Please see Section 10.0

15.10.4 Overhead (OH) and Underground (UG) Metrics

See Appendix 4 for Feeder Specific data.

System	Miles	Num of Customers	N	Duration	CMI	CI	L-Bar	CEMI5
Overhead	5,871	268,091	8,790	1,439,979.35	80,827,412.35	507,293	163.82	3.03%
Underground	1,630	150,801	1,087	234,608.41	5,097,389.29	26,735	215.83	0.00%

Note: Customer numbers are estimates. Gulf will implement added record keeping to record the number of overhead (OH) and underground (UG) customers on its system at the end of each year.


15.11 Reliability Related Customer Complaints

15.11.1 Five Year Patterns

Gulf Power management reviews a monthly report which supplies data on Florida Public Service Commission complaints and inquiries. Gulf Power has avoided any infractions for over six years, and the complaint activity as reflected in the FPSC Consumer Activity Report has remained at very low levels.

In order to illustrate Gulf Power's customer complaint trend, the graph below is provided of all FPSC complaints for the time period of 1999 to 2006, since the reliability related complaints are so low.

Customer Complaint History

15.11.2 Correlation of Reliability Related Customer Complaints to Indices

Gulf Power has not determined a correlation of reliability related customer complaints to indices. Management continues to review

complaints as they occur to determine if there are any deficiencies, and if so, takes action to correct them.

15.11.3 Identification and Selection/Process Improvements

Gulf Power does not have a program to identify and select systemic actions to improve reliability due to customer complaints; because Gulf's FPSC Consumer Activity Report remains at very low levels and there is no apparent correlation of reliability related customer complaints to Gulf's indices. Gulf will continue to review complaints as they occur to determine if there are any deficiencies and will take the needed action to correct them.

Appendix 1

Form 102 - Actual Data

2006 Distribution Service Reliability Reports - Actual

2006 Causes of Outage Events - Actual Gulf Power Company Average Number Average Restoration of Outage Duration Time (L-Bar) (CAIDI) Cause Events(N) (d) (a) (b) (c) 1. Lightning 173.87 153.64 2307 2. Deterioration 1914 163.05 178.50 1609 83.35 80.36 3. Animal 110.92 4. Tree 1292 157.13 218.63 106.43 987 5. Unknown 380.73 322.41 6. Wind/Rain 680 669 65.07 63.62 7. Planned Outage 8. Vehicle 284 145.40 156.35 108.96 93.55 9. Overload 223 10. Dig-In 144 192.45 154.51 All Other Causes 494 120.07 56.54 System Totals 10,603 127.59 162.62

Appendix 1 2006 Distribution Service Reliability Reports - Actual

				3 Perce	nt Feeder	. List	- Ac	ctual					
Gulf F	Gulf Power Company Year: 2006												
				Number of	Customers								
Primary Circuit Id. No. or Name (a)	Sub- station Origin (b)	Location (c)	Residential (d)	Commercial (e)	Industrial (f)	Other (g)	Total (h)	Outage Events "N" (i)	Avg Duration "L-Bar" (j)	CAIDI (k)	Listed Last Year? (1)	No. of Years in the Last 5 (m)	Corrective Action Completion Date (n)
9092	Scholtz A.C.I.	Eastern	3	6	0	0	9	5	110	111	N	0	Dec. 2007
9964	Oak Ave.	Eastern	54	156	0	0	210	4	184	183	N	0	Dec. 2007
8882	Miramar	Central	4543	357	0	0	4900	3	149	181	N	0	Dec. 2007
9522	Vernon	Eastern	237	1366	0	0	1603	4	41	47	N	0	Dec. 2007
6716	Brentwood	Western	888	195	0	0	1083	3	65	70	N	0	Dec. 2007
7272	Jay Road	Western	2086	418	0	0	2504	3	49	48	N	1	Dec. 2007
7802	Scenic Hills	Western	944	48	0	0	992	3	106	106	N	1	Dec. 2007
9232	Valparaiso	Central	1591	258	0	0	1849	3	80	65	N	0	Dec. 2007

Appendix 1
2006 Distribution Services Reliability Reports - Actual

2006 Service Reliability Indices - Actual Gulf Power Company					
District or Service Area (a)	SAIDI (b)	CAIDI (c)	SAIFI (d)	MAIFIe (e)	CEMI5 (f)
Central	211.18	107.28	1.968	7.53	4.47%
Eastern	375.44	197.02	1.935	6.69	3.33%
Western	185.31	103.12	1.797	9.35	2.80%
System Averages	239.35	127.59	1.876	8.22	3.36%

Appendix 1 2006 Distribution Service Reliability Reports - Actual

	CENTF	RAL	EASTE	RN	WESTE	RN	SYSTE	М
SAIDI = System Average Interruption Duration Index								
Total Number of Customer Minutes of Interruption (CMI)	22,988,403	211.18	39,141,040	375.44	38,132,314	185.31	100,261,757	239.35
Total Number of Customers Served (C)	108,859	211.18	104,254	375.44	205,779	185.31	418,892	239.35
CAIDI = Customer Average Interruption Duration Index								
Total Number of Customer Minutes of Interruption (CMI)	22,988,403	107.28	39,141,040	194.02	38,132,314	103.12	100,261,757	127.59
Total Number of Customer Interruptions (CI)	214,277	107.20	201,740	194.02	369,774	103.12	785,791	127.55
SAIFI = System Average Interruption Frequency Index								
Total Number of Customer Interruptions (CI)	214,277	1.968	201,740	1.935	369,774	1.797	785,791	1.876
Total Number of Customers Served (C)	108,859	1.500	104,254	1.505	205,779	1.707	418,892	1.010
	·							
MAIFI _e = Momentary Average Interruption Frequency Index								
Total Number of Customer Momentary Interruption Events (CME)	819,484	7.53	697,911	6.69	1,923,875	9.35	3,441,270	8.22
Total Number of Customers Served (C)	108,859	7.00	104,254	0.00	205,779	0.00	418,892	
CEMI5 = Customers Experiencing More Interruptions than 5					1			
Number of Customers Experiencing More Interruptions than 5	4,862	4.47%	3,473	3.33%	5,758	2.80%	14,093	3.36%
Total Number of Customers Served (C)	108,859		104,254		205,779		418,892	
	· ·							
L-Bar Minutes of Interruption							1,724,276	100.00
Total Number of Outages							10,603	162.62
	Ļ				<u> </u>		<u> </u>	

Appendix 1

Form 103 - Adjusted Data

2006 Distribution Service Reliability Reports – Adjusted

2006 (2006 Causes of Outage Events – Adjusted							
Gulf Power Company Average								
Cause (a)	Number of Outage Events(N) (b)	Average Duration (L-Bar) (c)	Average Restoration Time (CAIDI) (d)					
1. Lightning	2307	169.53	160.90					
2. Deterioration	1914	173.87	153.64					
3. Animal	1609	162.97	178.50					
4. Tree	1292	157.13	80.36					
5. Unknown	987	157.14	11.92					
6. Wind/Rain	680	218.63	106.43					
7. Vehicle	284	380.73	139.80					
8. Overload	223	156.35	145.40					
9. Dig-In	144	108.96	93.55					
10. Contamination/Corrosion	137	182.45	154.51					
All Other Causes	299	138.64	86.60					
System Totals	9876	114.01	160.51					

Appendix 12006 Distribution Service Reliability Reports - Adjusted

	3 Percent Feeder List - Adjusted												
Gulf I	Gulf Power Company Year: 2006												
				Number of	Customers								
Primary Circuit Id. No. or Name (a)	Sub- station Origin (b)	Location (c)	Residential (d)	Commercial (e)	Industrial (f)	Other (g)	Total (h)	Outage Events "N" (i)	Avg Duration "L-Bar" (j)	(k)	Listed Last Year? (1)	No. of Years in the Last 5 (m)	Corrective Action Completion Date (n)
9092	Scholtz A.C.I.	Eastern	3	6	0	0	9	5	110	111	N	0	Dec. 2007
9964	Oak Ave.	Eastern	54	156	0	0	210	4	184	183	N	0	Dec. 2007
8882	Miramar	Central	4543	357	0	0	4900	3	149	181	N	0	Dec. 2007
9232	Valparaiso	Central	1591	258	0	0	1849	3	80	65	N	0	Dec. 2007
7272	Jay Road	Western	2086	418	0	0	2504	3	49	48	N	1	Dec. 2007
7802	Scenic Hills	Western	944	48	0	0	992	3	106	106	N	1	Dec. 2007
6482	Eastgate	Western	2161	38	0	0	2199	2	52	52	N	0	Dec. 2007
6716	Brentwood	Western	888	195	0	0	1083	2	64	71	N	0	Dec. 2007

Appendix 1

2006 Distribution Service Reliability Reports - Adjusted

	Service Reliability Indices - Adjusted								
	Utility Name: Gulf Power Company Year: 2006								
District or Service Area (a)	SAIDI (b)	CAIDI (c)	SAIFI (d)	MAIFIe (e)	CEMI5 (f)				
Central	174.13	136.43	1.276	7.53	2.01%				
Eastern	331.38	257.27	1.288	6.69	2.06%				
Western	157.55	123.69	1.274	9.35	2.01%				
System Averages	205.12	160.51	1.278	8.22	2.02%				

Appendix 1 2006 Distribution Service Reliability Reports – Adjusted

	CENTR	AL	EASTE	RN	WESTE	RN	SYSTE	М
SAIDI = System Average Interruption Duration Index								
Total Number of Customer Minutes of Interruption (CMI) Total Number of Customers Served (C)	18,955,687 108,859	174.13	34,548,090 104,254	331.38	32,421,209 205,779	157.55	85,924,986 418,892	205.12
CAIDI = Customer Average Interruption Duration Index Total Number of Customer Minutes of Interruption (CMI) Total Number of Customer Interruptions (CI)	18,955,687 138,942	136.43	34,548,090 134,287	257.27	32,421,209 262,111	123.69	85,924,986 535,340	160.51
SAIFI = System Average Interruption Frequency Index Total Number of Customer Interruptions (CI) Total Number of Customers Served (C)	138,942 108,859	1.276	134,287 104,254	1.288	262,111 205,779	1.274	535,340 418,892	1.278
	i				,			
MAIFI _e = Momentary Average Interruption Frequency Index								
Total Number of Customer Momentary Interruption Events (CME) Total Number of Customers Served (C)	819,484 108,859	7.53	697,911 104,254	6.69	1,923,875 205,779	9.35	3,441,270 418,892	8.22
CEMI5 = Customers Experiencing More Interruptions than 5								
Number of Customers Experiencing More Interruptions than 5 Total Number of Customers Served (C)	2,191 108,859	2.01%	2,147 104,254	2.06%	4,129 205,779	2.01%	8,467 418,892	2.02%
L-Bar Minutes of Interruption Total Number of Outages							1,674,412 9,876	169.54

Appendix 1 2006 Excluded Transmission Events Resulting in Customer Outages

Outage	Event Des	cription	Reas	on of	Exclusion	CMI Excluded	CI Excluded
Transmi	ssion Out	ages	Trans	smiss	ion Outage	4,233,088	91,644
Ref ID	Date	Reason of Exclusion	СМІ	CI	Causation	Resolution	
497275	4/26/2006	Transmission	404	4	Vehicle	Replaced downed structu	ire & repaired 46kV Line.
497258	4/26/2006	Transmission	3,584	14	Vehicle	Replaced downed structu	ire & repaired 46kV Line.
506836	5/26/2006	Transmission	318	7	Trees Cut (Public)	Repaired downed 115kV	phase conductor.
506789	5/26/2006	Transmission	84,224	1504	Trees Cut (Public)	Repaired downed 115kV	phase conductor.
506801	5/26/2006	Transmission	79,164	1466	Trees Cut (Public)	Repaired downed 115kV	phase conductor.
506799	5/26/2006	Transmission	113,022	2093	Trees Cut (Public)	Repaired downed 115kV	phase conductor.
509763	6/12/2006	Transmission	76,260	2907	Lightning	No Equipment Failures fo	ound.
509758	6/12/2006	Transmission	65,037	2394	Lightning	No Equipment Failures for	ound.
509764	6/12/2006	Transmission	27,393	955	Lightning	No Equipment Failures for	
513124	6/30/2006	Transmission	38,983	2704	Animal	No Equipment Failures for	ound.
513125	6/30/2006	Transmission	40,107	2453	Animal	No Equipment Failures fo	
513123	6/30/2006	Transmission	1,027	65	Animal	No Equipment Failures fo	
526822	9/18/2006	Transmission	25,848	2872	Lightning	Repaired downed 115KV	
526830	9/18/2006	Transmission	22,976	2872	Lightning	Repaired downed 115KV	
526839	9/18/2006	Transmission	20,104	2872	Lightning	Repaired downed 115KV	
526841	9/18/2006	Transmission	21,051	2339	Lightning	Repaired downed 115KV	
526850	9/18/2006	Transmission	14,675	2935	Lightning	Repaired downed 115KV	
526825	9/18/2006	Transmission	21,112	1508	Lightning	Repaired downed 115KV	
526857	9/18/2006	Transmission Transmission	<u> </u>	2872	Lightning	Repaired downed 115KV Repaired downed 115KV	
526811 526781	9/18/2006 9/18/2006	Transmission	948,393	2480 477	Lightning Lightning	Repaired downed 115KV	
526918	9/18/2006	Transmission	16,822	67	Lightning	Repaired downed 115KV	
526809	9/18/2006	Transmission	106,300	250	Lightning	Repaired downed 115KV	
526785	9/18/2006	Transmission	232,351	537	Lightning	Repaired downed 115KV	
526799	9/18/2006	Transmission	3,008	7	Lightning	Repaired downed 115KV	
526940	9/18/2006	Transmission	165,816	366	Lightning	Repaired downed 115KV	
526941	9/18/2006	Transmission	172,433	368	Lightning	Repaired downed 115KV	
526842	9/18/2006	Transmission	179,629	369	Lightning	Repaired downed 115KV	
526912	9/18/2006	Transmission	83,885	234	Lightning	Repaired downed 115KV	Static.
527106	9/19/2006	Transmission	32,000	1600	Lightning	No Equipment Failures for	ound.
527108	9/19/2006	Transmission	92,400	4200	Lightning	No Equipment Failures for	ound.
527107	9/19/2006	Transmission	96,600	4200	Lightning	No Equipment Failures fo	ound.
527110	9/19/2006	Transmission	100,800	4200	Lightning	No Equipment Failures for	ound.
527739	9/24/2006	Transmission	17,655	1605	Unknown	Unknown	
529062	10/5/2006	Transmission	99,792	1512	Accidental Trip	Construction Activity	
529058	10/5/2006	Transmission	122,672	1804	Accidental Trip	Construction Activity	
529060	10/5/2006	Transmission	73,712	1084	Accidental Trip	Construction Activity	
529064	10/5/2006	Transmission	73,712	1084	Accidental Trip	Construction Activity	
529059	10/5/2006	Transmission	69,483	1007	Accidental Trip	Construction Activity	
529068	10/5/2006	Transmission	59,908	881	Accidental Trip	Construction Activity	
530356	10/16/2006	Transmission	33,563	414	Deterioration	Equipment Replaced	
530320	10/16/2006	Transmission	17,258	210	Deterioration	Equipment Replaced	
530347	10/16/2006	Transmission	31,494	378	Deterioration	Equipment Replaced	

Appendix 1 – 2006 Transmission Outages Table 2006 Excluded Transmission Events Resulting in Customer Outages

Ref ID	Date	Reason of Exclusion	СМІ	CI	Causation	Resolution
530320	10/16/2006	Transmission	17,258	210	Deterioration	Equipment Replaced
530347	10/16/2006	Transmission	31,494	378	Deterioration	Equipment Replaced
533989	11/13/2006	Transmission	22,298	2021	Accidental Trip	Construction Activity
533988	11/13/2006	Transmission	15,911	1235	Accidental Trip	Construction Activity
533990	11/13/2006	Transmission	17,525	1598	Accidental Trip	Construction Activity
536272	11/16/2006	Transmission	16,432	1027	Vehicle	No Equipment Failures found.
536257	11/16/2006	Transmission	44,205	2409	Vehicle	No Equipment Failures found.
536251	11/16/2006	Transmission	19,065	838	Vehicle	No Equipment Failures found.
536260	11/16/2006	Transmission	41,742	1807	Vehicle	No Equipment Failures found.
536262	11/16/2006	Transmission	119,546	4853	Vehicle	No Equipment Failures found.
536247	11/16/2006	Transmission	48,246	1926	Vehicle	No Equipment Failures found.
536280	11/16/2006	Transmission	29,568	4928	Vehicle	No Equipment Failures found.
536283	11/16/2006	Transmission	42,328	1924	Vehicle	No Equipment Failures found.
538106	12/5/2006	Transmission	1,220	20	Unknown	Unknown
538107	12/5/2006	Transmission	5,229	83	Unknown	Unknown

Outage Event Description	Reason of Exclusion	CMI Excluded	CI Excluded
Planned Outages	Planned Outage	10,103,683.58	158,807

Event Code	Date	Reason of Exclusion	CMI	CI
486703	1/1/2006	Planned Outage	2890	34
487046	1/3/2006	Planned Outage	6745	1349
487054	1/3/2006	Planned Outage	4356	242
487061	1/3/2006	Planned Outage	53261	221
487087	1/3/2006	Planned Outage	1440	360
487084	1/4/2006	Planned Outage	570	3
487135	1/4/2006	Planned Outage	1650	75
487216	1/5/2006	Planned Outage	420	28
487485	1/9/2006	Planned Outage	952	7
487508	1/9/2006	Planned Outage	6118	266
487675	1/12/2006	Planned Outage	4117	23
487689	1/12/2006	Planned Outage	15540	70
488052	1/14/2006	Planned Outage	6	2
488066	1/14/2006	Planned Outage	20	5
488343	1/17/2006	Planned Outage	82269	2493
488339	1/17/2006	Planned Outage	848	8
488731	1/21/2006	Planned Outage	184	1
489054	1/25/2006	Planned Outage	105	5
489069	1/25/2006	Planned Outage	124	4
489077	1/25/2006	Planned Outage	17432	2179
489159	1/27/2006	Planned Outage	101491	2743
489172	1/27/2006	Planned Outage	500	2
489364	1/30/2006	Planned Outage	54	6
489377	1/30/2006	Planned Outage	25742	74
489526	2/1/2006	Planned Outage	267	1
489580	2/1/2006	Planned Outage	15120	140
490163	2/7/2006	Planned Outage	1232	77
490306	2/9/2006	Planned Outage	56	7
490769	2/13/2006	Planned Outage	38	2
491001	2/16/2006	Planned Outage	55008	1719
491054	2/16/2006	Planned Outage	50	5
491055	2/16/2006	Planned Outage	90	9
491056	2/16/2006	Planned Outage	60	6
491304	2/20/2006	Planned Outage	88	2
491354	2/21/2006	Planned Outage	108	3
491398	2/21/2006	Planned Outage	28	4
491407	2/21/2006	Planned Outage	84	4
491408	2/21/2006	Planned Outage	32	4
491544	2/23/2006	Planned Outage	210	5
491583	2/24/2006	Planned Outage	30	5
491587	2/24/2006	Planned Outage	792	6

Event Code	Date	Reason of Exclusion	СМІ	CI
491635	2/25/2006	Planned Outage	284	4
491984	3/2/2006	Planned Outage	24	6
492001	3/2/2006	Planned Outage	1164	97
492006	3/2/2006	Planned Outage	120	8
492004	3/2/2006	Planned Outage	54	2
492067	3/2/2006	Planned Outage	2062	1031
492071	3/2/2006	Planned Outage	1592	4
492300	3/6/2006	Planned Outage	0	8
492402	3/7/2006	Planned Outage	126	18
492406	3/7/2006	Planned Outage	44	4
492420	3/7/2006	Planned Outage	110	2
492429	3/7/2006	Planned Outage	28	4
492427	3/7/2006	Planned Outage	243	27
492431	3/7/2006	Planned Outage	1036	14
492457	3/7/2006	Planned Outage	34	2
492524	3/8/2006	Planned Outage	6	3
492527	3/8/2006	Planned Outage	30	3
492506	3/8/2006	Planned Outage	755	5
492643	3/9/2006	Planned Outage	39510	1317
492716	3/10/2006	Planned Outage	29755	541
492960	3/11/2006	Planned Outage	3912	1304
493163	3/14/2006	Planned Outage	10	2
493202	3/14/2006	Planned Outage	1024	8
493177	3/14/2006	Planned Outage	29280	96
493318	3/15/2006	Planned Outage	248	4
493382	3/16/2006	Planned Outage	240	5
493616	3/20/2006	Planned Outage	5949	2217
493620	3/20/2006	Planned Outage	86	43
493619	3/20/2006	Planned Outage	30	5
493618	3/20/2006	Planned Outage	425	16
493626	3/20/2006	Planned Outage	22170	2217
493627	3/20/2006	Planned Outage	60	15
493633	3/20/2006	Planned Outage	240	48
493790	3/22/2006	Planned Outage	28204	2564
493909	3/23/2006	Planned Outage	14850	110
493931	3/24/2006	Planned Outage	21420	180
494116	3/27/2006	Planned Outage	432	9
494145	3/28/2006	Planned Outage	644	7
494157	3/28/2006	Planned Outage	2312	136
494174	3/28/2006	Planned Outage	77	7
494205	3/29/2006	Planned Outage	183	3
494274	3/30/2006	Planned Outage	42	1

Event Code	Date	Reason of Exclusion	CMI	CI
494535	4/3/2006	Planned Outage	324	12
494540	4/3/2006	Planned Outage	60	4
494724	4/5/2006	Planned Outage	41230	2170
494732	4/5/2006	Planned Outage	51	3
494739	4/5/2006	Planned Outage	7	1
494738	4/5/2006	Planned Outage	144	9
494767	4/5/2006	Planned Outage	46897	2039
494745	4/5/2006	Planned Outage	21087	639
494765	4/5/2006	Planned Outage	270	10
494766	4/5/2006	Planned Outage	192	8
494774	4/5/2006	Planned Outage	2	1
494721	4/5/2006	Planned Outage	85316	308
494791	4/5/2006	Planned Outage	70	1
494850	4/6/2006	Planned Outage	22170	739
495140	4/10/2006	Planned Outage	1380	92
495145	4/10/2006	Planned Outage	2852	92
495209	4/11/2006	Planned Outage	60	10
495240	4/11/2006	Planned Outage	1235	5
495312	4/12/2006	Planned Outage	35	1
495374	4/13/2006	Planned Outage	18	3
495363	4/13/2006	Planned Outage	348	4
495375	4/13/2006	Planned Outage	930	62
495527	4/14/2006	Planned Outage	52	4
495528	4/14/2006	Planned Outage	22	2
495529	4/14/2006	Planned Outage	18	3
495533	4/14/2006	Planned Outage	152	8
495703	4/16/2006	Planned Outage	152036	764
495974	4/19/2006	Planned Outage	380	5
495980	4/19/2006	Planned Outage	27	1
495989	4/19/2006	Planned Outage	131	1
496010	4/20/2006	Planned Outage	176	4
496035	4/20/2006	Planned Outage	507	39
496038	4/20/2006	Planned Outage	8	2
496048	4/20/2006	Planned Outage	64	8
496475	4/22/2006	Planned Outage	193440	992
496965	4/25/2006	Planned Outage	826	14
496975	4/25/2006	Planned Outage	3120	120
497119	4/26/2006	Planned Outage	1071	153
497414	4/27/2006	Planned Outage	8	1
497415	4/27/2006	Planned Outage	7	1
497416	4/27/2006	Planned Outage	8	1
497417	4/27/2006	Planned Outage	20	5

Event Code	Date	Reason of Exclusion	СМІ	CI
497438	4/28/2006	Planned Outage	622	2
497623	4/29/2006	Planned Outage	1602	6
497862	4/30/2006	Planned Outage	2565	27
497929	5/1/2006	Planned Outage	154	7
497930	5/1/2006	Planned Outage	189	9
497932	5/1/2006	Planned Outage	65	5
497963	5/1/2006	Planned Outage	85	17
497955	5/1/2006	Planned Outage	1364	31
498004	5/1/2006	Planned Outage	129	1
498079	5/2/2006	Planned Outage	30	6
498082	5/2/2006	Planned Outage	24	6
498087	5/2/2006	Planned Outage	35	7
498089	5/2/2006	Planned Outage	126	6
498194	5/3/2006	Planned Outage	24	2
498262	5/4/2006	Planned Outage	1015	5
498263	5/4/2006	Planned Outage	204	1
498265	5/4/2006	Planned Outage	980	5
498610	5/7/2006	Planned Outage	5	1
498611	5/7/2006	Planned Outage	10	1
499093	5/9/2006	Planned Outage	38246	1471
499722	5/9/2006	Planned Outage	625950	963
500349	5/9/2006	Planned Outage	4928	176
500365	5/10/2006	Planned Outage	18565	235
500437	5/10/2006	Planned Outage	60204	348
500589	5/10/2006	Planned Outage	14	1
500347	5/10/2006	Planned Outage	988	1
500953	5/11/2006	Planned Outage	15	5
500998	5/11/2006	Planned Outage	350	7
500989	5/11/2006	Planned Outage	. 75	1
501054	5/11/2006	Planned Outage	180	6
501606	5/15/2006	Planned Outage	8	4
505314	5/16/2006	Planned Outage	4348	2174
505415	5/17/2006	Planned Outage	7548	1887
505482	5/18/2006	Planned Outage	12	4
505483	5/18/2006	Planned Outage	30	5
505495	5/18/2006	Planned Outage	45890	1843
505549	5/18/2006	Planned Outage	28	4
505771	5/18/2006	Planned Outage	192	4
505782	5/18/2006	Planned Outage	18	3
506240	5/22/2006	Planned Outage	66	2
506432	5/23/2006	Planned Outage	114	1
506547	5/24/2006	Planned Outage	32	8
506546	5/24/2006	Planned Outage	490	7

Event Code	Date	Reason of Exclusion	СМІ	CI
506563	5/24/2006	Planned Outage	40	4
506564	5/24/2006	Planned Outage	8	4
506593	5/24/2006	Planned Outage	11764	173
506625	5/24/2006	Planned Outage	56	8
506624	5/24/2006	Planned Outage	24	3
506623	5/24/2006	Planned Outage	48	6
506654	5/25/2006	Planned Outage	24	4
506892	5/26/2006	Planned Outage	20806	1417
506894	5/26/2006	Planned Outage	2786	398
507280	5/29/2006	Planned Outage	89285	2874
507287	5/30/2006	Planned Outage	576	4
507515	5/30/2006	Planned Outage	10296	156
507520	5/30/2006	Planned Outage	784	14
507526	5/30/2006	Planned Outage	228	12
507553	5/30/2006	Planned Outage	9	3
507599	5/31/2006	Planned Outage	36	4
508043	6/1/2006	Planned Outage	16	4
508064	6/1/2006	Planned Outage	48	3
508068	6/1/2006	Planned Outage	6	1
508069	6/1/2006	Planned Outage	12	3
508070	6/1/2006	Planned Outage	6	3
508073	6/1/2006	Planned Outage	42	7
508072	6/1/2006	Planned Outage	6	1
508075	6/1/2006	Planned Outage	32	2
508074	6/1/2006	Planned Outage	60	3
508087	6/1/2006	Planned Outage	60	5
508256	6/2/2006	Planned Outage	42	7
508218	6/2/2006	Planned Outage	470	5
508398	6/2/2006	Planned Outage	21175	136
508483	6/3/2006	Planned Outage	230	5
508516	6/3/2006	Planned Outage	18745	404
508527	6/3/2006	Planned Outage	48261	1246
508573	6/4/2006	Planned Outage	72	1
508696	6/5/2006	Planned Outage	18	3
508743	6/5/2006	Planned Outage	203	7
508880	6/6/2006	Planned Outage	1980	90
508882	6/6/2006	Planned Outage	2156	98
509028	6/6/2006	Planned Outage	64	4
509029	6/6/2006	Planned Outage	60	3
509027	6/6/2006	Planned Outage	576	32
509043	6/6/2006	Planned Outage	20	2
509037	6/6/2006	Planned Outage	160	4
509041	6/6/2006	Planned Outage	90	3

Event Code	Date	Reason of Exclusion	СМІ	CI
509152	6/7/2006	Planned Outage	64	. 8
509158	6/7/2006	Planned Outage	126	9
509165	6/7/2006	Planned Outage	345	3
509215	6/7/2006	Planned Outage	7	4
509339	6/8/2006	Planned Outage	56	2
509344	6/8/2006	Planned Outage	364	13
509450	6/9/2006	Planned Outage	100	5
509451	6/9/2006	Planned Outage	84	4
509449	6/9/2006	Planned Outage	198	- 11
509457	6/9/2006	Planned Outage	240	16
509458	6/9/2006	Planned Outage	85	5
509456	6/9/2006	Planned Outage	88	4
509448	6/9/2006	Planned Outage	180	9
509455	6/9/2006	Planned Outage	110	5
509454	6/9/2006	Planned Outage	368	16
509452	6/9/2006	Planned Outage	48	2
509601	6/11/2006	Planned Outage	144	3
509894	6/13/2006	Planned Outage	120	6
510056	6/14/2006	Planned Outage	10	5
510321	6/16/2006	Planned Outage	40	5
510324	6/16/2006	Planned Outage	77	7
510327	6/16/2006	Planned Outage	70	7
510335	6/16/2006	Planned Outage	7	1
510857	6/19/2006	Planned Outage	51984	2166
510877	6/19/2006	Planned Outage	244	4
511000	6/20/2006	Planned Outage	889	7
511137	6/22/2006	Planned Outage	65	5
511135	6/22/2006	Planned Outage	32	2
511449	6/23/2006	Planned Outage	162	2
511632	6/24/2006	Planned Outage	527	1
512002	6/25/2006	Planned Outage	7	1
512001	6/25/2006	Planned Outage	21	3
512016	6/25/2006	Planned Outage	7130	115
512261	6/26/2006	Planned Outage	18190	228
512537	6/26/2006	Planned Outage	8	4
512573	6/26/2006	Planned Outage	35	5
512677	6/27/2006	Planned Outage	78	2
512697	6/27/2006	Planned Outage	24	4
512714	6/27/2006	Planned Outage	48	6
512716	6/27/2006	Planned Outage	12	6
512717	6/27/2006	Planned Outage	30	6
512731	6/27/2006	Planned Outage	48	6

Event Code	Date	Reason of Exclusion	CMI	CI
512866	6/28/2006	Planned Outage	272	17
512839	6/28/2006	Planned Outage	422	1
512885	6/28/2006	Planned Outage	10	2
512924	6/29/2006	Planned Outage	60	6
513002	6/29/2006	Planned Outage	1095	15
513029	6/29/2006	Planned Outage	29	4
513037	6/29/2006	Planned Outage	757	34
513053	6/29/2006	Planned Outage	305	5
513039	6/29/2006	Planned Outage	40222	221
513102	6/30/2006	Planned Outage	74046	861
513114	6/30/2006	Planned Outage	16082	482
513157	6/30/2006	Planned Outage	315	7
513186	6/30/2006	Planned Outage	159009	1827
513288	6/30/2006	Planned Outage	56637	2606
513363	7/1/2006	Planned Outage	20	5
513362	7/1/2006	Planned Outage	12	4
513364	7/1/2006	Planned Outage	10	5
513467	7/3/2006	Planned Outage	14058	426
513479	7/3/2006	Planned Outage	164	4
513628	7/5/2006	Planned Outage	192	12
513790	7/6/2006	Planned Outage	30	3
513791	7/6/2006	Planned Outage	12	4
513794	7/6/2006	Planned Outage	15	3
513795	7/6/2006	Planned Outage	3	3
514167	7/9/2006	Planned Outage	4188	136
514243	7/10/2006	Planned Outage	1176	14
514253	7/10/2006	Planned Outage	780	10
514359	7/11/2006	Planned Outage	8768	196
514673	7/14/2006	Planned Outage	147	3
515079	7/17/2006	Planned Outage	841	89
515082	7/17/2006	Planned Outage	57	3
515081	7/17/2006	Planned Outage	42	2
515074	7/17/2006	Planned Outage	190	2
515120	7/17/2006	Planned Outage	932	74
515095	7/17/2006	Planned Outage	360	5
515210	7/18/2006	Planned Outage	33	3
515213	7/18/2006	Planned Outage	1138	51
515262	7/18/2006	Planned Outage	426	6
515265	7/18/2006	Planned Outage	840	12
515266	7/18/2006	Planned Outage	292	4
515263	7/18/2006	Planned Outage	675	9

Event Code	Date	Reason of Exclusion	CMI	CI
515508	7/19/2006	Planned Outage	62	2
515519	7/19/2006	Planned Outage	32	4_
515520	7/19/2006	Planned Outage	8	1
515512	7/19/2006	Planned Outage	40248	2236
515505	7/19/2006	Planned Outage	198	3
515530	7/19/2006	Planned Outage	9	3
515529	7/19/2006	Planned Outage	15	3
515531	7/19/2006	Planned Outage	18	6
515533	7/19/2006	Planned Outage	270	5
515772	7/19/2006	Planned Outage	25	. 5
515776	7/19/2006	Planned Outage	18	6
515518	7/19/2006	Planned Outage	740	2
516091	7/20/2006	Planned Outage	150	2
516162	7/20/2006	Planned Outage	20	5
516163	7/20/2006	Planned Outage	20	4
516152	7/20/2006	Planned Outage	36	2
516164	7/20/2006	Planned Outage	160	1
516159	7/20/2006	Planned Outage	138666	834
516357	7/21/2006	Planned Outage	7888	272
516358	7/21/2006	Planned Outage	3954	146
516388	7/21/2006	Planned Outage	182	26
516401	7/21/2006	Planned Outage	105	21
516453	7/22/2006	Planned Outage	50	1
516441	7/22/2006	Planned Outage	411913	2403
516468	7/22/2006	Planned Outage	140935	397
516861	7/24/2006	Planned Outage	14651	299
517322	7/25/2006	Planned Outage	34981	428
517376	7/26/2006	Planned Outage	64	4
517385	7/26/2006	Planned Outage	1359	151
517389	7/26/2006	Planned Outage	60	4
517382	7/26/2006	Planned Outage	1458	3
517450	7/26/2006	Planned Outage	6288	112
517496	7/27/2006	Planned Outage	315629	1157
517495	7/27/2006	Planned Outage	69853	255
517522	7/27/2006	Planned Outage	7443	65
517523	7/27/2006	Planned Outage	8339	73
517570	7/27/2006	Planned Outage	520	10

