BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 130009-EI FLORIDA POWER & LIGHT COMPANY

MARCH 1, 2013

IN RE: NUCLEAR POWER PLANT COST RECOVERY FOR THE YEAR ENDING DECEMBER 2012

TESTIMONY & EXHIBITS OF:

TERRY O. JONES

COLUMENT NEMBER DATE OIIO8 MAR-I 2 FPSC-COMMISSION CLERK

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		DIRECT TESTIMONY OF TERRY O. JONES
4		DOCKET NO. 130009-EI
5		MARCH 1, 2013
6		
7	Q.	Please state your name and business address.
8	A.	My name is Terry O. Jones, and my business address is 700 Universe Boulevard,
9		Juno Beach, FL 33408.
10	Q.	By whom are you employed and what is your position?
11	A.	I am employed by Florida Power & Light Company (FPL) as Vice President,
12		Nuclear Power Uprate.
13	Q.	Please describe your duties and responsibilities in that position.
14	A.	In my current role, I report directly to the Chief Nuclear Officer. I am responsible
15		for the management and execution of the Extended Power Uprate ("EPU" or
16		"Uprate") Project.
17	Q.	Please describe your educational background and professional experience.
18	A.	I was appointed Vice President, Nuclear Power Uprate on August 1, 2009. In my
19		current position I provide executive leadership, governance, and oversight to
20		ensure the safe and reliable implementation of the EPU Project for the four FPL
21		nuclear units.
22		

DOCUMENT NUMBER-DATE O I I O 8 MAR-I 2 FPSC-COMMISSION CLERK

1 I joined FPL in 1987 in the Nuclear Operations Department at Turkey Point. Since 2 then, my positions at FPL have included Vice President, Operations, Midwest 3 Region; Vice President, Nuclear Plant Support; Vice President, Special Projects; 4 Vice President, Turkey Point Nuclear Power Plant; Plant General Manager; 5 Maintenance Manager; Operations Manager and Operations Supervisor. Prior to 6 my employment at FPL, I worked for the Tennessee Valley Authority at the 7 Browns Ferry Nuclear Plant and served in the US Nuclear Navy. I hold a 8 Bachelors of Science degree and an MBA from the University of Miami.

9

Q. What is the purpose of your testimony?

10 A. The purpose of my testimony is to present and explain the EPU project, key 11 management decisions and project activities, and costs incurred in 2012. I also describe the procedures, processes, and controls that ensure FPL's EPU 12 13 expenditures are reasonable and the result of prudent decision making, and the 14 careful engineering based process employed by FPL to ensure that it is including in 15 its Nuclear Cost Recovery request only nuclear Uprate costs that are "separate and 16 apart" from other costs, such as those for base rate nuclear operations and 17 maintenance or capital projects that are unrelated to the nuclear Uprate project.

18

Q. Please summarize your testimony.

A. FPL is successfully completing the EPU project that was approved in 2007 to meet customer needs for additional generation in the 2012-2013 timeframe. FPL was commissioned to deliver 399 MWe (net of co-owners' shares) by the end of the project, and it has already met that goal. In fact, approximately 400 MWe of the more than 500 MWe that FPL expects the project to provide is already serving

1 customers. The uprate work at St. Lucie Units 1 and 2 and at Turkey Point Unit 3, 2 which work FPL completed in 2012, resulted in 34% more power than FPL 3 initially projected those units would deliver in its need filing, and as of year end 4 2012, was saving customers approximately \$90 million in fuel costs on an 5 annualized basis. And the work at the fourth and final unit, Turkey Point Unit 4, 6 This enormous effort required the employment of was nearing completion. 7 thousands of workers. In 2012, an average of 3,500 personnel were employed to 8 work on the EPU project every day, and at its peak in 2012, 4,000 additional 9 workers were employed by the EPU project. In total, the 2012 EPU work required 10 over 12 million man hours of effort – over half of the approximately 22.4 million 11 man hours estimated for the entire EPU Project.

12

13 To put the total amount of human effort committed to FPL's Florida EPU project into perspective, the project's 22.4 million man hours of effort is about the same 14 15 amount of labor as was recently employed to construct Dubai's Khalifa Tower, 16 which at 2,722 feet is the tallest building in the world and took about six years and 17 22 million man hours to construct. What should also not be lost is that the EPU 18 project is far more complex than even such a major building project, since the EPU 19 project's construction work was all performed on and at operating nuclear power 20 plants.

21

The additional nuclear generation from the EPU project is providing significant and quantifiable benefits for customers without expanding the footprint of FPL's

1 existing nuclear power plant sites and without burning natural gas or foreign oil or 2 emitting greenhouse gasses. FPL's investment in Florida's energy infrastructure 3 and economy has been made possible by the legislature's policy to support 4 investment in nuclear projects, set forth in the Nuclear Cost Recovery (NCR) 5 statute, and the Commission's careful implementation of that policy through the 6 NCR Rule - all of which permits recovery of only a small fraction of FPL's 7 investment that is prudently incurred (*i.e.*, only carrying costs, recoverable O&M, 8 and partial-year in service revenue requirements) through FPL's Capacity Cost 9 Recovery clause. The vast majority – FPL's capital investment – is recovered over 10 the lives of the uprated units, as they are producing power for customers. TOJ-2 11 depicts, as of December 31, 2012, the FPL investment of approximately \$2.9 12 billion as compared to its Capacity Cost Recovery clause recovery of 13 approximately \$320 million, as well as the 2012 workforce summary for the 14 project.

15

FPL successfully managed the most intensive year of EPU project implementation
work in 2012, which included the following:

- Implementation and completion of major modifications during the St.
 Lucie Unit 1 EPU outage and a brief (6-day) License Amendment Request
 (LAR) outage, completing the uprate of that unit;
- Implementation and completion of major modifications during the Turkey
 Point Unit 3 EPU outage, completing the uprate of that unit;

Implementation and completion of major modifications during the St.
Lucie Unit 2 EPU outage, completing the uprate of that unit; and
Initiation and implementation of major modifications during the Turkey
Point Unit 4 EPU outage, which is scheduled to be complete in early 2013.

5 This implementation work required substantial and iterative engineering design 6 and construction planning, as well as continuous forward-looking project 7 management that resulted in adjustments to outage dates and outage durations, 8 revisions to implementation plans, and intensive contractor oversight and 9 management. Additionally, FPL received all required Nuclear Regulatory 10 Commission (NRC) LAR approvals.

11

FPL prudently incurred approximately \$1,429 million of EPU costs during 2012. 12 13 Challenges were experienced in the planning and execution of major modifications 14 of "first time evolution" at the first unit at each site – St. Lucie Unit 1 and Turkey Point Unit 3. By "first time evolution" I mean that these modifications were of a 15 high complexity and had not been performed before. As a result, engineering and 16 implementation took more people and more time at the first unit at each site. The 17 18 project team incorporated modification design changes and lessons learned in the 19 planning and execution of the EPU work at the second unit at each site – St. Lucie 20 Unit 2 and Turkey Point Unit 4. Ultimately, all of the work scheduled to occur in 21 2012 was performed and resulted in accomplishment of the project MWe goal, 22 while completion of Turkey Point Unit 4 in 2013 will push the output even higher 23 to a project total of over 500 MWe.

1	Q.	Are you sponsoring any exhibits in this proceeding?
2	A.	Yes, I am sponsoring or co-sponsoring the following exhibits which are
3		incorporated herein by reference:
4		• Exhibit TOJ-1, T-Schedules, 2012 EPU Construction Costs, containing
5		schedules T-1 through T-7B. Exhibit TOJ-1 contains a table of contents
6		listing the schedules that are sponsored and co-sponsored by FPL Witness
7		Powers and myself.
8		• Exhibit TOJ-2, EPU Workforce Investment and Cost Recovery Summary
9		• Exhibit TOJ-3, St. Lucie and Turkey Point Plant Photographs
10		• Exhibit TOJ-4, Illustration of Modifications by Unit
11		• Exhibit TOJ-5, EPU Project Electrical Output Status
12		• Exhibit TOJ-6, EPU Project Schedule Overview as of December 31, 2012
13		• Exhibit TOJ-7, 2012 EPU Cost Variance Drivers
14		• Exhibit TOJ-8, EPU Work Activities List as of December 31, 2012
15		• Exhibit TOJ-9, EPU Equipment Placed In Service in 2012
16		• Exhibit TOJ-10, EPU Project Instructions (EPPI) Index as of December
17		31, 2012
18		• Exhibit TOJ-11, EPU Project Reports 2012
19		• Exhibit TOJ-12, Summary of 2012 EPU Construction Costs
20	Q.	Please describe how the remainder of your testimony is organized.
21	A.	My testimony includes the following sections:
22		1. Project Summary
23		2. 2012 Project Activities and Results

1		3. Project Management Internal Controls
2		4. Procurement Processes and Controls
3		5. Internal/External Audits and Reviews
4		6. "Separate and Apart" Considerations
5		7. 2012 Construction Costs
6		
7		PROJECT SUMMARY
8		
9	Q.	What is the EPU Project?
10	A.	The EPU project is increasing FPL's nuclear generating capacity from its four
11		existing nuclear units by fitting the units with higher capacity and more efficient
12		turbines and other necessary equipment to accommodate increased steam flow that
13		will result from increased reactor power. This involves the modification or
14		outright replacement of a large number of components and support structures
15		within FPL's operating nuclear power plants. Photographs of examples of some of
16		this EPU work are attached as Exhibit TOJ-3, and an illustration of the component
17		replacements and modifications at each unit are attached as TOJ-4. Each
18		replacement/modification is considered a project in and of itself which is then
19		integrated into the planned implementation work scope. In the case of some major
20		modifications, some permanent plant equipment has to be removed in order to have
21		the necessary access to perform Uprate modifications and then reinstalled as part of
22		the construction process.

1 Because the project is modifying FPL's operating nuclear plants, it is a much 2 different construction project than constructing a new combined cycle generating 3 unit at a greenfield site or a modernization project in which the existing generating 4 unit is removed from the site before the new generating unit is installed. In 5 addition to being much more technically difficult, FPL has experienced far greater 6 engineering, construction, and cost uncertainties since FPL is performing the EPU 7 project on existing operating nuclear units. FPL has performed almost all of the 8 modifications during the units' pre-planned refueling outages. Performing the 9 uprate work during the refueling outages minimized the amount of time that these 10 low fuel-cost generators were off line.

11

Q. How are customers benefiting from the EPU project?

12 A. During 2012, completed outages resulted in an increase of approximately 400 13 MWe output for FPL's customers. Upon completion in 2013, FPL expects the 14 EPU project to produce in excess of 500 MWe for FPL's customers. Among other 15 benefits, this increase in nuclear power output will: (i) enhance system reliability 16 and integrity by diversifying FPL's fuel mix; (ii) provide energy and baseload 17 capacity to FPL's customers with zero greenhouse gas emissions; (iii) provide 18 significant fuel cost and environmental compliance cost savings; and (iv) due to the 19 increased capacity at the Turkey Point site, will help maintain balance between 20 generation and load in Southeastern Florida.

Q. When did customers begin receiving the additional output from FPL's nuclear units?

1 A. Customers began benefitting from an additional 31 MWe from St. Lucie Unit 2 in 2 2011, by virtue of the installation of a more efficient low pressure turbine generator 3 rotor. Most of the additional output from the EPU project, about 369 MWe, was 4 realized as each of three units returned to service in 2012, resulting in 5 approximately 400 MWe being provided by the end of 2012. At the completion of 6 the final Turkey Point Unit 4 outage, the EPU project electrical output will be in 7 excess of 500 MWe. Exhibit TOJ-5, EPU Project Electrical Output Status, 8 demonstrates the timing of the additional output that has been or will be realized.

9

Q. As of December 31, 2012, what was the overall EPU project schedule?

A. Exhibit TOJ-6, EPU Project Schedule Overview as of December 31, 2012,
illustrates at a high level the tens of thousands of integrated activities that have
been accomplished during the project and especially during 2012.

Q. Does FPL include industry best practices into the work being performed for the EPU project?

Yes. For example, the FPL project team members participate in nuclear industry 15 Α. 16 working groups organized by the Institute of Nuclear Power Operations and the Nuclear Energy Institute and benefit from lessons learned at other plants. This is 17 18 supplemented with direct engagement with our industry peers through benchmarking trips to other nuclear sites which have performed similar scopes of 19 20 work to incorporate best practices. These sources help ensure project decisions are 21 supported by the best information currently available. Additionally, the project 22 benefits from the experience of previous unit outages where other project work was

1		performed and lessons learned for future Uprate modification implementation
2		activities.
3		
4		2012 PROJECT ACTIVITIES
5		
6	Q.	What key activities occurred in 2012 in execution of the EPU project?
7	A.	Key activities that occurred in 2012 included:
8		• Final responses to NRC Request for Additional Information (RAIs) and
9		NRC approval of all EPU LARs -
10		• Turkey Point Units 3 & 4 EPU LAR - approved June 15, 2012,
11		• St. Lucie Unit 1 EPU LAR - approved July 9, 2012, and
12		• St. Lucie Unit 2 EPU LAR - approved September 24, 2012;
13		• Extensive modification engineering for the 2012 EPU outages, including
14		completion of approximately 220 plant design modification packages;
15		• Continued scheduling and planning for implementation of the
16		modifications in proper sequence, including detailed constructability
17		reviews, and forward-looking project management resulting in
18		adjustments to outage dates, durations and project plans;
19		• The successful completion of four outages: two at St. Lucie Unit 1, one at
20		Turkey Point Unit 3, and one at St. Lucie Unit 2. The second outage at St.
21		Lucie Unit 1 was a short, six-day outage ("LAR outage") where
22		instrumentation changes and procedure updates were needed to support

1		the uprate conditions. These outages resulted in an increased electrical
2		output of approximately 400 MWe for FPL's customers;
3		• The start of the final Turkey Point Unit 4 outage in November of 2012;
4		and
5		• Continuous intensive management of major vendors, including the EPC
6		vendor Bechtel.
7		LICENSING
8	Q.	Please describe the license amendment support activities in 2012.
9	A.	The NRC completed its reviews of FPL's EPU LARs in 2012. FPL management
10		and its licensing management regularly met with the NRC management and lead
11		EPU reviewers to ensure all needed responses to NRC RAIs were expeditiously
12		completed and thoroughly explained to NRC reviewers. The NRC review and
13		approval time for each EPU LAR was originally estimated to be approximately 14
14		months following submittal to the NRC; however, actual review and approval
15		times were significantly longer primarily due to NRC resource constraints and
16		industry events. The St. Lucie Unit 1 EPU LAR took approximately 20 months,
17		the St. Lucie Unit 2 LAR took 19 months, and the Turkey Point EPU LAR took
18		approximately 20 months for the NRC to review and approve.
19		
20		As a result of the extended review schedule caused primarily by NRC resource
21		constraints and industry events, FPL was required to continue to retain the services
22		of its LAR engineering analysis vendors for a longer duration than anticipated.

1 The extended review time also increased the fees FPL was required to pay to the 2 NRC.

Q. Did FPL make adjustments to outage modification assignments and outage dates in 2012?

5 A. Yes. There was substantial NRC schedule uncertainty with respect to the issuance 6 of the EPU LARs. Because FPL was concerned about completing an outage prior 7 to receipt of the necessary EPU LAR, FPL implemented a decision in 2012 to 8 move outage dates out to provide added certainty that the NRC would complete 9 their reviews and approve the EPU LARs prior to a unit being ready to return to 10 service at the uprated power level. This move in outage dates also added time for 11 additional design engineering, which supported more planning, readiness for the 12 outages, and more outage schedule certainty. However, the movement of the 13 outage start dates required FPL to maintain personnel at the units longer, adding to 14 project costs in 2012. The NRC regulatory delays also required FPL to move a few 15 Uprate modifications out of the St. Lucie Unit 1 2012 outage and into the 16 additional, short duration St. Lucie Unit 1 EPU LAR outage, which included 17 instrumentation modifications, along with set point changes and procedure updates 18 to permit operation in the uprate condition.

19

LONG LEAD PROCUREMENT

- 20 Q. Please describe activities related to the Long Lead Procurement phase in 2012.
- A. In 2012, FPL essentially completed the Long Lead procurement phase. Most long
 lead procurement items were received, inspected, and stored or prepared for
 installation at the St. Lucie and Turkey Point plants. These items included the

massive components necessary to generate more electricity at each unit, including
 steam turbine rotors, generator rotors, moisture separator reheaters, feedwater
 heaters, and main feedwater pumps. Many of these items are depicted in Exhibit
 TOJ-3.

5

ENGINEERING DESIGN MODIFICATION

Q. Please describe the activities related to the Engineering Design Modification phase in 2012.

8 A. The engineering design modification process is the process by which the detailed 9 modification packages are prepared. Calculations are performed, construction 10 drawings are issued, general installation instructions are provided, and high level 11 testing requirements are identified. "Design Evolution" or "scope growth" in this 12 context refers to the iterative engineering process needed to address issues 13 discovered during engineering design, such as the need for structural upgrades 14 caused by the ultimate weight and dynamic loading of new equipment, or the need 15 to design modifications for other plant systems that are discovered to be impacted 16 by a planned modification. During the EPU engineering efforts, every system in 17 the secondary side of the St. Lucie and Turkey Point plants was impacted, and in 18 some instances multiple times, as a result of required modifications.

