Progress Energy

$$
080186
$$

April 1, 2008

Ms. Ann Cole, Commission Clerk

Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, Florida 32399-0850

Re: Petition for Approval of Revised Underground Residential Distribution Tariffs; Docket No. \qquad

Dear Ms. Cole:
Pursuant to Rule 25-6.078, F.A.C., enclosed for filing on behalf of Progress Energy Florida, Inc. is the original and seven (7) copies of its petition for approval of revised underground residential distribution tariffs.

Thank you for your assistance in this matter. Should have any questions, please feel free to contact me at (727) 820-5184.

CMP
COM \qquad

RCA \qquad
SCR \qquad
SGA \qquad
SEC

Sincerely,
ghn T. Burnett

JTB/lms
Enclosures

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition of Progress Energy Florida, Inc. for Approval of Revised Underground Residential Distribution Tariffs.

Docket No.

Submitted for filing:
April 1, 2008

PETITION

Progress Energy Florida, Inc. ("PEF" or "the Company"), pursuant to the requirements of Rule $25-6.078$, F.A.C., hereby requests that the Florida Public Service Commission ("the Commission") approve the revised tariff sheets, as hereby amended, contained in the attached Exhibit A. These tariff sheets comprise PEF's Underground Residential Distribution (URD) policy established pursuant to Commission Rule 256.078 , as set forth in Part XI of the Company's Rules and Regulations Governing Electric Service. As called for in the recently amended Rule 25-6.078, the revisions contained in these tariff sheets consist of updated URD charges based on the differential between the cost of overhead and underground facilities, as well as other minor revisions described below. Exhibit B provides the revised and amended tariff sheets in legislative format, showing the revisions to the currently effective tariff sheets. In support of its petition, PEF states as follows.

Introduction

1. PEF is a public utility subject to the regulatory jurisdiction of the Commission pursuant to Chapter 366, Florida Statutes. The Company's
principal place of business is located at 299 First Avenue North, St. Petersburg, Florida 33701.
2. All notices, pleadings and correspondence required to be served on the petitioner should be directed to:

John T. Burnett, Esquire

Post Office Box 14042
St. Petersburg, FL 33733-4042
Facsimile: (727) 820-5249
Email: john.burnett@pgnmail.com
For express private courier deliveries, the street address and zip code in paragraph 1 above should be used.

Discussion

3. Rule $25-6.078$, F.A.C. requires that PEF file updated URD differential charges no later than April 1 of this year. The updated URD differential charges shown on the revised tariff sheets contained in Exhibit A have been calculated in accordance with recent revisions to Rule 25-6.078, F.A.C. Exhibit C includes schedules from Form PSC/EAG 13, Overhead/Underground Residential Differential Cost Data, which provides the underlying data and analyses supporting Progress Energy's URD charges, as specified by Rule 25-6.078. The forms were revised from their prescribed format to include, in accordance with changes to Rule 25-6.078 effective 2/1/07, "the Net Present Value of operational costs, including average historical storm restoration costs over the life of the facilities."
4. The proposed URD charges for typical subdivision lots are contained in subsection $11.03(2)($ a $)$ of PEF's tariff rules and regulations which have increased compared to the current charges established in 2003. Other updated URD charges for three-phase conductors, customer trenching credits, and new and converted service laterals, are contained in subsections $11.03(2)$ (b) and (c), 11.04(2)(a) and (b), and
11.05(4), respectively. The Company has also modified its Schedule of Charges in section $11.03(2)(b)$ to separately distinguish costs associated with the use of conduit. A summary of the reasons for each of the changes from the current URD charges is provided in Exhibit D.
5. The various revisions to Sections $11.03,11.04$ and 11.05 addressed above affect three of the seven tariff sheets in Part XI, the URD section of the Company's tariff, i.e., Sheets 4.113, 4.114 and 4.115.

WHEREFORE, PEF respectfully requests that the Commission grant this petition and approve the revised and amended URD tariff sheets contained in Exhibit A hereto.

Respectfully submitted,

ich T Sucunttuns
Joffn T. Burnett
Associate General Counsel
Progress Energy Service Company, LLC
Post Office Box 14042
St. Petersburg, Florida 33733-4042
Telephone: 727-820-5184
Facsimile: 727-820-5249
Email: iohn.burnett@pgnmail.com
Attorney for
Progress Energy Florida, Inc.

EXHIBIT A

REVISED URD TARIFF SHEETS

Nos. 4.113, 4.114, and 4.115
(Clean copy)
dOCUMEA RUMEER-DATE
02467 APR-1:
FPSC-COMMISSION CLERK

(2) Contribution by Applicant:

(a) Schedule of Charges:

Company standard design underground residential distribution $120 / 240$ volt single-phase service (see also Part 11.03(7)):

To subdivisions with a density of 1.0 or more but less than six (6) dwelling units per acre.	\$785.00 per dwelling unit
To subdivisions with a density of six (6) or more dwelling units per acre	\$522.00 per dwelling unit
To subdivisions with a density of six (6) or more dwelling units per acre taking service at ganged meter pedestals.	\$277.00 per dwelling unit
To multi-occupancy buildings................................	See Part 11.06(2)

(b) The above costs are based upon arrangements that will permit serving the local underground distribution system within the subdivision from overhead feeder mains. If feeder mains within the subdivision are deemed necessary by the Company to provide and/or maintain adequate service and are required by the Applicant or a governmental agency to be installed underground, the Applicant shall pay the Company the average differential cost between such underground feeder mains within the subdivision and equivalent overhead feeder mains as follows:

Three-phase primary main or feeder charge per trench-foot within subdivision:

```
(U.G. - Underground, O.H. - Overhead)
#1/0 AWG U.G. vs.#1/0 AWG O.H ...............................................................$5.61 per foot
500 MCM U.G. vs. 336 MCM O.H ...............................................................$10.15 per foot
1000 MCM U.G. vs. }795\mathrm{ MCM O.H
```

\qquad

The above costs are based on underground feeder construction using the direct burial method. If conduit is required, the following additional charge(s) will apply:

2 inch conduit	$\$ 1.55$ per foot
4 inch conduit	$\$ 3.21$ per foot
6 inch conduit	$\$ 5.01$ per foot
Cable pulling - single phase	$\$ 1.83$ per foot
Cable pulling - 3 phase small wire	$\$ 1.98$ per foot
Cable pulling -3 phase feeder	$\$ 2.56$ per foot

The above costs do not require the use of pad-mounted switchgear(s), terminal pole(s), pull boxes or feeder splices. If such facilities are required, a differential cost for same will be determined by the Company on an individual basis and added to charges determined above.
(c) Credits (not to exceed the "average differential costs" stated above) will be allowed where, by mutual agreement, the Applicant provides trenching and backfilling for the use of the Company's facilities in lieu of a portion of the cash payment described above. These credits, based on the Company's design drawings, are:

Primary and/or Secondary Systems,
for each Foot of Trench
Service Laterals,
for each Foot of Trench. $\$ 2.35$
(3) Point of Delivery:

The point of delivery shall be determined by the Company and will be on the front half of the side of the building that is nearest the point at which the underground secondary electric supply is available to the property. The Company will not install a service on the opposite side of the building where the underground secondary electric supply is available to the property. The point of delivery will only be allowed on the rear of the building by special exception. The Applicant shall pay the estimated full cost of service lateral length required in excess of that which would have been needed to reach the Company's designated point of service.
(4) Location of Meter and Socket:

The Applicant shall install a meter socket at the point designated by the Company in accordance with the Company's specifications. Every effort shall be made to locate the meter socket in unobstructed areas in order that the meter can be read without going through fences, etc.
(5) Development of Subdivisions:

The above charges are based on reasonably full use of the land being developed. Where the Company is required to construct underground electric facilities through a section or sections of the subdivision or development where service will not be required for at least two (2) years, the Company may require a deposit from the Applicant before construction is commenced. This deposit, to guarantee performance, will be based on the estimated total cost of such facilities rather than the differential cost. The amount of the deposit, without interest, in excess of any charges for underground service will be returned to the Applicant on a prorata basis at quarterly intervals on the basis of installations to new customers. Any portion of such deposit remaining unrefunded, after five (5) years from the date the Company is first ready to render service from the extension, will be retained by the company.
(6) Relocation or Removal of Existing Facilities:

If the Company is required to relocate or remove existing overhead and/or underground distribution facilities in the implementation of these Rules, all costs thereof shall be borne exclusively by the Applicant. These costs shall include costs of relocation or removal, the in-place value (less salvage) of the facilities so removed, and any additional costs due to existing landscaping, pavement or unusual conditions.
(7) Other Provisions:

If soil compaction is required by the Applicant at locations where Company trenching is done, an additional charge may be added to the charges set forth in this tariff. The charge will be estimated based on the Applicant's compaction specifications.

UNDERGROUND SERVICE LATERALS FROM OVERHEAD ELECTRIC DISTRIBUTION SYSTEMS.

