

FILED 7/24/2020 DOCUMENT NO. 04039-2020 FPSC - COMMISSION CLERK

Florida Power & Light Company
700 Universe Boulevard
Juno Beach, FL 33408-0420
(561) 691-7135 (Facsimile)
E-mail: jason.higginbotham@fpl.com

July 24, 2020

VIA ELECTRONIC FILING

Mr. Adam Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

Re: Docket No. 20200092-EI

Petition of Gulf Power Company for Approval of the 2021 Storm Protection Plan Cost Recovery Clause Factors

Dear Mr. Teitzman:

Enclosed for electronic filing in the above-referenced docket, please find Gulf Power Company's ("Gulf") Petition requesting approval of the Storm Protection Plan Cost Recovery Clause factors to be applied to bills issued during the projected period of January 1, 2021 through December 31, 2021, pursuant to Section 366.96, Florida Statutes, and Rule 25-6.031, Florida Administrative Code, together with the supporting direct testimonies and exhibits of Gulf witnesses Michael Spoor, Liz Fuentes, and Renae B. Deaton. Copies of this filing will be provided as indicated on the enclosed Certificate of Service.

Please contact me if you or your Staff has any questions regarding this filing at (561) 691-7108 or jason.higginbotham@fpl.com.

Sincerely,

/s/ Jason A. Higginbotham
Jason A. Higginbotham
Fla. Auth. House Counsel No. 1017875
Attorney for Gulf Power Company

Enclosure

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Storm Protection Plan Cost Recovery

Docket No. 20200092-EI

Clause

Filed: July 24, 2020

PETITION OF GULF POWER COMPANY FOR APPROVAL OF THE 2021 STORM PROTECTION PLAN COST RECOVERY CLAUSE FACTORS

Gulf Power Company ("Gulf" or the "Company") hereby files this petition (the "Petition") requesting that the Florida Public Service Commission ("Commission") approve the Storm Protection Plan Cost Recovery Clause ("SPPCRC") Factors to be applied to bills issued during the projected period of January 1, 2021 through December 31, 2021, pursuant to Section 366.96, Florida Statutes ("F.S."), and Rule 25-6.031, Florida Administrative Code ("F.A.C."). Through this Petition, Gulf is seeking recovery of the incremental Storm Protection Plan ("SPP") capital investment costs projected to be incurred for each SPP program, except for the Transmission Inspection Program, during 2021, as well as certain incremental programing, administrative, and resource costs that are necessary to manage and track the annual SPP projects and costs for the annual SPPCRC filings. In support of this Petition, Gulf incorporates the testimonies and exhibits of Gulf witnesses Michael Spoor, Liz Fuentes, and Renae B. Deaton, and states as follows:

1. The name and address of the Petitioner is:

Gulf Power Company One Energy Place Pensacola, FL 32520

2. Gulf is a corporation organized and existing under the laws of the State of Florida and is an electric utility as defined in Sections 366.02(2) and 366.96, F.S. Gulf provides generation, transmission, and distribution service to approximately 460,000 retail customer accounts.

1

3. Any pleading, motion, notice, order or other document required to be served upon the petitioner or filed by any party to this proceeding should be served upon all of the following individuals:

Kenneth A. Hoffman Vice President, Regulatory Affairs Florida Power & Light Company 134 W. Jefferson Street Tallahassee, FL 32301

Phone: 850-521-3919 Fax: 850-521-3939

Email: ken.hoffman@fpl.com

John T. Burnett Vice President & Deputy General Counsel Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408-0420

Phone: 561-304-5253 Fax: 561-691-7135

Email: john.t.burnett@fpl.com

Russell A. Badders Vice President & Associate General Counsel Gulf Power Company One Energy Place Pensacola, FL 32520

Phone: 850-444-6550 Fax: 850-444-6744

Email: russell.badders@nexteraenergy.com

Jason A. Higginbotham Senior Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408-0420

Phone: 561-691-7108 Fax: 561-691-7135

Email: jason.higginbotham@fpl.com

- 4. The Commission has jurisdiction pursuant to Section 366.96, F.S., and Rule 25-6.031, F.A.C.
- 5. This Petition is being filed consistent with Rule 28-106.201, F.A.C. The agency affected is the Commission, located at 2540 Shumard Oak Boulevard, Tallahassee, Florida 32399. This case does not involve reversal or modification of an agency decision or an agency's proposed action. Therefore, subparagraph (c) and portions of subparagraphs (b), (e), (f) and (g) of subsection (2) of Rule 28-106.201, F.A.C., are not applicable to this Petition. In compliance with subparagraph (d) of Rule 28-106.201, F.A.C., Gulf states that it is not known which, if any, of the issues of material fact set forth in the body of this Petition may be disputed by any others who may plan to participate in this proceeding. The discussion below demonstrates how the petitioner's substantial interests will be affected by the agency determination.

- 6. On June 27, 2019, the Governor of Florida signed CS/CS/CS/SB 796 addressing Storm Protection Plan Cost Recovery, which was codified in Section 366.96, F.S. Therein, the Florida Legislature directed each utility to file a ten-year SPP that explains the storm hardening programs and projects the utility will implement to achieve the legislative objectives of reducing restoration costs and outage times associated with extreme weather events. *See* Section 366.96(3), F.S. The Florida Legislature also directed the Commission to conduct an annual proceeding to determine the utility's prudently incurred SPP costs and to allow the utility to recover such costs through a charge separate and apart from its base rates, to be referred as the SPPCRC. *See* Section 366.96(7), F.S.
- 7. Gulf's 2020-2029 SPP was filed in Docket No. 20200070-EI on April 10, 2020. Gulf's SPP is a systematic approach to achieve the legislative objectives of Section 366.96, F.S., to reduce restoration costs and outage times associated with extreme weather events. A true and correct copy of Gulf's SPP, is provided as Exhibit MS-1 to the direct testimony of Gulf witness Michael Spoor. Gulf's SPP is currently pending before the Commission in Docket No. 20200070-EI.¹
- 8. Rule 25-6.031(2), F.A.C., provides that after a utility has filed its SPP it may petition the Commission for recovery of the costs associated with the SPP and implementation activities. Rule 25-6.031, F.A.C., specifies the information to be included in each utility's SPPCRC filings. Consistent with these requirements, Gulf is herein submitting its SPPCRC projection filing to establish recovery factors for the SPP capital investment costs to be incurred after January 1, 2021, as well as certain incremental programing, administrative, and resource costs that are necessary to manage and track the annual SPP projects and costs for the annual SPPCRC filings.

3

¹ Pursuant to Rule 25-6.031(2), F.A.C., Gulf will file an amended SPPCRC petition and supporting testimony if the Commission approves Gulf's SPP with modifications.

- 9. Although SPP costs incurred after the April 10, 2020 SPP filing date are eligible for SPPCRC recovery under Rule 25-6.031(6)(a), F.A.C., Gulf has committed and previously advised parties that it will not seek SPPCRC recovery of the costs incurred for SPP programs and projects prior to January 1, 2021. Therefore, Gulf is not requesting and will not be addressing the final true-up of SPP program cost recovery for a prior year or the actual/estimated SPP program cost recovery of the current year. Accordingly, pursuant to Rule 25-6.031(3), F.A.C., the scope of review for this proceeding "will be limited to determining the reasonableness of projected Storm Protection Plan cost...and to establish Storm Protection Plan cost recovery factors consistent with the requirements of this rule."²
- 10. Consistent with Rule 25-6.031(7)(c), F.A.C., the direct testimony and exhibits of Gulf witness Michael Spoor identify each of the SPP programs for which costs will be incurred during 2021, as well as provide a description of the work projected to be performed for each SPP program during 2021. Mr. Spoor explains that the projected number of SPP projects and associated costs to be incurred during 2021 are consistent with Gulf's SPP currently pending before the Commission at Docket No. 20200070-EI.
- Gulf witness Liz Fuentes explain how Gulf determined the amount of forecasted 2021 SPP costs for which it is seeking recovery through the SPPCRC are incremental from base rates. Ms. Fuentes also explains how Gulf will uniquely identify and record costs to be recovered through the SPPCRC beginning in 2021 as required by Rule 25-6.031(5), F.A.C. Finally, Ms. Fuentes explains and provides support for the calculation of the projected 2021 Weighted Average Cost of Capital ("WACC") to be used in order to calculate the return on 2021 SPPCRC capital investments as permitted by Rule 25-6.031(6)(c), F.A.C.

1

² Rule 25-6.031(2), F.A.C., provides that the actual SPP costs incurred by a utility are subject to a prudence review. As explained above, Gulf is not seeking SPPCRC recovery of actual SPP program and project costs in this filing.

- 12. To calculate its proposed SPPCRC factors for the period of January 1, 2021 through December 31, 2021, Gulf applied the methodology and prescribed schedules contained in Commission Forms 1P through 7P, which are attached as Exhibit RBD-1 Appendix 1 to the direct testimony of Gulf witness Renae B. Deaton. As set forth in Ms. Deaton's direct testimony and exhibits, Gulf is requesting recovery of total projected jurisdictional SPP costs in the amount of \$3,511,253, representing: (a) \$3,377,676 of incremental capital investment costs associated with Gulf's SPP programs projected to be incurred between January 1, 2021 and December 31, 2021; (b) \$82,386 of capital investment costs associated with incremental, one-time IT and programing costs that are necessary to properly manage and track the annual SPP projects and costs for the SPPCRC filings; (c) \$51,191 for projected 2021 administrative and resource expenses that are necessary to manage and track the annual SPP projects and costs for the annual SPPCRC filings. Based on these calculations, Gulf seeks Commission approval of the SPPCRC factors, as set forth in Appendix I of Exhibit RBD-1 attached to the direct testimony of Gulf witness Renae B. Deaton and in Attachment A to this Petition, for the January 2021 through December 2021 billing period, effective starting January 1, 2021, and continuing until modified by subsequent order of this Commission.
- 13. Pursuant to Rule 25-6.031, F.A.C., the prudence and true-up of the actual SPP costs incurred during the projected period of January 1, 2021 through December 31, 2021, will be addressed in Gulf's final true-up filing for 2021, which will be filed in 2022. *See* Rule 25-6.031(3) and (7)(c), F.A.C.
- 14. Gulf submits that the 2021 SPPCRC factors are reasonable, consistent with Gulf's 2020-2029 SPP filed in Docket No. 20200070-EI, fully compliant with the requirements of Rule 25-6.031, F.A.C., and consistent with the Commission's methodology for calculating the recovery factors. Therefore, the proposed 2021 SPPCRC factors should be approved.

WHEREFORE, Gulf respectfully requests that the Commission find Gulf's projected 2021 SPP costs to be reasonable, and approve the proposed SPPCRC factors for application to bills beginning the first billing cycle in January 2021 through the last billing cycle December 2021 and continuing until modified by subsequent order of this Commission.

Respectfully submitted this 24th day of July, 2020,

Russell A. Badders

Vice President & Associate General

Counsel

Gulf Power Company One Energy Place Pensacola, FL 32520 Phone: (850) 444-6550

Facsimile: (850) 444-6744

russell.badders@nexteraenergy.com

John T. Burnett

Vice President & Deputy General

Counsel

Jason A. Higginbotham

Senior Attorney

Florida Power & Light Company

700 Universe Boulevard

Juno Beach, FL 33408-0420

Phone: 561-691-7108 Fax: 561-691-7135 john.t.burnett@fpl.com

jason.higginbotham@fpl.com

By: s/Jason A. Higginbotham

Jason A. Higginbotham

Fla. Auth. House Counsel No. 1017875

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of Gulf Power Company's Petition for Approval of the 2021 Storm Protection Plan Cost Recovery Clause Factors in Docket No. 20200092-EI, along with the direct testimonies and exhibits of witnesses Michael Spoor, Liz Fuentes, and Renae B. Deaton, has been furnished by Electronic Mail to the following parties of record this 24th day of July, 2020:

Jennifer Crawford, Esquire Shaw Stiller, Esquire 2540 Shumard Oak Boulevard Tallahassee, FL 32399 jcrawfor@psc.state.fl.us sstiller@psc.state.fl.us

Florida Public Service Commission

Stephanie U. Eaton Spilman Thomas & Battle, PLLC 110 Oakwood Drive, Suite 500 Winston-Salem, NC 27103 seaton@spilmanlaw.com

Derrick Price Williamson
Barry A. Naum
Spilman Thomas & Battle, PLLC
1100 Bent Creek Boulevard, Suite 101
Mechanicsburg, PA 17050
dwilliamson@spilmanlaw.com
bnaum@spilmanlaw.com
Walmart Inc.

J.R. Kelly
Thomas A. (Tad) David
c/o The Florida Legislature
111 West Madison Street, Room 812
Tallahassee, Florida 32399
kelly.jr@leg.state.fl.us
david.tad@leg.state.fl.us
Office of Public Counsel

James W. Brew
Laura Wynn Baker
Stone Mattheis Xenopoulos & Brew, PC
1025 Thomas Jefferson Street, NW
Suite 800 West
Washington, DC 20007-5201
jbrew@smxblaw.com
lwb@smxblaw.com
White Springs Agricultural
Chemicals, Inc. d/b/a Phosphate –
White Springs

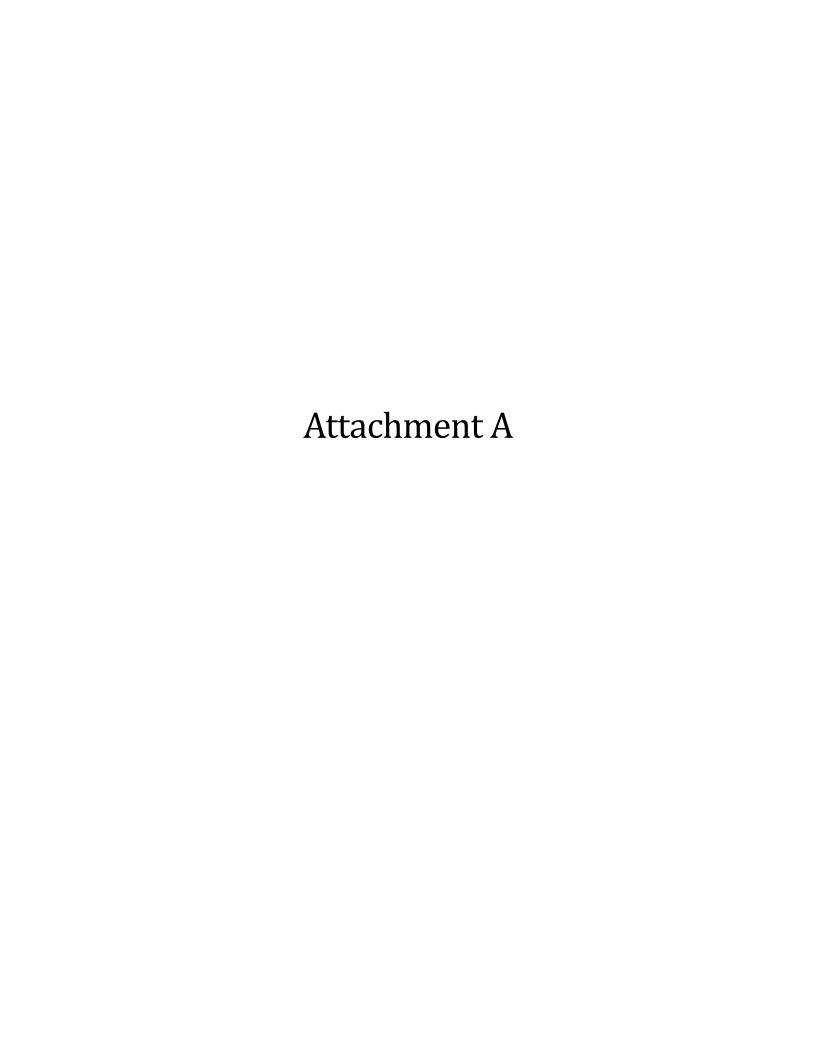
Jon C. Moyle, Jr.
Karen A. Putnal
Moyle Law Firm, P.A.
118 North Gadsden Street
Tallahassee, Florida 32301
jmoyle@moylelaw.com
kputnal@moylelaw.com
mqualls@moylelaw.com
Florida Industrial Power Users
Group

James D. Beasley
J. Jeffrey Wahlen
Malcolm M. Means
Ausley McMullen
Post Office Box 391
Tallahassee, Florida 32302
jbeasley@ausley.com
jwahlen@ausley.com
mmeans@ausley.com

Ms. Paula K. Brown
Regulatory Affairs
P. O. Box 111
Tampa FL 33601-0111
regdept@tecoenergy.com
Tampa Electric Company

Dianne M. Triplett
Duke Energy Florida, LLC
Deputy General Counsel
299 First Avenue North
St. Petersburg, FL 33701
Dianne.Triplett@Duke-Energy.com

Matthew R. Bernier
Duke Energy Florida, LLC
Associate General Counsel
106 E. College Avenue, Suite 800
Tallahassee, FL 32301
Matthew.Bernier@Duke-Energy.com
FLRegulatoryLegal@Duke-Energy.com
Duke Energy Florida, LLC


John T. Burnett
Vice President and Deputy
General Counsel
Christopher T. Wright
Senior Attorney
Florida Power & Light Company
700 Universe Boulevard
Juno Beach, FL 33408-0420
john.t.burnett@fpl.com
christopher.wright@fpl.com

Florida Power & Light Company

s/ Jason A. Higginbotham

Jason A. Higginbotham Fla. Auth. House Counsel No. 1017875 Florida Power & Light Company 700 Universe Boulevard (JB/LAW) Juno Beach, Florida 33408

Attorney for Gulf Power Company

Gulf Power Company Storm Protection Plan Calculation of the Cost Recovery Factors by Rate Class January 2021 - December 2021

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(1	K)
RATE CLASS	Percentage of kWh Sales at Generation (%)	Percentage of 12 CP Demand at Generation (%)	Percentage of NCP Demand at Generation (%)	Transmission Energy- Related Costs	Transmission Demand- Related Costs	Distribution Demand- Related Costs	Total SPP Costs	Projected Sales at Meter (kWh)	Projected Demand at Meter (kW)	SPP Factors (¢/kWh)	Fac	PP ctors kW)
RS, RSVP, RSTOU	50.74056%	58.17902%	54.52657%	67,282	925,739	974,644	1,967,665	5,415,188,719		0.036		
GS	2.91760%	3.40643%	3.48267%	3,869	54,203	62,251	120,323	311,376,469		0.039		
GSD, GSDT, GSTOU	23.24811%	20.96025%	21.45859%	30,827	333,518	383,564	747,909	2,481,478,434	7,937,010	0.030	\$	0.09
LP, LPT	6.94286%	5.42310%	5.94430%	9,206	86,292	106,252	201,750	751,036,801	1,669,029		\$	0.12
PX, PXT, RTP, SBS	14.96719%	11.66887%	13.15358%	19,846	185,674	235,115	440,635	1,644,662,049		0.027		
OS-I/II	0.74440%	0.06479%	1.17347%	987	1,031	20,975	22,993	79,443,844		0.029		
OS-III	0.43927%	0.29754%	0.26082%	582	4,734	4,662	9,978	46,880,749		0.021		
TOTAL	99.99999%	100.00000%	100.00000%	\$132,599	\$1,591,191	\$1,787,463	3,511,253	10,730,067,065				

Notes:

- (A) (B) From Schedule 4P, Col K From Schedule 4P, Col L
- (C) From Schedule 4P, Col M
- Column A x Total Energy \$ from Rev Req Transmission Column B x Total Demand \$ from Rev Req Transmission (D)
- (E)
- (F) Column C x Total Demand \$ from Rev Req - Distribution
- (G) Column D + Column E
- Projected kWh sales for the period January 2021 December 2021 (H)
- (J) Column G x 100 / Column H

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2	GULF POWER COMPANY
3	DIRECT TESTIMONY OF MICHAEL SPOOR
4	DOCKET NO. 20200092-EI
5	JULY 24, 2020
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1		TABLE OF CONTENTS	
2			
3	I.	INTRODUCTION	3
4 5	II.	GULF'S STORM PROTECTION PLAN PROGRAMS AND ASSOCIATED COSTS	5
6			
7			
8			
9			
10			
11			
12			
13			

1				
2		I. INTRODUCTION		
3				
4	Q.	Please state your name and business address.		
5	A.	My name is Michael Spoor. My business address is One Energy Place, Pensacola		
6		Florida, 32520.		
7	Q.	By whom are you employed and what is your position?		
8	A.	I am employed by Gulf Power Company ("Gulf" or the "Company") as the Vice		
9		President of Power Delivery.		
10	Q.	Please describe your duties and responsibilities in that position.		
11	A.	As Vice President of Power Delivery, I am responsible for the planning		
12		engineering, construction, operation, maintenance and restoration of Gulf's		
13		transmission and distribution ("T&D") grid. This includes the systems, processes		
14		analyses, and standards utilized to ensure Gulf's T&D facilities are safe, reliable		
15		secure, effectively managed and in compliance with regulatory requirements.		
16	Q.	Please describe your educational background and professional experience.		
17	A.	I graduated from Auburn University with a Bachelor of Science degree in Industria		
18		Engineering and from Nova Southeastern University with a Master of Business		
19		Administration. I am also a graduate of executive education programs at both		
20		Columbia University and Kellogg School of Management at Northwestern		
21		University. I am a registered professional engineer in the State of Florida. I joined		
22		Florida Power & Light Company ("FPL") in 1985 and have served in a variety of		

leadership positions including area operations manager, manager of reliability,

1		director of distribution system performance, director of business services and				
2		director of distribution operations. I assumed my current position and				
3		responsibilities at Gulf in January 2019, having previously served as Vice President				
4		of Transmission and Substation with FPL.				
5	Q.	Have you previously testified before the Florida Public Service Commission				
6		("FPSC" or the "Commission")?				
7	A.	Yes, I submitted written direct testimony on April 10, 2020, and written rebuttal				
8		testimony on June 26, 2020, in support of Gulf's 2020-2029 Storm Protection Plan				
9		("SPP") filing in Docket No. 20200070-EI.				
10	Q.	What is the purpose of your testimony?				
11	A.	The purpose of my testimony is to describe Gulf's 2021 SPP programs and				
12		associated costs, and explain how those activities and costs are consistent with				
13		Gulf's SPP filed at Docket No. 20200070-EI.				
14	Q.	Are you sponsoring any schedules in this case?				
15	A.	Yes. I am sponsoring Exhibit MS-1 – Gulf's 2020-2029 Storm Protection Plan that				
16		was filed with and is currently pending before the Commission in Docket No.				
17		20200070-EI. I am also sponsoring Exhibit MS-2 -Storm Protection Plan Work				
18		Projected to be Completed in 2021. Finally, I am co-sponsoring portions of Form				
19		6P, Program Description and Progress Report that is included in Gulf witness				

Deaton's Exhibit RBD-1.

1		II. GULF S STORM PROTECTION PLAN
2		PROGRAMS AND ASSOCIATED COSTS
3		
4	Q.	Please describe Gulf's SPP.
5	A.	Gulf's 2020-2029 SPP was filed in Docket No. 20200070-EI on April 10, 2020
6		Gulf's SPP is a systematic approach to achieve the legislative objectives in Section
7		366.96, Florida Statutes ("F.S"), to reduce restoration costs and outage times
8		associated with extreme weather events. Gulf's SPP provides all of the information
9		required by Rule 25-6.030, Florida Administrative Code ("F.A.C."), including, but
10		not limited to the estimated number of projects and costs associated for each SPF
11		program for each year of the SPP. A true and correct copy of Gulf's SPP is
12		attached to my direct testimony as Exhibit MS-1. Gulf's SPP is currently pending
13		before the Commission in Docket No. 20200070-EI.
14	Q.	What programs are included in Gulf's SPP?
15	A.	Gulf's SPP includes the following seven SPP programs:
16		Distribution Inspection Program
17		• Transmission Inspection Program
18		Distribution Feeder Hardening Program
19		Distribution Hardening Lateral Undergrounding Program
20		Transmission Hardening Program
21		Vegetation Management – Distribution Program
22		 Vegetation Management – Transmission Program

1	The type of activities and scope for each of these SPP programs are described in
2	detail in Exhibit MS-1 and Form 6P, Program Description and Progress Report.

- Q. Is Gulf seeking to recover any actual SPP costs incurred for the prior yearthrough the Storm Protection Plan Cost Recovery Clause ("SPPCRC")?
- A. No. The prior year would be the year-ended December 31, 2019. Pursuant to Rule 25-6.031(6)(a), F.A.C., the utility is only permitted to seek recovery of SPP costs incurred after the filing date of the SPP. In this case, Gulf's SPP was filed on April 10, 2020, and it is the first SPP that has been filed. Therefore, there is no "prior year" applicable to the SPPCRC in this proceeding. As such, the actual or prior year costs will not be further addressed.
- 11 Q. Is Gulf seeking to recover any actual/estimated SPP project costs for the current year of the SPP through the SPPCRC?
- 13 A. No. Although SPP costs incurred after April 10, 2020, are eligible for recovery under Rule 25-6.031(6)(a), F.A.C., Gulf has committed and previously advised parties that it will not seek recovery of the 2020 SPP project costs through the SPPCRC. Therefore, the actual/estimated or 2020 SPP project costs will not be further addressed.
- 18 Q. Is Gulf seeking to recover any projected SPP costs through the SPPCRC?
- A. Yes. As described by Gulf witness Fuentes, Gulf is requesting Commission approval to recover all projected 2021 SPP capital expenditures, except for the Transmission Inspection Program, through the SPPCRC. Gulf is not seeking to recover any of the 2021 SPP Operations and Maintenance ("O&M") expenses or cost of removal through the 2021 SPPCRC.

Q. Has Gulf provided details on the annual SPP programs and associated of	d costs?
---	----------

- Yes. This information is provided in Form 6P Program Description and Progress
 Report, which is a form prescribed by Commission Staff. For each SPP program,
 Form 6P describes the program activities, identifies the fiscal expenditures incurred
- 5 to date, reports on the progress for the current year, and provides a projection of
- 6 work to be completed and the associated costs for the subsequent year.

Q. Has Gulf provided a description of the work projected to be performed in 2021 for each SPP program?

9 A. Yes. Gulf has identified the work projected to be performed in 2021 for certain of 10 its SPP programs. Gulf's Distribution Inspection Program, Transmission 11 Inspection Program, Vegetation Management - Distribution Program, and 12 Vegetation Management – Transmission Program are on-going annual inspection 13 and vegetation management programs that do not have project components and, 14 instead, are completed on a cycle-basis throughout Gulf's service area as explained 15 further in Exhibit MS-1 and Form 6P. As such, these four SPP programs do not 16 lend themselves to identification of specific projects to be performed.

17

18

19

20

21

22

23

1

With respect to the other three programs included in Gulf's SPP (Distribution Feeder Hardening Program, Distribution Hardening – Lateral Undergrounding Program, and Transmission Hardening Program), Gulf has identified the work projected to be performed in 2021 for each of these three SPP programs. These projections are provided in Exhibit MS-2 attached to my testimony. However, the SPP projects that will actually be completed in 2021 could vary based on a number

6		SPP?
5	Q.	Are the SPP activities and costs estimated for 2021 consistent with Gulf's
4		submitted in 2021, and the final 2021 true-up filing to be submitted in 2022.
3		Any such variances will be addressed in Gulf's 2021 actual/estimated filing to be
2		scope; resource constraints (i.e., labor & material); and/or extreme weather events.
1		of factors, including, but not limited to: permitting; easement issues; change in

Yes. The number of projects and costs estimated for each SPP program during A. 2021 are consistent with those described in Gulf's SPP as shown in Appendix C to Exhibit MS-1 and Form 6P. I note that the forecasted 2021 capital costs provided in Gulf's SPP included the cost of removal, which was based on historical averages. As explained by Gulf witness Fuentes, Gulf is not seeking to recover any cost of removal or capital expenditures associated with the Transmission Inspection

13 Program through the SPPCRC.

7

8

9

10

11

12

14

15

16

17

18

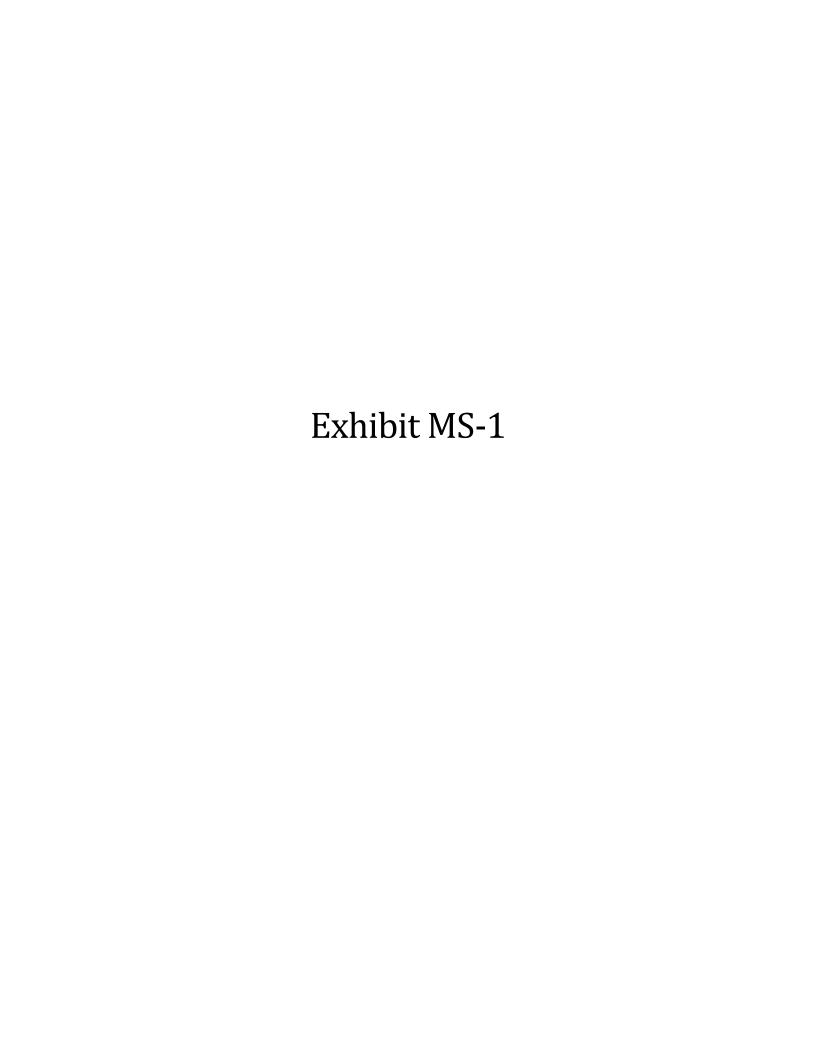
19

20

21

22

As of the time I prepared my direct testimony, Gulf is not aware of any variances in the number of SPP projects or SPP costs estimated for 2021. However, as a previously stated, the number of SPP projects that will actually be completed in 2021, as well as the associated SPP costs, could vary based on a number of factors. Additionally, it should be noted that the 2021 program costs are the projected costs estimated as of the April 10, 2020 filing date of Gulf's SPP. Consistent with Rule 25-6.031, F.A.C., the actual SPP costs incurred by Gulf in 2021 will be addressed and decided in Gulf's final 2021 true-up filing, which will be submitted in 2022.


1 Q. How will Gulf record and track the costs incurred for its SPP projects and 2 programs approved for recovery through the SPPCRC?

As described by Gulf witness Fuentes in her testimony, Gulf has established the appropriate accounting framework to distinguish which costs are recoverable through the SPPCRC and how they will be recorded on its books and records beginning January 1, 2021. In accordance with this accounting framework, Gulf has created unique master data in its systems (*i.e.*, work order type and work breakdown structure) to record and track activity performed by employees and contractors for SPP projects approved for recovery through SPPCRC. All capital expenditures for SPP projects starting in 2021, except for the Transmission Inspection Program, will be recorded to master data tagged for recovery through the SPPCRC while O&M expenses and cost of removal will be recorded to master data tagged for recovery through base rates.

14 Q. Does this conclude your direct testimony?

15 A. Yes.

A.

Storm Protection Plan 2020-2029

(Rule 25-6.030, F.A.C.)

Docket No. 20200070-EI

April 10, 2020

TABLE OF CONTENTS

I.	Exec	cutive s	Summary	1
II.	With	stand	2029 SPP Will Strengthen Gulf's Infrastructure to Extreme Weather Conditions and Will Reduce n Costs and Outage Times	3
III.	Desc	cription	n of Service Area and T&D Facilities	4
IV.	Prop	osed 2	2020-2029 SPP Programs	5
	A.	Dist	ribution Inspection Program	5
		1.	Description of the Program and Benefits	5
		2.	Actual/Estimated Start and Completion Dates	8
		3.	Cost Estimates	9
		4.	Comparison of Costs and Benefits	9
		5.	Criteria used to Select and Prioritze Programs	10
	B.	Trar	nsmission Inspection Program	10
		1.	Description of the Program and Benefits	10
		2.	Estimated Start and Completion Dates	12
		3.	Cost Estimates	12
		4.	Comparison of Costs and Benefits	13
		5.	Criteria used to Select and Prioritze Programs	13
	C.	Dist	ribution Feeder Hardening Program	14
		1.	Description of the Program and Benefits	14
		2.	Estimated Start and Completion Dates	18
		3.	Cost Estimates	18
		4.	Comparison of Costs and Benefits	19
		5.	Criteria used to Select and Prioritize Programs	19
	D.	Dist	ribution Hardening – Lateral Undergrounding Program	19
		1.	Description of the Program and Benefits	19
		2.	Estimated Start and Completion Dates	21
		3.	Cost Estimates	21
		4.	Comparison of Costs and Benefits	22
		5.	Criteria used to Select and Prioritze Programs	22
	E.	Trar	nsmission Hardening Program	23

		1.	Description of the Program and Benefits	23
		2.	Estimated Start and Completion Dates	25
		3.	Cost Estimates	25
		4.	Comparison of Costs and Benefits	26
		5.	Criteria Used to Select and Prioritize Programs	26
	F.	Vege	etation Management – Distribution Program	27
		1.	Description of the Program and Benefits	27
		2.	Actual/Estimated Start and Completion Dates	29
		3.	Cost Estimates	29
		4.	Comparison of Costs and Benefits	30
		5.	Criteria Used to Select and Prioritize Programs	30
	G.	Vege	etation Management – Transmission Program	31
		1.	Description of the Program and Benefits	31
		2.	Estimated Start and Completion Dates	33
		3.	Cost Estimates	33
		4.	Comparison of Costs and Benefits	34
		5.	Criteria used to Select and Prioritize Programs	34
V.			formation on the First Three Years of the 2020-2029	34
	A.	Deta	niled Description for the First Year of the SPP (2020)	34
	B.		illed Description of the Second and Third Years of the (2021-2022)	35
VI.			Annual Jurisdictional Revenue Requirements for the SPP	35
VII.			Rate Impacts for First Three Years of the SPP (2020-	36
VIII.	Conc	lusion		37

Appendices:

APPENDIX A - Gulf's Service/Management Areas

APPENDIX B - Forensic Analysis on Hurricane Michael Storm Damage Survey Data

APPENDIX C - Gulf's 2020-2029 SPP Program Costs and 2020 Project Level Detail

APPENDIX D – Distribution Hardening Design Guidelines

Gulf Power Company's 2020-2029 Storm Protection Plan

I. <u>Executive Summary</u>

Pursuant to Section 366.96, Florida Statutes ("F.S."), and Rule 25-6.030, Florida Administrative Code ("F.A.C."), Gulf Power Company ("Gulf") submits its Storm Protection Plan ("SPP") for the ten (10) year period 2020-2029 (hereinafter, the proposed "SPP"). As explained herein, the SPP is largely a continuation of Gulf's successful storm hardening and storm preparedness programs previously approved by the Florida Public Service Commission ("Commission") over the last thirteen years, as well as a new program to target and underground select distribution laterals. Gulf anticipates the programs included in the SPP will have zero bill impacts on customer bills during the first year of the SPP and only minimal bill increases for years two and three of the SPP.1

Since 2006, Gulf has been implementing Commission-approved programs to strengthen its transmission and distribution ("T&D") infrastructure. These programs include multiple storm hardening and storm preparedness programs such as feeder hardening, replacing transmission structures, vegetation management, and pole inspections. These efforts, along with Gulf's storm preparedness and hardening initiatives to date, have produced a more storm resilient T&D electrical grid that will better withstand the hurricanes and tropical storms that are becoming more frequent and severe in the State of Florida.

The success of Gulf's storm hardening and storm preparedness programs has been achieved through the development and implementation of Gulf's forward-looking storm hardening, grid modernization, and reliability initiatives and investments, combined with the use of cutting-edge technology and strong employee commitment. Under the SPP, Gulf remains committed to continue these successful programs to further strengthen its T&D infrastructure, mitigate restoration costs and outage times, continue to provide safe

¹ The recovery of the costs associated with the proposed SPP, as well as the costs to be included in Gulf's Storm Protection Plan Cost Recovery Clause, will be addressed in a subsequent and separate Storm Protection Plan Cost Recovery Clause docket pursuant to Rule 25-6.031, F.A.C.

and reliable electric service to customers, and meet future increasing needs and expectations.

As stated previously, Gulf's SPP is, in large part, a continuation and expansion of its previously approved storm hardening plan and includes the following SPP programs:

- Distribution Inspection Program
- Transmission Inspection Program
- Distribution Feeder Hardening Program
- Distribution Hardening Lateral Undergrounding Program
- Transmission Hardening Program
- Vegetation Management Distribution Program
- Vegetation Management Transmission Program

With the exception of the new Distribution Hardening – Lateral Undergrounding Program, the majority of these programs have been in place since 2007. As demonstrated by recent storm events, these programs have been successful in reducing restoration costs and outage times following major storms, as well as improving day-to-day reliability. Gulf submits that continuing these previously approved storm hardening and storm preparedness programs in the SPP, together with the new Distribution Hardening – Lateral Undergrounding Program, is appropriate and necessary to address the mandates set forth in Section 366.96, F.S., and Rule 25-6.030, F.A.C., as well as the expectations of Gulf's customers and other stakeholders for increased storm resiliency and will result in fewer outages, reduced restoration costs, and prompt service restoration. The SPP will continue to expand the benefits of hardening, including improved day-to-day reliability, to all customers throughout Gulf's system.

The following sections provide information and details on Gulf's SPP as required by and in compliance with Rule 25-6.030, F.A.C. For the reasons explained below, Gulf submits that implementing the SPP is necessary and appropriate to achieve the goals and requirements expressed by the Florida Legislature in Section 366.96, F.S., to reduce

restoration costs and outage times associated with extreme weather events and improve overall service reliability to customers and the State of Florida by promoting the overhead hardening of electrical transmission and distribution facilities, the undergrounding of certain electrical distribution lines, and vegetation management.