Event Code	Date	Reason of Exclusion	CMI	CI
517630	7/28/2006	Planned Outage	5680	71
517643	7/28/2006	Planned Outage	5032	68
517648	7/28/2006	Planned Outage	390	10
517649	7/28/2006	Planned Outage	2368	64
517654	7/28/2006	Planned Outage	628	4
517704	7/28/2006	Planned Outage	480	6
517672	7/28/2006	Planned Outage	10976	112
517757	7/28/2006	Planned Outage	472	8
517754	7/28/2006	Planned Outage	9720	120
517795	7/28/2006	Planned Outage	64	4
517855	7/29/2006	Planned Outage	30	1
518017	7/30/2006	Planned Outage	6405	39
518282	8/1/2006	Planned Outage	80	4
518303	8/1/2006	Planned Outage	92	4
518316	8/1/2006	Planned Outage	42	3
518318	8/1/2006	Planned Outage	44	4
518320	8/1/2006	Planned Outage	16	2
518323	8/1/2006	Planned Outage	60	3
518334	8/1/2006	Planned Outage	344	4
518469	8/2/2006	Planned Outage	3816	106
518470	8/2/2006	Planned Outage	3658	118
518505	8/2/2006	Planned Outage	122	2
518572	8/2/2006	Planned Outage	286	11
518841	8/3/2006	Planned Outage	14167	2742
518950	8/4/2006	Planned Outage	1034	44
519363	8/5/2006	Planned Outage	383990	1882
519480	8/6/2006	Planned Outage	32387	139
519554	8/6/2006	Planned Outage	10	2
519651	8/7/2006	Planned Outage	60	10
519638	8/7/2006	Planned Outage	2907	51
519628	8/7/2006	Planned Outage	6181	78
519659	8/7/2006	Planned Outage	969	51
519643	8/7/2006	Planned Outage	12403	157
519661	8/7/2006	Planned Outage	25	5
519673	8/7/2006	Planned Outage	20	5
519676	8/7/2006	Planned Outage	155	5
519678	8/7/2006	Planned Outage	50	5
519683	8/7/2006	Planned Outage	174	6
519688	8/7/2006	Planned Outage	35	5
519702	8/7/2006	Planned Outage	3831	109
519717	8/7/2006	Planned Outage	20	4
519716	8/7/2006	Planned Outage	48	4
519719	8/7/2006	Planned Outage	4267	109

Event Code	Date	Reason of Exclusion	СМІ	CI
519886	8/8/2006	Planned Outage	34	2
519945	8/8/2006	Planned Outage	32	4
519946	8/8/2006	Planned Outage	28	4
519967	8/8/2006	Planned Outage	154	7
520027	8/9/2006	Planned Outage	19071	61
520086	8/9/2006	Planned Outage	3240	33
520197	8/9/2006	Planned Outage	33448	2203
520414	8/10/2006	Planned Outage	45	5
520516	8/10/2006	Planned Outage	8	2
520515	8/10/2006	Planned Outage	9	1
520539	8/10/2006	Planned Outage	1804	82
520544	8/10/2006	Planned Outage	672	7
520546	8/10/2006	Planned Outage	510	6
520615	8/10/2006	Planned Outage	10	5
520705	8/11/2006	Planned Outage	91	1
520790	8/12/2006	Planned Outage	44	1
520849	8/13/2006	Planned Outage	156	1
521056	8/14/2006	Planned Outage	69122	1819
521055	8/14/2006	Planned Outage	54994	1372
521070	8/14/2006	Planned Outage	285	3
521112	8/14/2006	Planned Outage	76	2
521801	8/15/2006	Planned Outage	120	6
521809	8/15/2006	Planned Outage	145	5
521811	8/15/2006	Planned Outage	144	6
522052	8/16/2006	Planned Outage	77588	326
522107	8/16/2006	Planned Outage	246443	571
522155	8/16/2006	Planned Outage	3819	19
522225	8/16/2006	Planned Outage	5520	80
522325	8/17/2006	Planned Outage	90	5
522332	8/17/2006	Planned Outage	40	5
522333	8/17/2006	Planned Outage	21	3
522396	8/18/2006	Planned Outage	640	8
523145	8/22/2006	Planned Outage	424	7
523184	8/23/2006	Planned Outage	332	2
523183	8/23/2006	Planned Outage	1155	5
523185	8/23/2006	Planned Outage	1125	5
523215	8/23/2006	Planned Outage	957	11
523217	8/23/2006	Planned Outage	880	11
523219	8/23/2006	Planned Outage	76	1
523229	8/23/2006	Planned Outage	16	2
523405	8/24/2006	Planned Outage	40	8
523742	8/27/2006	Planned Outage	350367	2896
524004	8/28/2006	Planned Outage	668	4

Event Code	Date	Reason of Exclusion	CMI	CI
524141	8/29/2006	Planned Outage	42	7
524240	8/30/2006	Planned Outage	769	16
524251	8/30/2006	Planned Outage	252	4
524495	8/30/2006	Planned Outage	485241	2388
524685	8/31/2006	Planned Outage	347	803
524693	8/31/2006	Planned Outage	24	2
524686	8/31/2006	Planned Outage	32424	797
524768	8/31/2006	Planned Outage	189	3
524766	8/31/2006	Planned Outage	848	8
525034	9/3/2006	Planned Outage	192	2
525092	9/4/2006	Planned Outage	1188	33
525138	9/5/2006	Planned Outage	15	5
525139	9/5/2006	Planned Outage	377	29
525526	9/7/2006	Planned Outage	2	1
525527	9/7/2006	Planned Outage	54	9
525579	9/7/2006	Planned Outage	264	6
525648	9/8/2006	Planned Outage	44735	389
525666	9/8/2006	Planned Outage	592	16
525687	9/8/2006	Planned Outage	2280	40
525792	9/11/2006	Planned Outage	115056	1128
525852	9/11/2006	Planned Outage	7700	70
525910	9/12/2006	Planned Outage	30	3
526291	9/13/2006	Planned Outage	3289	253
526273	9/13/2006	Planned Outage	310	2
526321	9/13/2006	Planned Outage	18	6
526333	9/13/2006	Planned Outage	144000	2250
526357	9/13/2006	Planned Outage	125	5
526388	9/14/2006	Planned Outage	17	1
526391	9/14/2006	Planned Outage	222	6
526503	9/15/2006	Planned Outage	72	9
526509	9/15/2006	Planned Outage	4	1
526721	9/18/2006	Planned Outage	6	2
526716	9/18/2006	Planned Outage	6026	1826
526813	9/18/2006	Planned Outage	110	11
526780	9/18/2006	Planned Outage	80	4
527050	9/19/2006	Planned Outage	4	2
527053	9/19/2006	Planned Outage	2	1
527057	9/19/2006	Planned Outage	14	2
527103	9/19/2006	Planned Outage	38	2
527105	9/19/2006	Planned Outage	24	2
526950	9/19/2006	Planned Outage	1375	5
527135	9/19/2006	Planned Outage	175	7

Event Code	Date	Reason of Exclusion	СМІ	CI
527359	9/20/2006	Planned Outage	276	6
527367	9/20/2006	Planned Outage	10	5
527376	9/20/2006	Planned Outage	414	9
527443	9/21/2006	Planned Outage	546	6
527440	9/21/2006	Planned Outage	10404	68
527439	9/21/2006	Planned Outage	64497	288
527475	9/21/2006	Planned Outage	588	12
527480	9/21/2006	Planned Outage	4802	14
527825	9/25/2006	Planned Outage	16714	137
527840	9/25/2006	Planned Outage	13846	161
528014	9/25/2006	Planned Outage	93888	2934
528264	9/26/2006	Planned Outage	198	2
528263	9/26/2006	Planned Outage	2498	12
528376	9/27/2006	Planned Outage	4046	2023
528396	9/27/2006	Planned Outage	14	1
528352	9/27/2006	Planned Outage	78508	288
528413	9/27/2006	Planned Outage	1413	451
528436	9/27/2006	Planned Outage	47160	262
528475	9/28/2006	Planned Outage	84	1
528546	9/29/2006	Planned Outage	71332	3168
528575	9/29/2006	Planned Outage	225	25
528841	10/2/2006	Planned Outage	5	1
528842	10/2/2006	Planned Outage	16	4
528811	10/2/2006	Planned Outage	10153	71
528957	10/4/2006	Planned Outage	2184	104
528977	10/4/2006	Planned Outage	24	4
528978	10/4/2006	Planned Outage	6	3
529019	10/4/2006	Planned Outage	60544	1408
529183	10/6/2006	Planned Outage	10	5
529195	10/6/2006	Planned Outage	1806	86
529413	10/9/2006	Planned Outage	910	10
529494	10/10/2006	Planned Outage	27378	117
529532	10/10/2006	Planned Outage	55	1
529527	10/10/2006	Planned Outage	29016	124
529631	10/11/2006	Planned Outage	32	8
529624	10/11/2006	Planned Outage	7474	101
529642	10/11/2006	Planned Outage	45	3
529643	10/11/2006	Planned Outage	14	1
529649	10/11/2006	Planned Outage	1	1
529651	10/11/2006	Planned Outage	15	1
529644	10/11/2006	Planned Outage	612	6
529695	10/11/2006	Planned Outage	10412	190

Event Code	Date	Reason of Exclusion	CMI	CI
529754	10/12/2006	Planned Outage	18	3
529777	10/12/2006	Planned Outage	1768	17
529797	10/12/2006	Planned Outage	81000	2025
529807	10/12/2006	Planned Outage	32	2
529812	10/12/2006	Planned Outage	24	4
529814	10/12/2006	Planned Outage	20	4
530065	10/15/2006	Planned Outage	4162	2473
530271	10/16/2006	Planned Outage	6	1
530272	10/16/2006	Planned Outage	6	1
530634	10/16/2006	Planned Outage	18	3
530633	10/16/2006	Planned Outage	10	1
530699	10/17/2006	Planned Outage	3	3
530700	10/17/2006	Planned Outage	1	1
530760	10/17/2006	Planned Outage	50984	1556
530771	10/17/2006	Planned Outage	92708	1078
530753	10/17/2006	Planned Outage	348	3
530818	10/17/2006	Planned Outage	18	3
530872	10/17/2006	Planned Outage	93753	2841
530897	10/17/2006	Planned Outage	303987	2841
530979	10/17/2006	Planned Outage	8618	1186
531051	10/17/2006	Planned Outage	16	2
531083	10/17/2006	Planned Outage	58251	574
530980	10/17/2006	Planned Outage	1530	6
531158	10/17/2006	Planned Outage	467533	2841
531435	10/18/2006	Planned Outage	312	8
531433	10/18/2006	Planned Outage	303	3
531493	10/19/2006	Planned Outage	279	4
531502	10/19/2006	Planned Outage	888	4
531503	10/19/2006	Planned Outage	666	3
531528	10/19/2006	Planned Outage	6278	86
531604	10/20/2006	Planned Outage	60	5
531611	10/20/2006	Planned Outage	645	15
531612	10/20/2006	Planned Outage	80	2
531663	10/20/2006	Planned Outage	428	4
532043	10/24/2006	Planned Outage	1001	133
532117	10/25/2006	Planned Outage	208872	2901
532189	10/26/2006	Planned Outage	2214	41
532188	10/26/2006	Planned Outage	256	4
532197	10/26/2006	Planned Outage	8980	93
532200	10/26/2006	Planned Outage	8697	93
532238	10/26/2006	Planned Outage	28408	963
532503	10/28/2006	Planned Outage	10296	264
532548	10/29/2006	Planned Outage	1375	25

Event Code	Date	Reason of Exclusion	СМІ	CI
532888	11/2/2006	Planned Outage	977	10
532907	11/2/2006	Planned Outage	2701	21
532927	11/2/2006	Planned Outage	281507	1554
532935	11/2/2006	Planned Outage	49188	324
532968	11/3/2006	Planned Outage	2628	69
533005	11/3/2006	Planned Outage	104	4
533008	11/3/2006	Planned Outage	28	4
533009	11/3/2006	Planned Outage	216	4
533055	11/4/2006	Planned Outage	496	4
533262	11/6/2006	Planned Outage	188	4
533299	11/6/2006	Planned Outage	64	1
533280	11/6/2006	Planned Outage	1266	6
533307	11/6/2006	Planned Outage	1360	17
533429	11/7/2006	Planned Outage	392	28
533438	11/7/2006	Planned Outage	24204	123
533469	11/7/2006	Planned Outage	23	1
533629	11/9/2006	Planned Outage	231	7
533673	11/10/2006	Planned Outage	36342	284
533745	11/11/2006	Planned Outage	43187	1105
533771	11/11/2006	Planned Outage	9301	795
533880	11/12/2006	Planned Outage	181	6
533916	11/13/2006	Planned Outage	472	2
533941	11/13/2006	Planned Outage	33	1
533952	11/13/2006	Planned Outage	39	3
533953	11/13/2006	Planned Outage	2853	15
534759	11/14/2006	Planned Outage	198	6
535006	11/14/2006	Planned Outage	815	1882
535015	11/14/2006	Planned Outage	20	5
535934	11/15/2006	Planned Outage	172	4
536031	11/15/2006	Planned Outage	11107	135
536086	11/16/2006	Planned Outage	60192	608
536156	11/16/2006	Planned Outage	524	2
536193	11/16/2006	Planned Outage	284	2
536221	11/16/2006	Planned Outage	189	3
536470	11/18/2006	Planned Outage	160935	2346

Event Code	Date	Reason of Exclusion	CMI	CI
536367	11/20/2006	Planned Outage	8518	2
536611	11/20/2006	Planned Outage	9	3
536612	11/20/2006	Planned Outage	20	5
536614	11/20/2006	Planned Outage	24	6
536629	11/20/2006	Planned Outage	4	4
536680	11/20/2006	Planned Outage	187	11
536681	11/20/2006	Planned Outage	204	12
536682	11/20/2006	Planned Outage	187	11
536684	11/20/2006	Planned Outage	160	10
536701	11/20/2006	Planned Outage	22	11
536700	11/20/2006	Planned Outage	17	1
536703	11/20/2006	Planned Outage	110	10
536692	11/20/2006	Planned Outage	162	3
536711	11/20/2006	Planned Outage	6	1
536712	11/20/2006	Planned Outage	20	10
536715	11/20/2006	Planned Outage	180	10
537043	11/21/2006	Planned Outage	626	28
537064	11/21/2006	Planned Outage	484	22
537075	11/21/2006	Planned Outage	72	4
537078	11/21/2006	Planned Outage	64	4
537124	11/22/2006	Planned Outage	856	8
537135	11/22/2006	Planned Outage	144	8
537138	11/22/2006	Planned Outage	88	8
537354	11/25/2006	Planned Outage	84	12
537349	11/25/2006	Planned Outage	273	3
537446	11/27/2006	Planned Outage	1197	9
537457	11/27/2006	Planned Outage	301	. 7
537542	11/28/2006	Planned Outage	1885	19
537558	11/28/2006	Planned Outage	10017	46
537761	11/29/2006	Planned Outage	36	3
537762	11/29/2006	Planned Outage	60	5
537760	11/29/2006	Planned Outage	92	4
537794	11/29/2006	Planned Outage	96	1
537842	11/30/2006	Planned Outage	7616	68
537854	11/30/2006	Planned Outage	90	10
537866	11/30/2006	Planned Outage	66	11
537971	12/2/2006	Planned Outage	244	4
537972	12/2/2006	Planned Outage	60	6
537975	12/2/2006	Planned Outage	147	7
537973	12/2/2006	Planned Outage	184	8
537974	12/2/2006	Planned Outage	115	5
538075	12/4/2006	Planned Outage	363	3

Event Code	Date	Reason of Exclusion	CMI	CI
538123	12/5/2006	Planned Outage	12	6
538118	12/5/2006	Planned Outage	12210	222
538207	12/6/2006	Planned Outage	3884	199
538208	12/6/2006	Planned Outage	1337	157
538248	12/6/2006	Planned Outage	89520	2984
538545	12/7/2006	Planned Outage	175	5
538547	12/7/2006	Planned Outage	1722	21
538551	12/7/2006	Planned Outage	2622	46
538596	12/8/2006	Planned Outage	5343	34
538890	12/11/2006	Planned Outage	44	1
538881	12/11/2006	Planned Outage	565	5
538885	12/11/2006	Planned Outage	51840	240
538917	12/11/2006	Planned Outage	9	9
538991	12/12/2006	Planned Outage	139	7
539054	12/12/2006	Planned Outage	180936	2154
539080	12/13/2006	Planned Outage	154665	3437
539237	12/15/2006	Planned Outage	96	6
539252	12/15/2006	Planned Outage	1062	118
539251	12/15/2006	Planned Outage	2541	231
539824	12/17/2006	Planned Outage	14608	166
539821	12/17/2006	Planned Outage	190	2
539829	12/17/2006	Planned Outage	1188	22
539860	12/18/2006	Planned Outage	5	1
539867	12/18/2006	Planned Outage	304	8
539873	12/18/2006	Planned Outage	16200	72
539943	12/19/2006	Planned Outage	40	5
539947	12/19/2006	Planned Outage	1952	16
539987	12/20/2006	Planned Outage	117732	2488
540017	12/20/2006	Planned Outage	17117	2488
540053	12/20/2006	Planned Outage	48	6
540057	12/20/2006	Planned Outage	5526	39
540086	12/21/2006	Planned Outage	56	8
540088	12/21/2006	Planned Outage	9	9
540089	12/21/2006	Planned Outage	18	9
540090	12/21/2006	Planned Outage	112	8
540096	12/21/2006	Planned Outage	8	2
540268	12/23/2006	Planned Outage	328	4
540400	12/25/2006	Planned Outage	270940	2852
540481	12/25/2006	Planned Outage	60	6
540480	12/25/2006	Planned Outage	286	22
540483	12/25/2006	Planned Outage	32	2
540477	12/25/2006	Planned Outage	5529	291
540479	12/25/2006	Planned Outage	56	4
540532	12/25/2006	Planned Outage	189516	1815

Event Code	Date	Reason of Exclusion	СМІ	CI
540687	12/27/2006	Planned Outage	147	7
540895	12/31/2006	Planned Outage	64446	467
540914	12/31/2006	Planned Outage	9324	148
540931	12/31/2006	Planned Outage	12	6

Appendix 2 - Wood Pole Inspection Report

POLE INSPECTION REPORT GULF POWER COMPANY

SUMMARY OF POLE INSPECTIONS FOR THE PERIOD JANUARY 1, 2006 THROUGH DECEMBER 31, 2006

Type of Inspection: Ground line Pole Inspection

Type of Pole: Distrib	ution	
Class:	Material: <u>Wood</u>	Vintage: <u>Varies</u>
Installed Population:	243,993	
Number of inspectio	ns planned and num	nber completed <u>0 / 12,745</u> .
		planned and completed pole inspections. All sultant backlog, if any, and plans to address any
Number of inspected	d poles addressing a	prior backlog: _0
Number of poles req	juiring minor follow-	-up: <u>185</u>
Number of poles rec	_l uiring a change in i	nspection cycle: <u>0</u>
Number of poles tha	t required no change	e in inspection cycle or remediation: <u>12,560</u>
Number of poles tha	.t were overloaded: _	N/A
Number of poles wit	:h estimated remaini	ng pole life of less than 8 years: <u>127*</u>
*Poles identified to b	oe replaced.	

These guidelines establish four Distribution Operating Condition Levels (OPCON 1-4) related to outages on the distribution system. Restoration coordination between the Distribution Operation Center (DOC) and the affected Area(s) is key to achieving optimum restoration effectiveness.

For each OPCON level, key tasks for notification and responsibilities have been listed for the DOC and the affected Area(s). Power Delivery Management in Distribution Operations, Engineering & Construction and Project Services should be knowledgeable of these guidelines and take appropriate actions to ensure key personnel are prepared and understand their responsibilities for each operating condition.

Appendix 3 – Distribution Operating Condition Levels And Restoration Response Guidelines Normal Operations – OPCON 1

Gulf Power will operate under the OPCON 1 level during zero to low threat conditions. This operating condition is appropriate when the following conditions exist:

- > Zero to minimal scattered outages in an Area or Areas
- ➤ Devices out (zero to minimal feeder outages, reclosers may be locked out, minimal line fuses blown, etc.)
- > Daily Hot-Line tag requests, clearances for breaker maintenance

DOC Tasks	Area Tasks
NOTIFICATION	RESPONSIBILITIES
 Communicates any impending weather- related threats to the Engineering and Construction Supervisor (ECS)/designee 	ECS/designee contacts additional resources as needed for support
Communicates current Automated Response Call Out System (ARCOS) status	Estimated Time of Arrival (ETA) is communicated to DOC Operator
> Sends text messages	ECS/designee monitors progress of crews during restoration efforts by viewing Trouble Vision
RESPONSIBILITIES	Assists in calling additional manpower as
> Request additional support as needed	needed
➤ Monitors current system/weather conditions	
 Keeps Trouble Call Management System (TCMS) model and mimic board current with system 	
 Coordinates all dispatching 	
> Authorizes all distribution line switching	
➤ Enters/updates Estimated Time of Restoration (ETR) data & case notes	

Appendix 3 – Distribution Operating Condition Levels And Restoration Response Guidelines Storm Operations – OPCON 2

Operating conditions may be raised to an elevated state as determined by the current system and weather conditions. It may be necessary to contact additional support within the affected area(s). This operating condition is appropriate when the following conditions exist:

- > Multiple scattered outages in an Area or Areas
- > Devices out (minimal feeder outages, reclosers locked out, line fuses, etc.)

The ECS/designee may be asked to report to the Engineering & Construction (E&C) office to assist the DOC in the restoration effort. The DOC Operator remains the dispatch and control authority for the distribution system in the Area(s)

This level is most appropriate when the overall damage is moderate and involves extensive individual trouble cases and some line sections out. All restoration efforts will be under the direction of the DOC.

Communications between the DOC Operator and the ECS/designee is the ultimate responsibility of both parties.

Area Tasks									
RESPONSIBILITIES									
 ECS/designee contacts additional resources as needed for support 									
➤ ETA is communicated to DOC Operator									
-									
ECS/designee reports to the E&C office if									
needed									
 Monitors progress of crews during restoration efforts by viewing <i>Trouble</i> Vision. 									
Assists in calling additional manpower as needed.									
needed.									

Appendix 3 – Distribution Operating Condition Levels And Restoration Response Guidelines Storm Operations – OPCON 3

Operating conditions may be further elevated such that the DOC or Area(s) request transfer of "Area Dispatch Control." This operating condition is appropriate when the following conditions exist:

- > Multiple outages in an Area or Areas with extensive damage
- > Devices out (multiple feeders out, reclosers locked out, etc)

This level is most appropriate when the damage is widespread in an Area or Areas and involves extensive individual trouble cases affecting a large number of customers.

The ECS/designee will direct all restoration efforts for the identified Area. The DOC and ECS/designee will determine boundaries before "Area Dispatch Control" is transferred.

The DOC Operator remains the controlling authority for the distribution system.

Communications between the DOC Operator and the ECS/designee is the ultimate responsibility of both parties.

OPCON 3

Preparation For AREA	DISPATCH CONTROL
DOC Tasks	Area Tasks
NOTIFICATION	RESPONSIBILITIES
 DOC supervision notifies E&C Managers & Project Services Manager 	 ECS/designee contacts additional resources as needed to report to the E&C
 DOC supervisor contacts ECS/designee and requests Area to prepare to assume "Area Dispatch Control" 	office ➤ ETA is communicated to DOC Operator
> DOC transmits text page to the Power Delivery Management Team (PDMT)	Area team assembles and prepares to assume "Area Dispatch Control"
with the following text: "(Area/District) is at OPCON 3"	 Responsibilities for each of the team members are communicated to the team
RESPONSIBILITIES	Damage assessment made via field patrols and communicated to the DOC
 DOC maintains dispatch control of Area until Area team is in place 	 Area TCMS Operator (assigned by DOC) arrives and subscribes to assigned zone(s)
 Issues switching orders to isolate trouble and pick up load as appropriate 	> Area TCMS Operator verifies crew
 Keeps TCMS model and mimic board current with system 	assignments and system status with DOC Operator
 Continues ARCOS call-outs, if unsuccessful, notify ECS/designee 	
 DOC assigns Area TCMS Operator 	
 DOC Operator communicates system status to ECS/designee 	
 Acting DOC supervisor is identified and supplied contact numbers for the Area TCMS Operator assigned to the specified control zone 	
 DOC Operator communicates current crew assignments and system status to Area TCMS Operator 	
> Enters/updates ETR data & case notes	

OPCON 3

DOC Grants AREA DISPATCH CONTROL	Area Accepts AREA DISPATCH CONTROL
DOC Tasks	Area Tasks
Responsibilities > DOC verifies that Area TCMS Operator has successfully subscribed to the assigned control zone(s)	Responsibilities > ECS/designee assumes dispatch responsibilities for the control zone > ECS/designee communicates crew
 DOC grants "Area Dispatch Control" to ECS/designee for assigned control zone(s) and records data in switching log 	assignments and customer restoration to the Area TCMS OperatorECS/designee communicates with Power
 DOC assigns talk-group to ECS/designee 	Delivery Management requesting
 Primary communication is between the Area TCMS Operator and the DOC Operator 	additional resources as needed
Post Transfer Responsibilities	Post Transfer Responsibilities
> DOC Authorizes all distribution line	> ECS/designee dispatches crews
switchingMaintains TCMS model accuracy by	 ECS/designee develops/monitors work schedules for crews
operating non-predicted devices as requested by the Area	 Area TCMS Operator enters/updates ETR data & case notes
 Communicates with Area TCMS Operator regularly concerning any questions related to events 	Area TCMS Operator completes tickets within TCMS
> Authorizes all distribution line switching	 Area TCMS Operator maintains continuous communication with DOC Operator
	 All distribution line switching is requested from the DOC

OPCON 3

DOC Accepts AREA DISPATCH CONTROL	Area Releases AREA DISPATCH CONTROL
DOC Tasks	Area Tasks
Responsibilities	Responsibilities
 DOC Operator confirms that ECS/designee is releasing control and records data in switching log 	 ECS/designee advises DOC Operator that "Area Dispatch Control" is being released to DOC
Abnormal conditions or special situations communicated by the ECS/designee are noted by DOC Operator	Abnormal conditions or special situations are identified and clearly communicated by the ECS/designee to the DOC Operator
 All operations and dispatching for entire area are resumed by DOC 	
> DOC transmits text page to the PDMT with the following text:	
"AREA DISPATCH CONTROL for (Area/District) has been returned to the DOC"	

Storm Operations – OPCON

In the event of an oncoming named storm (i.e. tropical storm, hurricane), it may be necessary to raise the Distribution Operating Condition to OPCON 4. This operating condition is appropriate when the following conditions exist:

- > Named storm has entered Gulf Power's territory
- Numerous outages occur within multiple Areas with wide-spread extensive damage
- > Devices out (transmission lines/ substations, numerous feeders/ reclosers etc)

Details of procedures and responsibilities are defined in the *Gulf Power Storm Procedure Manual*.

ECS/designee will direct all restoration efforts for their assigned area(s). The DOC and ECS/designee will determine boundaries before Area Operations Control is transferred.

Communications between the DOC and the ECS/designee is the ultimate responsibility of both parties.

