LAW OFFICES

Rose, Sundstrom & Bentley, LLP

2548 Blairstone Pines Drive TALLAHASSEE, FLORIDA 32301

FREDERICK L. ASCHAUER, IR. CHRIS H. BENTLEY, P.A. ROBERT C. BRANNAN F. MARSHALL DETERDING JOHN R. JENKINS, P.A. KYLE L. KEMPER STEVEN T. MINDLIN, P.A. CHASITY H. O'STEEN DAREN L. SHIPPY WILLIAM E. SUNDSTROM, P.A. DIANE D. TREMOR, P.A. JOHN L. WHARTON

ROBERT M. C. ROSE (1924-2006)

(850) 877-6555 FAX (850) 656-4029 www.rsbattorneys.com CENTRAL FLORIDA OFFICE SANLANDO CENTER 2180 W. STATE ROAD 434, SUITE 2118 LONGWOOD, FLORIDA 32779 (407) 830-6331 FAX (407) 830-8522

REPLY TO CENTRAL FLORIDA OFFICE

MARTIN S. FRIEDMAN, P.A. BRIAN J. STREET

CHRISTIAN W. MARCELLI, OF COUNSEL (LICENSED IN NEW YORK ONLY)

September 12, 2008

HAND DELIVERY

Ann Cole, Commission Clerk Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399

Docket No. 080247-SU; Utilities, Inc. of Eagle Ridge's Application for Increase in RE:

Our File No.: 30057.158

Wastewater Rates in Lee County, Florida

Dear Ms. Cole:

The following documents, enclosed for filing herein, were inadvertently omitted from the Additional Engineering Information filed with the Application in the above-referenced docket:

- Updated Capacity Analysis Report for the Eagle Ridge Wastewater Treatment Facility; and
- Updated Capacity Analysis Report for the Cross Creek Wastewater Treatment Facility.

Should you have any questions regarding this filing, please do not hesitate to give me a call.

Very truly yours.

CHRISTIAN W. MARCELLI

Of Counsel

CWM/tlc **Enclosures**

Richard Redemann, Division of Economic Regulation (w/encs.) (via hand delivery) cc: John Hoy, Chief Regulatory Officer (w/enclosures) Patrick C. Flynn, Regional Director (w/o enclosures) DOCUMENT NUMBER-DATE Ms. Deborah Swain (w/enclosures) 08532 SEP 128

Land Planning and Engineering

> Stormwater Management

Drainage and Utilities

Environmental Permitting
Construction Administration
Project Management
Government Agency Lialson

Phase 1 ESA & Due Diligence

Water & Wastewater Treatment Facilities

> Water/Sewer Utility Rates & Charges

Pumping Stations

UPDATED CAPACITY ANALYSIS REPORT

Permit Number: FLA014498 Permit Expiration Date: October 14, 2008 Field Evaluation: January 29, 2008

> Prepared for: Utilities Inc. of Eagle Ridge 200 Weathersfield Altamonte Springs, FL 32714

Prepared by:
Excel Engineering Consultants, LLC
122 Wilshire Boulevard
Casselberry, FL 32707

March 20, 2008

DOCUMENT NUMBER - DATE

CERTIFICATIONS

Permittee:

County of: Lee

Mr. Patrick C. Flynn, Regional Director Utilities Inc. of Eagle Ridge Altamonte Springs, FL 32714 407-869-1919

I have reviewed, am fully aware of, and intend to comply with the recommendations and schedules included in the report.

Mr. Patrick C. Flynn, Regional Director

Date

Professional Engineer:

Mr. Julian Ray Coto, P.E., D.E.E President

Excel Engineering Consultants, LLC 122 Wilshire Boulevard Casselberry, FL 32707 407-260-2292

The information contained in this report is true and correct to the best of my knowledge; the report was prepared in accordance with sound engineering principles, and I discussed the recommendations and schedules with the permittee or permittee's delegated representative. No expansion of this facility is anticipated in the next five years and it is expected that the facility's three-month daily average will not exceed the permitted capacity within the next five years.

SEAL

Mr. Julian R. Coto, P.E.

Registration No. 10033635

DOCUMENT NUMBER-DATE

08532 SEP 128

FPSC-COMMISSION CLERK

Eagle Ridge Wastewater Treatment Facility

TABLE OF CONTENTS

	<u>. </u>	age
1.0	Introduction	1
	a. Service Area	1
	b. Facility Description]
2.0	Existing Conditions	2
	a. Permitted Capacity	
	b. Historical Flows	
	c. Seasonal Variations	
	d. Updated Flow & Loading Information	2
3.0	Future Conditions	3
4.0	Summary and Conclusion	4
	a. Conclusion	4
	b. Recommendation for Expansion	4

APPENDIX A: Facility Plans
APPENDIX B: Flow Analysis
APPENDIX C: Process Analysis
APPENDIX D: Additional Information

UTI02-0107-Eagle Ridge WWTF-Updated CAR.doc

DOCUMENT NUMBER - DATE

08532 SEP 128

FPSC-COMMISSION CLERK

Eagle Ridge Wastewater Treatment Facility

1.0 INTRODUCTION

Excel Engineering Consultants, LLC prepared this Capacity Analysis Report (CAR) for the Eagle Ridge Wastewater Treatment Facility (WWTF) in conjunction with the Operating Permit renewal application for the WWTF. This CAR serves as the updated CAR and covers the period from October 1998 through November 2007.

A. Service Area

Eagle Ridge WWTF is located at 14688 Aeries Way in Ft. Myers, Florida. The service area for the Eagle Ridge WWTF is located in Section 29, Township 45 South, Range 25 East, in Lee County, Florida. The Eagle Ridge service area is approximately 99% built-out and consists of 1,367 residential units with 450 single-family homes, 325 condominiums and 592 multifamily apartments. The average unit flow is estimated to be approximately 200 gpd for a total ADF of 273,400 gpd at full occupancy.

B. Facility Description

The wastewater treatment facility is a 0.443 mgd TMADF contact stabilization and/or 0.318 mgd TMADF extended aeration process facility based on the three-month average daily flow. The facility provides public access irrigation to a 90-acre golf course. The wastewater residuals are transferred to aerobic digesters and transported off-site for treatment by Appalachian Material Services, Inc.

A locked fence surrounds the plant. The principal items included in the main processing plant is three surge tanks with a combined volume of 92,700 gallons; four aeration tanks with a combined volume of 255,180 gallons; two settling tanks with a combined surface area of 597.30 s.f; dual filtration which includes one Kruger Hydrotech Discfilter and one 180 s.f. ABW sand filter; three chlorine contact tanks with a combined volume of 20,760 gallons; two aerobic digesters with a combined volume of 112,200 gallons; one 1,329,500 gallon reclaimed water storage pond; one 600,000 gallon lined reject water storage pond; air distribution and supply system, scum troughs, clarifier sludge collector mechanisms, return/waste sludge system, walkways, internal piping, and electrical controls. Air is provided by alternating three Lamson centrifugal blowers to furnish overall air requirements for the process portion of the plant. Air is provided to the surge tanks by two Tuthill 3006 rotary blowers/motors. The facility utilizes a U.S. Filter odor control system that is physically connected to the surge tanks. A standby generator is used to provide emergency power in the event of an electrical power outage.

The facility meets Class C, Category II treatment facility. The facility requires a licensed operator with a minimum certification of Class C to be on-site for six (6) hours per day, seven (7) days per week.

DOCUMENT NUMBER-CATE
08532 SEP 128

FPSC-COMMISSION CLERK

Eagle Ridge WWTF: Capacity Analysis Report

March 20, 2008

Page 2

2.0 EXISTING CONDITIONS

A. Permitted Capacity

The plant, currently under FDEP Permit No. FLA014498 is authorized to operate a 0.443 MGD TMADF contact stabilization and/or 0.318 MGD TMADF extended aeration wastewater treatment facility with effluent disposal by way of public access irrigation to a 90-acre golf course. The WWTF meets the requirements of a Class C, Category II treatment facility.

B. Historical Flows

Flows and effluent water quality data were obtained from the Discharge Monitoring Reports (DMRs) submitted to the FDEP. Our analysis is focused on the flows experienced between October 1998 and November 2007. The monthly average daily flows have varied between 203,000 and 311,000 gpd. The three-month running average daily flow during this period varied between 203,000 and 309,000 gpd. The twelve-month running average daily flow during this period varied between 228,000 and 285,000 gpd. Our analysis of the past 9 years suggests that the wastewater treatment facility experiences seasonal flows that are consistent with the typical tourist season here in Florida.

C. Seasonal Variations

The flows typically peak during the winter months, which coincide with the arrival of Florida's tourist season. The tourists arriving in Florida for the winter months cause increased flows at Eagle Ridge. The ratio of the average 3-month ADF to the maximum 12-month ADF is as follows:

Table I Average Ratio

ANNUAL PERIOD	ANNUAL AVERAGE	HIGHEST 3 MONTH AVG	RATIO
January – December 1999	0.218	0.226	1.035
January - December 2000	0.229	0.242	1.058
January - December 2001	0.231	0.241	1.043
January - December 2002	0.255	0.276	1.081
January - December 2003	0.262	0.286	1.093
January - December 2004	0.274	0.283	1.034
January - December 2005	0.282	0.309	1.097
January - December 2006	0.251	0.289	1.153
January - December 2007	0.228	0.245	1.076
AVERAGE RATIO			1.074

Eagle Ridge WWTF: Capacity Analysis Report March 20, 2008

Page 3

D. Updated Flow and Loading Information

The treatment efficiency of each component associated with the wastewater treatment facility and reuse disposal system were analyzed and compared to the criteria of the applicable publications stated in 62-600.300(4), FAC. The results of our analysis, shown in Appendix C, suggest that the facility's components are operating at better than the minimum design requirements (See Appendix B & C). The following is a summary of the treatment efficiency parameters:

Table II
Contact Stabilization Treatment Efficiencies

ITEM	COMPONENT DESCRIPTION	TREATMENT	RESULTS OF ANALYSIS	DESIGN PARAMETERS
1.0	Contact Stabilization Tanks	Detention Time (hours)	4.61 hours	0.5 to 1 hours
		BOD Loading Rated	61.73 #BOD/1,000 c.f.	10 to 25 # BOD/1,000 c.f.
2.0	Reaeration Tanks	Detention Time (hours)	9.22 hours	3 to 6 hours
		BOD Loading Rated	30.87 #BOD/1,000 c.f.	10 to 25 # BOD/1,000 c.f.
3.0	MLSS Aeration	Applied Air	2,063 c.f./# BOD	2,000 c.f./#BOD
4.0	Clarifiers	Overflow Rate (gpdpsf)	741.67 gpdpsf	200 to 600 gpdpsf
5.0	Chlorine Contact Tanks	Detention Time (minutes)	67.48 min. adf 33.74 min. peak	30 min. adf 15 min. peak
6.0	Golf Course Irrigation	Application Rate (inches per week)	1.27 inches per week	2.0 Inches per week
7.0	BOD₅	% Removal Efficiency	99.17%	90%
8.0	TSS	% Removal Efficiency	99.45%	90%

Table III
Extended Aeration Treatment Efficiencies

ITEM	COMPONENT DESCRIPTION	TREATMENT CRITERIA	RESULTS OF ANALYSIS	DESIGN PARAMETERS
1.0	Aeration Tanks	Detention Time (hrs)	19.26 hours	18 - 36 hours
		BOD Loading Rated	14.77 #BOD/1,000 c.f.	10 to 25 # BOD/1,000 c.f.
2.0	MLSS Aeration	Applied Air (known)	2,063 c.f./# BOD	2,000 c.f./#BOD
3.0	Clarifiers	Overflow Rate (gpdpsf)	532.40 gpdpsf	200 to 600 gpdpsf
4.0	Chlorine Contact Tanks	Detention Time (min.)	94.01 min. adf 37.00 min. peak	30 min. adf 15 min. peak
5.0	Percolation Ponds	Application Rate (gpdpsf)	0.91 gpdpsf	5.6 gpdpsf
6.0	BOD₅	% Removal Efficiency	99.17%	90%
7.0	TSS	% Removal Efficiency	99.45%	90%

Eagle Ridge WWTF: Capacity Analysis Report

March 20, 2008

Page 4

The effluent BOD₅ samples were analyzed every two weeks and the effluent TSS samples were analyzed four days per week. The facility's average BOD₅ removal rate over the study period was 99.17% and the TSS removal rate was 99.45%. Based on the results of our analysis the facility exceeded the minimum 90% treatment efficiency for both BOD₅ and TSS in all measured occasions. It is expected that the wastewater treatment facility will continue to provide treatment efficiencies in excess of 90% during the coming permitting period.

3.0 **FUTURE CONDITIONS**

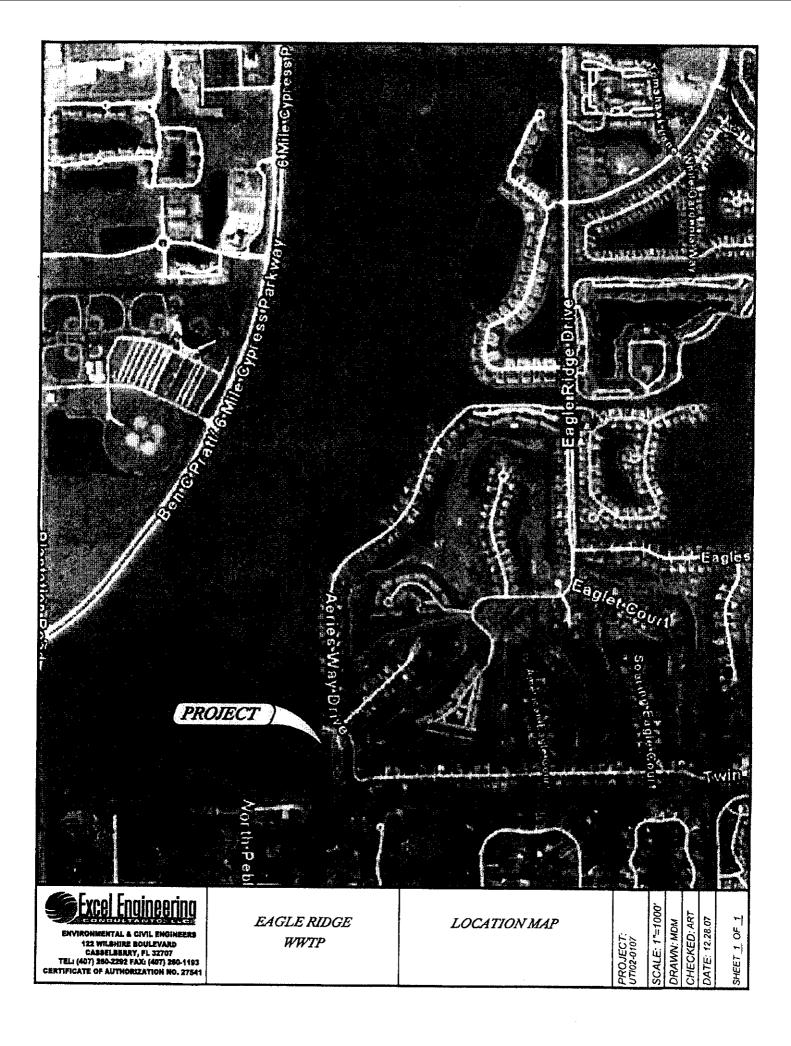
The wastewater treatment facility is permitted to treat 443,000 gallons per day of domestic wastewater through contact stabilization or 318,000 gallons per day through the extended aeration process based on the three-month average daily flow. Our analysis over the previous 9 years suggests that the average flow during the period is 248,000 gpd for the 30-day adf, 250,000 gpd for the 3-month adf, and 251,000 gpd for the annual adf. The monthly average daily flows have varied between 203,000 and 311,000 gpd. The three-month running average daily flow during this period varied between 203,000 and 309,000 gpd and 285,000 gpd.

During the 9-year study period, the facility's three-month average daily flow did not exceed the facility's rated capacity on any one occasion. The wastewater treatment facility is permitted to 443,000 gpd in the contact stabilization mode and to 318,000 gpd in the extended aeration mode; and it is expected that the facility's three-month average daily flow will not exceed the permitted capacity within the next five years.

4.0 SUMMARY AND CONCLUSION

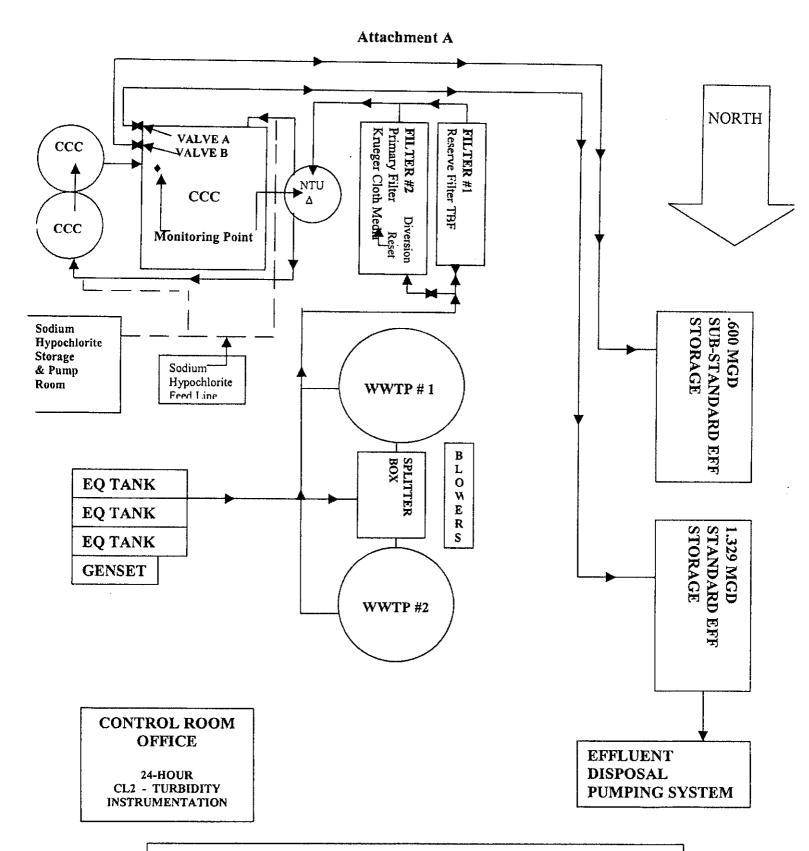
A. Conclusion

The wastewater treatment plant is a 443,000 gallon per day contact stabilization facility and/or 318,000 gallon per day extended aeration facility based on the three-month average daily flow. The collection system receives only domestic wastewater since there are no industrial users associated with the service area. Our analysis over the previous 9 years has revealed that the 3-month ADF did not exceed the facility's rated capacity in all observed instances.

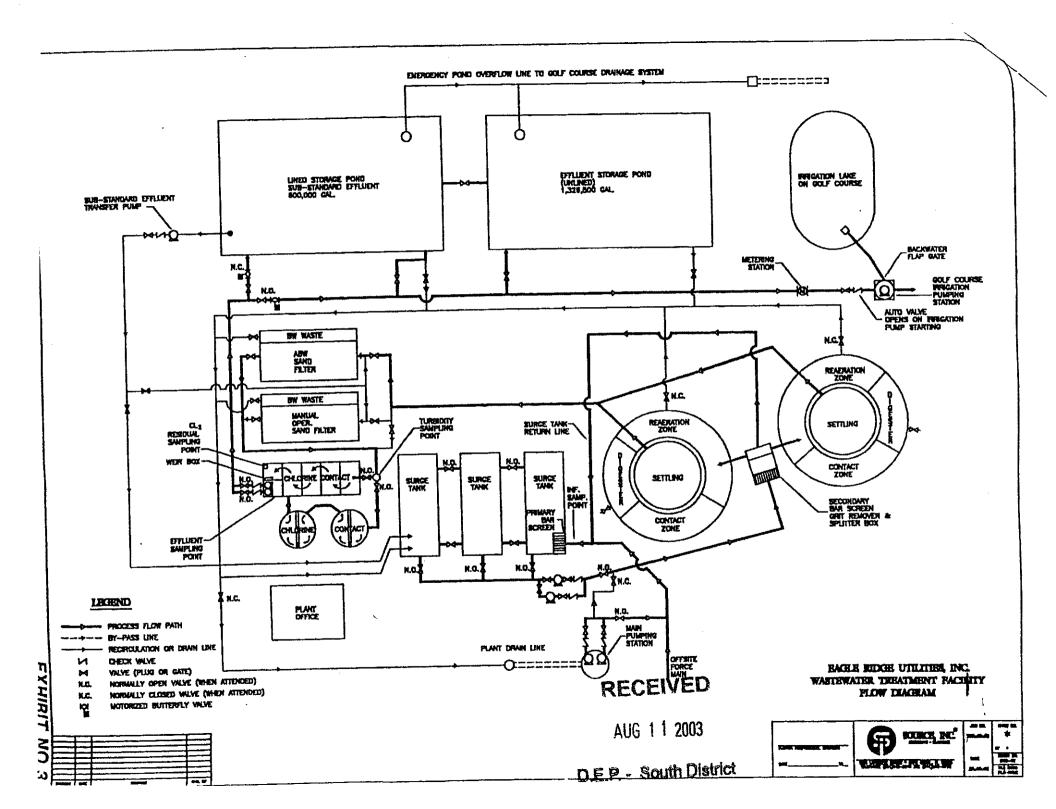

Based on the fact that the flows have remained within the permitted limits and that the facility is approximately 99% built-out, the flows are expected to be below or in the range of the permitted capacities for the life of the permit.

