AUSLEY MCMULLEN

ATTORNEYS AND COUNSELORS AT LAW

123 SOUTH CALHOUN STREET P.O. BOX 391 (ZIP 32302) TALLAHASSEE, FLORIDA 32301 (850) 224-9115 FAX (850) 222-7560

August 5, 2019

VIA: ELECTRONIC FILING

Mr. Adam J. Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

Re: Commission Review of Numeric Conservation Goals (Tampa Electric Company) FPSC Docket No. 20190021-EG

Dear Mr. Teitzman:

On August 2, 2019 Tampa Electric was made aware of an edit to the Company's Winter Technical Potential involving Demand Response. In the Market Potential Study supplied by Nexant there was one segment of commercial customers (Large Commercial and Industrial greater than 500 kW) that was omitted from a formula that produced a summation of the Winter Demand MW.

This incorrect summation caused Tampa Electric's Winter Demand Response Technical Potential to be understated by 498 MW. Tampa Electric's original reported Demand Response Technical Potential was filed as 2,318 MW and needs to be corrected to 2,816 MW. The incorrect summation also caused Tampa Electric's Economic Potential, both for the Rate Impact Measure ("RIM") test and Total Resource Cost ("TRC") test, to be understated by the same 498 MW amount, given the fact that all of the associated Demand Response Measures for this segment of commercial customers passed both cost-effectiveness tests. The incorrect summation also caused Tampa Electric's Sensitivity analyses and post free-ridership consideration Economic Potential, both for the RIM and TRC tests, to be understated by the same 498 MW amount.

The incorrect summation has no effect on the company Achievable Potential or proposed goals, as the measures at the Achievable Potential are analyzed using their individual demand and energy contributions and not the Technical Potential assigned. Here is a summary of the changes:

Winter - Technical Potential for Demand ResponseOriginal filed April 12, 2019Modified due to Summation Error2,318 MW2,816 MW

Winter – Economic	Potential (RIM Portfolio)
Original filed April 12, 2019	Modified due to Summation Error
3,256 MW	3,754 MW

Winter – Economic Potential (TRC Portfolio)Original filed April 12, 2019Modified due to Summation Error2,488 MW2,986 MW

Winter – Post Free-ridership Economic Potential (RIM Portfolio)Original filed April 12, 2019Modified due to Summation Error2,409 MW2,907 MW

Winter – Post Free-ridership Economic Potential (TRC Portfolio)Original filed April 12, 2019Modified due to Summation Error2,326 MW2,824 MW

Again, the above corrections have no effect on the company's Achievable Potential or proposed Demand Side Management goals.

Attached herewith for filing in this docket are revised Bates stamp ("Bates") pages from Tampa Electric's testimony and exhibits in this proceeding which reflect the changes indicated to correct the effects of the incorrect summation. We would appreciate your circulating the following revised Bates pages to the recipients of the April 12 filing so that they may be substituted in place of the originals:

Bates Page#	Line #	Change
40	19	2,318 to 2,816
45	3	3,256 to 3,754
45	9	2,488 to 2,986
51	17	2,409 to 2,907
52	12	2,326 to 2,824
92	Table 1-2	673 to 1,171
92	Table 1-2	2,318 to 2,816
126	Table 5-2	673 to 1,171
126	Table 5-2	2,318 to 2,816

172	2019 Technical Potential Demand Response WkW	2,318 to 2,816
176	2019 Economic Potential RIM Based Demand Response WkW	2,318 to 2,816
176	2019 Economic Potential TRC Based Demand Response WkW	2,223 to 2,721
186	Technical Potential Demand Response WkW	2,318 to 2,816
187	Economic Potential RIM Based Demand Response WkW	2,318 to 2,816
187	Economic Potential TRC Based Demand Response WkW	2,223 to 2,721
187	Low Fuel Sensitivity RIM Based Demand Response WkW	2,318 to 2,816
188	Low Fuel Sensitivity TRC Based Demand Response WkW	2,223 to 2,721
188	High Fuel Sensitivity RIM Based Demand Response WkW	2,318 to 2,816
188	High Fuel Sensitivity TRC Based Demand Response WkW	2,176 to 2,674
189	One Year Free-Ridership RIM Based Demand Response WkW	2,318 to 2,816
189	One Year Free-Ridership TRC Based Demand Response WkW	2,223 to 2,721

189	Three Year Free-Ridership RIM Based Demand Response WkW	2,318 to 2,816
190	Three Year Free-Ridership TRC Based Demand Response WkW	2,223 to 2,721
190	Two Year Free-Ridership RIM Based Demand Response WkW	2,318 to 2,816
190	Two Year Free-Ridership TRC Based Demand Response WkW	2,223 to 2,721

Thank you for your assistance in connection with this matter.