A		В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	Т	Ü	v v	l w
					Number of					U/ Number of			Number of	Number of	(0)		(q)	(u)	Number of				(z)
11			(c) Number of	(d) Number of	Customers served on	(f) CMI for	(g) Cl for	(h) Number of	(i) Number of	Customers served on	(k) CMI for	(I) Cl for	Automatic line Sectionalizing	Automatic line Sectionalizing	Whether the feeder	(p) Total Length	Length of Underground	Length of Overhead	customers served by	(w) CMI for	(x) Cl for	(y) Load growth since	Peak load recorded through
(a)	.	(b)	Overhead	Overhead	Overhead	Overhead	Overhead	Underground	Underground	Served on Underground	Underground	Underground	devices on the	devices on the	Circuit is	of the Feeder	portion of the	portion of the	Overhead	Overhead	Overhead	December 31,	December 31,
1 Feeder		ub Region EASTERN	Lateral Lines	Lateral Miles 0.00	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Miles 0.54	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Lines	Feeder	Loop	Circuit	Feeder Circuit	Feeder circuit	Feeders	Feeders	Feeders	2005	2006
3 2613		CENTRAL	1	1.95	20	n/a 752	n/a 6	0	0.54	n/a n/a	n/a n/a	n/a n/a	0	0	No No	0.71 2.38	0.63	0.08 2.38	20	n/a 752	n/a 6	n/a n/a	n/a n/a
4 2619 5 5333		CENTRAL WESTERN	11 85	3.96 15.86	82 719	5095.82 361287.67	44 2179	39	0.00 8.52	n/a 777	n/a 33459	n/a 267	0	0	No	5.78	0.00	5.78	82	13459.82	126	n/a	n/a
6 534		WESTERN	27	3.92	190	239543	1208	39 19	8.52 5.17	925	103402.57	267 366	0	1	Yes Yes	26.08 10.68	8.52 5.17	17.56 5.51	1496 1115	398329.67 342945.57	2470 1574	0.5	8.87 9.77
7 5353 8 5363		WESTERN WESTERN	40	6.13 0.03	114	5952	57	28	2.81	93	n/a	n/a	1	0	Yes	10.97	2.81	8.17	207	6060	58	1.0	12.37
9 537		WESTERN	0	0.03	n/a n/a	n/a n/a	n/a n/a	0	0.08	n/a n/a	n/a n/a	n/a n/a	0	0	No No	3.23 3.19	0.08	3.15 3.11	1	n/a n/a	n/a n/a	2.0	1.29
10 5383 11 5393		WESTERN WESTERN	415	127.93	1843	660442.15	3874	23	4.88	44	n/a	n/a	2	4	Yes	140.61	4.88	135.73	1893	899107.48	5903	1.8	11.15
12 5412		WESTERN	219	60.05 0.49	924	132648.52 n/a	828 n/a	12	1.73	19 n/a	n/a n/a	n/a n/a	0	2	No No	63.63	1.73 0.00	61.90 1.01	944	134997.52 n/a	855 n/a	4.0	5.35 7.12
13 5500		WESTERN	50	8.23	251	18879	202	2	1.13	5	n/a	n/a	0	1	Yes	11.07	1.13	9.93	256	18879	202	1.0	1.67
14 551; 15 552;		WESTERN WESTERN	161 92	45.61 23.22	1129 555	566231.89 76954.17	3554 653	20	7.56 3.74	387 151	23376 609	173	0	3	Yes Yes	56.57 30.64	7.56	49.01 26.90	1526 737	592148.22 76954.17	3778 653	3.5 0.1	7.79 13.26
16 5562		WESTERN	79	22.62	1832	48155.18	327	14	4.76	283	n/a	n/a	0	ĭ	Yes	30.76	4.76	26.90	2116	49309.18	341	0.1	9.36
17 5572 18 5582		WESTERN	32 134	12.52 20.11	987 1278	35688 101782.63	152 518	13	5.23 7.99	318 886	n/a 288	n/a 2	0	2	Yes Yes	18.94	5.23 7.99	13.70 25.91	1305 2176	48669 108405,63	282 678	5.0	7.46
19 560		WESTERN	285	73.37	1819	199519.3	1776	33	11.63	128	n/a	n/a	0	1	No	90.97	11,42	79.61	1951	306862.2	3779	2.0 1.0	13.73
20 5612		WESTERN	339 122	135.51 36.03	2098 1694	652391.87 257683.44	5783 3256	33	5.99 23.79	139 1433	n/a 15903	n/a 83	2	0	Yes Yes	145.43 63.34	5.99	139.44	2239	679409.87	5953	5.0	13.02
22 5643		WESTERN	104	25.87	1539	14193.07	160	20	27.21	1347	155286.42	553	0	0	Yes	59.29	23.79	39.55 32.06	3131 2887	382264.71 170566.49	4691 721	6.0	15.24 15.11
23 565		CENTRAL	83 94	17.04 17.68	1055	241492.44 181534.2	1822 1989	30 55	4.90 8.16	412 1204	3916 35712.47	45 322	0	2	Yes Yes	24.71	4.90	19.81	1471	272925.44	2095	0.5	8.38
25 5682	2	CENTRAL	48	8.01	927	36144.67	354	22 27	2.07	222	n/a	n/a	0	3	Yes	12.47	8.16 2.07	19.96 10.40	2870 1149	36492.67	5252 356	0.2 0.2	12.24 9.70
26 5753 27 5763		WESTERN WESTERN	188	41.22 45.47	1798 1761	67293.03 378706.92	660 3097	27 29	23.40	1204 1113	50530.12 13679.6	486 59	0	2	Yes Yes	68.71 67.04	23.40 18.28	45.31 48.76	3005 2877	118700.75	1153 3161	3.0	15.29
28 5772	2 V	WESTERN	58	12.78	597	41838	244	6	4.13	303	n/a	n/a	0	0	Yes	19.72	18.28 4.13	15.59	901	393384.52 41838	244	5.0 7.5	12.81 6.93
29 5782 30 5792		WESTERN WESTERN	200	66.34 99.98	1915 2329	452377.53 589241.91	3769 4653	24 30	21.51	469 428	34332 591.97	184	6	1 0	Yes Yes	91.20	21.51	69.69 106.51	2425 2761	745424.53	8707 7846	3,0	12.77
31 5812		WESTERN	116	29.84	1472	282557.49	4175	32	12.83	912	14965	88	1	2	Yes	44.01	12.83	31.23	2396	776228.88 297635.49	7846 4264	2.0	13.59
32 5822 33 5832		WESTERN	20 196	5.88 55.79	440 2175	163880.2 713051.47	1006 4179	22 14	7.46 1.38	643 43	4892 n/a	20	0	0	Yes	16.00	8.73	7.28	1093	169027.2	1028	1.0	3.73
34 5852	2 V	WESTERN	92	25.79	811	181521.85	551	5	0.93	6	n/a	n/a n/a	0	2	Yes	61.79 29.39	1.38 0.84	60.42 28.56	2222 818	713544.47 182477.85	4186 555	2.0	10.69 6.66
35 5872 36 5882		VESTERN CENTRAL	45 74	11.73 20.63	643 2067	47406 109142.05	577 957	28 32	15.11	886 600	16059 6384.5	67 53	0	3	Yes	27.96	15.11	12.85	1529	74867.12	788	2.0	9.17
37 5892		CENTRAL	101	28.14	2060	483912.83	3219	49	17.34	1223	6384.5 27246.93	265	0 1	0	Yes Yes	29.95 51.42	4.69 17.34	25.26 34.07	2667 3283	117891.55 644403.76	1057 6808	3.0 2.0	11.27 15.47
38 5902 39 5912		WESTERN WESTERN	40 25	7.27	582 270	23572.5 15866	388 64	13 35	2.50 4.38	114	2486 23562.56	18	0	1	Yes	11.09	2.84	8.24	696	31203.5	480	0.2	10.15
40 592		WESTERN	40	7.22	664	48680	860	35 26	25.27	278 1629	106759	96 706	0	1 0	Yes Yes	10.39 35.95	5.43 25.27	4.97 10.69	548 2295	39428.56 161412.8	160 1605	1.0	12.34 13.54
41 5932 42 5942		WESTERN WESTERN	68 25	13.95 10.02	1120 550	65515.56 13270	553 94	27 42	14.48	884	39633.5 97454	215	0	2	Yes	30.03	14.48	15.56	2005	107368.89	787	2.0	10.41
43 5952	2 V	WESTERN	0	0.00	n/a	n/a	n/a	0	0.00	1446 n/a	9/454 n/a	1238 n/a	0	0	Yes No	21.59 0.01	10.42	11.16 0.01	1998 n/a	241047 n/a	2574 n/a	2.0	10.11
44 5972 45 5982		WESTERN WESTERN	38 48	9.63 13.30	657 981	35842.1 15370.09	319 147	20	5.19	479	14485.6	154	0	2	Yes	16.74	5.28	11.46	1138	50587.7	477	0.5	5.85
46 5992		WESTERN	38	8.24	981 650	44596.83	645	27	12.43 12.14	1413 1129	52336.5 134949.07	339 630	0	2 2	No Yes	29.22	12.89 12.24	16.33 11.72	2398 1779	320004.5 184481.8	3254 1331	0.1	11.68 8.96
47 6022 48 6032		WESTERN	0	0.00	n/a	n/a	n/a	0	0.00	n/a	n/a	n/a	0	0	No	1.66	0.00	1.66	n/a	n/a	n/a	0.1	17.26
48 6032		WESTERN WESTERN	36 82	7,57 16,43	362 1695	7259 220112.02	85 1524	14 5	4.29 0.44	733 27	4676 n/a	7 n/a	2	2	Yes Yes	14.95 19.65	4.29 0.44	10.66 19.21	1095 1726	12019 220574.02	95 1531	0.4	10.25
50 6052	2 V	WESTERN	69	15.40	1101	50812	382	6	3.62	312	37652	188	0	0	Yes	21.65	3.62	18.03	1413	89088	574	0.1	13.61
51 6062		WESTERN WESTERN	71 100	18.54 22.16	1602 1209	174833.24 106318.48	954 1057	7 33	0.26 21.54	9 1514	n/a 83906.75	n/a 547	0	0	Yes	23.35	0.26 21.54	23.09 28.54	1611 2723	274924.24 190225.23	2595 1604	0.1 0.5	13.53 14.02
53 6082	2 V	WESTERN	164	41.85	1990	413031.3	1305	29	18.27	1780	426	1	0	4	Yes	67.26	18.27	48.98	3773	416841.3	1342	0.1	15.18
54 6092 55 6338-G		WESTERN WESTERN	43 0	14.70 0.00	869 n/a	149968 n/a	1274 n/a	24	8.52 0.00	1038 52	32353.6 n/a	151 n/a	0	2	No No	26.62 0.88	8.52 0.88	18.10	1907 52	265965.3 832	3411 52	1.5 n/a	15.12 n/a
56 6348-G	-144 V	WESTERN	0	0.00	n/a	n/a	n/a	0	0.00	32	n/a	n/a	Ó	0	No	0.92	0.92	0.00	32	496	31	n/a	n/a
57 6352-G 58 6412		WESTERN CENTRAL	- 0 59	0.00 23.13	n/a 476	n/a 10879.62	n/a 87	5	0.00	58 43	n/a 6814	n/a 46	0	0	No No	0.86 27.61	0.86 1.83	0.00 25.78	58 519	928 29313.07	58 214	n/a 0.1	n/a n/a
59 6432	2 (CENTRAL	23	5.73	206	4284	46	4	0.50	8	n/a	n/a	0	0	No	8.57	0.50	8.07	214	41750	265	0.1	n/a n/a
60 6452		CENTRAL VESTERN	3 33	0.27 8.20	6 854	n/a 23953	n/a 440	40	0.13	1 1345	n/a 61646.72	n/a 380	0	0	No Yes	4.11 24.65	0.13 10.60	3.97 14.05	7 2199	810 338878.62	6 5574	0.1 4.0	n/a 10.07
62 6508	8 V	WESTERN	9	0.36	26	1723	17	9	0.42	7	n/a	n/a	0	0	Yes	2.45	0.42	2.03	33	1723	17	0.1	8.46
63 6522 64 6532		WESTERN WESTERN	115 109	15.13 20.09	1390 1867	128015.81 105331.7	1315 1210	33 7	2.91 0.26	343 161	3944 n/a	20 n/a	0	2	Yes	21.89 24.66	2.91	18.99	1827	406685.81 108127.7	3167 1228	0.4	10.92 8.81
65 6542		WESTERN	58	14.76	1559	100298.2	1004	14	1.24	55	381	n/a 5	0	2	Yes Yes	19.17	0.26 1.24	24.41 17.94	2028 1614	100717.2	1010	1.0	13.24
66 6572 67 6582		WESTERN	119	21.15	1715	356680.46	2969	17	0.68	33	n/a	n/a	0	2	Yes	24.10	0.68	23.42	1758	379117.46	3595	3.0	14.64
68 6592		WESTERN WESTERN	99 20	18.27 2.20	1621 184	310457.47 20572.8	1974 133	9	0.22	41 233	n/a 27555	n/a 127	0	0	Yes	21.17 6.42	0.22	20.95 5.49	1662 417	310515.47 48377.8	1975 262	0.5 0.1	12.71 8.50
69 6602		WESTERN	33	7.61	680	189759.68	418	4	0.16	26	n/a	n/a	0	0	Yes	9.07	0.16	8.91	707	192411.68	436	2.5	3.44
70 6612		WESTERN	8 39	3.06 7.22	229 691	16909 32197	215 301	3	0.18	3 3	n/a n/a	n/a n/a	0	0	Yes Yes	5.40 8.92	0.18	5.22 8.69	232 694	39105 32197	457 301	0.1	6.79 4.51
72 6632	2 V	VESTERN	90	8.67	685	76933.62	471	10	0.79	13	n/a	n/a	ŏ	3	Yes	11.38	0.79	10.59	698	77017.62	472	0.3	9.01
73 6642		VESTERN VESTERN	59 160	8.83 25.44	604 2363	15658 271323.8	117 956	6 9	0.30	5 146	n/a n/a	n/a	0	1 3	Yes	12.47	0.30	12.17 28.56	609 2510	18241 633321.2	124 4084	0.1	7.59 11.69
75 6662	2 V	VESTERN	93	22.73	879	646108.71	5418	29	8.49	660	17595	207	2	1	Yes	35,20	8.49	26.71	1543	664314.71	5632	3.0	14.11
76 6672		VESTERN VESTERN	53	0.00 18.29	n/a 1760	n/a 55634	n/a 372	0 22	0.00 5.42	n/a 718	n/a 14173	n/a 23	0	0	No No	0.05 25.09	0.00 5.42	0.05 19.66	n/a 2479	n/a 111672	n/a 2856	0.1	3.81 10.22
78 6682	2 V	VESTERN	32	9.76	781	24010	395	11	2.41	214	2610	11	0	2	Yes	16.49	2.41	14.08	997	125832	2429	0.5	10.82
79 6692 80 6706		VESTERN VESTERN	51 51	13.77 12.63	1179 874	208042.9 135063.98	2348 1027	10 4	2.42 0.11	307 4	8545 n/a	53 n/a	0	1 0	Yes Yes	18.54 14.84	2.42 0.11	16.12 14.73	1490 878	216587.9 135181.98	2401 1028	3.0 0.5	7.11 5.12
81 6716		VESTERN	74	12.66	921	134738.83	908	17	1.03	161	n/a	n/a	ŏ	1	Yes	19.61	1.04	18.56	1083	265737.68	2762	0.1	6.47

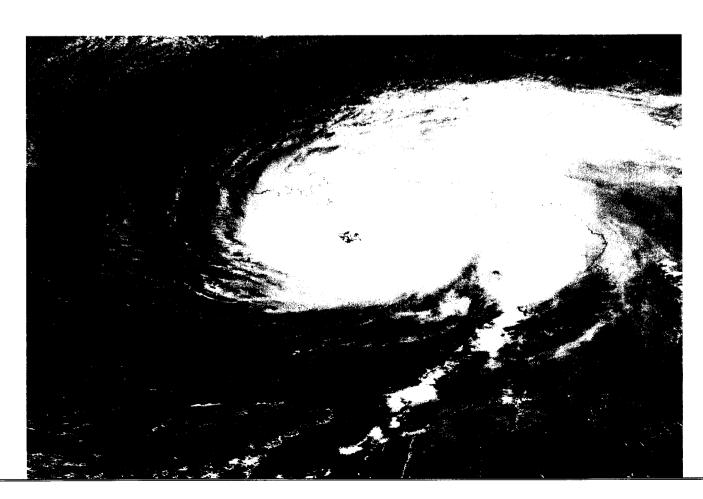
DistGIS Feeder Totals

Δ	I B	C	D	F	F	T G	н		J	К	L	М	N N	0	P	Q	B	S	Т	U	V	W
H ^-			_ ·	Number of					(j) Number of			Number of	Number of	(0)		(g)	(u)	Number of				(z)
		(c)	(d)	Number of Customers	1 10	(a)	(h)	o o	Customers	(k) CMI	a)	Automatic line	Automatic line	Whether the	(p)	Length of	Length of	customers	(w)	(x)	(y) Load	Peak load
1		Number of	Number of	served on	CMI for	Cl for	Number of	Number of	served on	for	Cl for	Sectionalizing	Sectionalizing	feeder	Total Length	Underground	Overhead	served by	CMI for	CI for	growth since	recorded through
(a)	(b)	Overhead	Overhead	Overhead	Overhead	Overhead	Underground	Underground	Underground	Underground	Underground	devices on the	devices on the	Circuit is	of the Feeder	portion of the	portion of the	Overhead	Overhead	Overhead	December 31,	December 31,
1 Feeder ID	Sub Region	Lateral Lines	Lateral Miles	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Miles	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Lines	Feeder	Loop	Circuit	Feeder Circuit 6.53	Feeder circuit 14.39	Feeders 1764	Feeders 998856.41	Feeders 4721	2005 0,1	2006 11.88
82 6742	WESTERN	30	10.80	1195	61317.67 62715.55	618 390	9 32	6.45 1.90	569 86	205220.47 n/a	836 n/a	0	0	Yes Yes	20.92	1.90	24.27	1077	998836.41	1481	1.0	9.63
83 6774 84 6782	WESTERN	82 64	20.25	990 838	35369.47	646	9	2.34	366	98	2	Ö	1 1	Yes	23.39	2.34	21.05	1205	36064.47	655	1.0	7.02
85 6792	WESTERN	138	33.16	1240	235606.27	2020	37	11.91	758	19952.77	184	1	1	Yes	48.38	11.91	36.48	2000	265746.04	2360	4.0	12.80
86 6833	WESTERN	3	7.05	n/a	n/a	n/a	1	0.01	n/a	n/a	n/a	1	0	No	7.09	0.04	7.05	n/a	n/a	n/a	n/a	n/a
87 6912	WESTERN	133	33.22	935	227409.73	1322	14	4.13	207	138	1	0 3	1 1	Yes	40.09 50.57	4.13 2.38	35.96 48.19	1145 1329	427575.73 306411.32	3659 2518	3.0	9.53
88 6922 89 6932	WESTERN WESTERN	164 87	46.98 16.82	1221 787	271267.32 164491	2213	4 17	2.38 9.09	106 500	n/a 6194	n/a 18	0	'	Yes Yes	33.74	9.09	24.64	1290	280167	1876	1.0	7.18
90 6942	WESTERN	268	52.28	1495	529363.63	2831	12	2.46	117	10384	52	0	3	Yes	59.02	2.46	56,56	1615	539923.63	2884	1.5	8.58
91 6966	WESTERN	1	0.40	n/a	n/a	n/a	1	0.02	n/a	n/a	n/a	0	0	No	0.42	0.02	0.41	n/a	n/a	n/a	n/a	n/a
92 6982	WESTERN	8	9.53	13	n/a 630897.75	n/a 3864	0	0.00	n/a 1306	n/a 24287	n/a 103	0	0	No Yes	10.18 51.41	0.00 22.14	10.18 29.27	13 2483	n/a 660011.75	n/a 4005	6.0	0.01 15.15
93 6992 94 7012	WESTERN	117 181	23.45 43.84	1175 2196	317292.21	1685	36 20	22.14 7.15	277	561	3	0	-	Yes	57.54	7.15	50.39	2474	320745.21	1751	4.0	13.87
95 7022	WESTERN	42	9.23	510	34839.2	432	10	4.45	157	961	13	- ŏ	i i	Yes	17.44	4.45	13.00	667	35800.2	445	4.0	9.76
96 7032	WESTERN	74	19.53	1088	603377	5679	21	7.13	364	19151.15	110	0	1	No	28.19	7.11	21.08	1454	649761.15	6382	4.0	9.80
97 7042	WESTERN	106	33.23	1285	319628.9	1810	28	23.87	1000	5882	46	1	0	Yes	62.82	23.87	38.96	2286	325871.9	1861 811	0.1	12.03
98 7112 99 7122	WESTERN	110 125	23.23	1170 713	158526.72 238722	810 1993	16 30	5.51 13.48	371 734	301 6099.8	34	0	2	Yes Yes	29.94 40.27	5.51 13.48	24.43 26.79	1541	158827.72 275144.8	2331	0.5	10.57
100 7132	WESTERN	122	18.59	899	93788.6	614	20	7.91	505	6707	91	0	0	Yes	31.04	7.91	23.18	1404	106121.6	751	0.5	13.25
101 7157	WESTERN	0	0.33	n/a	n/a	n/a	1	0.08	1	n/a	n/a	0	1	No	0.46	0.08	0.38	1	78652	512	n/a	n/a
102 7172	WESTERN	138	37.27	1410	137039.53	1127	33	26.01	1052	3977	27	0	3	Yes	68.17	26.01 8.43	42.15	2462 2236	164377.53 189312.13	1320 1725	6.0	14.63 11.63
103 7232 104 7252	WESTERN	192 166	51.13 38.78	1877	187614.13 801387.99	1713 4542	46 39	8.43 14.57	358 933	1084 1753	20	0	0	Yes Yes	64.44 56.61	8.43 14.57	56.00 42.07	2236	803140.99	4562	5.0	12.56
105 7262	WESTERN	171	65.44	2532	717528.69	5552	21	6.02	305	966	6	1	 	Yes	73.86	6.02	67.84	2840	735391.69	5995	2.0	13.19
106 7272	WESTERN	235	70.35	2320	432381.15	2868	29	2.93	183	2450	7	1	3	Yes	77.77	2.93	74.84	2504	788885.63	10174	1.0	13.46
107 7282	WESTERN	99	24.68	1444	132567.58	1199	23	5.01	273	903	6	0	1	Yes	34.10	5.01	29.10	1718	134143.58	1211	2.0	10.69
108 7292 109 7302	WESTERN	87	19.34	1092 n/a	132740 32614	1116 394	12	2.40 0.42	129	1015 305	5	0	1 0	Yes No	25.30 0.53	2.40 0.42	22.91 0.11	1221 7	170191 32919	2373 395	5.5 0.1	10.17
110 7332	WESTERN	72	19.29	526	8277	80	27	18.27	983	3844	24	0	2	Yes	39.14	18,17	20.97	1510	17871	135	2.5	8.46
111 7342	WESTERN	35	6.40	372	269049.02	1767	47	6.76	1487	3672	18	0	1	Yes	14.58	6.76	7.82	1861	273341.02	1793	2.0	7.10
112 7352	WESTERN	37	12.46	1006	73396.05	575	25	7.39	1311	121456	241	0	1	Yes	22.34	7.43	14.92	2317	194852.05	816	0.3	11.88
113 7362 114 7372	WESTERN	147 74	22.61 11.06	1077 821	133051.36 21871.03	2246 119	78 34	15.42 28.33	2162 1794	28731.93 20106.28	145 73	0	2 0	Yes Yes	42.41 44.90	15.74 28.33	26.67 16.57	3244 2615	396132.06 155419.31	5416 2705	1.0 2.0	11.35 13.16
115 7402	WESTERN	74	0.00	1	n/a	n/a	0	0.00	n/a	70100.20	n/a	0	0	Yes	1.88	0.08	1.80	1	n/a	n/a	0.5	3.66
116 7404	WESTERN	58	7.52	923	68421.53	929	25	1.52	54	n/a	n/a	0	0	Yes	11.34	1.68	9.66	977	68763.53	935	0.1	9.86
117 7406	WESTERN	96	16.61	1878	177344.52	1362	10	0.58	165	n/a	n/a	0	1	Yes	22.22	0.98	21.24	2043	345474.52	3340	2.0	9.92
118 7408	WESTERN	14	2.25	227	13446	173	6	0.39	12	n/a	n/a	0	0	Yes	3,85	0.45	3.40	239	13554 464	175	4.0 3.0	3.11 5.81
119 7410 120 7414	WESTERN WESTERN	8	0.33	122	n/a n/a	n/a n/a	0 3	0.00	n/a 17	n/a n/a	n/a n/a	0	 	Yes	2.32	0.14 0.48	2.18	139	n/a	29 n/a	0.1	6.53
121 7416	WESTERN	76	7.14	745	83153.45	505	23	1,70	41	134	1	0	1 7	Yes	12.04	1.91	10.14	786	83581.45	512	0.1	9.27
122 7492	WESTERN	127	29.91	843	86723.13	306	10	0.87	62	689	1	2	0	No	33.66	0.87	32.79	905	217404.13	1279	n/a	n/a
123 7512	WESTERN	89	14.79	1233	78267.37	478	30	3.93	425	19781	89	0	1	Yes	21.46	3.93	17.53	1658	122854.77	1935 1291	2.5	10.16
124 7522 125 7532	WESTERN	53 9	12.59	875 101	164547.97 20827.5	1244	38 9	10.84 7.44	542 969	7401 32459.3	46 222	0	2 0	Yes Yes	26.84 13.75	10.71 8.14	16.13 3.27	1420 1146	172018.97 161255.8	1310	1.0	5.50
126 7542	WESTERN	0	0.00	n/a	n/a	n/a	6	5.11	239	12570	52	0	0	No	7.80	6.72	0.80	246	12570	52	3.0	12.12
127 7582	WESTERN	152	33.55	2187	343317.42	2751	14	3.56	160	n/a	n/a	0	1 .	Yes	42.04	3.56	38.49	2348	356337.42	2835	1.5	10.82
128 7592	WESTERN	21	5.31	298	282489	704	13	6.18	607	1388	24 25	0	11	Yes	12.69	6.18	6.51	905 643	284049 53783.44	730 920	1.4	10.22
129 7602 130 7612	WESTERN	27 87	3.47 13.58	197 1227	22357.07 266324.15	251 1157	30 44	3.07 4.68	446 745	3666.32 54165.4	170	0	0	Yes	9.03	3.19 4.68	5.85 16.82	1974	337132.55	1548	0.1	13.47
131 7622	WESTERN	46	9.25	959	41685	164	19	2.49	373	11115	49	6	0	Yes	14.41	2.49	11.91	1333	54675	220	2.5	10.80
132 7632	WESTERN	96	12.57	1172	175487	1406	14	4.96	462	19279.17	136	0	0	Yes	20.76	4.96	15.79	1634	194766.17	1542	0.1	8.46
133 7642	WESTERN	42	9.49	957	95104	491	17	3,59	507	37646.6	207	0	2	Yes Yes	15.86 7,00	3.59 2.86	12.27 4.14	1464 143	133178.6 106	703	2.5 0.1	11.42 10.56
134 7652 135 7662	WESTERN	13 75	1.08 15.44	38 1126	106 245373.79	1104	24 26	2.64 6.48	105 779	n/a 53828	n/a 148	0	1 0	Yes Yes	7.00	2.86 6.48	4.14 19.99	1907	356960.87	3204	1,2	14.39
136 7682	WESTERN	65	10.28	963	115310.6	729	30	7.91	1079	13152.18	96	0	Ĭ	Yes	23.04	8.10	14.95	2042	310366.48	2884	0.1	9.44
137 7692	WESTERN	7	1.51	117	3652.33	48	7	0.51	9	n/a	n/a	0	0	Yes	3.58	0.51	3.06	126	29527.33	173	0.1	1.78
138 7702	WESTERN	44	10,29	1030	350842.17	1535	11	6.65	490	n/a	n/a	0	1	Yes	20.15	6.65	13.50	1520 923	459488.17 179849 93	3087	2.0	8.83 3.85
139 7712 140 7722	WESTERN	41	9.55	735 1051	24506.13 175860.65	168 838	5	0.99	187 49	n/a 8932.65	n/a 51	- 8	1 0	Yes Yes	12.26 16.25	0.99	11.26 15.56	1100	1/9849.93	896	1.0	5.16
141 7742	WESTERN	56	18.23	1895	120303	1456	14	1,83	285	9432	68	ö	3	Yes	24.09	1.83	22.26	2180	232445	3766	1.0	8.72
142 7752	WESTERN	78	19.63	1389	141910.23	2471	31	5.77	778	5685	15	ō.	1	Yes	28.09	5.77	22.32	2167	147661.23	2487	0.1	10.67
143 7762	WESTERN	49	12.06	1312	103355.57	535	3	0.35	62	318	1	11	0	Yes	14.93	0.47	14.46 8.69	1374	104409.57 37348	544 297	0.5 5.0	7.07 13.75
144 7772 145 7782	WESTERN	37 80	6.09 11.52	424 1092	25557 20064.55	203	11	1.21	262 123	3695 n/a	n/a	1 1	0	Yes Yes	9.89	1.21	15.72	1219	115216.25	2556	1.0	7.23
145 7782	WESTERN	94	19.97	1403	81686	351	19	8.93	647	8341	101	0	2	Yes	32.00	8.93	23.06	2050	180521.83	2753	0.2	10.53
147 7802	WESTERN	29	4.03	273	3152	27	28	5.09	719	1034	5	0	1	No	12.52	5.09	7.43	992	322140	3041	1.0	11.86
148 7822	WESTERN	41	7.62	412	64205	582	24	6.87	1083	17472	221	0	1	Yes	17.40	6.87	10.52	1495	90734	993	2.6	8.90
149 7832 150 7842	WESTERN	101 152	24.27	1630 1627	408480 307638.33	2477 1122	17 44	9.61	989 742	21612.92	150	0	2	Yes Yes	38.77 45.51	9.61	29.17	2619 2395	432262.92 319655.33	1186	1.0	14.08
150 7842	WESTERN	31	5.60	354	7081	38	15	1,28	55	n/a	n/a	0	1 1	Yes	9.26	1.29	7.97	409	7081	38	2.0	10.68
152 7882	WESTERN	49	8.92	593	35721.08	256	21	3.18	245	1530	5	0	i	Yes	14.84	3,18	11.66	841	37511.08	265	2.0	10,95
153 7892	WESTERN	0	0.00	12	n/a	n/a	1	0.94	87	n/a	n/a	0	0	No	1.49	0.94	0.55	99	n/a	n/a	1.0	13.32
154 7902	CENTRAL	185	45.37	1824	137187.91	1693	22	3.85	230	7538 35373	55 144	2	4	No No	53.52	3.85	49.67 61.67	2054 1578	279659.91 416431.02	3915	1.0	12.80 14.66
155 7912 156 7922	WESTERN	146 85	53.85 14.38	1501 973	376135.02 474009.62	3737 2209	17	1.02	918	35373 31861.73	144	1 - 1	1 5	Yes	29.44	12.52	16.92	1892	1050905.35	3312	1.0	11.87
157 7932	WESTERN	72	12.49	1046	83430	763	60	8.37	1025	108934	236	0	3	Yes	24.75	8.37	16.39	2072	899002	3369	0.2	14.80
158 7942	WESTERN	55	5.48	533	22711.91	92	26	2.61	145	318	2	0	0	Yes	12.46	3.19	9.27	678	23029.91	94	2.0	11.41
159 7952	CENTRAL	22	9.09	182	32738.64	172	3	0.23	4	n/a	n/a	0	0	No	13.01	0.23	12.78 17.97	187 308	48972.64 135902.71	363 852	0.5	n/a n/a
160 7962 161 8012	CENTRAL	45 4	17.06 0.49	308	86876.68 n/a	553 n/a	0 8	0.00	n/a	n/a n/a	n/a n/a	0	0	No Yes	2.36	0.00	17.97	308	135902./1 n/a	n/a	0.5	n/a 2.33
[101] 0012	ENSTERIN		0.49	1 10) Ira	11/8		1 0.40		1100	L iva	<u> </u>	1	100	LAN		1					