B. Recommendation for Expansion

The WWTF has been designed to treat a flow of 443,000 gpd through contact stabilization or 318,000 gpd through extended aeration. The three-month average daily flows have remained well within the permitted limit during the study period, no expansion is recommended at this time.


APPENDIX A

FACILITY PLANS



APPENDIX B

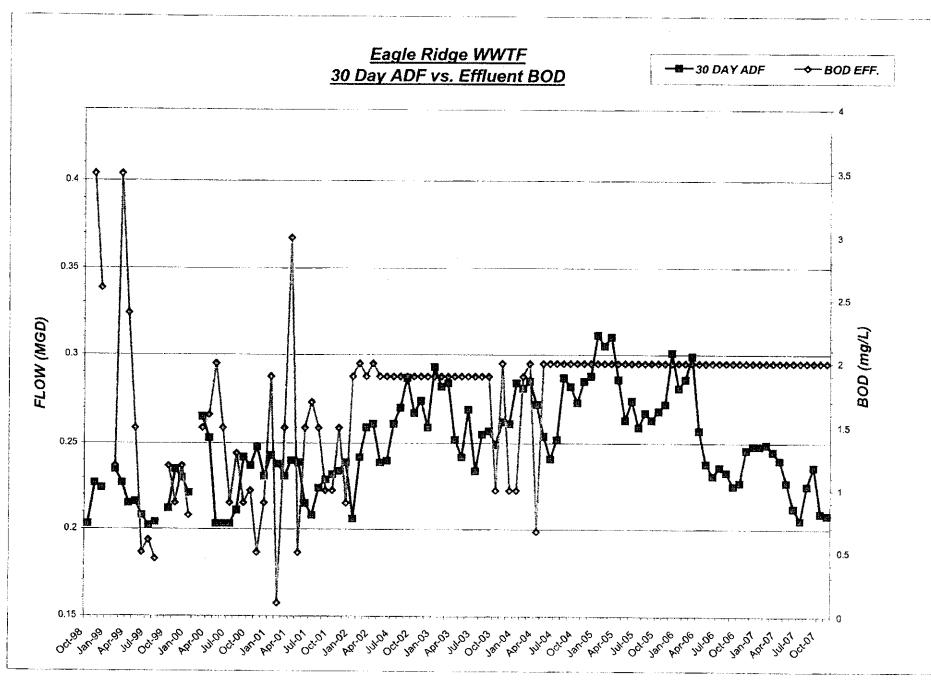
FLOW ANALYSIS

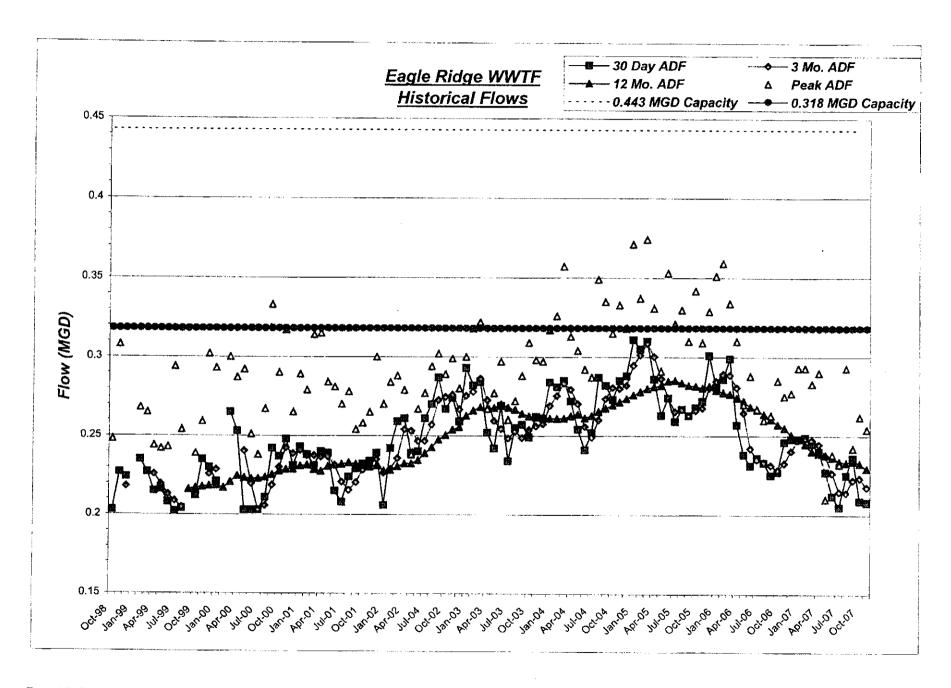
- ♦ = EFA -1 Monitoring Point for Total Residual Chlorine, Fecal Coliform & CBOD
- Δ = EFB-1 Monitoring Point for Turbidity & TSS
- ⊕ = Diversion Reset Switch (General Location)
- Valve A is the AutomaticStandard Effluent Storage Control Valve.
- Valve B is the Automatic Substandard Effluent Diversion Valve

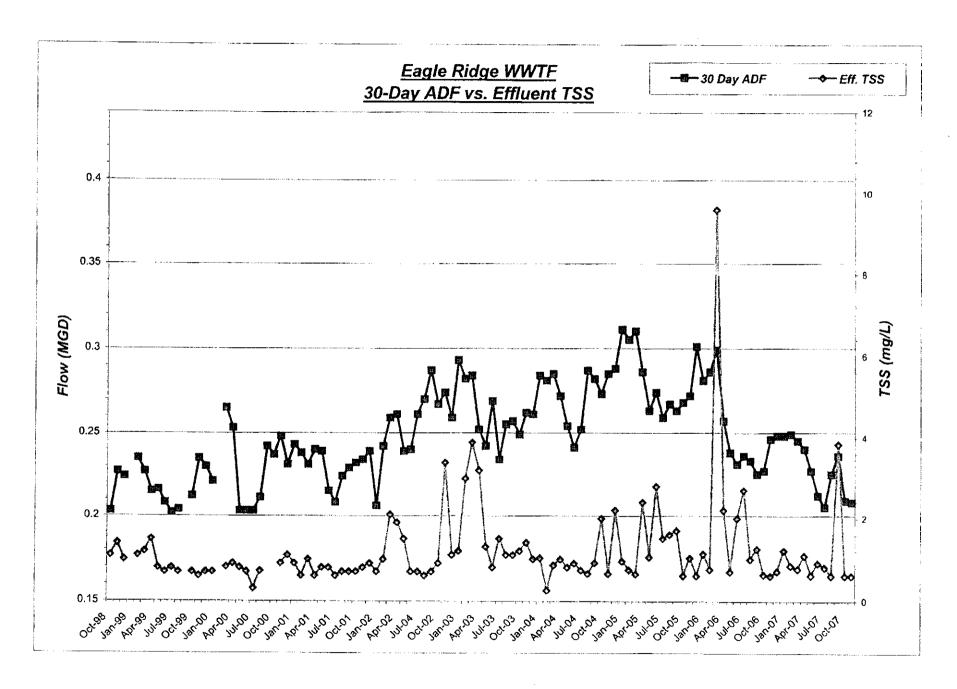
Eagle Ridge WWTF WWTF Historical Flows and Loading Data

5475	30 DAY	3 MO.	12 MO.	PEAK	BOD	IN TSS	BOD	OUT TSS	BOD	TSS	CHLORINE RESIDUAL	рH	FECAL COLIFORM	TURBIDITY
DATE	ADF(mgd)	ADF(mgd)	ADF(mgd)	(mgd)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	EFF. %	EFF. %	(mg/l)		(#/100ml)	(NTU)
Oct-98	0.203			0.248	233	221		1.1		99.50%	3.5	7.0	0.9	
Nov-98	0.227			0.308	287	299	3.5	1.4	98.78%	99.53%	4.5	6.7	0.9	
Dec-98	0,224	0.218			203	226	2.6	1	98.72%	99.56%	3.0	6.7	0.9	
Jan-99													 	
Feb-99	0.235			0.268	147	213	1.2	1,1	99.18%	99.48%	3.0	6.9	0.9	
Mar-99	0.227			0.265	229	351	3.5	1,2	98.47%	99.66%	1.8	7.0	0.9	
Apr-99	0.215	0.226		0.244	190	254	24	1.5	98.74%	99.41%	1.8	7.0	0.9	
May-99	0.216	0.219		0.242		175	1.5	0.8		99.54%	1.7	7.0	0.9	
Jun-99	0.208	0.213		0.243	235	221	0.5	0.7	99.79%	99.68%	1.8	7.0	0.9	· · · · · ·
Jul-99	0.202	0.209		0.294	180	171	0.6	0.8	99.67%	99.53%	3.1	6.8	0.9	
Aug-99	0.204	0.205		0.254	196	185	0.45	0.7		99.62%	3.5	6.8	0.9	
Sep-99			0.216				-							
Oct-99	0.212		0.217	0.239	203	268	1,2	0.7	99.41%	99.66%	3.0	6.8	1.0	
Nov-99	0.235		0.218	0.259	165	177	0.9	0.6	99.45%		3.0	6.7	0.9	
Dec-99	0.230	0.226	0.218	0.302	179	210	1.2	0.7	99.33%	99.67%	3.2	6.7	0.9	
Jan-00	0.221	0.229	0.219	0.293	212	223	0.8	0.7	99.62%	99.69%	2.9			
Feb-00			0.217								· · · · · · · · · · · · · · · · · · ·			
Mar-00	0.265		0.221	0.3	214	237	1.5	0.82	99.30%	99.65%		6.7	0.9	
Арг-00	0.253		0.225	0.287	203	227	1.6	0.9	99.21%	99.60%	3.4	6.7	0.9	
May-00	0.203	0.240	0.223	0.292	240	257	2	0.8	99.17%	99.69%	2.2	7.1	0.9	
Jun-00	0.203	0.220	0.223	0.251	245	291	1.5	0.7	99.39%	99.76%	2.2	7.0	0.9	
Jul-00	0.203	0.203	0.223	0.238	211	259	0.9	0.3	99.57%	99.88%	1.7	7.1		
Aug-00	0.211	0.206	0.224	0.267	156	206	1.3	0.72	99.17%	99.65%	1.5	7.2	0.9	
Sep-00	0.242	0.219	0.225	0.333	161	180	0.9		99.44%		1.5	7.1	0.9	-
Oct-00	0.237	0.230	0.228	0.29		221	1				1.7	7.3	0,9	
Nov-00	0.248	0.242	0.229	0.317	173	212	0.5	0.9	99.71%	99.58%	1.6	6.5	0.9	
Dec-00	0.231	0.239	0.229	0.265	187	251	0.9	1.1	99.52%	99.56%	1.7	6.5	0.9	
Jan-01	0.243	0.241	0.231	0.289	174	208	1.9	0.9	98.91%	99.57%	1.8	6.6	0.9	-
Feb-01	0.238	0.237	0.231	0.279	187	210	0.1	0.6	99.95%	99.71%	1.8	6.9	0.9	
Mar-01	0.231	0.237	0.229	0.314	204	225	1.5	1	99.26%	99.56%	1.2	7.1	0.9	
Apr-01	0.240	0.236	0.228	0.315	267	314	3	0.6	98.88%	99.81%	2.0	7.0	0.9	
May-01	0.239	0.237	0.231	0.284	185	196	0.5	8.0	99.73%	99.59%	1.0	6.8	0.9	
Jun-01	0.215	0.231	0.232	0.281	193	245	1.5	0.8	99.22%	99.67%	0.6	6.7	0.9	
Jul-01	0.208	0.221	0.232	0.27	181	203	1.7	0.6	99.06%	99.70%	1.1	6.9	0.9	
Aug-01	0.224	0.216	0.233	0.278	148	258	1.5	0.7	98.99%	99.73%	1.2	6.8	0.9	
Sep-01	0.229	0.220	0.232	0.254	278	431	1	0.7	99.64%	99.84%	1.1	6.7	0.9	
Oct-01	0.232	0.228	0.232	0.258	170	354	1	0.7	99.41%	99.80%	1.3	6.7	0.9	
Nov-01	0.234	0.232	0.230	0.265	244	404	1,5	8.0	99.39%	99.80%	1.7	6.6	0.9	
Dec-01	0.239	0.235	0.231	0.3	126	102	0.9	0.9	99.29%	99.12%	1.2	6.5	0.9	
Jan-02	0.206	0.226	0,228	0.27	172	238	1.9	0.7	98.90%	99.71%	1.0	6.2	0.9	1.00
Feb-02	0.242	0.229	0.228	0.284	208	211	2.0	1.0	99.04%	99.53%	1.0	6.3	0.9	1.96
Mar-02	0.259	0.236	0.231	0.288	298	415	1.9	2.1	99.36%	99.49%	1.0	6.0	0.9	1.50
Арг-02	0.261	0.254	0.232	0.279	253	298	2.0	1.9	99.21%	99.36%	1.1	6.5	0,9	0.90
May-02	0.239	0.253	0.232	0.238	271	434	1.9	1,5	99.30%	99.65%	1.2	6.4	0.9	0.40
Jun-02	0.240	0.247	0.234	0.267	411	351	1.9	0.7	99.54%	99.80%	1,1	6.4	0.9	0.30
Jul-04	0.261	0.247	0.239	0.277	227	338	1.9	0.7	99.16%	99.79%	1,0	6.3	0.9	0.40
Aug-02	0.270	0.257	0.243	0.294	213	236	1.9	0.6	99.11%	99.75%	1.0	6.5	0.9	0.40
Sep-02	0.287	0.273	0.248	0.302	127	136	1.9	0.7	98.50%	99.49%	1.0	6.4	0.9	0.30
Oct-02	0.267	0.275	0.250	0.289	168	153	1.9	0.9	98.87%	99.41%	1.0	6.4	0.9	0.80

Eagle Ridge WWTF WWTF Historical Flows and Loading Data


DATE	30 DAY ADF(mgd)	3 MO. ADF(mgd)	12 MO. ADF(mgd)	PEAK (mgd)	IN BOD (mg/l)	IN TSS (mg/l)	OUT BOD (mg/l)	OUT TSS (mg/l)	BOD EFF. %	TSS EFF. %	CHLORINE RESIDUAL (mg/l)	рH	FECAL COLIFORM (#/100mi)	TURBIDITY (NTU)
Nov-02	0.274	0.276	0.254	0.299	171	135	1.9	3.4	98.89%	97.48%	1,1	6.0	0.9	0.80
Dec-02	0.274	0.276	0.254	0.299	135	119	1.9	1.1	98.59%	99.08%	1.5	6.2	0.9	0.40
Jan-03	0.259	0.275	0.263	0.300	130	132	1.9	1.2	98.54%	99.09%	1.0	6.4	0.9	1.00
Feb-03	0.293	0.278	0.266	0.300	184	205	1.9	3.0	98.97%	98.54%	1.0	6.4	0.9	1.00
Mar-03	0.284	0.286	0.268	0.322	143	132	1.9	3.9	98.67%	97.05%	1.0	6.1	0.9	1.20
Apr-03	0.252	0.273	0.267	0.322	193	131	1.9	3.2	99.02%	97.56%	1.0	6.1	0.9	1,40
May-03	0.242	0.259	0.268	0.277	210	207	1.9	1.3	99.10%	99.37%	1.0	6.4	0.9	0.80
Jun-03	0.269	0.254	0.270	0.297	188	199	1.9	0.8	98.99%	99.60%	1.0	6.4	0.9	0.30
Jul-03	0.234	0.248	0.268	0.260	223	212	1.9	1.5	99.15%	99.29%	1.0	6.6	0.9	0.30
Aug-03	0.255	0.253	0.267	0.272	158	106	1.9	1.1	98.79%	98.96%	1,0	6.5	0.9	0.60
Sep-03	0.257	0.249	0.264	0.288	170	168	1.9	1.1	98.88%	99.35%	1.0	6.2	0.9	0.60
Oct-03	0.249	0.254	0.263	0.309	300	153	1.0	1.2	99.67%	99.22%	1.0	6.3	0.9	0.60
Nov-03	0.262	0.256	0.262	0.298	210	178	2.0	1.4	99.05%	99.21%	1.0	6.2	0.9	1.20
Dec-03	0.261	0.257	0.262	0.297	261	244	1.0	1.0	99.62%	99.59%	1.0	6.4	0.9	0.80
Jan-04	0.284	0.269	0.261	0.317	350	291	1.0	1.0	99.71%	99.65%	1.2	6.3	0.9	2.00
Feb-04	0.281	0.275	0.261	0.326	266	213	1.9	0.3	99.28%	99.88%	3.6	6.2	0.9	1.80
Mar-04	0.285	0.283	0.261	0.357	210	190	2.0	0.9	99.05%	99.55%	1.4	6.6	1.0	
Apr-04	0.272	0.279	0.263	0.313	199	229	0.7	1.0	99.66%	99.56%	1.0	6.8	2.8	1.80
May-04	0.254	0,270	0.264	0.304	198	179	2.0	0.8	98.99%	99.55%	1.5	6.5	0.9	2.00
Jun-04	0.241	0.256	0.261	0.292	250	214	2.0	0.9	99.20%	99.58%	1.4	6.3	1.0	1.90
Jul-04	0.252	0.249	0.263	0.287	242	239	2.0	0.7	99.17%	99.69%	1.1	6.3	1.0	1.90
Aug-04	0.287	0.260	0.265	0.349	184	180	2.0	0.7	98.91%	99.64%	1.7	6.6	1.0	2.20
Sep-04	0.282	0.274	0.268	0.335	199	179	2.0	0.9	98.99%	99.49%	2.0	6.5	1.0	1.70
Oct-04	0.273	0.281	0.270	0.315	268	237	2.0	2.0	99.25%	99.16%	1.0	6.5	1.0	1.80
Nov-04	0.285	0.280	0.271	0.333	201	277	2.0	0.7	99.00%	99.76%	1.0	6.3	0.9	0.80
Dec-04	0.288	0.282	0.274	0.318	278	260	2.0	2.2	99.28%	99.15%	1,5	6.3	0.9	2.10
Jan-05	0.311	0.295	0.276	0.371	265	352	2.0	1.0	99.24%	99.73%	1.0	6.4	0.9	2.40
Feb-05	0.305	0.301	0.278	0.337	321	250	2.0	0.7	99.38%	99.70%	5.0	6.5	0.9	3.80
Mar-05	0.310	0.309	0.280	0.374	254	236	2.0	0.6	99.21%	99.73%	5.0	6.4	0.9	2.50
Apr-05	0.286	0.300	0.281	0.331	205	211	2.0	2.4	99.02%	98.86%	5.0	6.3	0.9	1.90
May-05	0.263	0.286	0.282	0.291	298	298	2.0	1.1	99.33%	99.65%	5.0	6.5	0.9	2.50
Jun-05	0.274	0.274	0.285	0.353	180	143	2.0	2,8	98.89%	98.04%	5.0	6.4	0.9	10.00
Jul-05	0.274	0.274	0.285	0.333	122	98	2.0	1.5	98.35%	98.46%	5.0	6.5	0.9	2.30
	0.259	0.267	0.284	0.321	192	215	2.0	1.6	98.96%	99.26%	1,4	6.5	0.9	6.30
Aug-05		0.263	0.284	0.330	168	160	2.0	1.7	98.81%	98.94%	1.2	6.5	0.9	1.20
Sep-05	0.263						2.0		99.05%	98.94%	1,0		0.9	
Oct-05	0.268	0.266	0.282	0.342	211	273		0.6			3.5	6.5 7.0	1.0	3.00
Nov-05	0.272	0.268	0.281	0.309	213	175	2.0	1.0	99.06%	99.41%				1.60
Dec-05	0.301	0.280	0.282	0.329	193	206	2.0	0.6	98.96%	99.71%	1.4	6.3	0.9	1.60
Jan-06	0.281	0.285	0.279	0.351	190	211	2.0	1.1	98.95%	99.46%	3.8	6.8	1.0	10.00
Feb-06	0.286	0.289	0.278	0.359	215	225	2.0	0.8	99.07%	99.67%	4.2	6.6	1.1	10.00
Mar-06	0.299	0.289	0.277	0.334	206	95	2.0	9.6	99.03%	89.85%	4.5	6.5	2.3	10.00
Apr-06	0.257	0.281	0.274	0.310	333	247	2.0	2.2	99.40%	99.11%	1.2	6.7	1.0	5.00
May-06	0.238	0.265	0.272	0.270	240	212	2.0	0.7	99.17%	99.67%	3.1	6.7	1.5	10.00
Jun-06	0.231	0.242	0.269	0.288	290	246	2.0	2.0	99.31%	99.19%	4.0	7.0	1.0	10.00
Jul-06	0.236	0.235	0.267	0.267	138	199	2.0	2.7	98.55%	98.64%	1,9	6.5	1.0	5.00
Aug-06	0.233	0.233	0.264	0.260	230	196	2.0	1.0	99.13%	99.49%	2.1	6.5	7.0	10.00
Sep-06	0.225	0.231	0.261	0.263	169	207	2.0	1.3	98.82%	99.39%	3.0	7.1	1.0	10.00
Oct-06	0.227	0.228	0.257	0.285	206	278	2.0	0.6	99.03%	99.77%	4.3	7.2	1.0	1,40


