

RE: SEC's Response to 2011 Ten-Year Site Plan Supplemental Data Request #1

Attached is Seminole Electric Cooperative's Response to 2011 Ten-Year Site Plan Supplemental Data Request #1, submitted by April 29, 2011. Please place this item in Docket No. 110000 – Undocketed Filings for 2011, as it relates to the annual undocketed staff Ten-Year Site Plan Review project.

If you have any additional questions, please contact me.

POE

Attachment

2011 TEN YEAR SITE PLANS : SUPPLEMENTAL DATA REQUEST

Company Name: <u>Seminole Electric Cooperative Inc.</u>

Renewable Generation Resources

As used in the proceeding questions, the term "renewable energy" has the same meaning as used in Section 377.803, Florida Statutes. Please refer to the tables below when identifying fuel and generator types.

Fuel Types	Shorthand	Examples
	AB	Agriculture By-Products, Bagasse, Straw, Energy Crops.
	MSW	Municipal Solid Waste
Biomass	SLW	Sludge Waste.
	WDS	Wood / Wood Waste Solids
	OBS	Biomass Solids
Landfill Gas	LFG	Landfill gas.
Water	WAT	Hydro
Geothermal	GEO	Geothermal
	WDL	Wood / Wood Waste Liquids
Disficula	BL	Black Liquor
Biorueis	OBL	Biomass Liquids
	OBG	Biomass Gases
Solar	SUN	Solar Photovoltaic and Thermal devices
Waste Heat	WH	Waste heat from sulfuric acid manufacture
Wind	WND	Wind Energy.
Other	OTH	Any renewable not covered above. Please describe.

Generation Types	Shorthand
Combined Cycle - Steam Part	CA
Combined Cycle - Combustion Turbine Part	СТ
Combined Cycle - Total Unit	CC
Compressed Air Energy Storage	CE
Combined Cycle Single Shaft	CS
Fuel Cell	FC
Combustion Turbine	GT
Hydraulic Turbine	HY
Hydraulic Turbine - Pumped Storage	PS
Internal Combustion Engine	IC
Not Available	NA
Other	OT
Photovoltaic Cells	PV
Steam Turbine	ST
Wind Turbine	WT

DOCUMENT NUMBER-DATE 03137 MAY-5 = FPSC-COMMISSION CLERK

GENERAL QUESTIONS

- 1. Please provide all data requested in the attached forms labeled 'Appendix A,' in electronic (Excel) and hard copy. If any of the requested data is already included in the Company's Ten-Year Site Plan, state so on the appropriate form.
- 2. Please provide all data requested in the attached forms labeled 'Appendix B,' which consist of Schedules 1 through 10 from the Company's Ten-Year Site Plan, in an electronic copy in Excel (.xls file format).

LOAD & DEMAND FORECASTING

3. Please provide, on a system-wide basis, an average month of observed peak capacity values for Summer and Winter. From this data, excluding weekends and holidays, generate an average seasonal Daily Loading Curve. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

													Турі	cal Si	mme	r Mon	th									_			
Ve	Mo		Da	100	-	Har	10.0	51426	5,147	100	and the	0	RATU	d Ho	rlv P	eak C	anaci	ty (M	W		1.0	1.1	-	100		No.	and the	MAY	MIN
ar	nth	Day	vof	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	MW	(MW)
ю	7	1	Th	1485	1362	1292	1248	L247	1312	1437	1.529	1641	1811	2.030	2,250	2,437	2,560	2.613	2.631	2.6 B	2.545	2.434	2.305	2.222	2.109	1905	1676	2,631	1,247
ю	7	2	Fr	L487	1363	1,289	1,247	1,242	1,297	L407	L484	1,584	1,7 19	1877	2,016	2,153	2,271	2,339	2,360	2,341	2,322	2,234	2,117	2,049	2,007	1859	1,663	2,360	1,242
ю	7	5	Mo	L454	1,324	1,237	1,187	176	L205	1,260	L328	L489	1,712	1,928	2,105	2,241	2,336	2,409	2,425	2,419	2,414	2,342	2,232	2,175	2,084	1,877	1629	2,425	1,176
ю	7	6	Tu	L,427	L302	1,2 19	1,170	1,164	1,228	1346	1439	73ي	1,773	2,016	2,260	2,480	2,658	2,764	2,789	2,707	2,593	2,477	2,333	2,231	2,130	1,9 B	1,677	2,789	1,164
Ю	7	7	We	L470	L336	1,254	1,205	1,187	1,248	1,356	1432	1,618	1,854	2,110	2,375	2,609	2,789	2,931	3,026	3,074	3,077	2,999	2,809	2,612	2,466	2,177	1857	3,077	L187
Ø	7	8	Th	L601	Ļ428	L307	1,234	1,206	1,250	1346	1,421	1,589	1,823	2,087	2,362	2,630	2,859	3,034	3,159	3,245	3,258	3,213	3,034	2,809	2,637	2,329	2,001	3,258	1,206
Ø	7	9	Fr	L739	1,558	1,431	1,352	1321	1359	1448	1,528	L7 B	1987	2,316	2,633	2,916	3,38	3,280	3,348	3,365	3,352	3,292	3,082	2,863	2,688	2,400	2,098	3,365	1321
Ø	7	12	Mo	1722	L583	L489	1437	1,424	1483	1,592	L670	1,832	2,057	2,278	2,458	2,605	2,704	2,803	2,915	3,007	3,034	2,967	2,791	2,636	2,500	2,224	1,937	3,034	L424
Ŋ	7	в	Tu	1,701	1,543	1445	1381	1,359	1,408	L508	1,586	1,772	2,035	2,328	2,600	2,837	3,023	3.149	3,231	3,202	3,289	3,221	3,033	2,821	2,673	2,370	2,067	3,289	1359
Ø	7	и	We	18 B	1642	1535	L467	1441	L487	1,588	1,650	1,805	2,066	2,361	2,649	2,905	3,111	3,205	3,265	3,236	3,120	2,984	2,817	2,675	2,531	2,292	2,010	3,265	1441
Ø	7	ß	Th	1,796	1,641	1540	1,476	L457	1,503	1,6 K 0	1679	1,796	1,997	2,246	2,514	2,761	2,860	2,754	2,641	2,493	2,364	2,267	2,163	2,104	2,037	L849	1,624	2,860	1457
10	7	16	Fr	1437	1,3 17	1,242	1,200	1,192	1,243	1,356	1,439	1,604	L857	2,178	2,468	2,726	2,900	3,035	3,111	3,161	3,117	2,981	2,798	2,638	2,500	2,260	2,006	3,161	1192
NO NO	7	19	Mo	1838	L672	1561	1492	L472	1,5 18	1,6 B	1,675	L862	2,146	2,460	2,762	3,005	3,180	3,291	3,358	3,352	3,332	3,217	3,038	2,878	2,721	2,439	2,145	3,358	1472
0		20	Iu	1,904	L736	1,621	1,540	1,505	L540	1,633	Ļ700	1,883	2,167	2,470	2,753	2,991	3,192	3,338	3,388	3,337	3,336	3,368	3,200	3,033	2,872	2,562	2,248	3,388	1505
N N	,	21	We	1,986	1,800	1,674	1,588	1,552	L580	1,660	L706	1,850	2,109	2,412	2,712	2,972	3,177	3,324	3,4 18	3,322	3,417	3,392	3,206	3,006	2,842	2,530	2,205	3,4 8	1352
n N	7	22	1.0	1,935	L737	1,594	1,501	1,463	1,492	L582	1,631	Լ785	2,058	2,355	2,647	2,907	3,122	3,271	3,401	3,350	3,358	3,382	3,217	3,013	2,829	2,5B	2,192	3,401	1403
n	7	25	Ma	1,929	1,747	1,620	1,529	1,488	1,5 19	1,606	1,666	1,836	2,086	2,361	2,600	2,790	2,912	2,990	2,975	2,923	2,856	2,750	2,622	2,543	2,459	2,264	2,044	2,990	1421
n	7	20	Tu	1,793	1626	150	1,442	1,421	1,461	1,558	1635	1,829	2,122	2,451	2,755	3,001	3,186	3,270	3,317	3,353	3,371	3,307	3,122	2,937	2,758	2,440	2,129	3 488	1502
n	7	28	We	1,876	1711	1598	1,528	1,502	1,537	1634	1,693	1879	2,179	2,501	2,809	3,069	3,265	3,405	3,488	3,421	3,478	3,402	3,224	3,047	2,868	2,550	2,244	3 336	1581
n	7	2.9	Th	2,000	1,828	1,704	1,617	1281	1015	1,708	1617	1799	2,232	2,569	2,909	3,1/7	3,323	3,330	3,252	3,06	2,930	2,194	2,052	2,539	2,405	2,1/1	1,908	3.288	1384
10	7	30	Fr	1851	1697	1400	1534	150	1552	1651	1722	1920	2,079	2,431	2,785	3,083	3 201	3,288	3,232	3,41	3 284	2,785	3,020	2,742	2,024	2,304	2,082	3,456	1512
	1	AVG		1725	1569	L465	1399	1377	1421	1520	1591	1755	2,004	2,286	2,558	2,792	2,961	3,056	3,099	3,070	3,046	2,966	2,803	2,656	2,521	2,482	1,985	3,099	1377
-		MAX		2,000	1828	1704	1617	1,581	1,615	1708	1771	1949	2,232	2,569	2,909	3,177	3,325	3,405	3,488	3,421	3,478	3,402	3,224	3,047	2,872	2,562	2,248	3,488	81
	5	MIN		1427	1302	1,219	170	1,164	1205	1260	1,328	1489	1,712	1877	2,016	2,153	2,271	2,339	2,360	2,341	2,322	2,234	2,117	2,049	2,007	1,849	L 624	2,360	1,164