Sincerely,

hun Bear 0

James D. Beasley

JDB/pp Attachment

cc: All parties of record (w/attachment)

TAMPA ELECTRIC'S TECHNICAL POTENTIAL: 1 2 What is Tampa Electric's technical potential? 3 Q. 4 The company's technical potential is made up of estimates 5 Α. for energy efficiency, demand response and distributed 6 energy resources. The technical potential estimates from 7 these categories are not additive due to the interactive 8 effect of certain measures on end uses. With this 9 backdrop, Tampa Electric's technical potential for energy 10 11 efficiency is: Summer Demand: 1,138 MW 12 13 Winter Demand: 583 MW Annual Energy: 4,483 GWh 14 15 Tampa Electric's technical potential for demand response 16 is: 17 Summer Demand: 2,399 MW 18 Winter Demand: 2,816 MW 19 Annual Energy: 0 GWh 20 21 distributed Tampa Electric's technical potential for 22 energy resources is: 23 24 Summer Demand: 2,215 MW Winter Demand: 619 MW 25

REVISED: 08/05/2019

1	economic potential resulted in the following savings:
2	Summer Demand: 4,928 MW
3	Winter Demand: 3,754 MW
4	Annual Energy: 12,669 GWh
5	
6	Under the TRC cost-effectiveness test evaluation, this
7	economic potential resulted in the following savings:
8	Summer Demand: 2,656 MW
9	Winter Demand: 2,986 MW
10	Annual Energy: 1,785 GWh
11	
12	The details of these values are included in my Exhibit
13	MRR-1, Document No. 10.
14	
15	TAMPA ELECTRIC'S ECONOMIC POTENTIAL SENSITIVITIES:
16	
17	Q. Please describe what economic potential sensitivities
18	Tampa Electric conducted to be compliant with the
19	Commission's Order Establishing Procedures in this
20	proceeding?
21	
22	A. Tampa Electric's economic potential sensitivity analyses
23	were conducted based upon the RIM and TRC economic
24	potentials with regard to the following factors:
25	1) Lower fuel costs;

	1	
1		specific customers to do what they would do on their own
2		without an incentive. Because of this and Rule 25-
3		17.0021, F.A.C., which requires the minimization of free
4		riders in the setting of DSM goals, the two-year simple
5		payback criterion is the appropriate means to apply to
6		minimize free ridership as required by Rule.
7		
8	Q.	How many measures remained qualified and the associated
9		summer demand, winter demand and annual energy savings of
10		these measures after consideration of free-ridership
,11		under the RIM and PCT evaluation?
12		
13	A.	After consideration of free-ridership, 1,100 individual
14		measure permutations remained qualified under the RIM and
15		PCT evaluation and resulted in the following savings:
16		Summer Demand: 2,557 MW
17		Winter Demand: 2,907 MW
18		Annual Energy: 747 GWh
19		
20	Q.	How many measures were removed due to having a simple
21		payback of two-years or less after consideration of free-
22		ridership under the RIM and PCT evaluation?
23		
24	Α.	After consideration of free-ridership, the two-year
25		payback removed 779 individual measure permutations under

1		the RIM and PCT evaluation.
2		
3	Q.	How many measures remained qualified and the associated
4	9)	summer demand, winter demand and annual energy savings of
5	1 2	these measures after consideration of free-ridership
6		under the TRC and PCT evaluation?
7		
8	A.	After consideration of free-ridership, 944 individual
9		measure permutations remained qualified under the TRC and
10		PCT evaluation and resulted in the following savings:
11		Summer Demand: 2,465 MW
12		Winter Demand: 2,824 MW
13		Annual Energy: 686 GWh
14		
15	Q.	How many measures were removed due to having a simple
16		payback of two-years after consideration of free-
17		ridership under the TRC and PCT evaluation?
18		
19	Α.	After consideration of free-ridership, the two-year
20		payback removed 1,005 individual measure permutations
21		under the TRC and PCT evaluation.
22		
23	Q.	Did Tampa Electric comply with Staff's request and the
24		Order Establishing Procedure by performing a sensitivity
25		analyses utilizing the consideration of free-ridership?

TAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 3 PAGE 10 OF 70 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

Table 1-2: DR Technical Potential

	Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)
Residential	1,208	1,645
Non-Residential	1,191	1,171
Total	2,398	2,816

1.2.3 DSRE Technical Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of each FEECA utility's customer base.

	Table 1-3: DSRE Te	chnical Potential ²	
	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
PV Systems			
Residential	509	19	3,461
Non-Residential	835	31	5,679
Total	1,344	50	9,140
Battery Storage cha	arged from PV System	IS	
Residential	214	211	-
Non-Residential	1	-	
Total	216	211	-
CHP Systems			
Total	656	358	3,126

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

TAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 3 PAGE 44 OF 70 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in TECO's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (*i.e.* direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (*i.e.*, that customers reduce their total load to zero when called upon).

Table 5-2: DR	echnical Potential by Sector Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)
Residential	1,208	1,645
Non-Residential	1,191	1,171
Total	2,398	2,816

Table 5-2 summarizes the seasonal DR technical potential by sector:

5.3.1 Residential

Residential technical potential is summarized in Figure 5-11.

() Nexant

IAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 6 PAGE 1 OF 1 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

Tampa Electric's 2019 Technical Potential

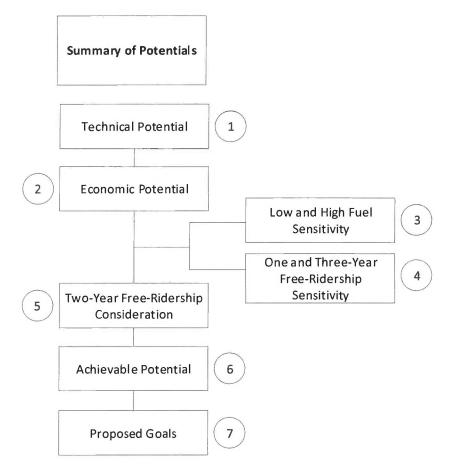
1. Tampa Electric's 2019 Technical Potential

Energy Efficiency:	SkW WkW AE	1,138 MW 583 MW 4,483 GWh
Demand Response:	SkW WkW AE	2,399 MW 2,816 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	2,215 MW 619 MW 12,266 GWh

2. Tampa Electric's 2014 Technical Potential

Energy Efficiency:	SkW WkW AE	1,306 MW 823 MW 5,961 GWh
Demand Response:	SkW WkW AE	2,929 MW 430 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	2,929 MW 447 MW 7,892 GWh

TAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 10 PAGE 1 OF 1 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019


Tampa Electric's 2019 Economic Potential

1. Tampa Electric's 2019 Economic Potential

	sed

KINI Based		
Energy Efficiency:	SkW	824 MW
	WkW	338 MW
	AE	2,613 GWh
		2,015 GWI
Demand Response:	SkW	2,399 MW
Demand Response.		
	WkW	
	AE	0 GWh
Distributed Energy Resources:	SkW	1,705 MW
	WkW	600 MW
	AE	10,056 GWh
TRC Based		
Energy Efficiency:	SkW	326 MW
0,	WkW	265 MW
	AE	1,785 GWh
		-,
Demand Response:	SkW	2,330 MW
	WkW	
	AE	0 GWh
		0.01111
Distributed Energy Resources:	SkW	0 MW
Distributed Energy Resources.	WkW	0 MW
	AE	0 GWh

IAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 15 PAGE 1 OF 7 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

1. Technical Potential

Energy Efficiency:	SkW WkW AE	1,138 MW 583 MW 4,483 GWh
Demand Response:	SkW WkW AE	2,399 MW 2,816 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	2,215 MW 619 MW 12,266 GWh

IAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 15 PAGE 2 OF 7 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

2. Economic Potential <u>RIM Based</u> Energy Efficiency:	SkW WkW	
Demand Response:	AE SkW WkW AE	1,785 GWh 2,399 MW 2,816 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	1,705 MW 600 MW 10,056 GWh
TRC Based Energy Efficiency:	SkW WkW AE	326 MW 265 MW 1,785 GWh
Demand Response:	SkW WkW AE	2,330 MW 2,721 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	0 MW 0 MW 0 GWh