Eagle Ridge WWTF WWTF Historical Flows and Loading Data OUT OUT CHLORINE FECAL IN 30 DAY 3 MO. 12 MO. PEAK BOD TSS BOD TSS BOD TSS RESIDUAL COLIFORM рH TURBIDITY DATE ADF(mgd) ADF(mgd) ADF(mgd) (mg/l) EFF. % EFF. % (mgd) (mg/l) (mg/l) (mg/l)(mg/l) (#/100ml) (NTU) Nov-06 0.246 0.233 0.255 0.275 99.67% 221 180 2.0 0.6 99.10% 4.1 7.3 1.0 3.00 Dec-06 0.248 0.240 0.251 0.277 2.0 2.8 321 246 0.7 99.38% 99.71% 7.3 1.0 3.00 Jan-07 0.248 0.247 0.248 0.293 310 296 2.0 1.2 99.35% 99.59% 3.5 7.2 1.0 2.20 Feb-07 0.249 0.248 0.293 287 2.0 99.69% 3.5 0.245 274 0.8 99.30% 6.9 1.0 2.10 Mar-07 0.245 0.247 0.240 0.283 139 180 99.58% 2.0 0.8 98.56% 4.9 7.0 1.0 2.00 Apr-07 0.240 0.245 0.239 0.290 161 216 2.0 98.75% 99.50% 4.8 1.1 6.9 1.0 2.00 May-07 0.227 0.237 0.238 0.210 99.67% 166 187 2.0 0.6 98.80% 3.9 6.9 1.0 2.10 Jun-07 0.212 0.226 0.236 0.238 191 241 2.0 0.9 98.95% 99.63% 4.0 7.0 1.0 1.60 Jul-07 0.205 0.215 0.234 0.232 137 112 2.0 98.53% 0.8 99.28% 3.7 7.0 1.0 2.20 Aug-07 0.225 0.214 0.233 0.293 125 116 2.0 0.6 98.40% 99.48% 3.7 7.1 1.0 2.50 Sep-07 0.236 0.222 0.234 0.242 172 145 2.0 3.9 98.84% 97.34% 3.9 7.3 1.0 2.20 Oct-07 0.209 0.223 0.233 0.262 171 176 2.0 0.6 98.83% 99.66% 1.0 6.4 1.0 2.50 Nov-07 0.208 0.218 0.229 0.254 130 2.0 98.00% 3.6 100 0.6 99.54% 6.7 1.0 3.00 0.248 0.250 0.250 209.6 221.8 99.17% 99.45% 2.2 Avgs. 0.291 1.7 1.2 6.7 1.0 2.71


Note: (1) Data not available.

(2) 10-month and 11-month ADF calculated when 30-Day ADF data is missing.

Des LITIOS 0407 Faula Diday 1488/FF Ebaladas FFI (1997) 18 Box 1

Determination of Seasonal Variations

Date	30 Day ADF	Date	30 Day ADF	Date	30 Day ADF
Jan-99		Jan-00	0.221	Jan-01	0.243
Feb-99	0.235	Feb-00		Feb-01	0.238
Mar-99	0.227	Mar-00	0.265	Mar-01	0.231
Apr-99	0.215	Apr-00	0.253	Apr-01	0.240
May-99	0.216	May-00	0.203	May-01	0.239
Jun-99	0.208	Jun-00	0.203	Jun-01	0.215
Jul-99	0.202	Jul-00	0.203	Jul-01	0.208
Aug-99	0.204	Aug-00	0.211	Aug-01	0.224
Sep-99		Sep-00	0.242	Sep-01	0.229
Oct-99	0.212	Oct-00	0.237	Oct-01	0.232
Nov-99	0.235	Nov-00	0.248	Nov-01	0.234
Dec-99	0.230	Dec-00	0.231	Dec-01	0.239
AVG.	0.218	AVG.	0.229	AVG.	0.231
3 Mo. Max	0.226	3 Mo. Max	0.242	3 Mo. Max	0.241
3 Mo. Max/		3 Mo. Max/		3 Mo. Max/	
AvgMoADF	1.035	AvgMoADF	1.058	AvgMoADF	1.043

Determination of Seasonal Variations

Date	30 Day ADF	Date	30 Day ADF	Date	30 Day ADF
Jan-02	0.206	Jan-03	0.293	Jan-04	0.284
Feb-02	0.242	Feb-03	0.282	Feb-04	0.281
Mar-02	0.259	Mar-03	0.284	Mar-04	0.285
Арг-02	0.261	Apr-03	0.252	Apr-04	0.272
May-02	0.239	May-03	0.242	May-04	0.254
Jun-02	0.240	Jun-03	0.269	Jun-04	0.241
Jul-02	0.261	Jul-03	0.234	Jul-04	0.252
Aug-02	0.270	Aug-03	0.255	Aug-04	0.287
Sep-02	0.287	Sep-03	0.257	Sep-04	0.282
Oct-02	0.267	Oct-03	0.249	Oct-04	0.273
Nov-02	0.274	Nov-03	0.262	Nov-04	0.285
Dec-02	0.259	Dec-03	0.261	Dec-04	0.288
AVG.	0.255	AVG.	0.262	AVG.	0.274
3 Mo. Max	0.276	3 Mo. Max	0.286	3 Mo. Max	0.283
3 Mo. Max/		3 Mo. Max/		3 Mo. Max/	
AvgMoADF	1.081	AvgMoADF	1.093	AvgMoADF	1.034

Determination of Seasonal Variations

Date	30 Day ADF		ate	30 Day ADF		Date	30 Day ADF
Jan-05	0.311	Ja	an-06	0.281		Jan-07	0.248
Feb-05	0.305	Fe	eb-06	0.286		Feb-07	0.249
Mar-05	0.310	М	ar-06	0.299		Mar-07	0.245
Apr-05	0.286	A	or-06	0.257		Apr-07	0.240
May-05	0.263	M	ay-06	0.238		May-07	0.227
Jun-05	0.274	Ju	ın-06	0.231		Jun-07	0.212
Jul-05	0.259	Jı	ul-06	0.236		Jul-07	0.205
Aug-05	0.267	Au	ıg-06	0.233		Aug-07	0.225
Sep-05	0.263	Se	p-06	0.225		Sep-07	0.236
Oct-05	0.268	0	ct-06	0.227	1 1	Oct-07	0.209
Nov-05	0.272	No	ov-06	0.246		Nov-07	0.208
Dec-05	0.301	De	ec-06	0.248		Dec-07	
AVG.	0.282	Α	VG.	0.251		AVG.	0.228
3 Mo. Max	0.309	3 M	o. Max	0.289		3 Mo. Max	0.245
3 Mo. Max/	4 007		o. Max/	4.452		3 Mo. Max/	4.070
AvgMoADF	1.097	Avg	MoADF	1.153		AvgMoADF	1.076

APPENDIX C

PROCESS ANALYSIS

		Exten	Eagle Ridge ded Aeration Activated 5	WWTF Sludge Process Analysis		
	Flow =	318,000	gpd	0.318	mgd	
			SURGE TANI	KS .		
		Volume galions	% Total Flow			
	Tank #1 Tank #2 Tank #3	30,900 30,900 30,900				
	Total	92,700	29.2%			
			AERATION TAI	NKS		
		Volume gallons	Detention Time hours	BOD Loading #/1,000 cf		
North Train North Train South Train South Train	Tank #1 Tank #2 Tank #3 Tank #4	85,060 42,530 85,060 42,530				
	Tolai	255,180	19.26	14.77		
	**************************************		CLARIFIER TA	NKS		
		Area s.f.	Hydraulic Loading gpdpsf	Peak Solids Loading lb/day/sf		
North Train South Train	Clarifier #1 Clarifier #2	298.65 298.65	532.40 532.40	62.16 62.16		
	Total:	597.30	532.40	62.16		
			Note: MLSS = 4,00	00 mg/i		
			FILTER	S		
		Area s.f.	Loading Rate gpmpsf			
Main Filter Backup Filter	Filter #1 Filter #2	325.7 180.0	0.7 1.2	[(8) 7.2-ft diameter discs]		
	Total:	505.7	0.4			
			CHLORINE CONTAC	TTANKS		
		Volume gallons	Detention Time minutes (ADF)	Detention Time minutes (Peak)		
	CCT #1 CCT#2 CCT#2	5,190 5,190 10,380				
	Total:	20.760	94.01	47.00		
		Note: F	Peak detention time based	on peak factor = 2.0		
			AEROBIC DIGES	STER		
		Volume gallons	Sludge Prod. gpd	Retention Time days	Sludge Prod. tons/yr	
North Train South Train	Tank #1 Tank #2	56,100 56,100				
	Total:	112,200	1,888.13	59.42	55.18	

The state of the s		EFFLUENT DISPO	SAL		
	Volume gallons	Detention Time days (ADF)	Detention Time days (Peak)		
Reclaimed Water Holding Pond	1,329,500	4.18	2.09		
Lined Reject Water Holding Pond	600,000	1.89	0.94		
	Note:	Peak detention time base	d on peak factor = 2.0		
	Area s.f.	Area acres	Loading Rate gpdpsf	Loading Rate inches/week	Loading Rate inches/day
Golf Course	3,920,400	90.00	0.08	0.91	0.13
		AIR REQUIREM	ENTS		· , , , , , , , , , , , , , , , , , , ,
		SURGE TANK			
Total Volume gallons	Mixing cfm	Aerobic cfm			
92,700	222.48	1.22			
		AERATION TANK	KS		
Total Vol. gallons	Mixing cfm	Aerobic cfm	Safety Factor # Air/# BOD	Min. Air @ 1,5 BOD	
255,180	510.36	795.30	2.00	596.48	
		AEROBIC DIGEST	TER		
Total Volume gallons	Mixing ofm	Aerobic cfm			
112,200	269.28	76.35			
		AIR LIFT PUMP	<u> </u>		
No. ALP	cfm				~
6.00	60.00				
	TO	OTAL SYSTEM AIR REQU	UIREMENTS		
Surge Tanks Process Tanks		cím cím			

		Contact Sta	Eagle Ridge WWTF bilization Activated Sludge	Process Analysis		
			mineauon Activated Studge	rrocess Analysis		
	Flow =	443,000	gpd	0.443	mgd	
			SURGE TANKS			
		Volume gallons	% Total Flow			
	Tank #1 Tank #2 Tank #3	30,900 30,900 30,900		•		
	Total	92,700	20.9%			
			AERATION TANKS	·		
		Volume galions	Detention Time hours	BOD Loading #/1,000 cf		
North Train South Train	Contact Tank #1 Contact Tank #2	42,530 42,530				
	Subtotal:	85,060	4.61	20.58		
North Train South Train	Reaeration Tank #1 Reaeration Tank #2	85,060 85,060				
	Sublotal:	170,120	9.22	20.58		
	Total	255,180	13.82	20.58		
			CLARIFIER TANKS			
		Area s.f.	Hydraulic Loading gpdpsf	Peak Solids Loading Ib/day/sf		
North Train South Train	Clarifier #1 Clarifier #2	298.65 298.65	741.67 741.67	64.95 64.95		
	Total:	597.30	741.67	64.95		
			Note: MLSS = 3,000 mg/l			
			FILTERS			
		Area s.f.	Loading Rale gpmpsf			
Main Filter Backup Filter	Filler #1 Filler #2	325.7 180.0	0.9 1.7	[(8) 7.2-ft diameter discs]		
	Total:	505.7	0.6			
		СН	LORINE CONTACT TANKS			
		Volume gallons	Detention Time minutes (ADF)	Detention Time minutes (Peak)		
	CCT#1 CCT#2 CCT#2	5,190 5,190 10,380				
	Total:	20,760	67,48	33.74		
		Note: Peak de	etention time based on peak	factor = 2.0		
			AEROBIC DIGESTER			
		Volume galions	Sludge Prod. gpd	Retention Time days	Sludge Prod. tons/yr	
North Train South Train	Tank #1 Tank #2	56,100 58,100				
	Total:	112,200	2,630.31	42.66	76.87	

		EFFLUENT DISPOSAL			
	Volume gallons	Detention Time days (ADF)	Detention Time days (Peak)		
Reclaimed Water Holding Pond	1,329,500	3.00	1.50		
Lined Reject Water Holding Pond	600,000	1.35	0.68		
	Note: Pea	ik detention time based on pe	aak factor = 2,0		
	Area s.f.	Area acres	Loading Rate gpdpsf	Loading Rate inches/week	Loading Rate inches/day
Golf Course	3,920,400	90.00	0.11	1.27	0.18
		AIR REQUIREMENTS			
		SURGE TANK			
Total Volume gallons	Mixing cfm	Aerobic cfm			
92,700	222.48	1.22			
		AERATION TANKS			
Total Vol. gallons	Mixing ofm	Aerobic cfm	Safety Factor # Air/# BOD	Min. Air @ 1.5 BOD	
265,180	510.36	1,107.92	2.00	830.94	
		AEROBIC DIGESTER			
Total Volume gallons	Mixing c(m	Aerobic cfm			
112,200	269.28	106,36			
		AIR LIFT PUMPS			
No. ALP	cſm				
6,00	60.00				
	TOTAL	SYSTEM AIR REQUIREMEN	ITS		, , , , , , , , , , , , , , , , , , ,
Surge Tanks: Process Tanks:	222,48 1,437,20	cfm cfm			

Applied Air Calculations - WWTF Air Diffuser System

Process Blowers: (3) - Lamson Centrifugal 557-5-2-AD

Design Flow w/ Extended Aeration =	0.318 mgd
Design Flow w/ Contact Stabilzation =	0.443 mgd
Total Air Required =	1,437.20 cfm

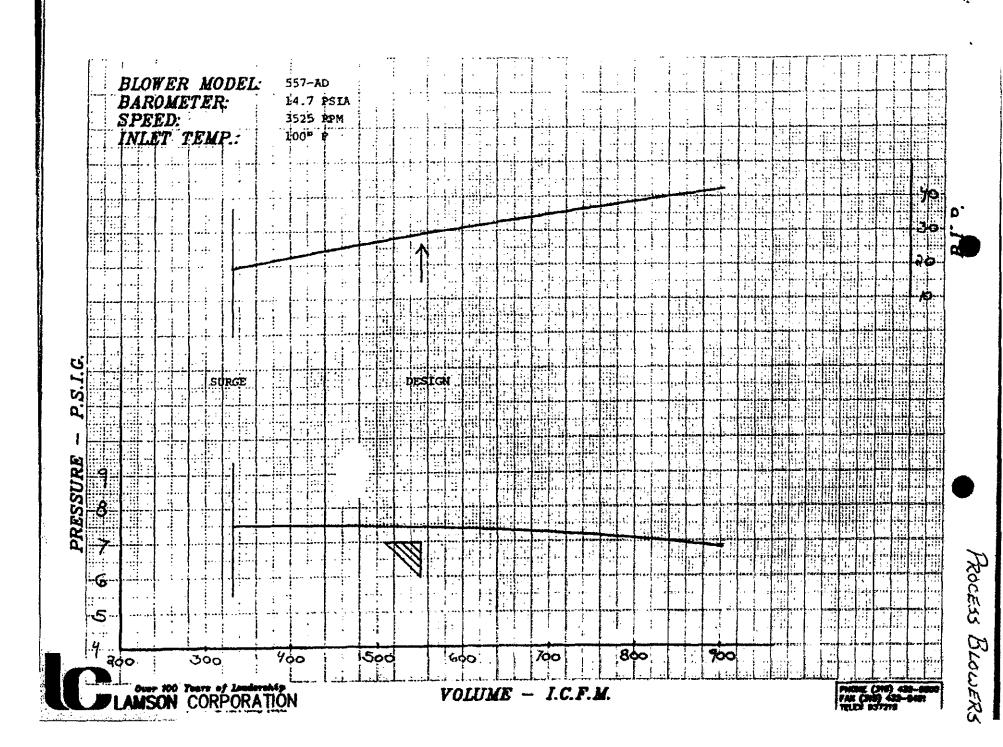
Motor RPM =	3,450 rpm
Motor Horsepower =	50.0 hp
Blower Air Pressure =	7.0 psi
Blower Speed =	3,525 rpm
Blower Horsepower =	28.0 hp

Blower Air Flowrate = 550.0 cfm (Each Blower)

Operational Blower Air Flowrate = 1,100.0 cfm (Two Blowers in Operation)

BOD5 Average Influent Concentration = 209.6 mg/l
BOD5 Average Effluent Concentration = 1.7 mg/l

Calculations:


BOD5 Removal Concentration (Influent - Effluent) = 207.8 mg/l

8.34 lb/gallon x BOD5 Removal Conc. x Design Flow = 767.8 pounds BOD5/day

Operational Blower Air Flowrate x 1440 minutes per day = 1,584,000 cubic feet/day

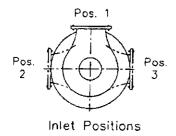
Applied Air = 1,584,000 cubic feet/day
767.8 pounds BOD5/day

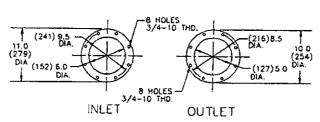
= 2,062.93 cubic feet of air per pound of BOD5

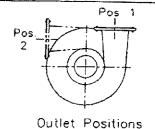
CFM

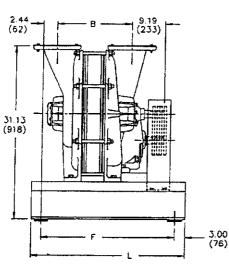
* Deficite of So #56/81

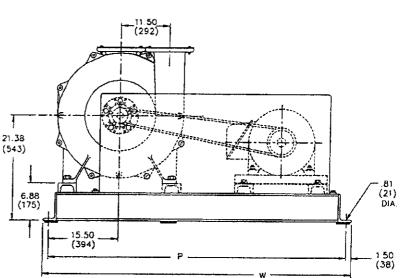
Gardner Denver Machinery Inc. 1800 Gardner Expressway Quincy, Il 62301


LAMSON **PRODUCT DATA**


CENTRIFUGAL AIR SYSTEMS


BLOWERS/ **EXHAUSTERS**


"550" Series Air Outlet Driven Belt Drive - Dimensions


☐ For Approval Certified For Project . Your Order # Our Order

50 Hz. 3525 RPM

Frame	Dimensions in Inches and (mm)												
No.	В	F	L	Р	W								
552	11.75 (299)												
553	15.0 (381)	32.75 (832)	38.75 (984)	58.50 (1486)	61.50 (1562)								
554	18.25 (464)												
555	21.50 (546)												
556	24.75 (629)	44.00 (1118)	50.00 (1270)	64.00 (1626)	67.00 (1702)								
557	28.0 (711)												

- Flange dimensions conform to 125 pound American standard cast iron flanged fittings.
 Dimensions in inches and (mm).
 Specifications subject to change without notice.