19

20 Due to design evolution and complexity of construction, modification engineering 21 and work package preparation took longer than anticipated in 2012. Accordingly, 22 FPL directed Bechtel to subcontract some of the engineering design scope, 23 prioritized design and planning work based on implementation schedules to

1		minimize any impacts to outages, developed and began implementing a plan to
2		streamline the number of Bechtel work packages based on lessons learned, and
3		instituted regular Daily Issue Meetings and senior executive oversight meetings to
4		enhance FPL's management and oversight of Bechtel's engineering design work.
5		IMPLEMENTATION
6	Q.	Please discuss the magnitude of on-line and outage EPU work that was
7		successfully completed or initiated in 2012.
8	A.	Including the engineering design process described above, the EPU work required:
9		• An augmented staff of approximately 4,000 additional people at its peak;
10		• Over 58,000 individually planned, scheduled, and monitored activities
11		supporting approximately 10,600 work packages; and
12		• Over 12 million man hours of work.
13		It also involved 4,541 large bore pipe welds, 7,846 small bore pipe welds, 33,791
14		feet of electric wiring conduit, 250,542 feet of electrical cable, and 29,980
15		electrical terminations.
16	Q.	Please describe the outage preparation work that occured during non-outage
17		periods.
18	A.	In addition to the substantial modification engineering described above that was
19		performed for upcoming outages, extensive construction planning and logistical
20		work is also performed. And just as additional scope was identified during the
21		engineering design modification phase, additional scope was identified during the
22		construction planning and detailed constructability reviews.
23		

1 In 2012, FPL and its vendors performed walkdowns and developed subcontractor 2 estimates, labor estimates, security plans, commodities, logistics, and the oversight 3 structure needed to support the implementation activities. Often, new construction 4 "scope" was revealed that could not have been known prior to detailed construction 5 planning, and the time and number of personnel needed to plan for and execute the 6 construction activities safely for a particular modification must be increased. This 7 was especially true at Turkey Point. In addition to the need for more workers, the 8 footprint of the plant is very compact, further increasing the complexity to change 9 out equipment and safely perform modifications. More interferences exist, 10 requiring in many cases extensive efforts to remove them and provide access to the 11 equipment. Examples of design, implementation, and constructability complexities 12 faced in 2012 and an explanation of the major drivers of the cost variance in 2012 13 are provided in Exhibit TOJ-7.

14

15

Q.

Please describe the St. Lucie Unit 1 EPU implementation outages that were completed in 2012.

16 St. Lucie Unit 1 completed its second EPU outage in April, with the exception of A. the LAR outage activities. The EPU outage required replacement or modification 17 18 of all major equipment required for operation in the uprate condition. This work is 19 detailed in Exhibit TOJ-8, EPU Work Activities List as of December 31, 2012. 20 The unit was initially returned to service at the pre-uprate condition power levels. 21 The NRC then approved the St. Lucie Unit 1 EPU LAR July 9, 2012. Because of 22 extensive preparation and planning, FPL successfully executed the brief LAR 23 outage before the end of July to upgrade instrumentation, set-points, logic, and

1		procedures for operation in the uprate condition. Extensive plant testing was
2		conducted following the return to service with the final 100% power uprate
3		condition providing an additional 148 MWe for FPL's customers. Exhibit TOJ-9
4		details the equipment placed in service in 2012 at each of the units, including St.
5		Lucie Unit 1. Exhibit TOJ-3, pages 1 to 3, includes photographs of the St. Lucie
6		plant, worker parking, and equipment which increased the complexity and logistics
7 [.]		of the project, and examples of the large pieces of equipment that are required to
8		support the increased power production. In total, the work for the St. Lucie Unit 1
9		outages required the following:
10		• Augmented staff of 1,847 additional people at its peak;
11		• Approximately 12,000 individually planned, scheduled, and monitored
12		activities supporting 2,782 work packages; and
13		• Approximately 1,832,000 man hours of work.
14	Q.	Did FPL experience engineering design scope growth and constructability
15		complexities associated with the EPU work on St. Lucie Unit 1?
16	A.	Yes. The majority of the EPU modifications performed during the St. Lucie Unit 1
17		outage were "first time evolution" major modifications which affected many large
18		pieces of equipment and components, where interferences had to be removed to
19		provide access. During component removal, discovery required more engineering
20		design, scheduling and planning, constructability reviews and ultimately more time
21		than planned to perform the required modifications. Performing these EPU
22		modifications on a licensed plant required added care and safety considerations to
23		ensure nuclear regulatory requirements were satisfied. These factors added to the

2

complexity of performing the modifications which were contributors to a longer duration of the first St. Lucie Unit 1 outage than planned.

3

4 Following the implementation of the modifications, in early 2012, a systematic 5 turnover to operations was required to ensure the systems would perform their 6 functions reliably after implementing the EPU modifications. This plant 7 commissioning required engineers, technicians, and craft support to test the 8 various system controls, logic functions, and verify and validate system 9 operability. In the first part of 2012, the commissioning of systems at St. Lucie 10 Unit 1 proved to be more difficult than expected, in large part due to the 11 complexities of so much new equipment and material installed at the site. As a 12 result, engineers and craft personnel were needed to remain at that site longer than 13 planned to ensure appropriate unit startup, contributing to 2012 cost increases. 14 This complexity is described in Exhibit TOJ-7.

15 Q. Please describe the St. Lucie Unit 2 EPU implementation outage that was 16 completed in 2012.

A. St. Lucie Unit 2 completed its final EPU outage in November. St. Lucie Unit 2
returned to service with the final 100% power uprate condition providing a total
increase of 132 MWe for FPL's customers. In total, the work for the St. Lucie Unit
2 outage required the following:

21

• Augmented staff of 1,561 additional people at its peak;

Approximately 9,200 individually planned, scheduled, and monitored
 activities supporting 1,494 work packages; and

3

•

Approximately 1,279,000 man hours of work.

2 0. Did FPL experience engineering design scope growth and construction complexities associated with the EPU work on St. Lucie Unit 2?

4 A. Yes, but not nearly to the extent experienced at St. Lucie Unit 1. FPL was able to 5 utilize the experience gained at St. Lucie Unit 1 to enhance the St. Lucie Unit 2 6 outage and on-line engineering designs, work packages, and planning and 7 scheduling. FPL and its vendors performed this work to implement lessons learned 8 in advance of the St. Lucie Unit 2 outage, thus requiring more staffing than planned 9 during that pre-outage period. As a result, the St. Lucie Unit 2 EPU implementation outage was completed in less time and at a lower cost than the St. 10 11 Lucie Unit 1 EPU implementation outage: the St. Lucie Unit 2 EPU outage was 12 completed 25% faster and at an 18% lower cost than the Unit 1 outage.

Please explain some of the lessons learned that improved cost and schedule 13 **Q**. 14 performance at St. Lucie Unit 2.

FPL and Bechtel made significant work package enhancements based on 15 Α. 16 difficulties experienced in the implementation of similar modifications at St. Lucie 17 Unit 1 by incorporating changes into the modification designs. Additionally, FPL and Bechtel improved the "field change process," whereby the need for an 18 19 engineered solution is discovered in the field and incorporated into the 20 modification designs. The improved, streamlined process reduced the number of 21 reviews and approvals required for field engineering. FPL also created a dedicated 22 Instrumentation & Control (I&C) team to manage trouble shooting activities that

- 1 are discovered during unit start up, rather than relying on the plant I&C team, for 2 whom work assignments can change daily. 3 Please describe the Turkey Point Unit 3 EPU implementation outage that was 0. 4 completed in 2012. 5 A. Turkey Point Unit 3 completed its final EPU outage in September. The unit 6 returned to service with the final 100% power uprate condition providing 7 approximately 116 MWe for FPL's customers. Included in Exhibit TOJ-3, pages 4 8 to 49, are photographs showing the site and the worker parking, portable and 9 permanent cranes needed to support the project, the minimal lay down areas which 10 increased the complexity and logistics of the project, and examples of the large 11 pieces of equipment and cranes that are required to support the increased power 12 production. In total, the work for the Turkey Point Unit 3 outage required the following: 13 14 Augmented staff of 3,480 additional people at its peak; 15 Approximately 19,000 individually planned, scheduled, and monitored 16 activities supporting 2,900 work packages; and 17 Approximately 4,458,130 man hours of work. 18 0. Did FPL experience engineering design scope growth and construction
- 19 complexities associated with the EPU work on Turkey Point Unit 3?
- A. Yes. As was the case with the St. Lucie Unit 1 outage, the Turkey Point Unit 3
 EPU modifications were "first time evolution" major modifications, requiring the
 removal of interferences, at an operating nuclear power plant with even less space
 (than St. Lucie) in which to do the work. During component removal, discovery

required more engineering design, scheduling and planning, constructability
 reviews, and ultimately more time than planned to perform the required
 modifications. FPL also worked to ensure nuclear regulatory requirements,
 including safety considerations, were satisfied. Two examples of modifications
 that encountered these types of complexities – the Control Room Emergency
 Ventilation System (CREVS) and the Control Room Emergency Filtration System
 (CREFS) modification and the main condenser replacement – are described below.

8

9 CREVS/CREFS: The NRC-mandated modifications to the CREVS/CREFS became 10 very complex. This involved the installation of a hurricane-proof, tornado-proof, 11 earthquake-proof, hardened ventilation and filtration system in an area of the plant 12 not originally designed to meet those specifications. The purpose of the 13 CREVS/CREFS, along with the Control Room Boundary and Control Room 14 Envelope is to provide an acceptable environment for control room personnel and 15 equipment such that the reactor can be safely controlled under normal conditions 16 and maintained in a safe condition following a radiological event, hazardous 17 chemical release, or a smoke challenge. There were several engineering design 18 evolutions during the constructability and planning portion of the modification. 19 For example, the modification required the replacement and redesign of structural 20 supports associated with the CREVS/CREFS fans and relocation of existing 21 outside air intakes. Relocation of existing air intakes then required additional 22 seismic and missile protection design to meet safety related design requirements. 23 Additionally, special seismic structures and heavy wall piping were used to move

air from the units to the control room. But the added seismic piping supports and
seismic structures that hold the ventilation fans and dampers and the filtration
portion of the systems required additional planning and manpower to implement
the modification. The project team had previously estimated that this NRCrequired safety modification would require 11,200 man hours of engineering and
72,066 man hours of field implementation. It actually required 15,502 man hours

8

9 Replacement of the Main Condenser: The main condenser is the component that 10 condenses the 6.4 million pound mass per hour steam flow of the turbine. The 11 condenser has approximately 55,000 tubes for cooling that is supplied by roughly 12 700,000 gallons of water per minute. Replacing the main condenser required far 13 more engineering design hours, implementation time, implementation manpower, 14 and raw materials than FPL estimated, as a result of location congestion and 15 conditions that could not be discovered until the implementation of the 16 modification began.

17

Initially, FPL planned to use portable cranes to move the old condenser out and the new condenser into place. However, it was later determined that there was simply not enough land to stage a portable crane of sufficient capacity or maneuver the crane's loads. Accordingly, a specialty track crane was designed. This required the installation of micro piles for one rail, and the use of one of the turbine building crane rails for the other. The scheduling of crane use was critical to ensuring

worker safety, as both the turbine building crane and the condenser crane could not be used at the same time.

3

4 Additionally, the foundation of the condenser could not be assessed until the old 5 condenser was removed. Upon removal, it was determined that it was necessary to 6 upgrade the foundation steel and concrete for the new condenser, which required 7 additional time for engineering design, planning, and scheduling, as well as 8 additional commodities. The discovery of the need to upgrade spargers that 9 distribute steam as it enters the condenser also required more engineering design, 10 materials, planning, and implementation, all of which added to the complexity of 11 the condenser work. The estimated engineering and field implementation was 12 215,900 man hours. The condenser replacement including the temporary specialty 13 crane took a total of approximately 368,090 man hours of engineering and field 14 implementation. Additional examples of complexity at Turkey Point Unit 3 are 15 included in Exhibit TOJ-7.

Q. Please describe the final EPU implementation outage, at Turkey Point Unit 4, which FPL began at the end of 2012.

A. The Turkey Point Unit 4 final EPU outage began in November 2012 and is
scheduled to complete in the first quarter of 2013. Turkey Point Unit 4 will return
to service with the final 100% power uprate condition providing approximately 116
MWe for FPL's customers. Through the end of 2012, the work for the Turkey
Point Unit 4 outage had required the following:

23

Augmented staff of 3,984 additional people at its 2012 peak;

1 Approximately 15,010 individually planned, scheduled, and monitored 2 activities supporting 3,400 work packages; and 3 Approximately 1,710,000 man hours of work as of December 31, 2012 4 (out of an expected more than 2,000,000 man hours). 5 **Q**. Did FPL experience engineering design scope growth and construction 6 complexities associated with the EPU work on Turkey Point Unit 4 in 2012? 7 Yes. However, not nearly to the extent experienced at Unit 3. FPL utilized the A. 8 experience gained at Turkey Point Unit 3 to enhance the Turkey Point Unit 4 9 outage engineering designs, work packages, and planning and scheduling. This 10 work was performed in advance of the Turkey Point Unit 4 outage, thus requiring more staffing than planned during that pre-outage period. As of December 31, 11 12 2012, 56 days into the ongoing Turkey Point Unit 4 outage, the forecast duration of the Unit 4 outage was 33% better than the Turkey Point Unit 3 outage, and the 13 14 forecast cost was 20% better than the cost of the Unit 3 outage. 15 **Q**. Please explain some of the lessons learned that improved cost and schedule 16 performance at Turkey Point Unit 4. FPL incorporated design changes discovered to be needed during the Unit 3 17 A. 18 implementation into the modification designs and work packages for Unit 4. 19 Additionally, FPL assigned a logistics manager to consolidate facilities and 20 warehouses used to handle the large quantities of materials housed on site for the 21 project, reduce support staff, and reorganize the manner in which the EPU

23

materials are laid out based on lessons learned at Unit 3. Finally, FPL decided to

- redistribute a portion of the EPC work scope among four major vendors, as
 described in more detail below.
- 3 Q. Did FPL begin performing EPU project close out activities in 2012?

A. Yes. Some of the activities included in the project closeout are engineering change
package closeout, final safety analysis and design basis document updates, closeout
of EPU work packages, evaluation of preventive maintenance requirements for new
and modified components and development of preventive maintenance work orders,
procedure revisions, identification and purchase of spare parts, completion and
testing of the control room simulator changes, closeout related purchase orders and
contracts, demobilization, and restoration of site facilities and asset recovery.

11 **C**

Q. Please describe FPL's efforts to manage vendor costs in 2012.

12 A. FPL diligently managed its major vendors, including Bechtel, its EPC vendor, to ensure the costs expended for the assigned scopes of work were reasonable and 13 14 appropriate. For example, FPL conducted senior-level management meetings in 15 Frederick, Maryland at Bechtel's headquarters to address then-current trends and 16 metrics. FPL also required that its vendors provide detailed schedules and detailed 17 metrics for productivity and commodities, and diligently monitored compliance 18 with those metrics. Feedback was provided through daily focus meetings during 19 outages with major contractors to evaluate earned value and cost performance, 20 daily work plans, and any impacts to schedule and cost. Additionally, FPL held 21 project integration meetings with major contractors generally weekly to discuss 22 schedule compliance of work activities, organization and management issues, and 23 safety issues. FPL leveraged performance in each of these areas to negotiate

concessions from Bechtel and other major vendors, resulting in a total reduction in EPU costs in 2012 of \$63 million.

3

4 At St. Lucie, FPL awarded certain scopes of EPC work to Shaw, which is an 5 experienced nuclear industry construction and engineering firm that has a proven 6 track record on FPL projects. At Turkey Point, given the complexity and 7 magnitude of the work scope and lessons learned from the Turkey Point Unit 3 8 outage, FPL considered and analyzed a redistribution of a portion of the EPC work 9 scope for the Turkey Point Unit 4 outage. The effort included soliciting 10 competitive bids for the Unit 4 spent fuel pool cooling work and for specific 11 turbine building piping and instrumentation, reviewing technical and commercial 12 terms, negotiating cost and schedule details of work scopes inside the Unit 4 13 reactor containment building, and comparing commercial proposals with the 14 associated Unit 3 actual costs. As a result, the project execution plan for the Unit 4 15 EPU outage was restructured and work scope was redistributed among four 16 vendors, including the original EPC contractor. This change allowed the EPC contractor to focus on execution of the remaining EPU Modifications while 17 18 specialty contractors focused on specific scopes of work in a specific region of the 19 plant. Bechtel retained the EPC implementation scope on the secondary side of the 20 plant, while Shaw's scope within the radiological control area was expanded. 21 Weldtech's scope was expanded during the Unit 3 outage, and it was expanded 22 further for Unit 4. Additionally, PCI – a vendor with a proven track record on FPL 23 radiological scopes of work - was hired to perform a limited scope of work within

1		the Unit 4 radiological control area. These work assignments were made as part of
2		FPL's continuing efforts to control costs and ensure the successful completion of
3		the fourth and final EPU outage.
4		
5		PROJECT MANAGEMENT INTERNAL CONTROLS
6		
7	Q.	How was the vast amount of project planning, execution, and contractor
8		oversight described above managed by FPL?
9	A.	FPL had robust project planning, management, and execution processes in place.
10		These efforts were spearheaded by personnel with significant experience in project
11		management within the nuclear industry. Additionally, the EPU project used
12		guidelines and Project Instructions to assist project personnel in the performance of
13		their assigned duties. Exhibit TOJ-10, EPU Project Instructions (EPPI) Index as of
14		December 31, 2012, is provided to illustrate the types of instructions that were
15		used.
16	Q.	Please describe the EPU project management organization during 2012.
17	A.	FPL had a dedicated Nuclear Power Uprate team within the nuclear fleet that was
18		responsible for monitoring and managing the Uprate Project, schedule, and costs.
19		In addition to centralized project oversight, there was an EPU Site Implementation
20		Owner, EPU Site Director, and an EPU organization at each site responsible for the
21		efficient and effective engineering and implementation of the EPU project
22		modifications. This decentralized management structure was appropriate as the
23		EPU Project carried out the implementation phase at each of the sites to better

1		integrate EPU activities with plant operating and outage activities. Each site
2		organization's manpower size was adjusted as the execution, power ascension
3		testing, and turnover to operations completed and project close out began.
4		
5		There was also a separate Nuclear Business Operations (NBO) group that provided
6		accounting and regulatory oversight for the EPU Project. This organization is
7		independent of the EPU Project team and reports to the Vice President Nuclear
8		Finance.
9	Q.	Please describe the role of the NBO group in more detail.
10	A.	As described in project instruction EPPI-150, EPU Project – Nuclear Business Ops
11		Interface, NBO provided accounting and regulatory oversight for the EPU Project.
12		It was independent of the EPU Project team and reported to the Vice President
13		Nuclear Finance. NBO's primary responsibilities included:
14		• Review, approval, and recording of monthly accruals prepared by the Site
15		Cost Engineers;
16		• Conducting monthly detail transaction reviews to ensure that labor costs
17		recorded to the EPU Project are only for those FPL personnel authorized
18		to charge time to the EPU Project;
19		• Conducting on-going analysis to evaluate project costs to ensure they are
20		"separate and apart";
21		• Creating monthly variance reports that include cost figures used in the
22		EPU Monthly Operating Performance Report;

1		• Performing analyses of the costs being incurred by the project to ensure
2		that those costs are appropriately allocated to the correct Internal Order
3		established for each nuclear unit's outages;
4		• Assisting in the classification of Property Retirement Units;
5		• Setting up and maintaining the EPU Project account coding structure;
6		• Providing accounting guidance and training to the EPU Team;
7		• Working closely with FPL's various corporate accounting departments to
8		determine which costs related to the EPU Project are capital and which are
9		O&M
10		• Managing internal and external financial audit requests and ensuring that
11		findings and recommendations are dispositioned, as appropriate; and
12		• Providing oversight and guidance to the EPU Project Team in developing
13		and maintaining accounting-related project instructions to ensure
14		compliance with corporate policies and procedures, and Sarbanes Oxley
15		processes.
16	Q.	What other schedule and cost monitoring controls were in place during 2012?
17	A.	FPL utilized a variety of mutually reinforcing schedule and cost controls and drew
18		upon the expertise provided by employees within the project team, employees
19		within the separate NBO group, and senior nuclear management. Within the
20		organization of the Vice President, Nuclear Power Uprate existed a Controls
21		Group. The Controls Director provided functional leadership, governance, and
22		oversight. Each site had a dedicated EPU Project Controls group lead by a Project
23		Controls Supervisor. The site Project Controls group provided cost and schedule

analysis and associated performance indicators on a routine and forward-looking
 basis thus allowing Project Management to make informed decisions. Exhibit
 TOJ-11, EPU Project Reports 2012, lists many of the reports that were a direct
 result of the information the Controls group provided, analyzed and produced.