(1) New Underground Service Laterals:

When requested by the Applicant, the Company will install underground service laterals from overhead systems to newly constructed residential buildings containing less than five (5) separate dwelling units.
(2) Contribution by Applicant:
(a) The Applicant shall pay the Company the following average differential cost between an overhead service and an underground service lateral:

For Service Lateral up to 80 feet $\$ 448.00$

For each foot over 80 feet up to 300 feet. \$ 1.04 per foot
Service laterals in excess of 300 feet shall be based on a specific cost estimate.
(b) Credits will be allowed where, by mutual agreement, the Applicant provides trenching and backfilling in accordance with the Company specifications and for the use of the Company facilities, in lieu of a portion of the cash payment described above. These credits, based on the Company's design drawings, are as follows:

For each Foot of Trench
\$ 2.35
The provisions of Paragraphs $11.03(3)$ and $11.03(4)$ are also applicable.

UNDERGROUND SERVICE LATERALS REPLACING EXISTING RESIDENTIAL OVERHEAD SERVICES:

Applicability:

When requested by the Applicant, the Company will install underground service laterals from existing overhead lines as replacements for existing overhead services to existing residential buildings containing less than five (5) separate dwelling units.

Rearrangement of Service Entrance:

The Applicant shall be responsible for any necessary rearranging of his existing electric service entrance facilities to accommodate the proposed underground service lateral in accordance with the Company's specifications.

Trenching:

The Applicant shall also provide, at no cost to the Company, a suitable trench and perform the backfilling and any landscaping, pavement, or other suitable repairs. If the Applicant requests the Company to supply the trench or remove any additional equipment other than the Service Lateral, the charge to the Applicant for this work shall be based on a specific cost estimate.

Contribution by Applicant:

The charge excluding trenching costs shall be as follows:
For Service Lateral. \$ 321.00 per service

UNDERGROUND DISTRIBUTION FACILITIES TO MULTIPLE-OCCUPANCY RESIDENTIAL BUILDINGS:

(1) Availability:

Underground electric distribution facilities may be installed within the tract of land upon which multiple-occupancy residential buildings containing five (5) or more separate dwelling units will be constructed.
(2) Contribution by Applicant:

There will be no contribution from the Applicant so long as the Company is free to construct the extension in the most economical manner, and reasonably full use is made of the tract of land upon which the multiple-occupancy buildings will be constructed. Other conditions will require a contribution from the Applicant.
(3) Responsibility of Applicant:
(a) Furnish details and specifications of the proposed building or complex of buildings. The Company will use these in the design of the electric distribution facilities required to render service.
(b) Where the Company determines that transformers are to be located inside the building, the Applicant shall provide:
i. The vault or vaults necessary for the transformers and the associated equipment, including the ventilation equipment.
ii. The necessary raceways or conduit for the Company's supply cables from the vault or vaults to a suitable point five (5) feet outside the building in accordance with the Company's plans and specifications.
iii. Conduits underneath all buildings when required for the Company's supply cables. Such conduits shall extend five (5) feet beyond the edge of the buildings for joining to the Company's facilities.
iv. The service entrance conductors and raceways from the Applicant's service equipment to the designated point of delivery within the vault.

EXHIBIT B

REVISED URD TARIFF SHEETS

Nos. 4.113, 4.114 and 4.115

(Legislative Format)

DOCUMELT KIMRER-DATE
(2) Contribution by Applicant:
(a) Schedule of Charges:

Company standard design underground residential distribution 120/240 volt single-phase service (see also Part 11.03(7)):

To subdivisions with a density of 1.0 or more
but less than six (6) dwelling units per acre.
$\$ 785428.00$ per dwelling unit

To subdivisions with a density of six (6) or more
dwelling units per acre
$\$ 522256.00$ per dwelling unit

To subdivisions with a density of
six (6) or more dwelling units per acre taking service
at ganged meter pedestals.
$\$ \underline{277} 165.00$ per dwelling unit

To multi-occupancy buildings. See Part 11.06(2)
(b) The above costs are based upon arrangements that will permit serving the local underground distribution system within the subdivision from overhead feeder mains. If feeder mains within the subdivision are deemed necessary by the Company to provide and/or maintain adequate service and are required by the Applicant or a governmental agency to be installed underground, the Applicant shall pay the Company the average differential cost between such underground feeder mains within the subdivision and equivalent overhead feeder mains as follows:

Three-phase primary main or feeder charge per trench-foot within subdivision:
(U.G. - Underground, O.H. - Overhead)
\#1/0 AWG U.G. vs. \#1/0 AWG O.H... $\$ 5.6134$ per foot
500 MCM U.G. vs. 336 MCM O.H .. $\$ 10.155: 84$ per foot
1000 MCM U.G. vs. 795 MCM O.H. ... \$14.408.62 per foot

The above costs are based onassume that underground feeder construction using the direct burial method. utilizes system conduit but If conduit is required. the following additional charge(s) will apply:

2 inch conduit	$\$ 1.55$ per foot
4 inch conduit	$\$ 3.21$ per foot
6 inch conduit	$\$ 5.01$ per foot
Cable pulling - single phase	$\$ 1.83$ per foot
Cable pulling -3 phase small wire	$\$ 1.98$ per foot
Cable pulling -3 phase feeder	$\$ 2.56$ per foot

The above costs does not require the use of pad-mounted switchgear(s), of terminal pole(s), pull boxes or feeder splices. If such facilities are required, a differential cost for same will be determined by the Company on an individual basis and added to charges determined above.
(c) Credits (not to exceed the "average differential costs" stated above) will be allowed where, by mutual agreement, the Applicant provides trenching and backfilling for the use of the Company's facilities in lieu of a portion of the cash payment described above. These credits, based on the Company's design drawings, are:

Primary and/or Secondary Systems,
for each Foot of Trench.. \$2.354.40
Service Laterals,
for each Foot of Trench... \$2.357. 40
(3) Point of Delivery:

The point of delivery shall be determined by the Company and will be on the front half of the side of the building that is nearest the point at which the underground secondary electric supply is available to the property. The Company will not install a service on the opposite side of the building where the underground secondary electric supply is available to the property. The point of delivery will only be allowed on the rear of the building by special exception. The Applicant shall pay the estimated full cost of service lateral length required in excess of that which would have been needed to reach the Company's designated point of service.
(4) Location of Meter and Socket:

The Applicant shall install a meter socket at the point designated by the Company in accordance with the Company's specifications. Every effort shall be made to locate the meter socket in unobstructed areas in order that the meter can be read without going through fences, etc.
(5) Development of Subdivisions:

The above charges are based on reasonably full use of the land being developed. Where the Company is required to construct underground electric facilities through a section or sections of the subdivision or development where service will not be required for at least two (2) years, the Company may require a deposit from the Applicant before construction is commenced. This deposit, to guarantee performance, will be based on the estimated total cost of such facilities rather than the differential cost. The amount of the deposit, without interest, in excess of any charges for underground service will be returned to the Applicant on a prorata basis at quarterly intervals on the basis of installations to new customers. Any portion of such deposit remaining unrefunded, after five (5) years from the date the Company is first ready to render service from the extension, will be retained by the company.
(6) Relocation or Removal of Existing Facilities:

If the Company is required to relocate or remove existing overhead and/or underground distribution facilities in the implementation of these Rules, all costs thereof shall be borne exclusively by the Applicant. These costs shall include costs of relocation or removal, the in-place value (less salvage) of the facilities so removed, and any additional costs due to existing landscaping, pavement or unusual conditions.
(7) Other Provisions:

If soil compaction is required by the Applicant at locations where Company trenching is done, an additional charge may be added to the charges set forth in this tariff. The charge will be estimated based on the Applicant's compaction specifications.
11.04 UNDERGROUND SERVICE LATERALS FROM OVERHEAD ELECTRIC DISTRIBUTION SYSTEMS.
(1) New Underground Service Laterals:

When requested by the Applicant, the Company will install underground service laterals from overhead systems to newly constructed residential buildings containing less than five (5) separate dwelling units.
(2) Contribution by Applicant:
(a) The Applicant shall pay the Company the following average differential cost between an overhead service and an underground service lateral:

For Service Lateral up to 80 feet \$ 448.00353 .99
For each foot over 80 feet up to 300 feet.. \$ 1.0428 per foot
Service laterals in excess of 300 feet shall be based on a specific cost estimate.
(b) Credits will be allowed where, by mutual agreement, the Applicant provides trenching and backfilling in accordance with the Company specifications and for the use of the Company facilities, in lieu of a portion of the cash payment described above. These credits, based on the Company's design drawings, are as follows:

For each Foot of Trench. $\$ \quad 2.351 .40$
The provisions of Paragraphs 11.03(3) and 11.03(4) are also applicable.