Applied Air Calculations - WWTF Air Diffuser System

Surge Tank Blowers: (2) - Tuthill 3006-21L2

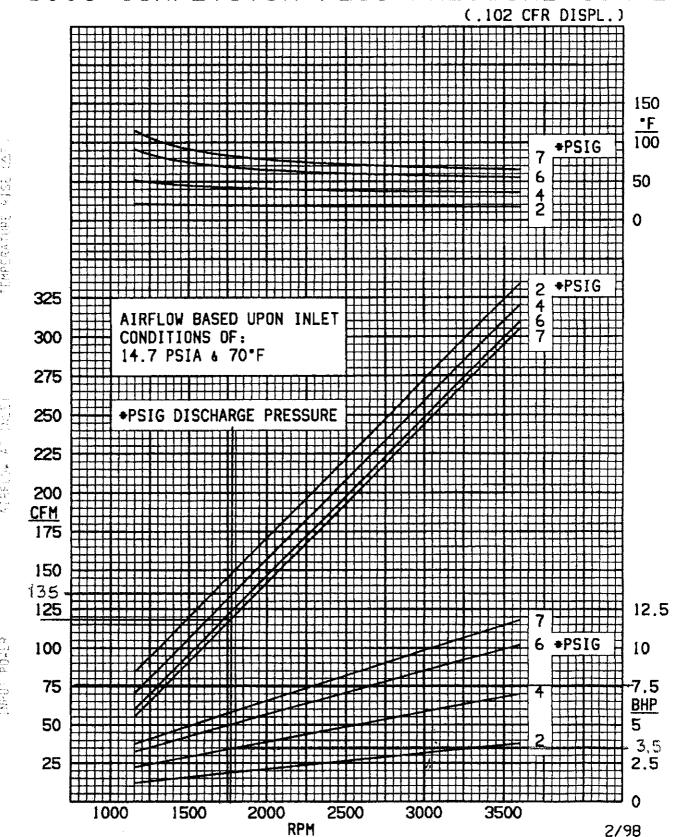
Design Flow w/ Extended Aeration =	0.318 mgd
Design Flow w/ Contact Stabilzation =	0.443 mgd
Total Air Required =	222.48 cfm

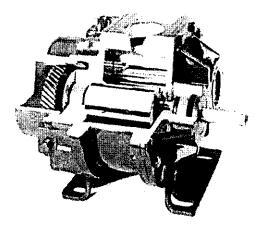
Blower Diameter = 8.0 inches
Motor Diameter = 8.0 inches
Motor RPM = 1,760 rpm
Motor Horsepower = 7.5 hp
Blower Air Pressure = 4.0 psi

Calculations:

Motor Diameter X Motor rpm = Blower Diameter X Blower rpm

= 1,760 rpm


From Blower Perfomance Curve at 4.0 psig and 1,760 rpm:


Blower Horsepower = 3.5 hp

Blower Air Flowrate = 135.0 cfm (Each Blower)

3006 COMPETITOR PLUS™PRESSURE CURVE

M-D Pneumatics"

COMPETITOR

Rotary Positive Blowers

COMPETITOR PLUS rotary blowers are designed to be interchangeable with equivalent sizes of Roots Universal RAI*, and many Sutorbilt* California Series B and F, and Legend** Series L and P blowers. COMPETITOR PLUS models are rated up to 15 PSIG discharge pressure or 16" Hg dry vacuum.

In addition to interchangeability, Tuthill Vacuum & Blower Systems has improved on existing designs with the following superior features ordinarily found only on premium blowers:

Helical Gearing

COMPETITOR PLUS blowers are timed with hardened, precision helical gears, keyed to the rotor shafts, <u>not</u> taper fit spur gears as offered by other manufacturers, which have greater backlash, and can slip and lose timing. Helical gears are also quieter, reducing mechanical noise.

Stronger Bearings

All COMPETITOR PLUS blowers include double row ball bearings at the gear end, stronger than single row ball bearings offered by other manufacturers. Drive shaft bearing is cylindrical roller type for additional strength against side loading from V-belt drives. As a result of this superior design, COMPETITOR PLUS blowers offer design bearing life as much as 50% greater than models offered by other manufacturers.

Rotors with Integral Shafts

COMPETITOR PLUS blowers include precision machined ductile iron rotors with large, integrally cast shafts, <u>not</u> press fit and/or pinned shafts offered by other manufacturers, which can loosen over time and cause rotor clash. All rotors are dynamically balanced for vibration-free rotation.

Positive End Clearances

End clearances are positively established at the blower gear end, eliminating the risk of shifting end clearances when installing or removing drive components. This also eliminates the need for those special fork and saddle tools required by other brands to reset end clearances.

Polished Sealing Surfaces

All shaft surfaces in contact with sealing members are polished to reduce seal wear and risk of leakage.

Individually Tested

Every COMPETITOR PLUS blower is factory tested to assure you of the highest quality. While some manufacturers perform only sample testing, We go the distance to insure that <u>your</u> blower meets our rigid ISO 9001 registered quality standards.

ISO 9001 Registration

COMPETITOR PLUS blowers are manufactured under the Tuthill Vacuum & Blower Systems ISO 9001 registered quality assurance program, the <u>first</u> American manufacturer of rotary blowers to gain such international recognition.

Warranty

Every COMPETITOR PLUS blower is backed by the Tuthill Vacuum & Blower Systemslimited warranty for a period of 18 months after installation or 2 years after original blower shipment, whichever occurs first.

Metric Availability

All COMPETITOR PLUS blowers are available with metric drive shaft and process connections.

Worldwide Sales and Service

With sales offices and service facilities located on six continents, you can be assured of availability and service for your COMPETITOR PLUS blowers.

Material Specifications:

Housing: Cast iron End Plates: Cast iron End Cover: Cast iron Rotors: Ductile iron

Shafts: Ductile iron, cast integrally with rotors
Bearings: Gear end - Double row ball, both rotors
Drive end - Cylindrical roller on drive rotor
Single row ball on driven rotor

Drive Shaft: Ductile iron, cast integrally with drive rotor

Gears: Heat treated alloy steel, helical cut Seals: Lip seals on rotor shafts and drive shaft

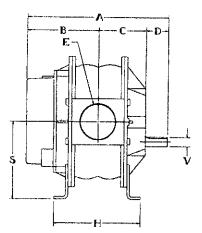
Lubrication: Oil splash on gear end, grease on drive end

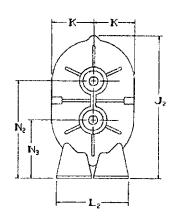
Model Size	Max. Press. PSI	Max. Vac. (in. Hg)	Maximum RPM	Displacement CFR
2002	12	16	5275	.016
2004	7	16	5275	.032
3002	15	16	3600	.0467
3003	12	15	3600	.0616
	7	15	3600	.102
4002	15	16	3600	,061
4005	12	16	3600	.121
4007	7	15	3600	.160
5003	.15	16	2850	.132
5006	13	16	2850	.221
5009	7	15	2850	.323
6005	15	16	2350	.246
6008	14	16	2350	.395
6015	7	14	2350	.740
7006	15	16	2050	.402
7011	10	16	2050	.798
7018	6	12	2050	1.200

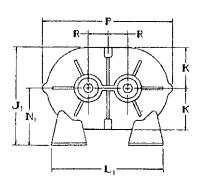
LEADING THE SEARCH FOR INNOVATIVE SOLUTIONS

TUTHILL Vacuum & Blower Systems

4840 West Kearney Street Springfield, Missouri USA 65803-8702 Tel 417 865-8715 800 825-6937 Fax 417 865-2950

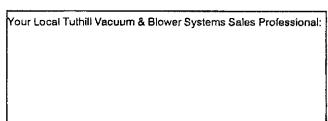

Performance


Pressure performance is based on inlet conditions of 14.70 PSIA and 70° F.


Vacuum performance is based on inlet temperature of 70° F and discharge pressure of 14.70 PSIA.

In conjunction with our program of continuous testing and upgrading, all specifications are subject to change without notice.

All data are approximate. Request a quotation for your specific application,


Blower	SPEED	6 P	SIG	7 P	SIG	10	esig	12 F	SIG	13 F	SIG	14 5	SIG	15 PSIG		G Max. Vacuum			
Model	(RPM)	CFM	ВНР	CFM	BHP	CFM	ВНР	CFM	ВНР	CFM	BHP	CFM		CFM	BHP	"Hg	CFN		
	1750	6	0.9	6	1.0	<u> </u>				_						9	7	07	
2002	3600	38	1.8	36	2.1	32	2.B	29	3.3							14	28	21	
	5275	84	27	63	3.1	59	4.2	56	4.9							16	51	34	
2004	1750	24	16	21	1.9											10	20	14	
2004	3600 5275	83	33	80	3.8											14	68	3.8	
<u> </u>	1170	137	1.6	134	5.6	L										16	115	6.3	
3002	2700	94	3.B	20 92	1.9			1					' f			10	19	1.4	
5002	3600	136	5.0	134	4.3 5.7	85	6.0	81	7.1	79	76	77	8.2	75	8.7	15	76	45	
	1170	31	2.1	28	2.4	127	7.9	123	9.4	121	10	119	11	118	12	16	114	6.4	
3003	2700	126	4.8	122	5.5	114	7.7	109	9.2							10	27	1.7	
	3600	181	6.4	178	7,4	169	10	164	12	1		ļ		İ		14	107	54	
	1170	62	3.3	57	3.8			,,,,	`-			~i	-+			15 11	158 51	3.0	
3006	2700	218	7.7	213	8.9		1					1	-	Attend		15	185	93	
ļi	3600	310	10	305	12						İ		}	1		15	277	12	
1	880	20	1.6	17	1.8											10	16	13	
4002	1760	74	3.2	71	3.6	64	50	60	6.0	58	6,4	56	6.9	İ	i	14	58	36	
	3600	186	6.5	183	7.4	176	10	172	12	170	13	168	_14	166	15	16	163	8.3	
4005	880 1760	44 150	3.0	39	3.4	4.5-				- 1	-	1	1	- 1	- 1	9	42	2.2	
1000	3600	373	5.9	145 368	6.9	132 354	9.5	124	11				ì	1		14	121	6.7	
<u> </u>	880	58	3.9	52	14 4.5	354	20	347	24							16	330	16	
4007	1760	199	7.7	193	90	ł						-			i	9	56	29	
1	3600	494	1	1	i		ŀ			- 1	- 1	- 1	- 1	j	- 1	13	169	8.2	
			16	487	18											15	447	19	
5003	710 1760	42	2.7	38	31					1		1	- 1		- 1	10	36	2.2	
5003		181	6.6	176	7.6	166	11	159	13	156	14	153	15	- {	ĺ	16	146	8.5	
-	2850	324	11	320	12	309	17	303	21	300	22	297	24	294	25	16	289	14	
1	710	70	4.3	63	5.0		į									10	61	3.6	
5006	1760	302	11	295	12	277	17	266	21	261	23	- 1				14	262	12	
	2850	543	17	536	20	518	28	507	34	502	97					16	485	22	
	710	133	6.2	125	7.2]									- 1	11	114	5.6	
5009	1760	472	15	464	18		i			- 1		- 1	- 1	j	- [14	427	18	
	2850	824	25	816	29		1	- 1	1		- 1			- 1	ĺ	15	769	30	
	710	93	4.9	87	5.6	70	7.9									12	70	4 B	
6005	1760	352	12	345	14	328	20	318	23	313	25	309	27	304	29	16	296	16	
	2350	497	18	490	19	473	26	463	31	458	34	454	36	449	39	16	442	21	
	710	150	76	39	8.9	112	13	-	 -			757						***************************************	
6008	1760	565	19	554	22	527	31	510	37	503	40	496	43	l		12	113 490	7.5 23	
L i	2350	798	25	787	28	760	41	744	50	736	54	729	58	-	į	16	709	33	
	710	281	14	261	16							· 				10	254	12	
6015	1760	1058	35	1038	40			l	1		Ì	- 1		i	- 1	14	943	40	
<u> </u>	2350	1494	46	1475	54											14	1380	53	
	710	195	7.8	188	9.1	168	13	157	15	152	17	1				13	161	8.3	
7006	1760	617	19	610	22	591	32	579	38	574	41	569	44	564	47	16	556	25	
	2050	734	23	726	26	707	37	696	44	691	48	686	51	661	55	16	672	29	
7011	710 1760	367 1142	14 35	354 1129	16 41	321 1096	23 58	1		[1	1	-	13	308	15	
'''	2050	1356	41	1343		1310	67									16	1035	45	
 	710	632	23	1979		.5.0	-31						-+			16	1249	53 19	
7018	1760	1892	56	!	f			1				1		1		12	508 1830	55	
	2050	2240	65		,		- 1		ļ		1						2178	64	
					- +		<u></u>									- <u>:-</u> -L	-110	04	

							Di	mer	ısio	ns								
Model Size	A	8	С	D	E	H	J1	J2	к	L1	1.2	N1	N2	N3	₽	R	5	V
2002 2004	10.00 12.00	4.88 5 88	2.63 3.63	2.50	1' NPT 2" NPT	5,00 7.00	6.88	9 69	3.13	5.13	5 13	3.75	6.25	3.75	9.38	1.25	5 00	.625
3002 3003 3006	11.56 12.44 14.81	5.69 6.19 7.38	3.38 3.75 4.94	2.50	1%" NPT 2" NPT 2%" NPT	6 75 7.63 10.00	8.94	12.81	3.94	7.25	7.25	5 00	8.50	5.00	12 19	1 75	6.75	.875*
4002 4005 4007	12 94 15.69 17.44	6,25 7,63 8,50	3.69 5.06 5.94	3 00	11/4" NPT 21/4" NPT 3" NPT	7.25 10.00 11.75	10.63	15 13	4.38	8.00	8.00	6.25	10.25	6.25	13 69	2.00	8.25	.875
5003 5006 5009	15 25 17.68 20.88	7,38 8,69 10,19	4.50 5.81 7.31	3 38	21/3" NPT 4" NPT 4" NPT	8.38 11.00 14.00	12.13	17.36	5.38	10.50	10.50	6.75	11.25	6.25	17 19	2.50	8 75	1.125
6005 6008 6015	18.75 21.75 28.75	10 94	5.63 7.13 10.63	3.69	3" NPT 5" NPT 6" FLG		15.06 15.06 16.44	21.69	6.25 6.25 7.50	l	11 00	8.75	14 75	8.75	19 81	3.00	11.75	1.375
7006 7011 7018	20.31 25.31 32.31	12.69 16.31	5.94 8.44 11.94		4" NPT 6" FLG 8" FLG	16.75 23.75	19.50	26.13	8.50	21.00	14.00	11.00	18.00	11.00	23.25	3 50	14 50	1.562

Values shown are approximate and should not be used for construction.

Certified drawings are available through your local Tuthill Vacuum & Blower Systems Sales Professional

LEADING THE SEARCH FOR INNOVATIVE SOLUTIONS

TUTHILL Vacuum & Blower Systems

4840 West Kearney Street Springfield, Missouri USA 65803-8702 Tel 417 865-8715 800 825-6937 Fax 417 865-2950

APPENDIX D

ADDITIONAL INFORMATION

Appalachian Material Service, Inc.

PO BOX 97 Torra Ceia, FL 34250

Phone (941) 776-8706 Fax (941) 776-8707

Appalachian Material Services MJ Ranch, Facility ID No. FLA190284 AMS Central RMF, Facility ID No. FLA467049 Nordgren Ranch RMF, Facility ID No. FLA280348 Fue 673.7.4

RESIDUALS HAULING AND LIME STABILIZATION AGREEMENT

Appalachian Material Service, Inc. agrees to haul and lime stabilize your waste water residuals at our Residuals Management Facilities. All existing state (DEP) and federal (EPA) regulations will be observed as per permit requirements and conditions.

GENERATORS RESPONSIBILITY:

- 1. Maintain residuals at a percentage of solids that is transferable by pump.
- 2. Schedule loads for pick up.

Appalachian Material Services, Inc. RESPONSIBILITY:

- 1. Pick up and transport your residuals to our residuals management facilities for further treatment and disposal, IAW with state and local regulatory requirements. Appalachian Material Service, Inc. shall be responsible for the proper transport and spill contingency procedures from the generating facility to our residuals management facilities.
- 2. Process and land apply the residuals in accordance with EPA and DEP regulations and current permit requirements. The quality of the generating facility's residuals is at least untreated with a quantity estimated not to exceed 1320 DTY. The hauled residuals will be processed at our Residuals Management Facilities to meet or exceed the minimum requirements for land application as stated by the permit conditions, and shall not exceed the amount permitted for processing for our residuals management facilities, as described in our operating permits.
- 3. Maintain all records of lime stabilization and land application areas and rates as per EPA and DEP regulations and current permit requirements.

Page 1 of 2

LETTER OF COMMITMENT

Customer: Eagle Ridge WWTP

Address: 14700 Aeries Way

Facility No.: FLA014498 Phone Number: (407) 948-6297

Ft. Myers, FL

County: Lee

Operator:

Contact Person: Michael Dunn Michael LOILSON

Engineer of Record:

Phone #: Phone #:

Check one of the following:

All Residuals Removed and Processed IAW Chapter 62-640, F.A.C.

Cancellation may be executed with a 30 days written notice by either party.

Upon acceptance of this agreement, Customer agrees to the following terms: Payment is DUE UPON RECEIPT OF INVOICE. Interest at the rate of 1 1/2% per month will be charged on Past Due Balances. Rate quotation will be updated annually.

TERMS ACCEPTED:

(CUSTOMER)

BY MICHAEL A. WILSON REGIONAL MOR. 1/8/07

(PRINT OR TYPE) (TITLE)

(Date)

(Authorized Signature) Title

Appalachian Material Service, Inc.

BY

(PRINT OR TYPE) (TITLE)

(Date)

(Authorized Signature) Title

Page 2 of 2

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

A5 Calibration	S/N S/N Check pe/Total	Dynason Expected 614 Gra	27754486	BIE enclature
Calibration	ı Check		INFLUENT Found	- FLOW Left
Calibration	ı Check		INFLUENT Found	<i>FLOW</i> Left
Calibration			Found	Left
				T
% Tyr	pe/Total			T
		614 GPH	585 6PH	585 GPM
			<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		
برست السيساد كسين	·————			
ration was perfe	ormed using	g test equipm		
legy		Date:	1/27/07	
	ration was perf the instrument	ration was performed using the instrument manufacture.	ration was performed using test equipm the instrument manufacturer.	

Mopiuv Service 797 Silversmith Cir. Lake Mary, Fl. 32748

18), 407~33U-442U						
Equipment Local	tion Range	Last Calibration		Cal Equipmen	l Used	
EAGLE RIDGE	WW 0-3000 GPM	2/06	FLUKE	787	<u> </u>	
Manufacturer	Model	S/N		Nome	enclature	
PARTLOW	HRL 5000			TUFLUEN	T FLOW	
		ration Check				
Test #	input in %	Type/Total	Expected	Found	Left	
			0.0 GP4	626PH	8 GPM	
2			2000 GYH	1980 GPM	1982 GPM	
Remarks:						
			1			
This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer. Certified by:						

Mopluv Service 797 Silveremith Cir

		Li	ake Mary, FI. 32746 Tel. 407-330-4420	•	AN 30 ZUUR	· ·
Equipment Loca	rtion	Range	Last Calibration		Cal Equipment	Used
EAGLE RIDGE	are	0.1000	2/06	DYNASONI	S PORTHE	C.
	Control of the Control				The State of the	
Manufacturer Model		S/N	J	Nome	enclature	
WATER STELLIGITIES	<u></u>	4" MAG			SUNGE	FLOW
		Ca	libration Check			
Test#		Input in %	Type/Total	Expected	Found	Left
/				260 6PH	268 GPH	268 6PM
Remarks:						
published speci to or better than	ification that st	ns. Calibration	ted instrument has was performed usi strument manufactu	ng test equipm urer.	i and meets or ent with an acc 1/27/07	curacy equal

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

		····	Tel. 407-330-4420			
Equipment Loca	ation	Range	Last Calibration		Cal Equipme	nt Used
AGE RIDGE	$\omega\omega$	0-100	2/06	FLUKE	787	
	16.3	Security of the second			34544	
Manufacturer	,	Model	S/N		**************************************	enclature
D1080N		STC			GFFLUE	WY FLOU
		Cal	ibration Check	,		
Test #		nput in %	Type/Total	Expected	Found	Left
/				0.0	0.0	0.0
7				100	101	101
Remarks:						
oublished speci	fication	s. Calibration v	ed instrument has l vas performed usin rument manufactu	ig test equipme		
Certified by:	Plan	eld Alega	<u>/</u>	Date:	1/27/07	•

FROM:

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32745 Tel. 407-330-4420

Equipment Location	Range	Last Calibration		Cal Equipmen	t Used
EAGLE RIDGE WILL	0-1000 GM4	2/06	DYNASON	ICS PORTA	BLE
			主人人人 工工的概念	ECENTRAL	
Manufacturer	Model	S/N	1	Nome	enclature
Aren Stecumes	4" MAG	UN 30001	96	GFFELEN	T FLOW
•	Calib	ration Check	·		
Test#	Input in %	Type/Total	Expected	Found	Left
			280 684	271 GPH	271 GPM
Remarks:					
			7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
This is to certify the published specification to or better than that a	ons. Calibration was	s performed usi	ng test equipme		
Certified by:	uald Aray		Date:	1/27/07 1/27/08	
			Due Date:	1/97/08	

FAX NO. :4073243745

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4470

		ei. 401-330-4420			
ition	Range	Last Calibration		Cal Equipme	nt Used
w	0-10 NTU	2/06	HF SCIEN		WORRDS
		医动脉 医线	A A TABLE		Dalayer are the El
***	·	S/N		Norr	ienolature
TO127	700E	40606	7	CFFLUEN	T NTU
	Cali	bration Check			
In	put in %	Type/Total	Expected	Found	Left
	ومدون والمساورة		-07	.01	.01
			10	10.01	10.01
, , , , , , , , , , , , , , , , , , , ,					
+					
Ications, that stat	Calibration wa ed by the instru	as performed usin ument manufactur	g test equipm er.	ent with an acc	curacy equal
	Ify that the leations, that state	Model DOTT POOE California (California) Input in %	Atlon Range Last Calibration WW 0-10 NTU 706 Model S/N DRT 200 E 40606 Calibration Check Input in % Type/Total Ify that the above listed instrument has because. Calibration was performed usin	Action Range Last Calibration WW 0-10 NTU 706 HF SCIENT Model S/N DRT 200 E 40606 7 Calibration Check Input in % Type/Total Expected -03- 10 Ify that the above listed instrument has been calibrated lications. Calibration was performed using test equipment that stated by the instrument manufacturer.	Model S/N Norm TORT 900 E 406067 EFFLUEN Calibration Check Input in % Type/Total Expected Found -0301 10-01 Ify that the above listed instrument has been calibrated and meets or lications. Calibration was performed using test equipment with an acceptant stated by the instrument manufacturer.