6 FPL's efforts to meet the desired completion date of each uprate was tracked 7 through the use of Primavera P-6 scheduling software, enabling FPL to track the 8 schedule daily and update the schedule weekly. This allowed Project Management 9 to monitor and report schedule status on a periodic basis. Updates to the schedule 10 and scope of the project were made as such changes were approved by 11 management. FPL's use of this scheduling software system allowed management 12 to examine the project status at any time as well as request the development and 13 generation of specialized reports to facilitate informed decision making. When 14 FPL identified a scheduled milestone date that may have a high probability of 15 being missed, a mitigation plan was prepared, reviewed, approved, and 16 implemented with increased management attention to restore the scheduled 17 milestone date or mitigate any impact of missing the scheduled date.

18

5

As part of the site Project Controls group, there were several highly experienced Cost Engineers assigned to monitor, analyze, and report project costs associated with the Uprate Project. Governed by well established procedures and work instructions, the Cost Engineer received contractor invoices and forwarded them to technical representatives to ensure the scope of work had been completed and the

1 deliverables had been accepted. For fixed-price contracts, the Cost Engineer 2 matched the invoice amount to the contract amount and the deliverable work 3 received from the subject matter expert, which was then sent to the appropriate 4 personnel for approval and payment. The Cost Engineer also prepared accruals 5 and reviewed variance reports monthly for each of the sites, to monitor and 6 document expenditures and commitments to the approved budget. The Project 7 Controls group operated in a transparent manner and its accountability was clear in 8 providing sound analysis based on all available cost and schedule information at 9 their disposal.

Q. What periodic reviews were conducted in 2012 to ensure that the project and key decisions were appropriately analyzed, reviewed and approved at the appropriate management levels?

A. Regularly scheduled meetings were held to help effectively manage the Uprate project and communicate the performance of the project in terms of quality, schedule and costs. These included the following:

- Daily meetings to mutually share lessons learned information from each of
 the projects and to coordinate project activities;
- Weekly project management, project controls, and risk meetings to review
 the status of the schedules and project costs, and to identify areas needing
 attention;
- Monthly meetings with the Chief Nuclear Officer; Vice President, Power
 Uprate; Implementation Owners; and other project leaders to review

- 1 project progress and work through any identified risks to schedules or 2 costs;
 - Quarterly FPL Executive Steering Committee presentations on the status of the project;
- 5 Routine Project Meetings involving FPL and individual major vendors to 6 discuss project schedules and challenges; and
 - Quarterly Project Meetings involving FPL and its major vendors to discuss strategies to help improve management of risk areas.

9 The EPU Project also produced several reports. Exhibit TOJ-11, EPU Project 10 Reports 2012, is a listing of reports generated by the project during 2012 with a 11 brief description, the periodicity, and the intended audience of each report. 12 Generally, the project reports provided a status of the project, scope changes, 13 schedule and cost adherence/variance, safety, quality, risks, risk mitigation, and a 14 path forward as appropriate. The information provided by these reports assisted in 15 the overall management of the EPU project.

16

3

4

7

8

Please describe the risk management process for the EPU project. 0.

17 A. FPL's risk management process was governed by project instruction EPPI-340, 18 EPU Project Risk Management Program. FPL's risk management process was 19 used to identify and manage potential risks associated with the Uprate. A Project 20 Risk Committee, consisting of site project directors and subject matter experts, 21 reviewed and evaluated initial cost and schedule projections and any potential 22 significant variances. This committee enabled senior managers to critically assess 23 and discuss risks faced by the EPU project from different departmental

1 perspectives. The committee also ensured that actions were taken to mitigate or 2 eliminate identified risks. When an identified risk was evaluated as high, a risk 3 mitigation action plan was prepared, approved, and executed. The high risk item 4 was monitored through this process until it was reduced or eliminated. 5 Additionally, an EPU Project Risk Management report was presented at meetings 6 with senior management, identifying potential risks by site, unit, priority, 7 probability, cost impact, and the unit or persons responsible for mitigating or 8 eliminating the risk. These steps ensured continuous, vigilant identification of and 9 response to potential project risks that could pose an adverse impact on the cost or 10 schedule performance of the project.

11 Q. Please describe the risk management process as it applied to operational risk.

12 EPU project work was performed during normal plant operations and during A. 13 planned refueling outages that were adjusted and extended in duration in order to 14 permit uprate work to be performed. The amount of work that could be safely 15 performed during these plant conditions was dependent upon the minimum 16 required systems or components needed to support the plant operating condition. 17 Extreme care in the planning, scheduling, and execution of the work activities was 18 required to ensure the plant was operated in accordance with applicable NRC 19 regulatory and plant technical specification requirements. This required proper 20 sequencing of work activities that could be safely performed during normal plant 21 operations or those that needed to be performed during planned refueling outages, 22 including work activities that could be safely performed in parallel and those that 23 needed to be performed in series. This operational risk management accomplished

1		two major objectives: first was to ensure the equipment was in a state that makes it
2		safe for workers to perform the work, and second was to ensure that the plant
3		systems and components were properly maintained as required for public health
4		and safety. This operational risk management through the careful planning,
5		scheduling, and execution of work activities added to the complexity of the
6		implementation phase of the EPU project.
7		
8		PROCUREMENT PROCESSES AND CONTROLS
9		
10	Q.	Please describe the contractor selection and contractor management
11		procedures that applied to the EPU project in 2012.
12	A.	The contractor selection procedures that applied to the Uprate project are found in
13		NEE-PRO-1460, Purchasing Goods and Services-Policy and Definitions and its
14		series of procurement procedures and Nuclear Fleet Guideline BO-AA-102-1008,
15		Procurement Control. Additionally, the EPU project had previously developed an
16		EPPI, and as explained in the EPPI procedure, the standard approach for the EPU
17		project in the procurement of materials or services with a value in excess of
18		\$25,000 was to use competitive bidding. However, the use of single source, sole
19		source, and Original Equipment Manufacturer providers was also necessary in
20		certain situations. It is logical that the use of single and sole source procurements
21		increased as the project entered the final implementation stages. For example,
22		many of the contracts that were competitively bid and awarded were given work
23		scope additions through the single source procurement process. Typically, it was

1 not in the best business interest of FPL to contract with another vendor when 2 security screening, site specific training, and training in policies, programs, 3 procedures, and work processes were already established for vendors with rates 4 that had previously been determined to be competitive and reasonable. The 5 benefits of this included cost savings in mobilization, security screening, site 6 specific training, site familiarity, and the important aspects of FPL's expectations 7 for a safety conscious work environment. FPL's policies required proper 8 documentation of justifications and senior-level management approval of single or 9 sole source procurements.

10

FPL maintained its focus on the process of documenting and approving single and sole source procurements, to ensure compliance with BO-AA-102-1008, EPPIs and to facilitate review by third parties who are not directly involved in the nuclear procurement process. The single source justification (SSJ) expectations were included in appropriate project instructions, and all new applicable personnel assigned to the EPU Project were required to review and understand the SSJ expectations.

18

With respect to vendor management, the EPU Project Directors at each site ensured vendor oversight was provided by the experienced Project Managers, the Site Technical Representative, and Contract Coordinators. Together, these representatives provided management direction and coordinated vendor activity reviews while the vendors were on site. The Contract Coordinators verified the

vendor had met all obligations and determined whether any outstanding deliverable
 issues existed using a Contract Compliance Matrix. In addition to assisting with
 the development and administration of contracts, Nuclear Sourcing and Integrated
 Supply Chain groups completed updates as necessary to a Project Contract Log and
 reported the status of contracts to Project Management. EPU management also
 held routine meetings with vendors' senior management as previously discussed.

7

Q. What was FPL's approach to contracting for the EPU project?

8 A. FPL structured its contracts and purchase orders to include specific scope, 9 deliverables, completion dates, terms of payment, commercial terms and conditions, 10 reports from the vendor, and work quality specifications. Project Management had 11 several types of contracts available depending on how well the scope of work and 12 the risk associated with the work scope could be defined. Fixed price or lump sum 13 contracts were used where project work scope was well-defined and risk was 14 limited. Project Management used time and material contracts where project work 15 scope was not well-defined and where there was greater risk to completing the work 16 scope. These and other contract provisions helped to ensure that the contractors 17 performed the right work at the right time for the right price, which ultimately 18 benefits FPL's customers.

19

Additionally, as described above, FPL made decisions in 2012 to redistribute EPC scope to obtain greater cost and schedule certainty. This is reflective of the type of careful and strategic vendor management that FPL employed.
1		INTERNAL/EXTERNAL AUDITS AND REVIEWS						
2								
3	Q.	Are FPL's financial controls and management controls audited?						
4	A.	Yes. Several audits have been conducted to ensure compliance with applicable						
5		project controls.						
6	Q.	What external audits or reviews have been conducted to ensure the project						
7		controls are adequate and costs are reasonable?						
8	A.	FPSC staff is conducting two audits related to 2012 - a financial audit and an						
9		internal controls audit. The 2012 FPSC staff financial and internal controls audits						
10		will be provided to the Commission when completed.						
11								
12		Additionally, FPL retained Concentric Energy Advisors, Inc. to conduct a review						
13		of the 2012 EPU project management controls. The results of this review are						
14		presented through the testimony of Mr. John Reed, the Chief Executive Officer of						
15		Concentric Energy Advisors. Burns and Roe Enterprises, Inc. (BREI) was also						
16		engaged to review the prudence of FPL's management of the EPU project activities						
17		in 2012. The results of this review are presented through the testimony of Mr.						
18		Albert Ferrer, Vice President of BREI.						
19	Q.	Does Internal Audit conduct an annual review to ensure the project controls						
20		are adequate and costs are reasonable?						
21	A.	Yes. Experis, formerly Jefferson Wells, is performing an audit of 2012 expenses at						
22		Internal Audit's direction. Specifically, the Experis audit focuses on ensuring that						
23		costs charged to the EPU project are for the EPU project and are recorded in						

1		accordance with FPSC Rule 25-6.0423, and includes independent testing of
2		expenses charged to the EPU project for the period January 1, 2012, to December
3		31, 2012. FPL expects this audit to be completed in the second quarter of 2013, at
4		which time the results will be available to the Commission, Commission staff, and
5		other parties.
6		
7		"SEPARATE AND APART" CONSIDERATIONS
8		
9	Q.	Would any of the EPU costs included in FPL's filing have been incurred if the
10		FPL nuclear generating units were not being uprated?
11	A.	No. The construction costs, associated carrying charges and recoverable O&M
12		expenses for which FPL is requesting recovery through the NCRC process were
13		caused only by activities necessary for the Uprate project, and would not have
14		otherwise been incurred. I note that, as explained in FPL Witness Powers'
15		testimony and schedules, only carrying costs, recoverable O&M expenses, and
16		partial-year revenue requirements for items placed in service are requested for
17		recovery for the EPU Project, consistent with the Commission's NCRC rule.
18	Q.	Please explain the processes utilized by FPL to ensure that only those costs
19		necessary for the implementation of the Uprate are included for NCRC
20		purposes.
21	A.	Consistent with project instruction EPPI-180, EPU Nuclear Cost Recovery, FPL
22		conducted engineering analyses to identify major components that must be
23		modified or replaced in order to enable the units to function safely and reliably in

1		the uprated condition. However, as inspections, LAR engineering analyses, and
2		design engineering modifications were performed, the need for additional
3		modifications or replacements necessary for the Uprate project was identified.
4		FPL's 2012 EPU activities, and their associated costs, were "separate and apart" as
5		required by the Nuclear Cost Recovery process.
6		
7		2012 CONSTRUCTION COSTS
8		
9	Q.	What type of costs did FPL incur for the Uprate project in 2012?
10	A.	As indicated in Exhibit TOJ-1, Schedule T-6 and T-4, and summarized on Exhibit
11		TOJ-12, Summary of 2012 EPU Construction Costs, costs were incurred in the
12		following categories: License Application; Engineering and Design; Permitting;
13		Project Management; Power Block Engineering, Procurement, etc.; Non-Power
14		Block Engineering, Procurement, etc.; and Recoverable O&M. These costs were
15		the direct result of the prudent project management, decision making, and actions
16		described previously. Each category reflects some variance against what was
17		estimated earlier in 2012.
18	Q.	Please describe the costs incurred in the License Application category and the
19		variance, if any, from the 2012 actual/estimated costs in this category.
20	A.	Licensing Costs in 2012 consisted primarily of charges for contractor services
21		rendered in supporting preparation, review, and NRC approval of the EPU LARs
22		and fees paid to the NRC for their review. The primary contractors were
23		Westinghouse, Areva, and Shaw Stone & Webster. FPL incurred \$50.5 million in

1 this category in 2012, which was \$24.5 million more than the actual/estimated 2 amount. This variance was primarily attributable to (i) additional NRC-required 3 engineering analyses and evaluations, such as those due to industry bulletins on 4 accelerated steam generator tube wear, the Westinghouse fuel model, other balance 5 of plant modifications, and setpoint changes; (ii) increased fees paid to the NRC 6 due to its extended review time; (iii) increased vendor costs due to the NRC's 7 extended review time; and (iv) the reclassification of costs for the "umbrella 8 modifications" (the engineering change modification at each unit that implements 9 the NRC approved License Amendment) from the Power Block Engineering, 10 Procurement, etc. category to the License Application category.

Q. Please describe the costs incurred in the Engineering and Design category and the variance, if any, from the actual/estimated costs in this category.

13 Engineering and Design Costs consist primarily of costs for FPL personnel in the Α. 14 FPL engineering organizations at both sites and in the central organization. Some 15 of these personnel provide management, oversight, and review of the LAR 16 activities, while others are oriented towards management, oversight, and review of 17 the detail design activities being performed by the EPC contractor and other 18 contractors. FPL incurred \$30.5 million in this category in 2012, which is \$5.8 19 million more than the actual/estimated amount. This was primarily attributable to 20 the need to manage and oversee engineering design scope growth and the EPC and 21 other contractors' engineering and implementation efforts for the St. Lucie and 22 Turkey Point outages.

2

Q. Please describe the costs incurred in the Permitting category and the variance, if any, from the actual/estimated costs in this category.

A. All permits applicable to the EPU Project were approved in 2011. Accordingly,
there were no costs incurred by the EPU Project in the Permitting category in 2012.

5 6 Q.

Please describe the costs incurred in the Project Management category and the variance, if any, from the actual/estimated costs in this category.

7 A. Project Management Costs relate to overall project oversight including project and 8 construction management, and project controls and non-NRC regulatory 9 compliance. These oversight activities are performed by personnel located at both 10 sites, by the EPU central organization, and by non-EPU organizations such as 11 NBO, New Nuclear Accounting and Regulatory Affairs. FPL incurred \$57.1 12 million in this category in 2012 which was \$4.8 million more than the 13 actual/estimated amount. This was primarily attributable to an increase in FPL 14 project and construction management oversight of the EPC and other vendors 15 caused by scope growth, causing increased engineering design and implementation 16 work, examples of which are provided above in the explanation of the various 2012 17 outages.

Q. Please describe the costs incurred in the Power Block Engineering,
 Procurement, etc. category and the variance, if any, from the actual/estimated
 costs in this category.

A. The majority of the costs in this category reflect payments to the EPC vendor and other vendors for engineering, procurement, and construction resources that supported the successful completion of the EPU outages at St. Lucie Units 1 and 2,

1 Turkey Point Unit 3, and the first two months of the Turkey Point Unit 4 outage; 2 the continued engineering efforts to prepare for the EPU implementation outages; 3 payments to Siemens for turbines and generator rotors; and payments to Thermal 4 Engineering International for feedwater heaters and moisture separator reheaters, 5 main condensers, and increased capacity heat exchangers and pumps and valves 6 required to support the uprate conditions.

7

8 FPL incurred \$1,252 million in this category in 2012, which is \$296.7 million more 9 than the actual/estimated amount. The cost variance is the result of implementing 10 first time evolution modifications, described in more detail above and in my 11 Exhibit TOJ-7, which resulted in more design engineering, more implementation 12 work scope requiring more craft labor and field non-manual support, longer than 13 estimated installation durations which included planning, scheduling, and 14 execution of the modification activities, and more commodities than previously 15 estimated.

Q. Please describe the costs incurred in the Non-Power Block Engineering,
Procurement, etc. category and the variance, if any, from the actual/estimated
costs in this category.

A. Non-Power Block Engineering Costs consist primarily of costs for facilities for
 engineering and project staff at site locations and simulator upgrades required to
 reflect the uprate conditions. FPL incurred \$1.7 million in this category in 2012.
 This represents \$0.6 million more than the actual/estimated amount. The variance

is primarily attributable to additional work scope that was determined to be
 necessary to complete the simulator upgrades.