DistGIS Feeder Totals

1	Ι Δ	B	С	n I	E	Ė	6	н		J	к	L	м	N	0	Р	0	R	S	Т	U	V	w
Part	-				Number of	· · · · · ·				Number of			Number of	Number of	(0)		(a)	(u)	Number of				(z)
			(c)	(d)		l o	(g)	(h)	(i)		(k) CMI		Automatic line	Automatic fine			Length of	Length of	customers				
Prof. Prof			Number of		served on																		
Fig. Control																							
1	162 8032	EASTERN								18	337		0		No	38.08	5.15	32.93	342				
10	163 8062	EASTERN												3									
10 10 10 10 10 10 10 10														1							56		
15 15 15 15 15 15 15 15	166 8132	EASTERN	39	11.39	381			40						1									
10 10 10 10 10 10 10 10														2									
10											984			o			5.60		1105	342056	3032	4.0	
10 10 10 10 10 10 10 10													1										
15 15 15 15 15 15 15 15																							
17 18 18 18 18 18 18 18	173 8252	EASTERN	0	0.00		n/a	n/a		0.00		n/a	n/a		0	No	0.02	0.00	0.02	n/a	n/a		0.1	
10 10 10 10 10 10 10 10			8 10E		2					7				1							4145		
10		EASTERN						n/a		n/a	n/a	n/a								n/a			n/a
17 18 18 18 18 18 18 18														1									
100 100 100 100 100 171 100 100 171 100 100 171 100 100 171 100 100 171 100 100 171													1	1									
15 15 15 15 15 15 15 15					771								1	1	Yes	25.90	8.53	17.38	1844			1.5	
15 15 15 15 15 15 15 15														1									
March Marc	183 8392	EASTERN	62		1259	383639.27	589				3020	10		3						386659.27			
18 18 18 18 18 18 18 18									1.22	226				2	Yes	13.05	1.22	11.84	1147			0.8	
16 16 16 16 16 16 16 16														3 2									
10 10 10 10 10 10 10 10	187 8452	EASTERN	35	5.46	249	156958.53	1377	55	7.75	711	3606	24	0	2	Yes	15.84	7.75	8.09	960	160564.53	1401	0.1	12.67
19																							
100 100		EASTERN						14													158		
19 19 19 19 19 19 19 19														1									
198 198														2									
19 19 19 19 19 19 19 19							165	18			30996			Ö						59474		4.0	
17 17 17 17 17 17 17 17													0	0									
19 19 19 19 19 19 19 19													, , , , , , , , , , , , , , , , , , ,	4									
200 6672 FASTERN 60 1755 569 29754 45 15 469 58 259 1 0 5 Vel 2200 4.90 1755 628 2960 9 3.0 5.02													0	0									
200 202 FASTERN 200 174 200 1560 1500 207 507 50 1100 203 576 208 50 2 Ves 33.01 1100 203 1400 1700 276 4.0 1420 276 2													3	2									
200 200		EASTERN				162932	657	36		623	5749	28		2		34.01	11.00	23.01	1429	175592	726	4.0	14.29
200 200													0	2									
080 8772 EASTERN 81 1550 1400 \$500001 150 150 150 150 150 150 150 150 1													o	2									
920 8722 EASTERN 91 21:29 21:45 334:690.33 8122 21:15 236 138 1 4 3 7cs 24:83 154: 2319 2280 336:07.39 8909 0.3 11.00 10.00 8722 EASTERN 97 0.34 0.04 1.00 10.00 1		EASTERN				542050.1	659	15		115			0	4	Yes		1.58	19.08					
900 6792 EASTERN 37 C 534 264 26641 251 55 253 255 6945 34 0 1 Vec 1191 2.53 9.37 501 3006.3 200 3.0 13.11 1.00													1	4									
200 1902 1.65TEPN 1905 399 2222 477202 55 384 29 3.39 3.22 788 2 0 5 760 45.67 3.89 41.78 3905 3902 7807402 1190 1.5 14.17 3.00													7							33653	286	3.0	13.11
211 8812 FASTERN 73 IT.18 1278 13936862 994 57 10.61 1183 4949 55 0 2 Yes 31.03 10.29 20.74 2481 7799462 3482 348 12.70				39.59								2											
22 22 23 25 25 25 25 25														2									
214 8852 EASTERN 86 20.31 15:35 181046 1075 13 1.24 138 n/a 0 5 5 Vec 24.85 1.24 2.261 16:73 183916 11:21 0.1 10.31 12:16 8872 CENIRAL 67 10.42 15:73 301006 5227 103 13.74 33.06 10.098 47 1 0 0 Vec 13.60 1.31 12:25 4900 4894038.43 20.10 1.0 19.09 13:14 13.0 1 0 Vec 18.00 10.07 7.7 13 2.11 13.1 12:25 4900 4894038.43 20.10 19.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.09 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 13:14 13.1 12:25 4900 10.0 19.0 13:14 13.1 12:25 4900 10.0 10.0 19.0 19.0 12:25 4900 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	212 8822	EASTERN	95	23.18	1559					1296		1		- 4	Yes		8.11	26.18					
215 6872 CENTRAL 22 5.67 394 999.26 81 28 6.06 494 471 11 0 0 0 Yes 13.84 6.06 7.78 818 114725.6 933 2.0 2.0 22.41 216 8882 CENTRAL 30 5.01 518 12103.86 661 46 9.92 1900 93343.3 52 0 1 1 Yes 18.00 10.87 7.13 2418 51827.22 395 1.5 217 8892 CENTRAL 30 5.01 112 40.03 137.6 20437.55 2002 22 5.31 230 809 4 0 1 Yes 18.00 10.87 7.13 2418 51827.22 395 1.5 218 892 CENTRAL 30 1.70 50 425 4 4 0 0.23 4 ma no 0 0 1 Yes 18.00 10.87 7.13 2418 51827.22 395 1.5 219 8942 CENTRAL 13 1.70 50 425 4 4 0 0.23 4 ma no 0 0 0 No 3.65 0.23 3.33 34 4.25 4 9.0 1.53 220 8952 EASTERN 8 7.42 13 364 4 9.0 17.20 1.50 8862 FASTERN 8 7.42 13 364 4 9.0 17.20 1.50 221 8952 EASTERN 8 7.42 13 364 4 9.0 17.20 1.50 222 8952 EASTERN 8 7.42 13 364 4 9.0 17.20 1.50 223 8952 EASTERN 9 8 7.42 13 364 4 9.0 17.20 1.50 224 9042 CENTRAL 17 12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	213 8842											53		0 5									
216 6882 CENITIAL 67 10.42 1573 3014006 9277 103 13.74 3206 10.298 47 1 0 Ves 20.56 14.31 12.25 4900 4984038.43 20100 1.0 19.09					324	9992.6	81	28		494	471			o_	Yes	13.84	6.06	7.78	818	114725.6	933	2.0	23.41
218 8932 CENTRAL 112 40.03 1376 204473.55 2002 22 5.31 200 809 4 0 1 Yes 48.30 5.31 42.99 1606 44600.255 36.88 6.0 9.85													1	0				12.25					
219 8992 CENTRAL 13 1.79 30 425 4 4 10.23 4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	217 8892 218 8932													1 1									9.85
221 8862 EASTERN 58 12 85 1208 96760 958 40 12.60 1403 25974.5 200 1 2 Vea 28.39 12.60 15.79 2512 409045.5 2484 1.0 13.77 229 897.5 EASTERN 85 12 87 37099.65 146 35 18.99 15.25 50118 126 0 0 0 Vea 24.77 18.99 5.83 1612 9627.65 272 10.0 16.02 14.29 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.29 14.20 14.20 14.29 14.20 14.20 14.29 14.20 14.2	219 8942	CENTRAL	13	1.79	30	425	4	4	0.23	4	n/a				No					425	4	9.0	
229 892 FASTERN 86 12177 2433 2005039 199 1112 378 897 8 0 0 2 1998 44.50 1112 353.38 2912 21088098 1817 4.0 10.92 1812 224 87 37099.65 146 35 18.95 1525 59118 18 0 0 0 7es 24277 18.90 5.85 1612 96278.65 27 10.0 16.02 18.0														0							2484		n/a 13.77
225 9052 CENTRAL 45 10.70 1188 24872 336 34 4.54 713 21423 53 0 0 Ves 19.45 4.57 14.89 1901 49409 405 0.5 10.86 10.20 11.00 11.00 1.00 1.00 1.00 1.00 1	222 8972						1689				975	8		2	Yes	44.50	11.12	33.38	2812	210880.98	1817	4.0	10.92
225 9052 CENTRAL 45 10.70 1188 24872 336 34 4.54 713 21423 53 0 0 Ves 19.45 4.57 14.89 1901 49409 405 0.5 10.86 10.20 11.00 11.00 1.00 1.00 1.00 1.00 1	223 8982																						
226 9982 CENTRAL 6 0.55 40 9946244 404 16 7.15 1201 200170.13 1110 0 0 0 Yes 10.60 7.65 2.95 1241 5318597 2537 3.55 7.82 7.82 7.90	224 9042													-						49404			10.86
229 9492 EASTERN 20 7.18 236 32610 290 6 0.72 17 ma na 4 1 No 8.46 0.75 7.71 233 33153 225 3.0 11.2 2 329 9432 CENTRAL 77 12.39 815 39750 310 62 10.30 1068 9514 72 0 0 0 No 24.79 10.30 14.48 1894 45924 2 321 942 CENTRAL 107 21.19 1766 137723.51 878 41 4.63 726 977.17 334 0 0 0 Yee 27.92 4.63 23.29 2512 23626.51 1219 3.0 14.97 2 321 942 CENTRAL 77 15.31 1234 47482.75 448 44 4 3.59 496 26185 151 0 1 1 Yee 21.09 3.59 17.49 1732 8678.75 73 2.0 9.68 24.99 23 94.60 26185 151 0 1 1 Yee 21.09 3.59 17.49 1732 8678.75 73 2.0 9.68 24.99 23 94.60 26185 151 0 1 1 No 17.85 2.40 15.44 1126 15.7664.7 1240 0.5 10.88 24.99 25.0 10.0 1 1 Yee 2.69 9.68 16.66 2716 274.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	226 9082	CENTRAL		0.55	40	99462.84	404	16	7.15	1201	200170.13	1110	0	0	Yes	10.60	7.65	2.95	1241	531853.97		3.5	
229 9492 EASTERN 20 7.18 236 32610 290 6 0.72 17 ma ma 4 1 1 No 8.46 0.75 7.71 233 33153 225 3.0 11.2 2 239 9432 CENTRAL 77 12.39 815 39750 310 62 10.30 1068 9514 72 0 0 0 No 24.79 10.30 14.48 1894 496.64 1 231 9442 CENTRAL 107 21.19 1766 137723.51 678 41 4 6.63 7.26 977.17 334 0 0 0 Vee 27.92 4.63 23.29 2512 256226.51 1219 3.0 14.97 1 232 9452 CENTRAL 77 15.31 1.234 47482.75 4448 44 3.59 496 26185 151 0 1 1 Yes 21.09 3.59 17.49 1732 8676.75 73 2.0 9.68 1 233 9462 CENTRAL 51 13.66 794 149230.7 10.99 13 2.40 332 ma ma 0 1 No 17.85 2.40 15.44 1126 13.764.7 1240 0.5 10.88 1 249 9472 CENTRAL 46 13.80 1391 171892 1992 23 9.83 795 591 4 0 1 1 No 17.85 2.40 15.44 1126 13.764.7 1240 0.5 10.88 1 250 9482 CENTRAL 256 10.221 2675 108838.3 1162 24 3.17 210 168 1 1 3 Nes 17.28 12.28	227 9092		5	2.00																			
220 91922 CENTRAL 77 12.39 815 39750 310 62 10.30 1068 9514 72 0 0 0 No Q4.79 10.30 14.48 1884 49264 392 1.0 9.62 19.94 17.00 19.00 14.49 1884 1884 1884 1884 1884 1884 1884 18	228 9112													1									
285 9482 CENTRAL 256 102.21 2675 108838,3 1162 24 3.17 210 168 1 1 1 3 Yes 112.35 3.17 109.17 2896 109.59.3 1174 4.0 15.25 24 25.25 24 25.25 25.	230 9132	CENTRAL	77	12.39	815	39750	310	62	10.30	1068	9514	72		0	No	24.79		14.48					
285 9482 CENTRAL 256 102.21 2675 108838,3 1162 24 3.17 210 168 1 1 1 3 Yes 112.35 3.17 109.17 2886 108.593,3 1174 4.0 5.25 236 5202 EASIEHN 65 52.34 558 139990 1003 8 0.5 3/4 6 1 2 3 Yes 37.79 0.75 37.04 695 20144514 0.0 5.5 8.02 237 2012 EASIENN 141 80.50 1659 339721,1 2606 19 1.33 46 0/a n/a 3 5 Yes 86.47 1.09 4881006 5 26144 377 10 9.66 28.63 28.922 EASIENN 59 24.75 90.2 4747.3 602 30 1.98 106 n/a n/a 1 3 Yes 28.45 1.98 26.47 100 4881006 5214 1.2 8.63 29 92.32 CENTRAL 93 23.85 1643 910260.8 9924 18 1.95 204 4594 32 0 3 No 27.03 1.95 25.07 1849 1252774.8 1055 2.0 8.55 10.79	231 9142													0									
285 9482 CENTRAL 256 102.21 2675 108838,3 1162 24 3.17 210 168 1 1 1 3 Yes 112.35 3.17 109.17 2896 109.59.3 1174 4.0 15.25 24 25.25 24 25.25 25.	232 9152						110		0.00					 ;				15.44	1126	157664.7	1240	0.5	10.88
259 960; CHIPM. 50 1022 271 2615 1088635 100 27 271 271 100 100 1 1 1 3 148 271 271 100 100 1 1 2 3 148 271 271 271 271 271 271 271 271 271 271	234 9172	CENTRAL	46	13.80	1381	171892	1992	23	9.83	795	591	4		!									
289 222 EASTERN 59 24.75 992 4774.3 692 30 1.98 106 n/a n/a 1 3 5 Yes 28.45 1.98 26.47 100 48100.65 2614 1.2 8.63 239 92.2 EASTERN 93 23.85 1643 910260.08 9924 18 1.95 204 4594 32 0 3 No 27.03 1.95 25.07 1849 1.2274.48 14852 2.0 8.35 240 92.4 CENTRAL 57 15.86 752 76285.37 547 40 7.00 776 23086 131 0 3 Yes 28.64 7.00 19.41 1528 9938.02 681 3.0 10.79	235 9182											1	1 -1										
238 9222 EASTERN 59 24.75 992 4774.73 602 30 1.98 106 n/a n/a 1 3 Yes 28.45 1.98 26.47 1009 488100.65 2614 1.2 8.53 239 923 CENTRAL 93 23.85 1643 910260.08 9924 18 1.95 204 4594 32 0 3 No 27.03 1.95 25.07 1849 12274.48 1485 2.0 8.35 240 924 CENTRAL 57 15.86 752 76285.37 547 40 7.00 776 23086 131 0 3 Yes 26.40 7.00 19.41 1528 99378.02 681 3.0 10.79	237 9212					339721.1	2606			46	n/a	n/a	3	5	Yes	86.47	1.33	85.14					9.66
239 92.2 CENTIFIC 57 15.86 752 76285.37 547 40 7.00 776 23066 131 0 3 Yes 28.40 7.00 19.41 1528 99838.02 881 3.0 10.79	238 9222													3									
														3					1528		681	3.0	10.79
											5372		0	2		35.80		22.24			3100	1.4	13.93

DistGIS_Feeder_Totals


							Н		i	К	1	М	N	0	Р	Q	R	S	T	U	٧	W
A	В	С	D	(0)	F	G						(iti)	(11)					(v)				(z)
			i !	Number of		İ			Number of		1	Number of	Number of	(0)		(q)	(u)	Number of	(w)	(x)	(v) Load	
1 1		(c)	(d)	Customers	(f)	(g)	(h)	(i)	Customers	(k) CMI	(1)	Automatic line	Automatic line	Whether the	(p)	Length of	Length of	customers	CMI for	CI for	growth since	recorded through
11		Number of	Number of	served on	CMt for	Cl for	Number of	Number of	served on	for	Cl for	Sectionalizing	Sectionalizing	feeder	Total Length	Underground	Overhead portion of the	served by Overhead	Overhead	Overhead	December 31.	December 31.
(a)	(b)	Overhead	Overhead	Overhead	Overhead	Overhead	Underground	Underground	Underground	Underground	Underground	devices on the	devices on the	Circuit is	of the Feeder Circuit	portion of the Feeder Circuit	Feeder circuit	Feeders	Feeders	Feeders	2005	2006
1 Feeder ID	Sub Region	Lateral Lines	Laterat Miles	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Lines	Lateral Miles	Lateral Lines	Lateral Lines n/a	Lateral Lines	Lateral Lines	Feeder	Loop Yes	15.44	1.06	14.38	1569	137450.7	1324	0.5	10.22
242 9292	CENTRAL	38	11.52	1492	137188.7 58759	1322	7 18	0.96	76 265	n/a	n/a	0	0	Yes	17.26	1.05	16.21	2186	358833.95	2720	0.1	9.21
243 9312	CENTRAL CENTRAL	56 47	13.77 8.38	1920 1189	129357	599	29	2.81	829	18557	50	0	1	Yes	13.48	2.84	10.64	2018	147914	649	0.2	10.26
244 9322 245 9332	CENTRAL	45	10.19	1074	74928	569	27	4.01	399	14363	100	ŏ	3	Yes	16.53	4.04	12.49	1473	97155.5	767	0.1	8.09
246 9342	CENTRAL	55	8.95	1090	40390.6	321	16	1.00	147	2541	21	0	0	Yes	13.48	1.02	12.50	1237	77684.88	594	0.5	7.37
247 9352	CENTRAL	56	12.19	1475	35674	428	19	2.77	398	38935.65	145	0	0	Yes	18.63	2.77	15.86	1873	77718.65	640	0.1	8.54
248 9362 249 9372 250 9382	CENTRAL	68	14.09	1557	13176.8	208	22	0.72	158	760	4	0	0	Yes	18.07	0.72	17.36	1718	14473.8	219	0.8	13.76
249 9372	CENTRAL	65	13.40	1446	83724	777	6	0.13	7	n/a	n/a	0	2	Yes	15.60	0.13	15.46	1453	84449	795	0.2	8.02
250 9382	CENTRAL	51	8.46	864	56414	843	16	0.68	334	n/a	n/a	0	0	Yes	11.33	0.66	10.67	1198	56414	843	0.5	6.95
251 9402	CENTRAL	37	3.99	799	255424.1	1458	38	1.66	1489	37098	131	0	0	Yes	9.47	2.00	7.47	2471	297852.1	1681 5360	5.0 0.5	10.10
252 9412	CENTRAL	54	8.03	853	887188	4234	28	1.77	1193	22077	78	0	1	Yes	12.50	2.05	10.46	2046	947030			9.27
253 9422	CENTRAL	36	4.59	607	6881.73	93	12	0.36	203	n/a	n/a	0	0	Yes	7.09	0.36	6.73	810	7849.73 167322.45	104	1.2	13,64
254 9462	CENTRAL	83	20.08	1855	139275	1307 876	48	12.97	966 1201	23760 30593	121	0	3	Yeş No	36.36 41.89	12.97 24.40	23.40 17.49	2821	157513	1074	- 2.0	16.15
255 9472 256 9492	CENTRAL	55	14.57	1025	123654		51	24.40 3.19	635	n/a	n/a	<u>'</u>	1	Yes	12.44	3,19	9.26	1188	22981.23	183	0.5	9.52
	CENTRAL	45	7.38	552 1560	22981.23 431491.04	183 2690	30 17	3.19	43	n/a	n/a	15	3	No	150.98	3.57	147.41	1603	725881.49	6057	1.0	7.29
257 9522 258 9532	CENTRAL	239	145.06 2.16	146	398861.72	3398	36	11,91	2354	93637.27	637	0	0	Yes	17.37	11.91	5.46	2500	537924.66	5696	2.0	17.50
259 9562	CENTRAL	53	5.81	729	263217.94	1728	33	2.94	368	5213	41	0	0	Yes	10.94	3.32	7.61	1102	463539.94	2323	0,5	11.18
260 9572	CENTRAL	10	2.86	410	230967	1064	67	7.81	2526	264956,62	772	0	0	Yes	13.49	8.35	5.13	3014	500936.62	1862	1.0	14.62
261 9582	CENTRAL	0	0.02	n/a	4533	24	0	0.00	n/a	n/a	n/a	0	0	No	0.02	0.00	0.02	n/a	4533	24	0.1	8.09
262 9592	EASTERN	101	108.06	709	291557.17	2073	32	15.53	313	8832.08	53	9	4	No	132.11	15,53	116.58	1022	352383.62	2919	0.3	4.18
263 9602	CENTRAL	52	9.89	636	183269	1144	26	8.57	902	23437.35	158	0	2	Yes	19.53	8.57	10.96	1538	210090.35	1337	3.0	13.14
264 9612	CENTRAL	77	17.41	1581	86384	873	34	3.40	702	27370	83	0	1	Yes	23.24	3.40	19.84	2283	113829	957	0.1	14.69
265 9622	CENTRAL	83	10.64	937	51456,27	476	26	2.02	435	6454	35	0	0	Yes	16.34	2.02	14.31	1382	58083.27	512 153	0.2	12.14
266 9632	CENTRAL.	37	4.27	229	12281.6	152	13	0.48	24	316	1	0	1 1	Yes	6.06	0.48	5.58	253 248	12597.6 5510	57	1.5 n/a	10,50 n/a
267 9662	CENTRAL	35	9.87	239	5510	57	3	1.16	9	n/a	n/a	0	1 2	No No	13.16 56.40	1.16 8.50	12.00 47.90	2435	295808.29	5850	2.0	11.00
268 9672	CENTRAL	172	45.03	1965	294367.02	5834	21	8.50	469	639 4075.5	5 16	1 0	3		51.94	12.17	39.77	2831	273169.07	6297	2.0	10.95
269 9682	CENTRAL	113	37,31	1835	237495.8	3172	39	0.00	996 675	5365	43	0	0	Yes Yes	2.27	0.00	2.27	63	860.67	4	1.0	13.41
270 9692 271 9702	CENTRAL	3	0.49	63 n/a	860.67 n/a	n/a	0	0.00	n/a	n/a	n/a	 	0	No	3.43	0.00	3.43	n/a	n/a	n/a	0.1	n/a
	EASTERN	116	0.35 35.09	2565	56746.57	671	23	6.88	n/a	n/a	n/a	l ö	ì	Yes	46.31	6.84	39.47	3240	96972.7	911	7.0	16.17
272 9792 273 9802	CENTRAL EASTERN	21	14.98	179	5884	47	1	0.04	n/a	n/a	n/a	4	0	No	15.50	0.04	15.46	179	6116	48	n/a	n/a
274 9812	CENTRAL	79	40.72	1023	165092.46	1120	44	14.96	841	8593	58	3	2	No	57.93	14.96	42.97	1864	308571.46	2105	6.5	12.80
275 9828	CENTRAL	21	8.12	202	18147.7	147	2	0.09	4	n/a	n/a	0	0	No	11.15	0,09	11.06	206	52497.7	553	1.0	1.72
276 9832	EASTERN	224	117.39	2335	613755.79	3662	24	1.31	81	n/a	n/a	10	5	No	121.08	1.31	119.77	2423	618031.79	3691	1.0	13.64
277 9912	EASTERN	0	0.15	5	n/a	n/a	2	0.08	6	n/a	n/a	0	0	No	1.57	0.08	1.49	. 11	n/a	n/a	0.1	n/a
278 9934	EASTERN	9	1.18	244	n/a	n/a	10	1.04	164	n/a	n/a	0	_0	Yes	4.30	1.12	3.19	408	227703.7	526	n/a	n/a
279 9964	EASTERN	23	1.55	177	n/a	n/a	7	0.23	33	n/a	n/a	0	0	Yes	3.51	0.23	3.28	210	155143.26	736	n/a	n/a
280 0102	CENTRAL	14	3.48	370	402	7	1	0.06		n/a	n/a	0	0	No	4.78	0.06	4.72	370	402 605	6	n/a n/a	n/a n/a
281 0152	CENTRAL	14	1.71	228	560	5	2	0.12	4	n/a	n/a	0	0	No.	3.43	0.17	3.26	232	005	1 °	194	194
						1	I	1	1	l .	1			I	I		1	l	1	1		
	13th & Gonzalez	1	1	l	Į.	1	I	1	1	i				I	i		1	1	1	1		
II	Sub Abandoned		1			1	l	1			į	1 0	0	N/A	l 0		0	1	l	1		
282 492	2006	ļ			86	 	0	0.00	n/a	n/a	n√a	- 0	0	No	0.00	0.00	0.00	1	n/a	n/a	n/a	n/a
283 0514	WESTERN	0	3.75	468	4391	39	0	0.00	n/a	n/a	n/a	0	0	Yes	5.22	0.00	5.22	468	n/a	n/a	n/a	r√a
	WESTERN	27	1.61	400	794	10	0	0.00	n/a	n/a	n/a	0	0	Yes	2.50	0.00	2.50	196	18505	209	n/a	n/a
285 0734	WESTERN	11	3.10	416	50467	133	0	0.00	n/a	n/a	n/a	0	Ö	Yes	5.13	0.00	5.13	416	116465	557	n/a	n/a
[cool 0146	- VESTERN		1 . 9.10		1 00.00																	

A SOUTHERN COMPANY

Storm Recovery Plan

Effective Date: 06/01/06

Page 2 of 89

Effective Date: 06/01/06

Gulf Power Company Storm Recovery Plan Including Natural Disaster Preparedness and Recovery Effective Date: 06/01/06

Gulf Power Company uses the plans described in its Storm Recovery Plan to respond to any natural disaster that may occur within its service area. These plans have proven to be very effective during the last 2 years in recovering from the multiple storms that have impacted Gulf Power and its customers. As part of its annual operations Gulf Power has developed and refined it's planning and preparations for the possibility of a natural disaster within the area Gulf serves. This planning is updated annually to build on what works well and to improve in areas that do not work as well as intended. In these updates, Gulf strives for continuous improvement by building on its experiences while working recovery efforts within its own service areas and when serving to assist other utilities that have suffered weather related natural disasters. In the past, Gulf's plan has been encapsulated within a detailed and proprietary Storm Recovery Procedure Manual. Gulf has recently undertaken to pull this information together in a separate document that will form the basis for its Storm Recovery Plan. Gulf will continue to prepare the more detailed Storm Recovery Procedure manual as an element of its Natural Disaster Preparedness and Recovery program. Manual will follow the guidelines and philosophy set forth in the Storm Recovery Plan.

Executive Overview of Gulf's Storm Recovery Preparations:

As a part of the planning process, all Gulf Power employees are given a specific storm assignment. The Company Emergency Management Center (CEMC) specialist works with Human Resources to ensure that each restoration area is staffed with the appropriate number of employees and that every employee has the proper skill set to perform their storm assignments. In many cases, employees have a storm assignment which may be significantly different from their normal job. Storm training handbooks are updated and distributed as needed. Additionally, training is conducted to ensure that employees are competent to perform the job to which they are assigned. Prior to the storm season, informational meetings are held and internal communications focus on storm preparedness.

Members of the CEMC leadership team attend conferences each year in an effort to benefit from lessons learned by others. In the past, these have included: the Southeastern Electric Exchange (SEE) Mutual Assistance

Page 3 of 89

Effective Date: 06/01/06

meetings, the National Hurricane Conference, and the Governor's Hurricane Conference. Gulf Power also participates in the yearly statewide storm drill under the direction of the State Emergency Operations Center (SEOC).

In the logistics and support areas, contracts are negotiated and confirmed with vendors for services such as food, lodging, materials, transportation, fuel, and other support functions. Staging sites are secured, and if needed, agreements are negotiated and signed. Gulf Power's Supply Chain Management department ensures that materials on hand, along with available supplies from the material vendors, are sufficient to meet the anticipated demands of the storm season.

<u>Overview of Gulf Power's Company Emergency Management Center</u> (CEMC):

The objective of the CEMC is to provide overall direction in the restoration of electric service to Gulf's customers as quickly as possible, while protecting the safety of everyone involved. In order to provide a coordinated response and to maximize the restoration effectiveness, the Company organizes into three major restoration areas headquartered in Pensacola, Fort Walton Beach, and Panama City. The CEMC consists of functional teams which provide support to Power Generation, Transmission and Distribution as they restore their respective systems. The three primary leaders working in the CEMC are the CEMC Manager, the Resource Director, and the Logistics Director, who report directly to the Power Delivery General Manager. On a daily basis, these three leaders work with each other to insure the CEMC is providing the proper administration and support necessary for the restoration efforts in the field. The functional teams that are represented in the CEMC and that report to the CEMC manager are as follows: CEMC Staff; Distribution; Distribution Operations Center; Transmission, System Control, and System Protection; Power Generation; Contractor Coordination; Logistics; Aircraft Operations; Supply Chain Management; Customer Service; EOC Coordination; Corporate Security and Risk Management; Safety and Health; Public Affairs; Human Resources; Fleet Services; Information Technology; Corporate Real Estate and Quality (Facilities); Accounting and Treasury; and Environmental.

When the National Weather Service announces a tropical storm or hurricane has entered the Gulf of Mexico, the System Operator will notify the CEMC leadership, appropriate management and the Company's executives. Private weather services used by Gulf Power also issue notifications to selected Company officials. The storm is monitored as it develops, and if there is a possibility Gulf Power's service area will be affected, the CEMC at the

Page 4 of 89

Effective Date: 06/01/06

Company's Pace Boulevard building is set up and readied for activation. The hurricane is closely monitored when it may threaten Gulf Power's service area within 36 hours.

After evaluation of wind profiles and consultation with private weather services, a decision is made as to when it will be unsafe for employees to travel. At that time, and after consultation with senior Company management, the Project Services Manager (CEMC Manager), the Power Delivery Services Manager, or the CEMC specialist will determine when the CEMC will be formally activated. Once activated, the CEMC, which is located at the Pace Boulevard Building, is staffed by a core group that will remain for the duration of the storm.

CEMC leaders are notified of the activation plan and are responsible for ensuring their respective areas are in a state of readiness and are properly staffed. The CEMC remains operational 24 hours a day, 7 days a week, until such time the power is substantially restored to all customers who are able to receive service. Depending on the severity of the storm, repair work on the system may continue after the CEMC is deactivated.

Summary of Gulf's Storm Team Leaders' Roles and Responsibilities:

CEMC Staff:

Led by the CEMC Manager, this department is responsible for the overall coordination of storm restoration efforts. Before, during and after the storm, the staff is responsible for monitoring the weather associated with the hurricane and communicating this information to other CEMC leaders and Company management and executives. It is responsible for the acquisition of line resources through the SEE, from other Southern Company subsidiaries, and from other utilities, and for coordinating the acquisition of those resources through the Resource Director. The staff assigns work locations to the incoming tree trimming and distribution line resources. The CEMC Manager is responsible for providing customer outage numbers and estimated times of restoration (ETRs) to the SEOC. The CEMC Manager also represents Gulf Power Company on all conference calls associated with the Southern Company Disaster Managers committee and the SEE Mutual Assistance committee.

Distribution:

This department is responsible for damage assessment and restoration of the distribution system after the storm. The damage assessment provides the information necessary to determine what additional outside labor resources and

Page 5 of 89

Effective Date: 06/01/06

material will be necessary to complete the restoration. This department works with the CEMC staff and Supply Chain Management in allocating labor and material resources to the affected areas as necessary.

Distribution Operations Center (DOC):

This department reports to the DOC supervisor and monitors the distribution system's status to help expedite the restoration process. The DOC also ensures the outage management system is current and provides accurate information which the CEMC uses in communications with customers, governmental officials and employees. The DOC issues switching orders to ensure the safety of workers repairing damage to the electrical system.

Transmission, System Control, and System Protection:

This team is responsible for the overall transmission and substation restoration efforts. Under the direction of the Transmission manager, this department assesses damage to the transmission system by prioritizing the transmission lines to be aerially evaluated and formulating a restoration plan; performs evaluations of substations; performs switching as needed; and identifies protection and control schemes that need repair after the storm event. This team is also responsible for monitoring the transmission system load and operational status, and for taking corrective action when necessary during the restoration effort.

Power Generation:

This department provides guidance and accountability to mitigate the risk of storm related damage to Gulf's generation assets, and ensures these assets are properly maintained and operational following a storm event.

Contractor Coordination:

This department is responsible for the acquisition of contract distribution line and tree trimming resources. It ensures contractors are pre-identified and qualified to work on Gulf Power's system and negotiates the necessary contracts. This department is also responsible for monitoring the costs of these resources and approving the invoices. The CEMC Manager and the Resource Director work

Page 6 of 89

Effective Date: 06/01/06

together in determining the number of contract distribution line and tree trimming resources to acquire and where they will be assigned to work. The CEMC Manager has the responsibility for releasing the contractors as work is completed.

Logistics:

The logistics team, under the direction of the Logistics Director, is responsible for coordinating food and lodging requirements for the restoration effort; setting up and managing staging sites; and coordinating mass transportation.

Aircraft Operations:

Aircraft Operations is responsible for providing and coordinating flights necessary to assess damage to the electrical system, flying with the contractor pilots as airborne evaluators to assess damage to the electrical system, and communicating the damage findings to the appropriate CEMC area to facilitate timely restoration of electrical service.

Supply Chain Management:

This department produces purchase orders and acquires materials, equipment and supplies needed for the restoration effort. It maintains a centralized material distribution network and disposes of scrap and damaged materials. The Supply Chain Management manager ensures preparations have been made to provide effective procurement and materials management services.

Customer Service:

This department is responsible for the continuing operation of the Customer Call Center that serves as the primary interface for Gulf Power's customers to report trouble. The Customer Service representatives handle the customers' calls in a timely and professional manner. Through the Customer Service System and the Trouble Call Management System the department enables the CEMC to assign adequate resources to respond to storm trouble.

Page 7 of 89

Effective Date: 06/01/06

EOC Coordination:

The County EOC Team Leader is the coordinator of the County EOC representatives who provide timely and accurate information to those local governmental representatives. The Company also has a representative who works at the SEOC. The Company's EOC representatives provide a direct contact point between Gulf Power and governmental officials at the county and state EOCs, provide the EOCs with accurate and timely information concerning the ongoing restoration effort, and work with the EOCs to address any specialized service needs or concerns.

Corporate Security and Risk Management:

Under the direction of the manager, this department protects the Company's assets; investigates any claims; and provides security at any staging area or facility.

Safety and Health:

This team provides orientation to outside resources; provides any additional training necessary; and works to ensure the safety of employees. The manager also works to address and prevent any health issues through acquiring and providing nursing resources.

Public Affairs:

This department provides timely and accurate information to internal and external audiences; provides media releases; responds to media inquiries; posts news on the Company's web site; and communicates with contacts at county EOCs. The Public Affairs Manager is the designated Company spokesperson in response to any media inquiry.

Human Resources:

This department assists in accounting for all employees after the storm event; making storm assignments; coordinating the acquisition of additional support personnel from other Southern Company subsidiaries; and coordinating Family Services for employees whose personal property has been damaged or who

Page 8 of 89

Effective Date: 06/01/06

have had personal emergencies. The Human Resources Director is responsible for handling all personnel issues associated with employees working storm duty.

Fleet Services:

This department secures fleet equipment for deployment; coordinates all automotive and water craft rentals; provides maintenance support for automotive equipment; and works to acquire and distribute fuel. The Fleet Services Team Leader ensures that all garages are operational and that all company vehicles are maintained.

Information Technology (IT):

Under the leadership of the Team Leader, the IT Team ensures Company wide communication tools are operational and technical support is provided as needed. This team coordinates the shutdown and protection of all computer equipment; sets up the computer and communication tools in the CEMC; repairs or restores the telecommunications infrastructure, which provides communications for the Company; replaces computers, fax machines and telephones that may have been damaged; establishes temporary communications networks; and provides IT support as needed.

Corporate Real Estate and Quality (Facilities):

This department ensures all Company facilities are secured and safe before and after any major weather event. It is also responsible for overseeing repairs to facilities damaged during a storm. The manager ensures adequate manpower and materials are available for emergency preparedness and recovery.

Accounting and Treasury:

This department ensures the Company properly accounts for all expenditures associated with the restoration; ensures funds are available to support the restoration effort; and provides accounting support in the field restoration areas. Accounting and Treasury management ensures that proper accounting practices and procedures are followed.

Page 9 of 89 Effective Date: 06/01/06

Environmental:

The Environmental Department coordinates the overall prevention, assessment, and subsequent remediation of environmental damage associated with company facilities after a natural disaster and serves as the liaison with the local, state, and federal environmental agencies.

Page 10 of 89

Effective Date: 06/01/06

Excerpts from Gulf's Storm Recovery Procedures by Section:

STORM RECOVERY PROCEDURES

II Executive Overview III Company Emergency Management Center (CEMC) V Fleet Services	No. 1-5 3 - 8 29-35 44 2 5
V Fleet Services	29-35 44 2 5
,	44 2 5
,	2 5
,	5
	2
NA 1 1 1 1 1	
VI Logistics	3
	-
VII Human Resources	2
	3
VIII Supply Chain Management	2-6
	10
	11 13
	15 15
IX Corporate Real Estate & Quality	2
in corporate riour Estate & Caunty	_
X Public Affairs	2-3
	17-18
	21-23
XI Customer Service	2-3
XII Corporate Security & Risk Management/	2-4
Safety & Health	
XIII Accounting & Treasury	2-3
XIV Power Generation	2-3
XV Environmental	2
XVI Power Delivery	2-6

Page 11 of 89

Effective Date: 06/01/06

II EXECUTIVE OVERVIEW

(1) Executive Overview of Storm Recovery Procedure Plan

This restoration procedure establishes a plan of action to be utilized for the operation and restoration of generation, transmission, and distribution facilities during major disasters. Such disasters are hurricanes, tornadoes, and storms that could cause widespread outages to our customers.

The overall objective is to restore electric service to our customers as quickly as possible consistent with protecting the safety of everyone involved.

In order to provide a coordinated response to maximize our restoration effectiveness, the company will organize into 3 major Restoration Areas headquartered in Pensacola, Ft. Walton and Panama City. The Project Services Manager of Power Delivery will direct the Company Emergency Management Center (CEMC). The CEMC consists of functional teams to provide support to power generation, transmission and three distribution restoration areas.

The three major distribution restoration areas, under the direction of the respective Power Delivery Managers (PDM) / Restoration Area Managers (RAM), are subdivided into smaller operating areas to coordinate local restoration efforts. These local area headquarters are staffed with area coordinators, switchmen, line/service crews, tree crews and the nucleus of support personnel to form the basic unit for local restoration. Movement of personnel and equipment between local area headquarters is directed by the RAM for each of the three distribution restoration areas. Movement of personnel and equipment into and out of Gulf Power's service area and between distribution restoration areas is directed by the Project Services Manager or his designee. The Project Services Manager or his designee will consult with the RAM's regarding the movement of crew's into and out of their respective areas.

The responsibilities of the functional support teams and restoration areas are outlined in the CEMC Section III and described in detail in the remaining sections of this manual.

Safety

Safety is each person's first responsibility. The standards set forth in the Company's Safety Manual, Safe Work Policy and Safe Work Practices remain in effect at all times. "Non-Gulf Power crews will work under their safe work

Page 12 of 89

Effective Date: 06/01/06

practices, provided a specific site or system hazard has not been identified requiring additional safe work methods." Maximum use of daylight hours will be made in restoring service. Crews will not be required to work around energized conductors while exposed to sustained gale force (39 mph) or greater winds.

Employees will generally be evacuated from company buildings that are expected to experience hurricane force winds. Exceptions to this will be essential functions where our facilities are designed to withstand the expected wind and water conditions with the approval of that Area's Management. Building evacuations will be the responsibility of Corporate Real Estate & Quality and Safety & Health team leaders.

Notifications

When the National Weather Service (NWS) announces that a tropical storm (winds of 39 to 73 mph) or hurricane has entered the Gulf of Mexico, the on duty System Control Operator will notify the following personnel:

If the tropical storm or hurricane enters the Gulf of Mexico on a weekend or holiday, the on duty System Control Coordinator will make these notifications unless prevented by work conditions. During normal office hours (or when the on duty System Control Coordinator can not make these notifications) the Project Services Manager, CEMC Specialist or the Power Delivery Services Manager will arrange for these notifications to be made.