UNDERGROUND DISTRIBUTION FACILITIES TO MULTIPLE-OCCUPANCY RESIDENTIAL BUILDINGS:
(1) Availability:

Underground electric distribution facilities may be installed within the tract of land upon which multiple-occupancy residential buildings containing five (5) or more separate dwelling units will be constructed.
(2) Contribution by Applicant:

There will be no contribution from the Applicant so long as the Company is free to construct the extension in the most economical manner, and reasonably full use is made of the tract of land upon which the multiple-occupancy buildings will be constructed. Other conditions will require a contribution from the Applicant.
(3) Responsibility of Applicant:
(a) Furnish details and specifications of the proposed building or complex of buildings. The Company will use these in the design of the electric distribution facilities required to render service.
(b) Where the Company determines that transformers are to be located inside the building, the Applicant shall provide:
i. The vault or vaults necessary for the transformers and the associated equipment, including the ventiation equipment.
ii. The necessary raceways or conduit for the Company's supply cables from the vault or vaults to a suitable point five (5) feet outside the building in accordance with the Company's plans and specifications.
iii. Conduits underneath all buildings when required for the Company's supply cables. Such conduits shall extend five (5) feet beyond the edge of the buildings for joining to the Company's facilities.
iv. The service entrance conductors and raceways from the Applicant's service equipment to the designated point of delivery within the vault.

ISSUED BY: Lori J. Cross, Manager, Utility Regulatory Planning_ - Florida
EFFECTIVE: July-10, 2007

EXHIBIT C

DEVELOPMENT OF UPDATED URD COSTS

Schedules from Form PSC/EAG 13

DOCLMAT NMETR-CATE
02467 APR-1

PROGRESS ENERGY FLORIDA OVERHEADIUNDERGROUND RESIDENTIAL COST ESTIMATE

OVERHEAD vs. UNDERGROUND SUMMARY SHEET

SCHEDULE NO. 1

LOW DENSITY 210 LOT SUBDIVISION COST PER SERVICE LATERALS

3/24/2008

ITEM	OVERHEAD	UNDERGROUND	differential
Labor	359	692	333
Material	415	599	184
SUB TOTAL	774	1291	517
NPV of tiffe Cyrle nperarinnal rost ince. Storm Restorationo\&M Differential			
Total including NPV of Life Cycle cost 785			

PROGRESS ENERGY FLORIDA OVERHEAD/UNDERGROUND RESIDENTIAL COST DATA

COST PER SERVICE LATERAL OVERHEAD MATERIAL AND LABOR

SCHEDULE NO. 2

LOW DENSITY 210 LOT SUBDIVISION

ITEM	MATERIAL	LABOR	TOTAL
Service(2)	61.46	88.59	150.05
Primary	85.81	78.14	163.95
Secondary	64.42	24.64	89.06
Initial Tree Trim	0.00	0.00	0.00
Poles	52.16	23.06	75.22
Transformers	110.00	15.27	125.27
Sub-Total(1)	373.85	229.70	603.55
Stores Handling(3)	40.86	0.00	40.86
Sub-Total	414.71	229.70	644.41
Engineering(4)	0.00	128.88	128.88
TOTAL	414.71	358.58	773.29

1-Includes Sales Tax.2-Includes Meter
$3.8 .7 \%$ of all material: 95.40
and meters with a cost of: 32.00
4-20\% of all mati. and labor 103.06
and meters with a cost of: 41.45

PROGRESS ENERGY FLORIDA OVERHEAD/UNDERGROUND RESIDENTIAL COST DATA

COST PER SERVICE LATERAL UNDERGROUND MATERIAL AND LABOR

SCHEDULE NO. 3

LOW DENSITY 210 LOT SUBDIVISION

ITEM	MATERIAL	LABOR	TOTAL
Service (2)	98.08	123.74	221.82
Primary	110.61	27.72	138.33
Secondary	174.39	51.77	226.16
Transformers	157.09	33.76	190.85
TRENCHING:			
Prim. \& Secondary	0.00	149.23	149.23
Service	0.00	90.85	90.85
Sub-Total(1)	540.17	477.07	1017.24
Stores Handling(3)	58.72	0.00	58.72
Sub-Total	598.89	477.07	1075.96
Engineering(4)	0.00	215.19	215.19
IOIAL	598.89	692.26	1291.15

1 -Includes Sales Tax.
2 -Includes Meter.
3-87\% of all material: 128.70
and meters with a cost of: 32.00
4-20\% of all matl and labor: 134.68
and meters with a cost of: 4145 OVERHEAD/UNDERGROUND RESIDENTIAL COST ESTIMATE

OVERHEAD vs. UNDERGROUND SUMMARY SHEET

SCHEDULE NO. 5
HIGH DENSITY 176 LOT SUBDIVISION
COMPANY OWNED SERVICE LATERALS COST PER SERVICE LATERAL

3/22/2008

ITEM	OVERHEAD	UNDERGROUND	DIFFERENTIAL
Labor	257	524	267
Material	294	391	97
SUB TOTAL	551	915	364
NPV of Life Cycle Operational Cost inc Storm RectorationO\&M Differential		258	
Total including NPV of Life Cycle Cost			

FLORIDA POWER CORPORATION OVERHEAD/UNDERGROUND RESIDENTIAL COST DATA

COST PER SERVICE LATERAL OVERHEAD MATERIAL AND LABOR

SCHEDULE NO. 6

HIGH DENSITY 176 LOT SUBDIVISION
COMPANY OWNED SERVICE LATERALS

ITEM	MATERIAL		
Service(2)	LABOR	TOTAL	
Primary	69.06	89.96	159.02
Secondary	42.61	33.17	75.78
Initial Tree Trim	42.62	15.95	58.57
Poles	0.00	0.00	0.00
Transformers	35.93	17.03	52.96
Sub-Total(1)	72.65	9.40	82.05
Stores Handling(3)	262.87	165.51	428.38
Sub-Total	31.39	0.00	31.39
Engineering(5)	294.26	165.51	459.77
TOTAL	0.00	91.95	91.95

1-Includes Sales Tax.
2-Includes Meter and Meter Socket.
$3-8.7 \%$ of all material: 65.88
and meters with a cost of 32.00
4-Includes Administration, General and Transportation.
$5-20 \%$ of all math. and labor: 71.81
and meters with a cost of: 41.45

FLORIDA POWER CORPORATION OVERHEADIUNDERGROUND RESIDENTIAL COST ESTIMATE

OVERHEAD vs. UNDERGROUND SUMMARY SHEET

SCHEDULE NO. 8

HIGH DENSITY 176 LOT SUBDIVISION
GANGED METERS
COST PER SERVICE
3/22/2008

IIEM	OVERHEAD	UNDERGROUND	DIFFERENTIAL
Labor	170	249	79
Material	267	307	40
SUB TOTAL	437		556
NPV of Life Cycle Operational Cost inc storm Rostoration		119	

FLORIDA POWER CORPORATION OVERHEADIUNDERGROUND RESIDENTIAL COST DATA

COST PER SERVICE UNDERGROUND MATERIAL AND LABOR

SCHEDULE NO. 10

HIGH DENSITY 176 LOT SUBDIVISION
GANGED METERS

ITEM	MATERIAL	LABOR	TOTAL
Service (2)	93.22		
Primary	38.71	57.45	150.67
Secondary		14.67	53.38
Transformers	140.08		0.00
TRENCHING:			
Prim. \& Secondary	0.00		170.18
		53.89	
Sub-Total			156.11

1-Includes Sales Tax
2-Includes Meter and Meter Socket.
$3-8.7 \%$ ot all material: 97.59
and meters with a cost of $\quad 3200$
4-Includes Administration, General and Transportation.
$5-20 \%$ of all matl. and labor: 101.40

Underground Fixed Costs:

From Computer Study
Stores 20\%
Engineering 2 hrs. @ \$31.80

Total

Underground Excess Costs:

From Computer Study
Stores 20\%

Total (for 300 ft)

Overhead Fixed Costs:

From Computer Study
Stores 20\%
Engineering 1 hrs. @ \$31.80

Total

Overhead Excess Costs:

From Computer Study
Stores 20\%

Total (for 300 ft)

DIFFERENTIAL

Fixed Underground	$\$ 608.00$
Fixed Overhead	-
Difference $\$ 160.00$ $\$ 448.00$ Excess Underground Excess Overhead $\$ 1,630.95$ Difference $\$ 953.99$$\$ \$ 676.96$	

Excess
Cost per foot:

Difference
$\$ 676.96$

UNDERGROUND SERVICE LATERALS REPLACING
 EXISTING RESIDENTIAL OVERHEAD SERVICES

```
date 3/22/2008
```


Fixed Cost

Overhead to Underground Service
Differential (Calculated Previously)
$\$ 448.00$

Removal Cost of Overhead Service
(From Computer Study) $\$ 40.09$
Less Trenching (\$160.81)
Depreciated Cost of Overhead Service $\$ 38.15$
Salvage of Overhead Service (\$44.59)
Total \$321