Typical Winter Month																													
Ye	Mo	-	Da		1.19	1		1.10		-	-	01	serve	d Hou	rly P	eak C	apaci	ty (M	W)	1.00		1000	1	1.91.00	100		The last	MAX	MIN
ar	nth	Day	y of	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	MW	(MW)
Ø	1	4	Mo	2,854	2,894	2,965	3,068	3,200	3,437	3,616	3,730	3,619	3,434	3,154	2,831	2,564	2,342	2,181	2,123	2,246	2,617	3,068	3,208	3,247	3,190	3,049	2,908	3,730	2,123
Ø	1	5	Tu	2,778	2,717	2,722	2,767	2,874	3,110	3,433	3,574	3,505	3,321	3,109	2,879	2,695	2,525	2,412	2,382	2,514	2,917	3,387	3,554	3,612	3,551	3,407	3,297	3,612	2,382
ю	1	6	We	3,279	3,339	3,405	3,491	3,634	3,899	4,081	4,162	3,970	3,653	3,410	3,069	2,769	2,515	2,338	2,277	2,399	2,777	3,261	3,444	3,549	3,548	3,435	3,333	4,162	2,277
x	1	7	Th	3,330	3,403	3,507	3,612	3,756	4,023	4,206	4,288	4,094	3,721	3,148	2,689	2,3 18	2,050	1,877	1823	1,923	2,245	2,690	2,872	2,961	2,935	2,838	2,721	4,288	L823
Ø	1	8	Fr	2,659	2,655	2,667	2,647	2,664	2,792	3,007	3,016	2,822	2,635	2,501	2,420	2,380	2,330	2,294	2,322	2,451	2,663	2,863	2,874	2,852	2,804	2,708	2,612	3,016	2,294
ю	1	п	Mo	3,782	3,872	3,991	4,134	4,323	4,627	4,826	4,900	4,660	4,232	3,773	3,295	2,884	2,585	2,373	2,296	2,408	2,814	3,372	3,620	3,743	3.745	3.648	3,576	4,900	2,296
Ø	l	12	Tu	3,605	3,709	3,839	3,958	4,088	4,357	4,662	4,676	4,347	3,733	3,129	2,679	2,356	2,121	1,969	1929	2,025	2,351	2,804	2,983	3,061	3,063	2,991	2,911	4,676	1,929
Ø	1	в	We	2,938	3,049	3,185	3.320	3,491	3,784	4,150	4,247	3,960	3,437	2,930	2,505	2,105	L954	1,8 17	1,788	1,916	2,252	2,678	2,834	2,902	2,890	2,791	2,695	4,247	1788
n	U.	14	Th	2,708	2,797	2,910	3,024	3,165	3,420	3,726	3,728	3,453	2,952	2,464	2,077	L825	1,652	1,547	1,5 12	1,565	L738	2,051	2,139	2,143	2,069	L929	L,786	3.728	LS 12
ю	1	ß	Fr	L709	1,703	1731	1,779	1875	2,105	2,424	2,517	2,335	2,060	L828	L659	4,555	1,489	1443	1,424	L449	L549	1,738	L726	L,663	L577	1,457	1319	2,5 17	13 19
ю	- L	18	Mo	1,123	L066	L049	1051	1,095	1,211	1,388	L552	1,672	1,731	1,738	L701	L646	L\$65	1,5 15	1,501	1,538	L688	1957	2,005	1953	L853	1,7 18	1571	2,005	Ļ049
10	1	19	Tu	L490	1,482	1,5 10	1,558	1661	1908	2,268	2,408	2,302	2,054	L823	L641	1,539	1,462	1,411	1,400	1,436	L570	1,840	1,900	L859	1,773	1,636	1,506	2,408	L400
10	L	20	We	L440	1446	1491	1,549	L 660	L,904	2,256	2,365	2,202	1,950	L743	1,594	L499	1436	1,401	1,402	L443	1,559	1,778	1,794	L7 14	4593	1,4 15	1,241	2,365	1,241
n	1	21	Th	£129	L081	1068	1,067	1,108	1,266	L5 18	L596	1544	1,529	1,531	1,529	1,529	1,507	1491	1497	1,546	1,640	1,791	1790	L698	1,551	1,371	1,189	L791	1067
Ø	1	22	Fr	L050	978	943	934	957	1,075	1,305	1412	1,420	1,458	1,498	L,S 18	LS23	1,5 19	1,5 18	1,524	1,533	Ļ563	1,691	1674	1,587	1487	1366	1,223	1691	934
Ю	1	25	Mo	1,109	1,036	997	982	992	1080	L280	L382	1,401	1,449	L,489	L,499	L493	L469	1,435	1,421	1,438	L534	1,762	L8 19	1,760	1,646	1,501	4355	1,819	982
Ø	1	26	Tu	L267	1,251	1,274	1,326	1,430	1677	2,050	2,204	2,074	1,850	1,693	1,589	1.5 14	1,451	1,4 18	1,409	L452	1,590	1,876	L984	1968	1,915	1,796	1,671	2,204	1,251
10	1	27	We	16 B	L625	1,673	1,756	1,896	2,182	2,586	2,720	2,517	2,186	1942	L,750	1,609	1,499	1,431	1,4 M	L453	1,591	1,892	2,010	2,027	1990	1,886	L763	2,720	L4 14
Ø	L	28	Th	L709	L735	1,799	L888	2,029	2,306	2,688	2,795	2,563	2,170	1,866	1,663	Ļ540	L456	1,396	1,388	L422	1,528	L781	1,866	1,848	1,764	1,623	L485	2,795	L388
α	L	29	Fr	1,400	L383	L389	1,4 16	1,494	1,693	1,990	2,068	1958	1807	1,654	1,537	L464	1,4 B	1,381	L372	L393	1,459	1,627	1,632	1,566	1481	1365	1,229	2,068	1,229
2.5	-	AVG	100	2,149	2,161	2,206	2,266	2,370	2,593	2,873	2,967	2,821	2,568	2,321	2,106	1945	1,817	L732	1,710	1778	1,982	2,295	2,386	2,386	2,321	2,197	2,070	2,967	1,710
-	127	MAX	12	3,782	3,872	3,991	4,84	4,323	4,627	4,826	4,900	4,660	4,232	3,773	3,295	2,884	2,585	2,412	2,382	2,514	2,917	3,387	3,620	3,743	3,745	3,648	3,576	4,900	2,382
	1000	MIN		1020	978	943	934	957	L075	1,280	1,382	1,401	1449	1,489	1499	1464	14 B	1381	L372	1393	1459	1,627	1632	1,566	1,481	1365	1,189	1,632	934

4. Please provide, on a system-wide basis, historical annual heating degree day (HDD) and cooling degree day (CDD) data for the period 2001 through 2010 and forecasted annual HDD and CDD data for the period 2011 through 2020. Describe how the Company derives system-wide temperature if more than one weather station is used. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

For modeling purposes, Seminole uses heating degree hours (HDH), not heating degree days (HDD) and cooling degree hours (CDH), not cooling degree days (CDD). Seminole obtains hourly weather data for five weather stations located in or around Seminole's member's service area. In order to reflect weather conditions in each member's service territory, different weather stations are assigned to individual member systems based on geographic proximity. Most of the member systems are assigned multiple weather stations. Seminole's system-wide temperature represents a weighted average temperature of the member systems' average temperature. Each member's peak demand as a percentage of Seminole's total demand is used as the weighting factor.

N. all	Year	HDH	CDH
	2001	12,507	28,530
100	2002	13,853	35,064
1.30	2003	15,330	32,651
	2004	13,460	32,528
Act	2005	12,302	33,708
ual	2006	10,302	33,434
15	2007	9,811	35,486
A State of the	2008	11,486	32,654
	2009	13,167	36,737
1.	2010	26,236	37,859
	2011	12,713	33,624
i da	2012	12,713	33,624
4 6	2013	12,713	33,624
-	2014	12,713	33,624
roj	2015	12,713	33,624
acte	2016	12,713	33,624
e	2017	12,713	33,624
	2018	12,713	33,624
1997	2019	12,713	33,624
155	2020	12,713	33,624

5. Please provide the following data to support Schedule 4 of the Company =s Ten-Year Site Plan: the 12 monthly peak demands for the years 2008, 2009, and 2010; the date when these monthly peaks occurred; and, the temperature at the time of these monthly peaks. Describe how the Company derives system-wide temperature if more than one weather station is used. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Seminole obtains hourly weather data for five weather stations located in or around Seminole's member's service area. In order to reflect weather conditions in each member's service territory, different weather stations are assigned to individual member systems based on geographic proximity. Most of the member systems are assigned multiple weather stations. Seminole's system-wide temperature represents a weighted average temperature of the member systems' average temperature. Each member's peak demand as a percentage of Seminole's total demand is used as the weighting factor.

Year	Month	Peak Demand	Date	Day of	Hour	Temperatu re
		(MW)		week		(F)
	1	4,221	3	Thursday	8	29.3
	2	3,345	28	Thursday	8	37.
	3	2,844	9	Sunday	9	40.:
	4	2,834	12	Saturday	17	87.
	5	3,566	31	Saturday	17	93.
08	6	3,576	5	Thursday	17	95.
20	7	3,590	21	Monday	16	93.
	8	3,604	6	Wednesday	16	93.
	9	3,630	7	Sunday	17	92.
	10	3,113	12	Sunday	17	88.
	11	3,182	20	Thursday	8	36.
	12	3,406	3	Wednesday	8	37.
10 10	1	4,670	22	Thursday	8	29.
	2	4,738	6	Friday	8	28.
	3	3,417	3	Tuesday	8	36.
	4	2,751	30	Thursday	18	89.
	5	3,443	11	Monday	18	93.
6	6	3,818	22	Monday	17	97.
200	7	3,577	5	Sunday	17	94.
	8	3,583	11	Tuesday	17	94.
	9	3,361	20	Sunday	17	92.
	10	3,486	9	Friday	17	93.
	11	2,466	1	Sunday	15	42.
	12	3,118	29	Tuesday	8	37.
1.50	1	5,047	11	Monday	8	25.
	2	3,746	26	Friday	8	34.
	3	3,478	5	Friday	8	36.
	4	2,444	23	Friday	18	86.
	5	3,257	22	Saturday	17	92.
0	6	3,416	24	Thursday	17	98.
201	7	3,548	27	Tuesday	17	97.
	8	3,448	2	Monday	17	95.
	9	3,428	11	Saturday	15	94
	10	2,921	27	Wednesday	17	90
	11	2,334	8	Monday	8	42
	12	4 315	28	Tuesday	<u>٩</u>	27

6. Please discuss any recent trends in customer growth, by customer type (residential, industrial & commercial, etc), and as a whole. Please explain the nature or reason for these trends, and identify what types of customers are most affected by these trends. (For example, is a decline in customers a loss of temporary construction meters or a decline in population?)