II. <u>The 2020-2029 SPP Will Strengthen Gulf's Infrastructure</u> to Withstand Extreme Weather Conditions and Will Reduce Restoration Costs and Outage Times

Pursuant to Rule 25-6.030(3)(a), F.A.C., this section provides an overview of how the SPP will strengthen Gulf's electric utility infrastructure to withstand extreme weather conditions by promoting the overhead hardening of electrical transmission and distribution facilities, the undergrounding of certain electrical distribution lines, and vegetation management. Consistent with Rule 25-6.030(3)(b), F.A.C., this section also provides a summary of how the SPP is expected to further reduce restoration costs and outage times associated with extreme weather conditions and, therefore, improve overall service reliability.

As described in more detail below, Gulf expects to pursue a new Distribution Lateral Undergrounding program similar to that of Florida Power & Light Company ("FPL"), which FPL initiated and the Commission approved in 2018. This program would convert certain targeted overhead laterals, such as those that have been impacted by recent storms or have a history of vegetation-related outages or other reliability issues, to underground laterals. Gulf also plans to continue implementing its design criteria, which require applying Extreme Wind Loading ("EWL") criteria to the design and construction of new overhead pole lines and major planned work, including pole line extensions, relocations and certain pole replacements. Gulf is proposing to continue executing its system-wide T&D pole inspection and replacement, and vegetation management cycle programs. Gulf will strengthen its electric grid to eliminate outages, minimize restoration times, and reduce the risk of single points of failure occurrences following major weather events.

Although Gulf's storm preparedness and hardening programs to date have produced a more storm resilient and reliable T&D electrical grid, Gulf must continue its efforts to

storm-harden its T&D electrical grid consistent with the findings, conclusions, and objectives of the Florida Legislature in Section 366.96, F.S. Indeed, Florida remains the most hurricane-prone state in the nation and, with the significant coast-line exposure of Gulf's system and the fact that the nearly 50% of Gulf's customers live within one (1) mile of a coast or major body of water, a robust SPP is critical to maintaining and improving grid resiliency and storm restoration as contemplated by the Legislature in Section 366.96.

III. Description of Service Area and T&D Facilities

Pursuant to Rule 25-6.030(3)(c), F.A.C., this section provides a description of Gulf Power's service area, including areas prioritized for enhancement, if any, and any areas where Gulf has determined that enhancement of its existing T&D facilities would not be feasible, reasonable, or practical at this time.

Today, Gulf's service area consists of approximately 7,550 square miles. To serve its more than 468,000 customers, Gulf has constructed a T&D electric grid that contains approximately 9,500 miles of electrical lines, including:

- Approximately 5,831 miles of overhead distribution lines;
- Approximately 2,023 miles of underground distribution lines;
- Approximately 1,672 miles of high-voltage transmission lines;
- Approximately 208,000 distribution poles; and
- Approximately 12,000 transmission structures.

Gulf's service area is divided into three distribution management areas. A map depicting Gulf's service area and distribution management areas (with the number of customers served within each management area) is provided in Appendix A.

At this time, Gulf has not identified any areas of its service area where its SPP programs and projects would not be feasible, reasonable, or practical. While all of Gulf's SPP programs are currently system-wide initiatives, annual activities are prioritized based on certain factors such as last inspection date, last trim date, reliability performance and

efficient resource utilization.² At this time, there is no area specifically targeted or prioritized for enhanced performance based on its geographical location.

IV. Proposed 2020-2029 SPP Programs

Pursuant to Rule 25-6.030(3)(d), F.A.C., this section provides a description of each program included in Gulf's SPP. If applicable, each program description below includes: (1) a description of how each program is designed to enhance Gulf's existing transmission and distribution facilities including an estimate of the resulting reduction in outage times and restoration costs due to extreme weather conditions; (2) identification of the actual or estimated start and completion dates of the program; (3) a cost estimate including capital and operating expenses; (4) a comparison of the costs and the benefits; and (5) a description of the criteria used to select and prioritize proposed storm protection programs.

A. Distribution Inspection Program

1. <u>Description of the Program and Benefits</u>

Gulf's Distribution Inspection Program included in the SPP is a continuation of Gulf's existing Commission-approved Distribution Inspection Program and includes programs that target specific facilities and infrastructure comprising Gulf's distribution system. Below is an overview of Gulf's Distribution Inspection Program and its associated benefits.

a. Overview of the Distribution Inspection Program

i. Feeder Patrols

Feeder patrols are a vital component of Gulf's Distribution Inspection Program and provide Gulf with the ability to efficiently identify and respond proactively to possible faults and other issues with Gulf's feeder systems. The feeder patrol component of Gulf's Distribution Inspection Program in the SPP is a continuation of the program previously

² The criteria and factors used to select and prioritize projects within each SPP program are described below.

approved by the Commission in Gulf's 2019-2021 Storm Hardening Plan. The program requires that, annually, by June 1, all critical lines must be inspected up to the first protective device for loose down guys, slack primary, and leaning poles. To the extent the patrols identify any problems with Gulf's feeders, those problems are promptly corrected in accordance with the requirements of the National Electric Safety Code ("NESC") and any other applicable standards or guidelines.

ii. Infrared Patrols

Infrared patrols assist Gulf in maintaining the reliable operation of its distribution system by utilizing equipment that detects excess heat and can identify structural, mechanical, and electrical issues with Gulf's distribution facilities. Similar to Gulf's feeder patrols, the infrared patrols in the SPP are a continuation of the program previously approved by the Commission in Gulf's 2019-2021 Storm Hardening Plan. Gulf's infrared patrols follow the same inspection cycle as its feeder patrols: annually, by June 1, Gulf will perform infrared inspections of critical equipment on main line three phase feeders. The inspected equipment includes feeder switches, capacitors, regulators, and automatic over-current protective devices. To the extent the infrared patrols proactively identify any potential problems with this equipment, Gulf will promptly schedule repairs, which will be performed in accordance with the requirements of the NESC and any other applicable standards or guidelines.

iii. Pole Inspections

Gulf implemented a distribution wood pole inspection program in the early 1990's and has continued that process since that time. Prior to 2006, Gulf utilized a 10-year distribution wood pole inspection program. In response to the 2004-2005 storm seasons and, in particular, the "large number of poles throughout Florida that required replacement," the Commission required investor-owned utilities ("IOUs") to implement an (8) eight-year pole inspection cycle for all wood distribution poles.³ Gulf's plan was initially approved in

³ See Order No. PSC-06-0144-PAA-EI.

September 2006, pending certain compliance filings,⁴ and received final approval in January 2007.⁵

Gulf's (8) eight-year pole inspection cycle for all wooden distribution poles targets approximately 1/8 of the system annually (the actual number of poles inspected can vary somewhat from year to year). Gulf's strength and loading calculations for its distribution poles and pole inspections are based on the NESC's construction standards.

Gulf utilizes an inspection matrix that ensures all poles (Creosote, Penta, and CCA) receive a visual inspection with sounding, boring and excavation as appropriate. Inspections include a visual inspection of all distribution poles from the ground-line to the top of the pole to identify visual defects (*e.g.*, woodpecker holes, split tops, decayed tops, cracks, etc.). If, due to the severity of the defects, the poles are not suitable for continued service, the poles are designated for replacement. This inspection matrix has been approved by the FPSC in all previous plans. Utilizing this philosophy, Gulf's wooden pole plant has continued to perform well, with most pole failures being limited to times of extreme weather, tree failures, or vehicle strikes.

Gulf's rate of rejection for distribution wood poles has fallen from approximately 15% during its first ten-year inspection cycle to less than 3% in current inspection cycles.

b. Benefits of the Distribution Inspection Program

The Commission has previously found that "efforts to maintain system components can reduce the impact of hurricanes and tropical storms upon utilities' transmission and distribution systems," and noted that an "obvious key component in electric infrastructure is the transmission and distribution poles." The Commission has also previously identified multiple benefits of and reasons for justifying pole inspections cycles for electric utilities, including, but no limited to: the likelihood of increased hurricane activity in the future; the high probability for equipment damage if a pole fails during a storm; the

⁴ See Order No. PSC-06-0778-PAA-EU.

⁵ See Order No. PSC-07-0078-PAA-EU.

⁶ See Order No. PSC-06-0144-PAA-EI.

likelihood that failure of one pole often causes other poles to fail; the fact that deteriorated poles are more prone to fail when exposed to high winds; the fact that Florida electric utilities replaced nearly 32,000 poles during the 2004 storm restoration efforts; and the fact that restoration times increase significantly when a large number of poles fail, which limits the electric utilities' ability to respond quickly to widespread outages.⁷

In addition to the benefits discussed above that underlie the creation of the Commission's mandated pole inspection requirements, Gulf's pole inspection program has resulted in the identification of poles to be remediated and the subsequent replacement of approximately 10,000 poles since the implementation of Gulf's pole inspection program. The poles replaced were also constructed utilizing a higher NESC Grade B construction standard. Information from previous storms shows that poles replaced since 2007 at the increased construction standard performed significantly better than poles with a pre-2007 construction date. An independent forensic analysis was conducted immediately after Hurricane Michael to assess damage to Gulf's distribution system. This analysis stated, "a substantial decrease in the damage rate in poles installed after 2007 was found (30-32% damage rate pre-2007; 11-14% damage rate 2007 and beyond)". The analysis further stated, "The survey data as well as the analysis does indicate however, that newer construction standards and stronger pole classes (Class 2) outperformed those poles installed to older standards or those that were of Class 3, 5, or 6. This suggests that investments in storm hardening could reduce the extent of outages as well as restoration times from future storm events". The analysis further states, "... investments in storm hardening may improve system performance during future storm events." The forensic analysis is attached as Appendix B. Gulf submits that its Commission-approved Distribution Inspection Program has directly improved and will continue to improve the overall health and storm resiliency of its distribution facilities.

2. <u>Actual/Estimated Start and Completion Dates</u>

The SPP will continue Gulf's ongoing Commission-approved Distribution Inspection Program described above. Annually, Gulf visually inspects approximately 770 miles of

⁷ See id.

mainline feeders and performs infrared inspections of critical equipment. With approximately 208,000 distribution poles as of year-end 2019, Gulf expects to inspect approximately 26,000 poles annually during the 2020-2029 SPP period.

3. Cost Estimates

Estimated annual costs for Gulf's Distribution Inspection Program are a function of the number of inspections estimated to be completed and the number of poles estimated to be remediated or replaced as a result of the annual inspections. Although costs to inspect the poles are operating expenses, the vast majority of pole inspection program costs are capital costs resulting from remediation/replacement of poles that fail inspection.

The table below provides a comparison of the estimated 2020-2022 (first three years of the SPP) Distribution Inspection Program costs with the estimated Distribution Inspection Program costs for 2020-2029:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$11.0	\$3.7
2020-2029	\$37.5	\$3.7

Further details of these costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.⁸

4. Comparison of Costs and Benefits

As provided in Section (IV)(A)(3) above, during 2020-2029, total costs for Gulf's feeder and infrared patrols and distribution pole inspection programs will average approximately \$3.7 million per year. Benefits associated with Gulf's Distribution Inspection Program are

⁸ Note, the 2020-2029 program costs shown above are projected costs estimated as of the time of this filing. Subsequent projected and actual costs could vary by as much as 10% to 15%. The annual projected costs, actual/estimated costs, actuals costs, and true-up of actual costs to be included in Gulf's Storm Protection Plan Cost Recovery Clause will all be addressed in a subsequent and separate Storm Protection Plan Cost Recovery Clause filing pursuant to Rule 25-6.031, F.A.C. The Commission has opened Docket No. 20200092-EI to address Storm Protection Plan Cost Recovery Clause petitions to be filed the third quarter of 2020.

discussed in Sections II and IV(A)(1)(b), above and include a decrease in the damage rate of poles installed during the time Hurricane Michael impacted Gulf's service area from 30-32% for Class 3, 5, or 6 (pre-2007) poles to 11-14% for Class 2 (2007 and beyond) poles.

5. Criteria used to Select and Prioritize Programs

Poles to be inspected annually are selected and prioritized within Gulf's service area based on the last cycle's inspection dates to ensure that poles are in compliance with Gulf's established eight-year cycle. As such, approximately 1/8 of the distribution poles in Gulf's service area are inspected annually.

At this time, Gulf has not identified any areas where the Distribution Inspection Program would not be feasible, reasonable or practical.

B. Transmission Inspection Program

1. <u>Description of the Program and Benefits</u>

Gulf's SPP Transmission Inspection Program is a continuation of Gulf's existing Commission-approved 2019-2021 storm hardening plan. The SPP includes programs that target the specific facilities comprising Gulf's transmission system. Below is an overview of Gulf's Transmission Inspection Program and its associated benefits.

a. Overview of the Transmission Inspection Program

In 2006, as part of its Storm Preparedness Initiative No. 3, the Commission required electric utilities to develop and implement plans to fully inspect substations annually and all transmission structures and all hardware associated with these facilities on a six-year cycle. Consistent therewith, Gulf implemented a Commission-approved transmission inspection plan in 2006 and has continued that plan to date.

Under its Commission-approved transmission inspection plan, Gulf inspects its transmission substations annually and its structures on two alternating twelve year cycles, which results in a structure being inspected at least every six-years. In general, Gulf uses a combination of company employees and contractors to perform comprehensive walking

and aerial inspections of its transmission structures. At year-end 2019, approximately 12,000 transmission structures (62% steel or concrete and 38% wood) are included in Gulf's transmission system.

Inspections for wood structures include an overall assessment of the condition of the structures, as well as other pole/structure components including the foundation, all attachments, insulators, guys, cross-braces, cross-arms, and bolts. If a wood transmission structure does not pass visual inspection, it is designated for replacement with a concrete or steel transmission structure.

For steel and concrete structures, the visual inspection includes an overall assessment of the structure condition (*e.g.*, cracks, chips, exposed rebar, and rust) as well as other pole/structure components including the foundation, all attachments, insulators, guys, cross-braces, cross-arms, and bolts. If a concrete or steel pole/structure fails the inspection, it is designated for repair or replacement.

Gulf's annual inspections of its transmission substations include comprehensive inspections based on substation inspection manuals. These inspections are performed by Company personnel knowledgeable of the processes, procedures, and equipment of Gulf's substations. Inspections include batteries and chargers, breakers, instrument transformers, power fuses, regulators, substation yard, switches, and transformers. The inspection steps for each type equipment is documented as well as the inspection results. Any abnormal situations are documented, repaired and/or replaced.

The SPP will continue Gulf's current Transmission Inspection Program which requires: transmission substations and all associated equipment to be inspected annually and transmission structures to be inspected based on two alternating twelve-year cycles, which results in a structure being inspected at least every six years.

b. Benefits of the Transmission Inspection Program

As noted in Section IV(A)(1)(b) above, the Commission has found numerous benefits and reasons justifying inspections of electrical utility facilities, including transmission facilities. Importantly, the transmission system is the backbone of the electric grid. While outages

associated with distribution facilities (*e.g.*, a transformer, lateral or feeder) can result in an outage affecting anywhere from a few customers up to several thousands of customers, a transmission related outage can affect tens of thousands of customers. Additionally, an outage on a transmission facility could cause cascading (a loss of power at one transmission facility can trigger the loss of power on another interconnected transmission facility, which in turn can trigger the loss of power on another interconnected transmission facility, and so on) and result in the loss of service for hundreds of thousands of customers. As such, it is imperative that transmission facilities be properly inspected using appropriate cycles and standards to help ensure that they are prepared for storms.

As with its distribution inspection program, discussed in Sections IV(A)(1)(a) & (b), the performance of Gulf's transmission facilities during recent storm events indicates Gulf's transmission inspection program has contributed to the overall storm resiliency of the transmission system and provided savings in storm restoration duration and costs. As a result, the inspections enable Gulf to timely identify and replace deteriorated structures, thus increasing the performance of its transmission structures during extreme weather events.

2. Estimated Start and Completion Dates

The SPP will continue Gulf's ongoing Commission-approved Transmission Inspection Program described above. This requires Gulf to inspect transmission substations and all associated equipment annually and structures based on two alternating twelve-year cycles, resulting in a structure being inspected at least every six years.

3. Cost Estimates

Estimated annual Transmission Inspection Program costs are a function of the number of inspections estimated to be completed and the transmission facilities estimated to be/actually remediated/replaced as a result of those inspections. Although the inspection costs are operating expenses, the vast majority of Transmission Inspection Program costs are capital costs resulting from remediation/replacement of facilities that fail inspection.

The table below provides a comparison of the estimated 2020-2022 (first three years of the SPP) Transmission Inspection Program costs with the estimated Transmission Inspection Program costs for 2020-2029:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$10.5	\$3.5
2020-2029	\$35.0	\$3.5

Further details regarding SPP estimated Transmission Inspection Program costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.⁹

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(B)(3) above, during 2020-2029, total costs for Gulf's Transmission Inspection Program are expected to average approximately \$3.5 million per year. Benefits associated with this program discussed in Sections II and IV(B)(1)(b) above include helping avoid outages that can affect tens of thousands of customers and, in particular, cascading outages where the loss of service can affect hundreds of thousands of customers.

5. <u>Criteria used to Select and Prioritize Programs</u>

As explained above, Gulf visually inspects its substations on an annual basis. For the inspection of transmission lines and structures and all associated hardware, the facilities are selected/prioritized throughout Gulf's service area based on the last cycle's inspection dates, to ensure that facilities are inspected in compliance with the established inspection cycle. Gulf's transmission structure inspection program is based on two alternating twelve-year cycles, which results in a structure being inspected at least every six years.

⁹ See footnote 8.

At this time, Gulf has not identified any areas where the Transmission Inspection Program would not be feasible, reasonable, or practical.

C. Distribution Feeder Hardening Program

1. Description of the Program and Benefits

The Distribution Feeder Hardening Program included in the SPP is a continuation of Gulf's existing Commission-approved approach (most recently approved in Docket No. 20180147-EI) to harden existing feeders and certain critical distribution poles, as well as Gulf's initiative to design and construct new pole lines and major planned work to meet the NESC's extreme wind loading ("EWL") criteria. Below is an overview of Gulf's existing distribution feeder hardening program and associated benefits.

a. Overview of the Distribution Feeder Hardening Program

The foundation of Gulf's Distribution Feeder Hardening Program has been Gulf's objective to strengthen and reconstruct critical infrastructure to higher NESC storm hardening construction standards. Feeders are the backbone of Gulf's distribution system and, therefore, a critical component of Gulf's overall distribution overhead system. Feeder reliability can also have a substantial impact on overall service reliability to Gulf's customers. Therefore, hardening feeders has been, and continues to remain, one of Gulf's highest storm hardening priorities.

To harden its feeders in 2020-2029, Gulf's proposes to continue with its previously approved approach to apply EWL standards to harden existing feeders and certain critical infrastructure utilizing Gulf's Distribution Hardening Design Guidelines (Appendix D) to construct new pole lines and major planned work. Gulf will also continue its distribution automation program which includes the installation of additional distribution automation devices, strategic installation of automated overhead faulted circuit indicators, and the distribution supervisory control and data acquisition (DSCADA) system. Appendix B also provides a map depicting Gulf's three districts that comprise Gulf's service areas which are subject to extreme winds ranging from 110-140 mph. Gulf's application of EWL

criteria to its hardening efforts incorporates and reflects these varying wind speeds throughout Gulf's service areas.

The SPP will also continue to utilize Gulf's Distribution Hardening Design Guidelines and processes to apply EWL to the design and construction of new pole lines and major planned work, including pole line extensions and relocations and certain pole replacements. Depending on the scope of the work that is performed in a particular project, this could result in the EWL hardening of an entire circuit (in the case of large-scale projects) or in EWL hardening of one or more poles (in the case of small projects) so that the affected circuit will be in a position to be fully EWL hardened in the future. These design criteria are primarily associated with changes in pole class, pole type, and desired span lengths to be utilized. The design criteria standardize the design and construction of new pole lines and major planned work to ensure that these projects align with Gulf's hardening strategy.

Gulf's current pole sizing guidelines provide for a minimum installation of: Class 2 wood poles for all new feeder and three-phase lateral work; Class 3 wood pole for two-phase and single-phase lateral work; and Class 3 wood pole for service and secondary work. For critical poles, Gulf's current pole sizing guidelines provide for the installation of concrete poles at accessible locations. These guidelines significantly increase the wind ratings (up to nearly 50 percent) from the design criteria in place prior to 2007.

To determine how an existing overhead circuit or critical pole will be hardened, a field survey of the circuit facilities is first performed. By capturing detailed information at each pole location such as pole type, class, span distance, attachments, wire size and framing, a comprehensive wind-loading analysis can be performed to determine the current wind rating of each pole, and ultimately the circuit itself. This data is then used to identify the specific pole locations on the circuit that do not meet the desired wind rating. For all poles that do not meet the applicable EWL, Gulf develops recommendations to increase the allowable wind rating of the pole.

Gulf plans to continue to utilize its "design toolkit" that focuses on evaluating and using cost-effective hardening options for each location, including:

- Storm Guying Installing a guy in each direction perpendicular to the line;
 a very cost-effective option that is dependent on proper field conditions;
- Equipment Relocation Moving equipment on a pole to a near-by stronger pole;
- Intermediate Pole Installing a single pole when long span lengths are present, which reduce span length and increases the wind rating of both adjacent poles;
- Upgrading Pole Class Replacing the existing pole with a higher class pole to increase the pole's wind rating; and;
- Undergrounding Facilities Evaluated on a case-by-case basis using sitespecific conditions.
- Distribution Automation Installation of additional distribution automation devices to further segment the feeders for outage restoration. These devices protect customers by limiting those affected by temporary faults and sustained outages. These devices will either be controlled by Distribution Supervisory Control and Data Acquisition (DSCADA) and/or function as a part of automated restoration schemes.
 - Strategic Installation of Automated Overhead Faulted Circuit Indicators (FCIs) are devices designed to indicate the passage of fault current. These devices will reduce customer outage time by helping to expedite locating outage causes, aiding in the isolation of the problem. This process will help restore service to some customers while the problem is being corrected. Gulf proposes to continue to install new FCIs at strategic locations.
 - In order to reduce customer outage times, Gulf has implemented a
 Distribution Supervisory Control and Data Acquisition (DSCADA)
 System to remotely control and monitor the distribution system by

Distribution Control Center personnel. The DSCADA system will continue to be expanded with the addition of line devices.

To further improve distribution reliability and resiliency, in 2016, Gulf initiated a program to expand its storm hardening philosophy by purchasing vegetation management easements from private property owners on select feeders to enhance Gulf's ability to adequately address vegetation management concerns. The feeders selected consisted of mainline feeders that serve key customers; feeders that experience reliability issues due to off right of way vegetation conflicts; and feeders that have heavy exposure to off right-of-way vegetation. Gulf has successfully purchased easements on 89 miles of line giving Gulf the right to clear and maintain a 15 foot wide corridor on private property adjacent to the public right of way and Gulf's distribution facilities. Gulf plans to continue this program to provide VM reliability improvements on its system.

These options are not mutually exclusive, and when used in combination with sound engineering practices, provide cost-effective methods to harden a circuit. Gulf's design recommendations also take into consideration issues such as hardening, mitigation (minimizing damage), and restoration (improving the efficiency of restoration in the event of failure). Since multiple factors can contribute to losing power after a storm, utilizing this multi-faceted approach to distribution pole line design helps to reduce the amount of work required to restore power to a damaged circuit.

b. Benefits of the Distribution Feeder Hardening Program

Distribution feeders are the backbone of the distribution system and are critical component to providing safe and reliable electric service to Gulf's customers. Improving the storm resiliency of distribution feeders provides immediate benefits for every customer served off a hardened feeder as soon as the hardening is completed. Therefore, hardening distribution feeders has been and continues to be one of Gulf's highest storm hardening priorities.

During the period 2006-2018, utilizing existing hardening specifications, Gulf hardened Critical Infrastructure Function ("CIF") feeders that serve hospitals, 911 centers, police and fire stations, water treatment facilities, county emergency operation centers and Community Project feeders, feeders that serve other key community needs like gas stations, grocery stores and pharmacies throughout Gulf's service area. In 2019, Gulf began to apply EWL standards to the design and construction of all new pole lines and major planned work, including pole line extensions and relocations and certain pole replacements. Logically, these storm-hardened feeders have and will continue to provide more storm and extreme weather resiliency to Gulf's customers.

2. <u>Estimated Start and Completion Dates</u>

Gulf initiated its feeder hardening initiative in 2006. As of year-end 2019, there are approximately 269 feeders remaining to be hardened. Gulf expects to harden 12-18 feeders annually through the program, and anticipates approximately 50% of Gulf's feeders to be hardened to EWL standards by year-end 2029.

3. Cost Estimates

Estimated Distribution Feeder Hardening Program costs are determined utilizing the length of each feeder, the average historical feeder hardening cost per mile and updated cost assumptions (*e.g.*, labor and materials). The table below provides a comparison of the estimated 2020-2022 (first three years of the SPP) Distribution Feeder Hardening Program with the estimated Distribution Feeder Hardening Program costs for 2020-2029:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$87.1	\$29.0
2020-2029	\$315.3	\$31.5

Further details regarding the estimated SPP Distribution Feeder Hardening Program costs including estimated annual expenditures, the vast majority of which are capitalized, are provided in Appendix C.¹⁰

4. Comparison of Costs and Benefits

As provided in Section IV(C)(3) above, during 2020-2029, total costs for Gulf's Distribution Feeder Hardening Program average approximately \$31.5 million per year through 2029. Benefits associated with this program discussed in Sections II and IV(C)(1)(b) above, include improved storm resiliency as well as: (1) lowering outage rates; (2) lowering construction man hours to restore hardened feeders; and (3) fewer pole failures.

5. Criteria used to Select and Prioritize Programs

As explained above, there are approximately 269 feeders remaining to be hardened or placed underground. Gulf attempts to spread its annual projects throughout its service areas. In prioritizing the remaining existing feeders to be hardened each year, considerations include the feeder's historical reliability performance, restoration difficulties, on-going or upcoming internal/external projects (e.g., Gulf maintenance or system expansion projects, municipal overhead/underground conversion projects or municipal road projects) and geographic location (i.e., Gulf attempts to spread its annual projects throughout its service area). Additionally, Critical Infrastructure Function ("CIF") feeders that serve hospitals, 911 centers, police and fire stations, water treatment facilities, county emergency operation centers, and Community Project feeders, feeders that serve other key community needs like gas stations, grocery stores and pharmacies are considered during Gulf's feeder hardening considerations. There are no areas for feeder hardening that Gulf has determined to be not feasible, reasonable or practical.

D. Distribution Hardening – Lateral Undergrounding Program

1. <u>Description of the Program and Benefits</u>

The Distribution Hardening – Lateral Undergrounding Program included in the SPP is a new program similar to that of FPL, which is intended to protect certain overhead laterals

¹⁰ See footnote 8.

during extreme weather events by converting them to underground laterals. Below is an overview of Gulf's proposed Distribution Hardening - Lateral Undergrounding Program and associated benefits.

 a. Overview of the Distribution Hardening-Lateral Undergrounding Program

Gulf's SPP includes a Distribution Hardening - Lateral Undergrounding Program similar to that conducted by FPL and Duke Energy Florida. The Distribution Hardening - Lateral Undergrounding Program would build upon the experiences of FPL and focus on targeting certain overhead laterals, *i.e.*, overhead laterals impacted by recent storms and with a history of vegetation-related outages and other reliability issues, spread throughout Gulf's system. Key objectives of the program would initially include validating conversion costs and identifying cost savings opportunities, testing different design philosophies, better understanding customer impacts and sentiments, and identifying barriers (e.g., obtaining easements, locating transformers and attaching entities' issues).

As part of the conversion process, Gulf will install meter base adaptors, which provide a means to receive underground service to the customer by utilizing the existing meter and meter enclosure. The meter base adaptors will minimize the impact on customer-owned equipment and facilities. For example, in certain situations, overhead to underground conversions of electric service can trigger a local electrical code requirement that causes a customer to have to upgrade the home's electric service panel. This can cost the customer thousands of dollars. By utilizing a meter base adaptor, the need to convert the electrical service panel and the additional customer cost is avoided.

 b. Benefits of the Distribution Hardening - Lateral Undergrounding Program

Laterals make up the majority of Gulf's distribution system. For example, system-wide, there are approximately 7000 laterals, in contrast to 305 feeders and there are almost 7 times as many miles of overhead laterals as there are overhead feeders (approximately 770 miles vs. 5063 miles, respectively). Additionally, while feeders are predominately located on main roads and rights-of-way, many laterals are located on smaller roads,

neighborhoods, and other areas that can create access issues for line maintenance, vegetation clearing, and restoration work. This results in a greater amount of construction man-hours being devoted to laterals during storm restoration. Based on the overall performance of underground vs. overhead facilities and the extensive damage to Gulf's overhead facilities caused by vegetation (much of which was outside of where Gulf trims, e.g., outside of public rights-of-way and Gulf easements) during Hurricane Michael, this program will further expand the benefits of hardening throughout Gulf's distribution system (i.e., reduced outages and restoration time). Further, the day-to-day performance of the underground vs. overhead facilities are generally better, which also provides customer benefits. As previously stated, The Florida Legislature has determined that it is in the State's best interest to "strengthen electric utility infrastructure to withstand extreme weather conditions by promoting the overhead hardening of distribution and transmission facilities, undergrounding of certain distribution lines, and vegetation management". Section 366. (1), F.S. Gulf's basis for converting certain laterals from overhead to underground throughout its system to eliminate the extensive damage to overhead facilities during storms is consistent with this statute.

2. Estimated Start and Completion Dates

The evaluation and engineering of Gulf's laterals identified to be converted to underground will begin during the fourth quarter of 2020. Gulf will begin conversion construction in 2021 and continue through 2029 in order to derive the benefits of underground lateral hardening throughout its system.

3. Cost Estimates

Estimated Distribution Hardening - Lateral Undergrounding Program costs are determined utilizing the length of each lateral, the average historical lateral undergrounding cost per mile and updated cost assumptions (*e.g.*, labor and materials). Total estimated Distribution Hardening - Lateral Undergrounding Program costs for 2020-2029, the vast majority of which are capitalized, are provided below:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2021-2022	\$10.4	\$5.2
2020-2029	\$46.6	\$4.7

Further details of these costs (*e.g.*, annual capital expenditures and operating expenses), along with 2021-2022 program costs are provided in Appendix C.¹¹

4. Comparison of Costs and Benefits

As provided in Section IV(D)(3) above, during 2020-2029, total costs for Gulf's Distribution Hardening – Lateral Undergrounding Program average approximately \$4.7 million per year through 2029. Benefits associated with this program are discussed in Sections II and IV(C)(1)(b) above and include improved storm resiliency and the mitigation and elimination of extensive damage caused by vegetation and windborne debris to overhead facilities.

5. <u>Criteria used to Select and Prioritze Programs</u>

Gulf is proposing that it select and prioritize the entire first-stage laterals to be converted utilizing an overall feeder performance methodology, *i.e.*, rather than selecting laterals downstream of a first-stage fuse. Key factors in selecting and prioritizing laterals for undergrounding are based on several reliability indices involving, but not limited to, performance during past hurricanes and tropical storms, certain number of outages in the past 10 years, and high percentage of past outages caused by vegetation. Gulf proposes also prioritizing conversions by additional methods, such as customer density (*i.e.*, customers served per mile converted). Additional considerations are delaying or skipping laterals in high flood risk zones and extremely long rural laterals with low customer densities.

¹¹ See footnote 8.

E. Transmission Hardening Program

1. <u>Description of the Program and Benefits</u>

Gulf's SPP Transmission Hardening Program is largely a continuation of Gulf's existing Commission-approved 2019-2021 storm hardening plan. Below is an overview of Gulf's Transmission Hardening Program and its associated benefits.

a. Overview of the Transmission Hardening Program

Hardening efforts within this program consist of transmission wood structure replacement, substation flood monitoring and hardening, and transmission and substation resiliency.

As of year-end 2019, approximately 62% of Gulf's transmission structures, system-wide, are steel or concrete, with approximately 38% wood structures remaining to be replaced. The annual prioritization/selection criteria for the remaining wood structures to be replaced includes proximity to high wind areas, system importance, customer counts, and coordination with other storm initiatives (*e.g.*, distribution feeder hardening). Other economic efficiencies, such as opportunities to perform work on multiple transmission line sections within the same transmission corridor, are also considered. Gulf expects to replace the approximately 4,600 remaining wood structures in its system before year-end 2029, at which time, 100% of its transmission structures will be steel or concrete.

Beginning in 2019, Gulf began to re-evaluate substation locations using the Coastal Substation Risk Assessments for all substations. As part of this process, a National Oceanic and Atmospheric Administration (NOAA) SLOSH (Sea, Lake and Overland Surges from Hurricanes) model is being used to define the potential maximum flood levels. SLOSH is a computerized model run by the National Hurricane Center (NHC) to estimate storm surge heights and winds resulting from historical, hypothetical, or predicted hurricanes.

Gulf will implement flood monitoring on vulnerable substations and review switch house construction standards for possible replacement and strengthening.

Although Gulf's transmission and substation facilities have continued to perform satisfactorily in the past, it should be noted that Gulf's transmission system and transmission substation reliability has been impacted by single point of failure events that have had and will continue to have the potential to greatly impact customers. During Hurricane Michael, Gulf experienced a single point of failure event which required the installation of a mobile substation to provide backup substation facilities and service to those customers impacted. As a result, Gulf has initiated a transmission line and radial substation resiliency program and has begun to invest in the overall strengthening of the electric grid at the transmission and/or substation level to remove these critical single points of failure that have the potential to impact large numbers of customers for extended periods of time. By building redundancy in the system to make it more resilient, these improvements will eliminate outages, and shorten restoration times following major weather events.

Based on customer impact and prioritization, Gulf is engaged in the process of removing single points of failure scenarios from the transmission and/or substation system. This program will focus on adding additional transmission lines into radially feed substations and additional transformers in single bank transmission substations in order to improve storm resiliency.

b. Benefits of the Transmission Hardening Program

While Gulf's transmission facilities were affected by Hurricane Michael in 2018, the damage experienced was significantly less than the damage sustained by distribution facilities. A primary reason for this resulted from the fact that transmission structures were already constructed to meet EWL standards, consistent with Florida Statute 366.04 and the NESC, Rule 250 C. However, based on the forensic data collected following the storm, steel and concrete structures out-performed wooden structures. Therefore, Gulf will continue its program of replacing transmission wood structures with steel or concrete to ensure the resiliency of its transmission structures.

The benefits associated with identifying and installing flood monitoring of substations is the ability to proactively de-energize those substations susceptible to flooding to reduce damage to powered substation equipment. The prevention of outages at substations due to storm surge or flooding is essential to minimizing outages affecting thousands of customers.

The benefits associated with removing single points of failure is to provide redundancy in single transformer substations and to provide additional feeds and/or equipment to improve storm resiliency. Further, while an outage associated with distribution facilities (e.g., a transformer, lateral or feeder) can impact up to several thousands of customers, a transmission and/or substation-related outage can result in an outage affecting tens of thousands of customers. As a result, the hardening of transmission poles and structures; the monitoring and prevention of flood waters into substations; and the strengthening of equipment to prevent transmission and/or substation-related outages is essential.

2. <u>Estimated Start and Completion Dates</u>

Gulf implemented its substation flood monitoring in 2019 and will conclude the program in 2023. Substation resiliency and hardening will begin in 2020 and continue through 2029. Gulf implemented its transmission structure hardening program in 2019 and expects to replace the approximately 4,600 remaining wood transmission structures in its system before year-end 2029, at which time, 100% of its transmission structures will be steel or concrete.

3. Cost Estimates

Estimated annual Transmission Hardening Program costs are a function of the number of substations to be storm hardened through flood monitoring, scope of resiliency programs, and the number of poles to be replaced, actual historical replacement costs and updated cost assumptions (e.g., labor and materials). Total estimated Transmission Hardening Program costs for 2020-2029, the vast majority of which are capitalized, are provided below:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$106.3	\$35.4
2020-2029	\$488.8	\$48.9

Further details of these costs (e.g., annual capital expenditures and operating expenses) are provided in Appendix C.¹²

4. Comparison of Costs and Benefits

As provided in Section IV(E)(3) above, total costs for Gulf's Transmission Hardening Program (transmission wood structure replacement, substation flood monitoring, and transmission and substation resiliency) average approximately \$48.9 million per year. Benefits associated with this program discussed in Sections II and IV(E)(1)(b) above, include improved storm resiliency.

5. Criteria Used to Select and Prioritize Programs

Gulf evaluated substation locations using the Coastal Substation Risk Assessments for all substations. Projects were prioritized based on stations in the flood zone using the SLOSH model, coastal stations with metal switch houses, and impact based on customer numbers. Transmission and substation resiliency projects are prioritized based on number of customers impacted and the estimated time of repair for a single event.

The annual prioritization/selection criteria for the remaining wood structures to be replaced includes proximity to high wind areas, system importance, customer counts, and coordination with other storm initiatives (*e.g.*, distribution feeder hardening). Other economic efficiencies, such as opportunities to perform work on multiple transmission line sections within the same transmission corridor, are also considered.

At this time, Gulf has not identified any areas where the Transmission Hardening Program would not be feasible, reasonable or practical.

¹² See footnote 8.

F. Vegetation Management – Distribution Program

1. <u>Description of the Program and Benefits</u>

The Vegetation Management – Distribution Program included in the SPP is a continuation of Gulf's existing Commission-approved Vegetation Management – Distribution Program. Below is an overview of Gulf's existing Vegetation Management – Distribution Program and the associated benefits.

a. Overview of the Distribution Vegetation Management Program

Prior to 2006, Gulf's Vegetation Management – Distribution Program consisted of trimming its feeders on a three-year average trim cycle and performing targeted trimming on certain feeders more frequently, targeting vegetation with faster growth rates, through its "mid-cycle" program. Lateral trimming was prioritized based on reliability performance. Another important component of this program was Gulf's "Right Tree Right Place" ("RTRP") initiative, which provided information to educate customers on Gulf's Vegetation Management – Distribution Program and practices, safety issues, and the importance of placing trees in the proper location.

After the 2004-2005 storm seasons, in Order No. PSC-06-0351-PAA-EI, the FPSC determined that "(t)he vegetation management practices of the investor-owned electric utilities do not provide adequate assurance that tree clearances for overhead distribution facilities are being maintained in a manner that is likely to reduce vegetation related storm damage. We believe that utilities should develop more stringent distribution vegetation management programs." As a result, Gulf proposed and the Commission ultimately approved (Order No. PSC-07-0468-FOF-EI) the continuation of Gulf's system-wide three-year average trim cycle for mainline feeders, mid-cycle trimming for mainline feeders and its RTRP initiative and the implementation of a six-year average trim cycle for laterals. Gulf's Commission-approved 2010 Storm Hardening Plan included a change in lateral trim cycles from six years to four years. These same initiatives, which have provided storm and day-to-day reliability benefits, remain in place today.