FLORIDA POWER CORPORATION

OVERHEAD / UNDERGROUND RESIDENTIAL COST DATA

AVERAGE UNDERGROUND FEEDER COSTS

SCHEDULE NO. 12
3/22/2008

FLORIDA POWER CORPORATION

 OVERHEAD / UNDERGROUND RESIDENTIAL COST DATA
AVERAGE UNDERGROUND FEEDER COSTS

SCHEDULE NO. 12

500 MCM AI. Underground Cable

	Material	Labor	Total
From Computer Study	$\$ 41,213.70$	$\$ 16,309.43$	$\$ 57,523.13$
Stores 8.7%	$\$ 3,585.59$	$\$ 0.00$	$\$ 3,585.59$
\quad Subtotal			$\$ 61,108.72$
Engineering \& Supervision 20\%	$\$ 12,221.74$		
\quad Total		$\$ 73,330.46$	

336 MCM AAAC Overhead Conductor

	Material	Labor	Total
From Computer Study	$\$ 16,311.64$	$\$ 12,527.06$	$\$ 28,838.70$
Stores 8.7%	$\$ 1,419.11$	$\$ 0.00$	$\$ 1,419.11$
\quad Subtotal			$\$ 30,257.81$
Engineering \& Supervision 20\%		$\$ 6,051.56$	
\quad Total			
		$\$ 36,309.37$	

NPV Life Cycle Cost
$\$ 3.14$

$$
\begin{aligned}
\text { Differential } & =(73973.40-36563.83) / 5280 \\
& =\$ 10.15 / \mathrm{tt} .
\end{aligned}
$$

FLORIDA POWER CORPORATION

 OVERHEAD / UNDERGROUND RESIDENTIAL COST DATA
AVERAGE UNDERGROUND FEEDER COSTS

SCHEDULE NO. 12

1000 MCM AI. Underground Cable

	Material	Labor	Total
From Computer Study	$\$ 65,648.70$	$\$ 20,292.33$	$\$ 85,941.03$
Stores 8.7\%	$\$ 5,711.44$	$\$ 0.00$	$\$ 5,711.44$
Subtotal		$\$ 91,652.47$	
Engineering \& Supervision 20%	$\$ 18,330.49$		
\quad Total		$\$ 109,982.96$	

795 MCM AAAC Overhead Conductor

	Material	Labor	Total
From Computer Study	$\$ 26,856.25$	$\$ 12,909.01$	$\$ 39,765.26$
Stores 8.7%	$\$ 2,336.49$	$\$ 0.00$	$\$ 2,336.49$
\quad Subtotal		$\$ 42,101.75$	
Engineering \& Supervision 20\%		$\$ 8,420.35$	
\quad Total		$\$ 50,522.10$	

$$
\begin{aligned}
& \text { NPV Life Cycle Cost } \begin{aligned}
\text { Differential } & =(111007.008-50941.07) / 5280 \\
& =\$ 14.40 / \mathrm{ft}
\end{aligned}
\end{aligned}
$$

DESCRIPRION
MATEFIAL
LABOR

DATE: 3/24/2038 PAGE: 1

TOTAL

5302	210	svC l/col,tri w/o po att dev,1/0
TSC	210	OAP-UP SECONDARY AND CODE
532	7755	SERVICE CABLE, 3 NIRE \#2 AL
C30	423	AERIAL CAELE, 3 WIRE, $4 / 0 \mathrm{AL}$
531	-692	SERVICE WIRE, 3 WIRE, \#1/OAL
USER-INPUT:MTR	210	METER

3.54	34.55	38.09
0.00	24.74	24.74
17.73	15.75	33.48
2.80	0.86	3.56
5.40	3.44	8.83
32.00	9.26	41.26
-61.46	88.59	$-\mathbf{- 2}$

WRI	15766	WIRE, $\ddagger 1 / 0$ AAAC $A L, O N \geqslant O 0$ LB. REET	15. 77	32.02	47.79
$V 101 \mathrm{M}$	15	VERT 1 PH O TO 5 DEG, $1 / 0$ AAAC	1.33	0.70	2.03
$V 111 \mathrm{M}$	15	VERT 1PH € TO 15 DEG, 1/OAAAC	2.98	0.70	3.58
V121 M	17	VERTICAL 1PH 16 TO 59 DEG 1/0 AAAC	2.39	0.79	3.18
V131 M	2	VERTICAL 1PH 50 TO 90 DEG $1 / 0$ \& 4 AAAC	0.51	0.19	0.70
V141 M	17	VERTICAL 1 PH DEADEND $1 / 0 \leqslant \$ 4$ AAAC	2. 16	0.79	2.96
V151 M	8	VERT 1PH SLACKSPAN, 1/0AAAC	C. 71	2.89	3.50
V307 M	2	VERTICAL, 3PH if TO 5 DEG. 795 AAC	0.67	0.28	0.95
CP	31	USE "CP M" cu=out 15 kv pole med "L" brkt	7.31	2.64	9.96
APl	10	arr 9 kv w/o bracket (1)	1.31	0.65	1.96
N1E1 M	40	NEUTRA 1 WIRE EYEBOLT $1 / 0$ AAAC AUTO CE	2.35	1. 62	3.98
N1SlS M	6	NEUTRA 1 WIRE SPOOL\&BOLTI/OAAAC SLCKSPN	C. 18	2.17	2.34
N101	10	neutral 1 wire no pole attach dev 1/OAL	6.47	0.35	0.82
EN	10	EYE NUT 5/8"	0.06	0.02	0.08
SUFW	9	SETUP PILCT WINDER	6.00	1.83	1.83
SUTT	9	SETUP TENSIONER, TUGSER	0.00	7.31	7.31
KC11	16	COMPRESSICN CONN $1 / 0 \mathrm{STR}$ AL-1/0 STR AL	C. 03	0.20	0.23
KC71	2	WEDGE CONN $795 \mathrm{MCM} \mathrm{AL} 1 / 0 \mathrm{STR} \mathrm{AL}$	C. 25	0.03	0.28
KSCl	10	STEM CONNECTOR $1 / 0 \mathrm{AL}$	C. 08	0.16	0.22
MSC11	4	MIE-SPAN CLAMP - / AAAC TO 1/0 AAAC	0.56	0.20	0.76
KSt11	2	MID SPAN TAP 1/0 AAC TO 1/0 AAC	0.23	0.25	0.16
N1C1 M	3	NEUTRA」 1 WIRE CLAMP MESSENGER $1 / 0$ AAAC	0.22	0.06	0.28
ELT	60	EIBERG」ASS LINK 78°, 15 M	4.14	0.61	4.75

JISMEIBUTION CONSTRUCTION COSTS
IMEM

GA111 M
GDC5
GDC7
GSC5
ANCB
AN1O

Progress Energy Floriaa
ZOW DENSITY OVERHEAD SUBDIVISION - 210 IOTS

DESCEIDTION

GUY ASSY 1PH 1/OFAAC PH 5/16\&N 5/16-10" GUYDOWN, NO LINK, 5/16" GUY WIRE
GUY DOWN, NO LIN天, 7/16" GUY W-RE
GUY SPAN, NO EINX, 5/16" GUY W-RE
ANCHOR, SINGLE HELIX, 8"
ANCHOR SINGLE HELIX $10^{\prime \prime}$

MATERIAL

23.03	12.06
6.32	4.06
1.91	1.16
1.82	1.46
0.71	0.42
8.32	2.52
85.81	78.14

LABOR
LABOR
DATE: 3/24/2008
PACE: ?
TOTAL
$-\cdots-\cdots$
35.09
10.38
3.97
3.28
1.13
10.35
-163.94

1.38	0.39	1.77
(1.07	0.02	0.09
(1.47	0.32	0.80
4.29	2.32	6.50
11.29	5.18	16.47
43.45	13.33	56.79
(1.75	0.67	1.42
0.42	0.14	0.56
(1. 10	0.55	0.55
0.40	0.20	0.50
0.24	0.16	0.40
1.52	1.1 ?	2.59
0.03	0.18	0.22
64.42	24.64	89.06

19.43	9.70	29.13
26.15	11.71	37.86
6.58	1.65	8.22
-------16	23.06	75.22

dismbibution construction costs
ITEM
----------1

Progress Energy Elorida
-OW DENSITY OVERHEAD SUBDIVISION - 210 LOTS

DESCRIPTION

*** Of Transformers

TH1525 M	1	XEMRASSY 1PEI20/240V 7200Y IB/C 25KVA	2.58	0.35	2.94
TA1550 M	17	XEMR ASSY 1PH 120/240V 1 BUSHC 50KVA	64.41	7.91	72.32
TA1575T \because	7	XEMRASSY IPHI20/EAOV 2B/C75KVA TAPS	38.86	3.71	42.57
CO	25	GROUND, OVERHEAD	$\pm .77$	2.69	6.46
KSEI	25	COMPRESSICN STIRFUP, $1 / 0$ STR AL	C. 38	0.61	0.99
			11C.00	15.27	125.27