Residential, commercial, and total consumers served by the Seminole system declined in 2010. The reason for the decline is that beginning in 2010 Seminole started the process of phasing out their all requirements service to Lee County Electric Cooperative (LCEC) and only served approximately 70 percent of the LCEC total load requirements. However, collectively the other nine Members showed residential consumer growth of less than 1 percent while commercial/industrial and other consumers declined slightly. This serves to illustrate that the effects of the economy; the over building in the housing and commercial markets, Florida's high unemployment rate, and Florida's slower population growth are still holding back consumer growth.

7. Please discuss any impacts of "smart" or digital meter installations on forecasting sales and net energy for load. Please explain the nature or reason for these trends, and identify what types of customers are most affected by these trends. (For example, are increased sales due to more accurate measurement of low-load conditions?)

The forecast does not directly reflect any effects of smart meter programs of the Members.

RENEWABLE GENERATION

8. Please provide the estimated total capacity of all renewable resources the utility owns or purchases as of January 1, 2011. Include in this value the sum of all utility-owned, and purchased power contracts (firm and non-firm), and purchases from as-available energy producers (net-metering, self-generators, etc.). Please also include the estimated total capacity of all renewable resources (firm and non-firm) the utility is anticipated to own or purchase as of the end of the planning period in 2020.

ALL STREET	Renewable Res	ource Capacity
Fuel Type	(M	W)
	Existing	Planned
Solar	0	0
Wind	0	0
Biomass	13	38
Municipal Solid Waste	93	58
Waste Heat	0	0
Landfill Gas	17	2
Hydro	0	0
Total	123	98

Existing represents as of Jan 2011

Planned represents all resources as of Jan 2020

9. Please provide a description of each existing utility-owned renewable generation resource and each renewable purchased power agreement as of January 1, 2011. For both utilityowned and purchased resources, please divide them into Firm and Non-Firm categories as shown below. Please also include those renewable resources which provide fuel to conventional facilities, if applicable, with estimates of their capacity and energy contributions. As part of this response, please include the description of the unit's generator type, fuel type, commercial in-service date, seasonal net capacity (even if not considered firm capacity), annual energy generation. For purchased power agreements, also provide the contract start and end dates. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

Existing Renewables as of January 1, 2011

Facility Name	Unit Type	Fuel Type	Commercial	MetCa	pacity	Annual	Capacity Factor	
State Sec.			In-Service Date	(k)	W)	Generation		
12.00 M 10 10 10		Non-Tenter of S	(MM/YYYY)	Sum	Win	(MWh)	(%)	
N/A								

Utility-Owned Firm Renewable Resources

Utility-Owned Non-Firm Renewable Resources

Facility Name	Unit Type	Fuel Type	Commercial	Net Ci	apacity	Annual	Capacity
		Section Law	m-service Date	(k	W)	Generation	ractor
	1-1-1-1	1242 - 227	(MM/YYYY)	Sum	Win	(MWh)	(%)
N/A							

Firm Renewable Purchased Power Agreements

Facility Name	That & Treme	Evel Trees	Unit Commercial	Net Ca	apacity	Annual	Capacity	Contract Start	Contract End
Facility Name	Unit Type	Fuel Type	In-Service Date	(k	W)	Generation	Factor	Date	Date
man Vesting		10000	(MM/YYYY)	Sum	Win	(MWh)*	(%)	1. P. C. S.	Mrs. Marris L.
Hillsborough Waste to Energy	ST	MSW		38,000	38,000	319,580	96.0	Mar-10	Feb-25
Lee County Resource Recovery	ST	MSW		50,000	55,000	404,085	83.9	Арг-07	Dec-16
Seminole Landfill	ST	LFG		6,000	6,000	42,050	80.0	Oct-07	Mar-18
Brevard Landfill	ST	LFG		9,000	9,000	67,280	85.3	Арг-08	M ar-18
Telogia Power	ST	WDS		13,000	13,000	93,204	81.8	Jul-07	Nov-23
Timberline Energy	ST	LFG		2,000	2,000	13,455	96.0	Feb-08	M ar-20

* 2011 projected data or first full year of availability, as applicable

Non-Firm Renewable Purchased Power Agreements

Paullin, Norra	Their Trees	Engl Tune	Unit Commercial	Net Ca	apacity	Annual	Capacity	Contract Start	Contract End
Facility Name	Unit Type	ruel Type	In-Service Date	(k	W)	Generation	Factor	Date	Date
- 50-P	See and		(MM/YYYY)	Sum	Win	(MWh)	(%)	A CONTRACTOR	Mar Barres
N/A									

10. Please provide a description of each existing utility-owned renewable generation resource and each renewable purchased power agreement planned during the 2011 through 2020 period. For both utility-owned and purchased resources, please divide them into Firm and Non-Firm categories as shown below. Please also include those renewable resources which provide fuel to conventional facilities, if applicable, with estimates of their capacity and energy contributions. As part of this response, please include the description of the unit's generator type, fuel type, commercial in-service date, seasonal net capacity (even if not considered firm capacity), annual energy generation. For purchased power agreements, also provide the contract start and end dates. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

Planned Renewables for 2011 through 2020

Facility Name	Unit Tune	Fuel Type	Commercial	Net Ca	apacity	Annual	Capacity Factor (%)	
Facility Name	Ontrype	ruei Type	In-Service Date	(k)	W)	Generation		
A State Mark	1-275	Sayles Toll	(MM/YYYY)	Sum	Win	(MWh)		
N/A								

Utility-Owned Firm Renewable Resources

Utility-Owned Non-Firm Renewable Resources

Facility Nama	Unit Tune	Eugl Tune	Commercial	Net Ca	pacity	Annual	Capacity	
raciity Name Unit Type		Fuel Type	In-Service Date	(k)	N)	Generation	Factor	
The second	24.73		(MM/YYYY)	Sum	Win	(MWh)	(%)	
N/A								

Firm Renewable Purchased Power Agreements

Facility Name	Unit Type	Fuel Type	Unit Commercial	Net Ca	Net Capacity		Net Capacity		Net Capacity		pacity Annual Capacity Contract Star		Contract End
	Rea-		(MM/YYYY)	Sum	Win	(MWh)*	(%)	Date	Date				
City of Tampa- McKay Bay	ST	MSW		20,000	20,000	69,780	95.0	Aug-11	Jul-26				
Southeast Renewable Fuels	ST	AB		25,000	25,000	191,550	87.5	Jan-13	Nov-31				

* 2011 projected data or first full year of availability, as applicable

Non-Firm Renewable Purchased Power Agreements

Prolite Mana	Ilait Trunt	Evel Torne	Unit Commercial	Net C	apacity	Annual	Capacity	Contract Start	Contract End
racinty Name	Unit Type	Fuel Type	In-Service Date	(k	W)	Generation	Factor	Date	Date
1	The part of	701-100	(MM/YYYY)	Sum	Win	(MWh)	(%)	TI SATANCE IN	
N/A									

11. Please refer to the list of planned utility-owned renewable resource additions with an inservice date for the renewable generator during the 2011 through 2020 period outlined above. Please discuss the current status of each project.

Not applicable - Seminole does not have any planned utility-owned renewable resource additions during the 2011 through 2020 period.

12. Please refer to the list of existing or planned renewable PPAs with an in-service date for the renewable generator during the 2011 through 2020 period outlined above. Please discuss the current status of each project.

The City of Tampa's McKay Bay Waste to Energy facility is an existing facility. The City of Tampa is ending its current power purchase agreement with Tampa Electric Company and will be selling capacity and energy to Seminole immediately thereafter.

The Southeast Renewable Fuels facility is in development. A majority of the needed permits have been acquired and facility construction is expected to begin mid-year 2011. The facility is expected to begin commercial operation in 2013.

13. Please provide a description of each renewable facility in the company's service territory that it does not currently have a PPA with, including self-service facilities. As part of this response, please include the description of the unit's location, generator type, fuel type, commercial in-service date, seasonal net capacity (even if not considered firm capacity), annual energy generation. Please exclude from this response small customer-owned renewable resources, such as rooftop PV, which are more appropriately included in the following question. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

Not applicable - Seminole does not serve any retail load. Seminole's Members have customer-owned renewable generation programs whose impact is reflected in the load forecast.

Facility Name	Unit Type	Fuel Type	Commercial In-Service Date	Net C: (k	apacity W)	Annual Generation	Capacity Factor
		-	(MM/YYYY)	Sum	Win	(MWh)	(%)

14. Please provide the number of customer-owned renewable resources within the Company's service territory. Please organize by resource type, and include total estimated installed capacity and annual output. Please exclude from this response any customer-owned renewable resources already accounted for under PPAs or other sources. If renewable energy types beyond those listed were utilized, please include an additional row and a description of the renewable fuel and generator. For non-electricity generating renewable energy systems, such as geothermal cooling and solar hot water heaters, please use kilowatt-equivalent and kilowatt-hour-equivalent units. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Not applicable - Seminole does not serve any retail load. Seminole's Members have customer-owned renewable generation programs whose impact is reflected in the load forecast.

Customer	Renewable Type	# of Connections	Installed Capacity	Annual Output
Class			(kW)	(kWh)
Residential	Solar Photovoltaic			
Residential	Solar Thermal Water Heating			
Residential	Geothermal Heat Pump			
Residential	Wind Turbine			
Residential	Other (Describe)			
Commercial	Solar Photovoltaic			
Commercial	Solar Thermal Water Heating			
Commercial	Geothermal Heat Pump			
Commercial	Wind Turbine			
Commercial	Other (Describe)			

15. Please provide the annual output for the company's renewable resources (owned and purchased through PPA), retail sales, and the net energy for load for the period 2010 through 2020. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Annual Out	put (GWh)	Actua I	15	RE	192	T	Proje	ected				Se la
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
D	Utility	0	0	0	0	0	0	0	0	0	0	0
Kenewable	PPA	756	1008	1108	1297	1364	1366	1368	916	822	791	783
Generation	Total	756	1008	1108	1297	1364	1366	1368	916	822	791	783
Retail	Sales	0	0 0 0 0 0 0 0 0 0 0									
Net Energy	y for Load	17346	17261 17884 18490 15828 16212 16693 17178 17669 18180 1869						18691			

16. Provide, on a system-wide basis, the historical annual average as-available energy rate in the Company's service territory for the period 2001 through 2010. Also, provide the forecasted annual average as-available energy rate in the Company's service territory for the period 2011 through 2020. Please use the Consumer Price Index to calculate real as-available energy rates. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

1 Aug	As-Availa	ble Energy	S. S. S. S. S. S.
Year	(\$/!	MWh)	CPI
12	Real	Nominal	
2001	3.19		
2002	3.19		
2003	3.19		
2004	3.19		
2005	4.50		
2006	5.00		
2007	6.39		
2008	6.39		_
2009	5.10		
2010	5.10		
2011	4.67		
2012	4.87		
2013	5.06		
2014	4.54		
2015	4.98		
2016	5.39		
2017	6.14		
2018	6.57		
2019	7.05		
2020	7.47		

17. Please discuss any studies conducted or planned regarding the use combinations of renewable and fossil fuels in existing or future fossil units. What potential does the Company identify in this area?