FROM:

Certificate of Calibration

Mopluv Service

		Lake Mary, Fl. 3274 Tel. 407-330-4420	6		
Equipment Locati	on Range	Last Calibration	1	Cal Equipme	nt Used
EAGLE RIVER		2/06	FLUKE	787	
	Problem Park		Maria College College	SECTION AND AND AND AND AND AND AND AND AND AN	
Manufacturer	Model	S/	N	Non	nenciature
DICKSON	616			GFFLUE	ut NTU
·.		Calibration Check			
Test #	Input in %	Type/Total	Expected	Found	Left
1			0.0	0,2	0.2
2			100	100.2	100.2
			•		
					1
Remarks:					
published specifi to or better than	ications. Calibrati	listed instrument had on was performed us instrument manufac	ing test equipm turer.	d and meets dent with an a	ccuracy equal
			Due Data:	1127108	

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32748 Tel. 407-330-4420

Equipment Loca	tion Range	Last Calibration		Cal Equipment	Used
EAGLE RIVER	= on 0-5 Hg/L	2/06	HACH :	STANDARD	
Canada Para da Santa			und Milled Section		\$30.26 V \$31.00 April 10
Manufacturer	Model	S/N		Nome	nclature
HACH	C617	<u> </u>		EFFW.	Cla
	Cali	bration Check			
Test#	Input in %	Type/Total	Expected	Found	Left
/			3.84 Mg/	3.88Kg	3.88 Kell
1		<u> </u>			
Remarks:					
			•		
published specif	ify that the above listerications. Calibration with the instruction of	as performed usin	g test equipmer	and meets or e it with an acci	rracy equal
			•••		
Certified by:	lauld Stray	-	Date:	1/27/07	
			Due Date:	1/27/08	

: MOA7

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32748 Tel. 407-330-4420

Equipment Loca	ation	Range	Last Calibration		Cal Equipme	ent Used
EAGLE RIDGE	t ow	0-100	Ha	FLUKE	787	
Manufacturer		Model	S/N			351 (
DICKSON		ET6	3/10			menclature
	<u> </u>	C10			EFFLU.	CLz
, ",				•		
		r a l	ibration Check			
		Cal	intation Check			
Test#		Input in %	Type/Total	Expected	Found	Left
/	<u></u>			0.0	0,0	0.0
2				100	100	100
	····					<u> </u>
Remarks:						
-		<u> </u>		(4)	· · · · · · · · · · · · · · · · · · ·	
	<u> </u>					
	<u> </u>					
			d instrument has			
published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.						
	-44	. 1				
Certified by:	Muse	ld Stray	<u> </u>	Date:	1/27/07	·
_				Due Date:	1/27/07	
						
	····					

			SEVERN
	TEST AND MAINT	TENANCE REPORT	TRENT
CUSTOMER NAME:	Whites Tue. Q) &	Eagle Ridge	SERVICES
PHONE:			
STREET ADDRESS:			Severn Trent Environments Services, Inc
	y; st.		5726 Corporation Circ
	nim.		Fort Myers, FL 3390
LOCATION OF ASSEMBL	Y: ST: Raksh	DW RD ENTRACE of Wa	NP .
MARY INN AL WOSEWEE	1	The last Charles and the last control of the l	-11
Type Assen	OF RP V	rp 🔲 DC 🗒	SIZE: 3/6/
manufacturer Wilkia	MODEL:	975XL	SERIAL NO.: 1495 1704
CHECK VALVE#1	RELIEF VALVE	CHECK VALVE #2	PRES VACUUM BRSKAER
Leaked	Opened at:	Leaked	Air inlet opened at
Clased Tight		Closed Tight	psi
Diff pressure across check valve psi	Did not open:	Diff pressure neross theck valve psi	Check Valve Loaked Held atpsi
Cleaned only	Cleaned only	Cleaned only	Cleaned only
Replaced: Rubber kit CV assembly Or Disc O'rings Seat Spring Storn/guide Rerainer Lock nuts other	Replaced: Rubber kit RV assembly Or Disc Diaphragm(s) Seat Spring Guide O'rings Other	Replaced: Rubber kit CV assembly Or Disc O'rings Scat Spring Stent/guide Retainer Lock nuts other	Replaced: Rubber kit CV assembly Disc, air in Disc, CV Spring, air Spring, CV Retainer Goide O'rings Other
Diff pressure Across check valvepsi	Opened at psi	Diff pressure Across check valve psi	air inletpsi chk valvepsi
NOTE: ALL REPAIRS SHALL E REMARKS:	B COMPLETED WITHIN THIRTY	/mml much A.	METER# READING: 074.3296
	PASSED	☐ FAILED	
OF THE ASSEMBLY.	HIS DATA IS ACCURATE AND	REFLECTS THE PROPER OPER	
rester:	CERT#:		DATE: /2/29/07
			TIME:

FROM : EAGLE_RIDGE

PHONE NO. : 941 76, 0615

Prepared by and return to:

Michael B. Fischer, Esq. Rudhick & Wolfe 203 North Laballe Street Chicago, Illinois 60601-1293 Jim Elbiott 9-18-96 5pages From: ERU Terry

EASEMENT AND EFFLUENT REUSE AGREEMENT

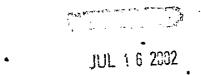
THIS AGREEMENT made and entered into as of this 21st day of August, 1995, by and between EAGLE RIDGE GOLF AND TENNIS CLUB, LTD., a Plorida Limited Partnership, whose address is 14589 Eagle Ridge Drive, S.E., Fort Meyers, FL 33912, ("Owner"), and EAGLE RIDGE UTILITIES, INC., whose address is 14589 Eagle Ridge Drive, S.E., Fort Myers, FL 33912, ("Utility").

WITNESSETH:

WHEREAS, Owner is the see simple owner of certain lands situated, lying and being in Lee County, Florida, and legally described in Exhibit "A" attached hereto and made a part hereof (the "Owner's Parcel"), upon a portion of which Owner has constructed a golf course;

WHEREAS, Utility owns or leases certain lands situated, lying and being in Lee County, Fiorida, and legally described as Exhibit *B* attached hereto and made a part hereof (the *Utility Parcei*), upon which Utility operates a sewage treatment facility ("S.T.P."), pursuant to aid under a certificate from the Florida Public Service Commission and certain operating permits from the Plotida Department of Environmental Protection;

WHEREAS, Utility has determined that the method of disposing of properly treated sewage efficient ("Efficient") provided for in this Agreement is less expensive than alternate methods of Efficient disposal which would require considerably greater capital investment and would result in significantly higher sewer rates to its customers;

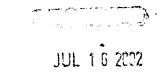

WHEREAS, Owner has a need for an assured and available supply of properly treated Effluent in order to irrigate its landscaping and golf course, which effluent is available to Owner at a minimal cost as set forth hereinafter; and

WHEREAS, Utility and Owner have entered into an agreement dated as of April 11, 1995, to memorialize the agreement between them concerning this matter, but now wish to clarify their intentions with regard thereto by restating the terms and conditions of the agreement in this instrument."

JUL 1 6 2002

NOW THEREFORE, in consideration of the mutual promises of the parties hereto, one to another, and/or other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, it is hereby agreed as follows:

- RECITALS. All recitals hereto are agreed by the parties to be true and correct and are incorporated herein by specific reference.
- GRANTS BY OWNER. Owner hereby creates, grants and conveys to Utility. 2. its successors and sasigns, an easement appurtenant burdening the Owner's Parcel and benefitting the Utility Parcel, for the purposes of using the golf course for discharge of up to 450,000 gallous per day of treated Effluent generated in connection with the operation of the S.T.F., discharge and dispersal lines and other facilities necessary for Effluent disposal into the golf course on the Owner's Parcel. Owner agrees to accept on the golf course all discharge of up to 450,000 gallons per day of Effluent generated in connection with the operation of the S.T.F. on the Utility Parcel to the fullest extent the golf course can tolerate such discharge. Utility shall have the right of reasonable and necessary egress and Ingress across the Owner's Parcel for the foregoing purposes. Owner further agrees to pay to Utility the sum of Ten and No/100 Dollars (\$10.00) per annum in consideration of the receipt by Owner of the Effluent as contemplated herein.
- 3. COVENANTS OF UTILITY. Utility covenants and agrees with Owner RS follows:
 - Subject to the Issuance of any necessary permits or approvals by the Florida **1**. Department of Environmental Protection, which Utility agrees to use its best efforts to obtain, Utility shall discharge all of the Effluent generated in connection with the operation of the S.T.F., but in no event in excess of 450,000 gallons per day without Owner's written permission, into the golf course on Owner's Parcel. and Utility further covenants and agrees not to seek approval and/or request any authorization from the Florida Public Service Commission and the Florida Department of Environmental Protection to implement any charges for effluent disposal on the golf course without prior approval from Owner.
 - Utility shall not unreasonably interfere with Owner's operation of the golf course. ь.
 - Utility shall exercise its rights under the essement in accordance with the C. established and generally accepted practices of waste water treatment and effluent disposal systems and in conformity with all existing and future rules, regulations, ordinances, laws and statutes lawfully established and imposed by any governmental body or agency having jurisdiction of Utility, and specifically those requirements relating to the treatment and disposal of "public access" effluent for spray ittigation. Any costs associated with meeting such standards shall be borne by Utility.



The Assess of the Control of the Con

FROM : EAGLE_RIDGE PHONE NO. : 941 756 L615

d. Utility agrees never to exercise its easement rights in such a manner as to create a public nuisance on the Owner's Parcel and in the event that Owner shall ever contend that this provision has been violated, Owner agrees to give Utility a written notice accordingly and Utility shall have a reasonable period of time to cure any actual and conceded condition of public nuisance. If Utility does not agree with Owner that a condition of public nuisance does exist, the controversy shall be submitted to a court of competent jurisdiction for determination on the complaint of either party.

- e. Utility agrees that if the Effluent discharged onto the golf course is not properly treated, Utility shall be responsible for the increased maintenance costs due to abnormally increased vegetation growth in or adjacent to the golf course. Utility further agrees to indemnify and hold harmless Owner from all damages, costs and expenses incurred by Owner in connection with any discharge of improperly treated Effluent onto the golf course, provided that Utility is given the right to defend any claims made by others against Owner in connection therewith.
- f. Utility has no ownership interest in the discharge and dispersal lines located on the Owner's Parcel, and ownership thereof by Owner is hereby acknowledged.
- 4. MAINTENANCE. Owner agrees to maintain and operate the irrigation system, i.e., the discharge and dispersal lines and the spray heads, at its sole cost and expense, in a good and serviceable condition and in accordance with Utility's guidelines and governmental regulations. Major repairs and replacements to the system which are not in the nature of routine maintenance items shall be at the sole cost and expense of Utility.
- 5. <u>COVENANTS RUNNING WITH THE LAND</u>. The easements created pursuant to this Agreement shall be deemed to run with the lands described in Exhibit "A" (the "Owner's Parcel") in favor of the lands described in Exhibit "B" (the "Utility Parcel"), and the obligation to discharge the Effluent into the golf course on the Owner's Parcel shall be deeded to run with the Utility Parcel in favor of the Owner's Parcel.
- 6. EFFLUENT REUSE ASSURANCE. Utility agrees that all treated Effluent generated and discharged by the S.T.P., up to 450,000 gallons per day, shall be provided to Owner and that Utility shall not discharge to any third party any of the first 450,000 gallons per day of treated Effluent without Owner's prior express written consent, as long as Owner has the capacity to accept test than 450,000 gallons per day of treated Effluent. In the event Owner has the capacity to accept less than 450,000 gallons per day of treated Effluent, Utility agrees that all such treated Effluent, up to 450,000 gallons per day, generated and discharged by the S.T.P. which can be properly accepted by Owner shall be provided to Owner. Owner and Utility agree that a breach by Utility of this covenant would cause irreparable harm to Owner and that this covenant may be enforced by a suit by Owner for damages and for specific performance.

- 7. FURTHER ASSURANCES. The parties hereto agree to execute and deliver to one another from time to time such documents or instruments as may be reasonably required to confirm or implement the provisions and intentions of this Agreement.
- 8. <u>SUCCESSORS AND ASSIGNS</u>. Whenever reference is made to a party, said reference is intended to extend to and include the successors and assigns of said party whether so stated or not, it being the agreement of the parties that the provisions hereof shall bind and inure to their respective successors and assigns.

IN WITNESS WHEREOF, the parties have hereunto set their hands and seals as of the date first above written.

Hurers & Souls	EAGLE RIDGE GOLF AND TENNIS CLUB, LTD., a Florida limited partnership
Printed Name of Witness: Therese J. Jacobs	By: Milliam E. Kaldof. WILLIAM E. MADDOX, General Pariner Attest: Ore. M. Mill
of Wilness Pole Sindt	
Witnesses:	EAGLE RIDGE UTILITIES, INC.
Print Name Print Name	By: FREDERICK QUINN, President
Donn le Campall Print Name	Allest: Disable of the second
of Wilder Thomas W. Compact	•

JUL-1 6 2002

STATE OF FLORIDA)	
COUNTY OF LEE) SS) .	
1996, by WILLIAM B. AND TENNIS CLUB, partnership. He is person like. A	MADDOX, who ! LTD., a Florida	viedged before me this 14 day of January is the General Partner of EAGLE RIDGE GOLD limited partnership, on behalf of the limited and did not take an oath. Heresa J. Jacobs Theresa J. Jacobs
My Commission Expires:	3-24-98	Printed Name of Notary Public
STATE OF FLORIDA))	
COUNTY OF LEE)	
1999, by FREDERICK Q	UINN, who is the m. He is persons	President of EAGLE RIDGE UTILITIES, INC. Illy known to me and did not take an oath. Share Public
Ha CC MSTRO	ı u	Theresa J. Vacobs
My Commission Expires:	3.24-98	Printed Name of Notary Public

The best of the second of the second

JUL 1 8 2002

EAGLE RIDGE

RECLAIMED WATER MANUAL

RECEIVED

Revised 7/03

SEP 1 5 2003

D.E.P. - South District

Michael Dum

TABLE OF CONTENTS

RECLAIMED WATER MANUAL

SECTION 1	RECLAIMED WATER PROGRAM	1
1.1	Design Requirements	1
1.2	Cross-Connection Control	1
1.3	Setback Requirements	1
1.4	Signage and Coding	2
1.5	Prohibited Uses	2
1.6	Other Uses	3
SECTION 2	RECLAIMED WATER SERVICE AND INSTALLATION SPECIFICATIONS FOR GOLF COURSE IRRIGATION, FIR	E
	SUPPRESSION, AND OTHER USES	4
2.1	General Requirements	4
2.2	Golf Course Irrigation	4
2.3	Inspections and Activation	5

SEP 1 5 2003

SECTION 1

D.E.P. - South District

RECLAIMED WATER PROGRAM

The provision of reclaimed water to any consumer, owner, or other entity shall be in accordance with the utility's tariffs, regulations, rules, and Chapter 62-610, F.A.C.

1.1 Design Requirements

All reclaimed water systems shall be designed and constructed in accordance with Chapter 62-610 F.A.C. The Utilities, Inc. of Florida criteria for the construction of reuse distribution systems shall, as a minimum, include those requirements specified in Chapter 62-610 F.A.C. and the specifications contained in Section 2 of this Manual. If the criteria is found to be in conflict or less restrictive than the provisions of Chapter 62-610, then the provisions of 62-610 shall prevail and shall govern the design and construction of reclaimed water systems owned and operated within the utility service area. More specifically, these requirements shall include, as a minimum, the following items.

1.2 Cross-Connection Control

The cross-connection of the reclaimed water distribution system with the potable water system, the sanitary sewer system or with any other water system is specifically prohibited (ref. 62-610.469 F.A.C.). All consumers or customers connected to the reclaimed water system of the utility shall comply with the requirements of the utility's Cross-Connection Control Program Manual and Policy.

Reclaimed water is defined as an auxiliary water supply for residential, commercial, irrigation, or industrial usages.

The Cross-Connection Control Program Manual and Policy of the utility shall be adhered to in full.

1.3 Setback Requirements

Plans for golf courses proposing to include provisions for reclaimed water service shall include a survey of all surrounding property for the purpose of identifying the existence of potable water wells within 200 feet of the boundary of any potential reclaimed water

wetted surface. Reclaimed water application systems will not be considered or permitted within 75 feet of any existing or permitted future potable water supply well (ref. 62-610.471 F.A.C.).

A minimum horizontal separation of five (5) feet (center to center) or three (3) feet (outside to outside) shall be maintained between reclaimed water lines and potable water lines or sewage lines (ref. 62-610.469 F.A.C.). Minimum vertical separations between reclaimed water lines, potable water lines and sewage lines shall be maintained in accordance with Chapter 62-604.400 (g-j) F.A.C.

Reclaimed water irrigation systems located within 100 feet of public eating, drinking or bathing facilities shall utilize low trajectory spray heads, or methods approved by the utility to reduce aerosol drift.

Reclaimed water irrigation systems shall be constructed and operated so as to minimize overspray onto impervious surfaces.

1.4 Signage and Coding

Golf courses installing reclaimed water systems shall be required to provide public notice signs at storage ponds identifying the use of reclaimed water in the area

All reclaimed water transmission lines shall be color-coded and/or labeled to specifically identify said piping as reclaimed water lines (ref. 62-610.469 F.A.C.).

1.5 Prohibited Uses.

There shall not be above ground hose bibb connections to the reclaimed water system. All hose bibb connections must be located in below-grade, locked vaults clearly labeled as being non-potable.

Reclaimed water cannot be applied to the ground within 75 feet of a potable water well. New potable water well construction is prohibited within 75 feet of a reclaimed water irrigation area.

Reclaimed water shall not be used to fill swimming pools, hot tubs, wading pools, spas or similar appliances.

Tanker trucks used for transporting products intended for human consumption are prohibited from transporting reclaimed water.

Use of reclaimed water for any purpose other than those allowed by Chapter 62-610 F.A.C. is prohibited.

Failure to comply with the prohibitions governing the use of reclaimed water shall be cause for the discontinuation of reclaimed water service, and other penalties as appropriate.

1.6 Other Uses

Reclaimed water to be used for golf course irrigation will require a separate, specific agreement between the utility and the applicant.

SECTION 2

RECLAIMED WATER SERVICE AND INSTALLATION SPECIFICATIONS FOR GOLF COURSE IRRIGATION, FIRE SUPPRESSION, AND OTHER USES

2.1 General Requirements

Reclaimed water may be utilized for purposes other than irrigation of residential landscaping and public access irrigation usages. Utilization of reclaimed water for other purposes shall be limited to those set forth in Chapter 62-610, F.A.C., subsections 62-610.475 through 62-610.480. The utility shall consider such proposed usages on a case by case basis, as proposed by the applicant. In all cases, approval of the utility must be granted in writing and the regulatory requirements of Chapter 62-610, F.A.C. complied with in full.

With regard to the use of reclaimed water for golf courses on a continual basis, a specific agreement must be entered into between the utility and the owner of the facility that will utilize the reclaimed water. The terms and conditions of the agreement will be addressed on a case by case basis. No reclaimed water service shall be provided by the utility until an agreement has been prepared and executed by the parties thereto.

The requirements of the Utilities, Inc. of Florida Cross-Connection Control Program Manual and Policy shall be complied with in full by the applicant.

2.2 Golf Course Irrigation

New golf courses proposed for construction shall provide the utility with two sets of plans and specifications for the proposed irrigation system and all reclaimed water storage facilities to be located at the golf course. The pumping capacities, locations, and specifications for the proposed irrigation pump stations will be shown on the plans. The locations, dimensions, and volumes of all storage ponds or tanks will be specified. Open storage ponds shall be designed, constructed, or modified to preclude leakage of reclaimed water, as required by the Florida Department of Environmental Protection.

Existing golf courses shall provide the utility with one set of the plans and specifications describing the turf irrigation system and water storage facilities. If not available, the utility shall be provided, at a minimum, the irrigation pump equipment locations and capacities, and the locations, dimensions and volumes of all storage ponds or tanks. Open storage ponds shall be designed, constructed, or modified to preclude leakage of reclaimed water, as required by the Florida Department of Environmental Protection.