DTSTRISUTECN CONSTRUCRION COSTS
ITEM

ITEM
*** UG Services
US320
US540
US33
WBEA
VBE2
USER-INPUT:MTR
MANHOURIUG
TSC
$\quad * * *$ US Primary

UP11	179
TMP21 M	
TMP11 M	
CAET	
CA1T	
KSP7	
GHP	
GO	
$A E$	
$A P S$	

Progress Energy Florida
LOW DENSITY UNDERGROUND SUBEIVISION - 210 LOTS

DESCEIPTION

DESCRIERION MATERIAL
LABOR

DATE: 3/24/2008

PAGF. 4

TOTAL

TOTAL

Erogress Energy Elorida
LOW DENSITY UNDERGROUND SUBETVISION - 210 LOTS
DATE: 3/24/2008 PAGE: 5

*** UJ Transformers
TA1L25 M
TA1L50 M
K560
K065
? 1
GU
XENR ASSY $120 / 240 \mathrm{~V}$ PDMT DF LOOP 25 KVA
XENR ASSY $120 / 240 \mathrm{~V}$ PDMT DE LP $50 K V A$
CONNECTOR XEMR $5 / 8 "$ STUD 8 WAY $4 / 0$ STR
CONNECTOR PEDESTAL 6 WAV 500 MCM
TEFMNR LDBRK 200 A, LDBRKELBOW
GRCUND ROD AND COUPLTNG

15.78	2.55	18.33
126.78	16.14	142.92
2.94	1.86	4.30
3.19	1.46	4.65
5.65	9.38	15.33
2.74	2.37	5.11
.--27.09	33.76	190.35

*** 03 Primary/Seccndary Trenchir:g
TEM
17920 TRENCH W/TRCHNG MACH P/FTINCL BKEILLNG

0.00	149.23	149.23
-0.00	149.23	149.23

TRE 2100 TRENCH BY HAND PER FT, -NC BACKEILLNG

0.00	38.39	38.39
0.00	52.46	52.46
0.00	90.85	90.35

MASERIAL DOES NOT INCLUDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEEITS LOADING AND PRODUCTIVITY.
LABOR $=\{$ RATE $\times 1.51\rangle / 1$

Progress Energy Florida

DUSTEIBURION CONSTRUCTION COSTS

ITEM
-
*** OH Transformers Only

T1525	1
T1550	17
T1D75	7

2.26	0.2
58.66	5.2
36.49	2.1
.---7	

95.40
134.58

DSTRIBUPION CONSTRUCTION COSTS
Progress Energy Elorida MHP GANGED METERS OH - 176 LOTS

TTEN	QTY
$-\cdots-----$	

*** OH Services

331	2625
$C 30$	3350
$S 32$	999
SC	61
3300	17
5302	9
3301	35
JSER-INPUT:MTR	176

WIEE, $\# 1 / 0$ AAAC AL, ON 700 LB. REEL
cutout \& arr (l ea) pole mto on "T" brkt VEET 1PF 0 TO 5 DEG, $1 / 0$ AAAC
VEET 1PH 6 TO 15 DEG, 1/OAAAC
VEETICAL 1 PH DEADEND $1 / 0 \& \frac{4}{\square} 4$ AAACC
VEET 1PH SLACKSPAN, 1/OAAAC
VEET 2PH, 0 TO 5 DEG, 1/OAPAC
VEET 2PH DEADEND \#1/0 \& \#4 AAAC
NEUTRAL, 1 WIRE, W/SPOOL \& BOLT $1 / 0$ AAAC neutral 1 wire no pole attach dev $1 / \mathrm{CAL}$ EYE NUT 5/8"
ANCHOR SINGLE HELIX 10"
GUYDOWN, NO LINK, 5/16" GUY WIRE
GUY GUARD
ETBERGLASS LINK 78", $15 M$
GROUND, OVERHEAD

9.99	6.36	16.34
26.46	8.12	34.58
-. 36	1.21	2.57
0.00	8.57	8.57
1.37	1.03	2.40
0.28	1.77	2.04
0.70	6.87	7.57
32.00	9.26	41.26
72.16	43.18	115.34
?. 68	15.60	23.28
2.30	0.73	3.03
2.00	1.06	3.06
0.24	0.06	0.29
2.13	0.78	2.91
0.53	2.16	2.68
2.53	1.34	3.87
-. 22	0.45	1. 66
0.13	0.22	0.36
2.15	1.57	3.72
0.28	0.09	0.37
2.39	0.72	3.12
3.92	2.52	6.44
0.18	0.16	0.34
-. 48	0.22	1.70
2.52	1.80	4.32
35. 69	29.46	61.15

LATE: 3/24/200E
PAGE: 7
MATERIAL
LABOR
TOTAL

Progress Energy Florida MHP GANGED METERS OH - 176 LOTS

DISTEIBUTION CONSTRUCTION COSTS

STEM

QTY
DESCETPTION

AEFIAL CABLE, 3 VIRE, $4 / 0 \mathrm{AL}$ SEC CBL $3 W$ MESSENGER CLAMP $4 / 0$ AL

*** OH Transformers
TAID75T M
TA1S50M
MA1D100T
KSPl

11 XENRASSY 1PH120/240V 2B/C75KVA TAPS
XFNR ASSY 1PH $120 / 240 \mathrm{~V}$ - BUSBC 50KVA
XFNRASSY 1PH120/240V 2B/C100KVA TAPS CONPRESSION STIRRUP, $1 / 0$ STR A
6.08
1.39
.----
7.47

7.95
1.78
-9.72

14.63	6.55	21.18
9.19	4.59	13.77
6.98	1.75	8.72
-30.79	12.88	-----13.57

72.87	6.96	79.33
$\leqslant .52$	0.55	5.08
17.58	1. 29	18.37
0.36	0.58	0.94
95.33	9.38	104.71

MAZERIAL DOES NOT INCLUDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEFITS EOADING AND PRODUCTIVITY, LABOR $=(\operatorname{RATE} X[.51) / 1$

Progress Energy Elorida
[ISTEIBUTION CONSTRUCTION COSTS ITEM
ぇ JG Primary/Seccndary Trenahing

?RE	315	TRENCH BY HAND PER FT, -NC BACKEILING	0.00	6.87	6.37
TRH	4732	TRENCH W/TRCHNG MACH P/FTINCL BKEILLNG	0.00	47.02	47.02

distribution consmruction cosms
ITEM

ITEM

QTY

Progress Energy Florida rRAMSFORMERS CNLY - MHP GANGED METERS

DPTE: 3/24/2008 PAGE: 11

DESCRIPTION
DESCRIPTION
*** OH Transformers Only
1075
T1D100T
T1S50
$\begin{array}{rll}11 & \text { XEMR } 120 / 240 \mathrm{~V} 7200 / 12470 Y 2 \mathrm{~B} / \mathrm{C} 75 \mathrm{KVA} \\ 2 & X E M R & 120 / 240 \mathrm{~V} 7200 / 12470 Y 2 \mathrm{E} / \mathrm{ClOOKVAN} / \mathrm{TP} \\ 1 & X F M R & 120 / 2407200 / 12470 \mathrm{O} \text { 1EC 50KVA. }\end{array}$
*** UG Trarsformers Only
$\because 11.50$
-1275
$6 \quad X E M R \quad 1 P H 120 / 240 V$ PM DF LOCP, $50 K V A$
$\varepsilon \quad X F M R 1 P H 120 / 240 \mathrm{~V}$ PM DE LOCD, 75 KVA
3.42
0.64
0.31
4.37
57.61
14.12 3.76 75.50

36.25	1.63	37.89
$6 . .33$	2.18	63.51
----	---8.81	--01.40

MAPERIAL DOES NOT IHCLUDE STOEES こHAEGES. LABOR ADJUSTED BY COMPANY BEVEEITS LOADING AND PRODUCTIVITY. LABOR $=$ (RATE X 1.51; /

DISTRIBUTION CONSTRUCTION COSTS

Progress Energy Florida

YHP INDIVIDUAL SERVICES OH - 176 LOTS
DATE: 3/24/2008 PAGE: 12
ITEM

```
QIY
```

DESCRIPTION

MATERIAL
-

LABOR

TOTAL

13.03	8.30	21.33
12.65	11.24	23.89
0.00	24.74	24.74
9.56	18.76	28.32
32.00	9.26	41.26
1.81	17.67	19.48
69.06	89.96	159.02

WR1	5334
AP1	2
CA1	4
$\because 1 G 1$	26
$V 1 G 1 M$	30
$V 121 M$	3
$V 2 C 1 M$	
$V 3 C 7 M$	6
$V 241 M$	1
$V 221 M$	4
$V 141 M$	1
EN	15
$N 1 E 1 M$	26
CP	24
AP1	3
GO	8
GA111M	20
FIT	24
ANC8	18