Seminole staff completed an assessment of the operational and economic feasibility associated with co-firing biomass in its pulverized coal units at its Seminole Generating Station (SGS). The assessment found that because SGS lacks excess mill (pulverizer) capability, direct blending biomass with coal ahead of the coal mills would not be feasible. Blending biomass acts much like wet coal and would cause significant derating which is deemed unacceptable. The only option at SGS would be to direct-feed biomass into the boiler using a separate pneumatic fuel feed system. Past assessments by staff of industry experience in this area suggest that co-firing capability of existing pulverized coal units (typical of SGS) would likely be limited to nominally 5% to avoid

unacceptable impacts on operational reliability, economy, or would require extensive plant modifications.

18. Please discuss any planned renewable generation or renewable purchased power agreements within the past 5 years that did not materialize. What was the primary reason these generation plans or purchased power contracts were not realized? What, if any, were the secondary reasons?

Seminole recently cancelled a purchased power agreement for the output from Timberline Energy's to be constructed Sarasota Bee Ridge facility (3.2 MW).

19. Please discuss whether the company purchases or sells Renewable Energy Credits. As part of this response, please discuss whether the company offers the sale of Renewable Energy Credits to its customers through a green pricing or similar program.

Seminole recently made a small number of ad hoc sales of Renewable Energy Credits to third parties. Seminole and its member systems do not offer a green pricing program.

TRADITIONAL GENERATION

20. Please provide the cumulative present worth revenue requirement of the Company's Base Case for the 2011 Ten-Year Site Plan. If available, please provide the cumulative present worth revenue requirement for any sensitivities conducted of the Company's generation expansion plan.

The cumulative present worth revenue requirement of the Company's Base case for the 2011 Ten-Year Site Plan is \$11.130 billion.

21. Please illustrate what the Company=s generation expansion plan would be as a result of sensitivities to the base case demand. Include impacts on unit in-service dates for any possible delays, cancellations, accelerated completion, or new additions as a result.

Seminole did not generate alternative expansion plans based on load sensitivities.

22. Please complete the following table detailing planned unit additions, including information on capacity and in-service dates. Please include only planned conventional units with an in-service date past January 1, 2011, and including nuclear units, nuclear unit uprates, combustion turbines, and combined-cycle units. For each planned unit, provide the date of the Commission's Determination of Need and Power Plant Siting Act certification (if applicable), and the anticipated in-service date.

C	Summer	Certification Dat	tes (if Applicable)	
Generating	Capacity	Need Approved	DDS A Cautified	In-Service Date
Unit Maine	(MW)	(Commission)	Proa Cerunea	12 Transie
The second	Nu	clear Unit Additio	ns / Uprates	
Crystal River	15			Apr-11
Crystal River	17			Jan-13
	Com	bustion Turbine U	Init Additions	A DANKA SI IGA
Unnamed CT1	158			Dec-18
Unnamed CT2	158			May-19
Unnamed CT3	158			May-19
Unnamed CT4	158			Dec-20
Unnamed CT5	158			Dec-20
Unnamed CT6	158			Dec-20
S - LALIER	C	ombined Cycle Uni	it Additions	
Unnamed CC1	196			Dec-20
Unnamed CC2	196			Dec-20
	S	team Turbine Uni	t Additions	

Planned Unit Additions for 2011 through 2020

23. For each of the generating units contained in the Company=s Ten-Year Site Plan, please discuss the Adrop dead@ date for a decision on whether or not to construct each unit. Provide a time line for the construction of each unit, including regulatory approval, and final decision point.

A definitive "drop dead" date has not been identified on whether or not to construct each unit in Seminole's Ten-Year Site Plan.

24. Please complete the following table detailing unit specific information on capacity and fuel consumption for 2010. For each unit on the Company's system, provide the following data based upon historic data from 2010: the unit's capacity; annual generation; resulting capacity factor; estimated annual availability factor; unit average heat rate; quantity of fuel burned; average cost of fuel; and resulting average energy cost for the unit's production. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Plant	Unit#	Unit Type	Fuel Type	Nameplate	Net Ci	apacity	Annual	Capacity	Availabilit	In-Service		
				Capacity	(M	(MW)		(MW)		Factor	y Factor	Date
A DECEMBER OF THE			The second	(MW)	Sum	Win	(MWh)	(%)	(%)			
SGS	1	ST	BIT	715	647	660	4,513,333.0	76.3	88.9	Feb-84		
SGS	2	ST	BIT	715	663	666	4,416,186.0	73.3	86.5	Dec-84		
CR	3	ST	NUC	890	13	13	0.0	0.0	0.0	M ar-77		
MGS	1	СТ	NG	587	158	172	847,304.5	59.0	90.0	Jan-02		
MGS	2	CT	NG	587	158	172	768,803.5	53.5	89.3	Jan-02		
MGS	3	CA	NG	587	168	172	885,391.0	60.9	95.2	Jan-02		
MGSPWCT	4	CT	NG	312	54	62	66,937.8	14.2	99.1	Dec-06		
MGSPWCT	5	CT	NG	312	54	62	57,332.8	12.1	95.8	Dec-06		
MGS PW CT	6	СТ	NG	312	54	62	58,332.8	12.3	98.4	Dec-06		
MGS PW CT	7	CT	NG	312	54	62	63,640.8	13.5	98.3	Dec-06		
MGS PW CT	8	CT	NG	312	54	62	72,224.8	15.3	97.7	Dec-06		

Plant	Unit #	Fuel Type	Heat Rate	Total Fuel Burned	Total Fuel Cost	Unit Fu	el Cost
			(BTU/kWh)	(MMBTU)	(\$000)	(\$/MMBT U)	(¢/kWh)
SGS	1	BIT	9,914	44,743,223.8	309,399	3.49	0.035
SGS	2	BIT	9,924	43,827,816.7	309,399	3.49	0.035
CR	3	NUC	0	0.0	0	0.00	0.000
MGS	1	NG	7,657	6,488,090.5	142,130	7.49	0.057
MGS	2	NG	7,681	5,905,115.7	142,130	7.49	0.057
MGS	3	NG	7,426	6,575,161.7	142,130	7.49	0.057
MGSPWCT	4	NG	11,518	770,975.7	28,079	7.65	0.088
MGS PW CT	5	NG	11,527	660,867.5	28,079	7.65	0.088
MGS PW CT	6	NG	11,526	672,326.6	28,079	7.65	0.088
MGS PW CT	7	NG	11,521	733,178.0	28,079	7.65	0.088
MGSPWCT	8	NG	11,514	831,570.2	28,079	7.65	0.088

25. For each unit on the Company's system, provide the following data based upon historic data from 2010 and forecasted capacity factor values for the period 2011 through 2020. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Plant	Unit#	Unit Type	Fuel Type	Actual	Evel			115	Proj	ected	2545	1817	1.12	Vara-t
Tiant	Curt #	oun rype	Fuer Type	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
SGS	1	ST	BIT	76.33	83.7	83,6	80.1	80.0	81.9	82.5	86.8	85.9	87.3	88.2
SGS	2	ST	BIT	73.27	84.1	79.6	84.3	82.6	84.1	84.6	86.7	87.6	89.0	91.5
CR	3	ST	NUC	0	94.1	86.1	94.0	85.9	94.0	85.6	94.0	85.5	94.0	85.6
MGS	1	CC	NG	58.98	61.4	64.9	69.6	48.1	45.2	48.0	56.2	56.7	57.1	51.1
MGS	2	CC	NG	53.51	64.4	64.1	68.1	49.9	45.0	49.5	55.6	56.4	62.3	64.0
MGS PW CT	4	CT	NG	14.15	12.0	19.2	12.1	7.5	11.3	9.5	10.7	10.2	13.1	16.3
MGS PW CT	5	CT	NG	12.12	12.5	18.1	8.3	5.0	8.9	7.7	8.1	8.9	11,1	15.2
MGS PW CT	6	CT	NG	12.33	11.0	16.7	6.9	4.3	7.0	6.0	7.3	6.8	9.8	14.2
MGS PW CT	7	CT	NG	13.45	10.6	11.3	6.2	3.4	5.6	5.2	7.1	6.9	9.5	13.3
MGS PW CT	8	СТ	NG	15.27	13.0	12.9	4.7	3.2	5.8	4.4	6.3	6.0	8.5	12.1

Projected Unit Information - Capacity Factor (%)

Note: Crystal River 3 does not reflect current extended outage.

26. Please complete the table below, providing a list of all of the Company's steam units or combustion turbines that are candidates for repowering. As part of this response, please provide the unit's fuel and unit type, summer capacity rating, in-service date, and what potential conversion/repowering would be most applicable. Also include a description of any major obstacles that could affect repowering efforts at any of these sites, such as unit age, land availability, or other requirements.

Seminole's steam generating units are not capable of repowering.

During the design stage of MGS PW facility, consideration was given for the potential expansion to a combined cycle configuration. At this particular time a detailed evaluation has not been performed to determine if there are any constraints.