Tree limbs and branches are among the most common causes of power outages/momentary interruptions, day-to-day as well as during storm events. The primary objective of Gulf's Vegetation Management – Distribution Program is to clear vegetation in areas where Gulf is permitted to trim from the vicinity of distribution facilities and equipment in order to provide safe, reliable and cost-effective electric service to its customers. The program is comprised of multiple initiatives designed to reduce the average time customers are without electricity as a result of vegetation-related interruptions. This includes preventive maintenance initiatives (planned cycle and mid-cycle maintenance), corrective maintenance (trouble work and service restoration efforts), customer trim requests, and support of system improvement and expansion projects, which focus on long-term reliability by addressing vegetation that will impact new or upgraded overhead distribution facilities.

Gulf follows the NESC, the American National Standards Institute ("ANSI") A-300, and all other applicable standards while considering tree species, growth rates and the location of trees in proximity to our facilities when performing line clearing. Danger or hazard trees (leaning, structurally damaged, diseased, or dead) outside of right-of-way ("ROW"), which cannot be trimmed by Gulf contractors without approval from the property owner, are candidates for customer-approved removal.

For 2020-2029, Gulf proposes to continue implementing its currently-approved Vegetation Management – Distribution Program which includes its system-wide: three-year cycle for mainline feeders: mid-year cycle inspection and trimming for mainline feeders; four-year cycle for laterals; and continued education of customers through its RTRP initiative.

b. Benefits of the Distribution Vegetation Management Program

In Order No. PSC-2006-0947-PAA-EI, the Commission confirmed that Gulf should continue to implement 3-year average cycles for its mainline feeders and 6-year cycles for laterals because the cycles complied with the Commission's storm preparedness objectives to promote system reliability and reduce storm restoration costs. In Gulf's Commission approved 2010 Storm Hardening Plan, Gulf changed its lateral trim cycle

from 6 years to 4 years. Gulf has realized improved reliability as a result of its distribution vegetation management initiatives as its day-to-day distribution tree SAIDI has improved as a result of Gulf implementing its approved distribution vegetation management program (from 18.0 prior to the 2009 storm season to 14.1 at year-end 2019). Finally, another indication that the current program is providing benefits is that, while forensic analysis indicated vegetation was the overwhelming primary cause for pole and wire failures and a significant cause of outages during Hurricane Michael, the vast majority of damage resulted from uprooted trees, broken trunks, and broken limbs that fell into distribution facilities from outside of right-of-way, *i.e.*, beyond where Gulf is currently allowed to trim without approval from the property owner.

2. Actual/Estimated Start and Completion Dates

Gulf began its current 3-year mainline feeder cycle in 2019 which continues through 2021. The current 4-year lateral trim cycle began in 2018 and continues through 2021. At the conclusion of the current cycles, new cycles will begin. On average, Gulf plans to inspect and trim annually: approximately 1/3 of its mainline overhead feeder miles or 259 miles; approximately 1/4 of its overhead lateral miles or 1,257 miles; and mid-cycle inspection and trimming approximately 518 miles for a total estimated inspection and trimming average of approximately 2,000 miles per year, which is consistent with the historical miles inspected and trimmed annually.

Cost Estimates

The vast majority of Vegetation Management – Distribution Program costs are associated with cycle and mid-cycle inspection and trimming, which is performed by several approved Gulf contractors throughout Gulf's system. Other Vegetation Management – Distribution Program costs include costs associated with day-to-day restoration activities (e.g., summer afternoon thunderstorms), removals, debris cleanup, and support (e.g., arborists, supervision, back office support). Total estimated Vegetation Management – Distribution Program costs for 2020-2029 are provided below:¹³

¹³ The vegetation management costs shown in the table below exclude storm-related vegetation management costs.

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$14.4	\$4.8
2020-2029	\$47.4	\$4.7

Further details of these costs (*e.g.*, annual capital expenditures and operating expenses, labor, and equipment) and the number of miles inspected and maintained annually are provided in Appendix C.¹⁴

4. Comparison of Costs and Benefits

As provided in Section IV(F)(3) above, during 2020-2029, total costs for Gulf's Vegetation Management – Distribution Program average approximately \$4.7 million per year. Benefits associated with this program discussed in Sections II and IV(F)(1)(b) above, include increased storm resiliency.

5. Criteria Used to Select and Prioritize Programs

The primary reason for maintaining mainline feeders on a 3-year average cycle vs. a 4-year average cycle for laterals is that a mainline feeder outage can affect, on average, approximately 1,500 customers, as compared to a lateral line that can affect significantly less customers. Gulf enhances its approved mainline feeder trimming plan through its mid-cycle inspection and trimming program, which encompasses patrolling and trimming feeders between planned maintenance cycles to address tree conditions that may cause an interruption prior to the next planned cycle trim.

Additionally, customers often contact Gulf with requests to trim trees around lines in their neighborhoods and near their homes. As a result of our discussions with these customers and/or a follow-up investigation, Gulf either performs the necessary trimming or determines that the requested trimming can be addressed more efficiently by completing it through the normal scheduled cycle trimming.

¹⁴ See footnote 8.

At this time, Gulf has not identified any areas where the Vegetation Management – Distribution Program would not be feasible, reasonable or practical.

G. Vegetation Management – Transmission Program

1. <u>Description of the Program and Benefits</u>

The Vegetation Management – Transmission Program included in the SPP is a continuation of Gulf's existing Vegetation Management – Transmission Program. Below is an overview of Gulf's existing Vegetation Management – Transmission Program and the associated benefits.

a. Overview of the Transmission Vegetation Management Program

The North American Electric Reliability Corporation's (NERC) vegetation management standards/requirements serve as the basis for Gulf's Vegetation Management -The reliability objective of these standards/requirements Transmission Program. standards is to prevent vegetation-related outages which could lead to cascading by utilizing effective vegetation maintenance while recognizing that certain outages such as those due to vandalism, human errors and acts of nature are not preventable. Transmission lines that must conform with these standards/requirements include lines operated at or above 200 kV or any line that is either an element of an Interconnection Reliability Operating Limit (IROL) or a Major West Electricity Coordinating Council (WECC). For Gulf, approximately 600 miles of its transmission system (or just over onethird of all of Gulf's total transmission system) fall under the NERC's vegetation management standards and requirements. NERC's vegetation management standards and requirements include annual inspection requirements, executing 100% of a utility's annual vegetation work plan and to prevent any encroachment into established minimum vegetation clearance distances ("MVCD").

The key elements of Gulf's Vegetation Management – Transmission Program are to inspect the transmission rights of way, document vegetation inspection results and findings, prescribe a work plan, and execute the work plan.

Gulf conducts ground inspections of all transmission corridors annually for work planning purposes. During these inspections, Gulf identifies vegetation capable of approaching the defined Vegetation Action Threshold (VAT). VAT is a calculated distance from the transmission line that factors in MVCD, conductor sag/sway potential, and a buffer. The identified vegetation is given a work prescription and then prioritized and organized into batches of work, which collectively become the annual work plan.

For transmission lines that fall under NERC's vegetation management standards and requirements, Gulf plans to pilot and begin using a technology called "LiDAR", short for light detection and ranging. LiDAR is a remote sensing technology that uses light in the form of a pulsed laser to measure ranges (distances) to a target. For vegetation management purposes, LiDAR is used to measure distance between vegetation and transmission lines. LiDAR patrols of all NERC transmission corridors are conducted annually. The LiDAR collected data is then used to develop preventative and reactive work plans.

For 2020-2029, Gulf proposes to continue implementing its current Vegetation Management – Transmission Program, which includes ground and aerial inspections of all transmission line corridors, and pilot LiDAR inspections of NERC transmission line corridors, developing and executing annual work plans to address identified vegetation conditions and identifying and addressing priority and hazard tree conditions prior to and during storm season.

b. Benefits of the Transmission Vegetation Management Program

The benefits of a Vegetation Management – Transmission Program are self-evident and the consequences of not having a reasonable transmission vegetation management plan can be extreme. As discussed previously, the transmission system is the backbone of the electric grid. While outages associated with distribution facilities (e.g., a transformer, lateral or feeder) can result in an outage affecting anywhere from a few customers up to several thousands of customers, a transmission related outage can affect tens of thousands of customers. As such, it is imperative that vegetation impacting transmission facilities be properly maintained using reasonable and appropriate cycles and standards

to help ensure they are prepared for storms. For these reasons, it is no surprise that NERC has developed prescriptive vegetation management requirements for transmission facilities to help prevent such damage from occurring.

2. <u>Estimated Start and Completion Dates</u>

Gulf's Vegetation Management – Transmission Program inspections and resulting trim cycles are on-going programs and are completed in accordance with Gulf's 2019-2021 Commission approved storm hardening plan and NERC FAC003-4 standards and requirements. Under the SPP, Gulf plans to continue to inspect and maintain, on average, approximately 1,600 miles annually, including approximately 600 miles for NERC transmission line corridors and approximately 1,000 miles for non-NERC transmission line corridors.

3. Cost Estimates

The vast majority of Vegetation Management – Transmission Program costs are associated with annual inspections and the execution of planned work to address identified conditions, which is performed by several approved Gulf contractors throughout Gulf's system. Other vegetation management costs include costs associated with day-to-day restoration activities (e.g., summer afternoon thunderstorms), removals, debris cleanup, and management of the program. Total estimated Vegetation Management – Transmission Program costs for 2020-2029, the vast majority of which are operating expenses, are provided below:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2020-2022	\$8.2	\$2.7
2020-2029	\$28.3	\$2.8

Further details regarding the SPP estimated Vegetation Management – Transmission Program costs, including estimated annual capital expenditures and operating expenses are provided in the Appendix C.¹⁵

4. Comparison of Costs and Benefits

As provided in Section IV(G)(3) above, during 2020-2029, total costs for Gulf's Vegetation Management – Transmission Program average approximately \$2.8 million per year. Benefits are discussed in Sections II and IV(G)(1)(b) above.

5. Criteria used to Select and Prioritize Programs

Priority vegetation conditions and hazard tree conditions are identified prior to storm season and are used to prioritize activities. Additionally, prior to and during the storm season, Gulf conducts aerial inspections of transmission corridors to identify hazard trees and any priority vegetation locations. Priority vegetation conditions and hazard tree conditions identified through aerial inspections are prioritized and addressed as soon as possible.

V. <u>Detailed Information on the First Three Years of the 2020-</u> 2029 SPP

A. Detailed Description for the First Year of the SPP (2020)

The following additional information required by Rule 25-6.030(3)(e)(1), F.A.C., for the first year of the SPP (2020) is provided in Appendix C: (1) the actual or estimated construction start and completion dates; (2) a description of the affected existing facilities, including number and type(s) of customers served, historic service reliability performance during extreme weather conditions, and how this data was used to prioritize the proposed storm protection project; and (3) a cost estimate including capital and operating expenses. A description of the criteria used to select and prioritize proposed storm protection projects is included in the description of each SPP program provided in Section IV.

¹⁵ See footnote 8.

B. Detailed Description of the Second and Third Years of the SPP (2021-2022)

Additional details required by Rule 25-6.030(3)(e)(2), F.A.C., for the second and third years of the SPP (2021-2022), including the estimated number and costs of projects under every program, is provided in Appendix C.

VI. <u>Estimate of Annual Jurisdictional Revenue Requirements</u> for the 2020-2029 SPP

Pursuant to Rule 25-6.030(3)(f), F.A.C., the table below provides the estimated annual jurisdictional revenue requirements for each year of the SPP.

Estimated Annual Revenue Requirements (millions)

(11111110110)
\$11.7
\$20.5
\$31.5
\$42.1
\$52.4
\$62.3
\$71.9
\$81.3
\$90.4
\$99.3

While Gulf has provided estimated costs by program as of the time of this filing and associated total revenue requirements in its SPP, consistent with the requirements of Rule 25-6.030, F.A.C., subsequent projected and actual program costs submitted for cost recovery through the Storm Protection Plan Cost Recovery Clause (per Rule 25-6.031, F.A.C.,) could vary by as much as 10-15%, which would then also impact associated

estimated revenue requirements and rate impacts. The projected costs, estimated costs, actual costs, and true-up of actual costs to be included in Gulf's Storm Protection Plan Cost Recovery Clause will all be addressed in subsequent filings in separate storm protection plan cost recovery clause dockets pursuant to Rule 25-6.031, F.A.C.¹⁶

VII. <u>Estimated Rate Impacts for First Three Years of the SPP</u> (2020-2022)

Gulf anticipates the programs included in the SPP will have zero bill impacts on customer bills during the first year of the SPP and only minimal bill increases for years two and three of the SPP. An estimate of hypothetical overall rate impacts for the first three years of the SPP (2020-2022) as stated in footnote 17 below are based on the total program costs reflected in this filing, without regard for the fact that pursuant to a Commission-approved settlement agreement, Gulf remains under a general base rate freeze until base rates are next established by the Commission.¹⁷ The projected costs, estimated costs, actual costs, and true-up of actual costs to be included in Gulf's Storm Protection Plan Cost Recovery Clause will all be addressed in subsequent filings in separate storm protection plan cost recovery clause dockets pursuant to Rule 25-6.031, F.A.C.¹⁸

Pursuant to Rule 25-6.031, F.A.C., Gulf has not identified any reasonable implementation alternatives that could mitigate the resulting rate impact for each of the first three years of the SPP. As explained above, Gulf's SPP is largely a continuation of existing Commission-approved storm hardening programs and initiatives, which have already

¹⁶ The Commission has opened Docket No. 20200092-EI to address Storm Protection Plan Cost Recovery Clause petitions to be filed the third quarter of 2020.

¹⁷ Pursuant to Rule 25-6.030(3)(h), F.A.C., the hypothetical rate impacts for Gulf's typical residential, commercial, and industrial customers for the first three years of the SPP (2020-2022) without regard for the fact that pursuant to a Commission-approved settlement agreement, Gulf remains under a general base rate freeze until base rates are next established by the Commission, are as follows for 2020, 2021, and 2022, respectively: Residential (RS) \$0.00118/kWh, \$0.00206/kWh, and \$0.00317/kWh; Commercial (GSD) \$0.00102 /kWh, \$0.00177/kWh, and \$0.00270/kWh; and Industrial (PX) \$0.00087/kWh, \$0.00158/kWh and \$0.00240/kWh. These rate impacts are for all programs included in the SPP and are based on the total estimated costs as of the time of this filling, which could vary by as much as 10% to 15%, regardless of whether those costs will be recovered in Gulf's Storm Protection Plan Cost Recovery Clause or through base rates.

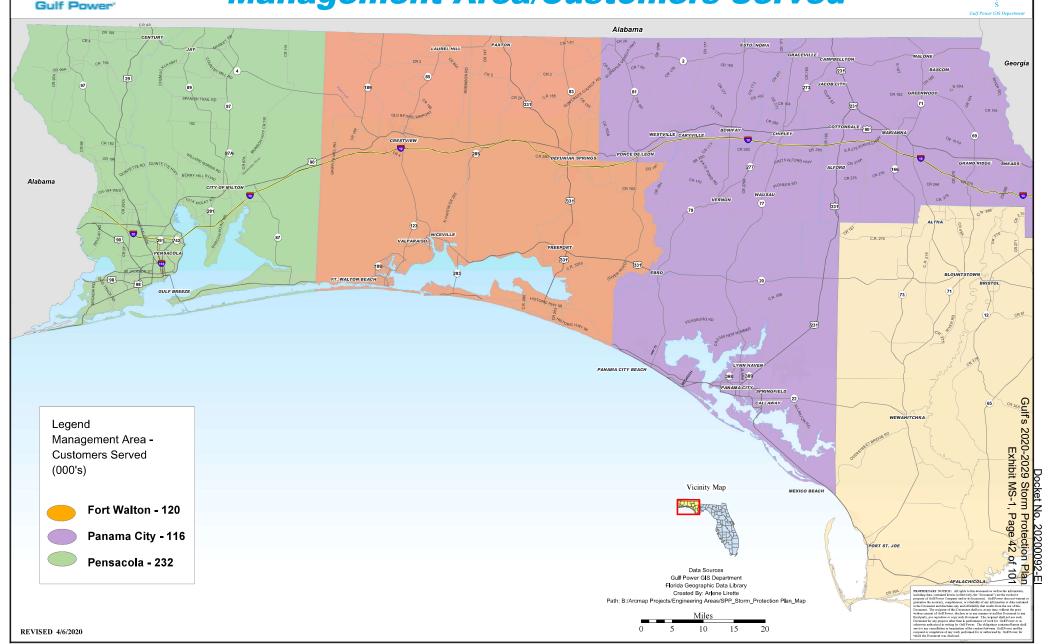
¹⁸ See footnote 16.

demonstrated that they have and will continue to provide increased T&D infrastructure resiliency, reduced restoration time, and reduced restoration costs when Gulf's system is impacted by severe weather events. Further, the estimated costs for the programs included in Gulf's proposed SPP are consistent with the historical costs incurred for the existing storm hardening and storm preparedness programs, which were most recently approved in Gulf's 2019-2021 Storm Hardening Plan.

VIII. Conclusion

The Florida Legislature has determined that it is in the State's interest to "strengthen electric utility infrastructure to withstand extreme weather conditions by promoting the overhead hardening of distribution and transmission facilities, undergrounding of certain distribution lines, and vegetation management," and for each electric utility to "mitigate restoration costs and outage times to utility customers when developing transmission and distribution storm protection plans." Section 366.96(1), F.S. Based on these findings, the Florida Legislature concluded that it is in the State's interest for each electric utility to develop and file a SPP for the overhead hardening and increased resilience of electric T&D facilities, undergrounding of certain electric distribution facilities, and vegetation management. See Sections 366.96(1) - (3).

Gulf's SPP is a systematic approach to achieve the legislative objectives of reducing restoration costs and outage times associated with extreme weather events and enhancing reliability. As explained above, Gulf's SPP is largely a continuation and expansion of its existing storm hardening and storm preparedness programs previously approved by the Commission, as well as a new distribution lateral undergrounding program to target certain overhead laterals for conversion from overhead to underground. Based on the recent experiences of Hurricane Michael, these existing storm hardening programs have a demonstrated and proven track record of mitigating and reducing restoration construction man-hours, outage times, and storm restoration costs, as well as improving day-to-day reliability. Gulf's SPP will continue and expand these important benefits to customers and the State.


APPENDIX A

(Gulf's Management Areas)

Management Area/Customers Served

APPENDIX B

(Hurricane Michael Forensic Analysis)

POST-STORM DATA FORENSICS ANALYSIS

Forensics Analysis on Hurricane Michael Storm Damage Survey Data

Gulf Power Company

Document No.: 10129258-HOU-PSFAR-01-B

Date: May 24, 2019

Docket No. 20200092-EI Gulf's 2020-2029 Storm Protection Plan Exhibit MS-1, Page 45 of 101

•		ta Forensics Analysis ysis on Hurricane Michael Storm y Data	DNV GL Energy Insights USA, Inc. Energy Advisory 1400 Ravello Drive	
			Katy, TX	
Customer contact:	Catherine S. FI		77449	
Date of issue:	May 24, 2019		Tel: (303) 808-9795	
Project No.:	10129258			
Organization unit:	Operational Ex	cellence		
Report No.:	1 [Rev.2]			
Document No.:	10129258-HOL	J-PSFAR-01-B		
Applicable contract((s) governing the	e provision of this Report:		
Objective:				
Prepared by:		Verified by:	Approved by:	
James Leahy, P.E. Senior Consultant		Clay Tutaj Emergency Planning Consultant	Milton Omoto Head of Section	
Copyright © DNV GL 201	9. All rights reserved	. Unless otherwise agreed in writing: (i) This	publication or parts thereof may not be copied,	
confidential by the custor	mer; (iii) No third par of this publication wh		ii) The content of this publication shall be kept undertakes no duty of care toward any third ed. DNV GL and the Horizon Graphic are	
DNV GL Distribution	1:			
☐ Unrestricted distr	ribution (internal	and external)		
☐ Unrestricted distr	ribution within D	NV GL Group		
☐ Unrestricted distr	ribution within D	NV GL contracting party		
⊠ No distribution (a)	confidential)			

Rev. No.	Date	Reason for Issue	Prepared by	Verified by	Approved by
0	20190115	Initial draft for review	Jim Leahy, P.E.	Clay Tutaj	Milton Omoto
1	20190524	Final Report	Jim Leahy, P.E.	Clay Tutaj	Milton Omoto
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					

Table of contents

1	EXECUTIVE SUMMARY	1
1.1	Approach to Data Collection	1
1.2	Storm Data Forensics Analysis Methodology	1
1.3	Conclusions of the Root Cause Analysis	1
1.4	Definitions	2
1.5	Disclaimer	2
2	INTRODUCTION	3
2.1	Background of Event	3
2.2	Scope of this Assessment	3
3	APPROACH AND METHODOLOGY	4
3.1	Initial Storm Track Assessment	4
3.2	Post-Storm Data Collection	5
3.3	Storm Data Forensics Analysis	9
3.4	Correlating Weather Data to Storm Damage	10
3.5	Interpolation vs. Extrapolation	13
4	STORM DATA FORENSICS ANALYSIS	14
4.1	Available Data	14
4.2	Distribution Pole Population Data	14
4.3	Damage Report Data	16
4.4	Confidence level	20
4.5	Urban vs. rural and age analysis	20
4.6	Analysis of flood impacted areas	22
5	DAMAGE EXTRAPOLATION ANALYSIS	24
5.1	Description of Map Grid Cells	24
5.2	Key Assumptions for Extrapolation Analysis	24
5.3	Correlation of Weather Data to Storm Damage	25
5.4	Results of Extrapolation	28
6	STORM DATA FORENSICS ANALYSIS CONCLUSION	29
Appe	ndices	

APPENDIX A FAILURE RATES BY DISTRIBUTION AND STREETLIGHT POLE PER SURVEY IN THE EASTERN DISTRICT

List of exhibits

Figure 3-1 Hurricane Michael Predicted Path and Severity Map	. 4
Figure 3-2 Hurricane Michael Storm Path and Likely Extent of Winds Above 57 mph (50 Knots)	. 5
Figure 3-3 Gulf Power Eastern Office Service Area Map	. 6
Figure 3-4 Interpolated Maximum Sustained Wind Speeds	
Figure 3-5 Interpolated Wind Gust	. 7

Figure 3-6 Outage Map Example at 0930 Hour 09/11/2017	8
Figure 3-7 Distribution Pole Density	
Figure 3-8 Interpolated Maximum Wind Speed	12
Figure 3-9 Interpolated Maximum Wind Gusts	
Figure 4-1 Graph of Pole Population by Material Type for Eastern District	
Figure 4-2 Total Gulf Power Distribution Pole Density Map	
Figure 4-3 Land Cover Classification	21
Figure 4-4 Coastal Storm Surge and Flood Area Map with Damage Survey Data	23
Figure 4-5 Inland Storm Surge and Flood Area Map with Damage Survey Data	
Figure 5-1 Failure rates of average wind speed and maximum wind gust (mph)	
Figure 5-2 Extrapolated Gulf Power Damages to the Eastern District Service Area	29
	_
Table 3-1 Damage Categories from Survey	
Table 3-2 Damage root cause	
Table 3-3 List of the stations where sustained wind speeds and gusts were extracted	
Table 4-1 Total Gulf Power pole population by material type in Eastern District	
Table 4-2 Classification of Gulf Power wooden poles	
Table 4-3 Failure rates by distribution and streetlight pole per survey data in the Eastern District (n≥30)	18
Table 4-4 Failure and impacted rates of wooden poles by class from damage survey records	19
Table 4-5 Damaged circuit and pole type by root cause	19
Table 4-6 Gulf Power damage type by root cause	20
Table 4-7 Number of damaged and impacted poles per grid zone type in the surveyed sample	20
Table 5-1 Gulf Power grid cells by urban and rural areas in the Eastern District	
Table 5-2 Gulf Power distribution and transmission poles, street lights by grid zone type in the Eastern	
District	24
Table 5-3: Linear regression of average wind speed and maximum wind gust (mph)	26
Table 5-4: Dependent Variable: Imputed individual pole failure rate	

1 EXECUTIVE SUMMARY

This storm data forensics analysis report provides Gulf Power Company (Gulf Power) an overall assessment of the damages caused by Hurricane Michael (October 2018) to energy delivery poles and other structures in the Eastern District of its service area. It is intended to summarize the impacts to Gulf Power's distribution system from the storm and characterize root causes of the damage.

DNV GL Energy Insights USA, Inc. (DNV GL) performed this independent analysis of the storm damage data received from Gulf Power. In producing this report, DNV GL strived to provide a balanced report that includes an overview of the surveyed damage, a root cause analysis of asset failures, and the correlation of available weather conditions during the storm to the damage across the service area.

1.1 Approach to Data Collection

The sources of information used by DNV GL for this forensics analysis were primarily provided by Gulf Power. Some supplementary data was gathered by DNV GL to assist in the analysis including data from the National Oceanic and Atmospheric Administration (NOAA). Following the storm, which made landfall on October 10th, 2018, Osmose Utilities Services, Inc., under contract to Gulf Power, conducted a storm damage survey. The survey was conducted between October 11th and 13th, 2018. The scope of the survey was determined by Gulf Power and Osmose. Information on pole structures, underground transformers and junctions was gathered. This data, as well as other information about the Gulf Power system, including photographs of the damage and a database of geo-locational features was provided to DNV GL on Dec. 15th, 2018. Gulf Power also provided weather data from weather stations within and around the service area. This information formed the basis of the forensics analysis.

1.2 Storm Data Forensics Analysis Methodology

DNV GL used asset and storm damage survey data to perform a statistical analysis of damage and correlate potential contributing factors with impacts across the territory. To accomplish this, DNV GL produced one square mile grid cells for the utility's service area, with each grid containing a variety of factors such as maximum wind speed, maximum wind gust, geography, class and material type of distribution poles and density of assets within the area.

Using regression analysis and logit models, the storm damage survey data was correlated with weather data and other conditions. Accounts of damage (including broken poles, broken cross arms, wires down) were used to determine a failure probability in relation to wind speeds. The failure probabilities were then extrapolated to a 1-mile by 1-mile map grid across the Eastern District of the Gulf Power service area to provide an overall expected failure rate for the service area.

1.3 Conclusions of the Root Cause Analysis

Contributing factors for damage included in this analysis were wind speed, tree hitting pole and/or conductor, debris hitting pole, cross arm and/or conductor. Based on root cause analysis of data, the following conclusions were drawn:

- Pole damage (broken) and downed conductors was predominately due to wind-caused damage to trees (nearly 68% of the damage overall)
- Nearly 28% of the damage documented in the survey was due to wind only
- Damage showed a higher correlation with wind-gusts than with sustained wind speeds

- Urban versus rural settings showed no statistically significant correlation to damage; however, a substantial decrease in the damage rate in poles installed after 2007 was found (30-32% damage rate pre-2007; 11-14% damage rate 2007 and beyond).
- Areas considered 100-year flood-zones, or which have the potential to be impacted by storm surge showed no correlation with the damage¹
- Considering that the area was not known to have been considerably affected by storm surge, underground transformers and junction structures were found to have very low failure rates (0.01%) based on survey data
- Of the damaged wooden poles surveyed, Class 3, Class 5, and Class 6 poles had a failure rate of 28%-33%, whereas Class 2 poles showed a 9% failure rate
- A 23% failure rate for all poles due to wind alone, falling trees or limbs, or other debris, may be expected when wind gusts exceed 85 mph according to the survey data collected.

Based on these findings, the expected total infrastructure damage rate for all areas affected by the storm in the Eastern District of Gulf Power was estimated to be 30% for all distribution poles. This is based on the extrapolated survey data and may be used to gauge overall performance of the system based on actual failure rates. It should be noted that this extrapolation is likely statistically biased in that only heavily impacted areas were surveyed.

The survey data as well as the analysis does indicate however, that newer construction standards and stronger pole classes (Class 2) outperformed those poles installed to older standards or those that were of Class 3, 5 or 6. This suggests that investments in storm hardening could reduce the extent of outages as well as restoration times from future storm events.

1.4 Definitions

The following definitions were used by DNV GL in this analysis:

Impacted or Damaged Infrastructure – This term is used to classify all poles or structures, leaning or broken that may or may not have been affected from the storm.

Broken Pole – A pole that failed due to the storm.

Damaged Conductor – Downed wires.

Broken Cross Arm – A damaged cross arm that required repair or replacement.

1.5 Disclaimer

The forensics data analysis performed as part of this post-storm assessment is based on the information provided by Gulf Power Company and Osmose, and publicly available data. DNV GL did not conduct field measurements in Gulf Power's service areas and therefore cannot accept liability for the accuracy of the data supplied to it.

Data indicating the actual areas of flooding or extent of storm surge from Hurricane Michael were not available at the time of this analysis. To assess possible correlations between flooding or storm surge and damage, DNV GL reviewed FEMA 100-year flood plain maps and maps indicating areas of potential storm surge published by the National Hurricane Center data in relation to storm damage survey data.

2 INTRODUCTION

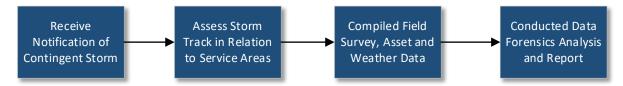
2.1 Background of Event

Hurricane Michael was a powerful Category 5 hurricane that made landfall near Mexico Beach, Florida at 12:30 PM CDT on October 10, 2018. At that time, the storm had estimated maximum sustained winds of 140 knots (~161) mph². The storm was the fourth-strongest storm to make landfall in the U.S. and the most intense storm experienced by the Florida Panhandle on record.

Following the hurricane, Gulf Power contacted DNV GL with a desire to activate a data forensics analysis contract. These contracts are used to analyze storm damage data and summarize the impacts of the storm to Gulf Power's system as well as assess the root causes of the damage. Upon issuance of the contract, DNV GL worked with Gulf Power to obtain the necessary data to conduct the analysis.

2.2 Scope of this Assessment

This report documents the approach, methodology, and results of the storm data forensics analysis performed by DNV GL. The work scope for this assessment includes performing a forensics analysis on a sample of utility pole and structure data collected by Osmose Utilities, Inc. (Osmose), under contract to Gulf Power. Data collected by Osmose included storm impacted and damaged poles and structures, conductors, and other equipment. In assessing the damage data, Gulf Power had an interest in assessing damage to pole structures and the performance of underground transformers as well as junction structures in the area. DNV GL used the survey data as well as weather data recorded during the storm to perform the analysis and determine the root cause of failures.


To accomplish this, DNV GL performed the following:

- · Analyzed storm pattern to identify areas of probable impact and damage
- Defined a 1-mile by 1-mile grid map to assist in analyzing field survey data
- Analyzed data on storm damaged pole and impacted structures according to the field survey
- · Correlated available weather data and geographical conditions to observed failures
- Performed a root cause analysis on damaged assets
- Extrapolated expected failure rates to the Eastern District of the Gulf Power service area
- Documented work and results of the data analysis in a report

² J. Beven, R. Berg and A. Hagan, National Hurricane Center, "Tropical Cyclone Report, Hurricane Michael", May 17, 2019

3 APPROACH AND METHODOLOGY

The storm data forensics analysis process is described as shown in the following flow diagram:

3.1 Initial Storm Track Assessment

A storm track assessment was performed to assess the direction and intensity of the storm as it passed over Florida and understand the areas of most probable damage. This involved using information available publicly to identify the path and intensity of Hurricane Michael as it relates to Gulf Power's service area. The National Oceanic and Atmospheric Administration – National Hurricane Center (NOAA-NHC) was the source of this information. NOAA-NHC provides data that shows the location of the storm at specific times along its course as well as the projected extent of high winds prior to the storm making landfall. Figure 3-1 shows the likely path of the hurricane as of 10:00 P.M. on Tuesday, October 9, 2018. Figure 3-2 presents the hurricane track and likely winds as of 10:00 A.M. on October 10, 2018. The storm made landfall at about 12:30 P.M. on October 10 with the center of the storm tracking just east of Panama City, FL.

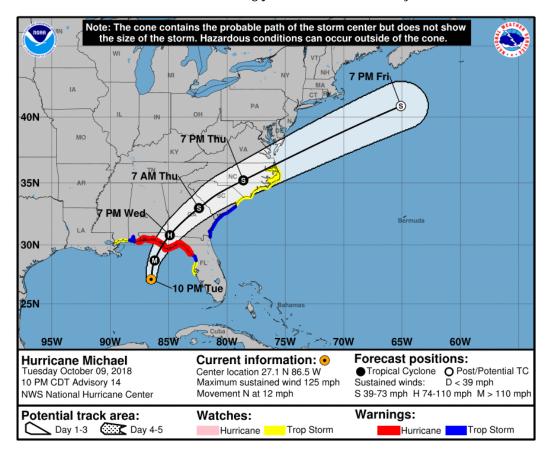


Figure 3-1 Hurricane Michael Predicted Path and Severity Map

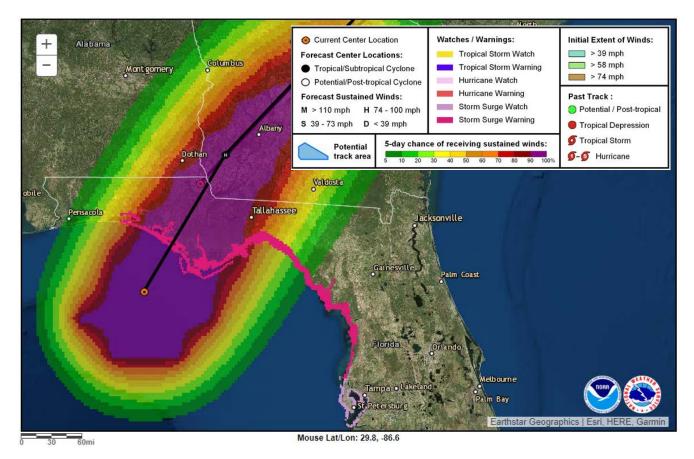


Figure 3-2 Hurricane Michael Storm Path and Likely Extent of Winds Above 57 mph (50 Knots)

3.2 Post-Storm Data Collection

Gulf Power provided DNV GL with pole and structure data for their entire service area. This data was combined with the storm track assessment to:

- Define 1-mile by 1-mile square grid cells to assess field survey data
- · Assign grid cell identifiers to the Osmose field survey data
- Associate the survey data with the overall Gulf Power pole inventory

Survey areas for field data collected were determined by Gulf Power and Osmose. Much of the damage was concentrated in the Eastern District of the Gulf Power service area (Figure 3-3) near Panama City. This area experienced a category 5 severity storm with estimated sustained winds of up to 161 mph and was considered the priority area. When these conditions occur, catastrophic damage is expected. Hurricane Michael resulted in more than 45,000 structures being damaged in Bay County alone with an estimated \$18.4 billion of losses total in Florida³. The survey had to be performed in a timely manner before significant

³ J. Beven, R. Berg and A. Hagan, National Hurricane Center, "Tropical Cyclone Report, Hurricane Michael", May 17, 2019

restoration activities began. The survey was conducted on above ground assets and underground transformers in order to determine the performance of both during this type of event.

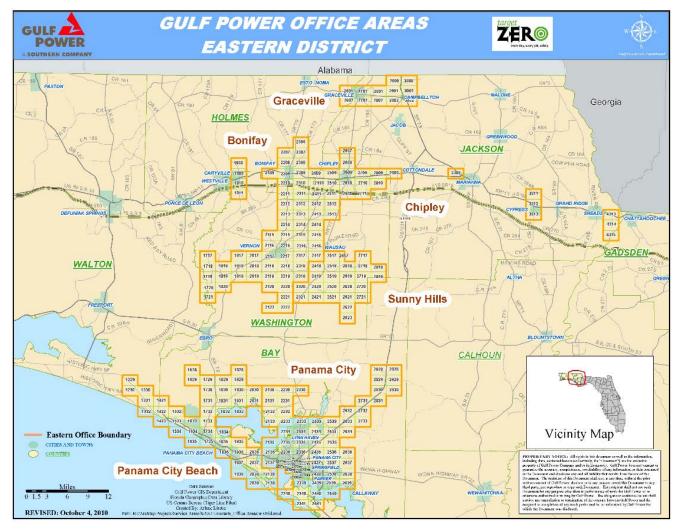


Figure 3-3 Gulf Power Eastern Office Service Area Map

Based on available weather station data, DNV GL interpolated wind speeds and wind gusts across the Gulf Power service area. The interpolated maximum sustained wind speeds, interpolated wind gusts are shown in Figures 3-4 and 3-5. Note that the weather station locations are labeled in each figure. Figure 3-6 shows the outage information as of October 16, 2018 for the service area, Figure 3-7 provides the pole density for the service area.

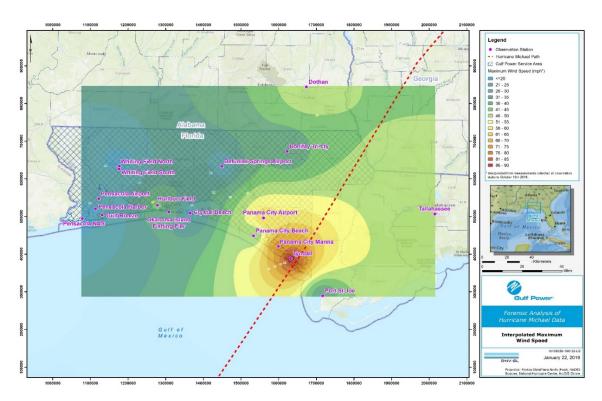


Figure 3-4 Interpolated Maximum Sustained Wind Speeds

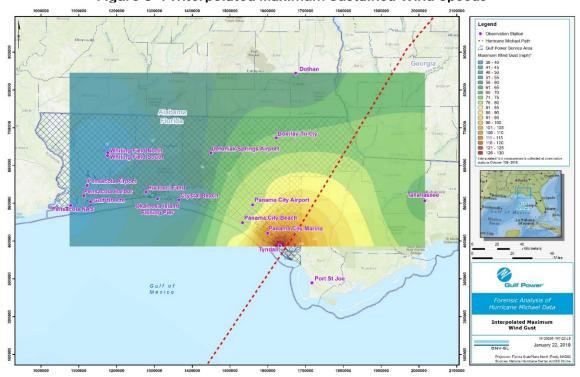
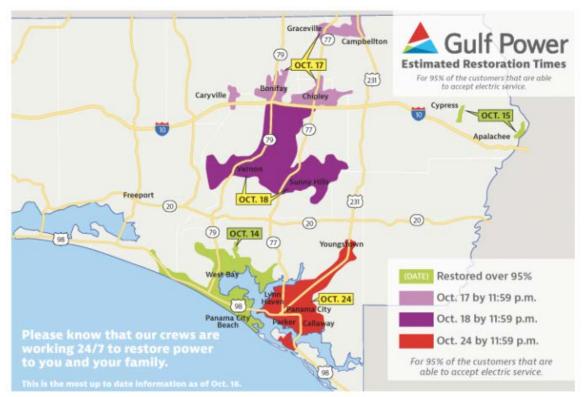



Figure 3-5 Interpolated Wind Gust⁴

⁴ Maximum wind gusts were not recorded at Port St. Joe; therefore, wind gusts could not be interpolated south of Tyndall

Estimated Restoration Times as of 10/16/18 a.m.