WIFE, \#1/O AAAC AL, ON 700 LB. REEJ
arr 9 kv w/o bracket (1)
cutout \& err (1 ea) pole mta on "I" brkt
nettral 1 wire no pole attach dev $1 / 0 A L$
VEET IPH 0 TO 5 DEG, $1 / 0$ AAAC
VEETICAL 1PH 16 TO 59 DEG $1 / 0$ AAAC
VERT 2PH, 0 TO 5 DEG, 1,OAAAC
VEFTICAL $3 \mathrm{PH} O$ TO 5 DEG .795 AAC
VEFT 2PH DEADEND \#1/0 \& \#4 AAAC
VERT. 2 PH 16 TO 59 DEG. $1 / 0$ AAAC
VERTICAL 1 PH DEADEND $1: 0 \& \| 4$ AAAC EYE NUT 5/8"
NECTRAL 1 WIRE EYEBOLT - 10 AAAC AUTO DE USE "CP M" cutout 15 kv poie mtd "L" brkt arr 9 kv w/o oracket (1)
GRCUND, OVERHEAD
GUY ASSY 1PH 1/OAAAC PH 5/16\&N 5/16-10"
EIEERGAASS LINK $78^{\prime \prime}, 15 \mathrm{M}$
ANCHOR, SINGLE HELIX, 8"

7. 56	15.35	22.91
0.31	0.16	0.47
1.84	0.58	2.42
1.47	1.07	2.54
3.17	1.67	4.34
0.50	0.17	0.67
1.27	0.67	1.94
0.40	0.17	0.56
1.22	0.45	1. 66
0.34	0.12	0.45
2.28	0.84	3.11
0.19	0.06	0.25
1.68	1.16	2.35
0.84	$0.3:$	1.15
1.25	0.62	1.37
3.60	2.57	6.17
11.99	6.28	18.27
1.48	0.22	1.70
1.22	0.72	1.95
42.61	33.17	75.78

destrisueron	Progress Energy Elorida				DATE: $\begin{array}{r}3 / 24 / 2008 \\ \text { PAGE: } 13\end{array}$
ETEM	QTY	DESCRIPTION	MATERIAL	LABOR	TOTAL
*** CF Secordary					
c30	3176	AERIAL CABLE, 3 WIRE, 4/0 AL	25.08	7.70	32.78
C32	2447	AERIAL CABLE, 3 WIRE, \#1/OAL	12.93	5.93	18.86
C300 M	24	SEC CBL 3W MESSENGER CLAMP 4/0 AL	2.09	0.58	2.67
C3E0 M	36	SEC CBL TRIPX W/EYEROLTA/OAL	2.53	1.74	4.27
			42.62	15.95	58.58
*** OH Poles					
P30	42	POLE WOOD 30^{\prime} CL 6	18.38	9.17	27.55
P35	36	POLE WOOD 35' CL 5	17.55	7.85	25.41
			35.93	17.03	52.96
*** OH Transformers					
TA1550 m	16	XEVR ASSY 1PH 120/240V 1 BUSHC 50mVA	72.33	8.88	81.21
KSP1	18	COMPRESSION STIRRUP, $1 / 0$ STR AL	0.32	0.52	0.85
			72.65	9.40	82.06

MATERIAL DOES NOT INCLLDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEEITS LOADING AND PRODUCTIVIty. LABOR $=($ RATE $\times 1.51) / 1$

Progress Erergy Florida
MHP INDIVIOUAL SERVICES UG - 176 LCPS

DATE: 3/24/2008
ITEM
$-\ldots-\ldots-.$.

QTY
*** UG Services

UCZ20	8800	$2 / 0$ UG DIFECT BUFIAL TRIPLEX CABLE
$M 3 R 2$	176	METER 3ASE RTSER 2"
USER-INPUT:MTR	176	METER
MSC	176	TAP-UP SECONDARY AND CODE
MANAOURIUG	176	ONE HOUR GE UG WORK

UP11	4678	PRI CABLE 15 KV, 1PH, I/OAL
CA1P	4	cutout \& arr. w/"t" brkt terminal pole
TME11 M	4	TERMENAL EOLE RISER, 1 PH1/0 SOLID AL
KSE7	4	WELGE STIRRUP 795 MCM AL

*** UG secondary

UC320	5721
UC33	-324
UC340	2185
PEC4	57
TSC	57
KO40	114
KO31	57
$M E$	42

40.50	$10.6 ?$	51.17
10.11	31.14	41.25
32.00	9.26	41.26
0.00	24.74	24.74
0.00	42.65	42.55
---22.61	118.45	---1.06

MATEEIAL
DESCRIPTION

NE HOUR GE UG WORK

WFDGE STIREUP 795 MCM AI

31.10	5.90	36.99
2.21	0.58	2.79
2.83	6.92	9.76
0.78	0.07	0.85
-----	-----	---0.
36.92	13.47	50.39

26.33	6.93	33.26
15.05	2.18	17.23
15.77	3.60	19.37
25.09	3.89	26.97
0.00	8.01	8.01
2.38	3.01	5.38
0.91	1.50	2.41
2.02	0.81	2.83
-----	-----	-115.46

5.07
44.88

39.81	5.07	44.88
$=.50$	5.68	9.18

DESPRIBUTION CONSTRUCTION COSTS

Projress Energy Elor da
MHP INDIVIDUAL SERVICES UG - 176 LOTS
IワEN:

QTY

DESCFIPTION

XENR ASSY 120/24CV PDMT DE LOOP 75 KVA TEST HI PGM OR PH PRI CBL EOR SETUP GRCUND ROD AND COUPLING
TERMNR LDERK 200 A, LDBRKELBOW
CONNECTOR XEMR 5/8' STUD 8 WAY 4/0 STR ARRESTER ELBOW
ARRESTER - PARK STAND

DATE: 3/24/2008 PAGE: 15

MATERIAL	LABOR	TOTAL
-89.09	9.12	----
0.00	0.43	98.22
2.08	1.80	0.43
4.29	7.12	3.88
1.76	1.11	11.41
0.71	0.19	2.86
1.49	0.19	0.90
-----	-----1.58	
142.72	30.72	----1
		173.44

*** UG Primary/Secondary Trencting
TRI. 885 TRENCH N/TRCHNG MACH P/ETINCL BKELLLNG
*** UG Service Trenching

TRY. TRENCH W/TRCHNG MACH P/ETINCL BKEILLNG		
TRH	5280	$: 760$

$C .00$	87.95	87.95
-.00	87.95	87.95

C. 00	52.46	52.46
C. 00	38.39	38.39
C. 00	90.85	90.85

WA'ERIAL DOES NOR INCLUDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEEITS LOALING AND PRODUCTIVITY. LABOR $=\{$ RATE X 1.51$\} / 1$

Progress Energy Florida
CISTRIBUTION CONSTRUCTION COETS

QTY DESCRIPTION

ITEM
*** OH Transformers Only

2-STRIBUIION CONSTRUCTION COETS
こTEN
$\star \star * \quad U G$ Eeeder

9 RM	528 C	TRENCH W/TRCHNG MACH P/ETINCL BKEILLNG
UP31	15290	PRI CABLE, $15 \mathrm{KV}, 3 \mathrm{PH}, 1 / 0 \mathrm{AL}$
CHP	2	TECT HI POT OR PH PRI CBL FOR SETCP
SL	3	SWITCH, UG LOOPS

*** OH Feeder

PS5	15	POLE WDOD 45' CL 4
V302	15	VEFT 3PH, 0 TO 5 DEG $1 / 0 \mathrm{AL}$
V341	1	VEFT 3PH DEADEND $1 / 0 \leqslant \# 4$ AAAC
N1S1	15	NECTRAL 1 WIRE SPOOL\&BOLT $1 / 0$ AAAC
N1E1	1	NECTRAL 1 WTRE W/EYEBLT 1/OAAAC ACTO JE
KAT1	15	ARE TAP(AL HOTLINE CLAMP) ECR 1:0 AL
$A{ }^{\prime} 1$	15	arr 9 kv w/o bracket (1:
60	5	GROUND, OVERHEAD
GAS1 M	2	GUYASSY3PH1/OAAAC AB\&BC5/16N5/16-2H S/G
WR:	21754	WIFE, \#1/0 AAAC AL, ON 700 LB . REEL
SUPW	1	SETUP PILOT WINDER
SUTT	2	SETUP TENSIONER, TUGGER
SUTRC	3	SETUP TENSIONER REEL CHANGE
KST1	4	COMPRESSION SLV AUTO $1 / 0$ AAAC FULL TENS

DATE: 3/24;2008
PAGE: 17
MATERIAL LABOR TOTAL

0.00	9233.66	9233.66
20036.70	2640.61	22677.31
0.00	75.07	75.07
0.00	85.73	85.73
$-\cdots-\cdots 36.70$	12035.07	32071.77