A Hurricane Watch is declared when a hurricane may threaten Gulf Power's service area within 36 hours. At that time, the Project Services Manager, Power Delivery Services Manager or the CEMC Specialist will determine when the CEMC will be activated. Contact will also be established with Southern Company Operating Companies Disaster Managers, and with Gulf Power Company's representative at the State of Florida's Emergency Operations Center (FEOC).

The Saffir-Simpson Hurricane Scale is a 1-5 rating based on the hurricane's present intensity. This is used to give an estimate of the potential property damage and flooding expected along the coast from a hurricane landfall. Wind speed is the determining factor in the scale, as storm surge values are highly dependent on the slope of the continental shelf in the landfall region. Note that all winds are using the U.S. 1-minute average.

The remainder of this manual provides greater detail into the operation of each of the functional support areas during storm conditions. Suggestions for

Page 13 of 89 Effective Date: 06/01/06

improvements to this manual should be made to the Project Services Manager or the CEMC Specialist.

Page 14 of 89

Effective Date: 06/01/06

(II) Company Emergency Management Center - CEMC

In order to provide support for each restoration area and direct the Company's overall storm response, functional teams have been established as shown on Exhibit A. The CEMC will be directed by the Project Services Manager of Power Delivery with the Power Delivery Services Manager as the first alternate and the CEMC Specialist as the second alternate. The CEMC Staff will be directed by the CEMC Specialist. Each of the functional teams will have a team leader and an alternate (Exhibit B1-B16).

As a part of Gulf Power Company's conditions of employment, all Southern Company employees working at a Gulf Power Company facility must be available for storm duty. In the event of a storm situation, Gulf Power *must* be a priority. As long as there are customers out of service, teams of Southern Company employees work shifts around the clock until service is restored. Failure to comply with storm restoration duties without extraordinary circumstances will result in termination.

While many employees have specific duties assigned throughout the hurricane season, all Southern Company employees are subject to assignment and reassignment during and after a hurricane. It is the responsibility of each employee to know what their storm assignment is and to be available as necessary.

Before, during, and after a storm, employees should call 1-888-Gulf-Hur (1-888-485-3487) for instructions and additional information. All updates, including phone numbers employees are to call regarding assignments, will be communicated there. As in the past, employees will be given a reasonable amount of time to take care of family, homes, cars, boats, etc., before reporting for storm duty. It is suggested that during storm season, all employees make alternate housing arrangements (if necessary) *IN ADVANCE* for families and other personal preparations so that if an employee is called in for storm duty, things can be put in order quickly.

During storm conditions each CEMC Team Leader and Power Delivery RAM will arrange for the notification of their team members. Employees will be given reasonable time to secure their personal belongings. Where possible, employees will be allowed to report after storm conditions allow for safe travel.

Human Resources will contact employees not covered in the above paragraph and advise them when, where and to whom to report. Employees should monitor 1-888-Gulf-Hur (1-888-485-3487) for current information and instructions.

Page 15 of 89

Effective Date: 06/01/06

After being contacted by Human Resources the employee is not required to make contact with their normal work location supervisor/manager before reporting for storm duty. Upon completion of District Storm Information Center (DSIC) storm duty, the DSIC shall provide the employee's storm duty status information to the CEMC Human Resources team. Human Resources will reassign or officially release the employee to return to their normal work location. This procedure will provide for better coordination of resources to meet the Company's restoration effort. CEMC Human Resources and the applicable DSIC shall maintain personnel records on all employees contacted by them to report for storm duty.

Each employee will be given a storm assignment prior to June 1 on an annual basis. Power Generation employees will retain their normal work assignment unless directed otherwise by this procedure or Power Generation Management.

All Non-Gulf Power personnel requests must be coordinated with the CEMC Project Services Manager and/or approved designee. This will prevent duplications and allow for better coordination of lodging and other support requirements. The RAM or his designee will make all the requests for Non-Gulf Power Company personnel. All contractors (utility /tree /construction /catering, etc.) must have a copy of the Florida Out of State Contractor Emergency Response Certificate (Exhibit L). The Contract Administration member of the CEMC Supply Chain Management team will furnish this certificate to all approved contractors. All Non-Gulf Power Company personnel working on Gulf Power Company system must provide to the appropriate CEMC team (Distribution, Transmission, Substation, etc.) a team record (Exhibit C-C3). This record will be used by staff members for input into the Personnel Tracking Summary (Exhibit M). This summary will be utilized by other CEMC teams (Food & Lodging, Security, Fleet Services, etc.) to help determine the type and amount of support required for each storm team. The Personnel Tracking Summary records will also be used for validation of contractor invoicing. Request for relocation of Gulf and Non-Gulf personnel between major District Restoration Areas must be coordinated with the CEMC Project Services Manager or his designee.

The CEMC staff will display the storm's progress and intensity on a standard hurricane-tracking chart (Exhibit D), from the time the CEMC is activated until the storm has made landfall. Status of the storm restoration effort will be communicated to the appropriate DSIC as needed.

Three DSIC's will be activated when a hurricane Warning is declared which occurs when a hurricane is expected to strike within 24 hours. The DSIC's located in Pensacola, Ft. Walton and Panama City will have responsibilities for

Page 16 of 89

Effective Date: 06/01/06

the Milton, Crestview and Chipley Districts respectively. The CEMC Staff will follow the pre-established Procedure for Calculating Customers Out of Service and will produce the Customer Outage Summaries, (Exhibit F). These reports will be published at 7 AM, 11 AM, 3 PM and 7 PM or until the CEMC Project Services Manager or his designee discontinues the reports. Transmission trouble will be documented on Exhibit J by the CEMC Transmission Team. This information will be provided to and reviewed by the Project Services Manager or his alternate. The CEMC Staff will also post customer outage information in the CEMC status board area. In conjunction with the above communications the RAM's should assess their restoration area's personnel and equipment needs and surpluses. Although these needs and surpluses should be communicated directly to the CEMC Project Service's Manager by the RAM's when possible. specific requests can be made to the Power Delivery Services Manager as the first alternate, the CEMC Specialist as the second alternate or appropriate team leader in the CEMC to expedite response.

Public Affairs is responsible for disseminating information to the Customer Service Center (CSC), Gulf Power Company's representative in each County Emergency Operations Center (CEOC), the media and other appropriate concerns. The Project Services Manager or his designee will communicate information to Gulf Power Company's representative at the FEOC.

"In the event of a storm, and if the restoration effort is a multi-day event, morning update/status meetings will be held. It will be the responsibility of the General Manager of Power Delivery (or his/her designee) to schedule and lead the daily meetings. The purpose of these meetings will be to update storm restoration progress and to discuss any issues and/or problems CEMC areas have encountered. In an effort to keep these meetings to a manageable number, attendance will be limited to Executives, CEMC Team Leaders and Power Delivery Managers."

A Distribution System Order (DSO) or a General Work Order (GWO) will be used to charge expenses and labor directly attributable to the emergency restoration efforts on Gulf Power Company's system. All storm work orders must be charged to Plant Expenditure (PE) 3649. For distribution line repair, DSO's will be issued by the DSIC for their specific area. The DSO number will be provided to the CEMC Staff who will in turn provide it to Property Accounting and to others as necessary.

For transmission line, substation, generating plant, and building repair, a GWO for each affected location will be assigned by the affected department. All GWO's should be completed by field personnel in accordance with normal operations and forwarded to Property Accounting

Page 17 of 89

Effective Date: 06/01/06

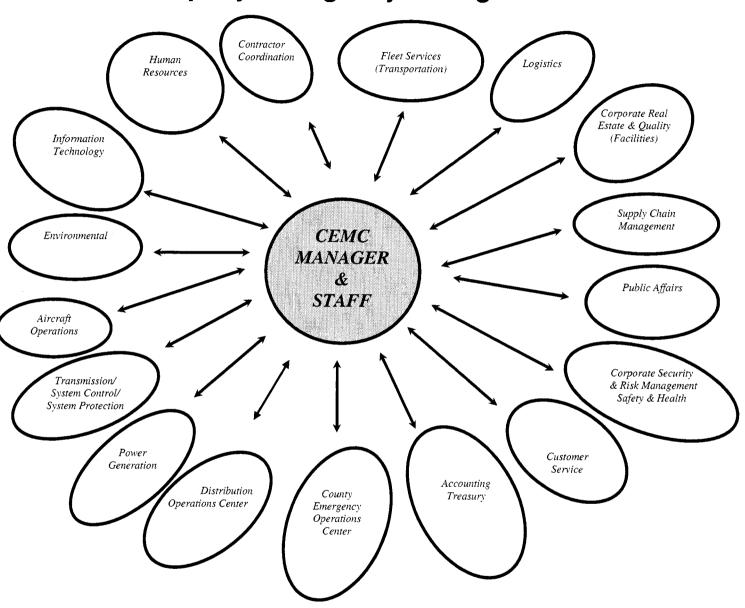
The primary responsibility of Gulf Power Company representative(s) in the CEOC's is to direct information and requests from that CEOC to Gulf Power Company's Dispatch Center and/or to the CEMC. Likewise, information and specific requests from Gulf Power Company's CEMC shall be directed to Gulf's representative at the CEOC.

Examples of information and/or specific requests include:

- * Evacuation orders
- * Life or limb threatening emergencies
- * Reports of identified critical customer outages
- * Roadway accessibility
- * Damage assessment of county infrastructure

Page 18 of 89 Effective Date: 06/01/06

II EXHIBITS


- A. CEMC Organizational Chart
- B. Hurricane Tracking Chart
- C. Storm Phase Conditions
- D. Customer Outage Summaries
- E. County Restoration Area Status Report
- F. District Storm Information Center (DSIC) Organizational Chart

Page 19 of 89

Effective Date: 06/01/06

EXHIBIT A

Company Emergency Management Center

Page 20 of 89

Effective Date: 06/01/06

EXHIBIT B

NOTE: 1 Knot=1.15 miles/Hr. CDST=Zelu - 5 Hrs.

Page 21 of 89

Effective Date: 06/01/06

STORM PHASE CONDITIONS

PHASE	STORM CONDITION	CONDITION DESCRIPTION	COMPANY EMERGENCY MANAGEMENT CENTER CEMC	MAJOR RESTORATION AREAS STORM INFORMATION CENTERS DSIC
I	TROPICAL STORM	WIND SPEED 39-73 MPH	SYSTEM CONTROL OR CEMC BEGINS NOTIFICATION PROCESS	
11	HURRICANE WATCH	HURRICANE HAS BECOME A THREAT TO COASTAL AREAS USUALLY ISSUED 24-36 HOURS BEFORE EXPECTED LANDFALL	CEMC FACILITY PREPARED FOR POSSIBLE OCCUPANCY	RESTORATION AREA MANAGERS PREPARE FOR POSSIBLE ACTIVATION OF THEIR DSIC'S
111	HURRICANE WARNING	INDICATES HURRICANE WINDS 74 MPH OR GREATER, AND HIGH ROUGH SEAS ARE EXPECTED IN A SPECIFIC COASTAL AREA WITHIN 24 HOURS	CEMC OPERATIONAL ON A 24 HOUR BASIS IN ACCORDANCE WITH STORM RECOVERY PROCEDURES	DSIC OPERATIONAL COORDINATING RESTORATION EFFORTS WITH THE CEMC
IV	HURRICANE HAS PASSED RESTORATION IS IN PROCESS	HURRICANE HAS MADE LANDFALL WINDS ARE BELOW 50 MPH	CONTINUES TO STAFF ON 24 HOUR BASIS CONTINUES TO RECEIVE DAMAGE ACCESSMENT STATUS REPORTS FROM DSIC'S AND CONTINUES TO PROVIDE COMPANY LEVEL STATUS REPORTS	RESTORATION AREA MANAGERS CONTINUE TO OPERATE WITH THEIR DSIC'S AND COORDINATING RESTORATION EFFORTS WITH THE CEMC
V	RESTORATION OF SYSTEM NEARING COMPLETION	GULF'S SYSTEM IS RETURNING TO NORMAL OPERATIONS	CONTINUES TO STAFF ACCORDING TO RESTORATION NEEDS CONTINUES TO PROVIDE COMPANY LEVEL STATUS REPORTS	CONTINUES TO PROVIDE CEMC WITH RESTORATION STATUS REPORTS

EXHIBIT C

Page 22 of 89

Effective Date: 06/01/06

EXHIBIT D 1 of 4

GULF POWER COMPANY RESTORATION SUMMARY

DISASTER NAME:

LOCATION	PENSACOLA RESTORATION	FT. WALTON RESTORATION	PANAMA CITY RESTORATION	GULF POWER COMPANY
	AREA	AREA	AREA	TOTALS
NUMBER OF	195,974	105,046	100,247	401,267
CUSTOMERS				
7 A.M.				
NUMBER OUT				
PERCENT				
OUT				
11 A.M.				
NUMBER OUT				
PERCENT OUT				
3 P.M.				
NUMBER OUT				
PERCENT OUT				
7 P.M.				
NUMBER OUT				
PERCENT OUT			<u> </u>	

NOTE:

Customer numbers as of April - 2006

Page 23 of 89

Effective Date: 06/01/06

EXHIBIT D 2 of 4

PENSACOLA - RESTORATION AREA STATUS REPORT

DISA	ASTER NAMI	E:				
LOCATION	AREA 1 PENSACOLA NORTH	AREA 2 PENSACOLA CENTRAL	AREA 3 PENSACOLA	AREA 4 GULF BREEZE	AREA 5 MILTON	PENSACOLA AREA TOTALS
NUMBER OF			SOUTH		00.000	
NUMBER OF	50,147	46,032	38,237	28,730	32,828	195,974
CUSTOMERS						
				7,000		
7 A.M.						
NUMBER OUT						
PERCENT OUT						
11 A.M.						
NUMBER OUT						
PERCENT OUT			-			
3 P.M.						
NUMBER OUT						
PERCENT OUT						
7 P.M.						
NUMBER OUT						
PERCENT OUT						
	NOT	: Custo	mer numbers	as of April -	2006	

Customer numbers as of April - 2006

Page 24 of 89

Effective Date: 06/01/06

EXHIBIT D 3 of 4

FT. WALTON - RESTORATION AREA STATUS REPORT

DISASTER NAME:

	DIS	SASIER	NAME:					
	LOCATION	AREA 1 FT. WALTON	AREA 2 FT. WALTON	AREA 3 DESTIN	AREA 4 NICEVILLE- VALPARAISO	AREA 5 CRESTVIEW	AREA 6 DEFUNIAK	FT. WALTON AREA TOTALS
		(SOUTH)	(NORTH)					
	NUMBER OF	23,743	20,933	29,638	10,469	15,659	4,604	105,046
	CUSTOMERS							
	7 A.M.							
	NUMBER OUT							
	PERCENT OUT							
8								
	11 A.M.							
	NUMBER OUT							
	PERCENT OUT							
	3 P.M.							
-	NUMBER OUT							
_	PERCENT OUT							
	7 P.M.							
	NUMBER OUT							
	PERCENT OUT					<u> </u>		
			NOTE:	Custom	ser numbere se	of April - 20	ne .	

NOTE: Customer numbers as of April - 2006

Page 25 of 89

Effective Date: 06/01/06

EXHIBIT D 4 of 4

PANAMA CITY - RESTORATION AREA STATUS REPORT

DISASTER NAME:

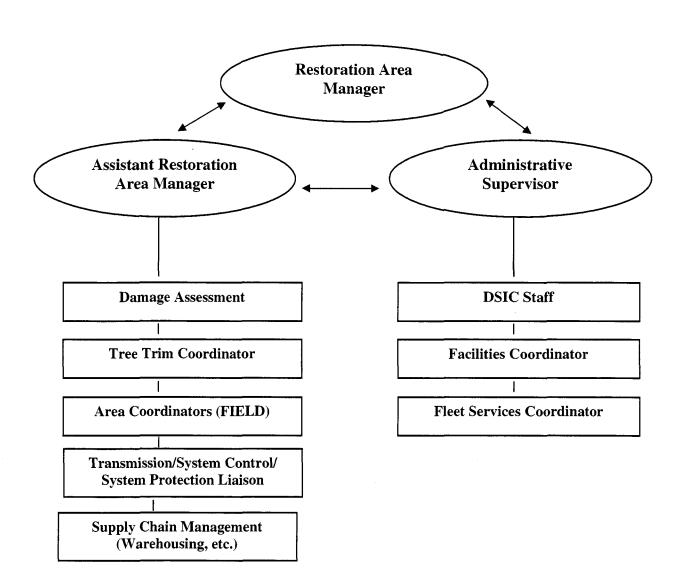
DIS	SASTER NAME	•			
LOCATION	AREA 1 PANAMA CITY BEACH	AREA 2 PANAMA CITY WEST	AREA 3 PANAMA CITY EAST	AREA 4 CHIPLEY NORTH	PANAMA CITY AREA TOTALS
NUMBER OF	38,424	22,719	29,137	9,967	100,247
CUSTOMERS					
7 A.M.					
NUMBER OUT					
PERCENT OUT					
11 A.M.					
NUMBER OUT					
PERCENT OUT					
3 P.M.					
NUMBER OUT	-				
PERCENT OUT					
7 P.M.	750				
NUMBER OUT					
PERCENT OUT					

NOTE:

Customer numbers as of April - 2006

Page 26 of 89

Effective Date: 06/01/06


EXHIBIT E

County Restoration Area Status Report

Disaster Name:

LOCATION	ESCAM	BIA SAN		OKALOOSA	WALTON	HOLMES	вач	WASHINGTON	JACKSON	TOTAL
NUMBER OF CUSTOMERS			528	84,935	18,865	2,611	88,833	6,409	1,441	401,267
7 A.M.										
NUMBER OUT	- 1									
PERCENT OU	Г									
11 A.M.							1,00		,	
NUMBER OUT										
PERCENT OUT	•						·			
3 P.M.										
NUMBER OUT							· ?==			
PERCENT OUT										
7 P.M.										
NUMBER OUT										
PERCENT OUT	•									

EXHIBIT F

Page 28 of 89

Effective Date: 06/01/06

III STORM PROCEDUES

Fleet Services - Section V

The Fleet Services CEMC Team leader assigned to the CEMC is the Sr. Fleet Specialist. The Fleet Services Supervisor is the Fleet Services Support Team Leader.

The Fleet Services CEMC Team Leader is responsible for staying abreast of data from the CEMC coordinating fleet activities during storm preparation and restoration activities.

The Fleet Services Support Team Leader is responsible for ensuring all garages are operational and providing maintenance support.

Purpose and Scope

This emergency procedure is intended to provide a plan of action for Gulf's Fleet Services company-wide in the event a hurricane or major disaster strikes our service area. This procedure is designed to complement the overall company effort, yet be flexible enough to handle a variety of situations.

Objectives

The primary objectives of Fleet Services during a major disaster are securing of unassigned company equipment for redeployment, coordinating all automotive and water craft rentals and providing maintenance support for all company automotive equipment and "other" equipment when requested.

Fleet Services Personnel Assignments

Present Fleet Services employees assigned to maintenance garages will be assigned to their respective garage locations. Mechanics assigned to the Pine Forest Garage will be subject to reassignment either to another garage or a mobile service truck. The Fleet Services Support Team Leader will be located in the area requiring the most support. Relocation will occur after the storm has passed, as storm personnel are being dispatched. Assignment and relocation of all fleet personnel will be at the discretion of the Fleet Services Support Team Leader.

Page 29 of 89

Effective Date: 06/01/06

As during normal non-emergency operations the Single Point of Contact for fleet maintenance activities will remain Extension 5115 throughout all phases of storm preparation and restoration.

Fleet Services will coordinate with Supply Chain Management all automotive equipment rentals and watercraft support for the company. The CEMC Fleet Services Team Leader will maintain a listing of all vendors including rental cars, and mechanized equipment. Prior arrangements will be in place to facilitate reserving equipment prior to storm landfall and expedite delivery during restoration efforts for cars, pickups, trucks, vans and flatbed trailers, aerial lists, derricks and barges. Vendor listings will include work, home, cellular phone numbers, and beepers with service areas and capabilities identified.

Fleet Services will be responsible for coordinating all fleet maintenance for the company. When a Hurricane Watch is issued all normal preventive maintenance (PM) will cease and storm preparation will begin. Support vendors will be notified and their support status verified. The Pine Forest Garage will review work in progress and begin completing those units that can be ready if a Hurricane Warning is issued. Mechanics will be located in the maintenance garages and traveling mechanics will support all staging areas. The Fleet Services Support Team Leader will determine load demands and shift manpower resources in order to meet necessary service levels. If outside manpower support is necessary the request will be coordinated through the CEMC. Fleet repair request should be made through normal channels (Single Point of Contact, Extension 5115), if possible, and not through the CEMC Fleet Services Team.

Fleet Services Plans for A Fuel Crisis

Fleet Services has been in constant contact with our fuel supplier and we have an action plan in place in the event of a Natural Disaster.

In 2005 we had a plan in which Johnson and Johnson, Inc. would supply equipment and fuel for eight staging areas and would supply manpower to operate the equipment. The equipment Johnson and Johnson, Inc provided could operate self contained with it own generators to supply power for the stationary tankers and the Mobile Fuel trucks could pump fuel in the trucks at night. The plan worked flawlessly during Hurricane Dennis and Hurricane Katrina.

Gulf did purchase 12 skid tanks for gasoline to supply fuel for small gas vehicles and place them at the fuel facilities at Gulf Power. Johnson and Johnson, Inc fueled these tanks on a regular basis and kept the gas needs met during the entire restoration period and Gulf experienced no fuel shortages.

Page 30 of 89

Effective Date: 06/01/06

In 2006 the same plan will be in effect and Johnson and Johnson, Inc. will supply fuel, equipment and manpower to Gulf Power in the event of a natural disaster or fuel shortage.

Gulf Power has requested and contracted Johnson and Johnson, Inc. to have the same plan in effect but has agreed to pay a retainer to Johnson and Johnson, Inc for six tankers with pumps and three Mobile fuel trucks. Gulf Power will have the availability of the units should we need them for company restoration efforts or there is a need to assist another company with a restoration. This equipment would also be available should there be a supply disruption caused by a storm in other parts of the state or in the Southeast.

Johnson and Johnson, Inc will be able to purchase fuel from many terminals across the Gulf Coast and in Georgia. They have a bulk plant that is maintained in Madison, Florida with a spare capacity of 85,000 gallons in the event of a terminal supply disruption.

Supply chain has agreed to keep at least 75% capacity in all fuel bulk tanks and all sites will have generator backup to keep the sites operating. Johnson and Johnson, Inc. will keep all fuel sites supplied including generating plants until normal operations and local fuel suppliers can get supply back to a normal status.

Logistics - Section VI

The Logistics support team will work together to assure successful operation in an emergency situation. Listed below are the job responsibilities of the coordinators and field personnel.

CEMC Team Leaders

Provides for the overall coordination of the logistics storm restoration procedure, including staging site procurement, mass transportation, secure SouthernLINC phones, major account liaison, administrative support, food vendor procurement, initiate hotel room obtainment from vendor, and other on-site requirements.

Area Logistics Managers

- 1. Manage overall logistics in assigned restoration areas.
- 2. Partner with Area Restoration Manager.
- 3. Brief logistic managers of emergency situation and the goals that must be achieved and maintained throughout the emergency situation.

Page 31 of 89

Effective Date: 06/01/06

- 4. Organize coordinators and assign personnel.
- 5. Ensure adequate security is available at staging sites and other locations.
- 6. Respond to needs communicated by other logistic managers.

Logistics Managers

- 1. Partner with the E&C Supervisor.
- 2. Brief coordinators and field personnel of emergency situation and the goals that must be achieved and maintained throughout the emergency situation.
- 3. Notify fleet services about fuel needs.
- 4. Organize coordinators and field personnel.
- 5. Secure local contracts and agreements with food and beverage vendors.
- 6. Assess needs of site and crews.
- 7. Coordinate food sites in emergency staging areas.
- 8. Organize meal delivery to emergency personnel and remote crews.
- 9. Respond to needs communicated by other logistics managers and team members.

Lodging Coordinators

- 1. Determine lodging locations from vendor prior to emergency situation.
- 2. Assess needs of sites and crews.
- 3. Maintain and update the Manpower Tracking System.
- 4. Arrange lodging for emergency personnel and crews.
- 5. Communicate lodging arrangements to appropriate personnel.

Staging Site Managers

- 1. Assess needs of site and crews.
- 2. Notify fleet services about fuel needs.
- 3. Organize Logistics field personnel.
- 4. Ensure the vendors for food, food service, tents, bedding, showers, laundry, etc. are secured, on site and operational.
- 5. Develop staging site plan for parking and fueling vehicles as well as feeding and housing crews.
- 6. Ensure adequate security is available at staging site.
- 7. Provide other necessary support for emergency personnel and crews as required.

Major Accounts Liaison

- 1. Determine resources available through major accounts.
- 2. Communicate the resources available to appropriate coordinator.

Page 32 of 89

Effective Date: 06/01/06

3. Communicate restoration expectations to major accounts.

4. Ensure availability of on-site National Account's representative.

Mass Transportation Coordinators

- 1. Ensure mass transportation secured and available prior to emergency situation.
- 2. Assess transportation needs of crews.
- 3. Arrange transportation for crews as coordinated with area logistics managers and/or logistics managers.
- 4. Communicate transportation arrangements to appropriate personnel.

Site Manager training will be conducted as needed. The Logistics Managers will brief team members and coordinators on the scope of the job and the goals that must be achieved and maintained throughout the emergency situation to ensure safe and timely restoration.

Human Resources - Section VII

This procedure outlines responsibilities of the Human Resources Team during hurricanes or major storms affecting the Company's service area or other Non-Gulf System areas where Southern Company employees provide manpower support.

The scope of this procedure provides support company-wide by utilizing Southern Company personnel working at a Gulf Power facility. This supplemental support staff will be assigned and trained in accordance with this procedure.

The CEMC will provide the official notifications to the Human Resources Director in the event Storm Recovery Procedures are implemented. The Human Resources Director will be responsible for carrying out the Human Resources Team responsibilities during a storm. The personnel function will be performed at Pace Blvd. Building.

a. Power Delivery, CEMC Specialist will seek input from all locations to assess the manpower needs by storm skills, as defined by the storm manual or by task activities needed. This information will be completed prior to June 1, each year and will be summarized and provided to the Human Resources Director.

Page 33 of 89

Effective Date: 06/01/06

b. The CEMC Specialist and the Human Resources Director are responsible for making storm assignments for all Gulf Power Corporate Office employees and all Southern Company employees working at a Gulf Power facility.

- c. Employees will be assigned based on skill sets required for the assignment.
- d. Department Managers will be notified regarding their employee's assignment and location, when circumstances permit.
- e. Employees will be contacted directly by the CEMC, Team Leaders, DSIC, Human Resources and/or Plant Management and advised when and where to report for storm duties.
- f. When assigned employees are released from their initial storm or emergency assignment, they are responsible for notifying Human Resources. Human Resources will reassign or **officially release** the employee to return to their normal work location.
- g. Transportation for employees assigned to storm duty will be a coordinated effort between the employee and the CEMC and/or DSIC Fleet Services Team.
- h. Human Resources and the DSIC and/or CEMC team leaders will monitor and maintain records for employees contacted by them to report for storm duty.

The Family Services Team is responsible for coordinating Search & Rescue efforts to locate missing employees and for providing assistance to employees whose personal property has been damaged, or who have medical/personal emergencies.

Human Resources will initially staff the Family Services Team. If damage is extensive and requires additional resources, HR will coordinate the assignment of additional employees or request personnel from other Southern Company subsidiaries.

The CEMC will receive all requests for storm restoration assistance outside Gulf Power Company's service area. They will notify the Human Resources Team for additional support personnel. Human Resources or the CEMC will make contact with the employee(s) who have been selected to work as a team member for storm teams working outside Gulf Power Company's service area.

Page 34 of 89

Effective Date: 06/01/06

Supply Chain Management - Section VIII

A. Purpose

These guidelines describe those measures that Supply Chain Management (SCM) (Procurement, Materials Management, Warehouse Operations, Investment Recovery, and Contracts) has established to expedite the recovery process. It is not intended that these guidelines provide answers to all questions, which might arise, but rather to identify many of the questions that ultimately will have to be answered.

B. <u>Applicability</u>

These guidelines cover activities performed by the following functions:

Procurement (SCM)
Materials Management (SCM)
Warehouse Operations (SCM)
Investment Recovery (SCM)
Contracts (SCM)

C. Responsibilities

The Vice-President of Power Generation and the Customer Operations Vice-President will ensure that subordinate functions comply with the intent of Gulf Power Company Policies and Procedures.

The **Supply Chain Management Manager**, will ensure that these guidelines are updated as needed, communicated to all subordinate employees, and coordinated with other departments within the company.

The **Supply Chain Management Manager** will ensure that reasonable preparations have been made to provide effective procurement and materials management services in the event of a natural disaster.

The **Supply Chain Management Materials Supervisor** will ensure that reasonable preparations have been made to re-establish a centralized material distribution network in the event of a natural disaster.

Page 35 of 89

Effective Date: 06/01/06

Each employee in **Supply Chain Management** will ensure the availability of restoration materials and services by effectively and efficiently providing procurement and materials management services. Employees will protect information entrusted to their care from unauthorized disclosure, alteration, or unplanned destruction.

Supply Chain Management Warehouse Operations will ensure the availability of restoration materials by operating an effective material distribution network.

D. References

The Southern Company Business Continuity Planning Policy

Management Procedure 310-001 Purchasing Material, Equipment and

Supplies

Management Procedure 310-002 Purchase Requisition Approvals
Management Procedure 310-004 Sealed Bids on Written Quotations

Management Procedure 310-007 Business Travel

Management Procedure 310-009 Approved Vendors List

Management Procedure 100-005 Employee Expense Accounts

The function of **Supply Chain Management** is to produce approved purchase orders for materials, equipment, and supplies used in the production and distribution of electricity. The purchase orders may take the form of a regular purchase order, an emergency or confirming purchase order, or a blanket purchase order. Blanket order releases are considered regular purchase orders. Failure to produce a properly executed purchase order could result in the inability of the Company to produce and/or deliver electricity to the customer. Improper documentation of purchase orders could result in the disallowance of expenses in the rate base and/or fines for failing to follow regulatory agency dictates.

The function of **Supply Chain Management** is to provide systems, analysis tools, and analytical skills in support of the company's materials operations. Failure to properly manage the company's material assets could result in higher material expenses, reduced material availability, and lost productivity. Improper documentation of inventory transactions could result in the disallowance of expenses in the rate base and/or fines for failing to follow regulatory agency directives.

The function of **Supply Chain Management Warehouse Operations** is to provide an effective and efficient network of transmission and distribution material warehouses. Failure to properly manage the company's warehouse operations could result in higher material expenses, reduced material availability,

Page 36 of 89

Effective Date: 06/01/06

and lost productivity. Improper documentation of inventory transactions could result in the disallowance of expenses in the rate base and/or fines for failing to follow regulatory agency dictates.

The function of **Supply Chain Management Investment Recovery** is to dispose of scrap and obsolete materials in a manner that adheres to applicable laws and regulations for the disposal of environmentally sensitive materials. Failure to properly manage the company's investment operations could result in the disallowance of expenses in the rate base and/or fines for failing to follow regulatory agency dictates.

The function of **Supply Chain Management Contracts** is to produce approved purchase orders for services used in the production and distribution of electricity. Failure to provide contractual protection could expose the company to excess liability during especially heightened high-risk situations.

The table below associates a primary warehouse location to each restoration area defined in the company's Storm Recovery Procedures manual:

Restoration Area	Area #	Warehouse Location				
Pensacola	1	Pine Forest				
	2	Pine Forest				
	3	Chase Street				
	4	Gulf Breeze				
	5	Milton				
Ft Walton	1	Ft Walton				
	2	Ft Walton				
	3	Destin				
	4	Fort Walton				
	5	Crestview				
	6	Crestview				
Panama City	1	Panama City Beach				
	2	Panama City				
	3	Panama City				
	4	Panama City				
	5	Chipley				

Page 37 of 89

Effective Date: 06/01/06

Annually, by the first of May, Supply Chain Management, Power Delivery and the applicable CEMC Team Leaders will review and revise as needed the company's Storm Material List (SML) and Storm Service List (SSL). Supply Chain Management will submit the SML to the Power Delivery Service Manager or designee (LPE) for approval. Once approved, Supply Chain Management will make arrangements with the other Southern system operating companies and the company's alliance/partnership suppliers to have SML quantities available on June 1st. Certain storm stock items in excess of normal requirements will be acquired and maintained for the duration of storm season.