All golf courses, either new or existing, shall provide to the utility, engineering plans, details, and specifications prepared by a professional engineer registered in the state of Florida describing the proposed connection to the utility's existing reclaimed water system, the size and location of the reclaimed water main to the storage facilities of the

golf course, and any other associated piping, equipment or controls. A flow meter approved by the utility shall be installed in the reclaimed water supply main to the golf course. All reclaimed water supply mains and associated equipment shall comply with the specifications contained in this manual. The owner will provide access to the reclaimed water meter by utility personnel during normal business hours.

Any and all costs or expenses associated with the provision of reclaimed water service to a golf course shall be borne by the consumer, owner, or entity that has entered into the agreement with the utility.

2.3 <u>Inspections and Activation</u>

Inspections of the reclaimed water mains, and all other facilities associated with reclaimed water systems that have been constructed to allow the use of reclaimed water shall be performed by those local and state governmental agencies having jurisdiction. Approvals shall be obtained by the applicant or owner, and copies of said approvals submitted to the utility. Final inspection and approval must be received from the utility's authorized representatives prior to activation. Final inspections by the utility will not be performed or scheduled until the utility has received copies of all other agencies' approvals.

Existing or new golf courses must apply for and receive appropriate clearances from the Florida Department of Environmental Protection prior to activation.

jednaje s Sudjedna se se se Se se se .

Land Planning and Engineering

> Stormwater Management

Drainage and Utilities

Environmental Permitting
Construction Administration
Project Management
Government Agency Liaison

Phase 1 ESA & Due Diligence

Water & Wastewater Treatment Facilities

Water/Sewer Utility Rates & Charges

Pumping Stations

UPDATED CAPACITY ANALYSIS REPORT

Permit Number: FLA014505 Permit Expiration Date: October 14, 2008 Field Evaluation: January 29, 2008

> Prepared for: Utilities Inc. of Eagle Ridge 200 Weathersfield Altamonte Springs, FL 32714

Prepared by: Excel Engineering Consultants, LLC 122 Wilshire Boulevard Casselberry, FL 32707

March 20, 2008

CERTIFICATIONS

т		٠,			
Per	m	11	10	Δ	٠
1 01	***	ıι	·	v	٠

County of: <u>Lee</u>

Mr. Patrick C. Flynn, Regional Director Utilities Inc. of Eagle Ridge Altamonte Springs, FL 32714 407-869-1919

I have reviewed, am fully aware of, and intend to comply with the recommendations and schedules included in the report.

Mr. Patrick C. Flynn, Regional Director

Date

Professional Engineer:

Mr. Julian Ray Coto, P.E., D.E.E President Excel Engineering Consultants, LLC 122 Wilshire Boulevard Casselberry, FL 32707 407-260-2292

The information contained in this report is true and correct to the best of my knowledge, the report was prepared in accordance with sound engineering principles, and I discussed the recommendations and schedules with the permittee or permittee's delegated representative. No expansion of this facility is anticipated in the next five years and it is expected that the facility's three-month daily average will not exceed the permitted capacity within the next five years.

SEAL

Mr. Julian/N. Coto, P.E.

Registration No. 0033635

Cross Creek Wastewater Treatment Facility

TABLE OF CONTENTS

			Page
1.0	Introd	luction	. 1
	a.	Service Area	. 1
	ъ.	Facility Description	
2.0	Existi	ing Conditions	2
	a.	Permitted Capacity	
	b.	Historical Flows	2
	c.	Seasonal Variations	
	d.	Updated Flow & Loading Information	3
3.0	Futur	e Conditions	3
4.0	Sumn	nary and Conclusion	4
	a.	Conclusion	4
	b.	Recommendation for Expansion	4

APPENDIX A: Facility Plans
APPENDIX B: Flow Analysis
APPENDIX C: Process Analysis
APPENDIX D: Additional Information

Cross Creek Wastewater Treatment Facility

1.0 INTRODUCTION

Excel Engineering Consultants, LLC prepared this Capacity Analysis Report (CAR) for the Cross Creek Wastewater Treatment Facility (WWTF) in conjunction with the Operating Permit renewal for the 249,000 gpd WWTF. This CAR serves as the updated CAR and covers the period from January 1999 through November 2007.

A. Service Area

Cross Creek WWTF is located at 13046 Cross Creek Blvd. in Ft. Myers, Florida. The service area for the Cross Creek WWTF is located in Section 20, Township 45 South, and Range 25 East, in Lee County, Florida. There are currently approximately 905 users connected to the facility with no plans for expansion. The average daily flow per user is approximately 150 gpd for a total ADF of 135,750 gpd at full capacity.

B. Facility Description

The wastewater treatment facility is a 249,000-gallon per day extended aeration facility based on the maximum monthly average daily flow. The facility provides public access irrigation to a 60-acre golf course. The wastewater residuals are transferred to an aerobic digester and transported off-site by Appalachian Material Services, Inc.

A locked fence surrounds the plant. The principal items included in the main processing plant is one 92,700 gallon surge tank; one 89,975 gallon, one 69,025 gallon, one 43,750 gallon and one 56,430 gallon aeration tanks; two settling tanks with a combined surface area of 733 s.f.; dual tertiary filtration which includes two 12.6 s.f. cylindrical filters and two 16.0 s.f. rectangular filters; dual 6,573 gallon chlorine contact tanks; one 9,933 gallon, one 18,610 gallon and one 24,482 gallon digester; one 690,000 gallon and one 200,000 gallon (total 890,000 gal) reclaimed water storage tanks; one 375,000 gallon reject water storage tank; air distribution and supply system, scum troughs, clarifier sludge collector mechanisms, return/waste sludge system, walkways, internal piping, and electrical controls. Air is provided by alternating two Lamson centrifugal blowers to furnish overall air requirements for the process portion of the plant. Air is provided to the surge tank by three Roots 47 URAI rotary blowers. Air is provided to the filters for air scour during the backwash cycle by one Roots 33 URAI rotary blower. A standby generator is used to provide emergency power in the event of an electrical power outage.

The facility meets Class C, Category III treatment facility. The facility requires a licensed operator with a minimum certification of Class C to be on-site for six (6) hours per day seven (7) days per week.

Cross Creek WWTF: Capacity Analysis Report

March 20, 2008

Page 2

2.0 EXISTING CONDITIONS

A. Permitted Capacity

The plant, currently under FDEP Permit No. FLA014505 is authorized to operate a 0.249 MGD extended aeration plant with chlorinated effluent disposal to public access golf course irrigation. The WWTF meets the requirements of a Class C, Category III treatment facility.

B. Historical Flows

Flows and effluent water quality data were obtained from the Discharge Monitoring Reports (DMRs) submitted to the FDEP. Our analysis is focused on the flows experienced between January 1999 and November 2007. The monthly average daily flows have varied between 39,000 and 165,000 gpd. The three-month running average daily flow during this period varied between 40,000 and 135,000 gpd. The twelve-month running average daily flow during this period varied between 69,000 and 99,000 gpd. Our analysis of the past 9 years suggests that the wastewater treatment facility experiences seasonal flows. Typically, the highest of these flows is experienced during the winter months and the lowest during the summer months.

C. Seasonal Variations

The flows typically peak during the winter months, which coincides with the arrival of Florida's tourist season. The tourists arriving in Florida for the winter months cause increased flows at Cross Creek. The ratio of the average 3-month ADF to the maximum 12-month ADF is as follows:

Table I Average Ratio

ANNUAL PERIOD	ANNUAL AVERAGE	HIGHEST 3 MONTH AVG	RATIO
January - December 1999	0.089	0.087	0.98
January – December 2000	0.097	0.126	1.30
January - December 2001	0.077	0.135	1.70
January - December 2002	0.081	0.122	1.50
January - December 2003	0.082	0.120	1.47
January – December 2004	0.072	0.115	1.50
January - December 2005	0.069	0.109	1.58
January - December 2006	0.072	0.108	1.51
January – December 2007	0.069	0.115	1.67
AVERAGE RATIO			1.47

Cross Creek WWTF: Capacity Analysis Report

March 20, 2008

Page 3

D. Updated Flow and Loading Information

The treatment efficiency of each component associated with the wastewater treatment facility and reuse disposal system were analyzed and compared to the criteria of the applicable publications stated in 62-600.300(4), FAC. The results of our analysis, shown in Appendix C, suggest that the facility's components are operating at better than the minimum design requirements (See Appendix B & C). The following is a summary of the treatment efficiency parameters:

Table II
Treatment Efficiencies

ITEM	COMPONENT DESCRIPTION	TREATMENT CRITERIA	RESULTS OF ANALYSIS	DESIGN PARAMETERS
1.0	Aeration Tanks	Detention Time (hrs)	24.6 hours	18 - 36 hours
		BOD Loading Rated	11.57 #BOD/1,000 c.f.	10 to 25 # BOD/1,000 c.f.
		Applied Air	2,612 c.f./# BOD	2,000 c.f./#BOD
2.0	Clarifiers	Overflow Rate (gpdpsf)	339.70 gpdpsf	200 to 600 gpdpsf
3.0	Chlorine Contact Tanks	Detention Time (min.)	76.03 min. adf 38.01 min. peak	30 min. adf 15 min. peak
4.0	Golf Course Irrigation	Application Rate (inches per week)	1.07 inches per week	2.0 inches per week
5.0	BOD ₅	% Removal Efficiency	98.67%	90%
6.0	TSS	% Removal Efficiency	99.02%	90%

The effluent BOD₅ samples were analyzed every two weeks and the effluent TSS samples were analyzed four days per week. The facility's average BOD₅ removal rate over the study period was 98.67% and the TSS removal rate was 99.02%. Based on the results of our analysis the facility exceeded the minimum 90% treatment efficiency for both BOD₅ and TSS in all measured occasions. It is expected that the wastewater treatment facility will continue to provide treatment efficiencies in excess of 90% during the coming permitting period.

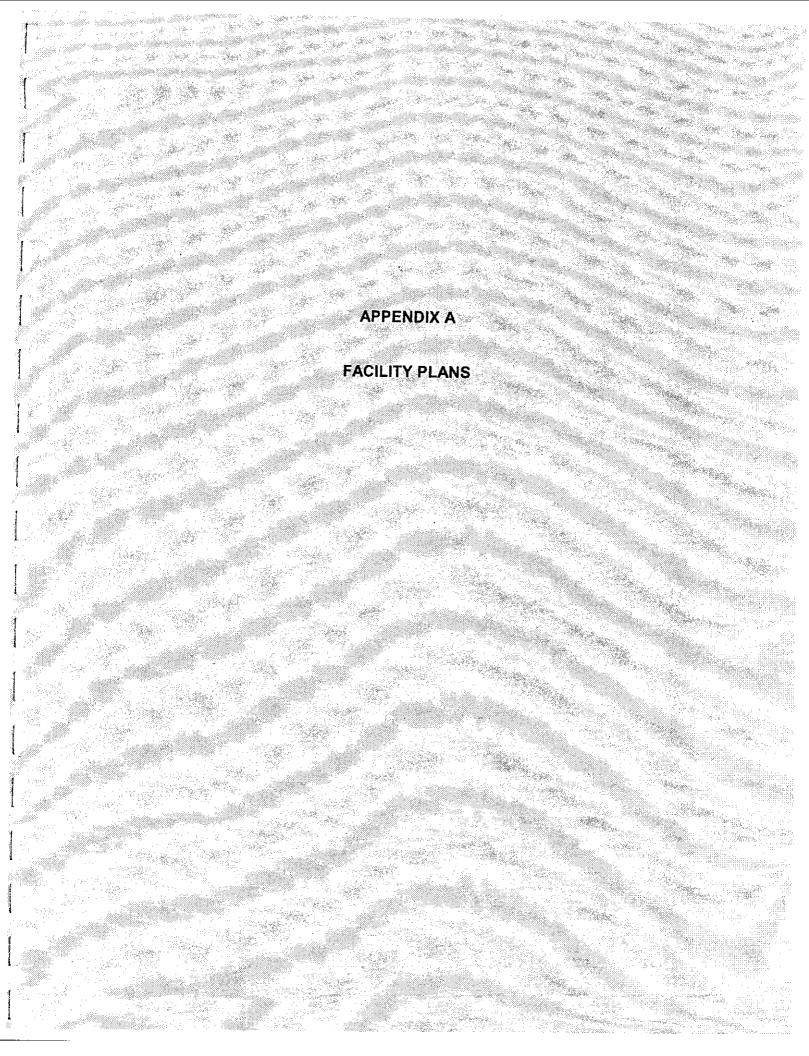
3.0 FUTURE CONDITIONS

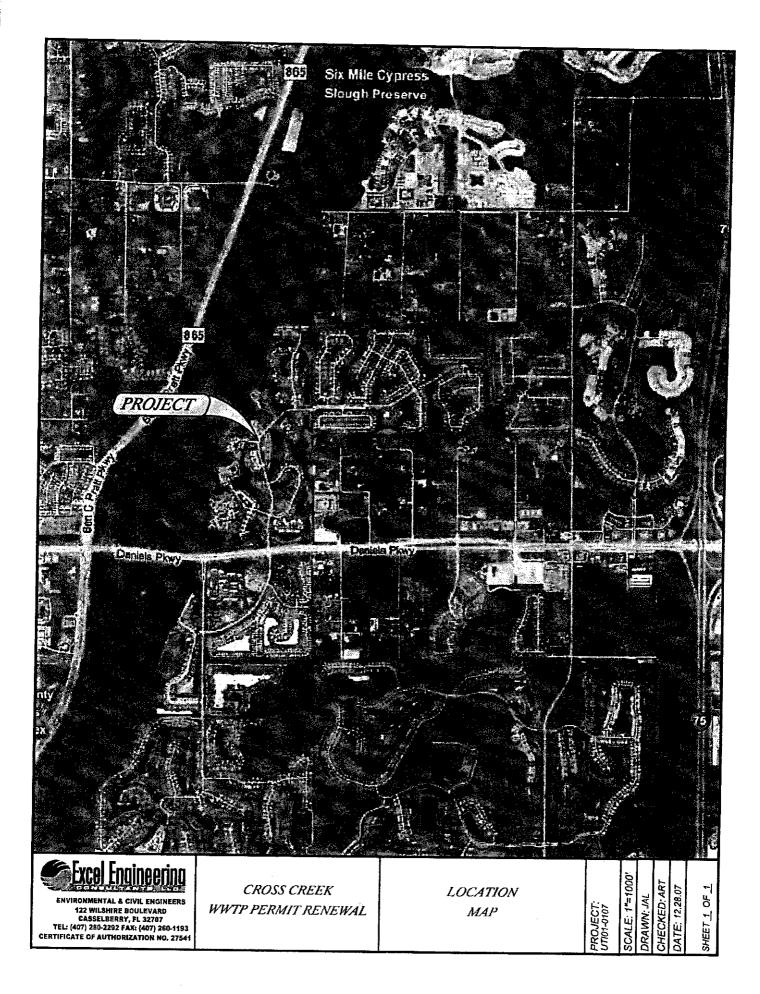
The wastewater treatment facility is permitted to treat 249,000 gallons per day of domestic wastewater based on the maximum monthly average. The monthly average daily flows have varied between 39,000 and 165,000 gpd. The three-month running average daily flow during this period varied between 40,000 and 135,000 gpd. The twelve-month running average daily flow during this period varied between 69,000 and 99,000 gpd. Our analysis has revealed that the facility's monthly average daily flow has not exceeded its rated capacity on any occasion.

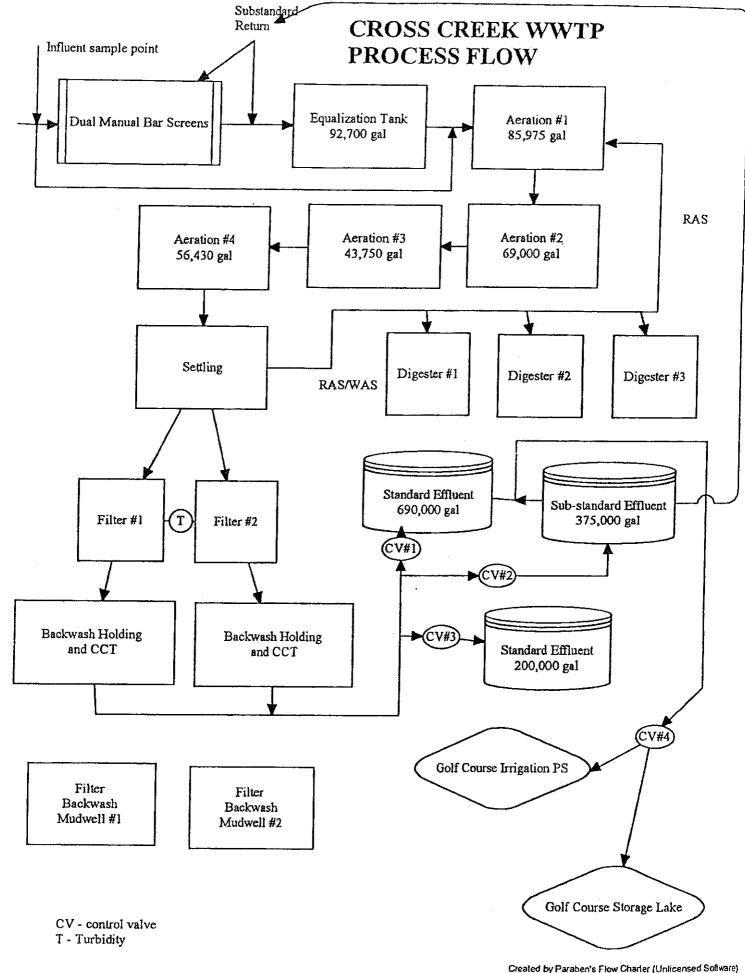
The flows have remained below the facility's rated capacity over study period. The wastewater treatment facility is permitted at 249,000 gpd and it is expected that the facility's maximum monthly average daily flow will not exceed the permitted capacity within the next five years.

Cross Creek WWTF: Capacity Analysis Report March 20, 2008 Page 4

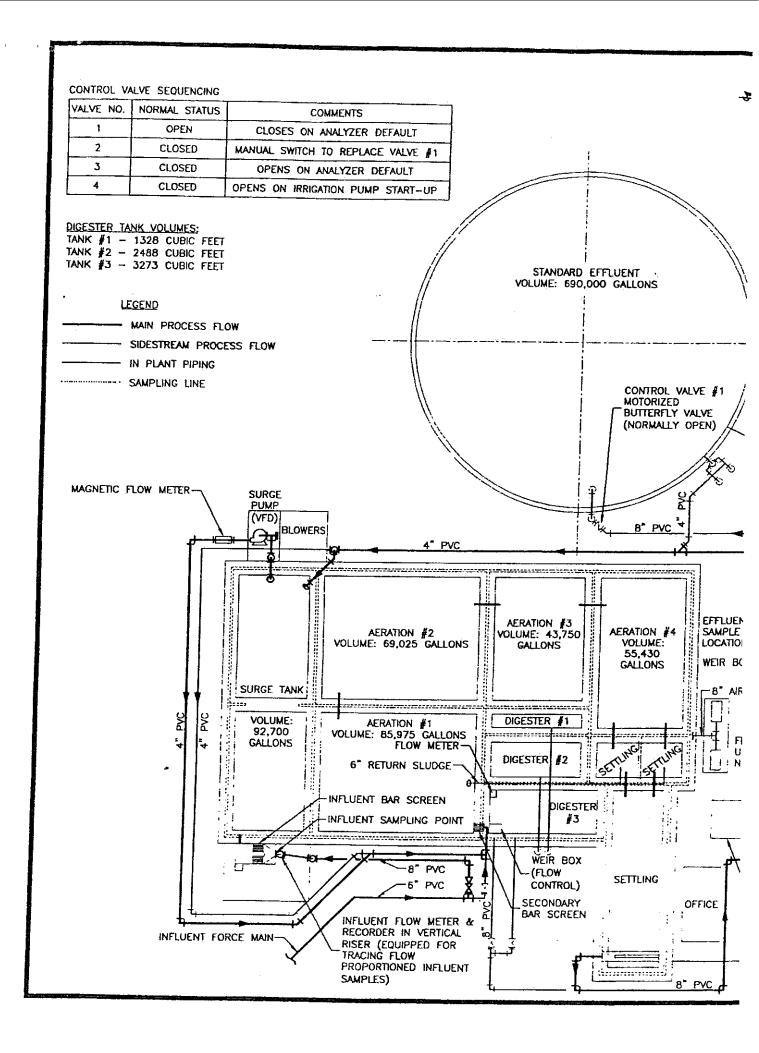
4.0 <u>SUMMARY AND CONCLUSION</u>


A. Conclusion


The wastewater treatment facility is a 249,000-gallon per day facility based on the maximum monthly average daily flow. The collection system receives only domestic wastewater since there are no industrial users associated with the service area. Our analysis over the previous 9 years has revealed that the maximum monthly ADF did not exceed the facility's rated capacity on any one occasion.