Figure 3-6 Outage Map Example at 0930 Hour 09/11/2017

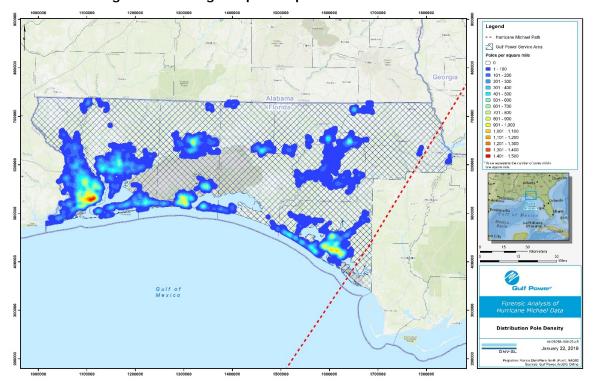


Figure 3-7 Distribution Pole Density

Osmose personnel performed the field survey in accordance with the plan developed with Gulf Power and collected impact and damage information to energy delivery poles, structures, conductors, and other equipment. This information was provided to DNV GL by Gulf Power for the analysis.

In all, 1,171 poles, 519 underground transformers, and 90 junctions were surveyed for a total of 1,780 structures. Of the 1,171 surveyed poles, 319 were damaged. The categories of reported impact, damage and quantities for poles were as shown in Table 3-1.

Table 3-1 Damage Categories from Survey

Damage description	Quantity				
Conductor Down	168				
Broken Pole	90				
Leaning Pole	53				
Cross Arm Broken	3				
Other	4				
Underground Dip Exposed	1				
Total	319				

The post storm data provided for underground transformers (n=519) and junctions (n=90) are limited in that only the status of the structure and the stated cause of damage were observed. For underground transformers, only four structures were damaged with two being damaged from debris on the transformer and two being damaged from being shifted. For junctions, only one structure was damaged due to the underground transformer being exposed. Given that systems were not energized at the time of the damage survey, it's possible that additional failures may have been experienced when systems were energized or upon further inspections.

3.3 Storm Data Forensics Analysis

DNV GL performed a forensics analysis on the storm damage survey data. The process includes:

- Compiling and cleaning the field survey data collected
- Summarizing impact and damage report data
- Developing a geo-locational based 1-mile by 1-mile grid for the Gulf Power service area
- Determining the pole failure rate by grid cells
- Analyzing contributing factors and associating the damage with a root cause

In conducting the storm damage survey, the survey team noted the likely contributing factors that caused the damage to the poles or structure. For this analysis, DNV GL merged the variations of contributing factors for each record into one root cause as shown in Table 3-2.

Table 3-2 Damage root cause

Root cause	Contributing factor 1	Contributing factor 2
	Wind	Wind
Wind only	Wind	Other
	Wind	Tree
Wind & Tree	Tree	Wind
wind & free	Tree	Tree
	Tree	[Blank]
Tree & Other	Tree	Other
nee a omei	Other	Tree
	Wind	Other
Wind & Other	Other	Wind
	Other	Other
Other	[Blank]	Other
	Other	[Blank]

Section 4 of this report provides the results of this analysis including findings on the relationship between the impact and damage data and the root cause for pole, underground transformers and junction related damage.

3.4 Correlating Weather Data to Storm Damage

The analysis of contributing factors to the storm damage were based on weather data collected during the storm event at weather stations in the region. Weather information, including maximum sustained wind speed, wind direction and pressure, was obtained from 18 meteorological stations in the Gulf Power geographic area. The stations used are listed below in the following table. It should be noted that these observation sites were likely not located where maximum storm intensities could be sampled, which is typical of landfalling hurricanes. According to the NWS report on Hurricane Michael (May 2019), weather station observations were found to be below best track intensity estimates⁵.

⁵ J. Beven, R. Berg and A. Hagan, National Hurricane Center, "Tropical Cyclone Report, Hurricane Michael", May 17, 2019

Table 3-3 List of the stations where sustained wind speeds and gusts were extracted

FID	Name	Max. Speed	Max. Gust	Unit
1	Bonifay Tri-city	35.7	N/A	mph
2	Crystal Beach	27.6	50.8	mph
3	Defuniak Springs Airport	26.5	N/A	mph
4	Dothan	49.5	61.1	mph
5	Gulf Breeze	29.1	43.9	mph
6	Hurlburt Field	41.4	54.1	mph
7	Okaloosa Island Fishing Pier	36.5	51.5	mph
8	Panama City Airport	57.5	76	mph
9	Panama City Beach	44.8	74.7	mph
10	Panama City Marina	72	107	mph
11	Pensacola Airport	29.9	41.4	mph
12	Pensacola Harbor	21	53	mph
13	Pensacola NAS	20.8	35.8	mph
14	Port St. Joe	36	N/A	mph
15	Tallahassee	47.2	69.1	mph
16	Tyndall	86.3	129.1	mph
17	Whiting Field North	18.3	35.8	mph
18	Whiting Field South	28.9	45	mph

This weather data allowed DNV GL to identify the timeframe and duration of the storm duration as it crossed over Florida. The duration was used for calculating average and maximum sustained wind speeds as well as maximum wind gusts. Several weather stations were excluded due to inconsistencies in readings which may be due to the geographic location of the station or damage incurred during the storm. For example, stations located over water showed a higher average wind-speed than those on land. We found that other stations zeroed-out after a certain time during the storm, indicating that these stations were disabled and may have suffered damage during the event. To correlate the weather data with damage survey data DNV GL:

- Interpolated wind speeds between weather stations
- Assigned wind speed values to each 1-mile by 1-mile grid cell
- Associated maximum wind gusts and wind speeds with the pole failure rates by grid cell

Figure 3-8 provides a mapping of the interpolated maximum sustained wind speeds across the area. Maximum wind gusts are illustrated in Figure 3-9. As can be seen, both figures show the maximum wind gusts and winds speeds occurring south of Panama City, near Tyndall.

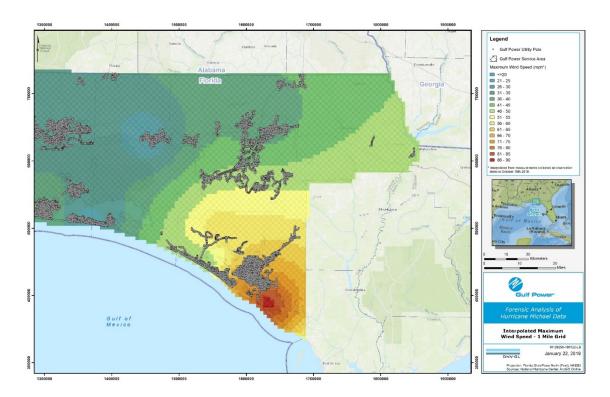


Figure 3-8 Interpolated Maximum Wind Speed

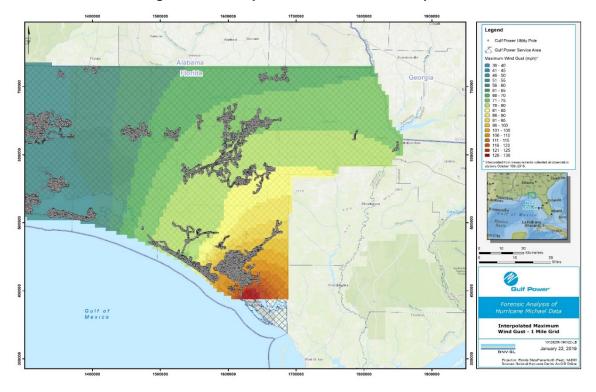


Figure 3-9 Interpolated Maximum Wind Gusts

3.5 Interpolation vs. Extrapolation

A key aspect to this forensics analysis is the difference between interpretation and extrapolation and how each was used. Interpolation was used when estimating between multiple known values. In the case of this analysis, the estimation of wind speeds and wind gusts between weather stations was interpolated based on recorded data at the stations. Extrapolation was used to make an estimate based on a sequence of information. In this case, the estimation of pole damage based on wind speeds to the service area was an extrapolation of information.

To produce the interpolated maps for this report (Figures 3-4, 3-5, 3-8 and 3-9), the maximum wind speed and maximum wind gust observed at 18 weather stations on October 10 was used. This data was provided by Gulf Power. The interpolation for each variable was conducted using inverse distance weighting (IDW) method to predict the values between multiple sets of points. In this technique, the measured values closest to the prediction location have more influence on the predicted value than those farther away. IDW assumes that each measured point has a local influence that diminished with distance. It gives greater weights to points closest to the prediction location, and the weights diminish as a function of distance. This technique does have limitations as it only considers distance to the measured location and does not consider local topography which can greatly influences wind speeds.

The estimated wind speed at each grid cell in the Gulf Power service area considered the distance of each cell from the weather stations as well as the wind contribution from all the stations. The equation for this is based on the weighted squared distance, where U is the interpolated wind speed, U_n is the known windspeed and r_n is the distance:

$$u = \frac{\left(\frac{u_1}{r_1^2} + \frac{u_2}{r_2^2} + \frac{u_3}{r_3^2} + \frac{u_5}{r_5^2}\right)}{\left(\frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} + \frac{1}{r_4^2} + \frac{1}{r_5^2}\right)}$$

Extrapolation estimates were made by applying a known sequence of values to areas of unknowns with similar characteristics. For the storm data forensics analysis performed by DNV GL that follows, data extrapolation was applied to the grid cells in Eastern District of the utility service area where survey data was not collected to determine expected failure rates in those areas. The common characteristic used to extrapolate damage rate estimates was both the estimated maximum sustained wind speeds derived from the weather observation stations and maximum gusts.

4 STORM DATA FORENSICS ANALYSIS

DNV GL performed a thorough review and analysis of the available data to better understand impact and damage to the Gulf Power energy delivery infrastructure caused by Hurricane Michael. Findings with respect to the number of breakages, breakage rates, root causes, and explanations were documented in this report along with graphical maps to help visualize the information.

4.1 Available Data

Damage survey data collected by Osmose was used as the basis for the analysis. To assess the impact of the hurricane to Gulf Power's energy delivery system, DNV GL calculated a ratio of damaged poles/structures versus surveyed poles and structures and then evaluated the potential root causes. Significant effort was made to evaluate available information pertaining to pole or structure type, class, location, and other attributes.

4.2 Distribution Pole Population Data

Geo-locational based pole record data provided by Gulf Power was processed and used for this analysis. This information served as the reference point for the resulting storm impacts and damages. This was the most accurate data source with respect to quantities, material and class of poles and other structures. Table 4-1 gives a summary of the pole population by material type for the Eastern District of the Gulf Power service area.

Table 4-1 Total Gulf Power pole population by material type in Eastern District

Туре	Number of poles			
Wood	54,068			
Concrete	3,561			
Aluminium	681			
Fiberglass	312			
Steel	101			
Other	6			
Unknown	962			
Total	59,691			

As shown in the table – and illustrated in Figure 4-1 – about 92% percent of the poles in the Eastern District of the Gulf Power service area are made from wood, with concrete poles being the second most common type at about 6% of the total population.

100.0% 92.1% 80.0% 60.0% 40.0% 20.0% 6.1% 1.2% 0.5% 0.2% 0.0% 0.0% Wood Concrete Aluminum Fiberglass Steel Other

Figure 4-1 Graph of Pole Population by Material Type for Eastern District

Furthermore, the population of wooden poles by class, as shown in Table 4-2.

Table 4-2 Classification of Gulf Power wooden poles

	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	H- class	Unk
Wood poles	5	755	451	10,837	192	36,261	5,223	44	30	270
% of wood poles	0.0%	1.4%	0.8%	20.0%	0.4%	67.1%	9.7%	0.1%	0.1%	0.5%

These poles are located largely along the coast in the Panama City area, but the Eastern District of the Gulf Power service area includes communities further inland to the northern Florida state border with Alabama. Figure 4-2 shows the pole densities in the eastern portion of the Gulf Power service area. The scale indicates the number of poles present in a specific area.

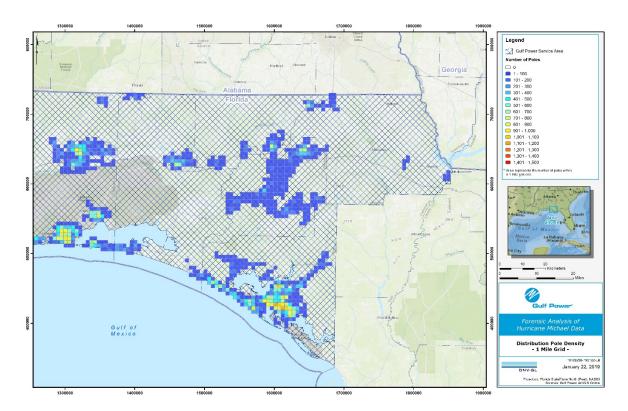


Figure 4-2 Total Gulf Power Distribution Pole Density Map

4.3 Damage Report Data

After the storm, Osmose, under contract to Gulf Power, surveyed impacts and damages to the Gulf Power energy delivery infrastructure in the Eastern District. In total, 319 reports of pole damage were collected from in the survey (about 1% of the Gulf Power pole assets). Details about the reported damage from collected data are provided in Table 4-3. Grid zones where less than 30 poles were surveyed are removed from this table as they provide misleading damage rates⁶. The impact and damage categories include poles (leaning or broken), conductor (wire down), cross arm damage, and "other." The other category includes miscellaneous impact or damage to service poles, lighting poles, and so on.

In the table below, poles are associated with a cell within the 1-mile by 1-mile grid (See section 3.4 and 5.1). Impacts and damages are related to distribution poles or structures because this was the reference source used (pole tag or ObjectID). Leaning poles were included in the analysis as impacted. It's understood that leaning poles reported to be 20° or even 30° from vertical may have existed prior to the storm and may or may not be the result of storm winds. However, there were several leaning poles reported that had greater angles of lean, and it was determined that these poles were to be included in the analysis.

⁶ Several grid zones that were surveyed had a low sample size with all surveyed poles damaged – resulting in a failure rate of 100%. This is a statistically inaccurate representation of the damage. Thus, n=30 was used as the minimum requirement for an observation consistent with traditional sample sizes. For a full list of details for all grids include those with less than 30 observations per grid cell, please refer to Appendix A.

Docket No. 20200092-EI Gulf's 2020-2029 Storm Protection Plan Exhibit MS-1, Page 65 of 101

In summary, it was observed that the surveyed failure rates by grid cell where the surveyed number of poles was greater than 30, the damage rates vary widely from 0% to 61%. This wide range of failure rates further motivates the methodology used in this study to better understand failure rates through geospatial, statistical, and econometrical techniques. Note that this failure rate is only within the sampled survey areas, and these sampled areas most likely sustained more damage than other areas. The failure rates include all categories of damage including leaning poles. Actual pole damage (breakage) was low, even in the surveyed areas⁷.

As provided, this damage percentage range cannot be directly extrapolated to the entire Gulf Power service area because of the variation in sampling by grid cell. The method for using this information to extrapolate damage estimates to the larger service area is described in Section 5.

Table 4-3 Failure rates by distribution and streetlight pole per survey data in the Eastern District (n≥30)

Grid		Poles		-	_	Damage	Pole bro	ken	Pole lear	ning	Conduc		Damaged arm		Undergrou expos	•	Oth	ner
zone	type	pole pop.	surveyed	poles damaged	rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	
1118	Rural	129	46	28	61%	13	28%	6	13%	9	20%	0	0%	0	0%	0	0%	
1160	Rural	40	31	12	39%	0	0%	2	6%	10	32%	0	0%	0	0%	0	0%	
1191	Rural	126	35	12	34%	4	11%	1	3%	7	20%	0	0%	0	0%	0	0%	
1234	Rural	87	60	21	35%	3	5%	0	0%	17	28%	0	0%	1	2%	0	0%	
1307	Rural	129	75	6	8%	1	1%	1	1%	4	5%	0	0%	0	0%	0	0%	
1379	Urban	219	74	7	9%	1	1%	1	1%	4	5%	0	0%	0	0%	1	1%	
1772	Urban	785	72	38	53%	9	13%	5	7%	24	33%	0	0%	0	0%	0	0%	
1901	Urban	693	112	63	56%	20	18%	11	10%	32	29%	0	0%	0	0%	0	0%	
2411	Urban	925	41	3	7%	0	0%	0	0%	2	5%	1	2%	0	0%	0	0%	
2810	Urban	489	141	2	1%	0	0%	0	0%	2	1%	0	0%	0	0%	0	0%	
2811	Rural	41	30	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	
2865	Urban	366	119	2	2%	0	0%	0	0%	1	1%	0	0%	0	0%	1	1%	

Table 4-4 shows the distribution of impacted and failure rates related to distribution wooden poles only, according to pole class in the grid areas surveyed. As shown, poles class 3, 5 and 6 show the highest related failure rate. These are also the most common wood pole classifications. Note again that these impacted rates include pole damage (broken), pole leaning, damaged conductor (line down), and damaged cross arm, whereas damaged rates do not include leaning poles.

Table 4-4 Failure and impacted rates of wooden poles by class from damage survey records

	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Unk
Surveyed Wooden Poles	1	38	43	394	2	662	3	28
Damaged Wood Poles	0	0	4	121	0	190	1	3
% Damaged of Sample	0.0%	0.0%	9.3%	30.7%	0.0%	28.7%	33.3%	10.7%

Finally, Table 4-5 shows the damage and impacts to distribution poles by root cause (as given by the field survey reports). Damage and impacts are related to feeder, lateral, and material. As the table shows, 40% of the damage to feeder was caused by trees and wind and 55% was caused directly by wind.

Table 4-5 Damaged circuit and pole type by root cause

Туре	Materia I	Wind Only	Wind & Tree ⁸	Tree & Other	Wind & Other	Other	Total
<u>Feeder</u>		26	19	0	0	2	47
		55%	40%	0%	0%	4%	99%
	Wood	25	17	0	0	2	44
		57%	39%	0%	0%	5%	101%
	Concret	1	2	0	0	0	3
	е	33%	67%	0%	0%	0%	100%
<u>Lateral</u>		63	198	1	5	5	272
		23%	73%	0%	2%	2%	100%
	Wood	63	197	1	5	5	271
		23%	73%	0%	2%	2%	100%
	Steel	0	1	0	0	0	1
		0%	100%	0%	0%	0%	100%

Table 4-6 shows the damage type by root cause including pole breakage, pole leaning, conductor damage (wire down) and broken cross arm. As can be seen, broken poles and downed conductors were primarily caused by trees. About 68% of the damage was associated with this cause. Nearly 28% of the damage was due to wind only. Downed conductors also made up 52.7% of the damage overall. Table 4-7 shows the percent of damaged poles by geographic area. These tables are relevant to distribution poles only.

⁸ Occurrences of "tree only" are recoded as "wind & tree" due to the assumption that the wind is a contributing factor to a tree being the culprit of damage.

Table 4-6 Gulf Power	damage t	ype by roc	ot cause
-----------------------------	----------	------------	----------

Material	Wind Only	Wind & Tree	Tree & Other	Wind & Other	Other	Total
	89	217	1	5	7	319
Pole Broken	29	57	1	2	1	90
	9.1%	17.9%	0.3%	0.6%	0.3%	28.2%
Pole Leaning	26	27	0	0	0	53
	8.2%	8.5%	0.0%	0.0%	0.0%	16.6%
Conductor Down	31	129	0	2	6	168
	9.7%	40.4%	0.0%	0.6%	1.9%	52.7%
Cross Arm Broken	2	0	0	1	0	3
	0.6%	0.0%	0.0%	0.3%	0.0%	0.9%
Underground Dip	0	1	0	0	0	1
Exposed	0.0%	0.3%	0.0%	0.0%	0.0%	0.3%
Odda	1	3	0	0	0	4
Other	0.3%	0.9%	0.0%	0.0%	0.0%	1.3%

Table 4-7 Number of damaged and impacted poles per grid zone type in the surveyed sample

Type of grid zone	#all poles	#damaged	Failure rate%
Rural	443	122	27.5%
Urban	728	197	27.1%

As previously mentioned, the post storm survey data provided information on underground transformers (n=519) and junctions (n=90). According to the survey data, only four underground transformer structures were identified as damaged with two being damaged from debris on the transformer and two being damaged from being shifted. Additionally, one was not in the field. For junctions, only one structure was damaged due to the underground transformer being exposed. Based on this information, the failure rate for these structures was 0.01%. It should be noted however, that the Gulf Power service area did not experience the same level of storm surge or flooding that was experience further east along the coast between Mexico Beach and Indian Pass.

4.4 Confidence level

Hurricane Michael post storm forensic analysis resulted in 319 survey records of damage in a survey of 1,171 poles (approximately 27.2% of surveyed poles damaged) versus a total amount of 298,411 poles within Gulf Power's service area. This amounts to a sample size of 0.11% of damaged poles against the total population. This sample size is generally sufficient for statistical analysis resulting in a 99% confidence level and a lower-upper range of approximately 23.9-30.6%. This indicates from statistical analysis that this sample yields damage results in a range of $27.2 \pm 3.3\%$ with 99% certainty.

4.5 Urban vs. rural and age analysis

DNV GL categorized grid cells as urban or rural to determine whether greater or less dense energy delivery infrastructure influenced the amount of impact from the storm. Figure 4-3 provides the graphic representation of urban versus rural geographic breakdown for the service area.

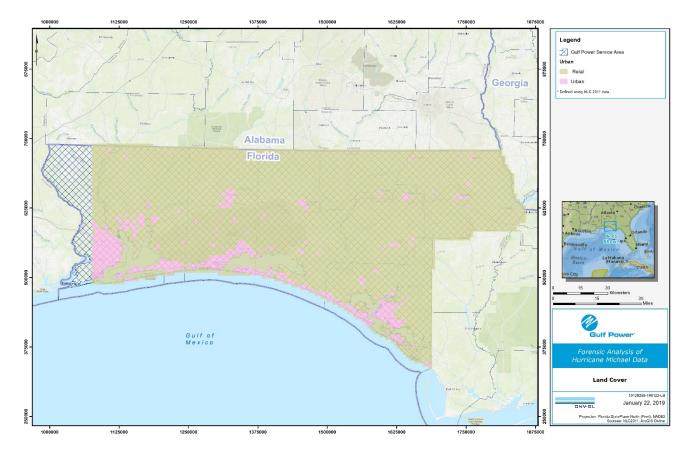


Figure 4-3 Land Cover Classification

Based on the analysis, no statistical correlation was found between reported damage and urban or rural classifications. As a robustness check, a basic logit model was employed regressing grid cell type with damage rates. No statistical evidence was found that a zone classified as rural or urban affected the damage of poles.

DNV GL created a pre/post 2007 pole installation variable to account for a change in construction standards in the year 2007. The results suggest that poles installed in 2007 or prior were more likely to be damaged than pole installed more recently. A statistically significant relationship exists between pre/post 2007 installation and whether the pole was damaged. A full display of rural vs. urban and pre/post 2007 installation by damage rates are shown below. Table 4-8 provides the breakdown of damage rates by of rural and urban areas and year of standard changes of poles.

Table 4-8 Damage rate by Rural vs. urban with age of poles surveyed

		Urban		Rural			
	Surveyed	Damaged	Damage rate	Surveyed	Damaged	Damage rate	
Installed Pre- 2007	548	178	32%	369	112	30%	
Installed 2007 or after	180	19	11%	74	10	14%	

4.6 Analysis of flood impacted areas

As part of the analysis, DNV GL reviewed the storm damage survey data versus available NOAA potential storm surge⁹ and FEMA flood zone locations to understand if there may be any correlation with these conditions. From NWS measurements¹⁰, the greatest amount of storm surge occurred southeast of Tyndall Air Force Base, where it was estimated to be 9-14 feet above ground level. Storm surge inundation heights dropped off significantly west of Mexico Beach, where the hurricane made landfall. Around Panama City and St. Andrew Bay the inundation height was estimated to be 4-6 above ground level.

We reviewed underground transformer, junction structure, and the pole damage data with respect to this information. Of the underground transformers that were surveyed, 42 were in a FEMA flood zone and only 1 of those was damaged (2.4%). Additionally, 1 underground transformer overlapped with a NOAA estuarine wetland/intertidal zones and 6 underground transformers overlapped NOAA areas of potential storm surge; no underground transformers were damaged in these areas. For junctions, 11 structures were within FEMA flood zones, none of which were damaged. No junctions overlapped with NOAA storm surge areas. Of the surveyed poles, 26 were within the NOAA storm surge areas, of which none were damaged. There were 112 surveyed poles that overlapped with the FEMA flood zone areas. Forty-two of these were damaged (37.5%).

Figures 4-4 and 4-5 provide examples in the Gulf Power Eastern District service area where damage survey information was collected, the locations of flood zones and areas of potential storm surge. As can be seen, very few of the structures found to be damaged lie within flood zone or areas of potential storm surge.

⁹ Actual measurements of storm surge inundation from Hurricane Michael were not available at the time of this this analysis..

¹⁰ J. Beven, R. Berg and A. Hagan, National Hurricane Center, "Tropical Cyclone Report, Hurricane Michael", May 17, 2019

Figure 4-4 Coastal Storm Surge and Flood Area Map with Damage Survey Data

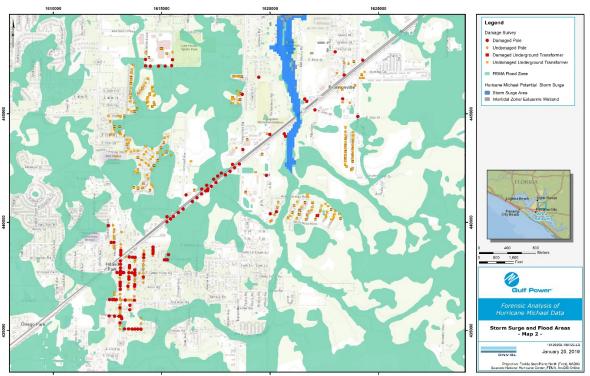


Figure 4-5 Inland Storm Surge and Flood Area Map with Damage Survey Data

5 DAMAGE EXTRAPOLATION ANALYSIS

The purpose of the extrapolation analysis was to determine expected failure rates by grid cell for the Eastern District of Gulf Power's service area in order to compare actual damage versus expected damage. This was done using the damage survey data and the calculated failure rates by wind speed.

5.1 Description of Map Grid Cells

DNV GL divided the Eastern District of the Gulf Power service area into 552 1-mile by 1-mile grid cells, each numerically identified and associated with maximum wind gust and wind speed characteristics, and urban versus rural. The pole/structure damage data was also associated with a grid cell based on the pole/structure location. This information was used to identified statistical relationships between the damaged assets and contributing factors.

The breakdown between urban and rural grid cells is shown in Table 5-1.

Table 5-1 Gulf Power grid cells by urban and rural areas in the Eastern District

Туре	Number of grid zones	Percentage of total				
Urban	125	23%				
Rural	427	77%				
Total	552					

Table 5-2 shows the distribution of poles in relation to urban or rural areas.

Table 5-2 Gulf Power distribution and transmission poles, street lights by grid zone type in the Eastern District

	Urb	an	Ru	ral	Total
	Population	Percent of total	Population	Percent of total	
Poles	33,920 57%		19,278	32%	53,198
Street Light	5,385	9%	1,108	2%	6,493
					59,691

5.2 Key Assumptions for Extrapolation Analysis

To determine expected failure estimates based on the available data, DNV GL extrapolated the failure rates from the surveyed grid cells to Eastern District of the utility service area. In doing so, the following assumptions were used:

- 1. Each grid cell is of one type, i.e., either Rural or Urban;
- Wind speed data: each grid cell contained an estimated maximum wind gust and wind speed value based on available weather data; actual conditions may have varied;
- 3. The Osmose field survey concentrated on high probability of damage areas;

4. The contributing factors for each record of damage to pole/structure were merged into one cause as noted in Table 3-1. Again, surveyed damage included pole damage (breakage), impacted pole (leaning), damaged conductor (wire down), and damaged cross arm.

5.3 Correlation of Weather Data to Storm Damage

The extrapolation of damaged distribution infrastructure for the Eastern District of the Gulf Power service area was performed using the average sustained wind speeds and maximum wind gusts associated with the surveyed grid cells. Failure rates by grid cell were estimated based on the ratio of number of damaged poles surveyed to total number of poles surveyed per grid cell. Grid cells with less than 30 poles surveyed (n=30) were removed to avoid skewing of results consistent with the previous notes about misleading data due to small sample sizes (see Section 4.3). This resulted in a total sample size of n=841 used for the failure rate estimates out of the original 1,171 poles and structures surveyed (71.8%).

Failure rates by grid cell were modelled using a simple linear regression twice for (1) average sustained wind speed (mph) and (2) maximum wind gust (mph). Understanding that failure rates are not a solely a function of wind speeds, DNV GL sought to determine a better estimate of failure rates by controlling for variation of several other pole attributes. These other attributes include the year the pole was manufactured, if the pole was in an urban location (urban = 1; rural = 0), if the pole is wooden (wood = 1; otherwise = 0), the height (ft) of the pole, if the pole was on a feeder line (feeder line = 1; otherwise = 0), and if the pole was installed before or after the new 2007 construction standard (installed in 2007 and beyond = 1; installed in 2006 or before = 0). Outputs from both models are shown below in Table 5-3 with coefficients and standard errors for the respective models¹¹. Note that the R², a common measure of goodness-of-fit for econometric models¹², is higher for the maximum wind gust than for the average wind gust. This indicates that maximum wind gust captures more variation in the failure rates and is thus a better explanation for pole damage rates than sustained wind speed.

¹¹ Interpretation of the model will not be the focus of this section as the model is used to provide a per pole failure rate as opposed to a failure rate attributed to an area.

¹² R² is a common statistical measure for goodness-of-fit for econometric models – in this case an ordinary least square estimate of failure rate by controlling either average wind speed or maximum wind gust. High R² values suggest that the model better explains the variation and is evidence of a stronger predication.

Table 5-3: Linear regression of average wind speed and maximum wind gust (mph)

Dependent Variable: Observed grid cell pole failure rate

	Avg. Wind Speed (Std. Error)	Max. Wind Gust (Std. Error)
Intercept	-4.947***	-4.068***
mercept	(0.762)	(0.686)
Wind Speed (mph)	0.017***	0.015***
willa Speed (Ilipii)	(0.000)	(0.000)
Year Manufactured	0.002***	0.002***
rear manaracturea	(0.000)	(0.000)
New Construction Standard	-0.044***	-0.046***
New Construction Standard	(0.012)	(0.011)
Urban	-0.183***	-0.158***
Orban	(0.009)	(800.0)
Wood	0.219***	0.219***
Wood	(0.019)	(0.017)
Height (ft)	-0.007**	-0.005***
rieight (it)	(0.001)	(0.001)
Feeder	0.004	0.007
i eedel	(0.014)	(0.012)
R ²	0.807	0.843

Statistical significance levels of * p<0.1, **p<0.05, ***p<0.01

The output from these models provides the ability to estimate the failure rate for average wind speed and maximum wind gust by pole as opposed to by region. The linear form of these results are determines using the following equations¹³:

 $Failure\ Rate_{i,Avg\ Wind\ Speed} = Intercept + 0.017 (Avg.\ Wind\ Speed) + 0.002 (Year) + \cdots + 0.004 (Feeder)$

Failure Rate_{i,Max Wind Gust} = Intercept + $0.015(Max. Wind Gust) + 0.002(Year) + \cdots + 0.007(Feeder)$

Once the failure rates by average sustained wind and maximum wind gust were imputed to each pole based on its characteristics, the overall failure rates were modelled to determine an estimated failure rate for the service area as a whole. Because these estimations are subject to error, DNV GL included an upper and lower confidence estimate to provide a confidence level of the failure rates. The output of these models is shown below in Table 5-4.

¹³ For simplicity, only the first two and last variables are included in the equation to show the structure of the linear estimation.

Table 5-4: Dependent Variable: Imputed individual pole failure rate

	Point (Std. Error)	Avg. Wind Speed Upper Confidence (Std. Error)	Lower Confidence (Std. Error)
Intercept	-0.451*** (0.017)	-0.260*** (0.018)	-0.421*** (0.010)
Wind Speed (mph)	0.013*** (0.000)	0.013*** (0.000)	0.010*** (0.000)
R^2	0.674	0.672	0.781
Intercept Wind Speed (mph)	Point (Std. Error) -0.868*** (0.022) 0.013*** (0.000)	Max. Wind Gust Upper Confidence (Std. Error) -0.692*** (0.022) 0.013*** (0.000)	Lower Confidence (Std. Error) -0.740*** (0.013) 0.010*** (0.000)
R^2	0.759	0.756	0.840

Statistical significance levels of * p<0.1, **p<0.05, ***p<0.01

To show these results graphically, the intercept and wind speed coefficients were graphed to show the linear relationship between estimated failure rates and sustained wind speed and maximum wind gust. These graphical representations of the estimations are shown below in Figure 5-1 where the dark blue line represents the average sustained wind speed failure rate with light blue lines showing the upper and lower confidence intervals. The maximum wind gust failure rate is shown as the dark green line with light green lines representing the upper and lower confidence interval.

From Figure 5-1, we see that there is a failure rate of 0% below 18 mph winds. Between 18 mph and 41 mph of sustained average winds, failure rates begin to rise. The point estimate shows that failure rates begin at 33 mph sustained average winds. These continue to increase at a linear rate with 25% failure at 53 mph, 50% failure at 72 mph, 75% failure at 90 mph, and 100% failure 110 mph sustained average winds. For maximum wind gusts, failure rate remains at 0% until between 52 mph and 74 mph maximum wind gust. The point estimate shows that failure rates begin at 67 mph maximum wind gust. These continue to increase at a linear rate with 25% failure at 88 mph, 50% failure at 105 mph, 75% failure at 125 mph, and 100% failure at 144 mph maximum wind gust.

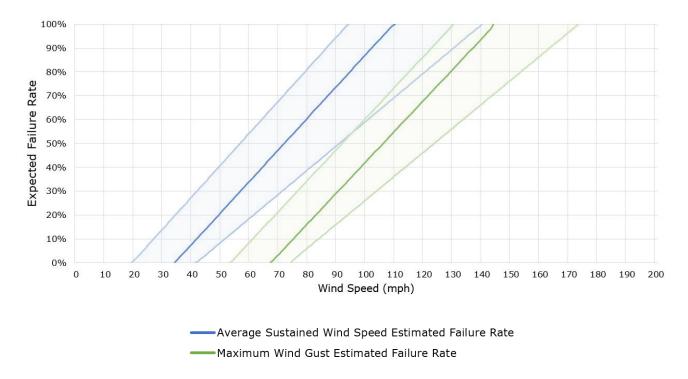


Figure 5-1 Failure rates of average wind speed and maximum wind gust (mph)

It should be noted that these failure rates are statistic rate estimates. As such, they are subject to error. Not all poles may or will follow these linear patterns. Additionally, this process for determining the failure rates comes with limitations that must be considered. The results used to obtain the failure rates are based on a non-statically random sample of poles in the Eastern District. The field survey was conducted in an area of high damage and thus the results may be subject to statistical bias.

5.4 Results of Extrapolation

The extrapolation of the failure rates to the Eastern District of the Gulf Power service area was performed using the maximum wind gusts associated with each grid cell. The amount of expected failures for each grid cell were determined based on wind gusts and the wind speed-failure rate curves presented in Figure 5-1. Poles that had a resulting expected failure rate below 0% were replaced with 0% and those with an expected failure rate above 100% were replaced with 100%.

Based on the speed-failure rate curve, and the extrapolated wind speed data for each map grid zone in the service area, the probability for impact and damage (combined) is shown for each grid zone in the service area in Figure 5-2. The scale is the percent damage to the pole/structure population in each grid.

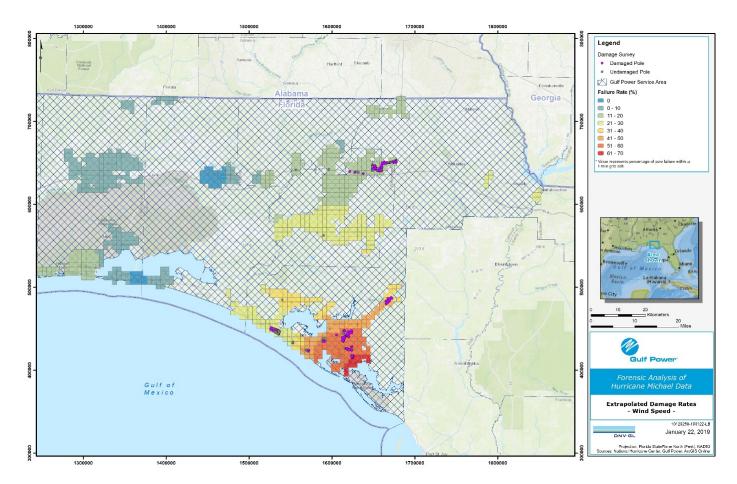


Figure 5-2 Extrapolated Gulf Power Damages to the Eastern District Service Area

The figure shows that the most severe damage probability occurred in the areas surveyed by Osmose in the Panama City area and north-easterly towards Youngstown. Based on this analysis between 30% (when considering maximum wind gust) and 30.4% (when considering maximum sustained wind) of the poles and structures in the Eastern District of the Gulf Power service area would have been damaged in conditions that were experienced during Hurricane Michael. The lower bound estimate for these models suggest a failure rate of 16.3% for maximum sustained wind) and 17.0% for maximum wind gust 14. It is important to reiterate that the expected damage estimates derived from the survey data are likely higher than what was experienced due to the survey primarily being focused areas of high damage occurrence. To improve the accuracy of these estimates, future site surveys should seek to perform surveys using a random sample across the service area.

6 STORM DATA FORENSICS ANALYSIS CONCLUSION

During a major storm event, such as Hurricane Michael, high winds are the primary factor in damages to distribution poles and other structures. Sustained winds and wind gusts stress poles and cross arms and

¹⁴ The upper bound damage estimates are between 48.3% 50.6%. These were not considered here given that they are taking the upper confidence of the estimates that were obtained from a sample area of high damage.

trees or other windborne debris hit poles, conductors and cross arms resulting in costly damage. Damage resulting from windborne debris and trees is generally outside of Gulf Power's control. Pole damage is often caused by trees and branches located outside Gulf Power's right-of-way.

Damage to conductors may be due to pole damage (broken) and conductors being hit directly by windborne debris. This is often also outside of Gulf Power's control. Insulator failures are mainly a result of debris or trees hitting conductors, leading to breakage of the post insulator.

DNV GL analyzed a variety of potential factors in the damage. This included wind speeds, urban versus rural settings, age, and the possibility of flooding or storm surge as a potential cause. The analyses showed no statistical correlation between reported damage and urban or rural classifications; however, the construction standards to which the poles were installed (Grade B vs. Grade C) appears to factor in to the damage rate. Survey data also indicates that Class 2 poles were less often damaged that Class 3, 5 and 6 poles.