Supply Chain Management
Projected Facilities and Equipment Requirements
By Work Location

	G.W.	P.C.	F.W.	P.F.	P.C.B.	Desti	G.B.	Chas	Chipl	Crest	Milton	Total
Facilities						· · · · · · · · · · · · · · · · · · ·						
Tent (20' x 40')*	2	1	1	1	1	1	1	1	1	1	1	12
Folding Tables*	6	3	3	3	3	3	3	3	3	3	3	36
Folding Chairs*	36	18	18	18	18	18	18	18	18	18	18	21
Pedestal Fans (30")*	4	2	2	2	2	2	2	2	2	2	2	2
Portable Lighting*	2	1	1	1	1	1	1	1	1	1	1	1
Portable Toilets*	2	1	1	1	1	1	1	1	1	1	1	1
Portable Ramps*	2	1	1	1	1	1	1	1	1	1	1	1
Transportation												
Full Size Pick-Up Trucks	5	4	4	4	3	3	3	3	2	3	3	3
20-ft U-Haul Trucks	4	0	0	0	0	0	0	0	0	0	0	
16-ft Flatbed Trailers	0	2	2	2	1	1	1	1	1	1	1	1
Tractor w/Flatbed, Spider	3	0	0	0	0	0	0	0	0	0	0	
Tractor w/Flatbed	1	0	0	0	0	0	0	0	0	0	0	
Communications/Information												
Southern Linc Radio/Phones	8	4	4	4	2	2	2	2	1	2	2	3
Personal Computers	3	0	0	0	0	0	0	0	0	0	0	
Laser Printer	1	0	0	0	0	0	0	0	0	. 0	0	
Fax Machine	1	0	0	0	0	0	0	0	0	0	0	
Material Handling Equipment												
5,000 Lb Tow Motors	2	2	2	2	1	1	1	1	1	1	1	1
10,000 Lb Tow Motors	1	1	1	1	1	1	1	1	1	1	1	1
20,000 LB Tow Motors	1	0	0	0	0	0	0	0	0	0	0	
Manual Pallet Jacks	2	2	2	2	2	2	2	2	2	2	2	2
Trash/Scrap Recepticles												
2-1/2 Yard Dumpsters	6	6	6	6	6	6	6	6	6	6	6	6
20 Yard Dumpsters	3	3	3	3	3	3	3	3	3	3	3	3
40 Yard Dumpsters	3	1	1	4	1	1	1	1	. 1	1	1	1

^{*} Required only if existing warehouse space is uninhabitable.

The immediate priority would be to re-establish a centralized material distribution network to support the company's restoration efforts. If post disaster damage assessments confirm catastrophic damage, Warehouse Operations would make preparations to get the Central Receiving Location and manned storerooms operational at non-company sites. The priority relocation site for the Central Receiving function is the Pensacola Fair Grounds. The company's Staging Area

Page 38 of 89

Effective Date: 06/01/06

Manager will determine the location and number of construction staging sites. Initially, the sites would stock items from the approved Storm Material List (SML). Throughout the restoration period, Materials Management would monitor and revise as needed the materials and quantities stocked. As material and service needs are identified, orders would be issued.

Planned hours of operation at the Central Receiving Location would be from 6:00 a.m. through 12:00 a.m.

Road conditions, special delivery needs and other factors will likely require hours for Tractor/Trailer Operators to vary from those of the others based at the Central Receiving Location. Manned Construction Staging Areas will be operational around the clock. Every attempt will be made to limit daily shifts to a maximum of 12-hours. Daily employee start times will be staggered accordingly to cover each location's hours of operation. Exact hours of operation, staff requirements, and responsibilities for each location will be adjusted as necessary to accommodate the needs of each location.

For the duration of any restoration effort, the Company will contract with fuel suppliers to provide on-site refueling services. Each night, fuel suppliers will stop at all operational construction staging areas to re-fuel restoration vehicles. Any plans to park vehicles at sites other than the construction staging areas must be communicated to the CEMC SCM representatives if all vehicles are to be refueled each night. Material runners will accompany each delivery truck to capture per vehicle fuel charges.

Corporate Real Estate & Quality - Section IX

The purpose of these guidelines is to describe the plan of action that Corporate Real Estate & Quality's teams will use to minimize damage to company facilities through planning and preparation, and how we plan to expedite the recovery from major damage to company facilities. It is not possible to provide a definite plan or answer to all of the many possibilities that we may face during an emergency; it is our mission to identify roles, responsibilities, and authority.

These guidelines cover activities performed by Corporate Real Estate and Quality's teams when the management of our company activates the CEMC.

Management

The Corporate Real Estate & Quality emergency response teams will be set-up with employees working independently and/or as a group to handle emergencies. Teams shall:

Page 39 of 89

Effective Date: 06/01/06

1. Report as directed to assigned area to gather information concerning the extent of damage and the needs for the restoration process, estimate needed manpower, length of outage, etc.

- 2. Act as a channel of communication between area of damage and the Corporate Real Estate & Quality Team Leader to provide information to and from the CEMC and other functions and organizations.
- 3. Utilization of existing personnel and general direction of facilities restoration work forces.

Corporate Real Estate & Quality's immediate priority in any type of emergency is employee safety and the re-establishment of critical company functions and services.

Public Affairs – Section X

Provide timely and accurate information to internal and external audiences on a daily basis and chronicle the events and efforts of Gulf Power Company's restoration of electrical service in a manner that will inhibit customer criticism through an understanding of the restoration process. Foster pride in employees while ensuring that all due recognition is given Gulf Power Company by the general public for restoring a valuable commodity in the most efficient manner possible.

Achieving the Procedure's objective depends upon Public Affairs staff members doing their jobs effectively. Consequently, this plan is designed so that employees can easily determine their storm assignments and specific duties at each stage of the storm – pre-storm, storm and post-storm.

A. Three Point Strategy

- 1. Define the problem.
- 2. Explain how we are working to resolve the problem.
- 3. Tell how well we did solving the problem.
- B. **Be Flexible**. The organization of personnel into teams is designed to create efficiency. If you have met your primary responsibility under the team organization, you may be called on to do any job that needs doing.

Page 40 of 89

Effective Date: 06/01/06

C. <u>Single Source of Information</u>. The Company Emergency Management Center (CEMC) will be established on the fourth floor of the Pace Boulevard building to receive restoration information from the entire service area. The Storm Restoration Coordinator or designated representative will be the only official source for information on restoration efforts. All rumors concerning injuries, progress of restoration or anything hurricane related are to be ignored unless verified through the CEMC.

- D. **Be Patient**. The External Team will gather restoration reports on a twice-daily basis, and will make this information available to everyone in the department. Please don't call the CEMC for an update. If members of the general public call give them the latest information from the External Team's update and tell them that we are working as quickly and safely as possible to restore their electricity. If they persist and want additional information, direct them to the telephone bank set up in the Customer Response Center.
- E. **Don't Get Lost**. It will be very important for your team captain to know where you are at all times. If possible, always leave a telephone number where you can be reached.
- F. **Don't Panic**. We have the people and resources to accomplish our tasks. If you see you are pressed and a project is in danger of not getting out on time, ask for help. Don't panic.
- G. **Long Hours**. Be prepared to work overtime. Because of the size of the task, normal 8-5 working hours will not be followed for at least the first few days following the hurricane. Every effort will be made to keep overtime work to a minimum.
- H. **Be Honest**. Tell the truth in all external and internal communications.

The department is designed to function as five separate teams. Teams will be activated at the direction of the department manager, who will act as the Communications Manager and who will be in charge of all five teams to ensure that the department's hurricane procedure objective is met. Each team will have a team leader who reports to the Communications Manager.

Staff members are assigned to specific teams and, once assigned, no longer report to their supervisor. They will instead report to that team's leader until released from storm duty.

Page 41 of 89

Effective Date: 06/01/06

Therefore, employees should direct any questions about reporting times or duty assignments to their team leader and not to their regular supervisor. Supervisors, conversely, should not make non-storm duty work assignments or requests of their regular staff without first checking with the team leader, or, in the team leader's absence, the Communications Manager.

Employee Department & Company Policy: Each staff member has responsibilities in every phase of the storm; those specific duties will be assigned by the Team Leader. It is important to note that Gulf Power's Storm Procedure calls for, where duty assignments allow, having employees stay at home or in a shelter during the storm. Employees also are given ample time to make preparations for the safety and care of their families and homes.

A. If a Category 3 or higher hurricane is expected to strike Pensacola, secondary work locations will have to be established for all Corporate Office personnel. The first floor office facilities currently occupied by Public Affairs functions most likely will be inoperable or inaccessible because of storm damage and/or local area flooding.

1. Communications Services

If a secondary work location can be established at Gulf Power facilities or a printing vendor within Northwest Florida, that option should take precedence over a move out of the service area. However, if storm damage is severe and widespread it may be necessary for Publication and Postal Services to maintain limited operations out of facilities owned and operated by a sister utility of the Southern Company. In that case, a regular shuttle schedule will be established between that facility and Pensacola to ensure uninterrupted emergency postal and publication operations.

2. All Other Public Affairs Functions

The primary site of the CEMC at the Pace Boulevard office will serve as a secondary base of operations for all other Public Affairs functions during contingency conditions. Public Affairs will require the usual CEMC team office space as well as one additional office or work space for other teams. The following actions will be taken following activation of the contingency plan:

Page 42 of 89

Effective Date: 06/01/06

a) Notify news media of contingency plan and give them CEMC telephone numbers – BellSouth and cellular – dedicated to Public Affairs.

- b) Distribute press releases to all media detailing the potential impact of the storm to Gulf Power facilities, how much help would be expected from our sister companies and other utilities, and that many people should expect not to have electricity for at least a month, or until their homes could receive it.
- c) Notify county Emergency Operations Center liaisons and give them the CEMC telephone numbers dedicated to Public Affairs.
- d) Establish shift/staffing schedule for contingency plan.
- e) Update media from County EMC.
 - Radio initially will be primary media for communication. Regional stations will need to be identified since local stations may not be on-the-air. Consider stations in Mobile, Evergreen, Dothan, etc., as well as "clear channel stations" such as WSB in Atlanta and WWL in New Orleans for evening updates. (Both are 50,000 watts.). Update contacts with AP, UPI, Reuters, etc., as vehicle to disseminate news to media.
- f) Ensure that high quality copiers are available at contingency locations for internal restoration publications and other messages to employees

This is an inventory of the emergency management centers and contacts within Gulf Power's service area. The company will coordinate communications and restoration efforts with appropriate emergency management organizations.

This packet of Public Service Messages will be distributed to the news media of our service area. We are hopeful that they will cooperate with us in disseminating the information included in these messages at the appropriate times. The messages are divided into four categories:

- 1. Pre-hurricane
- 2. Hurricane Landfall
- 3. Post-hurricane
- 4. Wrap-Up

Each PSA category contains messages for each particular period of time and will not be suitable once the next phase of the hurricane progression has been reached.

Page 43 of 89

Effective Date: 06/01/06

PRE-HURRICANE

INDEX

- 1. Gulf Power's Plan of Action :36
- 2. Storm Information Center :39
- 3. What to do if your power goes out -: 33
- 4. Precautions -: 25
- 5. Freezer Care -: 49
- 6. Reports of power outages -: 34

1. GULF POWER'S PLAN OF ACTION

With the approach of the hurricane, Gulf Power advises that interruptions of electric service are likely to occur. However, you can be assured that every effort will be made to restore service. All Gulf Power crews and equipment are prepared for immediate action throughout our service area. In addition, crews from sister companies within the Southern electric system are on call. An emergency priority system for restoring power to vital community services such as hospitals and sewer lift stations has been set up. This has been a Public Service Message from Gulf Power and this station.

2. – 6. Numbers 2 through 6 are similar in nature, and include a short message for printing or announcing.

Customer Service – Section XI

The Customer Service Center (CSC) in Pensacola will serve as the primary emergency operations center for all trouble reporting. Additional personnel from the Corporate Office will be assigned to the Pensacola Center to help support 24 hour operations.

Depending on the call volume, the Southern System Mutual Assistance Plan may be activated. The Mutual Assistance Plan will provide support from the other five Customer Service Centers in the Southern System.

In the event of major damage to the facility and/or equipment in Pensacola, all calls will be rerouted to other Southern Company Customer Service Centers.

Once it is determined that trouble tickets are needed, all trouble tickets, regardless of origin, will be dispatched to the appropriate restoration location.

Page 44 of 89

Effective Date: 06/01/06

The Distribution Operations Center in Pensacola will determine when to begin issuing trouble tickets and will also determine the destination for the tickets. If the CSS system should become inoperable, trouble tickets will be taken by hand on traditional trouble ticket forms. They will be sent to the appropriate restoration location by the most efficient means available. (i.e.: couriers, faxes, etc.)

The CSC will be responsible for all customer trouble reporting and the CSC Manager will determine when to implement the Southern System Mutual Assistance Plan.

If the Southern Company Customer Service centers are activated, the CSC Manager will provide a schedule indicating when assistance will be needed. The Customer Service Supervisors in Pensacola will be responsible for assigning personnel to the schedule.

The CSC Manager will determine when to discontinue the Southern System Mutual Assistance Plan.

Customer Service Representatives and additional Corporate Office personnel assigned to the CSC will be responsible for answering customer trouble calls. Personnel will issue trouble tickets on-line to operations. These tickets will print at the appropriate distribution control location as determined by the Distribution Operations Center.

Properly handled telephone inquiries can create an immeasurable amount of good will. Instructions outlining customer service skills, accessing the CSS system, issuing trouble tickets and answering frequently asked questions are included in the storm training package. This package will be made available to all personnel assigned to the CSC.

CSR's will issue a trouble report by way of CSS or TCMS web call entry tool. Outage information from trouble report goes directly to TCMS (tickets do not print) for DOC operators to dispatch. In the event CSS or TCMS web call entry is unavailable, CSR's will use paper copy trouble tickets.

Page 45 of 89

Effective Date: 06/01/06

Corporate Security & Risk Management – Safety & Health – Section XII

General

The Corporate Security & Risk Management Manager will be the overall primary coordinator of the Security Team with the Security Manager's identified designee as the alternate coordinator.

The Safety and Health Team Leader will be the primary coordinator of the Safety and Health Team with a Senior Safety & Health Representative as the alternate coordinator, if the need arises.

Purpose and Scope

This section of emergency procedures is intended to provide a plan of action for the Corporate Security and Risk Management Department in the event a hurricane or major disaster strikes our service area. These procedures are designed to complement the overall Company effort and to be flexible enough to handle a variety of situations.

Objectives

The primary objective of the Corporate Security and Risk Management Department during a hurricane or major disaster is the protection of all employees, guest employees and their assets, and Company assets. This department will also investigate accidents involving injury to the public if Gulf Power personnel, guest employees, or Company facilities are involved to mitigate potential litigation.

Security Personnel Assignments

The Corporate Security & Risk Management Manager and/or the designee will provide coordination and coverage for all Security and Risk activities. The designee will maintain constant liaison with the Corporate Security and Risk Management Team Leaders and appropriate law enforcement agencies and other local, state or federal agencies as required. The Corporate Security & Risk Management Manager and/or the designee will be available to top management to insure that communications about all Corporate Security and Risk Management activities exist. The Investigators will provide in field support to storm crews in their assigned service area. Administrative support will be provided by Corporate Security & Risk Management.

Page 46 of 89

Effective Date: 06/01/06

Protection of Employees

The Corporate Security and Risk Management Department will be responsible for the placement of Security or contract personnel or other Gulf Power personnel to aid in the handling of disruptive or irate customers in the Corporate or District offices or other staging areas. Investigators will lead the investigations of all threats to the Company or its personnel.

Placement of Guard Services

The Corporate Security and Risk Management Department will be responsible for the placement of guards, and will also be responsible for providing impromptu inspections of all guards to ensure that they are providing adequate service. All security guard manpower requests should be directed to the Corporate Security and Risk Management desk in the CEMC.

Investigations of Accidents

The management of the Company will be kept abreast of all Claims investigations. The Corporate Security & Risk Management Manager and/or the designee will assist Safety & Health personnel, upon request, on any investigation involving an employee accident in which the employee is injured or major property damage occurs.

Claims

All claims should be handled in accordance with the Claims Procedure Manual of Gulf Power Company. The management of the Company will be kept abreast of all Claims investigations. The Standard Property Damage Claim form will be provided by each Area Coordinator or Team Leader. All questions should be directed to the Risk Management Supervisor or Gulf Power Company's Security and Risk Management Department.

Insurance Claim Coordination on Behalf of Gulf Power

Any damage to property of the Company suffered during a storm must be tracked in order to file for insurance proceeds with our excess insurers. Risk Management will coordinate the SCS Risk Management to track storm damages and start the insurance recovery process, then working in conjunction with Property Plant Accounting and Corporate Real Estate & Quality to fully document the Company insurance claim.

Page 47 of 89

Effective Date: 06/01/06

Crew Work Area/Patrols

Investigators in the Districts will assist in patrols of employee work areas to assist with any problems such as irate customers or theft from vehicles. After hour patrols will also be provided by these investigators and/or uniformed security officers under the contract with Gulf Power Company.

Use of Personnel from Other Companies

Assistance of non-Gulf Power Company security personnel will be requested as appropriate through the Corporate Security and Risk Management Team Leaders and/or the designee. All additional personnel requests will be coordinated with the CEMC.

Issuance of Keys

The Corporate Security Department will assist with the issuance of keys needed during a storm situation. To obtain a key, contact Security at the CEMC. Storm team leaders in the Districts are responsible for recovery of all keys issued upon completion of restoration.

General Assistance

A representative of the Corporate Security and Risk Management Department will be on duty or available 24 hours a day to provide assistance as needed.

<u>Safety and Health Personnel Assignments – (Unless Otherwise Assigned)</u>

The Safety and Health Team Leader will be responsible for the placement of Safety and Health personnel and will coordinate additional personnel needs with the CEMC, Human Resources Team or with the appropriate RAM. These requests will be for Gulf Power Company personnel to aid in identifying safety and health risks, facilitating accident investigations, identifying local medical facilities/providers, training, and other safety and health services as needed.

The Safety and Health Team Leader will provide coordination and coverage for all safety and health activities. The Safety and Health Administrative Assistant will maintain constant liaison with the Safety and Health Team Leader, safety and health team members and management to ensure communications about all safety and health activities and issues. Safety and Health Representatives will provide field support in their assigned service area to storm crews and leadership.

Page 48 of 89

Effective Date: 06/01/06

Accounting and Treasury - Section XIII

ACCOUNTING PERSONNEL

Accounting personnel will be available during an emergency condition as needed. Certain employees may best use their training and skills to assist in stores accounting operations, timekeeping, agents' activities, certain line work, or telephone operators in the Customer Response Center.

SPECIAL ACCOUNTING INSTRUCTIONS

Normal accounting procedures will be followed, where possible, during the duration of the emergency except as follows:

A. Account Distribution for Charges Applicable to the Emergency Operation Not Covered By Insurance

Storm job order numbers (DSO for distribution line repair, GWO for location property, or job order number for off-system assistance) will be used to charge expenses and labor directly attributable to the emergency. All DSO's and GWO's for named storms must be charged to PE 3649. For distribution line repair, DSO numbers will be issued by the Power Delivery Manager for each district restoration area and relayed to the CEMC who will, in turn, relay the number to Property Accounting and to others as necessary. For transmission repair, a GWO number for each affected location will be assigned by the affected Department and forwarded to Property Accounting. The GWO's should be completed by field personnel in accordance with normal operations and forwarded to Property Accounting.

For non-Gulf Power Company system restoration assistance, Power Delivery will obtain a job order number from Corporate Accounting and relay the number to Property Accounting.

Property Accounting will review the storm DSO's and transfer plant additions, COR's, and retirements to an adjustment work order based on the normal cost of the retirement units charged to the storm work orders. The remaining charges on the DSO's will be closed to the proper non-plant accounts. The Power Delivery Manager(s) are responsible for signing-off job order. The Power Delivery Manager(s) will forward the approved job order to Property Accounting for processing.

Page 49 of 89

Effective Date: 06/01/06

B. Special Accounting for Damages Covered by Insurance

Insurable property includes substation fences, electric generating plants, and office buildings, subject to applicable deductibles.

The affected area will create a GWO number on request for each plant location during the emergency to account for costs directly attributable to damage of insurable property (i.e., substations, generating plants, office buildings).

With assistance from Transmission and Distribution engineers, and/or plant engineers, and/or Corporate Real Estate and Quality, charges to the GWO set up to handle property damage for insurable property will be reconciled, itemized and submitted to the insurance adjuster for the insurance claim, if applicable.

C. Aid to Another Company

In the event Gulf Power Company furnishes personnel or materials to another company to aid their storm restoration recovery, the CEMC is responsible for obtaining a job order number from Corporate Accounting for capturing costs. Each event requires a separate job order number and each company to which Gulf Power Company furnishes personnel or materials requires a separate job order number. Property Accounting will use the charges to this job order number as the basis for billing the other company as provided for in Gulf's procedures on intercompany billings. Property Accounting will be notified of the number of personnel and departure date(s) and return date(s) for billings to other companies.

D. Storm Accountants

Upon request for mutual assistance the Project Services Manager or the CEMC Specialist and/or, Human Resources will contact the employees who have been designated to serve as Accountants on storm teams providing mutual assistance to another company. The employee's management shall be contacted, if available, prior to contacting the employee. Treasury will also be contacted so that distribution of funds is made to the proper personnel.

Page 50 of 89

Effective Date: 06/01/06

E. Storm Damage Agency Accounts

In order to better control expenses incurred by Company personnel while performing their duties during storm or emergency conditions, special Agency Accounts will be established and maintained by the storm accountants to ensure prompt and accurate payment and documentation of expenditures.

Power Generation – Section XIV

The purpose of this Power Generation Storm Procedure is to provide high-level guidance and accountability to mitigate the risk of storm related damage to our generation assets and injury to our employees. Individual plant procedures, maintained by the plants, provide detailed guidance and accountabilities for equipment specific preparations, restoration, and etc.

COMMUNICATION

Plant Manager's are responsible for reporting to the CEMC any significant damage to Gulf Power's generating assets as soon as possible. Requests for additional personnel to recover from storm damage and mitigate further damage will be made through the CEMC.

PLANNING AHEAD

Plant Managers are responsible for maintaining an updated, plant-specific storm procedure. This procedure should be reviewed annually prior to June 1st and approved by the Plant Manager. Plant Storm Recovery Procedures should include at a minimum:

- Checklists for Storm preparation showing for each action item
- Action to be performed
- Group manager is responsible for completion
- Timeframe for completion (72, 48, 24 Hours prior to storm's predicted arrival).
- Method of ensuring checklist completion
- Any special operational considerations required during the hurricane
- Post hurricane damage assessment, repairs and accounting responsibilities
- Appendix addressing personnel issues (family, on-site, recall, etc.)

Page 51 of 89

Effective Date: 06/01/06

Plant Managers, Group Managers and Team Leaders are responsible for communicating plant Storm Recovery Procedures to all employees annually prior to June 1st.

The Power Generation Services Supervisor is responsible for updating the Power Generation Procedure annually prior to May 1st.

TAKING STOCK

Immediately after the storm passes, plant personnel will assess any damage incurred. Plants will send a report to the Power Generation Services Supervisor describing in detail any damage and estimating costs to repair the damage. Plants should also determine the status and availability of all personnel after the hurricane passes.

Plant Manager's requiring additional personnel to recover from storm damage shall make a request through the CEMC Human Resources team.

Additionally, after the storm passes and if the plants have personnel available to assist in other company-wide storm restoration efforts, Plant Mangers shall notify the CEMC Human Resources Team of the additional available personnel.

Environmental - Section XV

This document is intended to provide a plan of action for Environmental Affairs Section in the event of a hurricane or other major disaster striking Gulf's service area.

The prime objective of Environmental Affairs is to coordinate the overall assessment and subsequent remediation of environmental damage caused by a hurricane or other major disaster and to serve as Gulf's liaison with all environmental agencies.

In order to accomplish this objective, all storm restoration personnel are responsible for reporting any and all potential situations that could pose a threat to the environment. They are to report the situation to their Area Coordinator or Team Leader and the CEMC. The CEMC will contact the Manager of Environmental Affairs. If the disaster warrants, a representative of Environmental Affairs will be assigned to the CEMC.

Page 52 of 89

Effective Date: 06/01/06

Power Delivery Operations – Section XVI-A

Purpose and Scope

This part of the Storm Recovery Procedures is intended to provide a plan of action for Power Delivery, in the event a hurricane or major disaster strikes Gulf Power Company's Service Area.

These procedures are designed to complement the overall company restoration efforts and to be flexible enough to handle a variety of situations.

Objective

The primary objective of this information is to provide a guide, during hurricanes and other major disasters, for the safe and rapid restoration of Gulf Power Company's Distribution System.

Three Major Restoration Areas

During storm conditions, the Power Delivery System will be divided into three (3) major Restoration Areas under the direction of three RAM's.

District Storm Information Center (DSIC)

Each of the three (3) Restoration Areas will have a DSIC. The purpose of the DSIC is to provide staff support to the RAM and to facilitate the flow of information and requests received from the CEMC and from each of the field area operating headquarters. The DSIC field operations staff will receive damage and restoration status reports from field Area Coordinators and/or Team Leaders. The DSIC Administrative Supervisors will receive all requests for personnel from the Field Area. STORM2000 System will be used to track Company personnel working storm duty, the Personnel Tracking Summary (Exhibit M) and the Transmission Line Status Report (Exhibit J) will be used to determine manpower allocations to specific restoration area work sites. This information will be provided to the Project Services Manager or his designee prior to being released for publication. These reports are required until such time the CEMC requests they be discontinued.

Page 53 of 89

Effective Date: 06/01/06

DSIC Field Operations Storm Duty Descriptions

Area Coordinator

Area Coordinator is responsible for the overall restoration effort for designated DSIC field area. Reports directly to and communicates the status of the restoration progress to the RAM and/or his designee. Area Coordinator is responsible for the safe and efficient restoration of service to customers and safety of all personnel assigned to their designed restoration area. Area Coordinator is also responsible for evaluating system conditions, identifying potential conditions that might cause outage problems and reporting these conditions to the RAM and/or his designee. The area coordinator continuously monitors the restoration activities by looking at such items as the number of transformers off, blown fuses, reclosers off, priority orders, and customers affected. Based on his/her continuous assessment of the distribution system, plan restoration activities, determines manpower needs and requests manpower from the DSIC. The area coordinator directs the activities of the DSIC field area team leader(s).

Team Leader

The Team Leader reports directly to the area coordinator. Is in charge or in command of restoration activities specifically for the restoration area to which he/she is assigned. The team leader directs the activities and restoration efforts for all personnel assigned to his/her specific restoration area. He/she is responsible for constantly evaluating field conditions, personnel safety, work assignments, providing guidance and promoting harmonious interactions between storm team members to ensure teamwork and the restoration of service to customers in a safe and timely manner. The team leader will coordinate restoration efforts with the area coordinator.

Team Member

The Team Member reports to and follows direction provided by the team leader. A Team Member is an individual who has the skills to perform assigned storm duty in an efficient and safe manner and promotes teamwork by his/her action(s).

Page 54 of 89

Effective Date: 06/01/06

Administrative Assistant

Reports directly to the team leader and is typically located in the field operating headquarters or pre-determined location and is primarily responsible for providing support function. This could include answering the telephone, providing supplies (paper, pencils, markers, stapler, staples & etc.), and requesting additional personnel and/or tree trim support for the team leader to the area coordinator. Duties may also include marking storm restoration feeder maps whenever a feeder is energized and providing support to the team leader as directed by him/her. Administrative assistant must be multi-task oriented.

Accountant

The Accountant reports directly to the person in charge of the area(s) and/or team to which he/she is assigned. The Accountants main function is to provide support for everyone assigned to the same area(s) and/or team. To accomplish this, the accountant must take ownership for providing food, lodging, laundry service, fuel and etc. He/she must maintain records for all expenses associated with providing this support and has a wide scope of duties. These range from serving as liaison between the person in charge, team leaders, team members, DSIC, CEMC to dealing directly with business establishments.

Evaluator

An evaluator is a trained team member whose primary job is to assess damage on the distribution system. Each evaluator will have a driver assigned to them. The driver is to focus on the safe operation of the vehicle while the evaluator is focusing his/her attention to the condition of the distribution system. He/she may be reviewing an entire feeder from the substation to its final customer(s), or may be responding to a single customer outage. In either case, knowing how to spot trouble is critical in determining the best way to return to normal operations. As an evaluator, you are to mark the storm restoration maps in accordance with the Southern System Standardized Map Marking Symbology, record the causes of damage ("forensic" data) and reports back to the team leader in accordance with established reporting times.

The evaluator's report(s) to the team leader will help him/her to:

- (1) Determine how widespread the problems are,
- (2) Properly schedule restoration efforts according to priority,
- (3) Determine how many and what types of crews to dispatch, and
- (4) Correct safety problems

Page 55 of 89

Effective Date: 06/01/06

(5) Document the causes of damage in accordance with the Florida Public Service Commission rules.

Driver

Reports directly to the team leader and is a trained team member whose role is to ensure the safe operation of the vehicle and compliance with the DOT Traffic Control Zone Diagram. This individual must possess a valid state driver's license and follow the direction provided by the evaluator and/or team leader. Prior to reporting to assigned duty location, the driver is responsible for making vehicle arrangements per Fleet Services Guidelines, Section V.

Contractor(s) Coordination

The RAM's or their designee is responsible for providing the Project Services Manager with damage reports for Gulf Power Company's system. They are also responsible for requesting additional manpower or advising the CEMC of manpower that is available for re-assignment to other areas. The Project Services Manager and/or his designee are responsible for matching manpower with needs. The Contractor Coordinator is responsible for contacting and coordinating contract crew(s) entering and exiting Gulf Power Company's system as directed by the Project Services Manager and/or his designee and for making the appropriate contact(s). In order to help reduce duplications all requests for contractor(s) should be directed to the CEMC Contractor Coordinator. This will allow for better coordination of lodging, transportation, and other contractor support. Request for relocation of Gulf and Non-Gulf Power Company system personnel between major Restoration Areas must be coordinated by the Project Services Manager and/or his designee. The Project Services Manager and/or his designee are responsible for releasing all contractor(s) from working for Gulf Power Company.

All movement of manpower, once assigned to a Restoration Area, is the respective RAM's responsibility.

All Non-Gulf Power personnel working on Gulf Power Companies System must provide to the CEMC a team record Section III. These records will be used by staff members for input into the Personnel Tracking Summary (Exhibit M). The STORM2000 System and Personnel Tracking Summary will also be utilized by other CEMC teams (Food & Lodging, Security, Transportation & etc.) to help determine the type and amount of support required for each storm team. The Personnel Tracking Summary and supporting documentation will be used for validation of invoicing received from companies providing assistance after a disaster.

Page 56 of 89

Effective Date: 06/01/06

Post Storm Forensic Data Collections

Gulf Power will employ contractors that will be staged out of harms way and will be ready to be mobilized after the threat of the storm has passed. Once on the system, the crews will survey a percentage of the lines in the storm damaged areas. Percentages will vary depending on how many miles of distribution lines are in the area of the company affected by the storm. The crews will be divided to cover both inland and coastal areas. This data will be collected by one of the two methods depending on the progression of this program before storm season. The preferred method will be for the contractor to use hand held computers, with stored system maps, to collect the data and store all information gathered. The second methods is to collect the same data manually using forms that identify each pole and correlate to a system map that will be supplied by Gulf power to the contractor. This collection process will be worked concurrently with the storm restoration process.

The following information is what has been initially sited as data that will need to be collected during the forensic sweep. Data may be added or deleted as the program develops:

- Pole Down/leaning
- Conductor/Cable Down/Low/Unearthed (OVH/URD)
- Equipment Damage (OVH/URD)
- Lighting Damage
- Hardware Damage
- Guying Damage Broken/Missing/Slack

Restoration Area Managers

The three RAM's are responsible for:

- A. Ensuring that all of their direct reports have a storm assignment and are trained prior to June 1 annually.
- B. Ensuring that feeder maps are current and sufficient quantities are available.
- C. Directing the restoration activities for their specific restoration area.
- D. Determining amount of damage to distribution system for specific restoration area.
- E. Determining manpower/equipment needs for their specific restoration area.

Page 57 of 89

Effective Date: 06/01/06

F. Coordinating manpower/equipment needs with the CEMC for their specific restoration area.

- G. Directing manpower resources to maximize productivity and restoration effort for their specific restoration area.
- H. Ensuring manpower assigned to their specific restoration area are working safely.

Distribution Operations Center Guidelines

A. <u>Initial Storm Assignment of DOC Coordinators</u>

In the event that it is decided to de-centralize control from the DOC to substation team leaders, DOC coordinators will be assigned to substations as needed depending on areas affected. During periods of de-centralized control, a staff of 4 coordinators will remain in the DOC, 2 from 0600 to 1800 and 2 from 1800 to 0600.

In the event of a major hurricane, DOC coordinators assigned to out of town storm assignments will be sent to their assignment prior to landfall (category 2 or higher). Based on storm predictions, selected DOC coordinators will travel to appropriate areas at least 12 hours in advance of landfall. Which coordinators and to where they will travel will be decided by the DOC Supervisor and Restoration Area Managers. Hotel arrangements will be made in advance by the CEMC.

Transmission/System Control/System Protection – Section XVII

This part of the Storm Recovery Procedures is intended to provide a plan of action for Transmission/Substation/System Control and System Protection, in the event of a hurricane or major disaster striking Gulf Power Company's service area.

These procedures are designed to complement the overall company restoration efforts and to be flexible enough to handle a variety of situations. Depending on the severity of the storm all or part of these procedures may be implemented.

Page 58 of 89 Effective Date: 06/01/06

Depending on the severity of the storm, resources may be utilized from other Southern Company Operating Companies. These resources will be identified annually and notified of the need prior to landfall.

A. <u>Transmission Team Leader (TTL)</u>

The TTL is responsible for the overall Transmission Lines/Substation restoration effort. The TTL communicates the status of the restoration progress to the CEMC. The TTL is responsible for the restoration of service and safety of all personnel assigned to the transmission restoration effort. The TTL continuously monitors restoration activities, determines manpower needs, and requests manpower.

B. Two Restoration Areas

During storm conditions the Transmission System will be divided into two restoration areas. Each will be under the direction of a Transmission Construction Leader (TCL).

C. Transmission Construction Leader (TCL)

Reports directly to the TTL. The TCL is in charge of transmission lines restoration activities for the area to which they are assigned. The TCL directs the activities and restoration efforts for all transmission line personnel assigned to their restoration area.