3972.52	730.14	4702.66
307.23	526.76	833.99
29.87	36.25	66.12
23.56	137.77	161.33
9.96	11.52	21.48
85.80	31.99	117.79
413.70	204.73	618.43
158.30	113.03	271.33
339.86	132.22	472.08
4568.34	9278.08	13846.42
0.00	42.65	42.65
0.00	341.22	541.22
0.00	511.83	511.83
31.44	30.71	62.15
9940.58	-2128.91	22069.49

MATERIAL JOES NOT IUCLUDE STORES CEAFGES. LABOR ADUUSTED BY COMFANY BENEFITS LOADING AND PRODUCTIVITY. $\angle A B O R=(2 A P E X 1.5) / 1$

LISTEIBUTION CONSTRUCTION COSmS
Progress Energy Florida
ITEM

QTY

```
DISCEIPTION
```

TRM
UPE5
CHE
SL
P45
V3C3
V343
N151
NE1
NEI
KAT3
AP1
CO
GA333 M
WR?
WRI
SUEW
SUIT
SUTRC
KST3
KSII
GDO5
ANO8
5280
16290

16290
2
2
1

TRENCH W/TRCHNG MACH P/FTINCL BKEILLNG FRI CA3LE, $15 \mathrm{KV} 3 \mathrm{PH}, 500 \mathrm{MCM} \mathrm{AL}$ TEST HI POM OR PH PRI CBL EOR SETUP SWITCH, UG LOOPS

0.00	9233.66	9233.56
42213.70	6972.12	48185.32
0.00	75.07	75.07
0.00	28.58	28.58
41213.70	16309.43	57523.13

5017.92	922.29	5940.21
152.40	665.38	817.78
27.64	27.72	55.36
29.76	174.02	203.78
9.96	11.52	21.48
68.64	25.59	94.23
330.96	163.79	494.75
126.64	90.42	217.06
516.80	216.6?	733.47
3809.56	6957.92	15767.48
1141.56	2318.45	3460.01
0.00	42.65	42.55
0.00	341.22	341.22
(1.00	511.83	511.83
2E.86	23.03	51.89
7.86	7.68	15.54
26.55	17.06	43.51
16.53	9.81	26.34
15311.64	12527.06	28838.70

MATERIAL DOES NOT INCLUDE STORES CHARGES. LABOR ADJUSPED BY COMPANY BENEFITS LOADING AND PRODUCTIVITY.
LABOR $=($ RATE $\times 1.51) / 1$

DISTRIBUTION CONSTRUCTION COSTS
\qquad QTY
** UG Feeder

GRM	5280
UP39	15290
CHP	2
SL	1

TRENCH W/PRCHNG MACH P/FTINCL BKFILLNG
PRI CABLE, $15 \mathrm{KV}, 3 \mathrm{PH}, 100 \mathrm{C}$ MCM AL
TEST HI POT OR DH PRI CBL FOR SETUP SWITCH, UG LOOPS

VEET $3 P H, 0$ TO 5 DEG, $795 A B C$
EET 3PH DEADEND 795 AAC
NEUTRAL 1 WTRE SPOOL\&BOLT1/0 AAAC
NEUTRAL 1 WIRE W'EYEBLT 1/CAAAC AUTO DE
ARE TAP (AL HOTLINE CLAMP)ECR 795 AAC
arr 9 kv w/o bracket (1)
GROUND, OVERHEAD
GUYASSY 3PH 795 A\&C7/16 B7/16-3HNE/16-2H
WIEE 195 ACC AL ON REEL
WIRE, \#1/0 AAAC AL, ON 700 LB, REEL
SETUP PILOT WLNDER
SETUP TENSIONER, TUGGER
SETUP TENSIONER REEL CHANGE
COMPRESSION SLV 795 AAC FULI TENSION
CONPRESSION SLV AUTO $1 / 0$ AAAC ZULL TENS
GUYDOWN, NO LINK, 5/16" GUY WIRE
ANCHOR, SINGLE HELIX, $8^{\prime \prime}$

DATE: 3/24/2008 PAGE: 19

IABOR
TOTAL

4450.05	1114.43	5564.48
230.26	804.00	1034.26
50.30	36.25	86.55
35.96	210.28	246.24
9.96	11.52	21.48
$11 . .36$	25.59	136.95
330.96	163.79	494.75
126.64	90.42	217.06
$67-.38$	222.65	894.03
19578.00	6958.35	26536.35
$114 . .56$	2318.45	3460.01
0.00	42.65	42.65
0.00	341.22	341.22
0.00	511.83	511.83
68.88	23.03	91.91
7.86	7.68	15.54
26.55	17.05	43.61
16.53	9.81	26.34
-----	$--9-0$	-----
26856.25	12909.01	39765.26

MAPERIAL DOES NOT INCLUDE STOEES こHAFGES. LABOR ADJUSTED BY COMPANY BENEFITS LOADING AND PRODUCTIVITY.
LABOR $=($ RATE $X 1.51) / 1$
DISTRIEUTION CONSTRUCTION COSTS
ITEM

Progress Energy Florida DH SERVICE CALC - 80 ET OR LESS

DESCFIPTION

*** Of Service Eixed
S3E2 1 svc $1 /$ cbl tri w/ibolt $\operatorname{Hz} 2$ al

S32

*** OH Service Removal Fixed

S3E2 1 REN: sve l/cbl tri w/ibolt \#2 al
532

1.	REN: sJC $1 / \mathrm{cbl}$ tri w/ibolt \#2 al
87	REN: SERVICE CABLE, 3 WIRE \#2 AL

$5_{3} .38$	34.98	40.36
41.76	37.11	78.37
47.14	72.08	-119.22

0.00	2.99	2.99
0.00	37.11	37.11
-0.00	40.09	--0.
0.09		

MATERIAL DOES NOT INCLUDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEFTTS LOADING AND PRODUCTIVITY.
ITEM
QTY \quad DESCEIPTION

MATERIAL LABOR

TOTAL
*** OH Service Excess

5360	1	sve l/cbl,w/o pole att dev,4/0 al
C3E0	1	sec cbl triplx wieyebolt 4/Oal
E.	1	EYE NUT 5/8"
C305	307	AERIAL CABLE SVC 3 W 4/0 AL 600V

14.21	10.66	24.37
9.96	7.68	17.64
1.29	0.43	1.72
426.73	130.94	557.67
154.00	76.86	230.36
----------1	-126.56	832.75

*** OA Service Remeval Excess

S3C0	1	REN: svc l/cbi,wio pole att dev, $4 / 0$ al	0.00	5.12	5.12
C3EC	1	REN: sec cbl triplx w/eyebolt 4/0al	0.00	7.25	7.25
EN	1	REN: EYE NUT 5/8"	0.00	0.43	0.43
C3CS	307	REN: AERIRL CABLE SVC 36 4/0 AL 600V	0.00	130.94	130.74
P3C	2	REN: POLE WOOS 30' CL 6	0.00	61.14	61.14
			0.00	204.87	204.37

MATERIAL DOES NOT INCLUDE STORES CHARGES. LABOR ADJUSTED BY COMPANY BENEFITS LOADING AND PRODUCTIVITY.
$\mathrm{LABOR}=($ RATE X 1.51) / I

Progress Energy Florida
DISmREBUPION CONSTRUCTION COSTS
TREM

QTY

*** UG Service Eixed
RS110 4
MRR2
US340
YRH
ZRS
1
1
120
10
70

TRS

DESCRIPRION
DESCRIPRION MATERIAL

RISER SEC 1 SVC OH-UGIPH 4/0
METER BASE RISER 2'
4/0-4/0-2/0 AL D/B TRIPGEX SERJICE CABLE
TRENCH BY HAND PER FT, INC BACKEILING
TRENCH $N / T R C H N G$ MACH P/ETINCL BKFILLNS
[ATE: 3/24/2008
PAGE: 22
LABOR

TOTAL
 UG SERVICE CAIC - 80 FT OR LESS

43.45	70.38	113.83
10.11	31.14	41.25
152.40	34.80	187.20
0.00	38.39	38.39
0.00	122.42	122.42
----	-----	------
205.96	297.12	503.08

DISERIZUTYON CONSTRCCTION COSTS
\qquad

Progress Energy Florida
UG SERVICE CALC - GREATER THAN 80 ET TO 300 ET

DATE: 3/24/2008 PAGE: 23

TOTAL
**x UG Service Excess

TRN	290
TRH	10
US33	340
MSR4	1

TRENCH W/FRCHNG $A A C H$ P/ETINCL BKFILING TRENCH BY HAND PER ET, INC BACKEILLNG UG D/B SERVICE CABLE 350-350-a/0 AL METER BASE RISER $4^{\prime \prime}$
RISER SECONDARY 1 SERVICE OH-UG IP: 350

0.00	507.15
0.00	58.39
680.00	98.60
14.30	51.14
43.45	70.33
-737.75	745.65

507.15
38.39
778.60
45.44
113.83
1483.40
*Service Address:
Number of Units: 0
Est. Annual Revenue: $\quad \$ 0.00$
Net Cost to Revenue Ratio: 00