Plant Name	Fuel & Unit Type	Summer Capacity (MW)	In-Service Date	Potential Conversion Type
N/A				

27. Please complete the table below, in electronic (Excel) and hard copy, regarding the Company's generation fleet and the typical use of each unit. Please identify capacity type as either Baseload, Intermediate, or Peaking, and group units by their capacity type. Please use the abbreviations for fuel and generation facilities from the FRCC Load and Resource Plan for the table below. (For example, a combustion turbine that is not part of a combined cycle unit is identified with generator code "GT.") Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Plant	Unit#	Unit Type	Fuel Type	Typical Capacity Factor	Capacity Type	Summer Capacity
The second second		20101223		(%)	States and	(MW)
SGS	1	ST	BIT		Baseload	647
SGS	2	ST	BIT		Baseload	663
CR	3	ST	NUC		Baseload	13
State of the			MARCHINE	Sub-Total	Baseload	1323
MGS	1	СТ	NG		Intermediate	158
MGS	2	CT	NG		Intermediate	158
MGS	3	CA	NG		Intermediate	168
Australia Asta	The state	Land to the Party of the Party	-MASSAL STREET	Sub-Total	Intermediate	484
MGS PW CT	4	GT	NG		Peaking	54
MGS PW CT	5	GT	NG		Peaking	54
MGS PW CT	6	GT	NG		Peaking	54
MGS PW CT	7	GT	NG		Peaking	54
MGS PW CT	8	GT	NG	and the state	Peaking	54
THE OWNER WITH	Territory and	Section 250	and the	Sub-Total	Peaking	270
	Martin and	DECISION OF	1.1912 4.61	AN CONTRACT	Total	2077

Existing Facilities as of January 1, 2011

Planned Facilities during 2011 to 2020

Plant	Unit#	Unit Type	Fuel Type	Typical Capacity Factor	Capacity Type	Summer Capacity
1212 (See 1 - See	12018-200	Saliving		(%)	Had San San	(MW)
and the state of	A SULE VILLE		The Allenson	Sub-Total	Baseload	
Unnamed	1	CC	NG		Intermediate	196
Unnamed	2	CC	NG		Intermediate	196
		CALCULATE ST	the other state	Sub-Total	Intermediate	392
Unnamed	1	CT	NG		Peaking	158
Unnamed	2	СГ	NG		Peaking	158
Unnamed	3	CT	NG		Peaking	158
Unnamed	4	СТ	NG		Peaking	158
Unnamed	5	СТ	NG		Peaking	158
Unnamed	6	СТ	NG		Peaking	158
Contractor of the		STATISTICS.	122211 9	Sub-Total	Peaking	948
and the Len	3 P.M. 1	Warst Bark	257786	AN TRACK	Total	1340

28. Please complete the table below regarding the system's installed capacity, categorized by capacity type, for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

C.	Year	Baseload Capacity*	Intermediate Capacity*	Peaking Capacity*	Total Installed Capacity*
FIER	2001	1,345	572	0	1,917
	2002	1,345	572	0	1,917
Est	2003	1,345	572	0	1,917
	2004	1,345	572	0	1,917
ual	2005	1,345	541	0	1,886
Act	2006	1,345	533	280	2,158
	2007	1,345	567	280	2,192
	2008	1,345	567	280	2,192
1. 1	2009	1,341	540	310	2,191
1.	2010	1,339	516	310	2,165
	2011	1,341	516	310	2,167
12.5	2012	1,343	538	310	2,191
	2013	1,343	538	310	2,191
p	2014	1,343	538	310	2,191
octe	2015	1,343	538	310	2,191
roje	2016	1,343	538	310	2,191
4	2017	1,343	538	310	2,191
1 store	2018	1,343	538	490	2,371
-	2019	1,343	538	850	2,731
	2020	1,343	992	1,390	3,725

*Winter Ratings

29. Please provide the system average heat rate for the generation fleet for each year for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

1.1.	Year	System Average Heat Rate	
		Heat Rate (BTU/kWh) 9,867 9,418 9,519 9,560 9,476 9,513 9,986 9,676 9,519	
	2001	9,867	
	2002	9,418	
	2003	9,519	
	2004	9,560	
ual	2005	9,476	
Act	2006	9,513	
	2007	9,986	
2.6	2008	9,676	
1	2009	9,519	
	2010	9,465	
The P	2011	9,384	
Ceso.	2012	9,377	
615-	2013	9,326	
P	2014	9,509	
ecte	2015	9,536	
roj	2016	9,493	
4	2017	9,439	
1	2018	9,421	
503	2019	9,407	
-	2020	9,416	

30. Please provide the average cost of a residential customer bill, based upon a monthly usage of 1200 kilowatt-hours, in nominal and real dollars for the period 2001 through 2020. Please use the Consumer Price Index to calculate real residential bill values. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Y	ear	Resid (\$/12	ential Bill 00-kWh)	СРІ
-		Real	Nominal	1
-	2001	and the second second		
	2002			
	2003			
1.1	2004			
ual	2005			
Act	2006			
4	2007			
	2008			
	2009			
	2010			
17.0	2011			
	2012			
ted	2013			
jec	2014			
ro	2015			
4	2016			
	2017			
	2018			
	2019			
	2020			

Not applicable - Seminole does not serve any retail load and, as a result, cannot provide the average cost of a residential customer bill.

POWER PURCHASES / SALES

31. Please identify each of the Company's existing and planned power purchase contracts, including firm capacity imports reflected in Schedule 7 of the Company's Ten-Year Site Plan. Provide the seller, capacity, associated energy, and term of each purchase, and provide unit information if a unit power purchase. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

ALL PRINTED	Contra	t Term	Contract	Capacity	Annual	Capacity	Primary	The second
Seller	Contrac	t ierm	(M	(W)	Generation	Factor	Fuel	Description
	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)	
Progress Energy								
Florida*	1/1/1999	12/31/2013	150	150	270,340.9	20.6	NG	
Progress Energy								
Florida*	6/1/2006	12/31/2013	150	150	130,694.4	9.9	NG	
Progress Energy								
Florida*	12/1/2006	12/31/2013	150	150	402,105.8	30.6	NG	
Progress Energy								
Florida*	2/1/1984	12/31/2013	487	31	2,195.4	0.001	NG	
Progress Energy								
Florida*	1/1/2010	7/30/2020	150	150	612,557.0	5.1	NG	
City of Gainesville*	2/10/1975	12/31/2012	25	25	81,734.8	4.5	Coal	
GenOn Florida, LP	12/1/2008	5/31/2014	459	546	138,001.8	2.9	NG/DFO	Osceola
Oleander Power								
Project, LP	12/1/2002	5/31/2021	459	546	16,672.3	0.3	NG/DFO	Oleander
Calpine								
Construction								
Finance Company,								
LP	6/1/2009	5/31/2014	340	360	1,423,801.6	45.1	NG	Osprey
Hardee Power								
Partners, Limited	1/1/1993	12/31/2012	290	356	0.0	0.0	NG/DFO	Hardee
Lee County	12/1/1999	12/31/2028	50	55	404,085.0	83.9	MSW	LCRR
Hillsborough								
County	3/1/2010	2/28/2025	38	38	319,580.0	96.0	MSW	HC WTE
Telogia Power LLC	7/1/2009	11/30/2023	13	13	93,204.0	81.8	WDS	Telogia
Landfill Energy								
Systems	1/1/2008	3/31/2018	6	6	42,050.0	80.0	LFG	Seminole
Landfill Energy								
Systems	4/1/2008	3/31/2018	9	9	67,280.0	85.3	LFG	Brevard
Timberline Energy							~~~	
LLC	2/1/2008	3/31/2020	2	2	13,454.6	96.0	LFG	Hernando

Existing Purchased Power Agreements as of January 1, 2011

* System Purchased Power Agreements

	Contract Term		Contract	Capacity	Annual	Capacity	Primary	
Seller	Contrac	ci i erm	(M	W)	Generation**	Factor**	Fuel	Description
Alexandra and a second	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)	
Progress Energy								
Florida*	1/1/2014	12/31/2020	150	150	254,209.3	19.3	NG	
Progress Energy								
Florida*	1/1/2012	12/31/2013	150	150	667,913.3	50.8	Coal	
Progress Energy								
Florida*	1/1/2014	5/31/2016	250	250	996,247.1	45.5	Coal	
Progress Energy								
Florida*	1/1/2014	12/31/2020		600	265.9	0.01	NG	
Progress Energy								
Florida*	1/1/2014	5/31/2016	150	150	209,333.0	15.9	NG	
Progress Energy								
Florida*	6/1/2016	12/31/2024	500	500	490,013.2	22.4	NG	
Calpine								
Construction							[
Finance Company,								
LP	6/1/2016	5/31/2019	245	250	557,763.0	25.5	NG	Osprey
Hardee Power								
Partners, Limited	1/1/2013	12/31/2027	360	445	509,903.0	13.1	NG/DFO	Hardee
Florida Power and								
Light Company*	6/1/2014	5/31/2021	200	200	107,114.3	6.1	NG	
Wheelabrator								
McKay Bay Inc	8/1/2011	7/31/2026	20	20	69,780.0	95.0	MSW	McKay Bay
Southeast								
Renewable Fuels,								Hendry
LLC	1/1/2013	11/30/2031	25	25	191,550.0	87.5	AB	County

Planned Purchased Power Agreements for 2011 through 2020

* System Purchased Power Agreements

** 2011 projected data or first full year of availability, as applicable

32. Please identify each of the Company's existing and planned power sales, including firm capacity exports reflected in Schedule 7 of the Company's Ten-Year Site Plan. Provide the purchaser, capacity, associated energy, and term of each purchase, and provide unit information if a unit power sale. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Purchaser	Contract Term		Contract Capacity (MW)		Annual Generation	Capacity Factor	Primary Fuel	Description
	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)	
City of Winter Park	Jan-11	Dec-13	60	60	318,047	55.9	N/A	Load following, partial requirements sale to the City. Equivalent to Seminole native load.

Existing Power Sales as of January 1, 2011

Planned Power Sales for 2011 through 2020

Purchaser	Contract Term		Contract Capacity (MW)		Annual Generation	Capacity Factor	Primary Fuel	Description
	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)	

33. Please discuss and identify the impacts on the Company's capacity needs of all known firm power purchases and sales over the planning horizon. As part of this discussion, please include whether options to extend purchases or sales exist, and the potential effects of expiration of these purchase or sales.

Power purchases and sales are in line with the Company's capacity needs (see Question 31).

Due to recent declines in the forecasted demand of our member systems, Seminole is projecting excess capacity reserves through 2014. This excess coincides with the sale to the City of Winter Park. As no unilateral option exists for Seminole to extend the term of the sales agreement with the City, the current scheduled expiration of the agreement will not have any effect on Seminole's future capacity needs.

Seminole will continue to review its options for filling projected capacity needs in 2014 and beyond as it has in the past, with a careful review of all existing wholesale market and self-build alternatives. Seminole does not have the unilateral ability to extend the term of any of its purchase power agreements.