3 Q. Please describe the costs incurred as EPU Recoverable O&M.

4 A. Recoverable O&M expenses in 2012 were \$7.8 million. This represents a variance 5 of \$7.5 million less than the actual/estimated amount. Consistent with FPL's 6 capitalization policy, the commodities that make up these expenditures consist of 7 non-capitalizable computer hardware and software and office furniture and fixtures 8 needed for new project-bound hires, all of which are segregated for EPU Project 9 personnel use only, as well as incremental staff and augmented contract staff. 10 Additionally, modifications that did not meet the capitalization criteria were 11 included in this category along with O&M EPU equipment inspections and 12 obsolete inventory write-offs. The variance is primarily attributable to fewer 13 obsolete inventory write-offs than estimated for 2012.

14 Q. Please describe the costs incurred in the Transmission category.

15 Transmission Costs were \$29.7 million in 2012, which is \$2.3 million more than A. 16 the actual/estimated amount. The expenditures in the Transmission category 17 include plant engineering, line engineering, substation engineering, and line 18 This variance is a result of the installation of the new main construction. 19 transformer at St. Lucie Unit 2 taking longer than estimated. However, FPL was 20 able to obtain cost savings on the bidding and purchase of major substation 21 material and substation construction labor contracts, minimizing the variance in 22 this category.

23

Q. Were FPL's 2012 EPU expenditures prudently incurred?

1 A. Yes. FPL incurred costs of approximately \$1,429 million in 2012. FPL's actual 2 2012 costs were greater than its previous estimate for the reasons described above, 3 and are primarily attributable to the human capital necessary to design and 4 implement the required modifications needed to support the EPU; increased 5 engineering analysis vendor costs and NRC costs due to the extended NRC reviews 6 of the license amendment requests; increased work scope for design modification 7 engineering; and increased modification implementation time due to increased 8 work scope and constructability complexities.

9

All of FPL's expenditures were necessary so that the uprate work could be performed during the planned outages. Through well-qualified, experienced personnel's application of the robust internal schedule and cost controls, careful vendor oversight, and the ability to continuously adjust based on lessons learned and the project's evolving needs, FPL is confident that its 2012 EPU management decisions were well-founded and prudent. All costs incurred in 2012 were the product of such decisions, were prudently incurred, and should be approved.

- 17
- Q. Does this conclude your direct testimony?
- 18 A. Yes.
- 19
- 20
- 21
- 22
- ~~

Docket No. 130009-EI 2012 EPU Construction Costs Exhibit TOJ-1, Page 1 of 1

TOJ – 1 is in the Nuclear Filing Requirements Book

2				Docket No. 130009-EI EPU Workforce Investment Summary and Cost Recovery Summary Exhibit TOJ-2, Page 1 of 2					
ost Recove . 31, 2012						S320 Million Recovered through clause	NUCLEAR COST RECOVERY	ning of the project through Dec. 31, 2012	
ent and Co ough Dec	\$2.9 Bilion* INVESTED						FPL'S INVESTMENT	Figures above represent total amounts since the begin Represents FPL's capital investment in the EPU project	
Thr	\$3.0 Billion \$2.5 Billion	\$2.0 Billion	\$1.5 Billion	\$1.0 Billion	\$500 Million	\$		•	
EPU Inves Summary							Photo: FPL's St. Lucie Plant, Feb. 2, 2012, during EPU construction by the end of 2012, approximately 400 new megawatts of nuclear capacity	constructed through the EPU project were serving FPL customers.	

20 2 J Workforce rv-Dece 10

Docket No. 130009-EI EPU Workforce Investment Summary and Cost Recovery Summary Exhibit TOJ-2, Page 2 of 2 .

TOJ – 3

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 2 of 49

St. Lucie Unit 1 on left shows the early stage of mobilization of safety barriers in advance of demolition, compared to Unit 2 (on right) which is in operation Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 3 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 4 of 49 Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 5 of 49

Turkey Point Units 3 and 4 use approximately 1,300,000 gallons per minute of cooling water which enters from the right and exits on the left side to support the generation of over 1,700 MWe which required the replacement of many major components.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 6 of 49

Turkey Point Temporary Crane Locations in the Red Circles and the Permanent Turbine Building Gantry Crane in the Green Circle

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 7 of 49

Turkey Point main turbine deck with major components removed on either side of the blue tarp covering the lower casing of the main turbine. The red circles high light some of the many temporary cranes on site needed to support the work. Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 8 of 49

Turkey Point main turbine deck with scaffolding and orange safety barriers in place to support the work activities. ightarrow Denotes temporary environmental structure which was constructed for the main generator rewind. Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 9 of 49

One of eight Moisture Separator Reheaters being loaded onto the heavy haul transporter to be moved to the plant and onto the turbine deck

MOISTURE SEPARATOR REHEATERS MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 10 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 11 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 12 of 49

MOISTURE SEPARATOR REHEATERS MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 13 of 49

New Moisture Separators in place with scaffolding erected to install the Moisture Separator reheated steam outlets and the inlets to the center of the low pressure turbines. This represents one EPU modification of the approximate total of 220 implemented for the project. Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 14 of 49

Turkey Point Main Condenser. Scaffolding being erected to support the Main Condenser Replacement modification.

MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

Turkey Point Main Condenser canal cooling water box removal to expose the tens of thousands of condenser tubes for removal.

MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 16 of 49

condenser tube bundles are installed

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 17 of 49

Turkey Point main condenser scaffolding erection to support condenser tube removal.

MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

As part of the condenser upgrades, workers removed legacy tube sheets using acetylene torches to simultaneously cut and remove both sheets from all condenser bays. Like many EPU modifications at Turkey Point, the removal of the tube sheets was a first-time evolution, thus requiring careful planning and execution.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 18 of 49 MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 19 of 49 Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 20 of 49

Turkey Point new condenser tube bundle replacement being transported for installation.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 21 of 49

MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

Turkey Point main condenser showing the four condenser sections with the new condenser tube bundles installed.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 22 of 49
MAIN CONDENSER REPLACEMENT MODIFICATION (Continued)

The condenser blue water boxes complete the condenser tube bundle replacement. The water boxes receive the canal cooling water leaving the more than 55,000 new condenser tubes and directs the cooling water to the discharge piping which returns it to the cooling canal.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 23 of 49 Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 24 of 49

One of four feedwater heaters per unit is being removed from the blue heavy hauler and being staged for lifting onto the turbine deck.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 25 of 49

One of four feedwater heaters being lifted by the turbine building crane for placement on the turbine deck.

FEEDWATER HEATERS MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 26 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 27 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 28 of 49

One of four feedwater heaters being lowered into the close-quarters of the turbine deck, where it will then be moved to its location.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 29 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 30 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 31 of 49

MAIN FEEDWATER PUMPS MODIFICATION

Scaffolding being erected in the congested area around and over one of the Feedwater Pumps

Docket No. 130009-EI

NORMAL CONTAINMENT COOLERS MODIFICATION

This is the Turkey Point Unit 3 primary containment showing the major components, the Reactor Vessel in the center, the 3 Steam Generators, lower left, upper center and right, and the Pressurizer on the left. A very sturdy platform was installed over the reactor cavity to provide lay down and staging area for the Normal Containment Cooler modification.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 33 of 49 NORMAL CONTAINMENT COOLERS MODIFICATION (Continued)

Primary Containment with scaffolding being erected to support crane erection and access for workers.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 35 of 49

Installation of the temporary crane which will be used to move components and materials.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 36 of 49

The temporary crane erected in the Primary Containment to support the movement of materials and components.

NORMAL CONTAINMENT COOLERS MODIFICATION (Continued)

The equipment and components located inside the primary containment generate a tremendous amount of additional heat. For that reason all four normal containment coolers (two pictured above) were replaced with newer models in both units. This will increase the cooling capacity inside the reactor buildings.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 37 of 49 Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 38 of 49

NORMAL CONTAINMENT COOLERS MODIFICATION (Continued)

Work inside the containment often place workers in tight, hot spaces. A worker in protective clothing is preparing to weld a support in very close quarters for the Normal Containment Cooler replacement.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 39 of 49 Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 40 of 49

Primary Containment. Worker in protective clothing adding structural material in support of the Normal Containment Cooler modification.

NORMAL CONTAINMENT COOLERS MODIFICATION (Continued)

STATISTICS.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 41 of 49 NORMAL CONTAINMENT COOLERS MODIFICATION (Continued)

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 42 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 43 of 49

Systems (CREVS/CREFS) with missile protected structures.

Turkey Point construction of missile barrier structure for the CREVS/CREFS systems. The blue steel beams are new materials being installed.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 44 of 49

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 46 of 49

Turkey Point heavy walled ventilation pipe with the many large custom made supports built to design specifications that satisfy regulatory

requirements for the CREVS/CREFS systems.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 47 of 49

Turkey Point heavy walled emergency ventilation pipe with one of its very large structural supports.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 48 of 49

Turkey Point work on barriers for components of the CREVS/CREFS systems in very congested area.

Docket No. 130009-EI St. Lucie and Turkey Point Plant Photographs Exhibit TOJ-3, Page 49 of 49

Turkey Point missile barriers for the CREVS/CREFS systems are complete.

.

Docket No. 130009-EI Illustration of Modifications by Unit Exhibit TOJ-4, Page 1 of 4

EPU Work Scope Completed at St. Lucie Unit 1 in 2012

Docket No. 130009-EI **Illustration of Modifications by Unit** Exhibit TOJ-4, Page 2 of 4 Contract of the Mater Supph I EŻ Electricity for Industrial, Comm and Residential V Nator Treatment Filtrati)[1]1 \cap Canal Sy Water S Spent Fuel Pool Metamic Inserts 0 Power Lines eplace 2A Main Transformer XXXX Turbine Cooling Water Heat Exchanger 1A/B Hat Endeny right Circulating Water Overboard Isolated Phase Bus Duct Cooler Condenser Upgrades Replace Condensate Pumps 2 New Heater Drain Pumps Control Roon Air Conditioni Upgrades Condensate Turbine LP2)[!!!> **Pressure** Feedwater A/4B LOW SBCS Valves and DCS 0 Replace High ressure Turbin 扣 L'Ettine Two Feedwater Pumps Spray Pump Modification Contail figh Pressure 8 5A/5B High Pressure Feedwater Heaters Replace Feed Reg Valves and LEFM 0 Man Arepes Ø X 4 New Moisture Separator Reheaters **ÅÅÅ**Å Purrps 4 Stean Generator CONTAINMENT ROJECT R Core Rod Control Upgrades **ST, LUCIE POV** Rod Control Power Cables

EPU Work Scope Completed at St. Lucie Unit 2 in 2012

Docket No. 130009-EI Illustration of Modifications by Unit Exhibit TOJ-4, Page 3 of 4

Docket No. 130009-EI Illustration of Modifications by Unit Exhibit TOJ- 4, Page 4 of 4

EPU Component Work Scope In-Progress to Complete Early 2013

Docket No. 130009-EI EPU Project Electrical Output Status Exhibit TOJ-5, Page 1 of 1

Extended Power Uprate Project Expected to Deliver 30% More Capacity than Originally Projected

Unit Electrical Output Status in MWe through Dec. 31, 2012 and Estimated MWe at Completion

TOJ - 6

.

oject Schedule Overview	2010 2013 2011 2011 2011 2011 2012 2012	IMPLEMENTATION (Includes Planning & Scheduling)	PSL-11ST OUTAGE	PTN-3 1ST OUTAGE	PSL-2 1ST OUTAGE	T PTN-4 1ST OUTAGE	PSL-1 EPU OUTAGE	PSL 1 LAR OUTAGE	PTN-3 EPU IMPEMENTATION		Do roject Exhibit	cket N Schedi TOJ-(Froject close out	o. 1300 ule Ove 5, Page 2	09-EI rview_ 2 of 2	Page 2 As of 12/31/2012
EPU Pr	ID 2008 2008 16 A S O N D J F M A M J J A S O N D J F M A M J J A S O N D	12	18		20	21	22 [1]	23	24	26	27	28	29		

2012 EPU COST VARIANCE DRIVERS

Three major nuclear plant outages for EPU modifications requiring over 12,000,000 professional and skilled craft man hours have been successfully completed in 2012 providing FPL customers the benefit of approximately 400 MWe. Ultimately, the human effort required to perform such a complex project is the major cost driver. This document discusses the complexities encountered in 2012 that contributed to FPL's final 2012 EPU project costs, as compared to the costs included in its Actual/Estimated (A/E) schedules filed on April 27, 2012. For the reasons discussed below, the St. Lucie work was completed with an approximately \$48 million variance to FPL's 2012 A/E filing and the Turkey Point work was completed with an approximately \$279 million variance to FPL's A/E filing. The 2012 A/E filing reflected actual costs through February 2012 and an estimate for remaining 2012 costs developed in March 2012, while this exhibit contains information known as of December 31, 2012.

St. Lucie EPU Modifications and System Commissioning

The majority of the EPU modifications performed during the St. Lucie Unit 1 outage were not routine, predictive or preventative maintenance activities but were first time evolution of major modifications which affected many large pieces of equipment and components, where interferences had to be removed to provide access. During component removal additional discovery required added engineering design, scheduling and planning, constructability reviews and ultimately more time than planned to perform the required modifications. Performing these EPU modifications on a licensed plant required added care and safety considerations to ensure nuclear regulatory requirements were satisfied. These factors added to the complexity of performing the modifications which were contributors to the longer duration, and increased staffing levels, of the St. Lucie Unit 1 outage.

Below are several exemplar modification descriptions where design, implementation, and constructability complexities were successfully resolved by the project team.

The installation of the **Isolated Phase Bus Duct** required far more engineering design hours, implementation time, implementation manpower, and raw materials than FPL estimated as a result of conditions that could not be discovered until the implementation of the modification began. The Isolated Phase Bus Duct is piping that serves as a conductor of electricity from the main generator to the main step up transformer where the low voltage is transformed into high voltage power for transmission. The piping is enclosed in duct work which allows it to be cooled. Additional interferences to the implementation of this modification were discovered, requiring additional field engineering to engineer the removal and reinstallation of the interferences. Additionally, once the new, bigger equipment was installed, there was less room for the orientation of the cooling water flange as originally planned. As a result, FPL had to cut, change the orientation, and weld the cooling water flange to properly connect it to the cooling water piping.

This modification required an additional 21,382 man hours of engineering and craft implementation work.

The modifications required for the two 34 inches-in-diameter main steam piping, Main Steam Isolation Valves (MSIV) included upgrading the valves and actuators and providing a backup

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 2 of 19

actuator operating system to ensure operability at EPU steam flow conditions. The MSIVs close by actuator operation in the unlikely event of a main steam line break in the piping between the valves and the main turbine stop valves. Additionally, each of these valves have another valve in the same assembly which is a check valve which only permits steam flow in one direction and are designed to close if there is a main steam line break between the steam generator and the MSIV. The modification to these valves included upgrades to the valve internal components and the addition of larger actuators and a backup system to prevent inadvertent closure of the MSIVs. These valves are located in a very close proximity work area and the larger actuators and supports for the actuators added to the constructability complexity. Adding to the engineering design evolutions and constructability difficulties of close working space was the installation of the nitrogen gas backup system to ensure reliable valve operation which required additional piping and tubing runs to be installed. Adding to the complexity of this modification was the added wiring needed to support the MSIV modifications which required additional wiring runs, terminations and testing in very close spaces.

This modification required an additional 12,517 man hours of engineering and craft implementation work. Piping commodities related to this modification increased by approximately 100% and electrical commodities increased by approximately 79%.

Replacement of the two Main Feedwater Pumps was required for Uprate conditions. Engineering analysis determined that the existing motor rotor was insufficient and needed to be upgraded to 6.9 kv. The replacement motor was removed and sent offsite for refurbishment. This required additional electrical and mechanical disconnections and reconnections. The existing pump supports and piping required significant modification. Testing of the new system indicated the welding of the vent valves was inadequate for the new vibration levels and required a new design which resulted in a new piping configuration and additional supports.

This modification required an additional 27,121 man hours of engineering and craft implementation work.

The **Containment Mini Purge** modification was required due to the decrease in the maximum operating atmospheric pressure as a result of the EPU accident analysis. The modification was designed to allow remote control versus local manual operation. Purge isolation valves, flow control valves and purge fans required modifications to be operated from the control room. Radiation dose levels in the work area were considerably higher than expected and this required additional manpower for rotational purposes during implementation.

This modification required an additional 19,026 man hours of engineering and craft implementation work.

Additional commodities were required and installed during the St. Lucie Unit 1 outage and prior to and during the Unit 2 outage to support the modification work. Increases in the amounts of commodities to support modifications required additional engineering design, planning and scheduling, and skilled craft for implementation, all of which required added resources and more time to complete. The below table provides a list of the major commodities, the planned and actual amounts, the increase and the percentage increase:

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 3 of 19

	Unit of			Actual - Plan =	% increase
Commodity	Measure	Plan	Actual	Increase	above Plan
Large Bore Pipe Welds - ≥ 2.5 "					
dia.	ea	932	1,220	288	31%
Large Bore Supports	ea	319	365	46	14%
Small Bore Pipe Welds	ea	2,494	2,934	440	18%
Electrical Wiring Conduit	Ft	19,856	19,944	88	0.4%
Electrical Cable	Ft	82,161	97,208	15,047	18%
Electrical Terminations	ea	19,362	20,744	1,382	7%

St. Lucie Unit 1 and Unit 2 Outage Commodity Totals

Note: Quantities from major vendor reports

Following the implementation of the modifications a systematic turnover to operations is required to ensure the system would perform its function reliably after implementing the EPU modifications. This required engineers, Instrumentation and Control (I&C) technicians, and craft support to test the various system controls, logic functions, and verify and validate system operability. This manpower-intensive commissioning effort experienced complexities and also contributed to the longer duration of the outage. Two examples at St. Lucie Unit 1 follow.

Power Ascension Testing revealed that one of the feedwater pumps had high vibrations shortly after pump startup, which was addressed by the testing engineers, technicians, and craft. One of the steam bypass control valves opened inadvertently, and plant operators correctly responded to the event by shutting down the reactor. The discharge of the steam bypass control valve is through a sparger which is physically located in the main condenser. Following the inadvertent cycling of the steam bypass control valve, the sparger required replacement.

Condensate and Feedwater Chemistry took longer than expected to bring within specification. Each of the nuclear units strictly adheres to the industry good practice limits on secondary water chemistry. This is done to extend the life of the steam generator materials. The large number of components and piping replaced during the outage required extensive circulation of the secondary water through a clean up system until proper chemistry specifications were met before the feedwater could be pumped into the steam generators to begin the steam cycle.