Oracle Project/Task/Exp Org: 99999999 COSTEST $60563 D$ Line Extension Cost: $\$ 0.00$

Engineer: JESSE D GRIFFIN

	Labor	Material		Total
Construction	\$1.57	\$0.00		\$1.57
Additional Items Cost:				50.00
Sub Total:				\$1.57
Fleet Costs:				50.39
Engineering Supervision:				\$0.39
Stores Loading:				\$0.00
1. Work Request Estimate:				\$2.35
2. CIAC			$($	\$0.00)
3. Work Request Cost:				\$2.35
4. Transformer Cost	\$0.00	\$0.00		\$0.00
5. O. M. Cost (Less transformer costs)	\$0.00	\$0.00		\$0.00
6. Meter Cost	\$000	\$0.00		\$0.00
7. Removal Cost	\$0.00	\$0.00		\$0.00
8. Service Credits			1	\$0.00)
9. Salvage			$($	\$0.00)
10. Reimbursement			1	\$0.00)
11. Net Work Request Cost	\$1.57	\$0.00		\$2.35

Breakdown of Cost by Primary Account:

$$
\text { Account Number } \quad \text { Percent Install Cost }
$$

367

'Service Address: CC3L 1000', $10 \mathrm{~V}, 2$ SUC
Number of Units: $\quad 0$ Cuble Pullin6.3 PH Feederoracle Project/Task/Exp Org: 99999999 COSTEST 60563D
Est. Annual Revenue: $\quad \$ 0.00$

Work Request Cost Analysis
-Service Address:
CC3S 1000', $10 \mathrm{~V}, 2$ SUC
Number of Units: $\quad 0$ Cable Pullhe 3PH-jrnilluiv2 Oracle Project/Task/Exp Org: 99999999 COSTEST 60563D Est. Annual Revenue: $\$ 0.00 \quad$ Line Extension Cost: $\$ 0.00$

Work Request Cost Analysis
INS 1000' $2^{\prime \prime}$ pve with 6 bends no trench
*Service Address:
Number of Units:
Est. Annual Revenue:
Net Cost to Revenue Ratio: $\$ 0.00$

Oracle Project/Task/Exp Org: 99999999 COSTEST 60563D
Line Extension Cost: $\$ 0.00$
Engineer: JESSE D GRIFFIN

Account Number	Percent install Cost
367	08
366	92

-Service Address:
$\begin{array}{ll}\text { Number of Units: } & 0 \\ \text { Est. Annual Revenue: } & \$ 0.00\end{array}$

Net Cost to Revenue Ratio:	.00

Oracle Project/Task/Exp Org: 99999999 COSTEST 60563D Line Extension Cost: $\$ 0.00$

Engineer: JESSE D GRIFFIN

Account Number	Percent Install Cost
367	06
366	94

"Service Address:
Number of Units:
Est. Annual Revenue:

INS $1000^{\prime} 6^{\prime \prime}$ pve 6 bends no trench

0 io" chanMiit $\$ 0.00$

Oracle Project/Task/Exp Org: 99999999 COSTEST 60563D Line Extension Cost: $\$ 0.00$

Engineer: JESSE D GRIFFIN

	Labor	Material
Construction	$\$ 707.94$	$\$ 3071.38$
Additional Items Cost:		
Sub Total:		$\$ 3779.32$
Fleet Costs:		$\$ 0.00$
Engineөring Supervision:		$\$ 3779.32$
Stores Loading:		$\$ 176.42$

SUMMARY OF REASONS FOR CHANGES IN UPDATED URD CHARGES

Progress Energy Fiorida
Summary of Change in URD Charges
Low Density 210 Lot

Descrption	Unit	2006	2008	Variance
Low Density 210 lot URD				
Differential Per Lot	Dollars	428	785	357
NPV Operational Cost	Dollars		268	268
$1 / 0$ primary cable	Feet	15,868	17,989	2,121
$2 / 0$ secondary cable	Feet	6,578	3,162	$(3,416)$
$4 / 0$ secondary cable	Feet	5,289	6,500	1,211
350 secondary cable	Feet	1,390	8,094	6,704
Trenching primary \& secondary	Feet	17,145	17,920	775
Transformers total	Each	18	22	4
Total KVA	KVA	1,700	1,025	(675)
Conduit used in cost estimation	Feet	7,281	-	$(7,281)$
\% increase without NPV Life Cycle				21%
\% increase with NPV Life Cycle				83%

The 2008 Low Density 210 lot price differential increased due to several factors:

* Contractor labor rates increased 3.5\% for overhead and increased 7\% for underground in 2007.
* PEF labor rates increased 3.2% on 11/26/2006 and 3% on 11/27/2007.
* Overhead materials increased an average of 15% in 2007 while underground materials increased 18% in 2007 (due to an increase in metal commodities).
* 6,500 foot increase in cables (due to transformer sizing).
* In 2007, new loaders were incorporated into our design estimates. This, along with transformers being included as a part of the job cost, increased the differential.

The addition of the NPV added $\$ 268$ to the differential - a 62% increase.
Factors that help to lower the differential:

* The 25% conduit amount used to calculate previous differentials was removed.
* The total KVA for the subdivision was reduced; accomplished by the use of automated design tools.

Progress Energy Florida
 Summary of Change in URD Charges
 High Density 176 Lot Ganged Meter Pedestals

Descrption	Unit	2006	2008	Variance
High Density 176 Lot Gang Meter				
Differential Per Lot	Dollars	130	277	147
NPV Operational Cost	Dollars		158	158
$1 / 0$ primary cable	Feet	4,777	4,732	(45)
$2 / 0$ secondary cable	Feet	3,366	6,729	3,363
$4 / 0$ secondary cable	Feet	5,485	1,522	$(3,963)$
350 secondary cable	Feet	2,909	1,371	$(1,538)$
Trenching primary \& secondary	Feet	11,765	8,857	$(2,908)$
Transformers total	Each	14	14	-
Total KVA	KVA	1,025	900	(125)
Conduit used in cost estimation	Feet	4,134	-	$(4,134)$
\% increase without NPV Life Cycle				-8%
$\%$ increase with NPV Life Cycle				113%

The 2008 High Density 176 lot Gang Meter subdivision price differential increased due to several factors:

* Contractor labor rates increased 3.5\% for overhead and increased 7\% for underground in 2007.
* PEF labor rates increased 3.2% on 11/26/2006 and 3% on 11/27/2007.
* Overhead materials increased an average of 15% in 2007 while underground materials increased 18% in 2007 (due to an increase in metal commodities).
* In 2007, new loaders were incorporated into our design estimates. This, along with transformers being included as a part of the job cost, increased the differential.

The addition of the NPV added $\$ 158$ to the differential - a 121% increase.
Factors that helped lower the differential:

* The 25% conduit amount used to calculate previous differentials was removed.
* The total KVA for the subdivision was reduced; accomplished by the use of automated design tools and an increased use of secondary cables.
* There was a 2,500 foot decrease in the amount of cable used in this design; accomplished with a greater use of back lot construction. This was done on both the overhead and underground designs.

Progress Energy Florida
Summary of Change in URD Charges
High Density 176 Lot Individual Services

Descrption	Unit	2006	2008	Variance
High Density 176 Lot Individual Service				
Differential Per Lot	Dollars	256	522	266
NPV Operational Cost	Dollars		158	158
$1 / 0$ primary cable	Feet	4,777	4,678	(99)
$2 / 0$ secondary cable	Feet	1,159	5,721	4,562
$4 / 0$ secondary cable	Feet	3,116	2,185	(931)
350 secondary cable	Feet	7,484	1,324	$(6,160)$
Trenching primary \& secondary	Feet	11,911	8,851	$(3,060)$
Transformers total	Each	14	14	-
Total KVA	KVA	1,025	925	(100)
Conduit used in cost estimation	Feet	4,134	-	$(4,134)$
\% increase without NPV Life Cycle				42%
\% increase with NPV Life Cycle				104%

The 2008 High Density 176 lot Individual Service subdivision price differential increased due to several factors:

* Contractor labor rates increased 3.5\% for overhead and increased 7\% for underground in 2007.
* PEF labor rates increased 3.2% on 11/26/2006 and 3% on 11/27/2007.
* Overhead materials increased an average of 15% in 2007 while underground materials increased 18% in 2007 (due to an increase in metal commodities).
* In 2007, new loaders were incorporated into our design estimates. This, along with transformers being included as a part of the job cost, increased the differential.

The addition of the NPV added $\$ 158$ to the differential - a 61% increase.
Factors that helped lower the differential:

* The 25% conduit amount used to calculate previous differentials was removed.
* The total KVA for the subdivision was reduced; accomplished by the use of automated design tools and an increased use of secondary cables.
* There was a 2,600 foot decrease in the amount of cable used in this design; accomplished with a greater use of back lot construction. This was done on both the overhead and underground designs.