ENVIRONMENTAL ISSUES

34. Please discuss the impact of environmental restrictions, relating to air or water quality or emissions, on the Company's system during the 2010 period, such as unit curtailments. As part of your discussion, please include the potential for environmental restrictions to impact unit dispatch or retirement during the 2011 through 2020 period.

Seminole Electric Cooperative Inc. experienced system economic dispatch constraints in the first half of 2010 due to restrictions imposed in our Title V Air Operating Permit's annual (rolling 12 month) operating hours for Midulla Generating Station (MGS) Peaking Units (Units 4 through 8 Pratt & Whitney CTs). Because of this restriction Seminole was forced to dispatch larger and less efficient F class machines ahead of the Pratt & Whitney CTs. This was due to heavy dependence on the units in 2009 to cover both Seminole Generating Station (SGS) unplanned outages throughout the year of 2009 and the continued unavailability of the MGS Combined Cycle facility during the first 4 months of 2009.

In the 2011 through 2020 period there is a potential for environmental restrictions to impact unit dispatch or retirement due to the number of EPA regulations that have recently been proposed: Utility Maximum Achievable Control Technology(MACT), New Source Performance Standards(NSPS) for Greenhouse Gas, Reciprocating Internal Combustion Engine(RICE) National Emission Standards for Hazardous Air Pollutants(NESHAP), Clean Air Transport Rule, recent or pending National Ambient Air Quality Standards for NO2, SO2, ozone and PM2.5, Regional Haze Program, Steam Electric Effluent Guidelines, Coal Combustion Residuals, Numeric Nutrient Criteria, Total Maximum Daily Load(TMDL), and 316(b). It is too early to define, however, the potential magnitude of such an impact. 35. Please provide the rate of emissions, on an annual and per megawatt-hour basis, of regulated materials and carbon dioxide for the generation fleet each year for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

	Vaar	SC	X	N	NOX		cury	Partic	ulates	CO2e	
	Icar	lb/MWh	Tons	lb/M Wh	Tons	lb/MWh	Tons	lb/MWh	Tons	lb/MWh	Tons
	2001	6.553	29,833	5.369	24,442.27	0	0.000	0.111	506	2,092.23	9,524,699
1	2002	4.214	24,097	3.930	22,473.92	0	0.000	0.137	783	1,835.26	10,495,250
2	2003	4.598	27,370	3.668	21,832.46	0	0.000	0.165	980	1,863.77	11,093,180
	2004	4.773	26,710	3.611	20,204.50	0	0.000	0.116	651	1,844.55	10,321,579
ual	2005	5.335	31,452	3.977	23,448.40	0	0.000	0.125	735	1,866.38	11,003,371
Act	2006	3.886	22,781	3.819	22,385.35	0	0.000	0.175	1,028	1,836.16	10,763,661
	2007	3,959	20,339	4.075	20,933.59	0	0.000	0.215	1,105	2,042.86	10,493,976
10.01	2008	3.640	19,351	3.136	16,673.67	0	0.000	0.150	797	1,884.37	10,017,445
-	2009	4.076	20,590	0.903	4,562.21	7.9183E-06	0.040	0.148	745	1,747.08	8,825,602
31-21	2010	3.161	16,975	0.510	2,739.00	8.235E-06	0.044	0.124	665	1,947.83	10,459,377
	2011	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
19	2012	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
- 11	2013	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
P	2014	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
xte	2015	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
nje	2016	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
A	2017	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
	2018	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
	2019	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642
	2020	3.280	17,614	1.004	5,391.59	7.4491E-06	0.040	0.155	835	1,951.79	10,480,642

FUEL

36. Please provide, on a system-wide basis, the historic average fuel price (in nominal \$/MMBTU) for each fuel type for the period 2001 through 2010. Also, provide the forecasted annual average fuel price (in nominal \$/MMBTU) for each fuel type for the period 2011 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Nom	inal Fuel	Umanium	Cool	Natural	Residual	Distillate
(\$/N	1MBTU)	Oranium	Coal	Gas	Oil	Oil
1.15	2001	0.53	1.77	N/A	N/A	6.11
	2002	0.45	1.88	4.19	N/A	6.29
13	2003	0.46	1.72	6.33	N/A	6.40
	2004	0.54	1.98	7.22	N/A	8.15
ual	2005	0.51	2.02	9.92	N/A	15.05
Act	2006	0.57	2.11	8.39	N/A	13.70
-	2007	0.44	2.18	10.06	N/A	16.68
16	2008	0.41	2.26	10.29	N/A	19.80
18.	2009	0.50	3.62	5.01	N/A	13.94
.2.23	2010	0.00	3.40	5.39	N/A	16.67
	2011	0.53	3.15	5.28	N/A	19.33
43	2012	0.54	3.23	5.70	N/A	19.56
	2013	0.64	3.55	5.90	N/A	19.36
-	2014	0.64	3.53	5.73	N/A	19.18
cte	2015	0.67	3.60	6.27	N/A	19.18
roje	2016	0.67	3.68	6.76	N/A	19.22
A	2017	0.73	4.04	7.26	N/A	19.28
1.13	2018	0.74	4.17	7.79	N/A	19.36
332	2019	0.81	4.30	8.21	N/A	19.47
	2020	0.81	4.44	8.64	N/A	19.48

37. Please provide, on a system-wide basis, the historic annual fuel usage (in GWh) for each fuel type for the period 2001 through 2010. Also, provide the forecasted annual fuel usage (in GWh) for each fuel type for the period 2011 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Fu (el Usage GWh)	Uranium *	Coal	Natural Gas	Residual Oil	Distillate Oil
SHA	2001	111	8995	0	0	0
1	2002	124	8941	2371	0	0
	2003	113	9568	2227	0	0
1.5	2004	125	9015	2051	0	0
ual	2005	109	9784	3644	0	127
Act	2006	119	9631	6415	478	389
	2007	119	10241	5477	40	1446
	2008	273	10555	5369	629	95
	2009	188	7552	8916	28	301
ER. L	2010	158	9142	6981	43	267
- Dia	2011	170	9608	6298	20	101
and all	2012	275	9553	6150	16	89
No.	2013	297	9575	6609	12	89
P	2014	410	9658	3933	2	62
cte	2015	417	9952	3980	2	70
roje	2016	281	9746	4792	1	66
P	2017	144	9777	5817	0	75
Xen	2018	131	9782	6399	0	75
all's	2019	144	9939	6743	0	88
TAR	2020	131	10161	7178	0	98

* In 2010, 101 GWh of the total Uranium fuel usage represents alternative energy provided to Seminole during CR3 unscheduled outage for the year.

38. Please discuss how the Company compares its fuel price forecasts to recognized, authoritative independent forecasts.

Seminole utilizes recognized, authoritative independent third party commodity price forecasts and/or NYMEX natural gas and oil commodity prices as a starting point for projecting the delivered price of fuel to the generating resources. Seminole also utilizes authoritative independent third party forecasts for escalation or economic market indices for adjusting future prices fuel related service cost, such as transportation or contractual fuel price adjustments. Forecasts are then adjusted to include known and measurable conditions from Seminole's long-term fuel supply, storage, and transportation agreements.

39. For each fuel type (coal, natural gas, nuclear fuel, etc.), please discuss in detail the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Please see Section 5.2 of Seminole's Ten-Year Site Plan.

40. What steps has the Company taken to ensure gas supply availability and transport over the 2011 through 2020 planning period?

Seminole maintains a balanced portfolio of long-term (1 to 5 years) natural gas supply purchase arrangements for a portion of our projected baseload requirements and relies on shorter term purchase transactions to obtain the remaining requirements. Since natural gas is an incremental fuel, Seminole's strategy provides flexibility to obtain its incremental energy requirements either from economic purchased power or natural gas at prevailing market conditions.

For natural gas transportation, Seminole holds various contracts for firm and interruptible transportation capacity on both Florida Gas Transmission (FGT) and Gulfstream pipelines. Seminole currently has agreements for 102,000 Dth/day of firm natural gas transportation capacity. Because of projected load increases and potential increase in gas utilization, Seminole has also executed a Firm Transportation Service Agreement with FGT, for an additional 30,000 Dth/day of firm natural gas transportation, starting on April 1, 2012.

Seminole also holds interruptible transportation service contracts with both pipelines to assist Seminole in meeting the transportation requirements for peaking operations. Additionally, Seminole routinely purchases delivered natural gas in the Florida market whereby the supplier provides the transportation. Seminole maintains a diverse portfolio of standard natural gas contracts, GISB/NAESB, with over 50 suppliers and other Florida utilities that provide natural gas commodity and/or may have excess transportation capacity.

41. Regarding existing and planned natural gas pipeline expansion projects, including new pipelines, affecting the Company for the period 2011 through 2020, please identify each project and discuss it in detail.

Seminole is aware of Transco's Mobile Bay South II expansion that is projected inservice in May 2011. This pipeline expansion will bring approximately 0.38 Bcf/day of gas supply from Transco station 85 down to the FGT and Gulfstream pipeline receipt points in the Mobile Bay area increasing the amount of gas supply available to FGT and Gulfstream shippers.

Seminole is also aware of the Gulf LNG terminal project under construction in Pascagoula, MS. This LNG regasification plant is projected in-service during 2011 and will have base send-out capacity of 1.3 Bcf/day. This project will provide additional gas supply to FGT and Gulfstream shippers provided the U.S. market can attract LNG supplies.

Lastly, Seminole is aware of the Port Dolphin LNG Terminal planned for the Tampa Bay area which will supply natural gas through a FERC regulated pipeline servicing only the Florida gas market. Seminole is supportive of this project and has had numerous discussions with the Port Dolphin representatives. In the future Seminole may contract for gas supply and/or transportation services for this needed supply into the Florida gas market.

42. Please discuss in detail any existing or planned natural gas pipeline expansion project, including new pipelines and off-shore projects, outside the State of Florida that will affect the Company over the period 2011 through 2020.

Seminole is aware of Transco's Mobile Bay South II expansion that is projected inservice in May 2011. This pipeline expansion will bring approximately 0.38 Bcf/day of gas supply from Transco station 85 down to the FGT and Gulfstream pipeline receipt points in the Mobile Bay area increasing the amount of gas supply available to FGT and Gulfstream shippers.

Seminole is also aware of the Gulf LNG terminal project under construction in Pascagoula, MS. This LNG regasification plant is projected in-service during 2011 and will have base send-out capacity of 1.3 Bcf/day. This project will provide additional gas supply to FGT and Gulfstream shippers provided the U.S. market can attract LNG supplies.