Weather impacted the St. Lucie Unit 2 outage during August and September 2012, including Tropical Storm Isaac. The main turbine, turbine generator, feedwater heaters, and many other major components are located outdoors. Typically, FPL nuclear unit outages occur in the spring and fall seasons when rainfall averages are significantly less than the August and September totals and the daytime temperatures are more conducive to peak outdoor construction productivity. Additionally, humidity and warmer temperatures creates reduced worker productivity rates due to hydration issues. The Occupational Safety and Health Administration (OSHA) regulatory guidelines provide for necessary worker rest periods when humidity and temperature are at issue. Craft workers are typically sent home if significant rainfall is expected in order to reduce costs. This, in turn, impacts progress and productivity with additional "stops and starts" as opposed to a work condition in which there is a continuous flow of activities from beginning to end of a scheduled shift. Storm preparation, direct impact, and restoration affected approximately four days of production during the St. Lucie Unit 2 EPU outage. This weather

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 4 of 19

event reduced some costs, since workers were sent home, but also was a contributing factor to the loss of overall actual construction progress versus planned progress during this time frame.

Using the talents of and experience gained by personnel who performed the St. Lucie Unit 1 outage, the St. Lucie Unit 2 outage engineering designs, planning and scheduling, and work packages were enhanced as well as the planning for the St. Lucie Unit 1, six-day License Amendment Request (LAR) outage where instrumentation and parameter scaling and setpoints were changed and procedures implemented for operation in the uprate condition. Preparing for the St. Lucie Unit 1 LAR outage and the St. Lucie Unit 2 EPU outage in this manner required increased staffing levels in between the outages, contributing to increased costs. As a result, and despite the weather challenges as previously discussed, the St. Lucie Unit 2 outage duration was 25% better than the Unit 1 outage and cost approximately 18% less than the cost for the Unit 1 outage.

All the efforts described above contributed to the additional resources required to implement the St. Lucie EPU project and resulted in a total increased cost of approximately \$48 million in 2012. The results were the successful completion of the St. Lucie Unit 1 EPU and LAR outages and the St. Lucie Unit 2 EPU outage in 2012, with the addition of approximately 280 MWe of clean, greenhouse gas-free electricity being provided for the benefit of FPL customers.

The below table is a summary of the 2012 St. Lucie EPU cost variances which includes the vendor or category, the NFR Actual/Estimated 2012 costs, the actual 2012 costs, the variance and an explanation of the variance.

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
License Amendment	\$17,087,333	\$26,687,697	\$9,600,364	This category includes the support of Westinghouse, Shaw, Areva, other engineering contracts and the NRC fees related to the preparation, submittal, review and approval of the St. Lucie Unit 1 and Unit 2 License Amendments, and the "umbrella modification" which implements the requirements of the LAR . The variance is due primarily to the NRC longer-than-expected review time and the complexity of the LAR and the cost of additional vendor and Owner labor to respond to NRC requests for additional information and implementing the LAR requirements.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 5 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
FPL Owner Engineering	\$7,253,671	\$9,996,255	\$2,742,584	The variance is the result of Owner support of the design engineering effort for Unit 1 and Unit 2 modifications. Additional overtime was worked to ensure readiness for the Unit 2 outage.
FPL Owner Project Management	\$19,494,825	\$20,349,720	\$854,895	The variance primarily reflects the additional overtime required to support the longer Unit 1 outage start up and testing phase.
Bechtel	\$101,768,246	\$171,940,418	\$70,172,172	The majority of the EPU modifications performed during the Unit 1 outage were first time evolutions of major modifications which affected major pieces of equipment and a variety of components. The variance is the result of the iterative integration of final licensing requirements, existing field conditions, and vendor design details for engineered equipment and components. In many instances, the design details required additional modifications after initial issuance to accommodate discovery. Additionally, the variance reflects an increase in work package planning staff to complete work packages, requisition materials, and support turn-over packages. Impacts were also experienced from the heavy rainfall and tropical Storm Isaac safety preparedness during August 2012 time frame. All of these factors contributed to the additional non-manual and craft human capital required to successfully complete both PSL outages in 2012. Removal costs are excluded.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 6 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Turbine Generator Component Material	\$37,558,738	\$35,864,500	(\$1,694,238)	This variance reflects the payments to Siemens made pursuant to the agreement executed in July 2012.
Turbine Generator Installation Services	\$48,025,173	\$41,981,499	(\$6,043,674)	The major contributors to the variance were the successful completion of the Unit 2 scope of work significantly under budget and the payments to vendor that were made pursuant to the agreement executed in July 2012.
Station Indirect Outage Cost	\$22,155,957	\$26,316,343	\$4,160,386	The variance was caused primarily by the extended Unit 1 outage and the associated incremental station support costs.
Engineering and Implementation (other than Bechtel and Siemens)	\$50,222,006	\$54,500,703	\$4,278,697	This category includes Shaw Construction, AMES, Bartlett, Williams, Master Lee and a number of other support contractors. Also included is the cost of personnel responsible for procedure updates, startup, and testing. The variance was caused primarily by new scope added to the Shaw Construction contract for Digital Electro-Hydraulic (DEH) mechanical and electrical installation in the Unit 1 outage. This work was assigned to Shaw to achieve greater schedule certainty.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 7 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Risk / FPL purchased Long Lead Material	\$66,991,579	\$28,071,142	(\$38,920,437)	This category includes the FPL purchased Long Lead materials and the funds associated with risk identified at the time of the previous submittal. The variance primarily reflects the removal of costs from risk/contingency to base budget after scope was defined and approved for inclusion in the project.
Non-Power Block Engineering, Procurement, etc.	\$111,010	\$278,339	\$167,329	This category includes the Simulator which required additional work scope to complete the required upgrades.
Transmission	\$14,175,657	\$17,490,506	\$3,314,849	This category includes plant engineering, line engineering, substation engineering, and line construction. This variance is a result of the installation of the new main transformer at St. Lucie Unit 2 taking longer than estimated.
Recoverable O&M	\$3,947,588	\$3,104,433	(\$843,156)	This category includes modifications that did not meet the capitalization criteria, O&M EPU equipment inspections, and obsolete inventory write-offs. The variance is primarily attributable to fewer obsolete inventory write-offs than estimated for 2012.
TOTAL	\$388,791,783	\$436,581,554	\$47,789,771	

Turkey Point EPU Modifications and System Commissioning

The majority of the EPU modifications performed during the Turkey Point Unit 3 outage were not routine, predictive or preventative maintenance activities but were first time evolution major modifications which affected many large pieces of equipment and components, where interferences had to be removed to provide access. During component removal additional discovery required added engineering design, scheduling and planning, constructability reviews and ultimately more time than planned to perform the required modifications. When a modification activity is started it is necessary to resolve discovery challenges to ensure the modification is completed safely and efficiently. Performing these EPU modifications on a licensed plant required added care and safety considerations to ensure nuclear regulatory requirements were satisfied. These factors added to the complexity of performing the modifications which were contributors to the longer duration of the first Turkey Point Unit 3 outage. It was necessary to increase staffing levels and keep people longer to complete these first time modifications and prepare for the Turkey Point Unit 4 outage.

Below are several exemplar modification descriptions where design, implementation, and constructability complexities were successfully resolved by the project team.

The PTN Control Room Emergency Ventilation System and Control Room Filtration System (CREVS/CREFS) modifications were not included in the original scope.

The initial Control Room Habitability modifications only required the installation of containment sump pH Control modification which consisted of the installation of Sodium Tetraborate Baskets and removal of the Emergency Containment Filters. The need for CREVS/CREFS was identified during the Alternative Source Term (AST) license amendment engineering analysis phase. The new modification included a complex replacement and redesign of structural supports associated with the CREVS/CREFS fans and relocation of existing outside air intakes. Relocation of existing air intakes required additional seismic and missile protection design to meet safety related design requirements. The NRC-required modification to upgrade the Control Room CREVS/CREFS became very complex due to the limited available real estate and strict regulatory requirements. The capability of the CREVS/CREFS, along with the Control Room Boundary (CRB) and Control Room Envelope (CRE) is to provide an acceptable environment for control room personnel and equipment such that the reactor can be safely controlled under normal conditions and maintained in a safe condition following a radiological event, hazardous chemical release, or a smoke challenge. There were several engineering design evolutions during the constructability and planning portion of the modification and during the implementation of the modification due to discovery. Special seismic and missile protected structures and heavy wall piping were installed to move outside filtered air from the units to the control room. Added seismic piping supports and seismic structures that hold the ventilation fans and dampers and the filtration portion of the systems required additional planning and manpower to implement due to the complexity of the modification. The PTN Control Rooms require special processes, procedures, risk evaluations, and look-ahead activities to permit breaching the control room envelop. These precautions are based on operating restrictions placed on both units during a boundary breach. There were numerous separate breaches required to install the necessary cables into the control room. Each control room envelop breach was scheduled well in advance and was subject to schedule impacts due to emergent plant operating issues, thereby affecting craft productivity.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 9 of 19

This modification was impacted greatly by the iterative nature of the work wherein each pipe hanger required multiple revisions as the resulting changes to accommodate available pipe support anchor bolt locations (drilled into existing reinforced structures) had to be evaluated for wind and seismic conditions. The number of Large Bore (LB) pipe supports grew 500% and the number of LB welds increased by 40%. There were significant modifications required as many of the structural connections were made to existing steel or were made to embedded structures that often varied from the design basis (note: this is not uncommon for plants of this vintage).

The project team estimated that this modification would require 11,200 man hours of engineering and 72,066 man hours of field implementation. It actually required 15,502 man hours of engineering and 218,173 man hours of field implementation in year 2012.

The **PTN Main Condensers** have canal cooling water pumped at approximately 1,300,000 gallons per minute through over 110,000 tubes to condense over 12 million pounds mass per hour of steam being discharged from the low pressure turbines. The condensate is then reheated and pumped into the steam generator to again begin the steam cycle. A larger condenser was needed to support increased steam flow at EPU conditions. Replacing the main condenser required far more engineering design hours, implementation time, implementation manpower, and raw materials than estimated as a result of location congestion and conditions that could not be discovered until the implementation of the modification.

There were a significant number of as-found conditions that needed to be addressed on an emergent basis after the outage started. The nature of the condenser work was such that: 1) most areas could not be accessed while the plant was operating which did not allow the existing conditions or the constructability of the new design to be validated; and 2) required many activities to work in series which limited the ability to mitigate schedule impacts by executing other work fronts in a parallel path manner. These conditions included, but were not limited to, the following items:

- Low pressure Feedwater Heaters (FWH) temporary supports. The existing "neck heaters" needed to be temporarily supported when the condenser tubes and tube sheets were removed. The as-found location of the neck heaters was different than the design location which required a redesign of the temporary supports. The sequencing of the work required these temporary supports to be installed before other work could progress, so the emergent identification and resolution of this issue was a significant schedule and cost impact.
- There were a number of plugged tubes (approximately 2,000 out of approximately 58,000) that had to be cut out individually and manually versus the planned mechanical extraction.
- As an extent of condition evaluation following a sparger failure at St Lucie, the spargers inside the Turkey Point Unit 3 condenser were evaluated for corrosion and operability in the uprate conditions. A number of spargers were identified for replacement; the repair/replacement locations interfered with originally planned work and the emergent nature of the work resulted in material delays which further impacted the planned work sequence.

Initially, FPL planned to use portable cranes to move the old condenser out and the new condenser into place. However, it was later determined that there was simply not enough land area suitable to stage a portable crane or maneuver the large loads. Accordingly, a specialty track crane was designed. This required the installation of micro piles, to prevent disturbing existing underground utilities, for one crane rail and the use of one of the turbine gantry crane rails for the other rail of the temporary crane. The scheduling of crane use was critical to ensuring worker and equipment safety, as both the turbine building crane and the condenser crane could not be used at

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 10 of 19

the same time. Additionally, the foundation of the condenser could not be assessed until the old condenser was removed. Upon removal, it was determined that it was necessary to upgrade the foundation steel and concrete for the new condenser, which required additional time for engineering design, planning, and scheduling, as well as additional commodities. Additional discovery of needed upgrades to spargers that distribute steam as it enters the condenser required added materials to upgrade the spargers for EPU conditions. The spargers required added engineering design, materials, planning, and implementation, all of which added to the complexity of the condenser work.

The estimated engineering and field implementation for the condenser replacement was 215,900 man hours. The condenser replacement including the temporary specialty crane took approximately 368,090 man hours of engineering and field implementation work.

The PTN Spent Fuel Pool Cooling System provides cooling to the spent fuel storage pool to keep used fuel cooled within regulatory specifications during initial off-loading of the fuel assemblies from the reactor vessel and for long term cooling. Due to the use of new fuel to provide the increased power for the uprate conditions, the spent fuel pool cooling system required modifications which included installation of a new heat exchanger on a new platform and more piping in a very congested room. Numerous interferences were removed and redesigned to install the new cooling system while keeping the original system in service. Detailed coordination between operations personnel, the engineers, and the constructors was required to safely resolve these interferences. The engineering design required cutting a large hole in a thick concrete wall used to protect the system components and contain radiation. The opening in the wall took much more time and engineering than originally planned. This was another first time evolution performed in a highly congested space. The interferences that needed to be relocated had to have the same quality as the original equipment to ensure safe continued system operability. Additionally, this work required contamination and radiation protection safety controls to keep the radiation dose to workers As Low As Reasonably Achievable (ALARA) and to minimize the potential for radioactive contamination of workers. This was accomplished with extensive planning, training of workers and worker familiarity with tools and equipment. This work took more engineering design, planning and scheduling, constructability reviews and implementation workers than estimated. This modification required an additional 77,465 man hours of engineering and craft implementation work.

The PTN Normal Containment Cooling System (NCC) is another example of design engineering, planning and scheduling, constructability, and implementation complexities that occurred during the required replacement modification for the NCC in the cramped areas of the primary containment building. These coolers provide necessary area cooling of the primary containment during plant operation and outage periods. The increased heat loads and the requirement to reduce aluminum metal concentration in the primary containment building required replacing the normal containment coolers with larger, non-aluminum coolers for operation in the uprate condition. The new cooler components are substantially more robust than the existing components and therefore required significant structural modifications to support the increased weight. The final support design identified numerous changes to the structural modifications. The work was critical path to the outage and required more resources than originally estimated to complete the implementation. This work required contamination and radiation protection safety controls to keep the radiation dose to workers ALARA and to minimize the potential for radioactive contamination of workers. This was accomplished with extensive planning, training of workers and worker familiarity with tools and equipment. Two

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 11 of 19

different mockups were used to train and prepare workers for the removal and replacement of the NCCs, one was the erection and operation of a small crane to move the many materials and components inside the containment building and the other was the physical structural placements of the NCCs, both of which were performed outside the primary containment building. Once work began in the primary containment building, equipment lay-down and staging areas were extremely limited and it was necessary to erect a platform over the reactor cavity to provide additional work space. In addition to the needed lay-down and staging area more equipment interferences needed to be moved to accommodate movement and placement of the NCCs. Larger structural steel supports and piping were needed for the new larger replacement NCCs which required additional commodities, resources, and time to complete the work in the cramped areas while working in protective clothing.

This modification required an additional 130,834 man hours of engineering and craft implementation work. Small bore piping welds increased by over 400%, electrical conduit which supports electrical wiring runs increased by over 1,200%, in addition to the large increase in the amount of structural steel supports.

The PTN Turbine Deck is where the major work scope was for replacing components. The Turbine Generator Original Equipment Manufacturer (OEM), implementation contractor, performed the High Pressure Turbine upgrade, High Lift modification, and Main Generator The EPC contractor replaced Feedwater Heaters 5 & 6, replaced four Moisture upgrade. Separator Reheaters, installed the new Electro-Hydraulic Controls (EHC) system, and implemented the Gland Steam modification. These activities are complicated by usage of a single Turbine Gantry Crane, common lay-down spaces and work spaces, which required detailed coordination between all contractors involved. Due to the limited availability of the turbine gantry crane, a large tower crane and several small lift cranes were temporarily installed which provided increased capability to perform lifting activities simultaneously but also required detailed coordination. Further complicating the turbine building scope is the heavy load analysis which restricted movement of major components due to regulatory requirements. In addition, there were several new systems/components installed by the EPC contractor that are in close proximity to the turbine generator OEM contractor and thus required greater coordination to ensure safety (e.g., the HP turbine, EHC system, and Gland Steam system). Initially the plan was to use existing electrical cable raceways and conduits for the EHC system upgrade. During the detailed design phase of the turbine EHC system, it was determined that existing electrical cable raceways and conduits were not adequate for the new digital controls. Accordingly, new electrical cable raceways, conduits, and associated supports were required for cable routing. Additionally, the turbine digital control system required a complex factory acceptance test and several design iterations to ensure reliability.

PTN has Lead-Based Paint and Asbestos Insulation which are considered hazardous materials when disturbed. Lead paint and asbestos abatement activities require personnel specially trained in hazardous material handling. For the safety of workers abatement was required prior to the demolition of existing systems, structures, and components and installation of the new equipment required for EPU. There was more abatement required than estimated which took hazardous material specially-trained personnel longer to complete.

The PTN Feedwater Heater and Moisture Separator Reheater (MSR) Replacement Modifications includes replacing the feedwater heaters, four MSRs and associated piping. During the detailed design phase, the turbine building was analyzed and found to require

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 12 of 19

additional structural support modifications to accommodate installation of the new, larger and heavier feedwater heaters. With these structural modifications an overall turbine building seismic fragility model was developed to ensure the additional structural supports and turbine building were structurally adequate. Turbine building modifications were also required for the four MSR replacements. These activities required more resources than estimated.

There was also a general quantity growth across piping and hangers for these modifications as many of the assumptions could not be verified in the congested areas while the unit was operating. For the feedwater heaters, the final number of Large Bore (LB) pipe hanger quantities increased by 70% and LB piping welds increased by approximately 25%. For the MSRs, LB pipe hanger quantities grew by nearly 100%; and the LB piping welds by over 20%. The magnitude of these changes caused a significant increase in the craft hours and non-manual staffing hours needed to process the additional work.

This modification required an additional 244,198 man hours of engineering and craft implementation work.