3.	Low and High Fuel Sensitivities		
	RIM Based Low Fuel Sensitivity		
	Energy Efficiency:	SkW	270 MW
		WkW	153 MW
		AE	1,196 GWh
	Demand Response:	SkW	2,399 MW

Demand Response:	SkW	2,399 MW
	WkW	2,816 MW
	AE	0 GWh
Distributed Energy Resources:	SkW	0 MW
	WkW	0 MW
	AE	0 GWh

I AMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 15 PAGE 3 OF 7 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

TRC Based Low Fuel Sensitivity Energy Efficiency:	SkW WkW AE	
Demand Response:	SkW WkW AE	,
Distributed Energy Resources:	SkW WkW AE	0 MW 0 MW 0 GWh
<u>RIM Based High Fuel Sensitivity</u> Energy Efficiency:	SkW WkW AE	333 MW 191 MW 1,534 GWh
Demand Response:	SkW WkW AE	/
Distributed Energy Resources:	SkW WkW AE	0 MW 0 MW 0 GWh
TRC Based High Fuel Sensitivity Energy Efficiency:	SkW WkW AE	
Demand Response:	SkW WkW AE	2,316 MW 2,674 MW 0 GWh
Distributed Energy Resources:	SkW WkW AE	0 MW 0 MW 0 GWh

IAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 15 PAGE 4 OF 7 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

4.	One and Three-Year Free-Ridership Sensi RIM Based One-Year Free-Ridersh		
	Energy Efficiency:	SkW	204 MW
		WkW	107 MW
		AE	999 GWh
			555 0 1011
	Demand Response:	SkW	2,399 MW
		WkW	2,816 MW
		AE	0 GWh
	Distributed Energy Resources:	SkW	0 MW
	bistilbatea Energy Nebballoes.	WkW	0 MW
		AE	0 GWh
		AL	0.0001
	TRC Based One-Year Free-Ridersh	р	
	Energy Efficiency:	SkW	210 MW
		WkW	167 MW
		AE	1,275 GWh
	Demand Response:	SkW	2,330 MW
	Demand Response.		2,721 MW
		AE	2,721 WW 0 GWh
		AL	UGWN
	Distributed Energy Resources:	SkW	0 MW
		WkW	0 MW
		AE	0 GWh
	RIM Based Three-Year Free-Riders	hin	
		SkW	127 MW
	Energy Efficiency:	SKVV WkW	
			61 MW
		AE	570 GWh
	Demand Response:	SkW	2,399 MW
			2,816 MW
		AE	0 GWh
	Distributed Energy Decourses	CLAN	0.0404/
	Distributed Energy Resources:	SkW	0 MW
		WkW	0 MW
		AE	0 GWh

IAMPA ELECTRIC COMPANY 2020-2029 PROPOSED DSM GOALS DOCUMENT NO. 15 PAGE 5 OF 7 FILED: APRIL 12, 2019 REVISED: AUGUST 5, 2019

	TRC Based RIM Based Three-Year I	ree-Rid	<u>ership</u>
	Energy Efficiency:	SkW	102 MW
		WkW	64 MW
		AE	488 GWh
	Demand Response:	SkW	2,330 MW
		WkW	2,721 MW
		AE	0 GWh
	Distributed Energy Resources:	SkW	0 MW
		WkW	0 MW
		AE	0 GWh
. Two-Y	ear Free-Ridership Consideration		
	RIM Based		
	Energy Efficiency:	SkW	158 MW
		WkW	91 MW
		AE	747 GWh
	Demand Response:	SkW	2,399 MW
		WkW	2,816 MW
		AE	0 GWh
	Distributed Energy Resources:	SkW	0 MW
		WkW	0 MW
		AE	0 GWh
	TRC Based		
	Energy Efficiency:	SkW	135 MW
		WkW	103 MW
		AE	686 GWh
	Demand Response:	SkW	2,330 MW
	-	WkW	2,721 MW
		AE	0 GWh
	Distributed Energy Resources:	SkW	0 MW
	Distributed Energy Resources:	SkW WkW	0 MW 0 MW