43. Regarding unconventional natural gas production (shale gas, tight sands, etc.), please discuss in detail the expected industry factors and trends for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Seminole relies on our independent price forecasters for detailed information on supply and demand fundamentals in the gas market that will impact us. In general, unconventional natural gas production in the form of shale gas is expected to keep the U.S. market amply supplied and Seminole is further evaluating any actions we might take to benefit from this shift in the gas market production.

44. Regarding liquefied natural gas (LNG) imports to the United States, please discuss in detail the expected industry factors and trends for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Seminole relies on our independent price forecasters for detailed information on supply and demand fundamentals in the gas market that will impact us. In general, LNG imports to the U.S. are expected to be minimal over the period as a result of global gas market economics. Sufficient domestic natural gas production is expected to keep gas prices too low in the U.S. relative to other global markets to attract cargoes of LNG. Seminole is planning its gas supply portfolio to be without any LNG during the period.

45. Please discuss in detail the Company's plans for the use of firm natural gas storage for the period 2011 through 2020.

Seminole has a firm natural gas storage agreement with SG Resources Mississippi LLC for capacity through 2017. The arrangement provides storage for natural gas supply replacement in the event of hurricanes. As Seminole expands its use of natural gas or builds additional natural gas-fired generating capacity, we will evaluate the future addition of long-term firm storage capacity into our portfolio.

46. Please discuss the actions taken by the Company to promote competition within and among coal transportation modes.

Seminole is a "Captive Shipper" to the CSX Transportation (CSXT) for all delivery of Seminole's solid fuel requirements to the Seminole Generating Station. Seminole does not have, nor can we develop, any direct access to water transportation or other economic alternative modes of transportation. We could supply very small quantities of fuel in an emergency through truck deliveries from other power stations in Florida which could receive our solid fuel deliveries. There are no permitted solid fuel terminals in the vicinity to receive supplies through third party transactions.

In its annual solid fuel solicitations, Seminole does include suppliers capable of delivering sold fuel (coal and/or Petcoke) through an ocean port terminal in Charleston, SC servicing the southeast U.S. with interconnection to the CSXT facilities for delivery to the plant. This terminal facility has been used when economical.

Currently, Seminole is obtaining rail transportation arrangements with the CSX railroad through a CSXT transportation contract for service to our Seminole Generating Station. This contract provides access to several supply regions such as Illinois Basin, including West Kentucky and Indiana mines, the NAPP, and includes the Charleston, SC port terminal for imports of coal and/or petroleum coke.

The national trend for rail transportation rates indicates that the railroad(s) are significantly increasing rail transportation rates. As a captive shipper in the absence of competition, Seminole in 2008 could not reach agreement with CSXT on a new transportation arrangement and took rail service under CSXT specific tariff rates for Seminole. Seminole then challenged tariff rates effective January 1, 2009 before Department of Transportation's Surface Transportation Board (STB) and requested the STB establish reasonable jurisdictional rates for our solid fuel transportation. A STB decision was not issued in the case, as the parties settled and Seminole filed a motion to dismiss the case. The parties entered into a mutually agreeable transportation contract, the terms of which are confidential 47. Regarding coal transportation by rail, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company. Also include a discussion of any expected changes to terminals and port facilities that could affect coal transportation for the Company.

None, please also see answer to Question 46.

48. Regarding coal transportation by water, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company. Also include a discussion of any expected changes to terminals and port facilities that could affect coal transportation for the Company.

None, please also see answer to Question 46.

49. Regarding planned changes and construction projects at coal generating units, please discuss the expected changes for coal handling, blending, unloading, and storage for the period 2011 through 2020.

During the period of 2011 through 2020, the coal unloading rotary dumper will be replaced in 2012. No other expected changes for coal handling, blending, unloading, and storage at the Seminole Generating Station are contemplated at this time.

50. For the period 2011 through 2020, please discuss in detail the Company's plans for the storage and disposal of spent nuclear fuel. As part of this discussion, please include the Company's expectation regarding Yucca Mountain, dry cask storage, and litigation involving spent nuclear fuel, and the future of the Nuclear Waste Disposal Act.

Not applicable.

51. Regarding uranium production, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Not applicable.

52. Regarding the transportation of heavy fuel oil and distillate fuel oil, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Seminole's use of fuel oil for its own generating resources is limited to backup fuel in the event natural gas deliveries into Florida are curtailed. During previous major storm periods, fuel oil transportation was diverted away from utility generating facilities to meet the needs of Florida's residential and commercial transportation sector. It is anticipated that this situation will continue into the future when storms affect the southeast region. Therefore, utilities will be required to carry more fuel oil storage capability to meet any natural gas or fuel oil transportation interruption. Because of this, Seminole increased its storage capacity at its Midulla Generating Station in 2007.

53. Please discuss the effect of changes in fossil fuel prices on the competitiveness of renewable technologies.

While some renewable technologies (e.g., landfill gas, municipal solid waste, some biomass, etc.) are relatively competitive already to today's cost of fossil fuel used for electric generation, most are not. Higher fossil fuel prices should improve the competitiveness of the other renewable technologies that cannot compete on a head-tohead basis in the absence of subsidy or regulatory mandate (e.g., solar photovoltaic). Likewise, lower fossil fuel prices would likely hurt the competitiveness of renewable technologies.

54. Please discuss the effect of renewable resource development (for electric generation and non-generation technologies) on fossil fuel prices.

The state of Florida does not have a significant amount of renewable generation to reduce its reliance on fossil fuels. Fossil fuel prices are affected by greater outside forces then renewable generation.

TRANSMISSION

55. Please provide a list of all proposed transmission lines in the planning period that require certification under the Transmission Line Siting Act. Please also include those that have been approved, but are not yet in-service.

Seminole Electric Cooperative, Inc. does not have any proposed transmission lines during the planning period that require certification under the Transmission Line Siting Act.

Transmission Line	Line Length (Miles)	Nominal Voltage (kV)	Date Need Approved	Date TLSA Certified	In-Service Date

History and Forecast of Summer Peak Demand High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	Total	Wholesale	Retail	Interruptible	Residential Load Management	Residential Conservation	C / I Load Management	C / I Conservation	Net Firm Demand
HISTORY:									
2001									
2002									
2003				INCLUDED	IN TEN YEAR	SITE PLAN			
2004									
2005									
2006									
2007									
2008									
2009									
2010									
FORECAST:									
2011									
2012									
2013									
2014									
2015									
2016									
2017									
2018									
2019									
2020									

History and Forecast of Summer Peak Demand Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	Total	Wholesale	Retail	Interruptible	Residential Load	Residential Conservation	C / I Load Management	C / I Conservation	Net Firm Demand
HISTORY:									
2001									
2002									
2003				INCLUDED	IN TEN YEAR	R SITE PLAN			
2004									
2005									
2006									
2007									
2008									
2009									
2010									
FORECAST:									
2011									
2012									
2013									
2014									
2015									
2016									
2017									
2018									
2019									
2020									

History and Forecast of Winter Peak Demand High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	Total	Wholesale	Retail	Interruptible	Residential Load	Residential Conservation	C / I Load Management	C / I Conservation	Net Firm Demand
HISTORY:									
2000/01									
2001/02									
2002/03				INCLUDED	IN TEN YEAR	SITE PLAN			
2003/04									
2004/05									
2005/06									
2006/07									
2007/08									
2008/09									
2009/10									
FORECAST:									
2010/11									
2011/12									
2012/13									
2013/14									
2014/15									
2015/16									
2016/17									
2017/18									
2018/19									
2019/20									

History and Forecast of Winter Peak Demand Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	Total	Wholesale	Retail	Interruptible	Residential Load Management	Residential Conservation	C / I Load Management	C / I Conservation	Net Firm Demand
HISTORY:									
2000/01									
2001/02									
2002/03				INCLUDED	IN TEN YEAR	SITE PLAN			
2003/04									
2004/05									
2005/06									
2006/07									
2007/08									
2008/09									
2009/10									
FORECAST:									
2010/11									
2011/12									
2012/13									
2013/14									
2014/15									
2015/16									
2016/17									
2017/18									
2018/19									
2019/20									

History and Forecast of Annual Net Energy for Load - GWH High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Year	Total	Residential Conservation	C / I Conservation	Retail	Wholesale	Utility Use & Losses	Net Energy for Load	Load Factor (%)
HISTORY:								
2001								
2002								
2003				INCLUDED	IN TEN YEAR	SITE PLAN		
2004								
2005								
2006								
2007								
2008								
2009								
2010								
FORECAST:								
2011								
2012								
2013								
2014								
2015								
2016								
2017								
2018								
2019								
2020								

History and Forecast of Annual Net Energy for Load - GWH Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Year	Total	Residential Conservation	C / I Conservation	Retail	Wholesale	Utility Use & Losses	Net Energy for Load	Load Factor (%)
HISTORY:								
2001								
2002								
2003				INCLUDED	IN TEN YEAR	SITE PLAN		
2004								
2005								
2006								
2007								
2008								
2009								
2010								
FORECAST:								
2011								
2012								
2013								
2014								
2015								
2016								
2017								
2018								
2019								
2020								

Existing Generating Unit Operating Performance

(1)	(2)	(3)		(4)		(5)		(6)	
		Planned Ou (Pl	utage Factor OF)	Forced Ou (F0	tage Factor OF)	Equivalent Av (E	ailability Factor AF)	Average Ne Heat Rate	et Operating (ANOHR)
	Unit								
Plant Name	No.	Historical	Projected	Historical	Projected	Historical	Projected	Historical	Projected
SGS *	1	8.93%	8.13%	11.97%	1.54%	78.56%	90.33%	10,035	9,988
SGS *	2	9.58%	7.80%	1.86%	1.80%	87.99%	90.40%	9,935	9,788
MGS *	1	11.96%	5.28%	5.60%	4.91%	76.88%	89.80%	7,829	7,560
MGS *	2	12.55%	4.74%	6.20%	4.60%	73.83%	90.67%	7,829	7,522
MGS **	CT1	1.46%	0.74%	6.25%	2.98%	86.54%	96.28%	11,389	10,430
MGS **	CT2	2.48%	0.74%	13.38%	2.99%	75.45%	96.27%	11,389	10,470
MGS **	CT3	0.28%	0.74%	8.06%	2.98%	85.39%	96.28%	11,389	10,528
MGS **	CT4	0.92%	0.74%	5.86%	2.90%	88.01%	96.36%	11,389	10,545
MGS **	CT5	0.58%	0.74%	10.00%	2.99%	85.38%	96.27%	11,389	10,493