Additional commodities were required and installed during the Turkey Point Unit 3 EPU outage to support the modification work. Increases in the amounts of commodities to support modifications requires additional engineering design, planning and scheduling, and skilled craft for implementation, all of which requires added resources and more time to complete. The below table provides a list of the major commodities, the planned and actual amounts, the increase and the percentage increase:

Commodity	Unit of Measure	Plan	Actual	Actual - Plan = Increase	% increase above Plan
Misc. Structural Steel	piece	1,864	2,385	521	28%
Large Bore Pipe Welds $- \ge 2.5$ " dia.	ea	1,918	2,479	561	29%
Large Bore Supports	ea	614	860	246	40%
Small Bore Pipe Welds	ea	3,757	3,967	210	6%
Electrical Wiring Conduit	Ft	8,719	10,659	1,940	22%
Electrical Cable	Ft	81,824	81,879	55	0%

Turkey Point Unit 3 Project Commodity Totals - Pre-outage and Outage

Note: Quantities from major vendor reports

Following the implementation of the modifications a systematic turnover to operations is required to ensure the system would perform its function reliably after implementing the necessary EPU modifications. This required engineers, technicians, and craft support to test the various system controls logic and verify and validate system operability. Included in this monumental effort of the commissioning of these systems are the technical and functional component and system interconnections and dependent functions of the many systems that were modified. This manpower intensive effort also added to the longer duration of the outage.

Weather impacted the Turkey Point Unit 3 outage. The main turbine, turbine generator, feedwater heaters, and many other major components are located outdoors. Rainfall and

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 13 of 19

thunderstorms during the outage period had an impact on nearly all EPU work since most of the work occurred outdoors and in an open Turbine Building. The amount of rainfall during the outage period exceeded the historical average; according to NOAA, the local area experienced 64 inches of rainfall during the 6 month period from March 1 through August 31, 2012 as compared to an average rainfall of 36 inches for the same 6 month period. Additionally, there were frequent work stoppages due to lightning before, during, and after the rain storms. All crane activities were stopped for lightning strikes within a 10 mile radius around the site as a safety precaution and all work activities in open areas were stopped for lightning strikes within a five mile radius around the site. High winds were also a factor as wind gusts above 25 miles per hour shut down most cranes on site, impacting productivity.

Using the talents of and experience gained by personnel who performed the Turkey Point Unit 3 EPU outage the Turkey Point Unit 4 outage engineering designs, planning and scheduling, and work packages were enhanced. Preparing for the Turkey Point Unit 4 EPU outage in this manner required increased staffing levels in between the outages, contributing to increased costs. As of December 31, 2012, the forecast duration of the Unit 4 outage duration was 33% better than the Turkey Point Unit 3 outage, and the forecast cost to complete the PTN 4 outage was 20% better than the cost of the PTN 3 outage.

All the efforts described above contributed to the additional resources required to implement the Turkey Point EPU work and resulted in a total increased cost of approximately \$279 million in 2012. Primary drivers for the Turkey Point variance by vendor are presented in the table below. The results were the successful completion of the Turkey Point Unit 3 EPU outage in 2012, with the addition of approximately 116 MWe of clean, greenhouse gas-free electricity being provided for the benefit of FPL customers.

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
License Amendment	\$6,990,596	\$7,912,881	\$922,285	The variance was caused by the need for more engineering analyses to respond to NRC requests and extended NRC review times, offset to some extent by completing certain LAR engineering work on a Time & Materials basis for less than estimated.
Risk and O&M	\$11,335,746	\$4,684,330	(\$6,651,416)	The variance primarily reflects the removal of costs from risk/contingency to base budget after scope is defined and approved for inclusion in the project.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 14 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Bechtel	\$332,761,410	\$502,600,396	\$169,838,986	The majority of the EPU modifications performed during the outage were first time evolution of major modifications which affected many large pieces of equipment and components. The variance is the result of the iterative integration of final licensing requirements, existing field conditions, and vendor design details for engineered equipment and components. In many instances, the design details required additional modifications after initial issuance to accommodate these factors and new information. Additionally, the variance reflects an increase in work package planning staff to complete work packages, requisition materials, and support turn-over packages. Specifically, the CREVs/CREFs, Normal Containment Coolers, Spent Fuel Pool, Condenser Replacement, Feedwater Heaters and Moisture Separator Reheaters, Electro- Hydraulic Tubing, Turbine Digital Controls, Main Steam Isolation Valves, and Main Feedwater Pump modifications were impacted. The need to use multiple temporary construction cranes to access nearly all of the modification areas at Turkey Point also contributed to complexity and costs. Removal costs are excluded.
Turbine Generator Material	\$29,659,103	\$36,422,802	\$6,763,699	This variance reflects the payments to vendor that were made pursuant to the agreement executed in July 2012.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 15 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Turbine Generator Installation and Material	\$70,914,024	\$90,183,082	\$19,269,058	The major contributors to the variance were the unanticipated scopes covered under Extra Work Authorizations (EWAs), as-found conditions covered under EWAs, and the actual outage duration lasting longer than anticipated. Major contributors to EWAs included: alignment of the Low Pressure (LP) and High Pressure (HP) turbine internals, replacement of the generator building bolts, and Electro- Hydraulic Controls, Power System Stabilizer, and Voltage Regulator specialists and supporting equipment. Another contributor to the variance was the costs associated with keeping vendor personnel on site performing work for a longer duration than planned, contributing to regular and overtime work hours. Cost also increased due to the following: exciter coupling work, lead abatement, re- insulation of leads, replacement of rotor flux probes, replacement of iris slot couplers, and additional hours needed for the installation and testing of the power system stabilizer.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 16 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Shaw (Construction)	\$0	\$37,191,194	\$37,191,194	The variance was caused primarily by new scope added to the Shaw contract for completion of some portion of the NCC and Control Rod Drive Mechanism cooling fans work for Unit 3 and for the Radiological Control Area (RCA) work and Spent Fuel Pool Cooling upgrade support for PCI on Unit 4. This work was assigned to Shaw to achieve greater schedule certainty and allow for the EPC contractor to focus on secondary side modifications.
Williams	\$0	\$4,851,549	\$4,851,549	The variance was caused by added scope to abate lead based paint prior to demolition of existing systems, components and structures. Additional scope was added for cleaning and coating of all pipe spools and equipment, and to wash down all piping installed for the EPU modifications.
WeldTech	\$0	\$8,655,566	\$8,655,566	The contract was issued for completion of the steam jet air ejector modification, gland steam piping, condensate piping and supports, and sparger replacement work for Unit 3. The contract was modified to add the same scope for EPU Unit 4 implementation. This work was assigned to Weldtech to achieve greater schedule certainty and allow for the EPC contractor to focus on secondary side modifications.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 17 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
PCI , Westinghouse Co.	\$0	\$13,702,295	\$13,702,295	Following completion of the Unit 3 spent fuel pool cooling upgrade modification, competitive bids were solicited for the Unit 4 scope. PCI was awarded the contract for installing the Unit 4 spent fuel pool cooling upgrade modification prior to the Unit 4 outage. This work was awarded to PCI to achieve greater schedule certainty for Unit 4 outage completion and to allow for the EPC contractor to focus on secondary side modifications. PCI successfully completed the Unit 4 work prior to the Unit 4 outage.
Station Support and Ames	\$20,467,351	\$32,477,630	\$12,010,279	Along with Station support staff, Ames was contracted to install I&C equipment and cable terminations for Units 3 and 4 to expedite completion of Engineering Change Modification and turnover to Start Up for testing according to the post modification plan. This work was assigned to Ames to achieve greater schedule certainty and allow for the EPC contractor to focus on secondary side modifications.
FPL Project Management / FPL Engineering	\$50,838,246	\$52,413,289	\$1,575,043	This variance was caused by increased staffing and extended overtime work for FPL supervision and staff to adequately oversee the complex work and issues discovered during implementation, as well as the need for oversight over a longer duration than planned. The variance was mitigated by less than planned FPL Engineering costs.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 18 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Implementation Support, Other Engineering / Long Lead Material	\$176,715,620	\$189,015,121	\$12,299,501	The variance is the result of the need for additional engineering subcontractors and FPL Plant support to address increased scope caused by existing field conditions and revisions to vendor design details for engineered equipment and components. The following also contributed to this variance: (i) Radiation Protection (RP) staff, consumables, and test equipment was required for a longer duration than planned, and the RP coverage requirement changed from intermittent coverage to constant coverage during the outage; (ii) security personnel were also needed to monitor increased traffic, parking areas, access, and material logistics for a longer duration than planned; (iii) FPL needed to procure an additional offsite facility for employee processing and an additional facility for welder testing; (iv) FPL incurred costs to consolidate material storage facilities and material logistics to ease access of material for various contractors for EPU implementation as a lesson learned from Unit 3 outage; (v) additional material and commodities were required to support the EPU modifications; (vi) and FPL issued purchase orders to suppliers to bring their technical representatives for critical systems to standby during the start up activities for outages to mitigate delays to resolve unforeseen issues.

Docket No. 130009- EI 2012 EPU Cost Variance Drivers Exhibit TOJ-7, Page 19 of 19

Vendor/ Category	Actual/ Estimated 2012 Cost	Actual 2012 Cost	Variance 2012 Cost	Variance Explanation
Transmission	\$13,214,482	\$12,224,503	(\$989,979)	This category includes plant engineering, line engineering, substation engineering, and line construction. This variance is a result of the work requiring less resources than estimated to complete.
TOTAL	\$712,896,578	\$992,334,638	\$279,438,060	

- N7	וק האוכוועכע בעייר עייר עייר או	זא זי זיטעע דע עע	A AUIVIUGS
St. Lucie Unit 1R24 2011/2012 Outage	Description	Contract	Scoping Document
Condenser Material Modifications includes air removal	Strengthening of the Main Condenser is needed with higher steam and condensate flows in the uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Containment Mini-Purge	Reduction of maximum allowed Containment pressure per NRC Plant Technical Specifications	Bechtel PO-117820	PSL License Amendment Request (LAR) Engineering
Feedwater Digital Modifications	Instrumentation to provide control the feedwater heater control and dump valves in the uprate conditions	Feedforward SC2287468	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Leading Edge Flow Meter (LEFM) Measurement Uncertainty Recapture (MUR)	Precision flow measurement instrument and instrumentation provides for increased certainty of operating parameters supporting uprate conditions	Cameron PO-116107	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Digital Electro-Hydraulic Computer System Modification	Modifications needed for increased certainty of turbine operating parameters supporting uprate conditions	Westinghouse Power PO-131940	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Electrical Bus Margin Modifications	Required to restore margin on electrical busses as a result of uprate	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study. February 2008

2012 Extended Power Uprate (EPU) Project Work Activities

	אירווחרת ז הארו האו איי	<u>1011 100 10 10 10 10 10 10 10 10 10 10 1</u>	V VICINITAS
St. Lucie Unit 1R24 2011/2012 Outage	Description	Contract	Scoping Document
Piping Vibration Modifications	Increases in steam and feedwater flows may cause piping vibrations. Restraints dampen the vibrations	Bechtel PO-117820	BOP analysis of component capabilities in the power uprate conditions
Main Generator Exciter Coolers/Blower	Increased cooling of the main generator exciter is required in the power uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Feedwater Heater Replacement (#5)	Larger feedwater heaters are needed to process the steam and feedwater flows in the uprate conditions	TEI PO-118224	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Feedwater Regulating Valves Modification	Larger operating mechanisms are required to operate the feedwater regulating valves in the increased uprate conditions	Fisher Controls SC2262515	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Main Generator Current Transformer and Bushing Replacement	Modifications required due to the modifications to the generator rotor and stator for uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Main Generator Hydrogen Seal Oil Pressure Increase	Increased hydrogen pressure for main generator cooling is required in the uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Main Generator Core Iron Replacement	Replace core iron to make the generator stator increased electrical output acceptable in the uprate conditions	Siemens	Testing of the main generator

2012 Extended Power Uprate (EPU) Project Work Activities

•

201	(2 Extended Power Uprate ()	EPU) Project Woi	-k Activities
St. Lucie Unit 1R24 2011/2012 Outage	Description	Contract	Scoping Document
Main Generator Hydrogen Coolers	Increased main generator cooling is required in the uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Main Generator Rotor Replacement and Stator Rewind	Larger generator is needed to increase electrical output in the uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Moisture Separator Drain Control Valves Replacement	Larger valves are needed for the increased condensed water flow in the uprate conditions	Fisher Controls SC2262201	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Heater Drain Control Valves	Larger valves are needed to control the condensate flow in the uprate conditions	Fisher Controls SC2262201	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Feedwater Heater Drains/ Moisture Separator Reheater (MSR) Digital Controls	Reduce the operating band to optimize efficiency and maximize output	Bechtel PO-117820	St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Heater Drain Pumps and Motors Replacements	Larger pumps and motors are required to pump the increased heater drain flows in the uprate conditions	Flowserve Corp. PO- 125454	St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Hot Leg Injection Flow Improvements	Increasing required flow under EPU and eliminating single point failure vulnerability with cross train power on in-series valves	Bechtel PO-117820	EPU LAR Engineering
High Pressure Turbine Rotor	Larger inlet valves are required for increased steam flows in the uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, Balance of Plant, EPU, Scoping Study, February 2008

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 3 of 30

107	2 EXIGNAGU FOWER UPFALE (E	IL U) Frojeci W U	'K ACUVIUES
	Description	Contract	Scoping Document
	Increased cooling is needed for the electrical connections from the main generator to the main transformer in the uprate conditions	AZZ Calvert PO-120769	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
	Larger LP turbine rotors are required for the increased steam flow in the uprate conditions	Siemens PO-116088	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
	Larger pumps are required to pump the increased feedwater flow required in the uprate conditions	Flowserve PO-121985	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
	Larger operators on the MSIVs are required to operate against higher steam pressure	Enertech for Actuators	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
	Increased cooling is needed to handle the increase in the main generator electrical output	ABB PO-112255, 126248	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008, ABB Engineering Thermal Loading Design Study, FPL St. Lucie, ABB Project Number, FP13469-1, Rev.1, August 25, 2008
q	Increased steam and water flows in the uprate conditions require additional piping restraints	Bechtel PO-117820	BOP analysis of component capabilities in the power uprate conditions

-----(LDD) 2012 Ev

201	2 Extended Power Uprate (EPU) Project Wol	-k Activities	
. Lucie Unit 1R24 011/2012 Outage	Description	Contract	Scoping Document	
sture Separator Reheater R) Replacement	Larger capacity MSRs are required to heat and dry the steam flow in the uprate conditions	TEI PO-118205	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	
trol Element Drive hanism (CEDM) System lifications	Modify the CEDM system to recover operational and safety margins in the uprate conditions	Westinghouse PO-118271	Original equipment manufacturer recommendation	
nce of Plant (BOP) umentation	Setpoint and scaling of plant instrumentation for uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	
lear Steam Supply em Plant Instrumentation	Setpoint and scaling of plant instrumentation for uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	
ty Injection Tank sure Increase	Modification required to operate at higher pressure based on EPU conditions for small break Loss of Coolant Accident (LOCA) analysis	Bechtel PO-117820	EPU LAR Engineering	
m Bypass Control System 1 Distributed Control em (DCS)	Add digital controls to the increased steam bypass system flow	Invensys PO-2263052	Engineering Design Modifications	
m Bypass Flow to denser-Increase	Increased steam flow in the uprate conditions requires larger bypass capability to the main condenser	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	
vine Cooling Water Heat nanger Replacement	Larger heat exchangers are needed for increased cooling in the uprate conditions	TEI PO-118278	St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 5 of 30

Facilities Study, FPL EPU project, St. **Scoping Document** Contract At St. Lucie, metering and relay work, at Midway Description Transmission and Substation St. Lucie Unit 1R24 2011/2012 Outage

Lucie 1&2, Q114 & Q115, March 2009

T&S

switchyard, switch

(T&S) Modifications

replacement

2012 Extended Power Uprate (EPU) Project Work Activities

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 6 of 30

	ZULL EXIGINED FUNCT VUL	ale (Er U) wurk A	cuvities
St. Lucie Unit 2R20 2012 Outage	Description	Contract	Scoping Document
Condensate Pump Replacement	Larger condensate pumps are needed to pump the increased condensate flows in the uprate conditions	Flowserve Corp. PO-130160	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, Balance of Plant (BOP), EPU, Scoping Study, February 2008
Condenser Material and Air Ejector Modification	Strengthening of the Main Condenser is needed with higher steam and condensate flows in the uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Control Room Modification	Additional cooling and Alternative Source Term margin required for power uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Digital Electro-Hydraulic Computer System Modification	Modifications needed for increased certainty of turbine operating parameters supporting uprate conditions	Westinghouse PO-131940	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Electrical Bus Margin Modifications	Required to restore margin on electrical busses as a result of uprate	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Piping Vibration Modifications	Required to correct resistance caused by increased loads at EPU conditions	Bechtel PO-117820	BOP analysis of component capabilities under EPU conditions
Feedwater Heater ReplaBechtelcement (#5 A/B)	Larger feedwater heaters are needed to process the steam and feedwater flows in the unrate conditions	TEI PO-118224	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008

2012 Extended Power Uprate (EPU) Work Activitie

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 7 of 30

Haviti. APTIN WA 2012 Fvt

ctivities	Scoping Document	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	BOP analysis of component capabilities under power uprate conditions	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
ate (EPU) Work A	Contract	AZZ Calvert PO-120769	Cameron PO-116107	Flowserve PO-121985	Siemens PO-4500467077	Bechtel PO-117820	TEI PO-118205
2012 Extended Power Upra	Description	Increased cooling is needed for the electrical connections from the main generator to the main transformer in the uprate conditions	Precision flow measurement instrument and instrumentation provides for increased certainty of operating parameters supporting uprate conditions	Larger pumps are required to pump the increased feedwater flow required in the uprate conditions	Larger main transformers are needed to handle the increase in the main generator electrical output	Strengthening required due to increased loads under EPU conditions	Larger capacity MSRs are required to heat and dry the steam flow in the uprate conditions
	St. Lucie Unit 2R20 2012 Outage	Isophase Bus Duct Cooling	Leading Edge Flow Meter (LEFM) Measurement Uncertainty Recapture (MUR)	Main Feedwater Pump Replacement	Main Transformer Replacement	Main Steam, Condensate, and Feedwater Piping Support Modifications	Moisture Separator Reheater (MSR) Replacement