Based on the fact that the flows have remained under the permitted limit and the facility is built out, the flows are expected to be below or in the range of the permitted capacity for the life of the permit.

B. Recommendation for Expansion


The WWTF has been designed to treat a flow of 249,000 gpd. Since, the maximum monthly average daily flows have remained well within the permitted limit during the study period and the community is built-out, no expansion is recommended at this time.

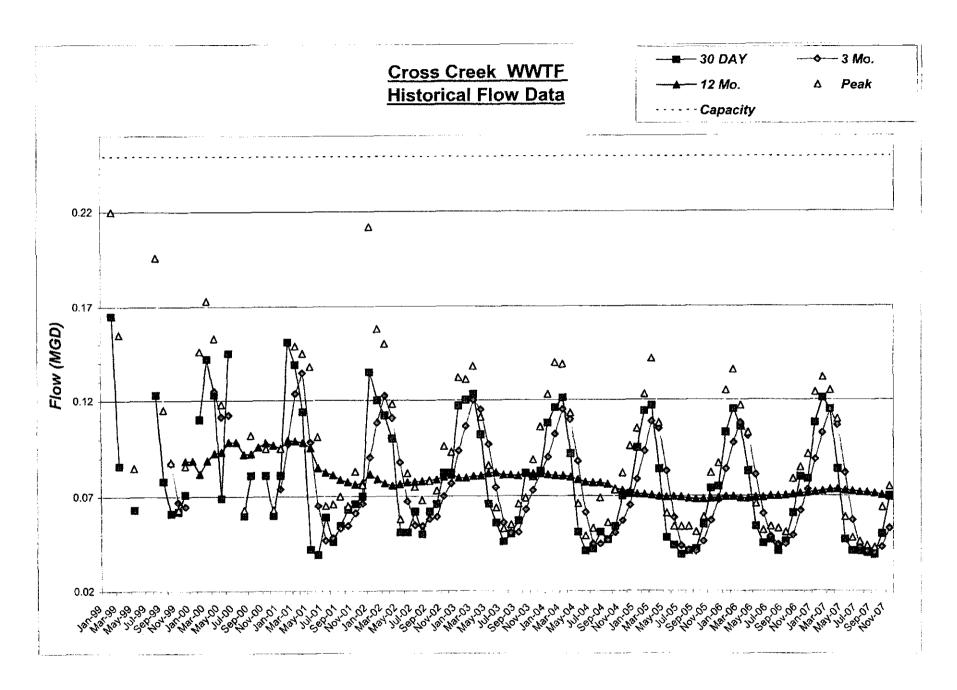
Created by Paraben's Flow Charler (Unlicensed Software) Visit www.paraben.com/html/flow.html to register.

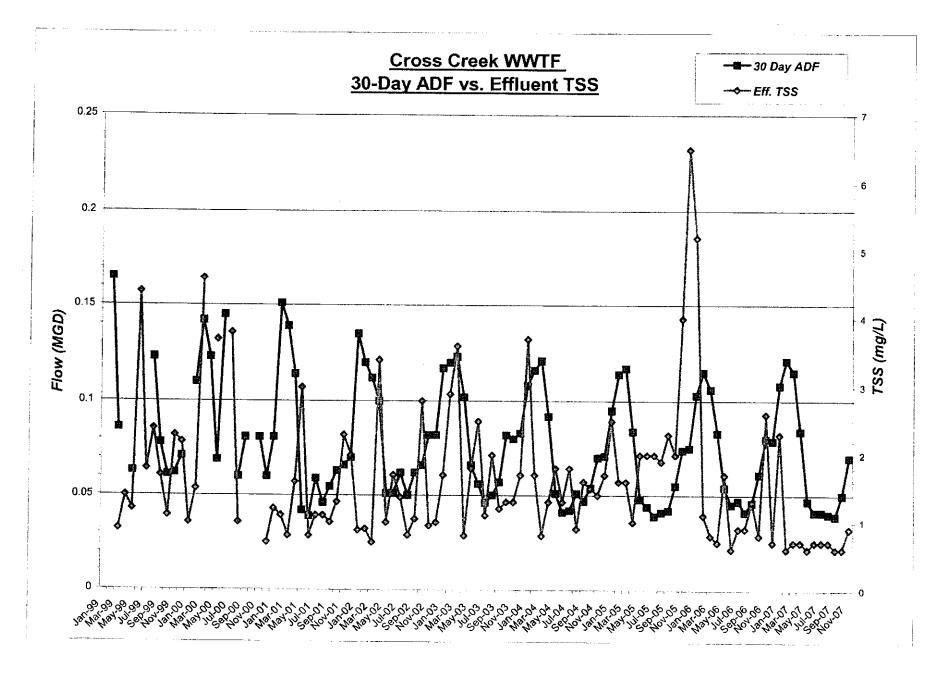
APPENDIX B

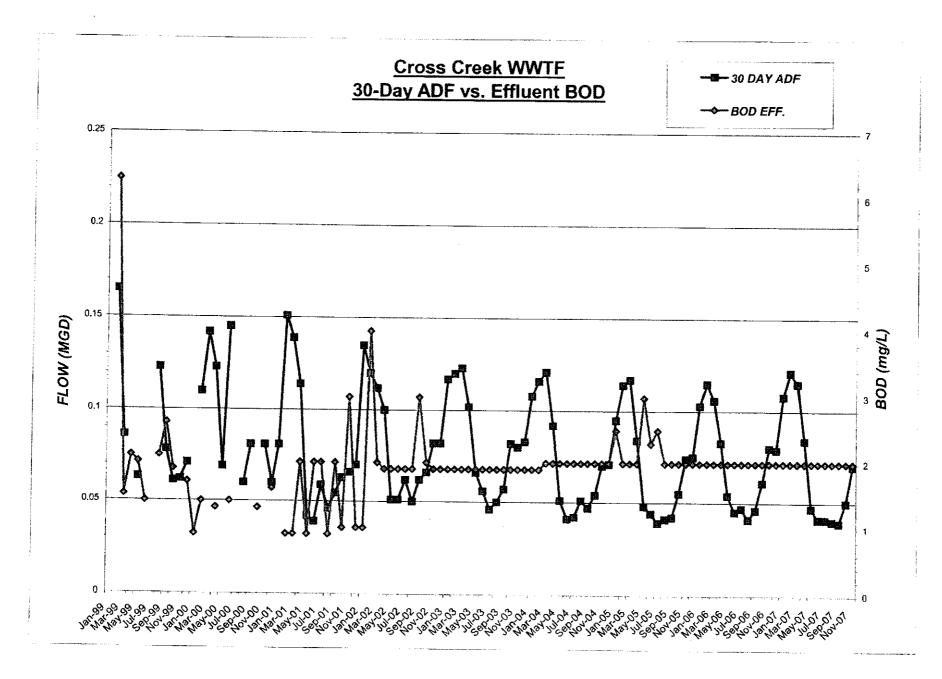
FLOW ANALYSIS

Cross Creek WWTF Historical Flows and Loading Data

DATE	30 DAY ADF(mgd)	3 MO. ADF(mgd)	12 MO. ADF(mgd)	PEAK (mgd)	IN BOD (mg/l)	iN TSS (mg/i)	OUT BOD (mg/l)	OUT TSS (mg/l)	BOD EFF. %	TSS EFF. %	CHLORINE RESIDUAL (mg/l)	рН	FECAL COLIFORM (#/100ml)	TURBIDITY (NTU)
Jan-99														
Feb-99	0.165			0.22		396	6.3					7	1	
Mar-99	0.086		ii	0.155		294	1.5	0.9		99.69%	2	6.9	1	
Apr-99							2.1	1.4						
May-99	0.063			0.085	187		2	1.2	98.93%	<u>L</u>		6.4	1	
Jun-99					191	197	1.4	4,4	99.27%	97.77%		6.8	1	
Jul-99					192	203		1.8		99.11%	1	6.8	1	
Aug-99	0.123		<u> </u>	0.196	293	277	2.1	2.4	99.28%	99.13%		6.8	1	
Sep-99	0.078			0.115	198	241	2.6	1.7	98.69%	99.29%		6.7	1	
Oct-99	0.061	0.087		0.088		401	1.9	1.1		99.73%		6.8	1	
Nov-99	0.062	0.067		0.063	235			2.3				6.8	1	
Dec-99	0.071	0.065	0.089	0.086	177	168	1.7	2.2	99.04%	98.69%	22	6.8	1	
Jan-00			0.089		192	212	0.9	1	99.53%	99.53%	2	6.8	1	
Feb-00	0.110		0.082	0.146	250	323	1.4	1.5	99.44%	99.54%	2	6.8	1	
Mar-00	0.142		0.089	0.173	260	203		4.6		97.73%	2	6.6	1	
Apr-00	0.123	0.125	0.093	0.153	279	232	1.3	ļ	99.53%	 	1	6.4	1	
May-00	0.069	0.111	0.093	0.118		228		3.7		98.38%	0.5	5.95	1 .	
Jun-00	0.145	0.112	0.098		92		1.4		98.48%	 	1	6.7	1	
Jul-00			0.098			354		3.8		98.93%		6.1		
Aug-00	0.060		0.092	0.063		172		1	·	99.42%			1	
Sep-00	0.081		0.092	0.102	-10				*****	 		5	1	
Oct-00			0.096		210		1.3		99.38%	 		5		
Nov-00	0.081		0.098	0.095	180	1	4.0		00.544	1 00 000/				
Dec-00	0.060		0.097	0.063	348	354	1.6	0.7	99.54%	99.80%		6.1	1	
Jan-01	0.081	0.074	0.095	0.095		172		1.2	00 7 (1)	99.30%		5.2	1	
Feb-01	0.151	0.097	0.099	0.440	195	215	0.9	1.1	99.54%	99.49%	1	6.9	1	
Mar-01	0.139	0.124	0.099	0.149	397	352	0.9	0.8	99.77%	99.77%	1	7	1	
Apr-01	0.114	0.135	0.098	0.145	159	155	2	1.6	98.74%	98.97%	1	6.8	11	
May-01	0.042	0.098	0.095	0.138	182	177	0.9	3	99.51%	98.31%	1	6.5	1	
Jun-01	0.039	0,065	0.085	0.101	149	212	2	0.8	98.66%	99.62%	1	6.5	1	· · · · · · · · · · · · · · · · · · ·
Jui-01	0.059	0.047	0.082	0.065	173	179	2	1.1	98.84%	99.39%	1	6.5	1	
Aug-01	0.046	0.048	0.081	0.066	168 70	105 69	0.9	1.1	99.46% 97.14%	98.95% 98.55%	1	6.6	1	
Sep-01 Oct-01	0.055 0.063	0.053 0.055	0.079	0.065	174	144	1	1.3	99.43%	98.55%	<u>1</u>	6.8	1	
Nov-01	0.063	0.055	0.077	0.083	165	129	3	2.3	98.18%	98.22%	1	6.4 6.6	1	
Dec-01	0.000	0.066	0.070	0.076	263	322	1	2	99.62%	99.38%	1			
Jan-02	0.070	0.090	0.077	0.070	145	113	1	0.88	99.31%	99.22%	1	6.8 6.4	1	· · · · · · · · · · · · · · · · · · ·
Feb-02	0.135	0.090	0.082	0.212	135	84	4	0.00	97.04%	98.93%	1	6.25	1	
Mar-02	0.120	0.122	0.079	0.156	146	122	2	0.7	98.63%	99,43%			1	
Apr-02	0.112	0.122	0.077	0.13	191	107	1.9	3.4	99.01%	96.82%	10	6.45	1	
44								3.4		99.47%		6.5		2.0
Мау-02 Јип-02	0.051	0.088	0.076 0.077	0.058	240 159	188 178	1.9	1.7	99.21% 98.81%	99.47%	10 10	6.3 6.2	1	2.1
Jul-02	0.051	0.055	0.077	0.075	144	147	1.9	1.37	98.68%	99.07%	10	6.15	1	1.9
Aug-02	0.062	0.054	0.078	0.068	173	124	1.9	0.81	98.90%	99.35%	10	6.3		2.0
Sep-02	0.062	0.058	0.079	0.078	91	65	3	1,05	96.70%	98.38%	5.46	6.5	1	2.0
Oct-02	0.062	0.058	0.079	0.078	102	86	2	2.8	98.04%	96.74%				1.8
Nov-02	0.082	0.039	0.079	0.073	58	46	1.9	0.95	96.72%	97.93%	3.15 3.4	6.3 6.6	1	2.1
Dec-02	0.082	0.077	0.080	0.093	110	109	1.9	1	98.27%	99.08%	1.2	6.14	1 1	1.4 1.5


Cr	oss Cr	eek	WWTF	
Historical	Flows	and	Loading	Data


DATE	30 DAY ADF(mgd)	3 MO. ADF(mgd)	12 MO. ADF(mgd)	PEAK (mgd)	IN BOD (mg/l)	(N TSS (mg/l)	OUT BOD (mg/l)	OUT TSS (mg/l)	BOD EFF. %	TSS EFF. %	CHLORINE RESIDUAL (mg/l)	рН	FECAL COLIFORM (#/100ml)	TURBIDITY (NTU)
Jan-03	0.117	0.094	0.080	0.132	101	91	1,9	1.7	98.12%	98.13%	1,5	6.24	1	2.0
Feb-03	0.120	0.106	0.080	0.131	76	73	1,9	2.9	97.50%	96.03%	10	6.28	1	1.4
Mar-03	0.123	0.120	0.081	0.138	103	86	1,9	3.6	98.16%	95.81%	1.1	6.43	1	2.8
Apr-03	0.102	0.115	0.081	0.1112	109	91	1.9	0.8	98.26%	99.12%	1	6.47	1	0.7
May-03	0.066	0.097	0.082	0.086	128	108	1.9	1.8	98.52%	98.33%	1	6.17	1	1.0
Jun-03	0.056	0.075	0.082	0.064	156	144	1.9	2.5	98.78%	98.26%	1	6.18	1	1,6
Jul-03	0.046	0.056	0.081	0.053	167	232	1.9	1.1	98.86%	99.53%	1	6.08	1	1.5
Aug-03	0.050	0.051	0.081	0.055	64	63	1.9	2	97.03%	96.83%	1	6.12	1	1.0
Sep-03	0.057	0.051	0.081	0.066	95	163	1.9	1.2	98.00%	99.26%	1	6.12	1	1.1
Oct-03	0.082	0.063	0.082	0.069	94	98	1,9	1.3	97.98%	98.67%	1	6.11	1	1.0
Nov-03	0.080	0.073	0.082	0.089	73	80	1.9	1.3	97.40%	98.38%	1	6.1	1	0.5
Dec-03	0.083	0.082	0.082	0.106	179	178	1.9	1.7	98.94%	99.04%	1	6.15	1	0.8
Jan-04	0.108	0.090	0.081	0.123	121	143	1,9	3.7	98.43%	97.41%	1	6.33	1	0.8
Feb-04	0.116	0.102	0.081	0.14	178	198	1.9	1,7	98.93%	99.14%	1	6.25	1	0.8
Mar-04	0.110	0.115	0.081	0.139	137	162	2	0.8	98.54%	99,51%	4,1	6.45	1	0.3
Apr-04	0.092	0.110	0.080	0.113	147	236	2	1.3	98.64%	99.45%	1.1	6.22	1	0.8
May-04	0.052	0.088	0.079	0.066	90	95	2	1.8	97.78%	98.11%	1	6,12	1	0.8
Jun-04	0.031	0.061	0.073	0.049	83	115	2	1.3	97.59%	98.87%	1,1	6.1	1	0.7
Jul-04	0.041	0.045	0.077	0.053	87	84	2	1.8	97.70%	97.86%	5	6.31	1	1.0
	·	0.045	0.077	0.069	40	77	2	0.9	95.00%	98.83%	5	6.51	1	0.6
Aug-04	0.051	0.045		0.056	84	115	2	1.6	97.62%	98.61%	5	6.85	1	0.7
Sep-04	0.047		0.076		<u> </u>	223	2	1.5	99.03%	99.33%	5	6.8	1	0.8
Oct-04	0.054	0.051	0.074	0.073	206	134	2	1.4	98.91%	98.96%	5	6.12	1	1.0
Nov-04	0.070	0.057	0.073	0.082	184		2	1.7	99.51%	99.67%	5	6.81	1	
Dec-04	0.071	0.065	0.072	0.096	406	519						-		0.7
Jan-05	0.095	0.079	0.071	0.105	121	89	2.5	2.5	97.93% 97.94%	97.19% 98.77%	5	6.7	1	0.5
Feb-05	0,114	0.093	0.071	0.123	97	130	2	1.6			5	6.56	1	0.8
Mar-05	0.117	0.109	0.070	0.142	95	124	2.0	1.6	97.89%	98.71%	5.0	6.6	11	1.0
Apr-05	0.084	0.105	0.070	0.108	108	191	2.0	1.0	98.15%	99.48%	5.0	6.6	11	8.0
May-05	0.048	0.083	0.070	0.061	84	146	3.0	2.0	96.43%	98.63%	5.0	6.5	1	1.0
Jun-05	0.044	0.059	0.070	0.054	97	135	2.3	2.0	97.63%	98.52%	5.0	6.7	1	1.0
Jul-05	0.039	0.044	0.070	0.054	103	166	2.5	2.0	97.57%	98.80%	5.0	6.3	1	1.0
Aug-05	0.041	0.041	0.069	0.054	104	158	2.0	1.9	98.08%	98.80%	1.0	6.5	11	0.6
Sep-05	0.042	0.041	0.068	0.051	84	124	2.0	2.3	97.62%	98.15%	1.0	6.6	1	1.0
Oct-05	0.055	0.046	0.068	0.059	95	118	2.0	2.0	97.89%	98.31%	1.0	6.6	1	1.0
Nov-05	0.074	0.057	0.069	0.082	97	130	2.0	4.0	97.94%	96.92%	1.1	6.0	1	1.0
Dec-05	0.075	0.068	0.069	0.087	178	325	2.0	6.5	98.88%	98.00%	1.0	6.3	1	1.4
Jan-06	0.103	0.084	0.070	0.125	108	184	2.0	5.2	98.15%	97.17%	1.1	6.3	11	1,2
Feb-06	0.115	0.098	0.070	0.136	101	156	2.0	1.1	98.02%	99.29%	1.0	6.3	1	0.9
Mar-06	0.106	0.108	0.069	0.117	124	203	2.0	0.8	98.39%	99.61%	1.0	6.4	1	0.7
Apr-06	0.083	0.101	0.069	0.103	235	211	2.0	0.7	99.15%	99.67%	1,1	6.3	1	0.6
May-06	0.054	0.081	0.069	0.066	140	194	2.0	1.7	98.57%	99.12%	1.1	6.4	1	1.1
Jun-06	0.045	0.061	0.069	0.052	212	162	2.0	0.6	99.06%	99.63%	1.0	6.5	1	0.6
Jul-06	0.047	0.049	0.070	0.054	74	150	2.0	0.9	97.30%	99.40%	1.0	6.6	1	8.0
Aug-06	0.041	0.044	0.070	0.053	130	167	2.0	0.9	98.46%	99.46%	1.0	6.6	1	0.6
Sep-06	0.046	0.045	0.070	0.051	81	139	2.0	1.3	97.53%	99.06%	1.0	6.8	1	0.8
Oct-06	0.061	0.049	0.071	0.079	76	124	2.0	0.8	97.37%	99.35%	1.0	6.7	1	0.6
Nov-06	0.080	0.062	0.071	0.085	133	174	2.0	2.6	98.50%	98.51%	1.2	6.5	1	0,5
Dec-06	0.079	0.073	0.072	0.092	140	203	2.0	0.7	98.57%	99.66%	1.7	6.7	1	0,6


						С	ross Creel	WWTF						
	Historical Flows and Loading Data													
DATE	30 DAY ADF(mgd)	3 MO. ADF(mgd)	12 MO. ADF(mgd)	PEAK (mgd)	BOD (mg/l)	IN TSS (mg/l)	OUT BOD (mg/l)	OUT TSS (mg/l)	BOD EFF. %	TSS EFF. %	CHLORINE RESIDUAL (mg/l)	ρΗ	FECAL COLIFORM (#/100ml)	TURBIDITY (NTU)
Jan-07	0.108	0 089	0.072	0.124	142	173	2.0	2.3	98.59%	98.67%	2.3	6.8	1	0.6
Feb-07	0.121	0.103	0.073	0.132	147	154	2.0	0.6	98.64%	99.61%	3.1	6.9	1	0.7
Mar-07	0.115	0.115	0.073	0.125	85	164	2.0	0.7	97.65%	99.57%	2.3	7.0	1	0.7
Apr-07	0.084	0.107	0.073	0.110	88	161	2.0	0.7	97.73%	99.57%	2,7	6.9	1	0.8
May-07	0.047	0.082	0.073	0.059	145	171	2.0	0.6	98.62%	99.65%	2.6	6.8	1	0.9
Jun-07	0.041	0.057	0.073	0.048	110	184	2.0	0.7	98.18%	99.62%	2.2	6.9	1	0.9
Jul-07	0.041	0.043	0.072	0.046	100	167	2.0	0.7	98.00%	99.58%	2.5	6.9	1	0.7
Aug-07	0.040	0.041	0.072	0.044	90	200	2.0	0.7	97.78%	99.65%	2.5	6.9	1	0.6
Sep-07	0.039	0.040	0.071	0.043	175	97	2.0	0.6	98.86%	99.38%	2.2	6.9	1	0.9
Oct-07	0.050	0.043	0.070	0.064	175	97	2.0	0.6	98.86%	99.38%	2.2	6.8	1	0.9
Nov-07	0.070	0.053	0.070	0.075	101	163	2.0	0.9	98.02%	99.45%	3.0	6.8	1	0.6
Avgs.	0.078	0.076	0.079	0.094	148.0	170.0	2.0	1.7	98.67%	99.02%	2.6	6.5	1	1.0
								<u> </u>		<u> </u>		<u> </u>		

Notes: (1) Some or all data not available from neither local or state FDEP offices.