D. Aerial Patrol Coordinator

Reports directly to the TTL. The Aerial Patrol Coordinator is responsible for working with System Control to determine priority of lines to be patrolled, communicating with Air Operations, getting patrol results to the appropriate TCL and maintaining a status or work on-going with each line. The APC will be located with System Control.

Reports directly to the TSRL and is responsible for the operation of the Gulf Power Company's transmission system. System Control will begin communications with CEMC whenever a hurricane enters the Gulf of Mexico or a storm already in the Gulf of Mexico has the potential to become a hurricane. System Control will coordinate data from the National Weather Service to the CEMC. System Control will report to CEMC all transmission lines out, priority of lines needed for load restoration and system requirements.

Page 59 of 89

Effective Date: 06/01/06

Aerial patrols of transmission lines out of service will begin after the hurricane or storm has passed and it is safe to fly. System Control will coordinate aerial patrols with the CEMC. The CEMC is responsible for Aircraft Operations. Trained evaluators will be available for each restoration area. Depending of the severity of the storm, a maximum of four fixed wing and three helicopters may be put in service. Aerial evaluators will be used in securing a broad view and assess transmission line damage from the hurricane or storm. Evaluators will communicate their findings to System Control. System Control will compile the information and inform the TTL of the work required to restore service.

Land evaluations will begin as soon as weather and ground conditions permit. Evaluations will be immediately communicated to the TTL.

CEMC Aircraft Operations is responsible for releasing any aircraft to its home base. A complete inspection of the entire transmission system will be performed by aerial evaluation.

The Substation Engineer will assign Substation Techs to visit substations under their control after the storm to check breakers, differential operations, voltage levels and report findings to System Control.

After the storm has passed Substation Personnel should report to the System Protection Manager (or designee with pre-arranged plans in the event of loss of communications) and receive instructions necessary to take action to repair any transmission related substation equipment, receive instructions for substation evaluation and to perform switching necessary for transmission restoration. These personnel will remain in the assigned area and keep communications open with the System Protection Manager in order to be available promptly as transmission repairs are completed and ready to be energized. Evaluation may require implementing the written substation battery procedure for storm restoration at certain substations which will be determined by the Transmission Team Leader or his designee.

Pre-Storm Preparations

Throughout storm preparations, during the storm and after the storm, System Protection personnel will establish and maintain radio communications with the System Protection Manager, if at all possible. The possibility that generating plant, transmission, and distribution substation priorities can change at any time in a time of emergency, makes this communications link essential.

The System Protection Manager (or an assigned System Protection employee) will remain with Transmission System Control. This person will monitor system

Page 60 of 89

Effective Date: 06/01/06

activities and identify protection and control schemes which will need attention after the storm has past. System Protection personnel who are not assigned prior to the storm are to stay at home or at a suitable storm shelter with their families. They must be available (with radio communications with the System Protection Manager) and should stay in a location to be available immediately following the storm.

After the Storm

System Protection personnel should report to the Transmission System Control Office, contact the System Protection Manager, and receive instructions necessary to take action to repair any P&C scheme requiring attention and/or receive instructions for substation P&C evaluation.

System Protection personnel assigned to Plant Smith, Crist and Scholz should contact the System Protection Manager to receive instructions. If contact cannot be made, they should contact the Transmission System Control for instructions. They should communicate to the System Protection Manager or System Control their assessment of problems with protection or control schemes. If contact cannot be made with either of the above by working with plant personnel, P&C repairs should be initiated in order to restore the generating plant units and switchyards.

P&C Resources

The System Protection Manager will dispatch personnel according to damage. If conditions warrant, he/she shall decide whether changes in dispatched locations should be made and will inform the TTL.

The System Protection Manager shall evaluate requests for additional relay personnel and equipment during and after the storm, and make recommendations regarding these requests. If additional personnel are required, this request shall be directed to the CEMC Human Resources team.

Air Operations – Section XVIII

Air Operations (Air Ops) is responsible for providing aircraft and the overall coordination for aerial storm restoration evaluation flights and other support flights as directed by CEMC.

Execute Air Operations Checklist A – to be completed annually prior to hurricane season's start on June 1 of each year.

Page 61 of 89

Effective Date: 06/01/06

Air Operations Pre-Hurricane Checklist A To be completed by <u>June 1st</u> of each year

Verify all phone numbers and points of contact
Print kneeboard sized in-flight contact list
Update and mount large transmission line wall map at Storm Center and
ensure a duplicate map is available for use in System Control
Inventory headsets, adaptors and battery chargers
Update County Map Books used in flight, as necessary
Ensure adequate supply of Vendor Notification and Damage Report blank
forms
Contact each vendor to review commitments, pricing, aircraft availability
Ensure firm price quotes and clear understanding of pricing structure,
including incentives/penalties for prompt response and reservation pricing
Meet with Transmission employees to review their needs, list of
observers, and desired information flow
Notify observers of any updates to in-flight materials, radios, etc.

Vendors will commence restoration flights as soon as practicable after notification from Air Ops that their services will be required. Aircraft employed in these restoration flights may include fixed-wing and/or rotary-winged aircraft. Vendors are expected to arrive in our service area as soon as safe flight conditions permit following landfall. An airfield or off-field site to pick-up observers (Gulf Power, Southern Company OpCo or SCS employees trained to perform in-flight patrols of transmission facilities) will be selected by Gulf Power and the aircraft vendor. Upon arrival, the vendor will notify Air Ops of their availability. Air Ops may need to contact local airfields to verify operational status and fuel availability.

Air Ops will notify observers to meet the aircraft at the pre-selected sites. Air Ops will ensure that observers are issued the appropriate radios, headsets, and maps. Observers will radio Air Ops with information concerning the progress of the flight including take-off and landing times and periodic position reports. Air Ops will maintain a log of these reports to assist in aircraft separation and to aid

Page 62 of 89 Effective Date: 06/01/06

in verifying vendor billings. Air Ops will also use this information to update progress on the large wall-mounted Transmission System Map, indicating lines that have been patrolled aerially. This map will provide an instant overview of Air Ops activities and aid in planning subsequent patrols.

System Control will provide Air Ops a prioritized list of transmission lines they want patrolled. Air Ops will then assign aircraft to general geographic areas and suggest flight routes to cover the desired transmission lines. If required, Air Ops will also coordinate special clearances through TFR areas.

If available, a Transmission department designated employee will, through direct radio contact with the airborne observers, record the observer's damage assessment reports. This information will then be provided to the Transmission department for further action and to System Control. After minor storm damage and as a back up plan for major storm damage, Air Ops will record the damage assessment reports and distribute them to the Transmission department and System Control.

Gulf's primary communications channel for Air Operations is the Southern Linc radio network. The plan calls for Southern Linc radios in each aircraft and several on the ground to receive damage assessment information and direct air operations.

As a secondary plan, or backup, Gulf will utilize satellite telephones assigned to the Air Operations team. These telephones will be used in the aircraft and on the ground by Air Ops, CEMC, and System Control.

As a tertiary plan, Gulf will use the VHF-band radio frequency 122.95 MHZ. If this frequency is unusable for any reason, Gulf Power Company will be assigned another frequency by the FAA. In the event Ground to Air communications are limited to VHF radios, Air Ops may launch a fixed-wing aircraft to function as an airborne communication relay (on Gulf Power Company assigned frequency) to pass damage assessment information to Air Ops. This frequency will also be used by vendor aircraft to notify Air Ops of destination field, ETA, hours of fuel available and other fight related information.

Information Technology – Section XIX

The purpose of this procedure is to provide a guide for responding to an emergency situation that has disrupted the information processing facilities at Gulf Power. Critical systems will be given priority in the restoration effort.

Page 63 of 89

Effective Date: 06/01/06

Overview

If an emergency situation is one for which advanced warning can be given – such as a storm – the following steps will be taken prior to it affecting the Gulf Power service area and upon request of the Company Emergency Management Center (CEMC.)

Information Technology Management Team

Review the schedules and storm assignments of IR employees to determine who may be unavailable to report for duty. If employees are unavailable, notify Human Resources advising employees' reason(s).

Page 64 of 89

Effective Date: 06/01/06

IT CNS CS Field Ops South and Telecommunications Engineering

Remind/instruct clients to secure all computer-related equipment.

- Power it down.
- Unplug it.
- Move it to interior offices and away from windows.

This will be accomplished via e-mail and a message on the company's phone system.

When the emergency situation has passed and it has been determined that work can begin safely the damages will be assessed and the appropriate actions determined.

Information Technology personnel will work to restore the telecommunications infrastructure in order to provide the necessary communications requirements for the company. The local area networks (LANS) and wide area networks (WANS) will also need to be operational as quickly as possible.

In addition, IT personnel will coordinate vendors and in-house support analysts and technicians to repair, restore and/or acquire and install computer-related equipment, telephones, and fax machines that are damaged during the disaster.

A copy of the SoLINC Radio Operating Instructions and talk group assignments can be found in each Radio Storm Kit. Additional copies can be obtained from the CEMC.

The company uses 44 talk group modes on the Southern LINC radio system for normal radio communications, with an additional 56 talk groups provisioned for emergency and other contingency needs.

Storm and spare talk group modes will be assigned by affected area operations management and communicated to IT CNS CS Field Ops South for coordination.

When normal communications methods are disrupted, radio communications using amateur radio frequencies coordinated with the Amateur Radio Emergency Service (ARES) is available for voice and data transmissions between the various restoration locations within Gulf Power Company and between Gulf Power Company and other outside agencies such as the various county Emergency Operations Centers (EOC), the state EOC, and various support functions such as the American Red Cross. Communications would normally be conducted on the 2 meter and 70 cm amateur frequencies for local information transfer and on the 75 and 40 meter HF bands for communications to Tallahassee.

Page 65 of 89 Effective Date: 06/01/06

Commercial or business communications can only be conducted on Amateur Radio frequencies during an emergency when the normal forms of communications have been disrupted and must be returned to the normal modes when they become operational. During the emergency, the FCC regulations of Part 97 of the Communications Act of 1934 must be followed by using only licensed control operators on the allocated amateur radio frequencies.

When an emergency condition exists IT personnel will be dispatched as required to support the company's coordinated restoration effort.

All IT work requests and trouble calls should be reported to the Information Technology Customer Support Center.

IT personnel will be dispatched according to service-affecting priority levels.

Page 66 of 89

Effective Date: 06/01/06

Major Hurricane Category 3, 4 or 5 – Section XX

This section establishes a plan of action for rebuilding and/or repairing the company's generation, transmission, substation and distribution systems due to the devastation caused by a Major Category 3, 4 or 5 hurricane. This effort could take weeks – maybe even months – rather than days to restore service to our customers. Part of planning for such a restoration effort is complicated by the fact that no one really comprehends the potential destruction that accompanies a Major Category 3, 4 or 5 hurricane.

Objective

The overall objective of the plan is developed to ensure the safety of all personnel working on the restoration effort, to restore service to our customers in the most efficient and effective manner, to ensure the company is ready to put additional personnel to work upon arrival to assigned restoration areas and to leverage the knowledge we have to better manage large numbers of people.

Restoration areas will be a vital part of the storm recovery plan for a Major Category 3, 4 or 5 hurricane because there will be portions of the service area where the devastation will require total rebuilding of the company's distribution system. With this magnitude storm, Gulf Power's plan includes rebuilding or repairing substations, building new feeders and then restoring service to those homes or businesses left standing. The plan has three zones. The one closest to the center would have total destruction; the electrical system would require a total rebuild. The next zone is a mixture with some repair, some rebuild and some services restored. Away from the landfall - 60 or 100 miles - is an area where repairs can be done and service restored. The plan to rebuild the devastated areas is a change from the way we normally operate following a less severe hurricane. This is different, because in the past we've taken everything in each of the three large districts through one central restoration area headquarters. With a Major Category 3, 4 or 5 hurricane, there could be as many as eight restoration areas reporting directly to the Company Emergency Management Center (Exhibit A). In those areas, we will have to establish independent restoration areas, much like we've grown accustomed to at Pine Forest, Fort Walton Beach and Panama City. Each of these restoration areas would be staffed according to the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B). Each restoration area would have their own nucleus of people that know that area and can begin the restoration process while additional personnel are being dispatched. Those areas where typical restoration efforts would be conducted, Pine Forest, Fort Walton Beach and Panama City, would become the default restoration centers. For example, if we

Page 67 of 89

Effective Date: 06/01/06

only had to set up a restoration area to cover southwest Pensacola, then everything else remains under Pine Forest, unless we set up a separate center to handle the Gulf Breeze peninsula and Santa Rosa Island. So those three centers remain and they handle everything that's not specifically set up under a new restoration area. Each of the restoration areas would have a Restoration Area Managers (RAM) in charge that has experience in managing similar areas. It is possible that an additional 8,000 personnel could be added to Gulf's existing workforce. If all eight restoration areas are established and the additional personnel were divided evenly between the eight restoration area headquarters - that would be at least 1,000 additional personnel per restoration area. the additional personnel, the line techs and the service techs may become team leaders for the incoming crews. The plan uses an existing Engineering & Construction Supervisor's area and makes a restoration area out of it. This allows for better organization, at least electrically and geographically, of what the boundaries are; and to already have people knowledgeable about that area. The plan is to leverage the knowledge of our existing workforce to put these large numbers of additional people to work so that we are more productive. major obstacle we may face is that our support and communication systems may not be functional after a Major Category 3, 4 or 5 hurricane. From an operational standpoint, these things make our job easier and they have been available when storms have hit our service area in the past. Our Major Category 3, 4 or 5 hurricane Storm Recovery Procedures deals with how we restore service when we have fewer of those support and communication systems available and at the same time have larger numbers of outside crews on our system assisting us with our restoration effort.

With this additional section to our storm plan, Gulf Power is prepared to move immediately, with purpose, planning and forethought to repair our system and restore service to our customers as timely as possible.

This section is intended to provide an action plan which will extend the normal emergency procedure to cover the likelihood of major category 3 or greater hurricane conditions. Extreme conditions will call for special automotive equipment, additional fleet support personnel and more attention to communication and coordination efforts. Assignment and relocation of all fleet personnel will as usual be at the discretion of the Fleet Services Support Team Leader.

Previously established storm procedure guidelines V (3) GUIDELINES FOR EMPLOYEE PROVIDED VEHICLE SUPPORT, and V (4) GUIDELINES FOR RENTAL VEHICLE SUPPORT, will apply.

Page 68 of 89 Effective Date: 06/01/06

Sections V (5), V (6), and V (7) have been appended to provide added support for extreme conditions.

Page 69 of 89

Effective Date: 06/01/06

(V-5) Equipment Support

The CEMC Fleet Support Team Leader will make arrangements to facilitate the acquisition of special equipment. This will include All Terrain Vehicles, Dozers, Front-end loaders etc. (Additional excavating and land clearing contractors have been added to the storm vendor list)

(V-6) Maintenance Support

The Fleet Services Support Team Leader will arrange for outside mechanic support and coordinate and communicate efforts through the CEMC. (In addition to mechanics traveling with outside restoration teams, extreme conditions will call for additional mechanics equipped with garage service trucks. The other operating companies and Altec will be the best source for additional maintenance support).

(V-7) Parts Support

Added parts activity will require additional qualified parts personnel. The Fleet Services Support Team Leader is responsible for appointing inside and/or arranging for outside parts support personnel.

Communication needs will be coordinated with the CEMC – IT Team. If Southern Linc is operational, the SINGLE POINT OF CONTACT for fleet repairs will be Southern LINC radio # 5115. For improved communication and coordination the SINGLE POINT OF CONTACT person will be located in the CEMC with the CEMC Fleet Services Team Leader. The CEMC Fleet Services Team Leader will be contacted for all other fleet equipment needs.

In the event of a Major Category 3, 4 or 5 hurricane Gulf's Logistics team will implement the following procedures:

Establish Primary Staging Sites in each District. Emergency food distribution and lodging needs would be coordinated from these staging areas:

Page 70 of 89

Effective Date: 06/01/06

Pensacola District

Pensacola Interstate Fairgrounds:

6655 Mobile Hwy.

Bronson Field:

Hwy 98

Pensacola Civic Center: Avalon Industrial Park: 201 E. Gregory Street

5953 Commerce Rd

Ft. Walton District

Ft. Walton Beach Office:

140 Hollywood Blvd. SW

Crestview Office:

1655 S. Ferdon Blvd.

Panama City District

Frank Brown Park:

16200 W. Hwy 98

1230 E. 15th Street

Panama City Office:

Incoming additional personnel will be assigned to a specific Primary Staging Site where they will receive all meals. Lodging will also be coordinated from these staging sites.

Food

An agreement has been executed with Buffalo Rock to supply portable kitchen facilities at all Primary Staging sites. The contacts for Buffalo Rock are:

Dick Hansen & Craig Holmes Catering Manager/Catering Coordinator

Buffalo Rock was selected due to past performance and availability of equipment at various locations. With 24 hours notice, Buffalo Rock will be operational at any and all Staging Sites. A preliminary menu has been coordinated with the vendor.

Staffing

Operation personnel in the CEMC will notify the Logistics Team of the number of incoming personnel to expect at each of the Primary Staging Sites. This information will be communicated to the appropriate District Team Leaders. The Districts will be responsible for adequately staffing each staging location and providing their personnel with the appropriate storm duty assignment.

Page 71 of 89

Effective Date: 06/01/06

Lodging

In the event of a major category 3, 4 or 5 hurricane the Logistics Team will assess needs of site and crews. The logistics team will coordinate food sites in emergency staging areas and provide secure non-traditional support for emergency personnel and crews when traditional lodging and basic needs' resources are not available.

The Housing Director for the University of West Florida, has given us tentative agreement to use any open facility(s) (Dormitory, Commons Building, and/or Field House) that are available for the purpose of emergency use during a hurricane. We also have confirmation from UWF's Emergency Coordinator that Gulf Power with approval from a representative of Gulf Power's Safety & Health Team is authorized to use undamaged buildings or facilities on the UWF campus, provided those locations are not already taken by the Escambia County Emergency Management Center.

CEMC Operations

At least 1 HR storm team member will remain in the temporary CEMC at Pine Forest during the storm. Additional personnel will report as soon as conditions are safe.

Family Services

- ☑ Provide Search & Rescue operations
- ☑ Assist with recovery and relocation of belongings from destroyed/damaged property
- ☑ Provide emergency check cashing services
- Allow employees to use Hadji Shrine Temple and other designated shelters in FWB & PC as temporary shelter in the event of massive evacuations or massive destruction after the storm
- ☑ Bring in Employee Assistance Program counselors for employees

Communications With Employees

- ☑ Communicate through Emergency Broadcast System, if phone and/or radio systems are inoperable
- ☑ Make Department Heads responsible for locating and reporting to HR on their employees

Page 72 of 89

Effective Date: 06/01/06

Warehouse Operations

The immediate priority for Warehouse Operations would be to re-establish a centralized material distribution network to support the company's restoration efforts. If post disaster damage assessments confirm catastrophic damage, Warehouse Operations would make preparations to get the Central Receiving Location and manned Storerooms operational at the non-company Staging Areas identified in each District location.

Initially, the sites would stock items from the approved Storm Material List (SML). Each day, for the duration of the restoration effort, the manned Storerooms would prepare a list of material needed to support the area and forward this information to the Central Receiving Location. The Central Receiving Location would make scheduled deliveries to the manned Staging Areas overnight to ensure materials are available for the next day.

Each Staging Area will be manned by a Material Person (Gulf Power or Non-Gulf Personnel). All "Non-Gulf Power" crews should bring their own Material Person equipped with a full size pick-up truck and low-boy flatbed trailer.

Currently, there are a total of 20 Warehouse Storekeepers and Stockhandlers, along with 3 employees that are licensed to operate tractor trailer trucks. This should be a sufficient number of personnel to cover warehouse operations in case we need to relocate warehouses in all 3 districts. Gulf Power Company, Warehouse Operations, would use a combination of existing employees and our strategic alliance suppliers to meet the needs of the Company's restoration efforts.

CREQ employees (excluding those already assigned to company-wide storm restoration) will be assigned to company facilities before the storm makes landfall.

When conditions allow for safe travel, a CREQ representative will evaluate preassigned company facilities. CREQ will immediately begin getting all company facilities repaired and to secure the perimeter of company facilities to minimize further damage to the facility. Damage could be from wet carpet, windows blown out and/or water which blew in through walls/windows, etc. CREQ will determine if the facilities are suitable for use for their original purpose or for storm restoration purposes. If health related conditions are found at any company facility the CREQ Team Leader shall contact the CEMC Safety & Health Team for assistance. Once CREQ makes its use suitability determination,

Page 73 of 89

Effective Date: 06/01/06

the CEMC Safety & Health representative shall verify that a company facility is safe for personnel to occupy.

Before any company facility can be used for lodging, a representative from the CEMC Safety & Health Team will need to ascertain if the facility has any conditions that might make it unhealthy for personnel to occupy. Anytime a company facility is identified as unsafe and/or due to health risk should not be occupied, the CEMC Project Services Manager and/or the CEMC Specialist should be notified. This will increase the communications regarding company owned facilities and the availability for using company facilities to support the company's restoration effort.

Public Affairs

Pre-Storm

Establish a location for Public Affairs employees to meet post-storm, OR, provide each employee with specific instructions regarding their storm duty assignment and location based on the most current information available regarding the hurricane.

Assign one Public Affairs person to the impacted county's Emergency Operations Center, who would be positioned there before the storm makes landfall, during (if facility is rated for the expected wind velocity) and after the storm. The Public Affairs person would handle media interviews and maintain a dialog on restoration efforts between CEMC and the EOC location. Media must be advised that all restoration information will be disseminated from the EOC location.

Distribute press releases to all media detailing the potential impact of the storm to Gulf Power facilities, how much help would be expected from our sister companies and other utilities, and that many people should expect not to have electricity for at least a month, or until their homes could receive it.

Assign one Public Affairs person to the CEMC before, during and after the storm to communicate restoration updates to the Public Affairs employee at the county's Emergency Operations Center.

Communication would be via telephone land lines until such time as that service was no longer available. Communication would then be maintained with either Southern Linc or cell phone. The Public Affairs person would also be responsible for updating Gulf Today.

Page 74 of 89 Effective Date: 06/01/06

Make necessary system contacts to ensure System Emergency Communication Team is on standby. This should include photography back-up.

Page 75 of 89

Effective Date: 06/01/06

Post Storm

External

All media updates to stress that restoration process is DIFFERENT to change customer expectations.

Determine when (or if) to bring in Southern Company System Emergency Communication Team.

There would be no change to the storm procedure as it relates to the re-routing of inbound customer calls. Calls would be routed to other companies until which time Gulf Power Customer Service employees could take the calls. A broadcast message would be placed on the phone switch that mirrors the communications from Public Affairs.

Corporate Security & Risk Management

The Corporate Security & Risk Management Manager and/or the alternate will notify CEMC Management who will be the CEMC Security Team Leader to be placed in the CEMC Operations at Pine Forest and/or at the Alabama Power Birmingham location. Also, present will be four voluntary contract Guard Service employees to provide security responsibilities at and around the Pine Forest facility. The Security Team Leader will instruct the guards as to what personal articles are to be brought when assigned to the Storm facility. Corporate Security Department will provide the other tools needed. After the storm subsides to a reasonable strength, the Security Team Leader will evaluate the immediate area and assign job duties to the Guards as needed. After the job duties are assigned, the Security Team Leader will begin to use any communication tools available to locate Corporate Security personnel. After Security personnel are located, up to date information can be relayed and specific job duties can be assigned.

The Security & Risk Management Manager and/or the alternate will assign security personnel as required when the CEMC establishes restoration areas and staffs according to the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B). The security representative will be located at each site and will interface with site management as needed.

If needed, additional security personnel will be brought in from other Southern Company Security Departments as necessary to supplement Gulf Power's Security & Risk Management staff. The request for additional security personnel shall be coordinated through the CEMC Human Resources Team. This

Page 76 of 89

Effective Date: 06/01/06

procedure will allow the appropriate CEMC team to better prepare for providing support (Logistics, fueling and etc.) for the additional personnel.

Safety & Health

The current Safety & Health team would be overwhelmed by such an event. It would be necessary to bring additional safety and health experts from within the Southern Company as well as qualified safety and health contractors. Additional personnel requests will be coordinated through the CEMC Human Resources Team and any contractor requirements will be coordinated with the CEMC Supply Chain Management Team.

Safety & Health personnel will be assigned to specific districts before the storm makes landfall. A representative of Safety & Health would also be assigned to the CEMC to handle any/all matters pertaining to the area of safety and health. Significant contractor, building safety, and other related issues would have to be addressed with the assistance of safety & health personnel.

When conditions allow for safe travel, the Safety & Health Representatives will be in the field providing assistance to all personnel working on the restoration effort. If health conditions are found at any company facility the CREQ Team Leader shall contact the CEMC Safety & Health Team for assistance. The CEMC Safety & Health representative shall determine if a company facility is unsuitable because of health concerns for personnel to occupy. He/she maybe needed to provide assistance to the field operations and to the personnel responsible for the positions as shown on the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B).

Nursing services (first aid stations) would be staffed by Georgia Power Company, Alabama Power Company and/or contract nursing professionals. Alabama Power Company would provide up to 3 nurses. The contract nursing agency would provide additional resources. Georgia Power Company would provide 2 - 3 nurses. The Wellness Coordinator for Gulf Power Company would be in charge of first aid coordination efforts and action plan development. A minimum of one station will be set up in a strategic location and staffed by 1-2 nurses, dependent upon availability. Other locations will be established as needed. Portable shelter and equipment (cots, first aid supplies, coolers and ice & etc.) will be needed at each first aid station for the sixteen hour per day coverage. If necessary, flight arrangements for nursing personnel will be made in advance, possibly through the CEMC Air Operations Team.

In the event communication capabilities are non-existing because of damage caused by the hurricane, this plan will instruct personnel of their respective

Page 77 of 89

Effective Date: 06/01/06

assignments, who to contact, and directions on where to report as soon as conditions are safe to travel.

In order to ensure compliance with accounting and regulatory Accounting personnel may be rotated between storm and regular work assignment requirements. It may also be necessary to utilize non-Accounting / Finance employees as well as subsidiary employees as storm accountants. The need for personnel to perform accountant storm duty will be identified and initiated by the CEMC Human Resources team. CEMC Human Resources will assign as many accountants as necessary to assist in the restoration effort.

Power Generation will continue to operate under the plant specific restoration plans. If additional personnel are needed to support the plant operations, the request will be coordinated with the CEMC Human Resources Team.

All environmental concerns and/or issues will be handled in accordance with current operating procedures and guidelines. Any exceptions and/or needs for environmental assistance should be directed to the CEMC Specialist and/or CEMC Operations staff.

Power Delivery

(1) General

Power Delivery Operations will follow existing 2006 Storm Procedure as well as Section XX objectives in restoring service to customers.

(2) Organization

Under this section, each district has a separate detail plan outlining their restoration plan. When operating under this section, there could be as many as eight restoration areas reporting directly to the Company Emergency Management Center (Exhibit A) and each of the eight restoration areas would be staffed in accordance with the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B). A new Section XVI–F, Forestry Services, has been added to this section.

(3) <u>Distribution Operations Center Guidelines</u>

The Distribution Operations Center Guidelines will be changed to bring all 4 operators (Day and Night Shifts) to the Pace Blvd Office before travel conditions become unsafe. These operators would sleep and work in

Page 78 of 89

Effective Date: 06/01/06

shifts at Pace Blvd. until conditions allowed for them to travel home. This arrangement would provide 24 hour coverage. Decentralizing of the Distribution Operations Center would remain the same as already written in Sections XVI-A (3) and XVI-A (4) of the 2006 Storm Recovery Procedures.

(4) Work Order Number For Storm Restoration

This section would remain the same as already written in the 2006 Storm Recovery Procedures.

Western: Pensacola Areas I and II

This plan for a major hurricane uses the same strategy for a category two or less storm but breaks up this District from two Restoration Area Managers for the entire District into four (4) Restoration Area Managers per the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B). Each of the four (4) Restoration Area Managers will report directly to the CEMC Project Services Manager and/or his alternate. This plan strengthens our response because the overall damage will be high in all areas and with a high storm surge of 20 feet or more, the coastal and low areas, (downtown Pensacola), will have extreme problems.

Pre-storm planning for early evacuation of personnel, trucks, and equipment is going to be essential. The plan is to have no equipment under a shed or in a building during the storm. All trucks and equipment in the coastal and low areas, (ex., Gulf Breeze and Wright Street), should be moved to Ellyson Industrial Park or the Fairgrounds to weather the storm, and then be relocated to the assigned restoration area staging site.

After the storm passes and the storm surge recedes, traveling will be difficult. Roads will be blocked, (they will be cleared), bridges will be washed-out, (there are other routes); All employees are expected to come to work.

The established storm assignments by substations with team leaders and their teams will make initial damage assessments on all feeders leaving each substation as we normally do.

This flexible plan allows each restoration area to be expanded to as many as 1,000 or more line personnel, while using the local Engineering & Construction area personnel as the coordinators for the additional line personnel.

Page 79 of 89 Effective Date: 06/01/06

Keep something important in mind; anything can be rebuilt or repaired because we built it in the first place, but the safety of all personnel is paramount for the

Central: Fort Walton

restoration effort.

The following plan is based on the criteria established by the CEMC for potential storms classified as Category 3, 4 and 5. Due to the high storm surge and large amounts of rain that could be associated with such a storm, early evacuation of personnel, trucks, and equipment from the Fort Walton and Destin offices is essential.

The plan is to move the line and service trucks to the primary staging locations listed in Table 1 below. After the storm has passed, a damage assessment of the district will determine the magnitude of the impact and possibly dictate the deployment of a second Power Delivery Manager to assist with the restoration effort. In the event of this requirement, the district will be divided into a north area consisting of Crestview and DeFuniak Springs, and a south area made up of Fort Walton and Destin. Implementing this plan will utilize the additional staging areas listed also.

Table 1

Location	Primary Staging Areas	Additional Staging Areas
Fort Walton Beach (RAH)*	Okaloosa Fairgrounds	Meigs Middle School Shalimar
Destin	Okaloosa Bus Barn- Niceville	Mullet Festival Site- Niceville
Crestview (RAH)*	Super Flea Inc. Lot @ I-10	Old Wal-Mart Parking Lot
DeFuniak Springs	Walton County Fairgrounds	None

^{*}Restoration Area Headquarters (RAH)

With the possibility existing that the Destin area may be isolated due to the inability to use the bridges -- Destin, Mid-Bay, and Hwy. 331 bridges. If access by the bridges is not available then helicopters, barges, and ferries to transport personnel and vehicles will be required- staging will be from Niceville. The onsite staging area for Destin will be the old Wal-Mart parking lot.

There is a good possibility the Destin office will be severely damaged and unusable, therefore plans for a portable building to serve as the temporary office to be installed should be made by contacting the CEMC Supply Chain Management Team. Destin will be under the direction of the Fort Walton, Crestview, or Panama City Beach restoration area based on the ability to

Page 80 of 89

Effective Date: 06/01/06

transport personnel, material, and equipment in the most effective manner into the area.

The district has 24 distribution substations that will need to be evaluated and have damage assessment performed on the lines leaving them. Responsibility for these substations is shown in the Table 2 below. This will require the assignment of additional personnel to these substations as team leaders, evaluators, drivers, and support personnel so that a timely and accurate assessment of the situation can be made.

This section plans for portable buildings to serve as temporary offices would need to be installed to sites as needed. The request for portable buildings shall be coordinated with the CEMC Supply Chain Management Team.

Table 2

Location	Number of Substations
Fort Walton Beach	9
Destin	5
Crestview	10

Plan for the function of Gulf Power Company field personnel to change to leading foreign crews around, guiding them to damaged areas, and instructing the foreign and contract crews on how Gulf wants the system re-built.

Substation List and Responsibility Assignment for Restoration

Fort Walton

AF Hurlburt	Fort Walton	Hurlburt	Niceville
Ocean City	Shalimar	Sullivan Street	Turner
Valparaiso			

Crestview

Airport	Baker	Crestview City	DeFuniak Springs
East Crestview	Laurel Hill	Milligan	Paxton
Ponce De Leon	South Crestview		

Destin

Crystal Beach	Destin	Miramar	Santa Rosa
San Destin			

Page 81 of 89

Effective Date: 06/01/06

Eastern: Panama City

This section plans for people, crews, and food to be bussed in from outside the Panama City service area to restore facilities for a period of time until hotel /motel/ restaurant accommodations are back in service or available.

This section plan includes relocating fleet vehicles to area(s) remote from the site of the strike zone of the hurricane. Areas available include the field behind Ebro City Hall on Highway 79 and the Lynn Haven Waste Disposal Site which is located on Highway 77 just south of Bozeman School. If conditions warrant, fleet vehicles would be moved further north to Chipley.

The District would be subdivided into two Restoration Area Managers in accordance with the Major Hurricane Category 3, 4 or 5 Restoration Organizational Chart (Exhibit B). Each of the Restoration Area Managers would report directly to the CEMC Project Service Manager and/or his alternate.

One team would consist of the Panama City Beach and the Northern District areas. The second team would include the rest of the Panama City town area.

The Beach Area would be worked in two sections: Hathaway and Long Beach Subs Lullwater and Phillips Inlet Subs

Since the Panama City Beach Office is located in a possible tidal surge zone, staging for both sections would be set up at the Frank Brown Park, 16200 W. Hwy 98 (Back Beach Road). Prior to the strike of the hurricane, all essential materials stored at the Panama City Beach Warehouse would be relocated to the staging area in Ebro or further north if needed. Relocation of materials will be coordinated with the CEMC Supply Chain Management Team.