Further, in reviewing flood zones and areas where storm surge may have been a factor, no correlation could be made with damage. This is likely because storm surge was not as extensive in the Gulf Power area as it was further east along the coast.

Based on field survey data analyzed, the Eastern District of the Gulf Power service area was estimated to have experienced damage to as much as 30% of their distribution grid assets. In actuality, Gulf Power is known to have experienced damage to approximately 12% of its distribution pole assets. Although, the extent of damaged poles was lower than what would have been expected, wide-spread, lengthy outages were still experienced across the territory. Given the findings that suggest newer pole construction standards reduce the likelihood of damage and that stronger pole classes (e.g. Class 2) were found to be less often damaged than Class 3, 5, and 6 poles, investments in storm hardening may improve system performance during future storm events

APPENDIX A FAILURE RATES BY DISTRIBUTION AND STREETLIGHT POLE PER SURVEY IN THE EASTERN DISTRICT

Grid	pole		Poles	poles	Damage	Pole bro	ken	Pole lear	ning	Conduc		Damaged arm		Undergrou expos	•	Oth	ner
zone	type	pop.	surveyed	damaged	rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate	Number damaged	Rate
1012	Rural	36	29	6	21%	0	0%	0	0%	6	21%	0	0%	0	0%	0	0%
1013	Rural	39	28	5	18%	0	0%	0	0%	5	18%	0	0%	0	0%	0	0%
1087	Rural	21	19	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
1117	Rural	62	1	1	100%	1	100%	0	0%	0	0%	0	0%	0	0%	0	0%
1118	Rural	129	46	28	61%	13	28%	6	13%	9	20%	0	0%	0	0%	0	0%
1119	Rural	10	1	1	100%	1	100%	0	0%	0	0%	0	0%	0	0%	0	0%
1160	Rural	40	31	12	39%	0	0%	2	6%	10	32%	0	0%	0	0%	0	0%
1191	Rural	126	35	12	34%	4	11%	1	3%	7	20%	0	0%	0	0%	0	0%
1192	Rural	47	14	9	64%	4	29%	3	21%	2	14%	0	0%	0	0%	0	0%
1233	Rural	101	14	3	21%	0	0%	0	0%	3	21%	0	0%	0	0%	0	0%
1234	Rural	87	60	21	35%	3	5%	0	0%	17	28%	0	0%	1	2%	0	0%
1235	Rural	20	8	3	38%	0	0%	0	0%	2	25%	0	0%	0	0%	1	13%
1306	Rural	75	5	4	80%	0	0%	0	0%	4	80%	0	0%	0	0%	0	0%
1307	Rural	129	75	6	8%	1	1%	1	1%	4	5%	0	0%	0	0%	0	0%
1308	Rural	23	7	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
1378	Rural	99	18	2	11%	1	6%	0	0%	1	6%	0	0%	0	0%	0	0%
1379	Urban	219	74	7	9%	1	1%	1	1%	4	5%	0	0%	0	0%	1	1%
1380	Rural	4	1	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
1523	Urban	207	2	1	50%	0	0%	0	0%	0	0%	0	0%	0	0%	1	50%
1593	Rural	71	2	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
1662	Rural	88	3	2	67%	2	67%	0	0%	0	0%	0	0%	0	0%	0	0%

1730	Rural	98	2	2	100%	0	0%	0	0%	2	100%	0	0%	0	0%	0	0%
1766	Urban	205	9	5	56%	1	11%	0	0%	3	33%	1	11%	0	0%	0	0%
1767	Rural	83	7	4	57%	0	0%	1	14%	2	29%	1	14%	0	0%	0	0%
1770	Urban	439	16	11	69%	4	25%	1	6%	6	38%	0	0%	0	0%	0	0%
1771	Urban	680	4	2	50%	0	0%	1	25%	1	25%	0	0%	0	0%	0	0%
1772	Urban	785	72	38	53%	9	13%	5	7%	24	33%	0	0%	0	0%	0	0%
1833	Urban	205	7	6	86%	3	43%	0	0%	3	43%	0	0%	0	0%	0	0%
1834	Urban	62	27	26	96%	12	44%	9	33%	5	19%	0	0%	0	0%	0	0%
1835	Urban	662	5	5	100%	0	0%	3	60%	2	40%	0	0%	0	0%	0	0%
1837	Urban	721	19	11	58%	4	21%	6	32%	1	5%	0	0%	0	0%	0	0%
1899	Urban	158	4	3	75%	2	50%	0	0%	1	25%	0	0%	0	0%	0	0%
1900	Urban	114	2	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
1901	Urban	693	112	63	56%	20	18%	11	10%	32	29%	0	0%	0	0%	0	0%
1965	Urban	146	2	2	100%	0	0%	1	50%	1	50%	0	0%	0	0%	0	0%
2056	Urban	88	2	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2159	Urban	69	6	1	17%	0	0%	0	0%	1	17%	0	0%	0	0%	0	0%
2160	Urban	524	5	5	100%	4	80%	1	20%	0	0%	0	0%	0	0%	0	0%
2222	Urban	36	1	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2223	Urban	409	1	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2410	Urban	351	6	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2411	Urban	925	41	3	7%	0	0%	0	0%	2	5%	1	2%	0	0%	0	0%
2546	Rural	63	2	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2586	Urban	387	10	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2754	Urban	97	16	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2755	Urban	393	9	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2810	Urban	489	141	2	1%	0	0%	0	0%	2	1%	0	0%	0	0%	0	0%
2811	Rural	41	30	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
2864	Urban	243	10	3	30%	0	0%	0	0%	3	30%	0	0%	0	0%	0	0%

Docket No. 20200092-EI Gulf's 2020-2029 Storm Protection Plan Exhibit MS-1, Page 81 of 101

2865	Urban	366	110	2	204	0	0%	0	0%	1	10/	0	0%	0	0%	1	10/
2000	Ulball	300	119	2	270	U	0%	U	0 %	'	1 70	U	076	U	0%	'	1 70

Docket No. 20200092-EI Gulf's 2020-2029 Storm Protection Plan Exhibit MS-1, Page 82 of 101

About DNV GL

Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. We also provide certification services to customers across a wide range of industries. Operating in more than 100 countries, our professionals are dedicated to helping our customers make the world safer, smarter and greener.

APPENDIX C

(Gulf's 2020-2029 SPP Costs & 2020 Project Level Detail)

2020-2029 Storm Protection Plan 'SPP' Program Cost

(\$ in Millions)

(\$ in Millions)												
SPP Programs (1)(2)	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total SPP Cost	Annual Average Cost
Distribution Inspection Program												
Operating Expenses	\$0.93	\$0.98	\$0.98	\$0.98	\$0.98	\$0.98	\$0.98	\$0.98	\$0.98	\$0.98	\$9.75	\$0.98
Capital Expenditures	\$2.50	\$2.80	\$2.80	\$2.80	\$2.80	\$2.80	\$2.80	\$2.80	\$2.80	\$2.80	\$27.70	\$2.77
Total	\$ <u>3.43</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>3.78</u>	\$ <u>37.45</u>	\$ <u>3.75</u>
Transmission Inspection Program	<u>1</u>											
Operating Expenses	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$0.35	\$3.50	\$0.35
Capital Expenditures	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$3.15	\$31.50	\$3.15
Total	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>3.50</u>	\$ <u>35.00</u>	\$ <u>3.50</u>
Distribution Feeder Hardening P	rogram											j
Operating Expenses	\$0.78	\$2.51	\$2.43	\$2.29	\$2.29	\$2.29	\$2.29	\$2.29	\$2.29	\$2.29	\$21.75	\$2.18
Capital Expenditures	\$11.50	\$35.90	\$34.00	\$30.30	\$30.30	\$30.30	\$30.30	\$30.30	\$30.30	\$30.30	\$293.50	\$29.35
Total	\$ <u>12.28</u>	\$ <u>38.41</u>	\$ <u>36.43</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>32.59</u>	\$ <u>315.25</u>	\$ <u>31.53</u>
Distribution Hardening - Lateral	Undergro	ounding F	Program Program									į
Operating Expenses	\$0.00	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$0.18	\$1.62	\$0.16
Capital Expenditures	\$0.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$45.00	\$4.50
Total	\$ <u>0.00</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>5.18</u>	\$ <u>46.62</u>	\$ <u>4.66</u>
Transmission Hardening Program	<u>1</u>											
Operating Expenses	\$0.07	\$0.40	\$0.60	\$0.60	\$0.60	\$0.60	\$0.60	\$0.60	\$0.60	\$0.60	\$5.27	\$0.53
Capital Expenditures	\$5.22	\$45.10	\$54.90	\$54.90	\$53.90	\$53.90	\$53.90	\$53.90	\$53.90	\$53.90	\$483.52	\$48.35
Total	\$ <u>5.29</u>	\$ <u>45.50</u>	\$ <u>55.50</u>	\$ <u>55.50</u>	\$ <u>54.50</u>	\$ <u>54.50</u>	\$ <u>54.50</u>	\$ <u>54.50</u>	\$ <u>54.50</u>	\$ <u>54.50</u>	\$ <u>488.79</u>	\$ <u>48.88</u>
Vegetation Management - Distri	bution Pi	<u>rogram</u>										į
Operating Expenses	\$5.03	\$4.68	\$4.69	\$4.70	\$4.70	\$4.71	\$4.71	\$4.71	\$4.71	\$4.71	\$47.35	\$4.74
Capital Expenditures	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total	\$ <u>5.03</u>	\$ <u>4.68</u>	\$ <u>4.69</u>	\$ <u>4.70</u>	\$ <u>4.70</u>	\$ <u>4.71</u>	\$ <u>4.71</u>	\$ <u>4.71</u>	\$ <u>4.71</u>	\$ <u>4.71</u>	\$ <u>47.35</u>	\$ <u>4.74</u>
Vegetation Management - Trans	mission I	Program										į
Operating Expenses	\$2.50	\$2.87	\$2.87	\$2.87	\$2.87	\$2.87	\$2.87	\$2.87	\$2.87	\$2.87	\$28.33	\$2.83
Capital Expenditures	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total	\$ <u>2.50</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>2.87</u>	\$ <u>28.33</u>	\$ <u>2.83</u>
Total SPP Cost]
Operating Expenses	\$9.66	\$11.97	\$12.10	\$11.97	\$11.97	\$11.98	\$11.98	\$11.98	\$11.98	\$11.98	\$117.57	\$11.76
Capital Expenditures	\$22.37	\$91.95	\$99.85	\$96.15	\$95.15	\$95.15	\$95.15	\$95.15	\$95.15	\$95.15	\$881.22	\$88.12
Total	\$32.03	\$103.92	\$ <u>111.95</u>	\$108.12	\$107.12	\$107.13	\$ <u>107.13</u>	\$107.13	\$ <u>107.13</u>	\$ <u>107.13</u>	\$ <u>998.79</u>	\$99.88

⁽¹⁾ See also 2020 - 2022 project level details provided in Appendix

⁽²⁾ Costs Include previous year(s) projects carried over to current year, current year's project costs and future year's preliminary project costs (e.g., engineering)

2020 - 2022 Storm Protection Plan 3 Year Summary By Program

Storm Drotoction Dian (SDD) Drograms	2020	Plan	2021	Plan	2022	Plan
Storm Protection Plan 'SPP' Programs	Сар	O&M	Сар	O&M	Сар	O&M
Distribution Inspection Program	\$2,500,000	\$933,000	\$2,800,000	\$983,000	\$2,800,000	\$983,000
Transmission Inspection Program	\$3,150,000	\$350,000	\$3,150,000	\$350,000	\$3,150,000	\$350,000
Distribution Feeder Hardening Program	\$11,500,000	\$779,000	\$35,895,000	\$2,504,000	\$33,995,000	\$2,428,000
Distribution Hardening - Lateral Undergrounding Program	\$0	\$0	\$5,000,000	\$180,000	\$5,000,000	\$180,000
Transmission Hardening Program	\$5,220,000	\$70,000	\$45,100,000	\$400,000	\$54,900,000	\$600,000
Vegetation Management - Distribution Program	\$0	\$5,030,881	\$0	\$4,678,346	\$0	\$4,685,489
Vegetation Management - Transmission Program	\$0	\$2,502,932	\$0	\$2,872,936	\$0	\$2,872,936
Total SPP Cost	\$22,370,000	\$9,665,814	\$91,945,000	\$11,968,282	\$99,845,000	\$12,099,425
	Total Program Cost = \$32M		Total Program	Cost = \$104M	Total Program Cost = \$112	
	Avg Annual	Cost = \$3M	Avg Annual (Cost = \$10M	Avg Annual Cost = \$11N	

2020-2022 Project Level Detail (by Program)

Distribution Inspection Program (2020-2022)

2020	Plan	2021	Plan	2022 Plan				
Сар	O&M	Сар	O&M	Сар	O&M			
\$2,500,000	\$933,000	\$2,800,000	\$983,000	\$2,800,000	\$983,000			

Distribution Mainline Feeder Patrol	2020	Plan	2021	Plan	2022 Plan		
	Сар	O&M	Сар	O&M	Сар	O&M	
Distribution Mainline Feeder Patrol	\$300,000	\$163,000	\$300,000	\$163,000	\$300,000	\$163,000	
Fort Walton: 71 Feeders; Panama City: 75 Feeders; Pensacola: 159 Feeders	\$300,000	\$103,000	\$300,000	\$103,000	\$300,000	\$103,000	

Distribution - Pole Inspections (Cyclic)	2020	Plan	2021	Plan	2022 Plan	
Distribution Tole hispections (eyene)	Сар	O&M	Сар	O&M	Сар	O&M
Pole Inspection (Cyclic) - Distribution	\$2,200,000	\$770,000	\$2,500,000	\$820,000	\$2,500,000	\$820,000

Transmission Inspection Program (2020-2022)

2020 Plan		2021	Plan	2022 Plan		
Сар	O&M	Сар	O&M	Сар	O&M	
\$3,150,000	\$350,000	\$3,150,000	\$350,000	\$3,150,000	\$350,000	

	2020 Plan		2021 Plan		2022 Plan	
Transmission Pole Inspections	Сар	O&M	Сар	O&M	Сар	O&M
Pole Inspection - Transmission	\$3,000,000	\$250,000	\$3,000,000	\$250,000	\$3,000,000	\$250,000

	2020 Plan		2021 Plan		2022 Plan	
Substation Equipment Inspections	Сар	O&M	Сар	O&M	Сар	O&M
Equipment Inspection - Substation	\$150,000	\$100,000	\$150,000	\$100,000	\$150,000	\$100,000

Distribution Feeder Hardening Program (2020-2022)

2020	Plan	2021	Plan	2022 Plan		
Сар	O&M	Сар	O&M	Сар	O&M	
\$11,500,000	\$779,000	\$35,895,000	\$2,504,000	\$33,995,000	\$2,428,000	

Distribution Feeder Hardening

					Estimat	ed Cost	Estimated	Estimated	Number of	Customers	
2020 Projects	District	Substation	Feeders	Scope	Capital	Expense	Start	Completion	Residential	Com/Industrial	Criteria
Brentwood 6678 & Oakfield 7922	Pensacola	Brentwood/Oakfield	6678/7922	Replace and hardening 37 poles	\$1,087,000	\$108,000	March 2020	December 2020	4,331	286	CIF
Avalon 5792	Pensacola	Avalon	5792	Replace and hardening 68 poles	\$1,325,000	\$121,000	March 2020	December 2020	2,974	250	CIF
Bayou Marcus 5572	Pensacola	Bayou Marcus	5572	Replace and hardening 60 poles	\$925,000	\$84,000	March 2020	December 2020	1,371	15	CIF
Turner 5662	Fort Walton	Turner	5662	Replace and hardening 123 poles	\$867,000	\$54,000	October 2020	December 2021	3,105	269	CIF
Hathaway 8642	Panama City	Hathaway	8642	Replace and hardening 150 poles	\$1,790,000	\$169,000	June 2020	December 2020	2,560	170	CIF
Redwood 8722	Panama City	Redwood	8722	Replace and hardening 34 poles	\$506,000	\$44,000	June 2020	December 2020	1,789	263	CIF
Total =				\$6,500,000	\$580,000			*CIF =	Critical Infrastructu	re Facility	

		Feeder	_	
2021 Program Details	Estimated Projects	Impact	Scope	Estimated Cost
To Be Determined	6 to 18	6 to 18	Hardening range of 12 to 32 miles of feeder, and replacement of approximately 500 - 930 poles	\$26.4MM

		Feeder		
2022 Program Details	Estimated Projects	Impact	Scope	Estimated Cost
To Be Determined	6 to 18	6 to 18	Hardening range of 12 to 32 miles of feeder, and replacement of	\$26.4MM
			approximately 500 - 930 poles	1

Distribution Automation	2020 Capital Plan	2021 Capital Plan	2022 Capital Plan
Distribution Automated Feeder Switch 'AFS' Capital ; Feeder Recloser & Switched Installations. 2020: Fort Walton: 31 Sites; Panama City: 16 Sites; Pensacola 35 Sites	\$3,200,000	\$3,600,000	\$1,700,000
Distribution Automation Other Capital: Communication & Control Equipment for Fault Current Indicators and other field equipment capable of providing SCADA information and controls	\$1,800,000	\$5,895,000	\$5,895,000

Distribution Hardening - Lateral Undergrounding Program (2021-2022)

2020	2020 Plan *		Plan	2022 Plan		
Сар	Cap O&M		O&M	Cap O&M		
\$0	\$0	\$5,000,000	\$180,000	\$5,000,000	\$180,000	

2021 Program Details	Estimated Projects	Lateral Impact	Scope	Estimated Cost
To Be Determined	8	8 miles	Replace overhead conductor with underground conductors based on predetermined criteria	\$5M

2022 Program Details	Estimated Projects	Lateral Impact	Scope	Estimated Cost
To Be Determined	8	8 miles	Replace overhead conductor with underground conductors based on predetermined criteria	\$5M

^{* 2020 -} Gulf Power will begin Evaluating and Engineering Undergrounding of Laterals and Plans to Begin Construction in 2021.

Transmission Hardening Program (2020-2022)

2020 Plan		2021	Plan	2022 Plan		
Сар	0&M	Сар	0&M	Cap O&M		
\$5,220,000	\$70,000	\$45,100,000	\$400,000	\$54,900,000	\$600,000	

Substation	Hard	lanina

		Substation	Estimated Cost		Estimated	Estimated Estimated		of Customers	
2020 Projects	District	Impact	Scope	Capital	Expense	Start	Completion	Residential	Commercial/Industrial
Shalimar Substation Storm Hardening	Central	Shalimar	Storm Hardened Control House	\$300,000	\$0	January 2020	June 2020	4,827	378
Hurlburt Substation Storm Hardening	Central	Hurlburt	Storm Hardened Control House With Flood monitoring	\$300,000	\$0	June 2020	December 2020	6,054	348
Niceville Substation Storm Hardening	Central	Niceville	Storm Hardened Control House	\$300,000	\$0	June 2020	December 2020	5,122	462
Naval Air Station North Terminal Station Storm Hardening	Western	NAS North Terminal	Transmission Line Terminal Station Flood Monitoring	\$20,000	\$0	June 2020	December 2020	0	1
Naval Air Station South Terminal Station Storm Hardening	Western	NAS South Terminal	Transmission Line Terminal Station Flood Monitoring	\$20,000	\$0	June 2020	December 2020	0	2
Smith Construction Substation Storm Hardening	Eastern	Smith Construction	Substation Flood Monitoring	\$20,000	\$0	June 2020	December 2020	0	25
Blountstown Substation Storm Hardening	Eastern	Blountstown	Substation Flood Monitoring	\$20,000	\$0	June 2020	December 2020	0	2
Romana Substation Storm Hardening	Western	Romana	Substation Flood Monitoring	\$20,000	\$0	June 2020	December 2020	1,255	534

Total = \$1,000,000 \$0

	Estimated			Estimat	ed Cost
2021 Program Details	Projects	Impact	Scope	Capital	Expense
To Be Determined	3	3	Storm Hardened Control House	\$1,000,000	\$0

Ī		Estimated			Estimat	ed Cost
	2022 Program Details	Projects	Impact	Scope	Capital	Expense
ſ	To Be Determined	3	3	Storm Hardened Control House	\$1,000,000	\$0

Substation Resiliency

		Substation/Line		Estimated Cost		Estimated	Estimated	Number o	of Customers
2020 Projects	District	Impact	Scope	Capital	Expense	Start	Completion	Residential	Commercial/Industrial
Valparaiso Substation Transformer Bank Addition	Fort Walton	Substation	Add 2nd Substation Transformer Bank. Design & Civil work in 2020 and Construct in 2021	\$75,000	\$0	January 2020	December 2021	5,245	863
South Crestview Substation Transformer Bank Addition	Fort Walton	Substation	Add 2nd Substation Transformer Bank. Design & Civil work in 2020 and Construct in 2021	\$75,000	\$0	January 2020	December 2021	5,923	1,191
Hurlburt Substation Transformer Bank Addition	Fort Walton	Substation	Add 2nd Substation Transformer Bank. Design & Civil work in 2020 and Construct in 2021	\$570,000	\$0	January 2020	December 2021	6,054	348
			Total =	\$720,000	¢n.				•

	Estimated			Estimat	ed Cost
2021 Program Details	Projects	Impact	Scope	Capital	Expense
To Be Determined	20	18	Transmission/Substation Resiliency Projects	\$24,500,000	0

	Estimated			Estimat	ed Cost
2022 Program Details	Projects	Impact	Scope	Capital	Expense
To Be Determined	20	20	Transmission/Substation Resiliency Projects	\$24,500,000	0

Wood Structure Replacement

		Number of structures	s Estimated Cost Estimated		Number of Customers				
2020 Projects	District	to be replaced	Transmission Line	Capital	Expense	Start	Completion	Residential Commercial/Industrial	
Caryville Transmission Line Tap	Fort Walton	30	Glendale - Ponce De Leon 115 kV	\$1,500,000	\$30,000	May 2020	September 2020	Transmission System Loop	
Santa Rosa - Miramar #1 Transmission Line	Fort Walton	40	Santa Rosa - Miramar #1 115 kV	\$2,000,000	\$40,000	January 2020	December 2020	Transmission System Loop	
			Total =	\$3,500,000	\$70,000				

	Estimated	Number of structures		
2021 Program Details	Projects	to be replaced	Line Impact	Estimated Cost
To Be Determined	20	400	6	\$20M

	Estimated	Number of structures		
2021 Program Details	Projects	to be replaced	Line Impact	Estimated Cost
To Be Determined	30	600	10	\$30M

Vegetation Management Program (2020-2022)

	2020	0 Plan	202	L Plan	2022 Plan	
Vegetation Management - Distribution Program	Сар	O&M	Сар	O&M	Сар	O&M
Vegetation Management - Distribution Program	\$0	\$5,030,881	\$0	\$4,678,346	\$0	\$4,685,489
	2020	0 Dlan	202	l Dian	2023	Dlan

) Plan	2021	Plan	2022 Plan	
Vegetation Management - Transmission Program	Сар	O&M	Сар	O&M	Сар	O&M
Vegetation Management - Transmission Program	\$0	\$2,502,932	\$0	\$2,872,936	\$0	\$2,872,936

APPENDIX D

(Gulf's Distribution Hardening Design Guidelines)

Distribution Hardening Design Guidelines

The following guidelines will be used to standardize the design of Gulf Power overhead distribution facilities when practical, feasible, and cost effective.

General

- 1. Gulf Power has made a change to adopt the Extreme Wind Loading Standards as the design criteria for (1) new pole line construction, (2) pole line extensions, (3) pole line relocations, (4) feeder pole replacements on multi-circuit pole lines, (5) feeder pole replacements on Top Critical Infrastructure Feeders, and (6) major equipment structures. Pole Foreman will be used for the guidelines to determine the necessary pole class and type for all work.
- 2. For maintenance, existing Non-Top Critical Infrastructure pole lines may be evaluated using National Electrical Safety Code combined ice and wind loading with Grade B construction. This represents the loading prior to the adoption of the Extreme Wind Loading Standards. If the pole must be replaced, refer to Pole Foreman calculations for the minimum class pole to be installed at Extreme Wind Loading Standards.
- 3. Every attempt should be made to place new or replacement poles in private easements or as close to the front edge of property (The Right-of-Way Line) as practical.
- 4. Overhead pole lines should be placed in front lot lines or accessible locations where feasible.
- 5. When replacing poles, the new pole should be set as close as possible to the existing pole to avoid the creation of a new pole location.
- 6. Poles are not to be placed in medians.
- 7. Concrete poles are not to be placed in inaccessible locations or locations that could potentially become inaccessible.
- 8. Every effort should be made not to install poles in sidewalks. If a pole must be placed in a sidewalk, a minimum unobstructed sidewalk width of 32 Inches must be maintained to comply with the American Disabilities Act requirements.
- 9. If concrete poles are required by the governing agency as a requirement of the permit, and if the work is being done solely for Gulf Power purposes (Feeder Tie, Et Cetera), then the concrete poles are installed with no differential charges. If the concrete poles are required as a condition of the permit, and the work is being done at the request of a customer to provide service to the customer or relocation by request of the customer, then the customer is charged a differential cost for the concrete poles.

- 10. When installing new overhead secondary spans, multiplexed cable should be used instead of open wire secondary. When line reconductoring or relocating existing pole lines containing open wire secondary, replace the open wire with multiplexed cable whenever possible. The system neutral should not be removed when replacing open wire secondary with multiplexed cable if primary wire is present. It is necessary to maintain a separate system neutral for operational continuity of the system.
- 11. When designing overhead facilities where secondary and service crossings exist across major roadways; Engineers, Engineering Representatives and Engineering Contractors should take into consideration placing these secondary street crossings underground.
- 12. Whenever extending a feeder, line reconductoring of a feeder section, or attaching a device to a feeder; Engineers, Engineering Representatives and Engineering Contractors should reference the nearest existing disconnect switch number on the construction drawing and show the dimension to the switch.
- 13. When an overhead feeder crosses any obstacle to access (Id Est: Water bodies such as rivers, canals, swamps; limited access right-of-ways such as interstate highways, turnpikes, and expressways; Et Cetera) disconnect switches should be placed on both sides of the obstacle in order to isolate the crossing in the event of a wire down situation.
- 14. Projects that affect or extend feeder conductors should always be coordinated with Distribution Planning to ensure optimization of the distribution grid and to take into account future feeder plans such as, feeder boundary changes, sectionalizing devices, integration of automation and remotely controlled protection.

As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered. In addition to these guidelines, all distribution facilities shall be engineered to meet the minimum requirements set forth in all applicable standards and codes including but not limited to the National Electrical Safety Code, Utility Accommodation Guide, and Gulf Power's Distribution Construction Standards. Please contact the Technical Services Distribution Construction Engineering Standards team with any questions.

New Construction

- 1. When installing a new feeder, lateral, or service pole, reference the Pole Sizing section for the guidelines to determine the necessary pole class and type to meet the Extreme Wind Loading Standard for the wind zone region (110, 120, 130 or 140 Miles Per Hour).
- 2. During the design of new pole lines in developed areas, field visits should be conducted to ensure the design would cause minimum impact to the existing property owners.
- 3. Overhead pole lines should not be built on both sides of a roadway unless agreed to by the customer nor should multi-circuit pole lines be created. When designing main feeder routes all viable options must be reviewed (Including alternative routes) and consideration should be given to constructing the line underground.
- 4. When there is an existing pole line in the rear easement, every effort should be made not to build a second pole line along the right of way.
- 5. When installing a pole line within a transmission line, accessible distribution poles should be concrete. Distribution concrete poles should not be installed in inaccessible locations.
- 6. If concrete distribution poles are installed in a concrete transmission line, there is no additional charge to the customer (The concrete poles are Gulf Power's choice and not requested by the customer). Coordination between the transmission and distribution design is critical and consideration should be given to a design with all transmission poles versus distribution intermediate poles. This approach will reduce the overall number of poles.
- 7. When transmission is overbuilding (Concrete structures), along an existing distribution corridor, if the distribution wood poles are in good condition, do not replace. If wood poles need to be changed out or relocated, replace with concrete poles to match the transmission pole type, coordination between the transmission and distribution design is critical and consideration should be given to a design with all transmission poles versus distribution intermediate poles. This approach will reduce the overall number of poles.

Existing / Maintenance

- 1. When installing and/or replacing a feeder, lateral, or service pole on an existing pole line, Pole Foreman will be used for the guidelines to determine the necessary pole class and type to meet the Extreme Wind Loading Standards.
- 2. When installing or replacing a feeder pole on a feeder that serves a Top Critical Infrastructure Feeder customer, ensure the new pole will meet the Extreme Wind Loading Standards so that it will not have to be replaced when the feeder is hardened as a hardening project.
- 3. When extending pole lines, Pole Foreman will be used for the guidelines to determine the necessary pole class and type to meet the Extreme Wind Loading Standards. If concrete poles are requested by the customer or are required as a condition of the permit and fall outside the Pole Foreman recommendations, the customer will pay a differential charge for the concrete poles.
- 4. When replacing pole(s) and anchor(s) with larger self-supporting concrete poles, caution should be used, as the property owners in the vicinity of the pole will not necessarily perceive this concrete pole as a better choice.
- 5. When replacing poles on a multi-circuit feeder, the replacement pole should be designed for Extreme Wind Loading Standards using Pole Foreman to calculate the wind loading.

Relocations

- 1. When relocating a pole line, Pole Foreman will be used for the guidelines to determine the necessary pole class and type to meet the Extreme Wind Loading Standard for the wind zone region (110, 120, 130 or 140 Miles Per Hour).
- 2. When relocating either a concrete or wood pole line for a highway improvement project, the existing pole line type should be used as a guide for the pole type replacements. There is no additional charge for concrete poles if the existing poles being relocated are concrete (Like for like relocation). If the customer requests an upgrade to concrete poles, a differential is charged.
- 3. Reimbursable relocations will equal the cost to relocate the line built to the Extreme Wind Loading Standards (Plus removal of old line), including indirect cost.
- 4. Agency relocation projects should be coordinated with Distribution Planning to ensure optimization of the distribution grid and to take into account future feeder plans such as, feeder boundary changes, sectionalizing devices, integration of automation and remotely controlled protection.

Crossing Multi-Lane Limited Access Highways

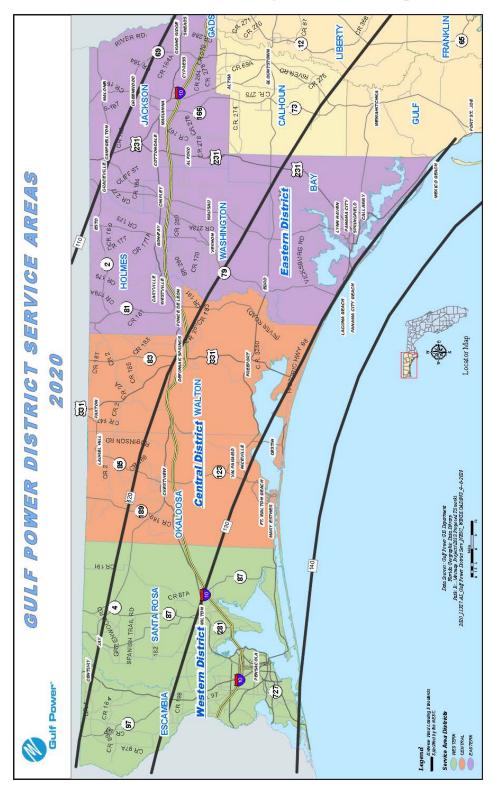
The following guidelines are to be used when an overhead feeder crosses any obstacle to access (Id Est: Limited access right-of-ways such as interstate highways, turnpikes, and expressways, Et Cetera). Similar consideration can be given to water bodies such as rivers, canals, swamps.

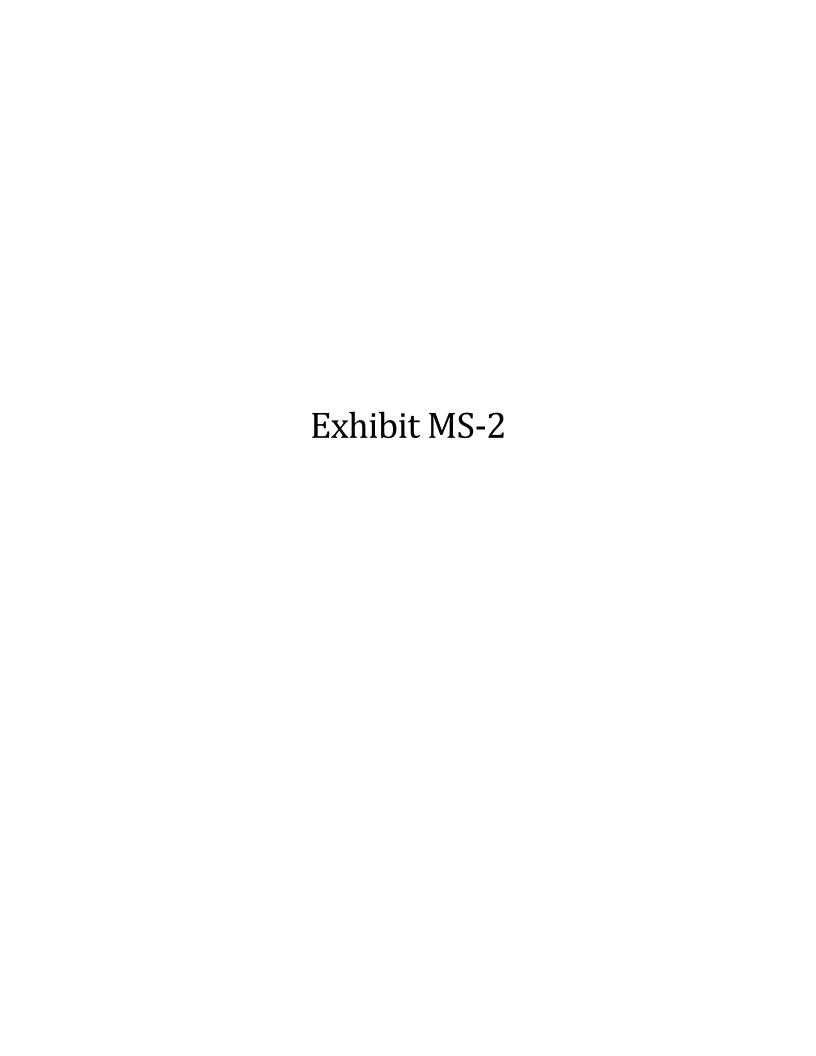
- 1. Underground installation is the preferred design for all new crossings (1, 2, and 3 phase circuits) that cross multi-lane limited access highways and hardening of existing crossings.
- 2. Underground crossing for 1 and 2 phases should be designed for potential three phase feeder size cable. Ensure riser poles meet or exceed the Extreme Wind Loading Standard design for the designated region. For further information, please contact the Centralized Engineering Services Distribution Hardening team.
- 3. For accessible overhead crossings, use concrete poles for the crossing poles and minimum Class 2 wood poles for the intermediate poles. For inaccessible overhead crossings, minimum Class 2 wood poles should be used for the crossing and intermediate poles. All poles installed should meet or exceed Extreme Wind Loading Standard for the designated region.
- 4. Every attempt should be made to install storm guys and back guys for the highway crossing poles. Storm guys are not required on the adjacent poles.
- 5. Consider installing disconnect switches on adjacent poles on both sides of the crossing (Or as required by field conditions) to isolate the feeder section for restoration. Switches are to be installed in accessible locations that can be reached with readily available aerial equipment.
- 6. Use Pole Foreman to check for uplift on all poles.
- 7. Ensure to maintain proper clearance above or under all highways as dictated by the owner of the right-of-way.
- 8. Any conductors crossing the highway that have splices should be replaced with a continuous conductor. One additional set of dead-end insulators at the highway crossing pole may be used if this eliminates the need for splices when installing a new pole.
- 9. Engineers, Engineering Representatives, and Engineering Contractors must conduct a pre-design meeting with the Production Lead to ensure the feasibility of the proposed design.
- 10. As always, use good engineering judgment to produce a quality, cost-effective design.

Pole Sizing

- 1. Gulf Power has made a change to adopt Extreme Wind Loading Standards as the design criteria for (1) new pole line construction, (2) pole line extensions, (3) pole line relocations, (4) feeder pole replacements on multi-circuit pole lines, (5) feeder pole replacements on Top Critical Infrastructure Feeders, and (6) major equipment structures. Pole Foreman will be used for the guidelines to determine the necessary pole class and type for all work.
- 2. When installing or replacing a feeder pole on a feeder that serves a Top Critical Infrastructure Feeder customer, ensure the new pole will meet the Extreme Wind Loading Standards design so that it will not have to be replaced when the feeder is hardened as a hardening project.
- 3. For maintenance, existing Non-Top Critical Infrastructure pole lines may be evaluated using National Electrical Safety Code combined ice and wind loading with Grade B construction. This represents the loading prior to the adoption of the Extreme Wind Loading Standards. If the pole must be replaced, Pole Foreman will be used for guidance to determine the minimum class pole to be installed at Extreme Wind Loading Standards.
- 4. When performing work on an existing pole, and the pole requires change out (Exempli Gratia: clearance height, location, condition, or the ability to support the planned activity), use Pole Foreman. If the planned work can be done without changing out the pole and the pole meets minimum National Electrical Safety Code Grade B wind loading guidelines, use the existing pole(s).
- 5. Foreign pole owners are required to discuss design requirements with Gulf Power prior to construction. Gulf Power will assist with identifying the targeted poles.
- 6. Efforts should be made to ensure that span distances do not exceed 250 feet for wood poles and 350 feet for concrete poles even if longer spans would meet the Extreme Wind Loading Standards requirements.
- 7. Concrete poles are preferred in the cases where replacement costs would be extremely high (Id Est: Duct system riser pole, corner poles with multiple circuits, critical poles, Et Cetera). No differential is charged for poles in this case.

Lateral Pole Policy


- 1. All existing poles must meet National Electrical Safety Code Grade B standards as an absolute minimum.
- 2. If a pole is modified in any way, it must meet National Electrical Safety Code Grade B standards at a minimum when completed.
- 3. All replacement lateral poles must meet National Electrical Safety Code Extreme Wind Loading Standards and be compliant with Gulf Power Distribution Construction Policies.


Practical Purposes and Means

- 1. Design and engineer all poles to the National Electrical Safety Code Extreme Wind Loading Standards and to meet Gulf Power Distribution Construction Policies.
- 2. Engineers, Engineering Representatives, and Engineering Contractors must run Pole Foreman on all designed Work Request and poles suspected of being substandard.
- 3. If you are completing substantial work on a pole, such as installing additional cables, upgrading a transformer, reconductoring or new framing; The pole must meet the Extreme Wind Loading Standards and the revised Pole Class standards.
- 4. Class 4 and Class 5 poles may only be installed for Services, Secondary, Street Lights, and Outdoor Lights. Once the available stock of Class 4 and Class 5 poles are used up, no more will be ordered and Gulf Power will install Class 3 poles for these applications.
- 5. In no case should Class 4 or Class 5 poles be installed in laterals.