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 9 of 30

	INTE TANNA & DANIMART FINE		
St. Lucie Unit 2R20 2012 Outage	Description	Contract	Scoping Document
Balance of Plant (BOP) and Nuclear Steam Supply System (NSSS) Plant Instrumentation	Set point and scaling of plant instrumentation for uprate conditions	Bechtel PO-117820	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Increase Steam Bypass Flow to Condenser Modifications	Modifications required due to increased bypass flow to condenser from main steam, feedwater and heater drains	Bechtel PO-117820	EPU License Amendment Request (LAR) Engineering
Turbine Cooling Water Heat Exchanger Replacement	Larger heat exchangers are needed for increased cooling in the uprate conditions	TEI PO-118278	St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008
Chemical Volume Control system (CVCS) Mod for Gas Collection	NRC Generic Letter (GL2008-01) requires licensees to ensure emergency systems are capable of being vented at their water high points to minimize air entrapment when the system is required to function	Alion 129895	Identified during the LAR engineering review
Component Cooling Water (CCW) Piping & Support Modifications	Strengthening required due to increased thermal conditions under EPU	Bechtel PO-117820	BOP analysis of component capabilities under power uprate conditions
Environmental Qualification (EQ) Equipment Mods - Containment Temperature Resistance Temperature Detector (RTD) Modifications	Existing RTDs not EQ related components. EPU conditions subject these components to more harsh environment	Bechtel PO-117820	EPU LAR Engineering

2012 Extended Power Uprate (EPU) Work Activities

ctivities	Scoping Document	BOP analysis of component capabilities under power uprate conditions	EPU LAR Engincering	EPU LAR Engineering	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	EPU LAR Engincering	OEM Recommendation
ite (EPU) Work A	Contract	Bechtel PO-117820	Bechtel PO-117820	Bechtel PO-117820	Feedforward SC2287468	Bechtel PO-117820	Westinghouse PO-118271
2012 Extended Power Upra	Description	Feedwater Heater Shell Side must be capable of relieving 10% of FW flow under EPU conditions	EDG frequency deviation for EPU conditions impacts ability of pumps to operate under injection and recirculation modes. Replacement impellers and throttling bypass valves required	Bus taps to Aux and Start-Up transformers are undersized and under-supported for short circuit under EPU conditions	Mandatory scaling changes required to provide accurate control under EPU conditions	EPU required DOST capacity. Need loop seals in the fill & overflow lines	Modify the CEDM system to recover operational and safety margins in the uprate conditions
	St. Lucie Unit 2R20 2012 Outage	Feedwater Vent Orifice & Relief Valve Resizing	Containment Spray Pump Flow Impact Modifications	Isophase Bus Supports	Distributed Control System for LEFM and Feedwater Controls	Diesel Oil Storage Tank (DOST) Operating Margin Modification	Control Element Drive Mechanism (CEDM) System Modifications

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 11 of 30

	Scoping Document	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	Station Engineering identified this SIAS trip must be removed for Accident conditions.			
IN I	Contract	Shaw PO-112221	Bechtel PO-117820			
FULL LANGINGUE LOWER UNDER	Description	Provides the basis for plant to go to EPU conditions. Wraps up all modifications, assesses all systems, updates misc procedures, Final Safety Analysis Report, etc	The Unit 2 Charging Pumps, which are now credited for Emergency Core Cooling Sytem Small Break Loss of Coolant Accident for EPU conditions, trip on SIAS			
	St. Lucie Unit 2R20 2012 Outage	Umbrella Modification "EPU Wrap-up"	Charging Pump Safety Injection Actuation Signal (SIAS) Circuit Change			

(FDIN Would Activition 1 2012 Evt

Scoping Document **OEM** Recommendation PO-116088 Contract Siemens sequence induced, outer blade below the resonant frequency this frequency outside of this monitoring in SL2-19 power During LP Turbine torsional vibration damage. To drive **Electric Insurance Limited** ackshaft between the two machine frequency safely (NEIL) req'ts), the tuning found to pass through the LPs, thereby pushing the option installs a less stiff operating frequency was ascension, the machine susceptible to negative range (to meet Nuclear "double line" resonant Description frequency, making it Low Pressure (LP) Turbine St. Lucie Unit 2R20 2012 Outage **Torsional Tuning**

2012 Extended Power Uprate (EPU) Work Activities

	1	
Scoping Document	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008	EPU LAR Engineering
Contract	Western Services Corp. PO-118627	Holtec PO-2291586
Description	Modifications needed to replicate the plant in the power uprate conditions	Regulatory driven modification for more highly enriched fuel required for EPU
St. Lucie 2012 On-Line Activities	Training Simulator Modifications	Spent Fuel Pool (SFP) Modifications

A stivitios CEPID Work F 7 2012 Evt
	-							
A AULIVIUCS	Scoping Document	AST LAR Engineering	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
) I I UJCCL VY UI	Final Contract	S&L PO-79551	Invensys PO -126227	Invensys PO-129689	Cameron PO-116796	AZZ / Calvert PO-124436	Bechtel PO-117809	
12 EALEILUCU FUWEL UPIALE (EL U	Description	Alternative Source Term method requires pH greater than 7.0. The current pH control system is not sufficient at uprate conditions	Instrumentation to provide control the feedwater heater level control and dump valves in the uprate conditions	Enhanced controls for the new turbines. Current design is not sufficient for the new turbine configuration in the uprate conditions	Precision flow measurement instrument and instrumentation provides for increased certainty of operating parameters supporting uprate conditions	Increased bus size is needed for the electrical connections from the main generator to the main transformer in the uprate conditions	Increased pressures and flows require modifications and adjustments to process instrumentation in the uprate	
07	Turkey Point Unit 3R26 2012 Outage	Sump pH Control, Install Sodium Pentaborate (NaTB) Baskets	Feedwater Heater Drains of Digital Modifications	Turbine Digital Controls Modification – Units 3 & 4	Leading Edge Flow Meter (LEFM) Digital upgrade Phase 3 (Instrumentation)	Isophase Bus Duct Replacement	BOP Instrumentation Modifications	

	THINNELLO INNO I MANIMUT TI	<u>n m mn n i i i i i i i i i i i i i i i i</u>		
Turkey Point Unit 3R26 2012 Outage	Description	Final Contract	Scoping Document	
Switchyard Modifications	Increased electrical output requires modification to switchyard equipment to support the uprate conditions	T&S	Generation Interconnection Service and Network Resource Interconnection Service System Impact Study. 11/25/08	
Fast Acting Feedwater Isolation Valves Addition	Increased feedwater flow and pressure requires modifications to support uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Feedwater Regulating Valves Trim Upgrade Modification	Larger actuators and valve internals are required to operate the feedwater regulating valves in the increased uprate conditions	SPX PO-115351	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Heater Drain Valves (Remaining)	Larger valves are needed to control the condensate flow in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Feedwater Heater #5 Drain Piping Modification	Higher drain water flows require larger piping in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Main Steam Isolation Valve and Main Steam Control Valve Assemblies (MSIV/MSCV) Replacement	Satisfies new steam system pressure requirements at the HP turbine	Bechtel PO-117809	EPU LAR Engineering	·
Main Steam Safety Valve Set Point Modifications	Increased temperature and pressure require set point changes in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Flow Accelerated Corrosion Identified Piping Replacement Phase B	Increased flows require replacement of piping affected by the flow accelerated corrosion in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 16 of 30

				1
Turkey Point Unit 3R26 2012 Outage	Description	Final Contract	Scoping Document	
High Pressure Turbine Modification	Larger inlet throttle valves and Turbine redesign are required for increased steam flows in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Main Generator Rotor Replacement	Larger generator and stator are needed to increase electrical output in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Main Generator Hydrogen Coolers	Increased main generator cooling is required in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	· · · · · · · · · · · · · · · · · · ·
Turbine Electro-Hydraulic Controls	Enhanced controls for the new turbines. Current design is not sufficient for the new turbine configuration in the uprate conditions	Siemens PO-130272	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Moisture Separator Reheater (MSR) Replacement	Larger capacity MSRs are required to heat and dry the steam flow in the uprate conditions	TEI PO-118206	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	r
Main Condenser replacement	Increased turbine exhaust steam to the main condenser requires replacement of the main condenser to support uprate conditions	TEI PO-118328	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Condenser Tube Cleaning System (Amertap)	Replacement of the main condenser requires replacement of the condenser tube cleaning system to support the uprate conditions	TEI PO-118328	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	

	A TAL AIRING A IAMA T MANIANY AT	in in instant of		
Turkey Point Unit 3R26 2012 Outage	Description	Final Contract	Scoping Document	
Normal Containment Cooling (NCC) Modifications	Increased power production from the primary system requires additional cooling of the containment in the uprate conditions	AAF McQuay PO-121869	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	· · · · · · · · · · · · · · · · · · ·
Spent Fuel Pool (SFP) Cooling Heat Exchanger Modification	Increased power from the fuel requires additional cooling of the fuel when it is placed into the SFP	Joseph Oats PO-2259675	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Pressurizer Safety Valve Setpoint Change	A Pressurizer Safety Valve Setpoint change is required to meet the peak Reactor Coolant System pressure in the analyzed Loss of Level/Turbine Trip (LOL/TT) event	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Emergency Containment Filter Removal	Abandon containment filters from the containment to support the safety margin in the uprate conditions.	Bechtel PO-117809	FPL PTN Feasibility Study 2007	Г
Condensate Pump and Motor Replacement	Larger condensate pumps are needed to pump the increased condensate flows in the uprate conditions	Flowserve PO-130612	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Main Feed Pump Rotating Element Replacement	Rotating assemblies need redesign to pump the increased feedwater flow required in the uprate conditions	Flowserve PO-130612	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Turbine Plant Cooling Water (TPCW) HX Replacement	Increased temperatures of components require additional cooling in the uprate conditions	Joseph Oat Corp. PO-126453	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
Feedwater Heaters (5A/B, 6A/B) Replacement	Larger feedwater heaters are needed to process the steam and feedwater flows in the uprate conditions	TEI PO-118241	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	

20	12 Extended Power Uprate (EPU) Project Woi	-k Activities
Turkey Point Unit 3R26 2012 Outage	Description	Final Contract	Scoping Document
Instrumentation & Control Pressurizer Setpoint / Control / Indication Changes	Changes to NSSS and BOP instrumentation are required to meet EPU conditions	Bechtel PO-117809	EPU LAR Engineering
Main Steam Pressure Lead/Lag Module Install and Eagle 21 Changes	Modifications for licensing, design basis, plant program changes, l&C scaling and setpoint changes identified to support EPU conditions	Westinghouse PO-119078	EPU LAR Engineering
Main Steam Pipe Snubber and Supports Installation	Uprate conditions require additional piping supports and restraints	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
High Pressure Turbine Supply Spill Over Piping Replacement	Modifications needed for increased HP Turbine exhaust pressures and spillover	Bechtel PO-117809	EPU LAR Engineering
Secondary Instrumentation Set point and indication Changes	Changes to NSSS and BOP instrumentation are required to meet EPU conditions	Bechtel PO-117809	EPU LAR Engineering
Containment Aluminum Reduction	EPU increases containment sump temperature which accelerates aluminum degradation	Zachry PO 115465	EPU LAR Engineering
Hot Leg Injection Alternate Flow Path	Evaluate/modify current design for alternate Hot Leg flow path which contains a single-failure deficiency for post-Loss of Coolant Accident (LOCA) Hot Leg Recirculation	Bechtel PO-117809	EPU LAR Engineering
Plant Documentation Changes resulting from Westinghouse Setpoint and Scaling Changes	Documentation update and identification of setpoint / scaling changes to plant computer systems software for NSSS systems as a result of EPU	Bechtel PO-117809	EPU LAR Engineering

٢ 2

20	12 Extended Power Uprate (EPU) Project Wor	k Activities
Turkey Point Unit 3R26 2012 Outage	Description	Final Contract	Scoping Document
Main Steam Flow Element Replacement	Satisfies new steam system pressures requirements at the HP turbine	Bechtel PO-117809	EPU LAR Engineering
Steam Generator Blowdown Flow Instrumentation Modifications	Modifications needed to improve measurement accuracy of Steam Generator blowdown	Bechtel PO-117809	EPU LAR Engineering
Closed Cooling Water (CCW) Pipe Support Modifications	CCW Pipe Supports need to be evaluated/modified to ensure design basis is met under EPU conditions	Bechtel PO-117809	EPU LAR Engineering
Steam Jet Air Ejector Condenser Tube Bundle Replacement	Modification needed to SJAE condenser due to increased condensate system pressure resulting from uprate	WeldTech P.O. 2304432	EPU LAR Engineering
Heater Drain System Pressure Re-rate	Piping modifications required to meet EPU conditions	Bechtel PO-117809	EPU LAR Engineering
Control Rod Drive Mechanism Fan Motor and Cooling Coil Replacement	Fan motor modification needed because of increased containment temperatures caused by EPU conditions. Cooling coil material being changed to copper to reduce the amount of aluminum in containment to meet AST requirements	Bechtel PO-117809	AST LAR Engineering
Repowering of the Alternate PTN Unit 4 Spent Fuel Pool (SFP) Cooling Pump Motor	Increased heat load on the SFP cooling system due to EPU conditions requires a 2 nd cooling pump to be in operation	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 20 of 30

ZULZ EXIGNICU I OWEL UPIALE (EL U) I TUJECI WULK ACUMIES	Scoping Document	EPU LAR Engineering	Operating Experience from uprates
JI INJEEL WO	Final Contract	Enercon P.O. 2294494	Shaw Eng PO 2296076
12 EAICILUCE I UNCI UPI AIC LEI U	Description	Auto actuation of the three Emergency Containment Cooling fans is required in the uprate conditions	Piping will be monitored for increased vibrations which may require additional modifications to piping constraints in the uprate condition
4U.	Turkey Point Unit 3R26 2012 Outage	Emergency Containment Cooling (ECC) Restore Automatic Actuation of Third ECC to Reduce Containment Pressure	EPU Piping Vibration Modification

20	12 Extended Power Uprate (EPU) Project Wor	k Activities
Turkey Point Unit 4 2012/2013 Outage	Description	Final Contract	Scoping Document
Sump pH Control, Install Sodium Tetraborate (NaTB) Baskets	Alternative Source Term (AST) method requires pH greater than 7.0. The current pH control system is not sufficient at uprate conditions	S&L PO-79551	AST LAR Engineering
Switchyard Modifications	Increased electrical output requires modification to switchyard equipment to support the uprate conditions	T&S	Generation Interconnection Service and Network Resource Interconnection Service System Impact Study. 11/25/08
Feedwater Heater Drains Digital Modifications	Instrumentation to provide control the feedwater heater control and dump valves in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Turbine Digital Controls Modification	Enhanced controls for the new turbines. Current design is not sufficient for the new turbine configuration in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Leading Edge Flow Meter (LEFM) Digital (Instrumentation) Upgrade Tie In	Precision flow measurement instrument and instrumentation provides for increased certainty of operating parameters supporting uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
BOP Instrumentation Modifications	Increased pressures and flows require modifications and adjustments to process instrumentation in the uprate conditions	Ames PO-2302164	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008

----h 1 F 0100

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 22 of 30

	A TEL MARINA I MARI A PI AND	TO M INDIAL TO A		
Turkey Point Unit 4 2012/2013 Outage	Description	Final Contract	Scoping Document	
ast Acting Feedwater solation Valves Addition	Increased feedwater flow and pressure requires modifications to support uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
eedwater Regulating Valves rim Upgrade Modification	Larger actuators and valve internals are required to operate the feedwater regulating valves in the increased uprate conditions	SPX PO-115351	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
leater Drain Valves eplacement (Remaining)	Larger valves are needed to control the condensate flow in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
eedwater Heater #5 Drain iping Modification	Higher drain water flows require larger piping in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
fain Steam Isolation Valve nd Main Steam Control Valve ssemblies (MSIV/MSCV) eplacement	Satisfies new steam system pressures requirements at the HP turbine	Bechtel PO-117809	EPU LAR Engineering	
fain Steam Safety Valve Set oint Modifications	Increased temperature and pressure require set point changes in the uprate conditions	Ames PO-2302164	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
ligh Pressure Turbine 10dification	Larger inlet throttle valves and Turbine redesign are required for increased steam flows in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008	
fain Generator Rotor eplacement	Larger generator and stator are needed to increase electrical output in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Sconing Study, March 2008	

rate (F.P.I.) Project Work Activities II 10 2012 Extended Pov

Unit 4 Itage	Description	Final Contract	Scoping Document
drogen	Increased main generator cooling is required in the uprate conditions	Siemens PO-116090	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
draulic	Enhanced controls for the new turbines. Current design is not sufficient for the new turbine configuration in the uprate conditions	Siemens PO-130272	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
r Reheater nt	Larger capacity MSRs are required to heat and dry the steam flow in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
placement	Increased turbine exhaust steam to the main condenser requires replacement of the main condenser to support uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
leaning ent	Replacement of the main condenser requires replacement of the condenser tube cleaning system to support the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
ent Cooling ons	Increased power production from the primary system requires additional cooling of the containment in the uprate conditions	Shaw PO-2293489	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
ooling Heat ement	Increased power from the fuel requires additional cooling of the fuel when it is placed into the spent fuel pool	PCI PO-2309693	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008

20	12 Extended Power Uprate (EPU	J) Project Wol	rk Activities
Turkey Point Unit 4 2012/2013 Outage	Description	Final Contract	Scoping Document
Pressurizer Safety Valve Setpoint Change	A Pressurizer Safety Valve Setpoint change is required to meet the peak Reactor Coolant System pressure in the LOL/TT event	Ames PO-2302164	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Emergency Containment Filter Removal	Abandon containment filters from the containment to support the safety margin in the uprate conditions	Shaw PO-2293489 R7	FPL PTN Feasibility Study 2007
Condensate Pump and Motor Replacement	Larger condensate pumps are needed to pump the increased condensate flows in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Main Feed Pump Rotating Element Replacement	Rotating assemblies need redesign to pump the increased feedwater flow required in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Turbine Plant Cooling Water (TPCW) Heat Exchanger Replacement	Increased temperatures of components require additional cooling in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Feedwater Heaters (5A/B, 6A/B) Replacement	Larger feedwater heaters are needed to process the steam and feedwater flows in the uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Main Steam Pressure L/L Module Install and Eagle 21 Changes	Modifications for licensing, design basis, plant program changes, I&C scaling and setpoint changes identified to support EPU conditions	Ames PO-2302164	EPU LAR Engineering
Pressurizer Setpoint / Control / Indication Changes	Changes to NSSS and BOP instrumentation are required to meet EPU conditions	Ames PO-2302164	EPU LAR Engineering