The Northern District area would be handled as in current procedures. If additional staging sites are needed, the specific site will be selected from the pre-identified staging sites prior to the hurricane impacting the Northern District area.

Page 82 of 89

Effective Date: 06/01/06

The Panama City Town area would be worked in three sections as follows:

Area 1:

(Proposed Staging Area: West Building Supply (Closed) parking lot at 239 West 15th Street)
Shipyard Sub
Greenwood Sub
Jenks Avenue Sub
Oak Avenue Sub

Area 2:

(Proposed Staging Area: Panama City Mall, 2150 Martin Luther King, Jr. Blvd. (Highway 231)
Bay County Sub
Northside Sub
Hiland City Sub

Area 3:

(Proposed Staging Area: Wal-Mart building parking lot, 230 Tyndall Parkway, Callaway)
Redwood Sub
IPC Sub
Parker Sub
Long Point Sub
Tyndall Sub

Plan includes utilizing company senior line personnel and pre-identified retirees, working for a contractor, to serve as team leaders for contract crews. In addition, other qualified company personnel (Field Service Representatives and Customer Service Representatives and etc.) will be used to serve as general guides for contract crews.

Additional personnel requests and any additional support requests will be made to the CEMC. An example of such support would be for the CEMC Supply Chain Management Team to ensure the night time refueling of vehicles at identified sites.

Forestry Services

The Forestry Team Leader will remain at the CEMC. The team leader will make arrangements to bring foreign crews onto Gulf's system to fulfill the needs of the various restoration areas. The Team Leader will monitor the movement of

Page 83 of 89

Effective Date: 06/01/06

crews between restoration areas and advise Logistics of these movements as the restoration progresses.

A Forestry Coordinator will be located at each restoration site. The coordinator will interface with the site manager and various substation team leaders to determine the resources necessary to restore service throughout the restoration area. Additional coordinators will be brought in from other Southern Company Forestry Services Departments as necessary to supplement Gulf Power's Forestry Services staff. The Coordinator will dispatch crews to the various substations and coordinate the movement of crews between substations as the restoration progresses.

A Forestry Supervisor will be assigned to each substation that has an inordinately large number of crews assigned to it. The Forestry Supervisor will assist the Substation Team Leader by managing the crews and moving them to the appropriate field location as needed to restore service. The forestry Supervisor may be a contractor supervisor or a Southern company employee.

Each contingent of approximately five crews will have a General Foreman monitoring the crews' activities to insure safety and productivity are maintained at a high level throughout the restoration event.

Layers of supervision may be added or deleted to the organizational structure depending on the volume of crews flowing into any one location.

A. TRANSMISSION/SYSTEM CONTROL

The first priority would be restoration of any generation not in service. The best source available for effected Plant would be identified, if necessary repaired, and returned to service in order to provide Station Service at the Plant.

The three Transmission Restoration Areas may be expanded to five or six and the procedures outlined followed. Transmission lines would be patrolled aerially in order of importance as determined by System Control. Those lines undamaged would be returned to service in accordance with System Control Procedures. Repair of damaged lines and return to service would be in priority order set by System Control. Order of patrol evaluation should be set in advance by System Control and updated annually. The order of patrol should be determined by assuming an inability to determine what lines are out and what lines are not out, and then determine which lines are most important to patrol/evaluate. The CEMC has responsibility for Aircraft Operations and should provide staging areas in advance of any storm. In the event of a Major Category

Page 84 of 89

Effective Date: 06/01/06

3, 4 or 5 hurricane all helicopters and fixed wing aircraft will be required for transmission restoration effort.

Distribution will have staging areas strategically located throughout the service area. If possible, Transmission could use those same areas to stage crews. Transmission should coordinate activities with the effected Staging Site Manager and/or Restoration Area Manager.

Distribution can make repairs and be prepared to energize feeders upon approval of System Control in order to maintain system stability.

In the event communications are out of service, patrol reports would be hand delivered to the TCL of the restoration area and then forwarded by hand to System Control until radio communications are restored.

With the additional transmission crews Gulf Power would use line tech's assigned to Transmission work and Substation Tech's as evaluators and as crew guides.

B. <u>SYSTEM PROTECTION</u>

Pre-Storm Preparations

Throughout storm preparations, during the storm and after the storm, System Protection personnel will establish and maintain radio communications with the System Protection Manager, if at all possible. The possibility that generating plant, transmission, and distribution substation priorities can change at any time in a time of emergency, makes this communications link essential.

Personnel Assignments

System Protection's emphasis after the storm will be to evaluate the generating units, generating plant switchyard, and major substations to determine protection & control problems and restoration plans.

For a storm of this magnitude, all assignments of System Protection personnel outside of the System Protection function will be cancelled. Assistance from other operating company system protection departments will probably be requested through the CEMC Human Resources Team. Therefore, it is imperative that P&C problems at bulk power and other major substations be evaluated and necessary checkout be coordinated by Gulf System Protection

Page 85 of 89

Effective Date: 06/01/06

personnel. For this reason, all System Protection employees will likely be assigned substations to evaluate, make repairs, and place in service.

Pre-Storm Assignments

System Protection employees will be placed in strategic locations as follows:

Plant Crist - Three System Protection employees will be in place at Plant Crist prior to the storm. Their functions will be to assess the P&C damage associated with the generating plant and its switchyards, post-storm. They will evaluate the damage and communicate with the System Protection Manager to develop a restoration plan.

<u>Plant Smith</u> – Two System Protection employees will be in place at Plant Smith prior to the storm. Their functions will be to assess the P&C damage associated with the generating plant and its switchyards, post-storm. They will evaluate the damage and communicate with the System Protection Manager to develop a restoration plan.

Ft. Walton District – Two System Protection employees will be in place at Crestview District Office. Their functions will be to assess the P&C damage at substations, when dispatched by the System Protection Manager, post-storm. They will evaluate the damage and communicate with the System Protection Manager to develop a restoration plan for these substations.

Chipley - One System Protection employee will be in place at Chipley District Office. This employee will assess the P&C damage at substations when dispatched by the System Protection Manager, post-storm. They will evaluate the damage and communicate with the System Protection Manager to develop a restoration plan for these substations.

Other System Protection Personnel — Personnel unassigned to the above locations will stay at home or at a suitable storm shelter with their families. They must be available (with radio communications with the System Protection Manager) and should stay in a location to be available immediately following the storm.

<u>During the Storm</u> – The System Protection Manager (or an assigned System Protection employee) will remain with the Transmission System Control Office. They will monitor system activities and identify P&C schemes, which will need attention after the storm has past. A preliminary substation restoration plan will be developed as outage information is received including numbers of outside protection & control personnel needed.

Page 86 of 89

Effective Date: 06/01/06

After the Storm - The System Protection personnel assigned to Plant Crist & Plant Smith will report their initial assessments. This will be used to develop the restoration plan for the plants, 230 kV transmission substations, and other major substations as first priority. All System Protection personnel should report in to the Transmission System Control Office and contact the System Protection Manager, to receive instructions necessary to take action to repair or coordinate the repair of P&C schemes.

After all P&C repairs are made, the System Protection personnel will be released to the CEMC Human Resources team by the System Protection Manager for redeployment in the Company's restoration effort. Outside protection & control personnel will be released to the CEMC as well.

If significant damage to Gulf Power Company's geographical area should occur, Aircraft Operations will do the following:

Depending on the conditions of the runways, there might be a heavier use of helicopters than fixed wing aircraft to meet our aircraft needs. We currently rely heavily on fixed wing aircraft because of the lower cost.

If communication towers (Southern Linc) are restricted or not operating at all, we might need to fall back on VHF/UHF technology.

CEMC - Aircraft Operations

Team will work closely with the CEMC - IT Team to ensure communication capabilities.

If the decision is made to relocate the helicopters and/or fixed wing aircraft, Transmission will dispatch qualified transmission/substation personnel to travel with the aircraft to their relocation sites. When the pilot determines it's safe to return to Gulf's geographical area, the transmission/substation personnel will begin patrolling the transmission system upon the return flight. Communications method will be determined prior to the aircraft relocation effort.

CEMC Aircraft Operations will be located with the CEMC Operations and CEMC Transmission System Control Teams at the Pace Blvd. Office.

Information Technology (IT)

In the event that a storm of this magnitude hit the Gulf Power storm area significant disruption of the existing telecommunication network would be likely.

Page 87 of 89

Effective Date: 06/01/06

Communications among certain key locations and to some geographic areas would probably diminished, if not absent.

As with all other storms that affect the area, the Field Operations manager, engineers, and specialists will meet to assess the damage to all transport, Southern Communications, Voice, EMS, and Data networks. They will:

- Identify and prioritize the restoration plan.
- Determine parts and labor required to restore service.
- Develop plan for communications internal and external to Telecommunications.
- Create work plan with technician/assigned contractors

Portions of the infrastructure may need to be rebuilt due to damage caused by high winds and/or rising water.

Restoration times will vary depending on the extent of the damage, access to the affected sites, and the availability of personnel and material.

In the event that SoLINC is down we may be able to use the Amateur Radio Network, our existing 450MHz radio system, and the Isolated Site Operations feature of SoLINC for some means of communication.

Sustained winds of 150 to 200 mph with the possibility of tornadoes

While SoLINC buildings are constructed of concrete and steel and bolted to a concrete slab and are not likely to be severely damaged due to wind alone, our Microwave dishes and antennas may be misaligned, damaged and/or blown down requiring replacement and/or repair.

Fiber is located on many of our Transmission and some Distribution lines. Once the damage is assessed, the existing Telecommunications Fiber Restoration Plan will be consulted to determine the necessary action steps.

15 to 25 foot storm surge

Nine locations have been identified as critical to the Telecommunications infrastructure. If these facilities are severely flooded we would experience serious complications with our communications networks.

The initial flooding and the addition of significant rainfall (24 inches in 24 hours) will increase the likelihood of travel problems and guy structures washing out. It

Page 88 of 89

Effective Date: 06/01/06

will be extremely important to attempt to locate our people strategically to aid in the restoration effort.

It is **imperative** that all Gulf Power and visiting crews are instructed never to intentionally sever a transmission or distribution line without verifying the existence of fiber, as this could terminate previously existing communications.

Crist and/or Smith Generating Plants are unable to generate

If the plants are unable to generate, station service will be lost. Battery back-ups are in place and should last long enough to get a temporary generator on-line if necessary.

Over half of our Transmission and Distribution lines cannot be energized without repairs

The Telecommunications Fiber Restoration Plan will be consulted to determine whether any severed lines have fiber on them and the appropriate rerouting steps will take place.

As previously stated, it is imperative that all Gulf Power and visiting crews are instructed never to intentionally sever a transmission or distribution line without verifying the existence of fiber, as this could terminate previously existing communications.

Over 300,000 customers are out-of-service

Restoration of communications is critical to the effort to restore electricity to our customers.

Work is required to fully reoccupy all of our offices

We should have all communications circuits rerouted by the time the buildings are ready to be reoccupied. At that time a more long-term restoration plan will be put in place based on the damage sustained.

8,000 non-Gulf restoration people are being brought in

We do not typically provide telecommunications assistance to visiting companies as they generally bring their own equipment and support. IT personnel's SoLINC radios do utilize the CrossFleet function and will be able to talk to any visiting personnel with SoLINC radios.

Page 89 of 89

Effective Date: 06/01/06

Summary:

This document highlights the efforts and organization involved in planning for and responding to hurricanes and natural disasters by Gulf Power Company.

Conclusion:

Overall, Gulf's storm plan works extremely well and is a very solid plan. Gulf will always take the opportunity to incorporate lessons learned, although each storm may be different, the plan allows the flexibility to respond appropriately to the situation.

Communications is one of the keys to a successful restoration, and communications interruptions can be one the largest hurdles to overcome. In most cases Southern Company's internal communications network, SouthernLINC Wireless, has remained operational and provided the communications needed to facilitate the restoration process. However, the plan recognizes that there is no system that is immune from the impacts of a hurricane, which is why Gulf's plan also calls for the use of satellite telephones when other communications systems are inoperable.

A history of continuous learning from previous experience, along with a focus on the importance of communications, has led to the evolution of a storm plan that is capable of meeting Gulf's needs, even when faced with the most devastating of storms.

2007 Hurricane Season Preparedness Briefing

Gulf Power Company

March 5, 2007

SOUTHERN COMPANY

Transmission Inspections

- □ All critical lines will be inspected by May 1st, 2007.
- The complete transmission system has been inspected aerially once this year. Gulf Power typically performs four aerial inspections annually.
- Comprehensive walking/climbing and groundline inspection 6 year program:
 - 75% of inspections will be complete by August 1st, 2007

Vegetation Management

□ Transmission:

- 230kV ROW vegetation inspections are 60% complete and all hazard tree conditions will be corrected before April 15th, 2007.
- 115kV ROW vegetation inspections are 15% complete and crews are currently working on hazard trees. Completion Date: May 15th, 2007.
- 46kV ROW vegetation patrols and hazard tree removals are scheduled. Completion Date: May 30th, 2007.

Vegetation Management

□ Distribution:

- All Feeder ROW's (main-line 3 phase) were patrolled during December 2006 to identify danger trees and hazardous conditions.
 - ☐ Hazardous conditions will be corrected prior to storm season.
 - ☐ Off ROW danger tree removal will take place throughout the year.
 - Patrols were completed on schedule and without major problems
 - Off ROW approvals for tree removals from land owners were about 40%. Additional patrols and customer/contractor communications will be necessary to enhance the program.

Distribution Inspections

- ☐ All critical lines will be inspected up to the first protective device by June 1st, 2007, repairing:
 - □ Loose down guys
 - □ Slack primary
 - Leaning poles
- Infrared inspections on critical equipment (main line three phase Feeder) by June 1st, 2007, to identify items that need attention. Repairing:
 - ☐ Feeder switches, capacitors, regulators and automatic over current protective devices.

Summary

- □ Gulf is fully prepared for the 2007 Hurricane Season.
 - System: Transmission and Distribution
 - Storm Recovery Plan:
 - □ Proven and battle tested.
 - □ Improved based on lessons learned.
 - □ Support:
 - S.E.E. Mutual Assistance
 - Southern Company Logistics
 - Southern Company TERP

QUESTIONS?

Report on Collaborative Research for Hurricane Hardening

Provided by

The Public Utility Research Center University of Florida

To the

Utility Sponsor Steering Committee

February 26, 2007

I. Introduction

The Florida Public Service Commission (FPSC) issued Order No. PSC-06-00351-PAA-El on April 25, 2006 (Order 06-0351) directing each investor-owned electric utility (IOU) to establish a plan that increases collaborative research to further the development of storm resilient electric utility infrastructure and technologies that reduce storm restoration costs and outages to customers. This order directed IOUs to solicit participation from municipal electric utilities and rural electric cooperatives in addition to available educational and research organizations. As means of accomplishing this task, the IOUs joined with the municipal electric utilities and rural electric cooperatives in the state (collectively referred to as the Project Sponsors) to form a Steering Committee of representatives from each utility and entered into a Memorandum of Understanding (MOU) with the University of Florida's Public Utility Research Center (PURC).

The MOU has a term beginning March 1, 2006 and ending May 31, 2009, and may be renewed by mutual agreement of the Project Sponsors and PURC. In serving as the research coordinator for the Project outlined by the MOU, PURC manages the work flow and communications, develops work plans, facilitates the hiring of experts coordinates with research vendors, advises the Project Sponsors and provides reports for Project activities. PURC's budgets for work completed in 2006 are listed as Appendix A and Appendix B. Appendix D provides PURC's projected budget for the first part of 2007.

This report summarizes the research activities of the Steering Committee, PURC and the researchers to date in the area of hurricane hardening research. Section II of this report describes the workshop held in Gainesville, Florida that formed the basis for determining the initial scope of research conducted pursuant to the MOU. Sections III and IV describe the research being conducted in three main topic areas chosen by the Steering Committee subsequent to the workshop, namely undergrounding of overhead infrastructure, granular wind data collection, Each section describes the purpose of the and vegetation management. research, its scope and objective, the research methods, data inputs, expected costs and benefits as well as the costs and benefits achieved, sources of funding, schedule, and findings to date. The budgeted dollars shown for each project are being allocated on a percentage basis to each of the Project Sponsors as outlined in the MOU. The last section of this report provides an overall assessment of the collaborative research program to date, including operational and financial viability and future planning to the extent these items are not already covered in the other sections of this report.

II. Initial Workshop

The initial step in this Project was a workshop held in June 2006 in Gainesville, Florida. The purpose of this workshop was to provide a forum at which utility managers and hazard research professionals could discuss means to prepare Florida's electric infrastructure to better withstand and recover from hurricanes. The workshop included presentations by five utility managers and six researchers and research organizations. The presentations and a workshop report are on the PURC web site located at www.purc.ufl.edu. The presentations and subsequent dialogue indicated interest in wind research, materials development and analysis, forensic analysis, cost-effectiveness of storm hardening options, joint-use loads, and the economics of undergrounding.

The workshop began with presentations by industry infrastructure managers who described their experiences with outages, damage, and recovery during recent hurricanes. Presentations were made by:

- J. R. "Pepe" Diaz, Reliability Engineering Manager, Power Systems Distribution, FPL
- Jason Cutliffe, Manager, Distribution Asset Performance, Progress Energy Florida
- Alan McDaniel, Project Services Manager, Gulf Power Company
- T.J. Szelistowski, Director, Transmission and Distribution Operations, TECO
- Jorge Puentes, Electric Operations Manager, Florida Public Utilities Company

Following a Q&A, researchers from Florida and other states discussed their work and the capabilities of their universities, centers, or consulting firms. The

researchers who presented were selected by an industry steering committee. Presentations were made by:

- Dr. Kurt Gurley, University of Florida
- Dr. Steinar J. Dale, Florida State University
- Dr. Alex Domijan, Jr., University of South Florida
- · Calvin Stewart, Davies Consulting, Maryland
- Dr. Francis M. Lavelle, Applied Research Associates, N. Carolina
- Dr. Seth Guikema, Texas A&M; and Dr. Rachel Davidson, Cornell University

The workshop provided a valuable educational opportunity for both industry and researchers, and provided an important exchange of ideas on how Florida utilities might improve its approach to hardening their infrastructure. In their presentations and discussion, the utilities emphasized the need for practical research, advanced analytical techniques, and increased data availability and testing. Utility representatives demonstrated interest in the following research topics:

- Wind research, such as might be provided by the hurricane wind simulation lab (i.e., the Wall of Wind) and wind measurement devices;
- Materials development and analysis that could provide, for example, poles that are cheaper and easier to install during storm recovery efforts;
- Cost-effectiveness of possible hardening solutions, including undergrounding and vegetation management; and
- How joint use loads affect storm damage and recovery

Subsequent to the workshop, the utility sponsors' Steering Committee refined the areas of interest into four topics for further research: the economics of undergrounding, granular analysis and modeling of hurricane winds, vegetation management, and improved materials. The Steering Committee decided that materials vendors should be encouraged to perform the materials research because they are the ones who would subsequently profit from selling the new equipment and facilities. The Steering Committee has launched efforts on each of the other three topics. Each is described below.

III. Undergrounding

An important consequence of hurricanes is that they often cause major power outages, which can last for days or even weeks. These outages almost always lead to a public outcry for electric utilities to move overhead power lines under ground. To some it seems intuitive that undergrounding facilities should protect them from damage. However, research shows that this is not necessarily the case: while underground systems have fewer outages than overhead systems, they can sometimes take longer to repair. Furthermore forensic analyses of recent hurricane damage in Florida found that underground systems may be particularly susceptible to storm surge.

While there are numerous studies on undergrounding electric infrastructure, missing from this work are a comprehensive survey of what is known and what is not yet known, current analyses of Florida cases where overhead facilities have been moved underground, and a methodology that can be used to consistently quantify the costs and benefits of specific undergrounding proposals in Florida. This project will seek to fill these gaps by summarizing the body of knowledge on the costs and benefits of undergrounding, analyzing recent undergrounding cases in Florida, and developing a methodology for identifying and evaluating before a project is undertaken, the costs and benefits of undergrounding a specific area of existing electricity distribution infrastructure in Florida. This methodology is referred to as an *ex ante* methodology. Possible benefits to be considered include reliability impacts, reduced outages and changes in restoration times, reduced O&M costs, and reduced vegetation management costs, as well as an attempt to capture non-utility benefits, such as aesthetic benefits.

The project is divided into three phases. Phase I is a meta-analysis of existing research, reports, methodologies, and case studies. Phase II examines specific undergrounding project case studies in Florida and may include relevant case studies from other hurricane prone states and other parts of the world. Phase III develops and tests an *ex ante* methodology to identify and evaluate the costs and benefits of undergrounding specific facilities in Florida. Each phase of the project includes tasks of data collection, analysis, and reporting. Although the primary focus is the impact of undergrounding on hurricane performance, this study will also consider benefits and drawbacks of undergrounding during non-hurricane conditions.

The Steering Committee issued a request for proposal (RFP) for this project in November 2006. Based on its knowledge of power delivery systems, expertise in risk management and reliability issues, and proven ability to analyze the complex utility issues, InfraSource Technology (InfraSource) was selected as the vendor by the Steering Committee.

Once the vendor was retained, work on this project began in mid December. The vendor's Phase I meta-analysis is to be completed by February 28 and available for the submission of this report to the FPSC. The Steering Committee has decided that Florida-specific case studies are needed and that an appropriate *ex ante* methodology does not already exist, so it has directed InfraSource to begin work on Phases II and III. Case studies for inclusion in Phase II have been submitted; they are available for review on the PURC web site.

The budget for Phase I of this project is \$40,000. The budget for Phases II and III is \$220,000.

IV. Wind Data Collection

Appropriate hardening of the electric utility infrastructure against hurricane winds requires: 1) an accurate characterization of severe dynamic wind loading, 2) an understanding of the likely failure modes for different wind conditions, and 3) a means of evaluating the effectiveness of hardening solutions prior to implementation.

The Project Sponsors are addressing the first requirement by contracting with the University of Florida's Department of Civil & Coastal Engineering (Department) to establish a granular wind observation network will be established to address the first requirement. This network of devices will capture the behavior of the dynamic wind field upon hurricane landfall. Once a hurricane occurs and wind data is captured, forensic investigations of utilities infrastructure failure, conducted by the utility companies, will be overlaid with wind observations to correlate failure modes to wind speed and turbulence characteristics.

The spatial resolution should be such that performance of varying power distribution infrastructure designs can be evaluated and compared to an accurate assessment of their respective wind loads. The influence of local terrain features as well as proximity to the coast will be incorporated within the resultant description of the wind field. Existing portable weather stations already deployed by the research team will continue to provide ground level wind observations. This portable network now consists of five portable stations; it may be extended to up to twelve portable stations.

The Steering Committee has approved funding for this project for a one-year period, with the option to expand the program in future years to bring more deployment stations on line. This one-year pilot-level program will fund development of the portable instrument package, the development of the fixed deployment station details, the production of several portable units and perhaps a dozen deployment stations. This pilot program will serve as a proof-of-concept, with possible additional follow-up investments expanding the pilot program to produce more portable units and more stations if chosen by the Steering Committee.

To monitor hurricane weather conditions, the researchers are developing a hardened compact package (wind reading instrument, data-logger, power supply) that is designed for deployment where needed as a storm approaches. Stations will be set up across Florida to receive the portable instrument package. As a storm approaches, the portable instrument packages will be deployed to selected stations within the path of the oncoming storm. This arrangement produces a close spatial resolution of observation points in the impacted area. The instrument packages would be stored and maintained by the researchers, assuring quality control. A mobile, centrally controlled stockpile of units to be

placed as the storm path dictates is effective in terms of cost efficiency and quality control.

Presently, the Steering Committee has presented potential site locations for the researchers' review. Twelve wind device stations will be established on the sponsoring utilities' properties. Site visits for the final locations will take place during February and March 2007. The sites are expected to be completed and ready prior to the beginning of the 2007 hurricane season. Funding for the researchers has been established on a yearly basis; there is an option to increase the number of stations in subsequent years. The one-year budget for constructing three portable units and twelve deployment sites, and to deploy units in two storms, is estimated to be \$196,250. More precise cost estimates will be developed after locations are selected.

V. Vegetation Management

The goal of this project is to improve vegetation management practices so that vegetation related outages are reduced, vegetation clearing for post-storm restoration is reduced, and vegetation management is more cost-effective. The project will review existing research and studies on vegetation management as it relates to outage reductions and cost-effectiveness, survey current vegetation management practices and compare these to any existing research, and conduct a one-and-one-half day workshop on March 5-6 that will include vegetation management experts and utility arborists. The topics to be discussed in the workshop include:

- Utilities' clearance specifications
- Inspection program for hazardous trees
- Review of participating utilities' storm preparedness and planning, and vegetation management programs
- How vegetation management teams are organized and managed to maximize effectiveness
- Trimming observations from past hurricanes
- Cycle trimming vs. reliability-based approach to trimming
- Increasing public awareness
- Working with the Florida Department of Transportation and County Road Departments
- Working with county and city governments to ease restrictions on tree ordinances
- Success stories to avoid/reduce the amount of vegetation management damage by pro-active vegetation management programs
- Developing/communicating a VM storm restoration best practices manual for foreign crews
- Approaches to deal with customer refusals best practices
- Pro-active storm management

- Strategies to managing vegetation management resources to stay ahead of line crews' needs and restoration activities
- Distribution: Removals targeting certain species

The initial outcome will be a greater pool of shared knowledge on the part of utilities, vendors and PURC regarding the utilities' needs for improved vegetation management practices. The Steering Committee will determine whether further work is needed in this area after the workshop. The budget for this workshop is attached as Appendix C.

VI. Conclusion

In response to the FPSC's Order 06-0351, IOUs, municipal electric utilities and rural electric cooperatives joined together and retained PURC to coordinate research on electric infrastructure hardening. The initial step in this project was a workshop held in June 2006 in Gainesville, Florida. The workshop provided a forum for utility managers and hazard research professionals to discuss means to prepare Florida's electric infrastructure to better withstand and recover from hurricanes. The presentations and a workshop report are on the PURC web site located at www.purc.ufl.edu.

The research and study areas under consideration were extracted from information provided by the utilities and other stakeholder groups, including the universities. The work of the group is guided by the utilities sponsoring the research. Implementation includes a coordination effort and organization of workshops to examine ongoing studies and research, and the development of a formal research agenda.

The second step in this coordination effort was the organization of meetings and conference calls to examine ongoing studies and research, and to discuss the potential need, for a formal research agenda. PURC worked with the Steering Committee, which decided to pursue work on undergrounding, wind data collection and analysis, and vegetation management as described above.

Costs have been incurred according to the funding schedule set by the Steering Committee. Thus far, costs have included the initial workshop, PURC's coordinating work, Phase I of the undergrounding research, and seed money for the granular wind research. These costs are detailed above. Funds have been designated for Phases II and III of the undergrounding research and for wind measurement also as described above. The Steering Committee has also approved plans for the vegetation management workshop in March. Registration fees for this workshop will cover the workshop costs.

The benefits of the scope of work realized at the time of this report include increased collaboration and discussion between members of the Steering

Committee, greater shared knowledge of experiences with hurricane preparation and recovery, clearly defined research needs, and a meta-analysis of the economics of undergrounding existing overhead facilities.

Appendix A

PURC's Budget for Research Coordination March – July, 2006

<u>Items</u> Personnel			<u>Amounts</u>
reisonnei	Engineering Faculty (2 weeks) PURC Faculty (2 weeks) Admin. Assist. (2 weeks)	\$ \$ \$ <u>\$</u> \$	5,432.00 6,858.00 2,467.00
		\$	14,757.00
Workshop (June 9, 2006) Registration Fee	\$	(5,125.00)
	Facility Rental, AV & Food Speaker Travel Materials & Supplies	\$ \$	2,900.00 1,000.00 200.00
	Materials & Supplies	<u>\$</u> \$	(1,025.00)
Travel	Deleted Weylehone & Conference	Φ.	1 470 00
	Related Workshops & Conferences Trips to Tallahassee	\$ <u>\$</u>	1,472.00 270.00
		\$	1,742.00
Subtotal University O	verhead (25%)	\$ \$	15,474.00 5,158.00
Total	·	\$	20,632.00

Payment Amounts

	Percent		Amount
Sponsor	<u>of Total</u>	<u>d</u>	ue PURC
Florida Power & Light	47.61%	\$	9,822.90
Florida Public Utilities Company	0.34%	\$	70.15
Gulf Power Company	4.54%	\$	936.69
Progress Energy Florida	17.20%	\$	3,548.70
Tampa Electric Company	7.06%	\$	1,456.62
Florida Electric Cooperatives Association	8.55%	\$	1,764.04
Florida Municipal Electric Association	<u>14.69%</u>	<u>\$</u>	3,030.84
Total	100.00%	\$	20,629.94

PURC Faculty Activities

Organizing workshop

Identifying speakers Preparing agenda Managing content

Developing workshop report

Developing plans with project sponsors

Participation in meetings and conference calls

Working on Memorandum of Understanding for research coordination

Preparing plans for research coordination

PURC Administrative Activities

Managing workshop
Developing budgets
Proofreading all materials
Taking minutes on conference calls
Organizing conference calls and meetings
Developing all administrative documents, such as contact lists and invoices

Appendix B

PURC's Budget for Research Coordination August - December, 2006

<u>Items</u> Personnel		4	Amounts
reisonnei	PURC Faculty (4 weeks) Grad Student (5 weeks) Administrative (4 weeks)	\$ \$ \$	11,200.00 3,300.00 5,600.00 20,100.00
Travel	Steering Committee meetings (3)	\$	<u>390.00</u> 390.00
Subtotal University C	verhead (25%)	\$.\$	20,490.00 6,830.00
Total		\$	27,320.00

Payment Amounts				
-	Percent		Amount	
<u>Sponsor</u>	<u>of Total</u>	<u>c</u>	lue PURC	
FPL	46.71%	\$	12,761.17	
FPUC	0.33%	\$	90.16	
Gulf	4.46%	\$	1,218.47	
Progress	16.88%	\$	4,611.62	
TECO	6.93%	\$	1,893.28	
FECA	8.39%	\$	2,292.15	
FMEA	14.41%	\$	3,936.81	
LCEC	1.89%	\$	516.35	

100.00%

PURC Faculty Activities

Drafting work plans for undergrounding, vegetation management, and materials Drafting RFP for undergrounding Compiling consultant list for undergrounding

27,320.00

Organizing and managing weekly conference calls

Attending meeting with FPSC staff

Managing PURC staff working on project

Compiling literature to be reviewed by undergrounding consultant

Organizing undergrounding consultant selection

PURC Graduate Student Activities

Researching templates for RFPs

Editing RFP for undergrounding

Compiling consultant list for undergrounding

Participating in and taking minutes for weekly conference calls

Developing PURC work plan for overseeing projects

Compiling literature to be reviewed by undergrounding consultant

Organizing undergrounding consultant selection

Distributing notices to consultants

Providing content for web site

PURC Administrative Activities

Developing budgets
Proofreading all materials
Taking minutes on conference calls
Overseeing web site development
Organizing conference calls and meetings
Developing and updating web site
Developing all administrative documents, such as contact lists and invoices

Appendix C

Budget for Vegetation Management Workshop

<u>Items</u>		<u>Am</u>	<u>ounts</u>
Food	Monday Lunch @\$25 Afternoon/morning breaks Breakfast Tuesday morning Tuesday Lunch	\$ \$ \$ \$ \$ \$	1,175.00 1,410.00 940.00 1,410.00 4,935.00
Facilities	Misc. room charges and fees Audio visual set up and screen	\$ <u>\$</u> \$	400.00 200.00 600.00
Total		\$	5535.00
Payment A	mounts .		
Registration	Fee: 35* @ \$125	\$	5,875.00*
*Proiected			

Appendix D

PURC's Projected Budget for Research Coordination January – June, 2007

<u>Items</u>			<u>Amounts</u>
Personi	nel		
	PURC Faculty (5 weeks)	\$	25,200.00
	Grad Student (5 weeks)	\$	6,600.00
	Administrative (2 weeks)	<u>\$</u>	9,800.00
		\$	41,600.00
Travel			
	Vegetation Management Workshop	\$	797.19
	Steering Committee meetings (1)	\$	130.00
		\$	927.19
Miscella	aneous		
	Global Crossing Conference Calls	\$	1,320.00
		\$	1,320.00
Subtota	ļ	\$	43,847.19
Univers	ity Overhead (25%)	\$	14,615.73
Total		\$	58,462,92

Payment Amounts

,	Percent	Amount
Sponsor	<u>of Total</u>	due PURC
FPL	46.71%	\$ 27,308.03
FPUC	0.33%	\$ 192.93
Gulf	4.46%	\$ 2,607.45
Progress	16.88%	\$ 9,868.54
TECO	6.93%	\$ 4,051.48
FECA	8.39%	\$ 4,905.04
FMEA	14.41%	\$ 8,424.51
LCEC	1.89%	\$ 1,104.95
	100.00%	\$ 58,462.92

PURC Faculty Activities

Managing work plans for wind study and vegetation management Managing RFP and invoicing for wind study Drafting report from vegetation management workshop Reviewing undergrounding research reports Drafting regulatory report for Sponsors Organizing and managing weekly conference calls Attending meetings with Sponsors, FPSC staff, and others Managing PURC staff working on project

PURC Graduate Student Activities

Editing RFP for wind study

Participating in and taking minutes for weekly conference calls Maintaining PURC work plan for overseeing projects Serve as scribe for vegetation management workshop Drafting report from vegetation management workshop Managing conference call agendas

PURC Administrative Activities
Developing budgets
Proofreading all materials
Taking minutes on conference calls
Organizing conference calls and meetings
Developing all administrative documents, such as contact lists and invoices