Please contact the Technical Services Distribution Construction Engineering Standards team for situations that still are in question after careful consideration.

Gulf Power Service Territory (Extreme Wind Loading Standards Map)

Storm Protection Plan Work Projected to be Completed Exhibit MS-2, Pag

Distribution Feeder Hardening Program 2021

Distribution Feeder Hardening

					Estimated Cost ^(a)		Estimated Estimated Number of Custo		f Customers		
2021 Projects	District	Substation	Feeders	Scope	Capital	Expense	Start	Completion	Residential	Com/Industrial	Criteria
Glendale Road 7902	Fort Walton	Glendale Road	7902	Replace and hardening 75 poles	\$1,082,000	\$139,000	1/1/2021	4/30/2021	1,614	466	CIF
Glendale Road 7912	Fort Walton	Glendale Road	7912	Replace and hardening 75 poles	\$1,082,000	\$139,000	4/1/2021	7/31/2021	1,372	276	CIF
South Crestview 9682	Fort Walton	South Crestview	9682	Replace and hardening 35 poles	\$759,000	\$97,000	7/1/2021	9/30/2021	1,594	327	CIF
South Crestview 9692	Fort Walton	South Crestview	9692	Replace and hardening 35 poles	\$759,000	\$97,000	9/1/2021	11/30/2021	1,858	509	CIF
Turner 5662	Fort Walton	Turner	5662	Replace and hardening 123 poles	\$2,139,000	\$274,000	1/1/2021	7/31/2021	3,105	269	CIF
Valparaiso 9252	Fort Walton	Valparaiso	9252	Replace and hardening 90 poles	\$1,074,000	\$138,000	7/1/2021	11/30/2021	2,229	274	CIF
Sullivan Street 9622	Fort Walton	Sullivan Street	9622	Replace and hardening 94 poles	\$1,621,000	\$207,000	5/1/2021	9/30/2021	1,002	360	CIF
Bonifay 9832	Panama City	Bonifay	9832	Replace and hardening 132 poles	\$2,070,000	\$265,000	1/1/2021	7/31/2021	1,721	495	CIF
Chipley 9222	Panama City	Chipley	9222	Replace and hardening 31 poles	\$449,000	\$58,000	3/1/2021	5/31/2021	632	397	CIF
Graceville 9112	Panama City	Graceville	9112	Replace and hardening 33 poles	\$435,000	\$56,000	7/1/2021	9/30/2021	901	212	CIF
Graceville 9122	Panama City	Graceville	9122	Replace and hardening 34 poles	\$435,000	\$56,000	9/1/2021	11/30/2021	125	96	CIF
Vernon 9522	Panama City	Vernon	9522	Replace and hardening 34 poles	\$923,000	\$118,000	6/1/2021	8/31/2021	1,451	267	CIF
Beach Haven 6052	Pensacola	Beach Haven	6052	Replace and hardening 48 poles	\$750,000	\$96,000	9/1/2021	11/30/2021	2,637	170	СОМ
Brentwood 6662	Pensacola	Brentwood	6662	Replace and hardening 135 poles	\$1,842,000	\$236,000	5/1/2021	11/30/2021	1,334	182	CIF
Crooked Creek 6212	Pensacola	Crooked Creek	6212	Replace and hardening 107 poles	\$1,541,000	\$197,000	1/1/2021	7/31/2021	2,431	237	CIF
Jay Road 7272	Pensacola	Jay Road	7272	Replace and hardening 64 poles	\$873,000	\$112,000	2/1/2021	5/31/2021	2,135	419	CIF
Jay Road 7282	Pensacola	Jay Road	7282	Replace and hardening 54 poles	\$960,000	\$123,000	5/1/2021	9/30/2021	1,471	238	CIF
Oakfield 7922	Pensacola	Oakfield	7922	Replace and hardening 61 poles	\$798,000	\$102,000	7/1/2021	10/31/2021	2,089	168	CIF
2022 ROW & Vegetation	Various	Various	Various	Replace and hardening ~ 500 - 930 poles	\$6,400,000	\$0	1/1/2021	12/31/2022	TBD	TBD	CIF
2022 Design & Permitting	Various	Various	Various	Replace and hardening ~ 500 - 930 poles	\$408,000	\$0	1/1/2021	12/31/2022	TBD	TBD	CIF

Total =	\$26,400,000	\$2,510,000

Distribution Automation	2021 Capital Plan
Distribution Automated Feeder Switch 'AFS' Capital; Feeder Reclose & Switched Installations.	\$3,600,000
2021: Fort Walton: 24 Sites; Panama City: 24 Sites; Pensacola 24 Sites	\$3,000,000
Distribution Automation Other Capital: Communication & Control Equipment for Fault Current Indicators and other field equipment capable of	\$5,900,000
providing SCADA information and controls	\$5,900,000
Total =	\$9,500,000

	Сар	O&M
Distribution Feeder Hardening 2021 Total	\$35,900,000	\$2,510,000

^{*}CIF = Critical Infrastructure Facility COM = Community

Distribution Hardening - Lateral Undergrounding Program 2021

Distribution Lateral Hardening

					Estimated	d Cost ^(a)	Estimated	Estimated	Number of	Customers
2021 Projects	District	Substation	Feeders	Scope	Capital	Expense	Start	Completion	Residential	Com/Industrial
Bayou Marcus 7722	Pensacola	Bayou Marcus	7722	Replace overhead conductor 1.0 miles with underground conductors based on predetermined criteria	\$750,000	\$27,000	3/1/2021	12/31/2021	1,046	26
Pace 7292	Pensacola	Pace	7292	Replace overhead conductor 1.25 miles with underground conductors based on predetermined criteria	\$750,000	\$27,000	5/1/2021	12/31/2021	1,879	176
Various	Pensacola	Various	Various	Replace overhead conductor 5 miles with underground conductors based on predetermined criteria	\$3,500,000	\$126,000	5/1/2021	12/31/2021	TBD	TBD
ransmission Hardening 2021 Total					\$5,000,000	\$180,000				

Notes

(a) Amounts reflect SPP totals and breakdown between base and clause amounts can be seen in RBD-1 Appendix 1 -Form 6P

(a) The SPP projects that will be completed as well as the associated costs in 2021 could vary based on a number of factors.

Transmission Hardening Program 2021

Substation Hardening

		Estimate	ed Cost ^(a)	Estimated	Estimated	Number o	f Customers
2021 Projects	Scope	Capital	Expense	Start	Completion	Residential	Commercial/Industrial
Philips Inlet Storm Hardening	Storm Hardened Control House	\$500,000	\$0	3/1/2021	9/31/2021	6,381	513
Hathaway Storm Hardening	Storm Hardened Control House	\$500,000	\$0	3/1/2021	12/31/2021	12,595	984
	Total =	\$1,000,000	\$0				

Substation Resiliency

		Estimate	Estimated Cost (a)		Estimated Estimated		of Customers
2021 Projects Scope		Capital	Expense	Start	Completion	Residential	Commercial/Industria
Valparaiso Substation Transformer Bank Addition	Install Additional Transformer Bank	\$2,000,000	\$0	3/1/2021	12/31/2021	5,245	863
South Crestview Substation Transformer Bank Addition	Install Additional Transformer Bank	\$2,000,000	\$0	3/1/2021	12/31/2021	5,923	1,191
Hurlburt Substation Transformer Bank Addition	Install Additional Transformer Bank	\$600,000	\$0	11/1/2020	6/1/2021	6,054	348
Phillips Inlet Bank Addition	Install Additional Transformer Bank	\$1,345,000	\$0	3/1/2021	12/31/2021	6,381	513
Blackwater Bank Addition	Install Additional Transformer Bank	\$900,000	\$0	7/1/2020	6/1/2021	4,255	626
Powell Lake Bank Addition	Install Additional Transformer Bank	\$900,000	\$0	3/1/2021	12/31/2021	3,254	532
Avalon Bank Addition	Install Additional Transformer Bank	\$1,600,000	\$0	1/1/2021	12/31/2021	5,779	618
Hathaway Line Breakers	Add Breakers for Redundant Transmission Line	\$865,000	\$0	3/1/2021	12/31/2021	12,595	984
Hathaway Tap - Hathaway Sub 2nd Circuit	New Transmission Line from Hathaway Tap to Hathaway Substation	\$3,000,000	\$0	1/1/2021	12/31/2021	12,595	984
Monsanto Increase Capacity	Increase Bank Capacity	\$2,025,000	\$0	1/1/2021	12/31/2021	0	1
Innerarity Increase Capacity	Increase Bank Capacity and Install New Feeder	\$2,455,000	\$0	1/1/2021	12/31/2021	9,545	688
Miramar Bank Addition	Install Additional Transformer Bank and New Feeder	\$2,455,000	\$0	1/1/2021	12/31/2021	8,222	843
Sandestin Feeder	Install New Feeder	\$300,000	\$0	1/1/2021	12/31/2021	5,122	568
Honeysuckle Bank Addition	Install Additional Transformer Bank	\$2,440,000	\$0	1/1/2021	12/31/2021	1,376	685
Design for 2022 Projects	TBD	\$1,615,000	\$0	7/1/2021	12/31/2022	TBD	TBD
	Total	¢34 F00 000	ćo				

tal = \$24,500,000

Transmission Hardening Program 2021

Wood Structure Replacement

		Estimate	d Cost ^(a)	Estin	nated	Number of Customers	
2021 Projects	Transmission Line	Capital	Expense	Start	Completion	Residential Commercial/Industrial	
19	Greenwood - Long Beach	\$931,000	\$19,000	1/1/2021	12/31/2021	Transmission System Loop	
36	Bayou Chico - Devilliers	\$1,764,000	\$36,000	1/1/2021	12/31/2021	Transmission System Loop	
30	Santa Rosa - Miramar #1	\$1,470,000	\$30,000	1/1/2021	12/31/2021	Transmission System Loop	
52	Wewa Road - Tyndall #1 (Radial)	\$2,548,000	\$52,000	1/1/2021	12/31/2021	Transmission System Loop	
17	Smith - Greenwood	\$833,000	\$17,000	1/1/2021	12/31/2021	Transmission System Loop	
88	Valparaiso - Turner	\$4,312,000	\$88,000	1/1/2021	12/31/2021	Transmission System Loop	
90	Crist - Crestview #1	\$4,900,000	\$100,000	1/1/2021	12/31/2021	Transmission System Loop	
40	Caryville Tap	\$2,038,400	\$41,600	1/1/2021	12/31/2021	Transmission System Loop	
Design for 2022 Projects	TBD	\$803,600	\$16,400	1/1/2021	12/31/2021	Transmission System Loop	

Total = \$19,600,000 \$400,000

	Сар	M&0
Transmission Hardening 2021 Total	\$45,100,000	\$400,000

Notes

(a) Amounts reflect SPP totals and breakdown between base and clause amounts can be seen in RBD-1 Appendix 1 -Form 6P

(a) The SPP projects that will be completed as well as the associated costs in 2021 could vary based on a number of factors.

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2	GULF POWER COMPANY
3	DIRECT TESTIMONY OF LIZ FUENTES
4	DOCKET NO. 20200092-EI
5	JULY 24, 2020
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1		TABLE OF CONTENTS
2		
3	I.	INTRODUCTION
4	II.	DETERMINATION OF 2021 SPPCRC RECOVERABLE COSTS
5	III.	2021 WACC CALCULATION 13
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

1		I. INTRODUCTION
2		
3	Q.	Please state your name and business address.
4	A.	My name is Liz Fuentes, and my business address is Florida Power & Light
5		Company ("FPL"), 9250 West Flagler Street, Miami, Florida, 33174.
6	Q.	By whom are you employed and what is your position?
7	A.	I am employed by FPL as Senior Director, Regulatory Accounting. FPL is a
8		subsidiary of NextEra Energy, Inc. which acquired Gulf Power Company
9		("Gulf" or the "Company") in 2019.
10	Q.	Please describe your duties and responsibilities in that position.
11	A.	I am responsible for planning, guidance, and management of most regulatory
12		accounting activities for FPL and Gulf. In this role, I ensure that financial books
13		and records comply with multi-jurisdictional regulatory accounting
14		requirements and regulations.
15	Q.	On whose behalf are you submitting this testimony?
16	A.	I am submitting this direct testimony to the Florida Public Service Commission
17		("FPSC" or the "Commission") on behalf of Gulf.
18	Q.	Please describe your educational background and professional experience.
19	A.	I graduated from the University of Florida in 1999 with a Bachelor of Science
20		Degree in Accounting. That same year, I was employed by FPL. During my
21		tenure at the Company, I have held various accounting and regulatory positions
22		of increasing responsibility with the majority of my career focused in regulatory
23		accounting and the calculation of revenue requirements. Specifically, I have

provided accounting support in multiple FPL retail base rate filings and other regulatory dockets filed at the FPSC as well as the Federal Energy Regulatory Commission ("FERC"). My responsibilities have included the management of the accounting for FPL's cost recovery clauses and the preparation, review and filing of FPL's monthly Earnings Surveillance Reports ("ESR") at the FPSC. I am a Certified Public Accountant ("CPA") licensed in the Commonwealth of Virginia and am a member of the American Institute of CPAs. I have previously filed testimony before the Commission for FPL's Solar Base Rate Adjustments related to the solar photovoltaic projects placed in service in 2018 and 2020 (Docket Nos. 20170001-EI and 20190001-EI) and request for approval of the Indiantown Transaction (Docket No. 160154-EI).

Q. What is the purpose of your testimony?

A. The purpose of my direct testimony is to explain how the Company determined the amount of forecasted 2021 Storm Protection Plan ("SPP") costs incremental from its base rates for which it is seeking recovery through the Storm Protection Plan Cost Recovery Clause ("SPPCRC") in its 2021 Projection filing. I will also explain how the Company will uniquely identify and record costs to be recovered through the SPPCRC beginning in 2021. In addition, I will explain and provide support for the calculation of the projected 2021 Weighted Average Cost of Capital ("WACC") to be used in order to calculate the return on 2021 SPPCRC capital investments.

Q. Please summarize your testimony.

23 A. In order to determine the amount of 2021 SPP costs eligible for recovery

through the SPPCRC, Gulf has compared the forecasted 2021 SPP capital expenditures presented in Exhibit MS-1 – Gulf's 2020-2029 Storm Protection Plan attached to the testimony of Gulf witness Michael Spoor, which was filed with and is currently pending before the Commission in Docket No. 20200070-EI (the "SPP Filing"), to the amount of capital expenditures for storm hardening projects included for recovery in Gulf's most recent base rate filing and actual storm hardening capital expenditures incurred for the period of 2017 through 2019 and forecasted 2020. Based on this analysis, Gulf has determined that all forecasted 2021 SPP capital expenditures, except for the Transmission Inspection Program, are incremental to the amount currently recovered in base rates and, therefore, recoverable through the SPPCRC. Also, Gulf is not seeking SPPCRC recovery of any forecasted 2021 SPP program Operations and Maintenance ("O&M") expenses and will address the recovery of those expenses during its next base rate proceeding. Gulf has also identified incremental costs that are necessary to implement the tracking and reporting of costs recoverable through SPPCRC and has included them for recovery in its 2021 Projection Filing. In addition, Gulf has calculated and applied a projected WACC to calculate a return on 2021 SPPCRC capital investments in accordance with Commission Order No. PSC-2020-0165-PAA-EU, Docket No. 20200118-EU issued on May 20, 2020 (the "WACC Order").

Q. Are you sponsoring or co-sponsoring any exhibits in this case?

22 A. Yes. I am sponsoring or co-sponsoring the following exhibits:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

• LF-1 – Determination of Cost Recovery through the SPPCRC

2		• LF-3 – Forecasted 2021 Weighted Average Cost of Capital; and
3		Co-Sponsoring Form 6P - Program Description and Progress Report
4		included in Gulf witness Renae Deaton's Exhibit RBD-1.
5		
6	II.	DETERMINATION OF 2021 SPPCRC RECOVERABLE COSTS
7		
8	Q.	Please explain why it is necessary to determine the amount of SPP costs
9		that are incremental to base rates.
10	A.	Rule 25-6.031(6)(b), F.A.C., provides that "Storm Protection Plan costs
11		recoverable through the clause shall not include costs recovered through the
12		utility's base rates or any other cost recovery mechanism." Therefore
13		consistent with the requirements of the Commission's Rule, it is necessary to
14		demonstrate that any costs sought to be recovered through the SPPCRC are no
15		being recovered in Gulf's current base rates.
16	Q.	Has Gulf determined the amount of SPP costs being recovered through
17		base rates?
18	A.	Yes.
19	Q.	Please explain the method Gulf used to determine the amount of SPP costs
20		currently included in its base rates.
21	A.	Gulf's current base rates were established pursuant to a Stipulation and
22		Settlement agreement approved by the Commission in Order No. PSC-17-0178-
23		S-EI, Docket No. 160186-EI (the "2016 Settlement Agreement"). The 2016

• LF-2 – 2021 SPPCRC Capital Costs;

1	Settlement Agreement resulted in base rates lower than those presented by Gulf
2	in its Minimum Filing Requirements ("MFRs") in that docket. Nonetheless, for
3	purposes of determining the level of SPP costs embedded in Gulf's current base
4	rates, Gulf relied upon the amount of storm hardening costs included in its 2017
5	Test Year MFRs filed in Docket No. 160186-EI as a conservative proxy to
6	determine the maximum amount of SPP costs that could possibly be currently
7	included in its base rates. To the extent Gulf has exceeded the level of storm
8	hardening costs included in its MFRs, any amount above those levels would be
9	considered incremental SPP costs eligible to be recovered through the
10	SPPCRC.

- 11 Q. Is Gulf seeking recovery of any forecasted 2021 SPP program O&M

 12 expenses in its request for SPPCRC recovery in this proceeding?
- 13 A. No. Gulf is not seeking recovery of any forecasted 2021 SPP program O&M

 14 expenses through the SPPCRC. Gulf will evaluate whether it intends to seek

 15 recovery of future SPP program O&M expenses through the SPPCRC during

 16 its next base rate proceeding.
- 17 Q. Is Gulf seeking recovery of any forecasted 2021 SPP capital costs in its 18 request for SPPCRC recovery in this proceeding?
- 19 A. Yes.
- Q. How did Gulf determine the amount of forecasted 2021 SPP capital costs eligible for recovery through the SPPCRC?
- A. As reflected on Exhibit LF-1, Gulf identified historical capital expenditures for each of its SPP programs and split 2020 forecasted SPP capital costs between

capital expenditures and cost of removal. Gulf then compared the amount of
forecasted capital expenditures for storm hardening projects in its 2017 Test
Year MFRs filed in Docket No. 160186-EI to the cumulative amount of actual
capital expenditures for the years ended 2017 through 2019 and forecasted 2020
in order to determine whether any of its forecasted 2021 SPP capital
expenditures are incremental to base rates and eligible for SPPCRC recovery.
Based on this comparison, Gulf is expected to incur a total of \$52.4 million in
SPP capital expenditures for the period of 2017 through 2020, which is
approximately \$38.3 million more than the maximum amount included in its
2017 Test Year MFRs. In addition, each of Gulf's SPP programs, except for
the Transmission Inspection Program as described below, individually
exceeded the maximum capital amount forecasted in the 2017 Test Year MFRs.
Therefore, Gulf's forecasted 2021 SPP capital expenditures for each SPP
program, except for the Transmission Inspection Program, are eligible for
SPPCRC recovery.

- Q. Did Gulf include all of its forecasted 2021 SPP capital expenditures in its
 request for recovery through the SPPCRC in this proceeding?
- A. No. As reflected on Exhibit LF-2, Gulf included forecasted 2021 capital expenditures for recovery through the SPPCRC for all SPP programs except for its Transmission Inspection Program.
- Q. Why did Gulf not include the Transmission Inspection Program for recovery through the SPPCRC in this proceeding?
- 23 A. Gulf was unable to identify capital expenditures for the Transmission

1	Inspection Program in the 2017 Test Year or for actuals for the years ended
2	2017 through 2019. Historically, costs for this program have been embedded
3	with other Gulf transmission projects or programs in both the forecast and
4	actuals, and therefore, Gulf does not have a basis to determine the amount of
5	capital expenditures which are incremental to its base rates. Therefore, the
6	capital expenditures for Gulf's Transmission Inspection Program incurred in
7	2021 will remain as base recoverable costs.

- Q. Has Gulf forecasted an amount for the cost of removal of existing assets
 associated with its SPP programs?
- 10 A. Yes. As reflected on Exhibit LF-2, Gulf has forecasted a total of \$11.2 million of cost of removal for existing assets associated with its SPP programs for 2021.
- Q. Did Gulf include any of its forecasted 2021 cost of removal in its request for recovery through the SPPCRC in this proceeding?
- A. No. Since the cost of removal associated with existing assets being removed in
 2021 as a result of Gulf's SPP programs was recovered from customers through
 base rates as a component of depreciation expense, Gulf has excluded cost of
 removal from SPPCRC recovery in this proceeding. Cost of removal related to
 Gulf's SPP programs incurred in 2021 will be reflected as base rate recoverable
 costs.
- Q. Did Gulf reflect an amount for the retirement of existing assets in its request for recovery of 2021 SPPCRC costs in this proceeding?
- A. No. The retirement of existing assets as a result of Gulf's SPP programs occurring during 2021 are not included in Gulf's forecasted 2021 SPP costs

1		requested for recovery through the SPPCRC. Retirements occurring in 2021
2		will remain as a base rate activity since those assets are currently being
3		recovered through base rates and will be incorporated into the calculation of
4		revenue requirements in Gulf's next base rate proceeding.
5	Q.	Did Gulf include a beginning balance for Construction Work In Progress
6		("CWIP") for any of its SPP programs in its 2021 SPPCRC Projection
7		filing?
8	A.	No. Since Gulf committed to not seek recovery of any SPP project costs
9		incurred in 2020, Gulf did not include forecasted beginning balances of CWIP
10		for any of its SPP programs in the 2021 SPPCRC Projection filing.
11	Q.	What is the total amount of forecasted 2021 SPP capital expenditures Gulf
12		included in its calculation of SPPCRC revenue requirements?
13	A.	As reflected on Exhibit LF-2, the total amount of forecasted 2021 SPP capital
14		expenditures included for recovery in the 2021 Projection Filing is \$78.2
15		million. This amount is included in the calculation of the revenue requirements
16		on Exhibit RBD-1 of Gulf witness Deaton.
17	Q.	How will Gulf track SPP costs approved for recovery through the SPPCRC
18		starting January 1, 2021?
19	A.	As required by Rule 25-6.031(5), F.A.C., Gulf has created new FERC
20		subaccounts to ease the recording and tracking of capital expenditures,
21		accumulated depreciation, depreciation expense, and O&M expenses for SPP
22		costs approved for recovery through the SPPCRC. In addition, Gulf has created
23		a new Business Area within its SAP accounting system which provides another

way to identify and report all SPP costs approved for recovery through the SPPCRC. The methodology described above is consistent with how Gulf records and tracks costs recoverable through other clause recovery mechanisms such as the Environmental Cost Recovery Clause and Energy Conservation Cost Recovery Clause, and will facilitate the annual clause audits performed by the FPSC Staff and removal of SPPCRC costs from Gulf's monthly ESR.

A.

7 Q. How will Gulf record SPP costs approved for recovery through SPPCRC on its books and records?

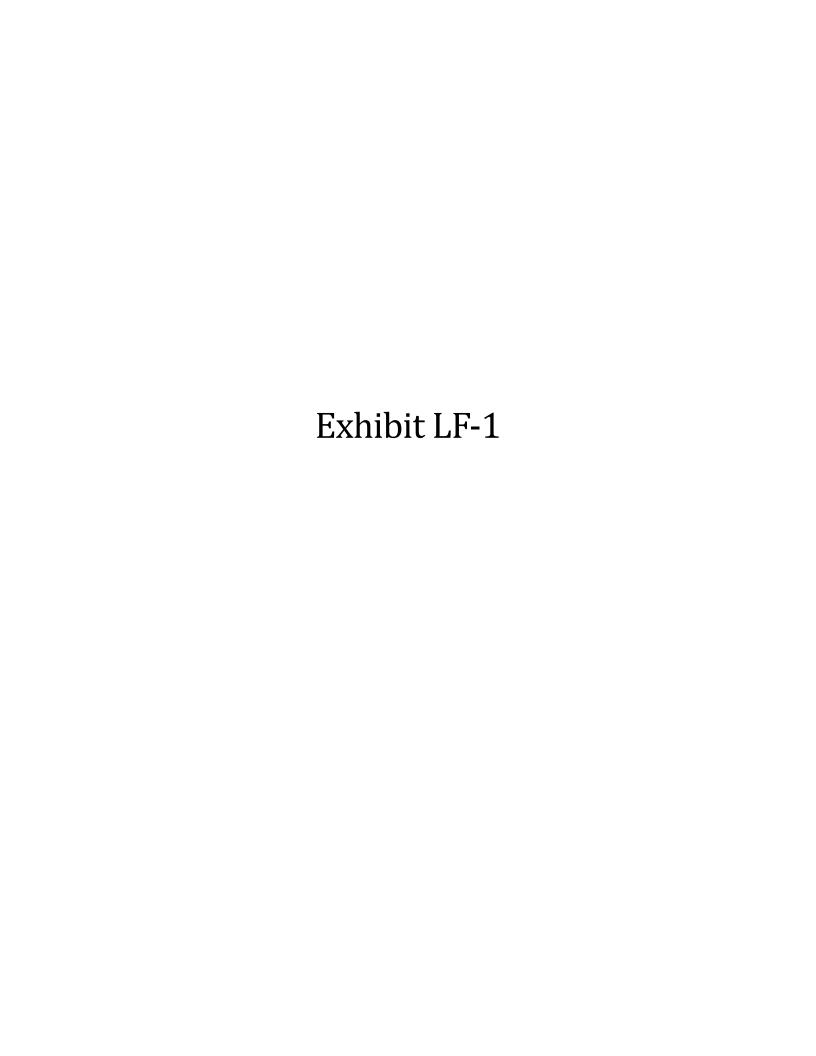
- As described by Gulf witness Spoor, Gulf has created unique master data in its systems (*i.e.*, work order type and work breakdown structure) to record SPP capital costs and O&M expenses recoverable through SPPCRC starting January 1, 2021. This new master data will distinguish costs recoverable through SPPCRC separate and apart from base rate recoverable costs and will translate costs to the newly created FERC subaccounts as explained above depending on the type of activity. In addition, Gulf will record all capital expenditures to CWIP in accordance with its capitalization policy and transfer CWIP to plant-in-service once the projects are completed. Gulf will then depreciate SPPCRC assets at the plant account level using the current approved depreciation rates resulting from the 2016 Settlement Agreement.
- Q. Has Gulf identified any incremental costs necessary to implement its
 SPPCRC?
- 22 A. Yes. Gulf has identified the following incremental costs required to implement 23 its SPPCRC:

1	• Capital Projects – Gulf has identified a total of \$0.6 million of capital
2	expenditures and \$2 thousand of O&M expenses for software
3	modifications to various systems that are necessary to manage, track,
4	and bill customers for amounts recovered through the SPPCRC.
5	Approximately \$0.3 million of the incremental capital projects relate to
6	modifications to Gulf's billing system, while the remainder of the
7	capital expenditures relate to creation of forecasted and actual revenue
8	requirement calculations to be submitted in Gulf's annual SPPCRC
9	filings, and modifications to Gulf's accounting and work management
10	systems in order to track actual SPPCRC recoverable costs at the project
11	and program level.
12	• O&M expenses – Gulf has identified a total of \$50 thousand in annual
13	O&M expenses for additional resources required to support Gulf's
14	annual SPPCRC filings and tracking of SPP project costs.

- Since both the implementation capital costs and O&M expenses were not contemplated or included in Gulf's MFRs, they are incremental and eligible for recovery through the SPPCRC.
- Did Gulf include any incremental implementation costs in its request for Q. recovery through the SPPCRC in this proceeding?
- A. Yes. As reflected in Gulf witness Deaton's testimony, Gulf has included the recovery of all incremental implementation costs in its 2021 Projection Filing.

III. 2021 WACC CALCULATION

	_	
^	7	


3	Q.	Is Gulf required to utilize a specific WACC when calculating a return on
4		the SPPCRC capital investments included for recovery in its 2021
5		Projection filing?
6	A.	Yes. Per the WACC Order, beginning with all 2021 clause projection filings,
7		Gulf is required to project its WACC using its currently approved mid-point
8		return on equity ("ROE") for the clause projection year and apply the proration
9		formula prescribed by Treasury Regulation §1.167(l)-1(h)(6)(i) to the plant
10		only depreciation-related Accumulated Deferred Federal Income Tax
11		("ADFIT") included in capital structure. As quoted in the WACC Order, the
12		proration formula as required under Treasury Regulation §1.167(l)-1(h)(6)(i) is
13		as follows:
14		"The pro rata portion of any increase to be credited or decrease to be
15		charged during a future periodshall be determined by multiplying any
16		such increase or decrease by a fraction, the numerator of which is the
17		number of days remaining in the period at the time such increase or
18		decrease is to be accrued, and the denominator of which is the total
19		number of days in the period."
20	Q.	Has Gulf calculated a projected 2021 WACC to be applied to 2021
21	_	SPPCRC capital investments requested for recovery in this proceeding?
22	A.	Yes. As reflected on Exhibit LF-3, Gulf projected the mid-point ROE, 13-
23		month average WACC for 2021 using the Company's most recent financial

1		forecast and applied the proration formula to the plant only depreciation-related
2		ADFIT as prescribed by the Treasury Regulation §1.167(l)-1(h)(6)(i). The
3		resulting after-tax WACC to be applied to the 2021 SPPCRC capital
4		investments is 5.41%, which is reflected on Form 7P, Capital Structure and Cost
5		Rates, in Gulf witness Deaton's Exhibit RBD-1.
6	Q.	Will the projected 2021 WACC be revised through the 2021 SPPCRC true-
7		up process?
8	A.	Yes. Pursuant to the WACC Order, Gulf must carry through the proration
9		adjustment to the 2021 Actual/Estimated True-Up and 2021 Final True-Up.
10		
11		For the 2021 Actual/Estimated True-Up, Gulf will utilize the mid-point ROE
12		13-month average WACC from the 2021 Forecasted ESR and carry forward the
13		same proration adjustment reflected in the 2021 Projection Filing. However, if
14		the depreciation-related ADFIT balance in the 2021 Projection Filing was over-
15		estimated, the Proration Formula adjustment will then need to be reduced to
16		reflect the difference between the originally projected and prorated
17		depreciation-related ADFIT balance and the re-projected depreciation-related
18		ADFIT balance. The resulting WACC calculation would then be used to
19		calculate a monthly return on all projected clause investments in the 2021
20		Actual/Estimated Filing.
21		
22		For the 2021 Final True-Up filing to be made in the Spring of 2022, Gulf will
23		utilize the midpoint ROE 13-month average WACC from the 2021 December

ESR and carry forward the same proration adjustment reflected in the 2021
Projection Filing. However, if the depreciation-related ADFIT balance in the
Projection Filing was over-estimated, the Proration Formula would be adjusted
downward as described above. The resulting WACC calculation will be used
to calculate a monthly return on all projected clause investments in the 2021
Final True-Up Filing.

7 Q. Does this conclude your testimony?

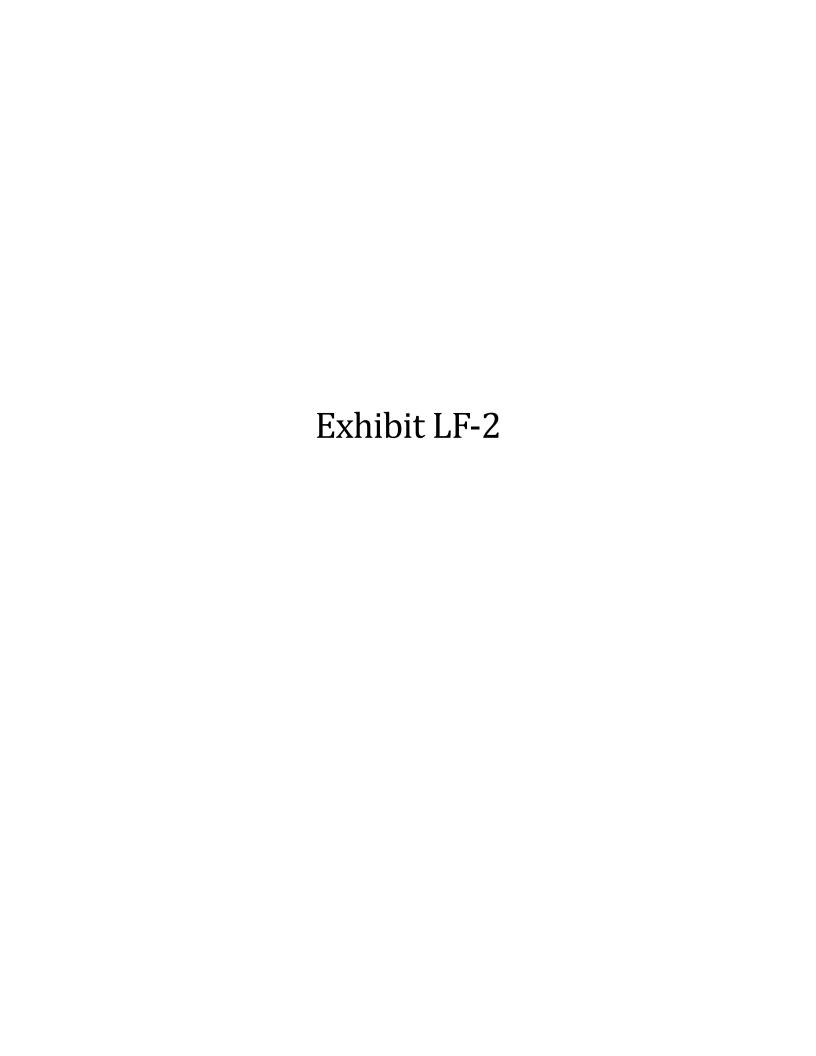
8 A. Yes.

Gulf Power Company Determination of Cost Recovery through the SPPCRC (\$ in thousands)

Line No.	SPP Program		2017 Test Year Threshold Proxy		Actual Capex 2017 -2019		2020 Forecast ^{(B),(C)}		otal Capex 17 through 2020	Incremental Capex through 2020 ^(D)	
			(1)		(2)		(3)	(4)) = (2) + (3)	(5) = (4) - (1)
1	<u>Distribution Inspection Program</u>										
2	Capital Expenditures	\$	1,873	\$	5,830	\$	1,553	\$	7,383	\$	5,510
3	Cost of Removal					\$	947				
4	Total	\$	1,873	\$	5,830	\$	2,500	\$	7,383		
5	5 -1										
6	<u>Transmission Inspection Program</u> (E)										
7	Capital Expenditures	\$	-	\$	-	\$	-	\$	-		N/A
8	Cost of Removal					\$	-				
9	Total	\$	-	\$	-	\$	-	\$	-		
10											
11	Distribution Feeder Hardening Program	1									
12	Capital Expenditures	\$	5,906	\$	22,590	\$	9,922	\$	32,511	\$	26,605
13	Cost of Removal					\$	1,578				
14	Total	\$	5,906	\$	22,590	\$	11,500	\$	32,511		
15											
16	<u>Distribution Hardening - Lateral Underg</u>	roun	ding Progran	n ^(F)							
17	Capital Expenditures	\$	-	\$	-	\$	-	\$	-	\$	-
18	Cost of Removal					\$	-				
19	Total	\$	-	\$	-	\$	-	\$	-		
20											
21	Transmission Hardening Program										
22	Capital Expenditures	\$	6,360	\$	7,812	\$	4,695	\$	12,507	\$	6,147
23	Cost of Removal					\$	525				
24	Total	\$	6,360	\$	7,812	\$	5,220	\$	12,507		
25											
26	<u>Totals</u>										
27	Capital Expenditures	\$	14,139	\$	36,232	\$	16,170	\$	52,402	\$	38,263
28	Cost of Removal					\$	3,050				
29	Total	\$	14,139	\$	36,232	\$	19,220	\$	52,402		
30											

31 Notes:

^{32 &}lt;sup>(A)</sup> Amounts reflected were included in Gulf's MFRs in its last base rate case (Docket No. 160186-EI) and represent dollars forecasted to be invested in storm hardening projects in 2017.

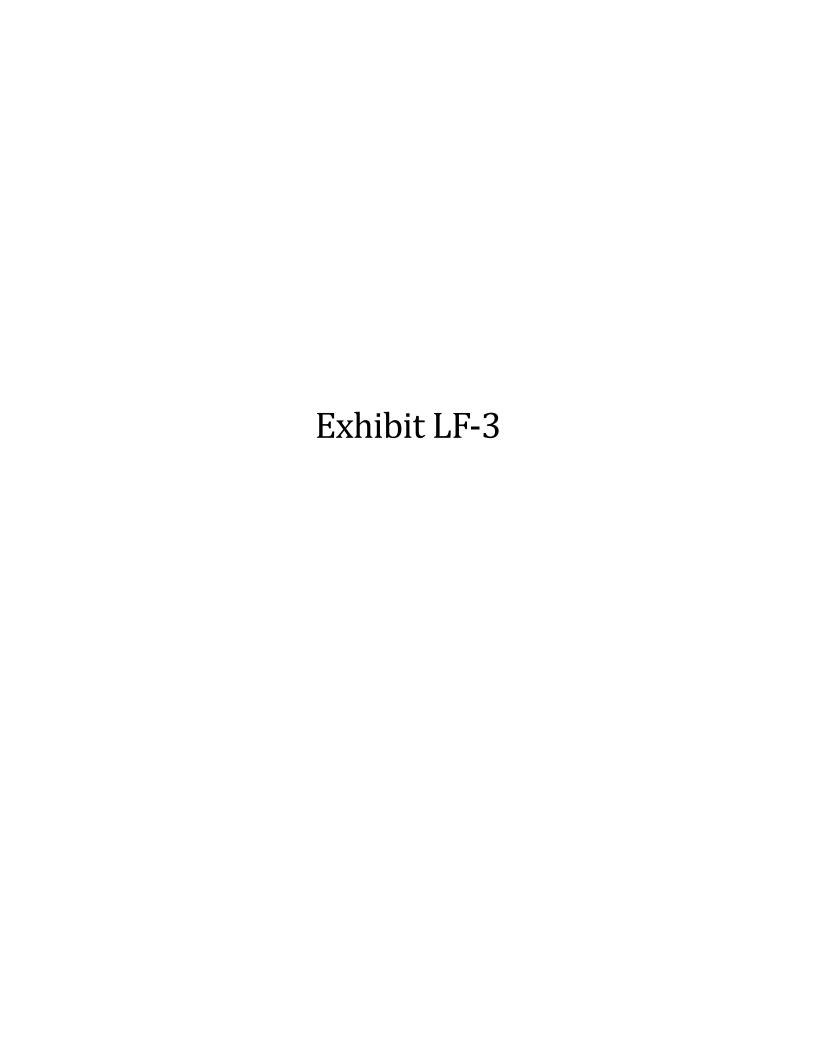

^(B) Totals by SPP program tie to the capital costs reflected on Appendix C of Gulfs 2020 - 2029 SPP, which is provided as Exhibit MS-1 to the testimony of Gulf witness Spoor and is currently pending before the FPSC in Docket No. 20200070-EI.