SGS
MGS

Seminole Generating Station

Midulla Generating Station

NOTE: * Historical - average of past five years

** Historical - average of past four years Projected - average of next ten years

Nominal, Delivered Residual Oil Prices Base Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Residual Oil	(By Sulfur Conter	nt)			
-	Less TI	han 0.7%	Escalation	0.7 -	2.0%	Escalation	Greater	Than 2.0%	Escalation
Year	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
HISTORY:									
2008									
2009		N/A			N/A			N/A	
2010									
FORECAST:									
2011									
2012									
2013									
2014									
2015		N/A			N/A			N/A	
2016									
2017									
2018									
2019									
2020									

ASSUMPTIONS: heat content, ash content

Nominal, Delivered Residual Oil Prices High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Residual Oil	(By Sulfur Conter	nt)			
-	Less T	han 0.7%	Escalation	0.7 -	2.0%	Escalation	Greater	Than 2.0%	Escalation
Year	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
HISTORY:									
2008									
2009		N/A			N/A			N/A	
2010									
FORECAST:									
2011									
2012									
2013									
2014									
2015		N/A			N/A			N/A	
2016									
2017									
2018									
2019									
2020									

ASSUMPTIONS: heat content, ash content

Nominal, Delivered Residual Oil Prices Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Residual Oil	(By Sulfur Conter	nt)			
_	Less T	han 0.7%	Escalation	0.7 -	2.0%	Escalation	Greater	Than 2.0%	Escalation
Year	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
HISTORY:									
2008									
2009		N/A			N/A			N/A	
2010									
FORECAST:									
2011									
2012									
2013									
2014									
2015		N/A			N/A			N/A	
2016									
2017									
2018									
2019									
2020									

ASSUMPTIONS: heat content, ash content

Nominal, Delivered Distillate Oil and Natural Gas Prices Base Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Distillate Oil			Natural Gas	
			Escalation			Escalation
Year	\$/BBL	c/MBTU	%	c/MBTU	\$/MCF	%
HISTORY:						
2008	115.41	1980		1029	10.29	
2009	81.25	1394	-29.6%	501	5.01	-51.3%
2010	97.19	1667	19.6%	539	5.39	7.7%
FORECAST	:					
2011	112.60	1933		528	5.28	
2012	113.92	1956	1.2%	570	5.70	8.1%
2013	112.75	1936	-1.0%	590	5.90	3.4%
2014	111.75	1918	-0.9%	573	5.73	-2.8%
2015	111.75	1918	0.0%	627	6.27	9.4%
2016	111.96	1922	0.2%	676	6.76	7.8%
2017	112.33	1928	0.3%	726	7.26	7.5%
2018	112.78	1936	0.4%	779	7.79	7.2%
2019	113.41	1947	0.6%	821	8.21	5.4%
2020	113.50	1948	0.1%	864	8.64	5.3%

NOTE: A non-firm delivery adder is included in the price of natural gas.

ASSUMPTIONS FOR DISTILLATE OIL: heat content, ash content, sulfur content

Nominal, Delivered Distillate Oil and Natural Gas Prices High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)
_		Distillate Oil			Natural Gas	
-			Escalation			Escalation
Year	\$/BBL	c/MBTU	%	c/MBTU	\$/MCF	%
HISTORY:						
2008						
2009	N/A				N/A	
2010						
FORECAST:						
2011						
2012						
2013						
2014						
2015	N/A				N/A	
2016						
2017						
2018						
2019						
2020						

ASSUMPTIONS FOR DISTILLATE OIL: heat content, ash content, sulfur content

Nominal, Delivered Distillate Oil and Natural Gas Prices Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Distillate Oil			Natural Gas	
_			Escalation			Escalation
Year	\$/BBL	c/MBTU	%	c/MBTU	\$/MCF	%
HISTORY:						
2008	N/A				N/A	
2009	N/A				100	
FORECAST:						
2011 2012						
2013						
2014						
2015	N/A				N/A	
2016						
2017						
2018						
2019						
2020						

ASSUMPTIONS FOR DISTILLATE OIL: heat content, ash content, sulfur content

Nominal, Delivered Coal Prices Base Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
_		Low Sulfur C	Coal (< 1.0%)			Medium Sulfur (Coal(1.0 - 2.0%)			High Sulfur (Coal (<u>> 2.0%)</u>	
			Escalation	% Spot			Escalation	% Spot			Escalation	% Spot
Year	\$/Ton	c/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase
HISTORY:												
2008									55.01	225.94		25.7%
2009		N/A				N/A			88.65	362.40	60.4%	17.9%
2010									85.74	339.80	-6.2%	27.0%
FORECAST:												
2011									76.60	315.28		25%
2012									78.49	323.05	2.5%	25%
2013									86.31	355.24	10.0%	25%
2014									85.77	353.00	-0.6%	25%
2015		N/A				N/A			87.51	360.20	2.0%	25%
2016									89.39	367.93	2.1%	25%
2017									101.54	403.57	9.7%	25% *
2018									104.96	417.17	3.4%	25% *
2019									108.26	430.28	3.1%	25% *
2020									111.78	444.27	3.3%	25% *

*NOTE: It is not known, at this time, what percentage of spot purchases will be made for this facility after 2012 due to various options under existing long term coal supply agreements. However based on the 2011 Ten Year Site Plan, Seminole Electric Cooperative Inc estimates spot market purchases as shown above.

ASSUMPTIONS: type of coal, heat content, ash content

Nominal, Delivered Coal Prices High Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		Low Sulfur C	Coal (< 1.0%)			Medium Sulfur Coal (1.0 - 2.0%)			High Sulfur Coal (> 2.0%)			
_			Escalation	% Spot			Escalation	% Spot			Escalation	% Spot
Year	\$/Ton	c/MBTU	%	Purchase	\$/Ton	C/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase
HISTORY:												
2008												
2009		N/A				N/A				N/A		
2010												
FORECAST:												
2011												
2012												
2013												
2014												
2015		N/A				N/A				N/A		
2016												
2017												
2018												
2019												
2020												

ASSUMPTIONS: type of coal, heat content, ash content

Nominal, Delivered Coal Prices Low Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		Low Sulfur C	oal (< 1.0%)			Medium Sulfur C	oal (1.0 - 2.0%)			High Sulfur (Coal (> 2.0%)	
_			Escalation	% Spot			Escalation	% Spot			Escalation	% Spot
Year	\$/Ton	c/MBTU	%	Purchase	\$/Ton	C/MBTU	%	Purchase	\$/Ton	c/MBTU	%	Purchase
HISTORY:												
2008												
2009		N/A				N/A				N/A		
2010												
FORECAST:												
2011												
2012												
2013												
2014												
2015		N/A				N/A				N/A		
2016												
2017												
2018												
2019												
2020												

ASSUMPTIONS: type of coal, heat content, ash content

Nominal, Delivered Nuclear Fuel and Firm Purchases

(1) (2) (3) (4) (5)

	Nuc	clear	Firm P	urchases
		Escalation		Escalation
Year	c/MBTU	%	\$/MWh	%
HISTORY:				
2008	41.00		94.32	
2009	49.90	21.7%	79.15	-16.1%
2010	N/A*		90.93	14.9%
FORECAST	•			
2011	52.88		89.82	
2012	53.65	1.5%	105.45	17.4%
2013	64.23	19.7%	101.35	-3.9%
2014	64.33	0.1%	115.09	13.6%
2015	66.83	3.9%	114.81	-0.2%
2016	67.21	0.6%	112.35	-2.1%
2017	73.46	9.3%	116.53	3.7%
2018	74.13	0.9%	119.41	2.5%
2019	80.67	8.8%	129.53	8.5%
2020	81.25	0.7%	130.34	0.6%

*NOTE: Alternative energy provided to Seminole Electric during Progress Energy Crystal River 3 unscheduled outage for 2010.

Financial Assumptions Base Case

AFUDC RATE ______%

CAPITALIZATION RATIOS:

N/A	%
N/A	%
N/A	%
	N/A N/A N/A

RATE OF RETURN

DEBT	N/A	%
PREFERRED	N/A	%
EQUITY	N/A	%

INCOME TAX RATE:

N/A	%
N/A	%
N/A	%
	N/A N/A N/A

%

OTHER TAX RATE:	N/A	%
DISCOUNT RATE:	5.6	%

ТАХ	
DEPRECIATION RATE:	3.6

Financial Escalation Assumptions

(1)	(2)	(3)	(4)	(5)	
	General	Plant Construction	Fixed O&M	Variable O&M	
	Inflation	Cost	Cost	Cost	
Year	%	%	%	%	
2011	0.6%	0.6%	0.6%	0.6%	
2012	1.7%	1.7%	1.7%	1.7%	
2013	1.9%	1.9%	1.9%	1.9%	
2014	1.5%	1.5%	1.5%	1.5%	
2015	1.5%	1.5%	1.5%	1.5%	
2016	1.5%	1.5%	1.5%	1.5%	
2017	1.6%	1.6%	1.6%	1.6%	
2018	1.6%	1.6%	1.6%	1.6%	
2019	1.6%	1.6%	1.6%	1.6%	
2020	1.6%	1.6%	1.6%	1.6%	

.

Loss of Load Probability, Reserve Margin, and Expected Unserved Energy Base Case Load Forecast

(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Annual Isolated				Annual Assisted			
Year	Loss of Load Probability (Days/Yr)	Reserve Margin (%) (Including Firm Purchases)	Expected Unserved Energy (MWh)	Loss of Load Probability (Days/Yr)	Reserve Margin (%) (Including Firm Purchases)	Expected Unserved Energy (MWh)		
					10 - 201			
2011	N/A	18.7%		N/A	18.7%	551		
2012	N/A	17.0%		N/A	17.0%	0		
2013	N/A	15.5%		N/A	15.5%	0		
2014	N/A	15.0%		N/A	15.0%	0		
2015	N/A	15.0%		N/A	15.0%	1257		
2016	N/A	15.0%		N/A	15.0%	0		
2017	N/A	15.0%		N/A	15.0%	0		
2018	N/A	15.0%		N/A	15.0%	5		
2019	N/A	15.0%		N/A	15.0%	221		
2020	N/A	15.0%		N/A	15.0%	239		