^{(2) 9-}month, 10-month and 11-month ADF calculated in fleu of missing 30-Day ADF data.

APPENDIX C

PROCESS ANALYSIS

	EX	TENDED AER	CROSS CREEK W	/WTF JDGE PROCESS ANAL	/SIS	
	Flow =	249.000	gpd	0.249	mgd	<u>-</u>
		2.0.000	SURGE TANKS	0.249	mga	
					·	
		Volume gallons	% Total Flow			
	Tank #1	92.700				
	Total	92,700	37.23%			
			AERATION TANKS			
		Volume galions	Detention Time hours	BOD Loading #/1,000 cf		
	Tank #1	85.975				
	Tank #2 Tank #3	69,025 43,750				
	Tank #4	56,430				
	Total	255,180	24.60	11.57		
			CLARIFIER TANKS			
		Area s.f.	Hydraulic Loading gpdpsf	Peak Solids Loading lb/day/sf		
	Clariflers	733,00				
	Total:	733.00	339.70	29.75		
			Note: MLSS = 3,000 mg/	1		
		СН	LORINE CONTACT TAN	iks		
		Volume gallons	Detention Time minutes (ADF)	Detention Time minutes (Peak)		
	CCT #1 CCT #2	6,573 6,573				
	Total:	13,146	76.03	38.01		
		Note: Pe	ak detention time based	on peak factor = 2.0		
			AEROBIC DIGESTER	· · · · · · · · · · · · · · · · · · ·		
		Volume gallons	Sludge Prod. gpd	Retention Time days	Sludge Prod. tons/yr	
	Tank #1 Tank #2 Tank #3	9,933 18,610 24,482				
	Total:	53,025	1,478.44	35.87	43.20	
			FILTERS			
Dual	Train	Area s.f.	Loading Rate gpmpsf			
North Train North Train	Filter #1 Filter #2	12.6 12.6	3.4 3.4			
South Train South Train	Filter #1 Filter #2	16.0 16.0	2.7 2.7			
	Total:	57.1	3.0			

		EFFLUENT DISPOSA	<u> </u>	······································	
	Volume gallons	Detention Time days (ADF)	Detention Time days (Peak)		
Reclaimed Water Storage Tank #1 Reclaimed Water Storage Tank #2	690,000 200,000	2.77 0.80	1.39 0.40		
Total:	890,000	3,57	1.79		
Reject Water Storage Tank	375,000	1.51	0.75		
	Note: Pe	ak detention time baser	d on peak factor = 2.0		
	Area s.f.	Area acres	Loading Rate gpdpsf	Loading Rate Inches/week	Loading Rate inches/day
Golf Course	2,613,600	60.00			
Total:	2,613.600	60.00	0.10	1.07	0.15
		AIR REQUIREM	ENTS		
		SURGE TANK			
Total Volume gallons	Mixing cfm	Aerobic cfm			
92.700	222.48	1.22			
		AERATION TANKS			
Total Vol. galions	Mixing cfm	Aerobic ofm	Safety Factor # Air/# BOD	Min. Air @ 1.5 BOD	
255,180	510.36	141.67	2.00	106.26	
		AEROBIC DIGESTER	S		
Total Volume gallons	Mixing cfm	Aerobic cfm			
53,025	127.26	59.78			
		AIR LIFT PUMPS			
No. ALP	cſm				
5.00	50.00				
		FILTER TANK AIR	SCOUR		
Average Filter Media Area s.f.	Minimum Scour Rate cfm/s.f.	Minimum Air Flow cfm			
28.57	1.00	28.57	(Alternate Filter Air Scou	r/Backawash Cycles)	ı
	TOTAL	SYSTEM AIR REQUIR	EMENTS		
Surge Tank; Process Tanks Filter Air Scour:	222.48 687.62 28.57	cím cím cím			

Cross Creek Applied Air Calculations - WWTF Air Diffuser System

Surge Tank Blowers: (3) - Roots 47 URAI

Design Flow = 0.249 mgd
Total Air Required = 222.48 cfm

Blower Diameter = 5.50 inches
Motor Diameter = 6.00 inches
Motor RPM = 1,755 rpm
Motor Horsepower = 10.0 hp
Blower Air Pressure = 5.0 psi

Calculations:

Motor Diameter X Motor rpm = Blower Diameter X Blower rpm

Blower rpm = Motor Diameter X Motor rpm

Blower Diameter

= 1,915 rpm

From Blower Perfomance Curve at 5.0 psig and 1,915 rpm:

Blower Horsepower = 7.0 hp

Blower Air Flowrate = 242.0 cfm (Each Blower)

Tipton Environmental International, Inc. PERFORMANCE BASED ON INLET AIR AT 14.7 PSIA & 68°F 4446 State Route 132 Batavia, OH 45103 USA 513-735-2777 Voice 51: www.wastewaterdepot.com 513-735-1485 Fax info@tiptonenv.com JUNE 1990 PERFORMANCE 700 47 UNIVERSAL RAI® BLOWER MAXIMUM PRESSURE RISE = 7 PSI CFM MAXIMUM SPEED = 3600 RPM 600 3 PSI 5 PSI 7 PSI 500 VOLUME 400 300 INCET 200 100 0 25 HORSEPOWER 20 15 5 PSIH 10 BRAKE 3 PSIA 5 PSI----0 4000 3000 1000 2000 SPEED - RPM

Cross Creek

Applied Air Calculations - WWTF Air Diffuser System

Process Blowers: (2) - Lamson Centrifugal Blowers (515-5-0-AD)

Design Flow = 0.249 mgd
Total Air Required = 687.62 cfm

 Motor RPM =
 3,555 rpm

 Motor Horsepower =
 40.0 hp

 Blower Air Pressure =
 7.0 psi

 Blower Speed =
 3,525.0 rpm

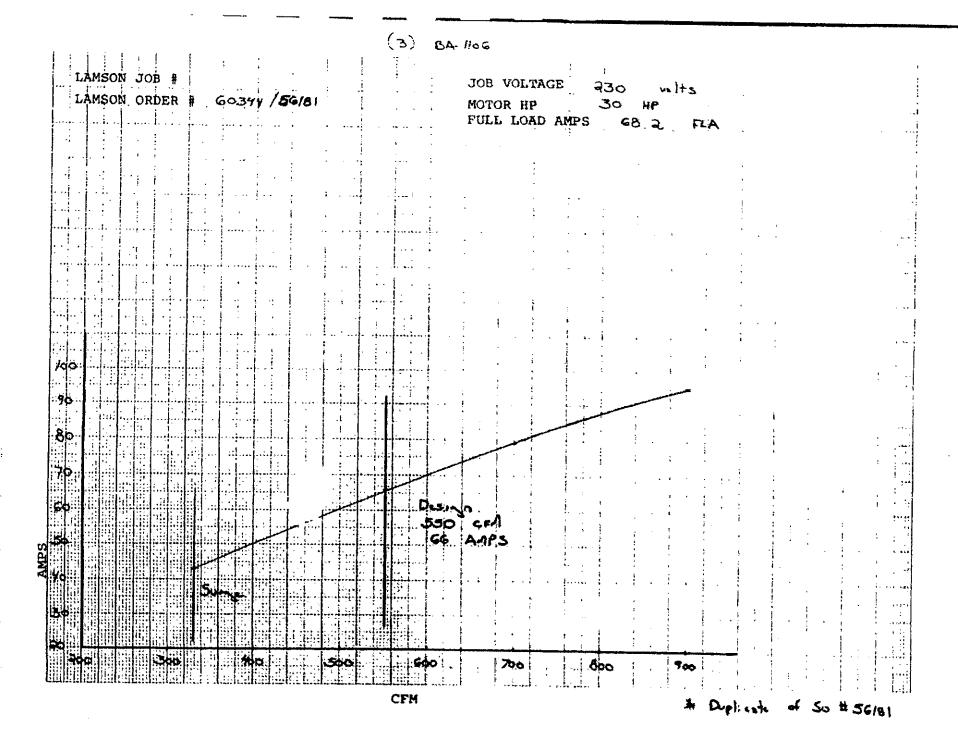
 Blower Horsepower =
 28.0 hp

Blower Air Flowrate = 550.0 cfm (Each Blower)

BOD5 Average Influent Concentration = 148.0 mg/l BOD5 Average Effluent Concentration = 2.0 mg/l

Calculations:

BOD5 Removal Concentration (Influent - Effluent) = 146.04 mg/l


8.34 lb/gallon x BOD5 Removal Conc. x Design Flow = 303.27 pounds BOD5/day

Blower Air Flowrate x 1440 minutes per day = 792,000 cubic feet/day

Applied Air = 792,000 cubic feet/day
303.27 pounds BOD5/day

= 2,611.52 cubic feet of air per pound of BOD5

	30	onen MS	. 404			:		40			50	9			 Lå	ф о		E		jo	-		· •	00			9) O									
4	., L		,						:		-	_			. L.F	-	!		-	1	-:		1	 		-	1	į į					-				
5		***, -*-	i				. -	<u>.</u>					·- ·		<u>.</u>		•			-			<u> </u>		7			 									
-6	٠l	-1-3	. :	• •	-		· }·			: :				٠١٠		1	1					- [- 60 . 60			vc tw	perse }	tare							indi	
					į				į. .				///	1		+												7 .;;							1:		
ž ,].				:			<i>i</i>					1	1		** **		100 00	#	prist.									. [11]					
PRESSURE U ® D				}			<u> </u>	i :												1					: 1 ; ; ;			1									
3					. 		.	·		<u>.</u> :			: .			Ţ.,						1			, ,												
9 9										:					•											ار در از در در در در در در در در در در در در در								ļķ.			
<u> </u>	4						-	-													-			-				.					الله الله			Щ.	Щ
a;																				i Fire	••••••• ••								****								
(N	::			-;;	5	URGE							DI	श्रं	GN					1	• 4				4 .												
ن ا																								-). 	41 1	٠. - ١		٠٠٠. مب								
		<u>!.</u>						· :							: -							<u>.</u>				uil.		<u>.</u>	ļ.;				4	ļ			
	: :,,				· '!												1				4.4					:1.1				11.			. . ;:		1		
					:			:		ļ .		``.																٠٠٠.			1	!!		1			
						-			<u></u>					1									 				···• 			, 				نوبرار بيدار			
			<u> </u>		i	-		-:						-						<u> </u>		٠.,			ļ					<u> </u>	: : i		[:::				-
:			1		*****			:			-	-								٠٠٠١٠٠٠	-			7													
i	i			: -	٠.					ļ .				*	. !.	. :			<u>.</u>	'년 '댓글					:												
	1				***	•						1		! .							į						.				1	:: <u>.</u> .,					
	<u>.</u>	SPI INL	E) F7): - 	TET 14	ב מי	,		3525 100°	RPM	ļ				· ;			-				- 				ļ		* 	-	Ĺ.,	····			1:::		1	
j		BAI SPI	301	VE.	TE	R:	***	•	14.7	PSIA				. !						··			:) 				<u></u> 		<u>i</u>	ļ					-	
	i	RI/	W	T D	M	מתח	77.		557-1	I.O.				ì	•	- i -	•	1 :	• 1	•	1 .	Ì		į		t,	. }.				ļļ			. į.	: .	.]	!

Cross Creek Applied Air Calculations - WWTF Air Diffuser System

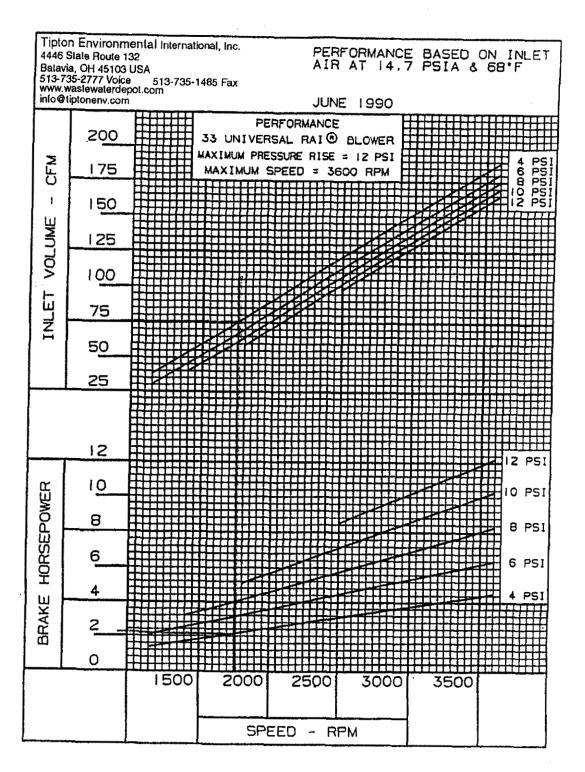
Filter Air Scour Blower: (1) - Roots 33 URAI

Design Flow = 0.249 mgd
Total Air Required = 28.57 cfm

Blower Diameter = 4.00 inches
Motor Diameter = 4.00 inches
Motor RPM = 1,760 rpm
Motor Horsepower = 7.5 hp
Blower Air Pressure = 4.0 psi

Calculations:

Motor Diameter X Motor rpm = Blower Diameter X Blower rpm


Blower rpm = Motor Diameter X Motor rpm

Blower Diameter

= 1,760 rpm

From Blower Perfomance Curve at 4.0 psig and 1,760 rpm:

Blower Horsepower = 2.2 hp
Blower Air Flowrate = 75.0 cfm

APPENDIX D

ADDITIONAL INFORMATION

Mopluy Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

JAN 3 C 2007

Equipment Location Range Last Calibration Cal Equipment Used 0-800 CROSS CREEK WW 2106 DYNASONICS PORTACLE Manufacturer Model S/N Nomenclature HGRSHEY MAG INFLUENT FLOW

Calibration Check

Test #	Input in %	Type/Total	Expected	Found	Left
			0.0	20	2.0
2			178 6MM	171 6PM	171 6PM

Remarks:

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.

Certified by: <u>Navald Stray</u>

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

JAN 30 2007

<u> </u>				•
Equipment Location	Range	Last Calibration	Cal Eq	uipment Used
CROSS CREEK W			DYNASONICS	
位於自然是自然的		k (Valeraisly)		
Manufacturer	Model	S/N		Nomenclature
WASER SPECIALITIES	3" MAG		GFF	WENT FLOW
*				

Calibration Check

Test#	Input in %	Type/Total	Expected	Found	Left
/			30 GP14	37 GPH	37 6PH
2			298 614	309 GPH	309 654

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal

Certified by:

Remarks:

Rouald Suran

to or better than that stated by the instrument manufacturer.

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420 JAN 30 2007

Equipment Location Range Last Calibration Cal Equipment Used CROSS CREEK WW 2/06 0-100 FLUKE 787 Manufacturer Model S/N Nomenclature DICKSON 616 CFFLUENT FLOW

Calibration Check

Test#	Input in %	Type/Total	Expected	Found	Left
/			0.0	0.1	0,1
2			50,0	50,0	50,2
3			100	100.2	100.2

Remarks:

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.

Certified by:

Sanald Liray

Date: 1/37/07

Mopluv Service JAN 3 0 2007 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

Equipment Locati	on Range	Last Calibration	Cal Equipment Used
	UW 0-800 GPI	' / " "	FLUKE 787
Manufacturer	Model	S/N	Nomenclature
HONEYWELL	DR4300	0611 4669986	900001 INFLUENT FLOW

Calibration Check

Test #	Input in %	Type/Total	Expected	Found	Left
/			0.0	0,0	0.0
2			800	800.1	800.1
			1		

Total good. Remarks:

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.

Certified by: Sauld Suray

Mopluv Service 797 Silversmith Cir. Lake Mary, Fl. 32746 Tel. 407-330-4420

JAN 3 - 2007

Equipment Location Range Last Calibration Cal Equipment Used

CROSS CREEK WWW 0-10 9/06 HF SCIENTIC STHNDAIRDS

Manufacturer Model S/N Nomenclature

HF SCIENTIFIC MICROTROL 4016/3 CHEWENT NTO

Calibration Check

Test#	Input in %	Type/Total	Expected	Found	Left
/			.02	,02	107
2			10.0	10.0	10.0

Remarks:

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.

Certified by:

Juneld Stray

Date: //37/

Mopluv Service JAN 3 0 2007 Lake Mary, Fl. 32746
Tel. 407-330-4420

Equipment Location	n Range	Last Calibration		Cal Equipment Used
CROSS CREEK W	UW 0-5 Mg/	2/06	HACH	STHUDARD
Manufacturer	Model	S/N		Nomenclature
HACH	CL17	020600004	583	EFFEVENT CLZ
,			T	

Calibration Check

4.2 Hall 4.17 Hall 4.17 Mg

This is to certify that the above listed instrument has been calibrated and meets or exceeds all published specifications. Calibration was performed using test equipment with an accuracy equal to or better than that stated by the instrument manufacturer.

Certified by: Saueld Aray

Appalachian Material Service, inc.

PO BOX 97 Terra Ceia, FL 34250

Phone (941) 776-8706 Fax (941) 776-8707

Appalachian Material Services MJ Ranch, Facility ID No. FLA190284 AMS Central RMF, Facility ID No. FLA467049 Nordgren Ranch RMF, Facility ID No. FLA280348

RESIDUALS HAULING AND LIME STABILIZATION AGREEMENT

Appalachian Material Service, Inc. agrees to haul and lime stabilize your waste water residuals at our Residuals Management Facilities. All existing state (DEP) and federal (EPA) regulations will be observed as per permit requirements and conditions.

GENERATORS RESPONSIBILITY:

- 1. Maintain residuals at a percentage of solids that is transferable by pump.
- 2. Schedule loads for pick up.

Appalachian Material Services, Inc. RESPONSIBILITY:

- 1. Pick up and transport your residuals to our residuals management facilities for further treatment and disposal, IAW with state and local regulatory requirements. Appalachian Material Service, Inc. shall be responsible for the proper transport and spill contingency procedures from the generating facility to our residuals management facilities.
- 2. Process and land apply the residuals in accordance with EPA and DEP regulations and current permit requirements. The quality of the generating facility's residuals is at least untreated with a quantity estimated not to exceed 1320 DTY. The hauled residuals will be processed at our Residuals Management Facilities to meet or exceed the minimum requirements for land application as stated by the permit conditions, and shall not exceed the amount permitted for processing for our residuals management facilities, as described in our operating permits.
- 3. Maintain all records of lime stabilization and land application areas and rates as per EPA and DEP regulations and current permit requirements.

RECEIVE

LETTER OF COMMITMENT

JAN 2 6 2007

Customer: Cross Creek Country Club

Address: 13050 Cross Creek S.T.P.

Facility No.: FL014505

Phone Number: (407) 869-1919

Ft. Myers, FL 33912

County: Lee

Contact Person: Michael Dunn Michael LDILSON

Operator:

Phone #:

Engineer of Record:

Phone #:

Check one of the following:

All Residuals Removed and Processed IAW Chapter 62-640, F.A.C.

Cancellation of this agreement may be executed with a 30 days written notice by either party.

Upon acceptance of this agreement, Customer agrees to the following terms: Payment is DUE UPON RECEIPT OF INVOICE. Interest at the rate of 1 1/2% per month will be charged on Past Due Balances. Rate quotation will be updated annually.

TERMS ACCEPTED:

(CUSTOMER)

BY MICHAEL A. WILSON REGIONAL MER.

(PRINT OR TYPE) (TITLE)

(Date)

(Authorized Signature) Title

Appalachian Material Service, Inc.

Jon Wimpy BY

(PRINT OR TYPE) (TITLE)

(Date)

President (Authorized Signature) Title

FILE: 674.7.4