^{34 (}C) Cost of removal was estimated based on an average of historical spend.

^{35 (}D) Amounts reflected are above the amount of capital expenditures forecasted for storm hardening projects in Gulf's 2017 Test Year.

^{36 (}E) Gulf does not have a basis to determine the amount of capital expenditures for its Transmission Inspection Program which are incremental to its base rates. Therefore, amounts forecasted for 2020 have been excluded from this Exhibit.

^{37 (}F) Program is expected to begin in 2021.


Gulf Power Company 2021 SPPCRC Capital Costs (\$ in thousands)

Line No.	SPP Program	For	2021 ecast ^{(A) (B)}	SPPCRC		Base		Total
			(1)	(2)		(3)	(,	4) = (2) + (3)
1	Distribution Inspection Program	•						
2	Capital Expenditures	\$	1,740	\$ 1,740	\$	-	\$	1,740
3	Cost of Removal	\$	1,060	\$ -	\$	1,060	\$	1,060
4	Total	\$	2,800	\$ 1,740	\$	1,060	\$	2,800
5								
6	Transmission Inspection Program							
7	Capital Expenditures	\$	2,578	\$ -	\$	2,578	\$	2,578
8	Cost of Removal	\$ \$ \$	572	\$ -	\$ \$	572	\$	572
9	Total	\$	3,150	\$ -	\$	3,150	\$	3,150
10								
11	Distribution Feeder Hardening Program							
12	Capital Expenditures	\$	30,843	\$ 30,843	\$	-	\$	30,843
13	Cost of Removal	\$	5,057	\$ -	\$	5,057	\$	5,057
14	Total	\$	35,900	\$ 30,843	\$	5,057	\$	35,900
15								
16	Distribution Hardening - Lateral Undergrounding	Prog	<u>ram</u>					
17	Capital Expenditures	\$	4,850	\$ 4,850	\$	-	\$	4,850
18	Cost of Removal	\$	150	-	\$	150		150
19	Total	\$	5,000	\$ 4,850	\$	150	\$	5,000
20								
21	Transmission Hardening Program							
22	Capital Expenditures	\$	40,770	40,770		-	\$	40,770
23	Cost of Removal	\$ \$ \$	4,330	\$ -	\$	4,330	\$	4,330
24	Total	\$	45,100	\$ 40,770	\$	4,330	\$	45,100
25								
26	<u>Totals</u>							
27	Capital Expenditures	\$	80,781	78,202	-	2,578	\$	80,781
28	Cost of Removal	\$ \$ \$	11,169	 -	\$	11,169		11,169
29	Total	\$	91,950	\$ 78,202	\$	13,748	\$	91,950
30								

³¹ Notes

^{32 &}lt;sup>(A)</sup> Totals by SPP program tie to the capital costs reflected on Appendix C of Gulf's 2020 -2029 SPP, which is provided as Exhibit MS-1 to the testimony of Gulf witness Spoor and is currently pending before the FPSC in Docket No. 20200070-EI.

^{33 &}lt;sup>(B)</sup> Cost of removal was estimated based on an average of historical spend.

GULF POWER COMPANY

Forecasted 2021 Weighted Average Cost of Capital ("WACC") (\$ in thousands)

e).	1						20	J 21	L Clause Pro	oje	ction Filing	,				
1	Forecasted 2021 WACC	(13-	month aver	age)	<u> </u>					_						
	ı	Sy	s Per Book	Ret	tail Per Book	Р	ro Rata Adj	S	Specific Adj	I	Adj'd Retail	Cap Ratio	Cost Rate	Weighted Cost		
Ì	Common Equity	\$	2,821,209	\$	2,753,904	\$	(1,160,633)	\$	(154,533)	\$	1,438,737	43.79%	10.25%	4.49%		
- 1	Long Term Debt		1,604,208		1,568,535		(580,875)		(63,974)		923,685	28.12%	2.91%	0.82%		
	Short Term Debt		501,370		489,760		(205,676)		42,975		327,058	9.96%	0.51%	0.05%		
١	Customer Deposits		35,626		35,467		(14,894)		-		20,572	0.63%	2.66%	0.02%		
١	Invest Tax Credits		28,544		27,883		(11,710)		-		16,174	0.49%	7.38%	0.04%		
١	Deferred Inc Taxes		986,179		963,331		(404,743)		448		559,037	17.02%	0.00%			
I	Total	\$	5,977,137	\$	5,838,879	\$	(2,378,531)	\$		\$	3,285,264	100.00%		5.41%		
I	2021 Proration Adjustme	ent						_		_						
l	ZUZI Floration rejection	<u> </u>											Prorated	Prorated		
١	i				ADIT				prec-Related		Days to	•	Deprec-Related	Deprec-Related		
١	i		Month		Bal		DFIT Bal (2) (3)	ΑD	DFIT Activity		Prorate	in Period	ADFIT Activity	ADFIT Bal		
١	i		:-20	\$	968,134	\$	968,134							\$ 968,134		
Ì	projected	Jan-			973,117		970,410		2,275		31	335	2,088	970,223		
١	projected	Feb			976,634		972,671		2,261		28	307	1,902	972,125		
١	projected		r-21		981,637		974,918		2,247		31	276	1,699	973,824		
١	projected	Apr			983,606		977,152		2,233		30	246	1,505	975,329		
١	projected		y-21		986,238		979,372		2,220		31	215	1,308	976,637		
١	projected	Jun	-21		988,200		981,578		2,206		30	185	1,118	977,755		
1	projected	Jul-	21		989,173		983,769		2,191		31	154	924	978,679		
١	projected	Aug	g-21		989,799		985,945		2,176		31	123	733	979,413		
١	projected	Sep	-21		992,851		988,106		2,161		30	93	551	979,963		
١	projected	Oct	-21		994,112		990,253		2,148		31	62	365	980,328		
- 1	projected		v-21		996,244		992,388		2,135		30	32	187	980,515		
١	projected		:-21		1,000,580		994,108		1,720		31	1	5	980,520		
1	h. e.			\$	986,179	\$		\$	1,998		365		\$ 12,386	\$ 980,520		
١	i															
Ì	i										r		d 13-Mo Avg Bal			
١	ı											202	21 Proration Adj.	\$ (926)		
١	i															
	Forecasted 2021 WACC v	vith	Proration A	<u>djust</u>	<u>tment</u>											
	ı	Sy	s Per Book		Proration Adjustment		System Per Books Adj'd	Ret	tail Per Book	F	Pro Rata Adj	Specific Adj	Adj'd Retail	Cap Ratio	Cost Rate	Weig Co
ı	Common Equity	\$	2,821,209	\$	524			\$	2,754,416	\$	(1,160,848)	\$ (154,553)	\$ 1,439,015	43.80%	10.25%	
I	Long Term Debt		1,604,208		298		1,604,506		1,568,826		(580,998)	(63,959)	923,870	28.12%	2.91%	
Ì	Short Term Debt		501,370		93		501,463		489,851		(205,715)		327,116	9.96%	0.51%	
Ì	Customer Deposits		35,626		7		35,633		35,473		(14,897)	-	20,576	0.63%	2.66%	
Ì	Invest Tax Credits		28,544		5		28,550		27,889		(11,712)		16,177	0.49%	7.38%	
	Deferred Inc Taxes		986,179		(926)		985,252		962,424		(404,362)	448	558,511	17.00%	0.00%	
ı	Total	ς	5,977,137	Ś		\$	5,977,137	Ś	5,838,879	\$	(2,378,531)	\$ (175,084)	\$ 3,285,264	100.00%		

Docket No. 20200092-I casted 2021 Weighted Average Cost of Capit

⁽²⁾ Beginning balance represents the sum of projected balances for 1) total ADIT and 2) FAS 109 regulatory assets and liabilities.

^{7 (3)} Projected activity for 2021 only includes amounts for depreciation related ADFIT.

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSIO
2	GULF POWER COMPANY
3	TESTIMONY OF RENAE B. DEATON
4	DOCKET NO. 20200092-EI
5	JULY 24, 2020
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 Q. Please state your name and address.

- 2 A. My name is Renae B. Deaton. My business address is Florida Power & Light
 3 Company, 700 Universe Boulevard, Juno Beach, Florida 33408.
- 4 Q. By whom are you employed and in what capacity?
- I am employed by Florida Power & Light Company ("FPL") as Director of Clause
 Recovery and Wholesale Rates, in the Regulatory & State Governmental Affairs
 Department. FPL is a subsidiary of NextEra Energy which acquired Gulf Power in
 Recovery and Wholesale Rates, in the Regulatory & State Governmental Affairs
 Department. FPL is a subsidiary of NextEra Energy which acquired Gulf Power in
 Recovery and Wholesale Rates, in the Regulatory & State Governmental Affairs
 Department. FPL is a subsidiary of NextEra Energy which acquired Gulf Power in
- 9 Q. Please describe your educational background and professional experience.
 - A. I hold a Bachelor of Science in Business Administration and a Master of Business Administration from Charleston Southern University. Since joining FPL in 1998, I have held various positions in the rates and regulatory areas. Prior to my current position, I held the positions of Senior Manager of Cost of Service and Load Research and Senior Manager of Rate Design in the Rates and Tariffs Department. I am a member of the Edison Electric Institute ("EEI") Rates and Regulatory Affairs Committee, and I have completed the EEI Advanced Rate Design Course. I have been a guest speaker at Public Utility Research Center/World Bank International Training Programs on Utility Regulation and Strategy. In 2016, I assumed my current position, where my duties include providing direction as to the appropriateness of inclusion of costs through a cost recovery clause and the overall preparation and filing of all cost recovery clause documents including testimony and discovery. In 2019, I took on the responsibility for the clause recovery team at Gulf Power Company ("Gulf" or the "Company"). As part of the various roles I have held

1 with FPL, I have testified before the Florida Public Service Commission 2 ("Commission") in base rate and clause recovery dockets. 3 Q. What is the purpose of your testimony? 4 A. The purpose of my testimony is to present for Commission review and approval the 5 Storm Protection Plan Cost Recovery Clause ("SPPCRC") projections for the period 6 January 2021 through December 2021. 7 Q. Have you prepared or caused to be prepared under your direction, supervision, or control an exhibit in this proceeding? 8 Yes, I am sponsoring the following forms provided as Appendix I to Exhibit RBD-1: 9 A. Form 1P - Summary of Projected Period Recovery Amount 10 Form 2P - Calculation of Annual Revenue Requirements for O&M Programs 11 12 Form 2P Projects - Project Listing by Each O&M Program Form 3P - Calculation of the Total Annual Revenue Requirements for Capital 13 14 **Investment Programs** 15 Form 3P Projects - Project Listing by Each Capital Program 16 Form 3P Capital - Calculation of Annual Revenue Requirements for Capital 17 Investment by Program 18 Form 4P - Calculation of the Energy & Demand Allocation % By Rate Class 19 Form 5P - Calculation of the Cost Recovery Factors by Rate Class Form 7P - Approved Capital Structure and Cost Rates 20

Also included in Appendix I to Exhibit RBD-1 is Form 6P - Program Description and

Progress Report, which is co-sponsored by Gulf witnesses Michael Spoor and Liz

21

22

1		Fuentes. These Commission Forms were used to calculate Gulf proposed SPPCRC
2		factors for the period of January 1, 2021 through December 31, 2021. Appendix II to
3		RBD-1 contains the retail separation factors and Appendix III includes the allocation
4		of implementation costs between transmission and distribution.
5	Q.	Is Gulf seeking to recover through the SPPCRC any actual Storm Protection
6		Plan ("SPP") costs incurred for the prior year or any actual/estimated SPP
7		project costs for the current year?
8	A.	No. As explained by Gulf witness Spoor, there is no "prior year" applicable to the
9		SPPCRC in this proceeding and Gulf has committed and previously advised parties
10		that it will not seek recovery of the 2020 SPP project costs through the SPPCRC.
11		Therefore, Gulf is not submitting the Commission forms applicable to support the
12		actual and actual/estimated SPP costs.
13	Q.	What is the source of the data presented in your testimony and/or exhibits to
14		support the 2021 SPPCRC projection?
15	A.	The projections are taken from the Company's financial forecasting system, and are
16		consistent with the projections provided in Exhibit MS-1 - Gulf 2020-2029 Storm
17		Protection Plan attached to the testimony of Gulf witness Spoor as Exhibit MS-1,
18		which was filed with and is currently pending before the Commission in Docket No.
19		20200070-EI.
20	Q.	Please explain the calculation of the revenue requirements for the projected
21		period.
22	A.	Form 2P titled "Calculation of Annual Revenue Requirements for O&M Programs"
23		shows the calculation of the monthly O&M revenue requirements for the period

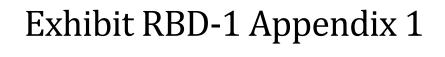
January 2021 through December 2021. As explained by Gulf witness Fuentes, the Company is not seeking recovery of O&M expenses associated with the SPP programs in 2021. Forms 3P Capital titled "Calculation of Annual Revenue Requirements for Capital Investment Programs" shows the calculation of the monthly revenue requirements for the capital expenditures projected to be incurred during the period January 2021 through December 2021. The monthly capital revenue requirements include the debt and equity return grossed up for income taxes on the average monthly net investment, including Construction Work In Progress, and depreciation and amortization expense. The identified recoverable cost is then allocated to retail customers using the appropriate separation factors provided in Appendix II to Exhibit RBD-1.

Q. How are implementation costs treated?

- A. As described by Gulf witness Fuentes, the Company identified incremental capital and O&M costs that are necessary to implement the tracking and reporting of costs recoverable through SPPCRC and has included them for recovery in its requested 2021 Projection Filing. These costs are allocated to the retail rate classes using the appropriate separation factors. For retail class allocation, the implementation costs are allocated to transmission or distribution based on the transmission and distribution programs' average plant in service balances.
- Q. Have you provided a schedule showing the allocation of costs by retail rate class?
- A. Yes. Form 4P provides the allocation of costs to the retail rate classes. The allocation to the retail rate classes is consistent with the allocations used in Gulf's

Cost of Service Study in the most recent retail rate case (Docket No. 160186-EI). Transmission costs are allocated to all rate classes based on the 12CP and 1/13th method whereby 12/13 of the transmission costs are allocated to the retail rate classes based on their contribution to the 12 monthly Coincident Peaks (12CP) and 1/13th of transmission costs are allocated to the retail rate classes based on average demand (energy). The distribution costs are allocated to the retail rate classes based on the Non Coincident Peak (NCP).

8 Q. Are the SPPCRC factors stated on a \$/kW demand basis for the demand-


metered rate classes?

A.

Yes. The Company is stating the SPPCRC factors on a \$/kW demand basis for the demand-metered rate classes in order to bring the Company in line with FPL. The costs recovered through the SPPCRC are fixed transmission and distribution costs and do not vary with energy use. The Commission has approved demand-based clause factors for the Florida Investor-Owned Utilities' conservation and capacity clauses as the costs recovered through these clauses are also predominately fixed in nature and do not vary with energy use. The Company is also calculating an energy-based charge for the GSD rate class because that class contains the GSTOU rate which is an energy-only rate. The Company did not calculate a demand rate for the PX/PXT rate class as there are currently no customers on the demand-metered PX/PXT rates.

21 Q. Does this conclude your testimony?

22 A. Yes.

Gulf Power Company

Storm Protection Plan Cost Recovery Clause Initial Projection

Projected Period: January through December 2021

Summary of Projected Period Recovery Amount

(in Dollars)

<u>Line</u>		CP Demand stribution (\$)		CP Demand nsmission (\$)		Energy smission (\$)		Total (\$)
 Total Jurisdictional Revenue Requirements for the Projected Period Overhead Hardening Programs (SPPCRC Form 2P, Line 15 + SPPCRC Form 3P, Line 15) Undergrounding Programs (SPPCRC Form 2P, Line 17 + SPPCRC Form 3P, Line 17) Vegetation Management Programs (SPPCRC Form 2P, Line 16 + SPPCRC Form 3P, Line 16) Implementation Costs (SPPCRC Form 2P, Line 18 + SPPCRC Form 3P, Line 18) Total Projected Period Rev. Req. 	\$ \$ \$ \$	1,482,496 231,923 - - 71,758 1,786,177	\$ \$ \$	1,533,072 - - 56,975 1,590,046	\$ \$ \$ <u>\$</u>	127,756 - - 4,748 132,504	\$ \$ \$	3,143,323 231,923 - 133,480 3,508,727
Estimated True up of Over/(Under) Recovery for the Current Period (SPPCRC Form E1, Line 5c)		\$0		\$0		\$0		\$0
 Final True Up of Over/(Under) Recovery for the Prior Period (SPPCRC Form A1, Line 5c) 		\$0		\$0		\$0		\$0
4. Jurisdictional Amount to Recovered/(Refunded) (Line 1e - Line 2 - Line 3)	\$	1,786,177		\$1,590,046		\$132,504	\$	3,508,727
Jurisdictional Amount to Recovered/(Refunded) Adjusted for Taxes Revenue Tax Multiplier: 1.00072		\$1,787,463		\$1,591,191		\$132,599		\$3,511,253

Total

\$0 \$0 \$0 \$0 \$0 \$0

\$0 \$0 \$0 \$0

\$0

\$27,500 \$23,654

\$0 \$51,154

\$51,154

Storm Protection Plan Cost Recovery Clause Initial Projection Projected Period: January through December 2021

Calculation of Annual Revenue Requirements for O&M Programs (in Dollars)

			Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	End of Period	Distribution	Method of Classification Transmission	Transmission
Line	O&M Activities	T/D	January	February	March	April	May	June	July	August	September	October	November	December	Total	NCP Demand	12 CP Demand	Energy
1	Overhead Hardening O&M Programs 1. Distribution Feeder Hardening 2. Distribution Inspection Program	D D	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0		
1.a	Transmission Inspection Program Transmission Hardening Adjustments	T	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0		\$0 \$0	\$0 \$0
1.b	Subtotal of Overhead Hardening Programs - O&M		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Vegetation Management O&M Programs 1. Vegetation Management - Distribution 2. Vegetation Management - Transmission Adjustments	D T	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0 \$0	\$0	\$0	\$0
2.b	Subtotal of Vegetation Management Programs - O&M		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3 3.a	Undergrounding Laterals O&M Programs 1. Distribution Hardening Lateral Undergrounding Adjustments	D	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0 \$0		
	Subtotal of Underground Laterals Programs - O&M	_	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Implementation Costs - A&G 1. Implementation Costs - Distribution 2. Implementation Costs - Transmission Adjustments	D T	\$3,304 \$2,842	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$2,240 \$1,927	\$27,944 \$24,036 \$0	\$27,500 \$0	\$21,834 \$0	\$1,820
*****	Subtotal of Implementation Costs - O&M		\$6,147	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$51,980	\$27,500	\$21,834	\$1,820
4	Total of O&M Programs		\$6,147	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$4,167	\$51,980	\$27,500	\$21,834	\$1,820
5	Allocation of O&M Costs a. Distribution O&M Allocated to NCP Demand b. Transmission O&M Allocated to 12 CP Demand c. Transmission O&M Allocated to Energy d. Implementation Costs Allocated to Distribution NCP Demand e. Implementation Costs Allocated to Transmission 12 CP Demand f. Implementation Costs Allocated to Transmission 12 CP Demand		\$0 \$0 \$0 \$3,304 \$2,624 \$219	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$2,240 \$1,778 \$148	\$0 \$0 \$0 \$27,944 \$22,187 \$1,849			
<u>6</u>	Allocation of Implementation Costs a. Distribution b. Transmission		53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%	53.76% 46.24%			
7	Retail Jurisdictional Factors a. Distribution Jurisdictional Factor b. Transmission Demand Jurisdictional Factor d. A&G Jurisdictional Factor		98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%	98.1419% 97.2343% 98.4107%			
9 10 11 12 13	Jurisdictional NCP Demand Revenue Requirements - Distribution Jurisdictional 12 CP Demand Revenue Requirements - Transmission Jurisdictional Energy Revenue Requirements - Transmission Jurisdictional Englementation Costs Allocated to Distribution NCP Demand Jurisdictional Implementation Costs Allocated to Transmission 12 CP Demand Jurisdictional Implementation Costs Allocated to Transmission 12 CP Demand Jurisdictional Costs Allocated to Transmission Energy Total Jurisdictional O&M Revenue Requirements	-	\$0 \$0 \$0 \$3,252 \$2,582 \$215 \$6,049	\$0 \$0 \$0 \$2,204 \$1,750 \$146 \$4,100	\$0 \$0 \$0 \$2,204 \$1,750 \$146 \$4,100	\$0 \$0 \$2,204 \$1,750 \$146 \$4,100	\$0 \$0 \$0 \$2,204 \$1,750 \$146 \$4,100	\$0 \$0 \$2,204 \$1,750 \$146 \$4,100	\$0 \$0 \$0 \$27,500 \$21,834 \$1,820 \$51,154									
	O&M Revenue Requirements by Category of Activity Monthly Sums of (Activity Cost x Allocation x Jur. Factor)	-																
16	Overhead Hardening O&M Programs a. Allocated to NCP Demand b. Allocated to 12 CP Demand c. Allocated to Energy		\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0			
16	Vegetation Management O&M Programs a. Allocated to NCP Demand b. Allocated to 12 CP Demand c. Allocated to Energy		\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0			
17	Undergrounding Laterals O&M Programs a. Allocated to NCP Demand b. Allocated to 12 CP Demand c. Allocated to Energy		\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0			
18	Implementation O&M Costs a. Allocated to Distribution A&G NCP Demand b. Allocated to Transmission 12 CP Demand c. Allocated to Energy		\$6,049 \$3,252 \$2,582 \$215	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$4,100 \$2,204 \$1,750 \$146	\$51,154 \$27,500 \$21,834 \$1,820			

Form 2P Projects Page 1 of 1

Gulf Power Company

Storm Protection Plan Cost Recovery Clause Initial Projection

Projected Period: January through December 2021 Project Listing by Each O&M Program

Line O&M Activities T or D

See Gulf Exhibit MS-2 attached to the testimony of Gulf Witness Spoor

Gulf Power Company Storm Protection Plan Cost Recovery Clause Initial Projection Projected Period: January through December 2021

Calculation of Annual Revenue Requirements for Capital Investment Programs (in Dollars)

			Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	End of Period		ethod of Classification Transmission	n Transmission	
Line	Capital Investment Activities	T/D	January	February	March	April	May	June	July	August	September	October	November	December	Total	NCP Demand	12 CP Demand	Energy	Total
1 (Overhead Hardening Capital Investment Programs																		
1	. Distribution Feeder Hardening	D	\$7,873	\$24,377	\$41,954	\$59,984	\$79,316	\$104,464	\$134,719	\$165,622	\$192,271	\$212,921	\$231,728	\$248,980	\$1,504,210	\$1,476,260			\$1,476,260
2		D	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$6,354	\$6,354	\$6,236			\$6,236
3	Transmission Inspection Program	T	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
4		Т	\$10,431	\$31,873	\$54,382	\$77,789	\$101,947	\$126,735	\$152,048	\$177,799	\$203,912	\$230,325	\$256,984	\$283,843	\$1,708,068		\$1,533,072	\$127,756	\$1,660,828
	Adjustments Subtotal of Overhead Hardening Capital Investment Programs		\$18,304	\$56,250	\$96,336	\$137,773	\$181,263	\$231,199	\$286,768	\$343,421	\$396,184	\$443,246	\$488,712	\$539,176	\$3,218,631	\$1,482,496	\$1,533,072	\$127 756	\$3,143,323
	/egetation Management Capital Investment Programs		\$10,004	400,200	400,000	ψιον,ννο	\$101,200	Q2 01,100	Q200,700	\$040,421	4000,104	\$440,E40	\$400,71Z	4000,170	\$0,210,001	\$1,40 <u>2,40</u> 0	\$1,000,072	V127,700	40,140,020
1	Vegetation Management - Distribution	D	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0			\$0
2		Т	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
2.a <u>A</u> 2.b S	Adjustments Subtotal of Vegetation Management Capital Investment Programs		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3 1	Undergrounding Laterals Capital Programs	D																	
1	Distribution Hardening Lateral Undergrounding		\$1,237	\$3,829	\$6,591	\$9,423	\$12,460	\$16,410	\$21,163	\$26,018	\$30,204	\$33,448	\$36,402	\$39,130	\$236,314	\$231,923			\$231,923
3.a A	Adjustments		4.,				4.2,	*,	42.,				****,	****	4=00,011				4201,020
3.b S	Subtotal of Underground Laterals Program - Capital		\$1,237	\$3,829	\$6,591	\$9,423	\$12,460	\$16,410	\$21,163	\$26,018	\$30,204	\$33,448	\$36,402	\$39,130	\$236,314	\$231,923	\$0	\$0	\$231,923
2 1	mplementation Costs - General & Intangible Plant																		
3 11	I. Implementation allocated to- Distribution	D	\$2,208	\$2,925	\$2,993	\$3.511	\$4,052	\$4,139	\$4,202	\$4,218	\$4,203	\$4,188	\$4,174	\$4,159	\$44,973	\$44,258			\$44,258
2		T	\$1,899	\$2,516	\$2,575	\$3,020	\$3,485	\$3,560	\$3,614	\$3,628	\$3,615	\$3,603	\$3,590	\$3,577	\$38,683	φ44,230	\$35,140	\$2,928	\$38,068
3.a A	Adjustments		*.,	4-,	42,0.0												****	4-,	****
	Subtotal of Implementation Costs Capital Programs		\$4,107	\$5,441	\$5,568	\$6,531	\$7,537	\$7,700	\$7,816	\$7,845	\$7,818	\$7,791	\$7,764	\$7,736	\$83,656	\$44,258	\$35,140	\$2,928	\$82,326
	Fred One Sellen and December 1		600.040	605 50-	#400 40 ·	#450 TOT	6004.007	#0FF 00-	6045 7:-	6077.0	6404.05	# 40.4 4C-	#F00.077	#F00 0 :-	60 500 057	#4 750 c==	64 500 0:-	#400 FT :	#0 457 570
4.a T	Fotal Capital Investment Programs		\$23,648	\$65,520	\$108,494	\$153,727	\$201,261	\$255,309	\$315,747	\$377,285	\$434,206	\$484,485	\$532,877	\$586,043	\$3,538,602	\$1,758,677	\$1,568,212	\$130,684	\$3,457,573
5 ^	Allocation of Capital Investment Programs																		
J ,			\$9,110	\$28,206	\$48,544	\$69.407	\$91,776	\$120.874	\$155.882	\$191.640	\$222,475	\$246.368	\$268,130	\$294,463	\$1,746,877				
b			\$9.628	\$29,421	\$50,199	\$71.805	\$94,105	\$116,986	\$140,352	\$164,122	\$188,227	\$212,608	\$237,216	\$262,009	\$1,576,678				
c	Transmission Capital Allocated to Energy		\$802	\$2,452	\$4,183	\$5,984	\$7,842	\$9,749	\$11,696	\$13,677	\$15,686	\$17,717	\$19,768	\$21,834	\$131,390				
d			2,208	2,925	2,993	3,511	4,052	4,139	4,202	4,218	4,203	4,188	4,174	4,159	44,973				
е	Implementation Costs Allocated to Transmission 12 CP Demand		1,753	2,323	2,377	2,788	3,217	3,286	3,336	3,349	3,337	3,325	3,314	3,302	35,708				
f.	. Implementation Costs Allocated to Transmission Energy		146	194	198	232	268	274	278	279	278	277	276	275	2,976				
	Allocation of Implementation Costs																		
a			53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%	53.76%				
ь	o. Transmission		46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%	46.24%				
7 F	Retail Jurisdictional Factors																		
а			98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%	98.1419%				
b			97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%	97.2343%				
c	c. General & Intangible Plant Jurisdictional Factor		98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%	98.4107%				
	Jurisdictional NCP Demand Revenue Requirements - Distribution		\$8,941	\$27,682	\$47,642	\$68,117 \$69,819	\$90,071	\$118,628	\$152,986	\$188,079 \$159,583	\$218,342	\$241,791	\$263,148 \$230,655	\$288,992	\$1,714,419				
	Jurisdictional 12 CP Demand Revenue Requirements - Transmission Jurisdictional Energy Revenue Requirements - Transmission		\$9,362 \$780	\$28,607 \$2,384	\$48,811 \$4.068	\$5.818	\$91,502 \$7,625	\$113,751 \$9.479	\$136,471 \$11,373	\$159,583	\$183,021 \$15,252	\$206,728 \$17,227	\$230,655 \$19,221	\$254,762 \$21,230	\$1,533,072 \$127,756				
	Jurisdictional Implementation Costs Allocated to Distribution NCP Demand		\$2.173	\$2,364	\$2,946	\$3,616	\$3,988	\$4,073	\$4,135	\$4 151	\$4.136	\$4 122	\$4.107	\$4,093	\$44,258				
12 .1	lurisdictional Implementation Costs Allocated to Distribution Nor Demand		\$1,725	\$2,286	\$2,339	\$2,744	\$3,166	\$3,234	\$3,283	\$3,296	\$3,284	\$3,273	\$3,261	\$3,250	\$35,140				
13 J	lurisdictional Implementation Costs Allocated to Transmission Energy		\$144	\$190	\$195	\$229	\$264	\$270	\$274	\$275	\$274	\$273	\$272	\$271	\$2,928				
	Total Jurisdictional Capital Investment Revenue Requirements	_	23,125	64,028	106,000	150,182	196,616	249,435	308,521	368,682	424,308	473,413	520,664	572,598	3,457,573				
		_																	
	Capital Investment Revenue Requirements by Category of Activity Monthly Sums of (Activity Cost x Allocation x Jur. Factor)	=																	
	Monthly Sums of (Activity Cost x Allocation x Jur. Factor)																		
15 (Overhead Hardening Capital Investment Programs		\$17.869	\$54,915	\$94,053	\$134,507	\$176,970	\$225,753	\$280,059	\$335,427	\$386,972	\$432,919	\$477,298	\$526,582	\$3,143,323				
a			\$7,727	\$23,924	\$41,174	\$58,870	\$77,842	\$102,523	\$132,216	\$162,545	\$188,699	\$208,964	\$227,422	\$250,589	\$1,482,496				
b	Allocated to 12 CP Demand		\$9,362	\$28,607	\$48,811	\$69,819	\$91,502	\$113,751	\$136,471	\$159,583	\$183,021	\$206,728	\$230,655	\$254,762	\$1,533,072				
c	c. Allocated to Energy		\$780	\$2,384	\$4,068	\$5,818	\$7,625	\$9,479	\$11,373	\$13,299	\$15,252	\$17,227	\$19,221	\$21,230	\$127,756				
40. \	(\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	en.	\$0				
16 V	/egetation Management Capital Investment Programs a. Allocated to NCP Demand		\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$U \$0				
a h			\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$0 \$0	\$0	\$0				
			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0				
								•											
17 L	Undergrounding Laterals Capital Investment Programs		\$1,214	\$3,758	\$6,468	\$9,248	\$12,228	\$16,105	\$20,770	\$25,534	\$29,643	\$32,826	\$35,726	\$38,403	\$231,923				
a	Allocated to NCP Demand		\$1,214	\$3,758	\$6,468	\$9,248	\$12,228	\$16,105	\$20,770	\$25,534	\$29,643	\$32,826	\$35,726	\$38,403	\$231,923				
b			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0				
c	c. Allocated to Energy		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0				
40 '	mulamantation Capital Costs		£4.042	\$E 255	ØE 470	Pe 400	P7 440	67.577	\$7.000	ê7 704	\$7.0C+	\$7.00T	\$7.640	\$7.644	\$00.000				
	mplementation Capital Costs		\$4,042	\$5,355	\$5,479	\$6,428	\$7,418	\$7,577	\$7,692	\$7,721	\$7,694	\$7,667	\$7,640	\$7,614	\$82,326				
a h			\$2,173 \$1,725	\$2,879 \$2,286	\$2,946 \$2,339	\$3,455 \$2,744	\$3,988 \$3,166	\$4,073 \$3,234	\$4,135 \$3,283	\$4,151 \$3,296	\$4,136 \$3,284	\$4,122 \$3,273	\$4,107 \$3,261	\$4,093 \$3,250	\$44,258 \$35,140				
C			\$1,725 \$144	\$2,286 \$190	\$2,339 \$195	\$2,744	\$3,166 \$264	\$3,234 \$270	\$3,283 \$274	\$3,296 \$275	\$3,284 \$274	\$3,273 \$273	\$3,261	\$3,250 \$271	\$35,140 \$2.928				
19 T	Total Capital Programs	\$	23,125 \$	64,028 \$	106,000 \$	150,182 \$	196,616 \$	249,435 \$	308,521	368,682	\$ 424,308 \$	473,413 \$	520,664 \$	572,598	\$ 3,457,573				

Form 3P Projects Page 1 of 1

Gulf Power Company

Storm Protection Plan Cost Recovery Clause Initial Projection

Projected Period: January through December 2021
Project Listing by Each Capital Program

Line Capital Activities T or D

See Gulf Exhibit MS-2 attached to the testimony of Gulf Witness Spoor

Gulf Power Company Storm Protection Plan - Distribution Inspection Program Estimated Revenue Requirements for the Period January 2021 through December 2021 (in Dollars)

Line		Beginning of Period Amount	Projected January	Projected February	Projected March	Projected April	Projected May	Projected June	Projected July	Projected August	Projected September	Projected October	Projected November	Projected December	Total
1.	Investments		-	-		•	•		-		-				
	a. Expenditures/Additions (a)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,739,746	\$1,739,746
	b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$966,421	\$966,421
2.	Plant-In-Service/Depreciation Base	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$966,421	
3.	Less: Accumulated Depreciation	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,369	
4.	CWIP - Non Interest Bearing	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$773,325	
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,738,377	
6.	Average Net Investment		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$869,188	
7.	Return on Average Net Investment		00	do.			do.		40		, do	40		04.000	64.220
	a. Equity Component grossed up for taxes (b)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$4,338	\$4,338
	b. Debt Component (Line 6 x debt rate) (c)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$647	\$647
8.	Investment Expenses														
	a. Depreciation (d)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,369	\$1,369
	c. Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
		-		40		40	40		40		0.0	40	0.0	0.054	06.054
9	Total System Recoverable Expenses (Lines 7 +8)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$6,354	\$6,354

- (a) Excludes Cost of Removal on the retirement of existing plant.
- (b) The Gross-up factor for taxes is 1/.754782, which reflects the Federal Income Tax Rate of 21%. The equity component for the period Jan. Dec. 2021 is 4.5205% based on Gulf's most recent financial forecast.
- (c) The debt component is 0.8925% based on Gulf's most recent financial forecast.
- (d) Calculated using the composite depreciation rates for distribution/transmission function as reflected in Gulf's 2016 retail base rate settlement agreement (Order No. PSC-17-0178-S-EI).

Gulf Power Company Storm Protection Plan -Distribution Feeder Hardening Estimated Revenue Requirements for the Period January 2021 through December 2021 (in Dollars)

Line		Beginning of Period Amount	Projected January	Projected February	Projected March	Projected April	Projected May	Projected June	Projected July	Projected August	Projected September	Projected October	Projected November	Projected December	Total
1.	Investments														,
	a. Expenditures/Additions (a)		\$2,155,860	\$2,159,973	\$2,158,414	\$2,159,709	\$2,464,939	\$3,706,430	\$3,703,012	\$3,703,474	\$2,467,368	\$2,154,797	\$2,158,423	\$1,850,770	\$30,843,168
	b. Clearings to Plant		\$1,197,570	\$1,732,180	\$1,968,951	\$2,074,916	\$2,291,572	\$3,077,519	\$3,424,978	\$3,579,681	\$2,961,796	\$2,513,512	\$2,316,262	\$2,057,683	\$29,196,621
2.	Plant-In-Service/Depreciation Base	\$0	\$1,197,570	\$2,929,751	\$4,898,702	\$6,973,619	\$9,265,191	\$12,342,710	\$15,767,687	\$19,347,368	\$22,309,164	\$24,822,676	\$27,138,938	\$29,196,621	
3.	Less: Accumulated Depreciation	\$0	\$1,697	\$7,544	\$18,634	\$35,453	\$58,458	\$89,069	\$128,892	\$178,639	\$237,652	\$304,422	\$378,034	\$457,843	
4.	CWIP - Non Interest Bearing	\$0	\$958,290	\$1,386,082	\$1,575,545	\$1,660,337	\$1,833,704	\$2,462,615	\$2,740,649	\$2,864,442	\$2,370,014	\$2,011,299	\$1,853,461	\$1,646,547	
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$2,154,163	\$4,308,289	\$6,455,613	\$8,598,503	\$11,040,437	\$14,716,255	\$18,379,444	\$22,033,171	\$24,441,526	\$26,529,553	\$28,614,364	\$30,385,325	
6.	Average Net Investment		\$1,077,082	\$3,231,226	\$5,381,951	\$7,527,058	\$9,819,470	\$12,878,346	\$16,547,850	\$20,206,308	\$23,237,349	\$25,485,540	\$27,571,959	\$29,499,845	
7.	Return on Average Net Investment														
	 Equity Component grossed up for taxes (b) 		\$5,376	\$16,127	\$26,860	\$37,566	\$49,007	\$64,274	\$82,588	\$100,847	\$115,974	\$127,194	\$137,607	\$147,229	\$910,650
	b. Debt Component (Line 6 x debt rate) (c)		\$801	\$2,403	\$4,003	\$5,599	\$7,304	\$9,579	\$12,308	\$15,029	\$17,284	\$18,956	\$20,508	\$21,942	\$135,717
8.	Investment Expenses														
	a. Depreciation (d)		\$1,697	\$5,847	\$11,090	\$16,819	\$23,005	\$30,611	\$39,823	\$49,746	\$59,013	\$66,770	\$73,612	\$79,809	\$457,843
	c. Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	Total System Recoverable Expenses (Lines 7 +8)	-	\$7,873	\$24,377	\$41,954	\$59,984	\$79,316	\$104,464	\$134,719	\$165,622	\$192,271	\$212,921	\$231,728	\$248,980	\$1,504,210

- (a) Excludes Cost of Removal on the retirement of existing plant.
- (b) The Gross-up factor for taxes is 1/.754782, which reflects the Federal Income Tax Rate of 21%. The equity component for the period Jan. Dec. 2021 is 4.5205% based on Gulf's most recent financial forecast.
- (c) The debt component is 0.8925% based on Gulf's most recent financial forecast.
- (d) Calculated using the composite depreciation rates for distribution/transmission function as reflected in Gulf's 2016 retail base rate settlement agreement (Order No. PSC-17-0178-S-EI).