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 25 of 30

012 Extended Power Uprate (EPU) Project Work Activities	Description Final Scoping Document	Uprate conditions require additionalShawFPL PTN Feasibility Study 2007,Uprate conditions require additionalPO-2293489Turkey Point Nuclear Plant BOP EPUpiping supports and restraintsR7Scoping Study, March 2008	Modifications needed for increased HP Turbine exhaust pressures and spilloverWeldTech PO-2304432EPU LAR Engineering	Changes to NSSS and BOPAmesinstrumentation are required to meetAmesEPU conditions	EPU increases containment sumpShawtemperature which acceleratesPO-2293489aluminum degradationR7	Evaluate/modify current design for alternate Hot Leg flow path which contains a single-failure deficiency for post-LOCA Hot LegShaw PO-2293489EPU LAR Engineering RPU LAR Engineering	Documentation update and identification of setpoint / scaling changes to plant computer systems software for NSSS systems as a result of EPUAmes EPU LAR Engineering	Satisfies new steam systemShawpressures requirements at the HPPO-2293489turbineR7	Modifications needed to improveBechtelmeasurement accuracy of SteamPO-117809Generator blowdownPO-117809
U12 Extended Power Up	Description	Uprate conditions require a piping supports and restrain	Modifications needed for in HP Turbine exhaust pressu spillover	Changes to NSSS and BOF instrumentation are require EPU conditions	EPU increases containmen temperature which accelera aluminum degradation	Evaluate/modify current de alternate Hot Leg flow pat contains a single-failure de for post-LOCA Hot Leg Recirculation	Documentation update and identification of setpoint / s changes to plant computer software for NSSS systems result of EPU	Satisfies new steam system pressures requirements at the turbine	Modifications needed to in measurement accuracy of S Generator blowdown
3	Turkey Point Unit 4 2012/2013 Outage	Main Steam Pipe Snubber and Supports Installation	High Pressure Turbine Supply Spill Over Piping Replacement	Secondary Instrumentation Setpoint Changes	Containment Aluminum Reduction	Hot Leg Injection Alternate Flow Path	Plant Doc Changes resulting from Westinghouse Setpoint and Scaling Changes	Main Steam Flow Element Modifications	Steam Generator Blowdown Flow Instrumentation

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 26 of 30

07	TT EALENIUGU FUWEL UPIALE UPI	J I I UJECI W UI	A AUIVIUES
Turkey Point Unit 4 2012/2013 Outage	Description	Final Contract	Scoping Document
Closed Cooling Water (CCW) Pipe Support Modifications	CCW Pipe Supports need to be evaluated/modified to ensure design basis is met under EPU conditions	Shaw PO-2293489 R7	EPU LAR Engineering
Steam Jet Air Ejector (SJAE) Condenser Tube Bundle Replacement	Modification needed to SJAE condenser due to increased condensate system pressure resulting from uprate	WeldTech PO-2304432	EPU LAR Engineering
Heater Drain System Pressure Re-rate	Piping modifications required to meet EPU conditions	Bechtel PO-117809	EPU LAR Engineering
Control Rod Drive Mechanism Fan Motor and Cooling Coil Replacement	Fan motor modification needed because of increased containment temperatures caused by EPU conditions. Cooling coil material being changed to copper to reduce the amount of aluminum in containment to meet AST requirements	Shaw PO-2293489 R7	AST LAR Engineering
Emergency Containment Coolers (ECC) Restore Automatic Actuation of Third ECC to Reduce Containment Pressure	Auto actuation of the three Emergency Containment Cooling fans is required in the uprate conditions	Shaw PO-2293489 R7	EPU LAR Engineering
EPU Piping Vibration Modification	Piping will be monitored for increased vibrations which may require additional modifications to piping constraints in the uprate condition	Shaw PO-2293489 R7	Operating Experience from uprates
Unit 4 Turbine Building& Feedwater Platform Structure	Provide additional structural support for heavier components	Bechtel PO-117809	Engineering Evaluation

otivitioe (LIG 2) F 2012 Evt

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 27 of 30

20	13 Extended Power Uprate (EPU)) Project Wol	K Activities
Turkey Point 2013 On-Line Activities	Description	Final Contract	Scoping Document
Post EPU Condenser Amertap Cleaning System Units 3 & 4	Replacement of the main condenser requires replacement of the condenser tube cleaning system to support the Uprate conditions	Bechtel PO-117809	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008
Add Valve Operator Extension Hand wheel to Safety Injection Valve 3-867 and 4-867	Modification makes motor operated valve accessible to allow manual isolation to accommodate EPU conditions	Shaw P.O. 2293489 R7	EPU LAR Engineering
Unit 4 Umbrella Modification LAR Document PCM # 1	Non-hardware modifications implementing configuration management of licensing, design basis and plant program changes as a result of EPU	Enercon PO-2285720	EPU LAR Engineering
Unit 4 Condensate Polishing	Condensate Polishing building modification to clean secondary water after major component replacements	Shaw P.O. 2293489 Release 007	Engineering evaluation and operating experience
Site Demobilization and Site Restoration	Restoration of temporary facilities, structures, parking, construction, return office areas to pre-EPU Project conditions	Various	Engineering Modifications and FPSC Nuclear Cost recovery
Post -EPU Asset Disposal	Demolition and disposal of all construction debris, replaced vessels and components	Various	Engineering Modifications and FPSC Nuclear Cost recovery

Docket No. 130009-EI EPU Work Activities List as of December 31, 2012 Exhibit TOJ-8, Page 28 of 30

	Scoping Document	FPL PTN Feasibility Study 2007, Turkey Point Nuclear Plant BOP EPU Scoping Study, March 2008 and Engineering Modifications	FPL Feasibility Study 2007, Turkey Point Nuclear Plant, BOP, EPU, Scoping Study, February 2008 and Engineering modifications	FPSC Nuclear Cost Recovery
A HANDAL HAND	Final Contract	Various	Various	Various
	Description	To align systems to optimal performance and re-establishes performance baselines for systems that were modified	Project document close-out activities which include calculation updates, Configuration Control Programs, Document Package Closeout and commercial close-out	Provide support and documentation for final close-out of Cost Recovery process
	Turkey Point 2013 On-Line Activities	Post EPU Outage System Testing and Tuning	Final Project Documentation and Close-out	Cost Recovery Close-out

	Scoping Document	Engineering Modifications and FPSC Nuclear Cost recovery	Engineering Modifications and FPSC Nuclear Cost recovery	FPL PSL Feasibility Study 2007, St. Lucie Nuclear Plant BOP EPU Scoping Study, March 2008 and Engineering Modifications	FPL Feasibility Study 2007, St. Lucie Nuclear Plant, BOP, EPU, Scoping Study, February 2008 and Engineering modifications	FPSC Nuclear Cost Recovery
	Final Contract	Various	Various	Various	Various	Various
	Description	Restoration of temporary facilities, structures, parking, construction, return office areas to pre-EPU Project conditions	Demolition and disposal of all construction debris, replaced vessels and components	To align systems to optimal performance and re-establishes performance baselines for systems that were modified	Project document close-out activities which include calculation updates, Configuration Control Programs, Document Package Closeout and commercial close-out	Provide support and documentation for final close-out of Cost Recovery process
, .	St. Lucie Plant 2013 On-Line Activities	Site Demobilization and Site Restoration	Post EPU Asset Disposal	Post EPU Outage System Testing and Tuning	Final Project Documentation Close-out	Cost Recovery Close-out

TOJ – 9

Docket No. 130009-EI EPU Equipment Placed In Service In 2012 Exhibit TOJ-9, Page 1 of 3

EQUIPMENT PLACED IN SERVICE IN 2012

item No.	EPU Assets Placed in Service in 2012	Date Placed In Service
1	Nuclear - Turkey Point Distribution Heavy Haul Path	January 2012
2	Transmission - St. Lucie Midway Substation Line Bay Upgrade	March 2012
3	Transmission - St. Lucie Generator Bay Upgrade	March 2012
4	 Nuclear - St. Lucie Unit 1 Outage (PSL 1-24) 1. Feedwater Pump Replacement 2. Low Pressure and High Pressure Turbine Rotors Replacement 3. Generator Upgrade Rotor Replacement & Stator Rewind 4. Generator Current Transformers and Bushings Replacement 5. Generator Hydrogen Seal Oil System Pressure Increase 6. Generator Hydrogen Coolers Upgrade 7. Generator Exciter Cooler Upgrade 8. Heater Drain Pump and Valve Replacement 9. Turbine Plant Cooling Water Heat Exchanger Replacement 10. Main Steam Isolation Valve Modification 11. Condenser Air Removal System Upgrade 12. Isophase Bus Duct Cooling Modification 13. Steam Bypass Control System Upgrade 14. Moisture Separator Reheater Replacement 15. Feedwater Heater # 5 Replacement 	April 2012
5	GSU - St. Lucie Unit 1 Generator Step-Up (GSU) Transformer Cooler Upgrade	April 2012
6	Transmission - Turkey Point Site Expansion Switchyard	June 2012
7	Transmission - Turkey Point Davis Breaker Failure Panels	July 2012
8	Nuclear - St. Lucie Unit 1 License Amendment Request	July 2012
9	Transmission - Turkey Point Flagami Breaker Failure Panels	July 2012
10	Transmission - Turkey Point Distribution Street Lighting	August 2012
11	GSU - Turkey Point Spare Generator Step-Up (GSU) Transformer	August 2012

Docket No. 130009-EI EPU Equipment Placed In Service In 2012 Exhibit TOJ-9, Page 2 of 3

ltem No.	EPU Assets Placed in Service in 2012	Date Placed In Service
12	Nuclear - Turkey Point Turbine Valve Refurbishment (from PTN 4-26)	August 2012
13	 Nuclear - Turkey Point Unit 3 Outage (PTN 3-26) 1. High Pressure Turbine Rotor Replacement 2. Generator Upgrade - Rotor Replacement & Stator Rewind 3. Generator Current Transformers and Bushings Replacement 4. Generator Hydrogen Coolers Upgrade 5. Generator Exciter Cooler Upgrade 6. Heater Drain Pump and Valve Replacement 7. Spent Fuel Cooling Heat Exchanger Replacement 8. Main Steam Isolation Valve Modification 9. Moisture Separator Reheater Replacement 10. Isophase Bus Duct Cooling Modification 11. Steam Bypass Control System Upgrade 12. Turbine Plant Cooling Water Heat Exchanger Replacement 13. Main Condenser Replacement 14. Normal Containment Cooling Modification 15. Condensate Pump and Motor Replacement 16. Feedwater Heater # 5 & 6 Replacement 	September 2012
14	Nuclear - Turkey Point Unit 3 and 4 License Amendment Request	September 2012
15	Nuclear - Turkey Point Turbine Valve Refurbishment (during PTN 3- 26)	September 2012
16	Nuclear - Turkey Point Simulator	September 2012
17	 Nuclear - St. Lucie Unit 2 Outage (PSL 2-20) 1. Condensate Pump Replacement 2. High Pressure Turbine Rotor Replacement 3. Heater Drain Pump and Valve Replacement 4. Turbine Plant Cooling Water Heat Exchanger Replacement 5. Condenser Air Removal System Upgrade 6. Isophase Bus Duct Cooling Modification 7. Steam Bypass Control System Upgrade 8. Feedwater Heater # 4 & 5 Replacement 9. Moisture Separator Reheater Replacement 	November 2012
18	Nuclear - St. Lucie Unit 2 License Amendment Request	November 2012
19	GSU - St. Lucie Unit Replacement 2A Generator Step-Up (GSU) Transformer	November 2012
20	Nuclear - Turkey Point Gate Valve Machining	November 2012

Docket No. 130009-EI EPU Equipment Placed In Service In 2012 Exhibit TOJ-9, Page 3 of 3

ltem No.	EPU Assets Placed in Service in 2012	Date Placed In Service
21	Nuclear - Turkey Point Globe Valve Machining	November 2012
22	Transmission - Turkey Point Switchyard	November 2012
23	GSU - St. Lucie Spare Generator Step-Up (GSU) Transformer Coolers & Pumps	November 2012
24	Nuclear - Turkey Point Turbine Valve Refurbishment (from PTN 3-26)	December 2012

TOJ - 10

Docket No. 130009-EI EPU EPPI Index as of December 31, 2012 Exhibit TOJ-10, Page 1 of 1

Title	PI#	Revs	Issued
Project Administration	100		
Project Instruction Preparation, Revision, Cancellation	100	R6	10/22/2012
EPU Project Expectations & Conduct of Business	110	R26	10/8/2012
Roles & Responsibilities	140	R11	9/11/2012
EPU Project-Nuclear Business Ops Interface	150	R3	5/16/2012
EPU Project Formal Correspondence	160	R3	12/22/2011
Time and Expense Reporting to FPLE Support	170	Cancelled	5/7/2012
EPU Nuclear Cost Recovery	180	R2	10/22/2012
Human Performance	190	R0	4/2/2012
Procurement	200		
PR and PO Funding Request and Single/Sole Source			
Justification	220	R6	7/25/2012
Project Invoice Process Instructions	230	R8	10/8/2012
Work Hours Validation Sampling Program	235	R0	8/20/2012
EPU Contract Compliance Program	240	R4	2/29/2012
Project Target Price Control Process	250	Cancelled	10/22/2012
Project Controls	300		
EPU Project Change Control	300	R10	12/6/2010
Forecast Variance and Trends	301	R1	11/28/2011
Nonbinding Cost Estimate Range	302	R0	7/20/2011
Development, Maintenance, and Update of Schedules	310	R6	5/5/2011
Cost Estimating	320	R3	6/18/2012
EPU Project Risk Management Program	340	R5	12/22/2011
EPU LAR Engineering Risk Management	345	Cancelled	5/18/2011
FPL Accrual Process	370	R5	1/30/2012
Project Self Assessment	380	R2	3/28/2011
EPU Obsolete and Spare Parts Process Guideline	391	R0	3/28/2011
Project Training	500		
EPU Project Personnel Training Requirements	520	R2	7/20/2011
EPU Project Qualification Guidelines	560	R4	1/3/2011
Quality, Engineering & Licensing	600		
EPU Uprate License Amendment Request	610	Cancelled	7/28/2011
Request for Information - St. Lucie and Turkey Point	640	R1	12/4/2011
Saint Lucie Specific	800		
St. Lucie EPU Project Severe Weather Preparation	810	R4	4/11/2012
EPU Project Environmental Control Program PSL	820	Cancelled	12/12/2012
Turkey Point Specific	900		
Turkey Point EPU Project Severe Weather Preparations	910	R1	6/1/2010
EPU Project Environmental Control Program PTN	920	Cancelled	4/26/2012

EPU Project Instructions (EPPI) Index as of December 31, 2012

Docket No. 130009-EI EPU Project Reports 2012 Exhibit TOJ-11, Page 1 of 2

Extended Power Uprate Project Reports 2012

Report	Report Description	Typical Pariodicity	Audience
PTN Daily	Activities scheduled within the	Daily	All project staff
Penort	next six weeks	Dally	nersonnel project
Kepon	heat six weeks		management and
			nroject controls
Juno Beach	LAP status engineering status	Biweekly	Executive Vice
Executive VD &	planning and implementation	DIWCCKIY	president & Chief
Chief Nuclear	and project risks		Nuclear Officer and
Officer Summary	and project lisks		other invited quests
DSI DTN	Documents acornals for each	Monthly	Nuclear Business
A corrupt Deport	site wender amount purchase	Wollding	Operations Comparate
	order remarks and references	ļ	operations, Corporate
	order, remarks and references		Broject Monagement
DEL DIN	Cost actuals, hudgets and	Monthly	Nuclear Dusiness
FSL, FIN	forecasts for Operations &	Wonuny	Operations Comparate
variance Report	Maintenance (O & M) and		operations, Corporate
	Conital area ditures		Broject Monogoment
DOL DINI	Dashbaard of EDU project	Monthly	Froject Management
PSL, PIN, Monthly	Dashboard of EPO project,	Monuny	Monagement EDU
Monuny Operation	scope definition, execution		Draiast Management
Derformence	plan, resources, cost, schedule,		Project Management
Demont (MODD)	quality, safety, environmental,		
Report (MOPR)	incensing, and regulatory		Ductor
PSL, PIN RISK	Quantified risks, potential cost	PIN	Project Management,
Matrix	impact, weighted cost impact,		Input to Presentations
	probability of occurrence, and	PSL As	
	risks identified but not quantified	Needed	

Docket No. 130009-EI EPU Project Reports 2012 Exhibit TOJ-11, Page 2 of 2

Extended Power Uprate Project Reports 2012 (continued)

...........

"

Report	Report Description	Typical Periodicity	Audience
PSL, PTN	Dashboard, progress	Monthly	Project Management
Monthly Cash	indicators, resources, schedule,	-	
Flow Charts	and costs		
Juno Beach,	Project status, indicators,	Quarterly	Executive
Executive	forecast issues, next steps		Management
Steering			
Committee			
Meeting			
Presentations			
Bechtel Status	Dashboard, progress	As needed	Project Management
Report	indicators, resources, schedule,		
	costs		
Juno Beach, Key	Work scope status reports	As needed	Executive and Project
Supplier Meeting			Management
Bechtel, PTN	Daily Earned Value Report	Daily	Project Management,
	and Daily Cost Report for PTN		Input to Presentations
	4R27 outage		
Shaw, PTN	Daily Earned Value Report	Daily	Project Management,
	and Daily Cost Report for PTN		Input to Presentations
	4R27 outage		
Bechtel	Trend Register	Weekly	Project Management,
			Input to Presentations

TOJ - 12

Docket No. 130009-EI Summary of 2012 EPU Construction Costs Exhibit TOJ-12, Page 1 of 1

Category	2012 Actual Costs
Licensing	\$50,526,559
Engineering & Design	\$30,475,285
Permitting	\$0
Project Management	\$57,105,177
Power Block Engineering, Procurement, etc.	\$1,251,631,758
Non-Power Block Engineering, Procurement, etc.	\$1,673,642
Total EPU Construction Capital Costs	\$1,391,412,421
Transmission Capital	\$29,715,008
Total Construction & Transmission Capital Costs	\$1,421,127,429
EPU Recoverable O&M	\$7,788,763
Total Construction & Transmission Costs	\$1,428,916,192

Table includes post in-service costs. NFR Schedules T4, O&M and T6, Construction and Transmission costs do not.