Gulf Power Company Storm Protection Plan - Transmission Hardening Estimated Revenue Requirements for the Period January 2021 through December 2021 (in Dollars)

Line		Beginning of Period Amount	Projected January	Projected February	Projected March	Projected April	Projected May	Projected June	Projected July	Projected August	Projected September	Projected October	Projected November	Projected December	Total
1.	Investments														
	a. Expenditures/Additions (a)		\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$3,397,463	\$40,769,555
	b. Clearings to Plant		\$518,413	\$957,722	\$1,329,997	\$1,645,468	\$1,912,802	\$2,139,344	\$2,331,318	\$2,493,999	\$2,631,857	\$2,748,679	\$2,847,676	\$2,931,567	\$24,488,840
2.	Plant-In-Service/Depreciation Base	\$0	\$518,413	\$1,476,134	\$2,806,132	\$4,451,600	\$6,364,401	\$8,503,745	\$10,835,063	\$13,329,061	\$15,960,918	\$18,709,597	\$21,557,273	\$24,488,840	
3.	Less: Accumulated Depreciation	\$0	\$691	\$3,351	\$9,060	\$18,737	\$33,159	\$52,983	\$78,768	\$110,987	\$150,040	\$196,267	\$249,957	\$311,351	
4.	CWIP - Non Interest Bearing	\$0	\$2,879,050	\$5,318,792	\$7,386,257	\$9,138,252	\$10,622,913	\$11,881,033	\$12,947,178	\$13,850,642	\$14,616,248	\$15,265,032	\$15,814,819	\$16,280,715	
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$3,396,772	\$6,791,575	\$10,183,328	\$13,571,114	\$16,954,156	\$20,331,795	\$23,703,473	\$27,068,717	\$30,427,126	\$33,778,362	\$37,122,136	\$40,458,204	
6.	Average Net Investment		\$1,698,386	\$5,094,173	\$8,487,452	\$11,877,221	\$15,262,635	\$18,642,975	\$22,017,634	\$25,386,095	\$28,747,921	\$32,102,744	\$35,450,249	\$38,790,170	
7.	Return on Average Net Investment														
	a. Equity Component grossed up for taxes (b)		\$8,476	\$25,424	\$42,360	\$59,277	\$76,173	\$93,044	\$109,887	\$126,698	\$143,476	\$160,220	\$176,927	\$193,596	\$1,215,559
	b. Debt Component (Line 6 x debt rate) (c)		\$1,263	\$3,789	\$6,313	\$8,834	\$11,352	\$13,867	\$16,377	\$18,882	\$21,383	\$23,878	\$26,368	\$28,852	\$181,158
8.	Investment Expenses														
	a. Depreciation (d)		\$691	\$2,659	\$5,710	\$9,677	\$14,421	\$19,824	\$25,785	\$32,219	\$39,053	\$46,227	\$53,689	\$61,395	\$311,351
	c. Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	Total System Recoverable Expenses (Lines 7 +8)		\$10,431	\$31,873	\$54,382	\$77,789	\$101,947	\$126,735	\$152,048	\$177,799	\$203,912	\$230,325	\$256,984	\$283,843	\$1,708,068
,	Total Dystelli Recoverable Expelises (Ellies / +0)		Ψ10,431	Ψ51,075	Ψ34,362	Ψ11,109	Ψ101,947	Ψ120,733	Ψ132,040	Ψ111,177	Ψ203,712	Ψ230,323	Ψ230,764	Ψ205,045	Ψ1,700,000

- (a) Excludes Cost of Removal on the retirement of existing plant.
- (b) The Gross-up factor for taxes is 1/.754782, which reflects the Federal Income Tax Rate of 21%. The equity component for the period Jan. Dec. 2021 is 4.5205% based on Gulf's most recent financial forecast.
- (c) The debt component is 0.8925% based on Gulf's most recent financial forecast.
- (d) Calculated using the composite depreciation rates for distribution/transmission function as reflected in Gulf's 2016 retail base rate settlement agreement (Order No. PSC-17-0178-S-EI).

Gulf Power Company Storm Protection Plan - Distribution Hardening - Lateral Undergrounding Estimated Revenue Requirements for the Period January 2021 through December 2021 (in Dollars)

Line		Beginning of Period Amount	Projected January	Projected February	Projected March	Projected April	Projected May	Projected June	Projected July	Projected August	Projected September	Projected October	Projected November	Projected December	Total
1.	Investments														
	a. Expenditures/Additions (a)		\$338,665	\$339,310	\$339,064	\$339,269	\$387,217	\$582,245	\$581,707	\$581,780	\$387,599	\$338,495	\$339,066	\$295,583	\$4,850,000
	b. Clearings to Plant		\$188,127	\$272,108	\$309,302	\$325,949	\$359,983	\$483,448	\$538,030	\$562,333	\$465,269	\$394,847	\$363,861	\$325,933	\$4,589,190
2.	Plant-In-Service/Depreciation Base	\$0	\$188,127	\$460,235	\$769,537	\$1,095,486	\$1,455,469	\$1,938,917	\$2,476,948	\$3,039,281	\$3,504,550	\$3,899,397	\$4,263,258	\$4,589,190	
3.	Less: Accumulated Depreciation	\$0	\$267	\$1,185	\$2,927	\$5,569	\$9,183	\$13,992	\$20,248	\$28,062	\$37,333	\$47,822	\$59,385	\$71,926	
4.	CWIP - Non Interest Bearing	\$0	\$150,538	\$217,740	\$247,502	\$260,822	\$288,057	\$386,853	\$430,529	\$449,976	\$372,306	\$315,954	\$291,160	\$260,810	
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$338,398	\$676,790	\$1,014,112	\$1,350,739	\$1,734,342	\$2,311,779	\$2,887,229	\$3,461,194	\$3,839,523	\$4,167,529	\$4,495,032	\$4,778,074	
6.	Average Net Investment		\$169,199	\$507,594	\$845,451	\$1,182,426	\$1,542,541	\$2,023,060	\$2,599,504	\$3,174,212	\$3,650,359	\$4,003,526	\$4,331,281	\$4,636,553	
7.	Return on Average Net Investment														
	a. Equity Component grossed up for taxes (b)		\$844	\$2,533	\$4,220	\$5,901	\$7,699	\$10,097	\$12,974	\$15,842	\$18,218	\$19,981	\$21,617	\$23,140	\$143,066
	b. Debt Component (Line 6 x debt rate) (c)		\$126	\$378	\$629	\$879	\$1,147	\$1,505	\$1,934	\$2,361	\$2,715	\$2,978	\$3,222	\$3,449	\$21,322
8.	Investment Expenses														
	a. Depreciation (d)		\$267	\$919	\$1,742	\$2,642	\$3,614	\$4,809	\$6,256	\$7,815	\$9,270	\$10,489	\$11,564	\$12,541	\$71,926
	c. Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	Total System Recoverable Expenses (Lines 7 +8)	-	\$1,237	\$3,829	\$6,591	\$9,423	\$12,460	\$16,410	\$21,163	\$26,018	\$30,204	\$33,448	\$36,402	\$39,130	\$236,314

- (a) Excludes Cost of Removal on the retirement of existing plant.
- (b) The Gross-up factor for taxes is 1/.754782, which reflects the Federal Income Tax Rate of 21%. The equity component for the period Jan. Dec. 2021 is 4.5205% based on Gulf's most recent financial forecast.
- (c) The debt component is 0.8925% based on Gulf's most recent financial forecast.
- (d) Calculated using the composite depreciation rates for distribution/transmission function as reflected in Gulf's 2016 retail base rate settlement agreement (Order No. PSC-17-0178-S-EI).

Gulf Power Company Storm Protection Plan - Implementation Costs Estimated Revenue Requirements for the Period January 2021 through December 2021

	lare)	

Line		Beginning of Period Amount	Projected January	Projected February	Projected March	Projected April	Projected May	Projected June	Projected July	Projected August	Projected September	Projected October	Projected November	Projected December	Total
1.	Investments														
	 a. Expenditures/Additions (a) 		\$ 9,223	\$ 15,839	\$ 11,574	\$ 9,702	\$ 8,981	\$ 7,805	\$ 5,013	\$ -	\$ -	\$ -	\$ -	\$ -	\$68,137
	b. Clearings to Plant		\$ 428,106	\$ 5,584	\$ 2,352	\$ 108,052	\$ 8,981	\$ 7,805	\$ 5,013	\$ -	\$ -	\$ -	\$ -	\$ -	\$565,893
2.	Plant-In-Service/Depreciation Base	\$0	\$428,106	\$433,690	\$436,042	\$544,094	\$553,075	\$560,880	\$565,893	\$565,893	\$565,893	\$565,893	\$565,893	\$565,893	
3.	Less: Accumulated Depreciation	\$0	\$1,230	\$3,733	\$6,298	\$9,783	\$14,243	\$18,844	\$23,551	\$28,300	\$33,049	\$37,798	\$42,547	\$47,295	
4.	CWIP - Non Interest Bearing	\$ 497,756	\$78,872	\$89,128	\$98,350	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
5.	Net Investment (Lines 2 - 3 + 4)	\$497,756	\$505,748	\$519,085	\$528,094	\$534,311	\$538,831	\$542,037	\$542,342	\$537,593	\$532,844	\$528,095	\$523,346	\$518,597	
6.	Average Net Investment		\$501,752	\$512,417	\$523,589	\$531,202	\$536,571	\$540,434	\$542,189	\$539,968	\$535,219	\$530,470	\$525,721	\$520,972	
7.	Return on Average Net Investment														
	a. Equity Component grossed up for taxes (b)		\$2,504	\$2,557	\$2,613	\$2,651	\$2,678	\$2,697	\$2,706	\$2,695	\$2,671	\$2,647	\$2,624	\$2,600	\$31,644
	b. Debt Component (Line 6 x debt rate) (c)		\$373	\$381	\$389	\$395	\$399	\$402	\$403	\$402	\$398	\$395	\$391	\$387	\$4,716
8.	Investment Expenses														
	a. Depreciation (d)		\$ 1,230	\$ 2,503	\$ 2,565	\$ 3,485	\$ 4,460	\$ 4,600	\$ 4,707	\$ 4,749	\$ 4,749	\$ 4,749	\$ 4,749	\$ 4,749	\$47,295
	c. Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	Total System Recoverable Expenses (Lines 7 +8)		\$4,107	\$5,441	\$5,568	\$6,531	\$7,537	\$7,700	\$7,816	\$7,845	\$7,818	\$7,791	\$7,764	\$7,736	\$83,656

- (a) Excludes Cost of Removal on the retirement of existing plant.
 (b) The Gross-up factor for taxes is 1/.754782, which reflects the Federal Income Tax Rate of 21%. The equity component for the period Jan. Dec. 2021 is 4.5205% based on Gulf's most recent financial forecast.
- (c) The debt component is 0.8925% based on Gulf's most recent financial forecast.
- (d) Capital Costs on this schedule include Intangible plant which is amortized over various period

Gulf Power Company Storm Protection Plan (SPP) Calculation of the Energy & Demand Allocation % By Rate Class Projected Period: January through December 2021

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
RATE CLASS	Average 12 CP Load Factor at Meter (%)	Average NCP Load Factor at Meter (%)	Jan - Dec. 2021 Projected Sales at Meter (kWh)	Projected Avg 12 CP at Meter (kW)	Projected Avg NCP at Meter (kW)	Demand Loss Expansion Factor	Energy Loss Expansion Factor	Projected Sales at Generation (kWh)	Projected Avg 12 CP at Generation (kW)	Avg NCP at		Percentage of 12 CP Demand at Generation (%)	Percentage of NCP Demand at Generation (%)
RS, RSVP, RSTOU GS GSD, GSDT, GSTOU LP, LPT PX, PXT, RTP, SBS OS-I/II OS-III TOTAL	58.270328% 57.224449% 74.102156% 85.09449% 84.969637% 767.743332% 98.645916%	56.128051% 51.437382% 65.785406% 76.438817% 72.991745% 49.337282% 98.645916%	5,396,609,000 311,376,000 2,481,479,000 751,037,000 1,644,662,000 98,024,000 46,881,000 10,730,068,000	1,054,341 61,946 381,230 100,477 220,354 1,454 5,410 1,825,212	1,118,517 71,442 440,270 124,236 280,196 24,069 5,350 2,064,080	1.00609343 1.00608241 1.00590017 0.98747379 0.96884429 1.00619545 1.00617773	1.00559591 1.00559477 1.00544671 0.99210885 0.97666479 1.00560119 1.00558881	5,426,807,938 313,118,077 2,494,994,896 745,110,454 1,606,283,467 98,573,051 47,143,009 10,732,030,892	1,060,766 62,322 383,480 99,219 213,489 1,463 5,444 1,826,181	1,125,332 71,876 442,868 122,680 271,467 24,218 5,383 2,063,824	50.56646% 2.91760% 23.24812% 6.94287% 14.96719% 0.91849% 0.43927% 100.00000%	58.08655% 3.41272% 20.99899% 5.43312% 11.69043% 0.08009% 0.29810% 100.00000%	54.52657% 3.48267% 21.45859% 5.94430% 13.15358% 1.17347% 0.26082% 100.00000%

- (A) Average 12 CP load factor based on actual 2018 load research data
- (B) Average NCP load factor based on actual load research data
- (C) Projected kWh sales for the period January 2021 December 2021
- (D) Calculated: (Col A) / (8,784 x Col C), (8,784 hours = the # of hours in 1 year)
- (H) Column C x Column G
- (I) Column D x Column F
- (J) Column E x Column F
- (K) Column H/ total for Column H
- (L) Column I / total for Column I
- (M) Column J / total for Column J

Gulf Power Company Storm Protection Plan Calculation of the Cost Recovery Factors by Rate Class January 2021 - December 2021

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	((K)
RATE CLASS	Percentage of kWh Sales at Generation (%)	Percentage of 12 CP Demand at Generation (%)	Percentage of NCP Demand at Generation (%)	Transmission Energy- Related Costs	Transmission Demand- Related Costs	Distribution Demand- Related Costs	Total SPP Costs	Projected Sales at Meter (kWh)	Projected Demand at Meter (kW)	SPP Factors (¢/kWh)	Fa	SPP ctors /kW)
RS, RSVP, RSTOU	50.74056%	58.17902%	54.52657%	67,282	925,739	974,644	1,967,665	5,415,188,719		0.036		
GS	2.91760%	3.40643%	3.48267%	3,869	54,203	62,251	120,323	311,376,469		0.039		
GSD, GSDT, GSTOU	23.24811%	20.96025%	21.45859%	30,827	333,518	383,564	747,909	2,481,478,434	7,937,010	0.030	\$	0.09
LP, LPT	6.94286%	5.42310%	5.94430%	9,206	86,292	106,252	201,750	751,036,801	1,669,029		\$	0.12
PX, PXT, RTP, SBS	14.96719%	11.66887%	13.15358%	19,846	185,674	235,115	440,635	1,644,662,049		0.027		
OS-I/II	0.74440%	0.06479%	1.17347%	987	1,031	20,975	22,993	79,443,844		0.029		
OS-III	0.43927%	0.29754%	0.26082%	582	4,734	4,662	9,978	46,880,749		0.021		
TOTAL	99.99999%	<u>100.00000%</u>	<u>100.00000%</u>	<u>\$132,599</u>	<u>\$1,591,191</u>	\$1,787,463	<u>3,511,253</u>	10,730,067,065				

Notes:

(A) From Schedule 4P, Col K
(B) From Schedule 4P, Col L
(C) From Schedule 4P, Col M

(D) Column A x Total Energy \$ from Rev Req – Transmission

(E) Column B x Total Demand \$ from Rev Req – Transmission

(F) Column C x Total Demand \$ from Rev Req - Distribution

(G) Column D + Column E

(H) Projected kWh sales for the period January 2021 - December 2021

(J) Column G x 100 / Column H

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Distribution Inspection Program

Description:

Gulf's Distribution Inspection Program is a continuation of Gulf's existing Commission-approved

distribution inspections which consists of feeder patrols, infrared patrols, wood pole inspections

and wood pole remediation and/or replacement. These programs exist to ensure a more storm

resilient distribution infrastructure which will result in reductions in wood pole failures, fewer

storm-related outages, and reduction in storm restoration time and costs.

The total estimated costs of the Distribution Inspection Program for the ten-year period of 2020-

2029 are \$37.5 million with an annual cost of approximately \$3.7 million. Annually, Gulf inspects

approximately 770 miles of mainline feeders and 4,100 pieces of equipment. With approximately

208,000 distribution wood poles as of year-end 2019, Gulf expects to inspect approximately

26,000 wood poles annually during the 2020-2029 SPP period.

A detailed explanation of the Distribution Inspection Program, its costs and benefits, is contained

in Gulf's SPP, Section IV(A), Distribution Inspection Program.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 - For 2020, Gulf's SPP estimated approximately \$3.4 million for

the Distribution Inspection Program, which included approximately \$2.5 million in capital

costs and approximately \$0.9 million in O&M expenses. As of the end of May 2020, the

total spend for this program is \$2.7 million, which includes \$2.4 million in capital costs

and \$0.3 million in O&M expenses. Gulf is not seeking to recover any 2020 costs

associated with the Distribution Inspection Program through the Storm Protection Plan

Cost Recovery Clause.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Progress Summary:

SPP Year 2020 – In its SPP, Gulf projected the inspection of 26,000 wood poles, 770 miles of mainline feeders, and 4100 pieces of equipment. As of the end of May 2020, Gulf has completed its mainline feeder and equipment inspections and is on track to complete the pole inspections to complete its 2020 Distribution Inspection Program by the end of 2020. Gulf has also completed 638, or 64%, of its distribution pole replacements resulting from inspections conducted in 2019 and will complete the remaining 352, or 36%, for a total of 990 poles by year end 2020.

Projections:

SPP Year 2021 – For 2021, Gulf projects it will inspect 26,000 wood poles, 770 miles of mainline feeders, and 4100 pieces of equipment. Gulf estimates that it will incur approximately \$3.8 million in 2021 for the Distribution Inspection Program, which includes approximately \$1.7 million in capital expenditures, \$1.1 million in cost of removal, and \$1.0 million in O&M expenses. Gulf is seeking to recover \$1.7 million of capital expenditures for the Distribution Inspection Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures and cost of removal for this program will be recovered through base rates.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Transmission Inspection Program

Description:

Gulf's Transmission Inspection Program will continue its existing Commission-approved

inspection program consisting of substations and structures. Gulf's annual inspections of

transmission substations follow a prescribed set of processes and procedures, utilized by Company

personnel, to inspect substation equipment annually. These inspections are performed on

substation equipment such as: batteries and chargers, breakers, instrument transformers, power

fuses, regulators, substation yard, switches, and transformers.

The proposed SPP includes continuing aerial patrols to inspect transmission lines and circuits.

Gulf's transmission structure inspection program is based on two alternating twelve year cycles,

which results in a structure being inspected at least every six years. As explained in the proposed

SPP, the performance of Gulf's transmission facilities during recent storm events indicates Gulf's

Transmission Inspection Program has contributed to the overall storm resiliency of the

transmission system and provided storm restoration savings in both time and costs.

The total estimated costs for the Transmission Inspection Program for the ten-year period of 2020-

2029 is \$35 million with an annual average cost of approximately \$3.5 million, which is consistent

with historical costs for the existing Transmission Inspection Program.

A detailed description of the Transmission Inspection Program is provided in Section IV(B) of

Gulf's proposed SPP.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 - For 2020, Gulf's SPP estimated approximately \$3.5 million for

the Transmission Inspection Program, which included approximately \$3.2 million in

capital costs and \$0.35 million in O&M expenses. As of the end of May 2020, the total

spend for this program is \$0 as the program is beginning in June 2020. Gulf is not seeking

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

to recover any 2020 costs associated with the Transmission Inspection Program through the Storm Protection Plan Cost Recovery Clause.

Progress Summary:

SPP Year 2020 – In its SPP, Gulf projected the inspection of structures based on a six-year cycle and has historically not inspected a set number of poles per year. As of the end of May 2020, Gulf has not yet begun its structure inspections, but anticipates being on track to complete its established inspection cycle. by the end of 2020.

Projections:

SPP Year 2021 – For 2021, Gulf projects it will continue to inspect its structures based on alternating 12-year cycles. Gulf estimates that it will incur approximately \$3.5 million in 2021 for the Transmission Inspection Program, which includes approximately \$2.6 million in capital expenditures, \$0.6 million in cost of removal, and approximately \$0.35 million in O&M expenses. Gulf is not seeking to recover any 2021 costs associated with the Transmission Inspection Program through the Storm Protection Plan Cost Recovery Clause.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Distribution Feeder Hardening Program

Description:

In Gulf's 2019-2021 Storm Hardening Plan, submitted to the Commission on March 1, 2019, Gulf

enhanced its exiting program to storm harden its distribution feeders to the higher National Electric

Safety Code storm hardening construction or Extreme Wind Loading ("EWL") standards. During

2006-2018, Gulf reconstructed portions of existing feeders, most of them considered Critical

Infrastructure Function feeders which serve hospitals, police and fire stations, water treatment

facilities, and feeders that serve other key community needs. In 2019, Gulf began to apply EWL

standards to the design and construction of all new pole lines and major planned work, including

pole line extensions and relocations, and certain pole replacements. This construction standard

change for Gulf improves its distribution storm resiliency and overall service reliability to its

customers.

Gulf has approximately 269 feeders remaining to be hardened and expects to harden approximately

12 to 18 feeders annually, with approximately 50% of Gulf's feeders to be hardened or

underground by year-end 2029. The total estimated costs for the Distribution Feeder Hardening

Program for the period of 2020-2029 is \$315.3 million with an annual average cost of \$31.5

million. A detailed explanation of the program, its costs and benefits, is contained in Gulf's SPP,

Section IV(C), Distribution Feeder Hardening Program.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 - For 2020, Gulf's SPP estimated approximately \$12.3 million for

the Distribution Feeder Hardening Program, which included approximately \$11.5 million

in capital costs and \$0.8 million in O&M expenses. As of the end of May 2020, the total

spend for this program is \$5.2 million, which includes \$5.0 million in capital costs and \$0.2

million in O&M expenses. Gulf is not seeking to recover any 2020 costs associated with

the Distribution Feeder Hardening Program through the Storm Protection Plan Cost

Recovery Clause.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Progress Summary:

SPP Year 2020 – In its SPP, Gulf projected the hardening of 6 feeders. As of the end of May 2020, Gulf completed 1 feeder and is on track to complete the remaining 5 for a total of 6 feeders by the end of 2020.

Projections:

SPP Year 2021 – For 2021, Gulf projects it will harden 18 feeders. Gulf estimates that it will incur approximately \$38.4 million in 2021 for the Distribution Feeder Hardening Program, which includes approximately \$30.8 million in capital expenditures, \$5.1 million in cost of removal, and \$2.5 million in O&M expenses. Gulf is seeking to recover \$30.8 million of capital expenditures for the Distribution Feeder Hardening Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures and cost of removal for this program will be recovered through base rates.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Distribution Hardening – Lateral Undergrounding Program

Description:

Gulf is proposing in its SPP to start its undergrounding pilot that was mentioned in the 2019-2021

Storm Hardening Plan, similar to that conducted by Florida Power & Light Company ("FPL") and

Duke Energy Florida. The program would build upon the experiences of FPL and focus on

targeting certain overhead laterals, i.e., overhead laterals impacted by recent storms and with a

history of vegetation-related outages and other reliability issues, spread throughout Gulf's system.

Key objectives of the initial program would include validating conversion costs and identifying

cost savings opportunities, testing different design philosophies, better understanding customer

impacts and sentiments, and identifying barriers (e.g., obtaining easements, locating transformers,

and attaching entities' issues). The evaluation and engineering of Gulf's laterals identified to be

converted from overhead to underground will begin during the fourth quarter of 2020 and will

begin construction in 2021 of its pilot lateral underground program. The total estimated costs for

the period of 2020-2029 is approximately \$46.6 million with an annual average cost of

approximately \$4.7 million.

A detailed explanation of the program, its costs and benefits, is contained in Gulf's SPP, Section

IV(D), Distribution Hardening – Lateral Undergrounding Program.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 - For 2020, Gulf has no estimated or actual costs in its SPP for

the Distribution Hardening – Lateral Undergrounding Program.

Progress Summary:

Gulf is in the initial phase of the evaluation and engineering of Gulf's laterals identified to

be converted from overhead to underground which will begin during the fourth quarter of

2020.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Projections:

SPP Year 2021 – For 2021, Gulf projects it will hardening 8 laterals. Gulf estimates that it will incur approximately \$5.2 million in 2021 for the Distribution Hardening – Lateral Undergrounding Program, which includes approximately \$4.9 million in capital expenditures, \$0.1 million in cost of removal, and \$0.2 million in O&M expenses. Gulf is seeking to recover \$4.9 million of capital expenditures for the Distribution Hardening – Lateral Undergrounding Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures and cost of removal for this program will be recovered through base rates.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Transmission Hardening Program

Description:

Based on Gulf's recent storm experience with Hurricane Michael, transmission hardening

opportunities were identified in order to strengthen these critical facilities for the future. These

are: substation flood monitoring and hardening, transmission and substation resiliency, and

transmission structure replacement.

Beginning in 2019, Gulf began a substation hardening program by implementing flood monitoring

on vulnerable substations and reviewing switch house construction standards for possible

replacement and strengthening. Gulf is re-evaluating substation locations using the Coastal

Substation Risk Assessments for all substations. As part of this process, a National Oceanic and

Atmospheric Administration ("NOAA") Sea, Lake and Overland Surges from Hurricanes

("SLOSH") model is being used to define the potential maximum flood levels. SLOSH is a

computerized model run by the National Hurricane Center to estimate storm surge heights and

winds resulting from historical, hypothetical, or predicted hurricanes. Gulf will implement flood

monitoring on vulnerable substations and review switch house construction standards for possible

replacement and strengthening.

While Gulf's transmission and substation facilities have continued to perform satisfactorily in the

past, it should be noted that Gulf's system and the reliability has been impacted by single point of

failure events that have had, and will continue to have, the potential to greatly impact customers.

Gulf has initiated a transmission and substation resiliency program and has begun to invest in the

overall strengthening of the electric grid at the transmission and substation level to remove these

critical single points of failure that have the potential to impact large numbers of customers for

extended periods of time. By building redundancy in the system to make it more resilient, these

improvements will eliminate outages, and shorten restoration times following major weather

events.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

In Gulf's 2019-2021 Storm Hardening Plan, submitted to the Commission on March 1, 2019, Gulf expanded its existing program to storm harden its transmission wood structures by replacing them with steel or concrete structures. As of year-end 2019, 62% of Gulf's transmission structures, system-wide, were steel or concrete, with approximately 38% (approximately 4,600) wood structures remaining to be replaced. Gulf expects to replace the approximately 4,600 wood transmission structures remaining on its system by year-end 2029. The total estimated costs for the Transmission Hardening Program for the ten-year period of 2020-2029 are \$488.8 million with an annual average cost of approximately \$48.9 million.

A detailed explanation of the program, its costs and benefits, is contained in Gulf's SPP, Section IV(E), Transmission Hardening Program.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 – For 2020, Gulf's SPP estimated approximately \$5.3 million for the Transmission Hardening Program, which included approximately \$5.2 million in capital costs and \$0.1 million in O&M expenses. As of the end of May 2020, the total spend for this program is \$3.92 million, which includes \$3.91 million in capital costs and \$0.01 million in O&M expenses. Gulf is not seeking to recover any 2020 costs associated with the Transmission Hardening Program through the Storm Protection Plan Cost Recovery Clause.

Progress Summary:

SPP Year 2020 – In its SPP, Gulf projected the hardening of 2 substation control houses, 8 flood monitors, 3 additional transformer banks, and replace 70 wood structures. As of the end of May 2020, Gulf has completed all 70 structures and plans to complete the remaining hardening of substation control houses, flood monitors, and additional transformer banks by the end of 2020.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Projections:

SPP Year 2021 – For 2021, Gulf projects it will harden approximately 370 structures, 2 control houses, install 9 additional transformer banks, and add a second transmission line to a substation. Gulf estimates that it will incur approximately \$45.5 million in 2021 for the Transmission Hardening Program, which includes approximately \$40.8 million in capital expenditures, \$4.3 million in cost of removal, and \$0.4 million in O&M expenses. Gulf is seeking to recover \$40.8 million of capital expenditures for the Transmission Hardening Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures and cost of removal for this program will be recovered through base rates.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Vegetation Management – Distribution Program

Description:

Gulf proposes to continue its existing Commission-approved Vegetation Management -Distribution Program which includes its system-wide: three-year cycle for feeders; mid-year cycle inspection and trimming for feeders; four-year cycle for laterals; and continued education of customers through its Right Tree Right Place Program. On average, Gulf plans to inspect and trim annually approximately one-third (1/3) of its overhead feeder miles, or 259 miles; approximately one-fourth (1/4) of its overhead lateral miles, or 1,257 miles; and mid-cycle inspection and trim of approximately 518 miles for a total estimated inspection and trim average of approximately 2,000 miles per year. The primary objective of Gulf's Vegetation Management – Distribution Program is to clear vegetation in areas where Gulf is permitted to trim for the vicinity of distribution facilities and equipment in order to provide safe, reliable and cost-effective electric service to its customers. Additionally, as explained in the 2020-2029 SPP, recent storm events demonstrate that Gulf's existing Vegetation Management – Distribution Program has contributed to the overall improvement in the resiliency of distribution system during storms, resulting in reductions in storm damage to poles, days to restore, and storm restoration costs. The total estimated costs for the Vegetation Management – Distribution Program for the ten-year period of 2020-2029 is \$47.4 million with an annual average cost of \$4.7 million, which is consistent with historical costs for the existing Vegetation Management – Distribution Program.

A more detailed explanation of the program, its costs and benefits, is contained in Gulf's SPP, Section IV(F), Vegetation Management – Distribution Program.

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 – For 2020, Gulf's SPP estimated approximately \$5.0 million for the Vegetation Management – Distribution Program as operating expenses. As of the end of May 2020, the total spend for this program is \$1.9 million. Gulf is not seeking to recover

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

any 2020 costs associated with the Vegetation Management – Distribution Program through the Storm Protection Plan Cost Recovery Clause.

Progress Summary:

SPP Year 2020 – In its SPP, Gulf projected an average of inspection and trim of 2,000 miles of vegetation maintenance. As of the end of May 2020, Gulf completed approximately 738 miles of vegetation management inspections and trimming and is on track to complete the remaining 1262 miles for a total of approximately 2000 miles by the end of 2020.

Projections:

SPP Year 2021 – For 2021, Gulf projects it will complete an average of approximately 2,000 miles of inspection and trimming of vegetation maintenance. Gulf estimates that it will incur approximately \$4.7 million O&M expense in 2021 for the Vegetation Management – Distribution Program, there are no capital costs for Vegetation Management – Distribution Program. Gulf is not seeking recovery of the 2021 costs for the Vegetation Management – Distribution Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures for this program will be recovered through base rates.

GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Program Title: Vegetation Management – Transmission Program

Description:

Gulf proposes to continue its existing Commission-approved Vegetation Management -Transmission Program. This program also complies with the North American Electric Reliability Corporation's ("NERC") vegetation management standards and requirements for Gulf's transmission system. The reliability objective of these standards and requirements is to prevent vegetation-related outages which could lead to cascading by utilizing effective vegetation maintenance. Approximately just over one third of Gulf's total transmission system, or approximately 600 miles, fall under the NERC vegetation management standards and requirements. The key elements of Gulf's Vegetation Management – Transmission Program are rights of way ground floor vegetation management, annual ground inspections of transmission rights of way, document vegetation inspection results and findings, and prescribe a work plan and execute the work plan. For those transmission lines which fall under NERC's vegetation management standards and requirements, Gulf plans to pilot and begin using a technology called LiDAR, Light Detection and Ranging. The collected LiDAR data will be used to develop preventative and reactive work plans. Gulf will continue to develop and execute annual work plans to address identified vegetation conditions. Under the 2020-2029 SPP, Gulf plans to continue its current program of identifying and correcting priority vegetation and hazard tree conditions. The total estimated costs for the Vegetation Management – Transmission Program for the ten-year period of 2020-2029 is \$28.3 million with an annual average cost of approximately \$2.8 million, which is consistent with historical costs for the existing Vegetation Management – Transmission Program.

A more detailed explanation of the program, its costs and benefits, is contained in Gulf's SPP, Section IV(G), Vegetation Management – Transmission Program.

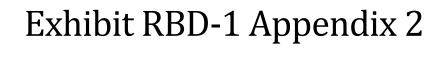
GULF POWER COMPANY PROJECT DESCRIPTION AND PROGRESS

Accomplishments:

Fiscal Expenditures:

SPP Year 2020 – For 2020, Gulf's SPP estimated approximately \$2.5 million for the Vegetation Management – Transmission Program in O&M expenses. As of the end of May 2020, the total spend for this program is \$0.7 million. Gulf is not seeking to recover any 2020 costs associated with the Vegetation Management – Transmission Program through the Storm Protection Plan Cost Recovery Clause.

Progress Summary:


SPP Year 2020 – In its SPP, Gulf projected vegetation maintenance of 600 miles of NERC and 1075 miles of non-NERC miles. As of the end of May 2020, Gulf completed 180 miles of NERC and 525 miles of non-NERC vegetation maintenance and is on track to complete the remaining 425 miles of NERC and 550 miles of non-NERC vegetation maintenance for a total of 1675 miles by the end of 2020.

Projections:

SPP Year 2021 – For 2021, Gulf projects it will complete 1675 miles of vegetation maintenance. Gulf estimates that it will incur approximately \$2.9 million O&M expense in 2021 for the Vegetation Management – Transmission Program, there are no capital costs for Vegetation Management – Transmission Program. Gulf is not seeking recovery of the 2021 costs for the Vegetation Management – Transmission Program through the Storm Protection Plan Cost Recovery Clause; the 2021 O&M expenditures for this program will be recovered through base rates.

FORM 7P Page 1 of 1

		LF POWER COMPANY			
		FORECASTED 2021			
		RUCTURE AND COST RA	ATES (a)		
		Equity @ 10.25%			
					PRE-TAX
	ADJUSTED	D. I. TTVO	MIDPOINT	WEIGHTED	WEIGHTED
	RETAIL	RATIO	COST RATES	COST	COST
LONG_TERM_DEBT	923,869,652	28.122%	2.91%	0.8195%	0.829
SHORT_TERM_DEBT	327,115,529	9.957%	0.51%	0.0508%	0.05
PREFERRED_STOCK	0	0.000%	0.00%	0.0000%	0.00
CUSTOMER_DEPOSITS	20,576,210	0.626%	2.66%	0.0167%	0.029
COMMON_EQUITY (b)	1,439,015,272	43.802%	10.25%	4.4897%	5.959
DEFERRED_INCOME_TAX	558,510,509	17.000%	0.00%	0.0000%	0.00
INVESTMENT_TAX_CREDITS					
ZERO COST	0	0.000%	0.00%	0.0000%	0.00
WEIGHTED COST	16,176,661	0.492%	7.38%	0.0363%	0.059
TOTAL	\$3,285,263,833	100.00%		5.4130%	6.889
	G 17 G77		Th. God Then 1111110001 1111		
		ATION OF THE WEIGHT	ED COST FOR INVESTMEN		DDE TAY
	ADJUSTED	DATE	COST	WEIGHTED	PRE TAX
	RETAIL	RATIO	RATE	COST	COST
LONG TERM DEBT	\$923,869,652	39.10%	2.914%	1.139%	1.1399
PREFERRED STOCK	0	0.00%	0.000%	0.000%	0.0009
COMMON EQUITY	1,439,015,272	60.90%	10.250%	6.242%	8.2709
TOTAL	\$2,362,884,924	100.00%		7.382%	9.4109
RATIO					
DEBT COMPONENTS:					
LONG TERM DEBT	0.8195%				
SHORT TERM DEBT	0.0508%				
CUSTOMER DEPOSITS	0.0167%				
TAX CREDITS -WEIGHTED	0.0056%				
TOTAL DEPT	0.80250/				
TOTAL DEBT	0.8925%				
EQUITY COMPONENTS:					
PREFERRED STOCK	0.0000%				
COMMON EQUITY	4.4897%				
TAX CREDITS -WEIGHTED	0.0307%				
TOTAL FOLUTY	4.5205%				
TOTAL EQUITY TOTAL	5.4130%				
PRE-TAX EQUITY	5.9891%				
PRE-TAX EQUITY PRE-TAX TOTAL	6.8816%				
FRE-TAX TUTAL	0.8810%				
Note:					

GULF POWER COMPANY

CALCULATION OF 12CPKW AT GENERATION BY RATE CLASS BACKUP WORKSHEET

	(1)	(2) DEMAND	(3)	(4)
		LOSS		
RATE	Average 12CPKW	EXPANSION	Average 12CPKW	JURIS.
CLASS	@ METER	FACTOR	@ GENER.	ALLOCATOR
RS/RSVP	1,077,395.04	1.00609343	1,083,960.07	
GS	64,216.73	1.00608241	64,607.33	
GSD/GSDT	390,856.78	1.00590017	393,162.90	
LP/LPT	111,599.05	0.98747379	110,201.13	
PX/PXT/RTP/CSA/SBS	240,698.02	0.96884429	233,198.90	
OSI/OSII	1,546.76	1.00619545	1,556.34	
OSIII	<u>5,349.83</u>	1.00617773	<u>5,382.88</u>	
JURISDICTIONAL	1,891,662.21		1,892,069.55	97.23427%
FPU (INT)	32,667.60	0.94895250	31,000.00	1.59310%
FPU (PEAK)	<u>24,045.40</u>	0.94895250	<u>22,817.94</u>	<u>1.17262%</u>
NON-JURISDICTIONAL	56,713.00		53,817.94	2.76573%
TERRITORIAL	1,948,375.21		1,945,887.49	100.00000%

GULF POWER COMPANY

CALCULATION OF DISTRIBUTION AND GENERAL PLANT SEPARTION FACTORS BACKUP WORKSHEET

	Total	-	Total Adjusted		Jurisdictional
	Total Adjusted	Unit Power	Utility Net	Jurisdictional	Separation
Description	Utility	Sales	Of UPS	Amount	Factor
DISTRIBUTION				_	
Land and Land Rights	3,137	0	3,137	3,063	0.9764106
Structures and Improvements	25,825	0	25,825	25,226	0.9768054
Station Equipment	214,784	0 _	214,784	210,928	0.9820471
DISTRIBUTION			243,746	239,217	0.9814192
		_			
GENERAL PLANT	205.892	1.339	204.553	201.302	0.9841068

Exhibit RBD-1 Appendix 3

Gulf Power Company Storm Protection Plan - Allocation of Implementation Costs

(in Dollars)

	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected
	January	February	March	April	May	June	July	August	September	October	November	December
Distribution Programs Plant In Service	'											
Distribution Feeder Hardening	\$1,197,570	\$2,929,751	\$4,898,702	\$6,973,619	\$9,265,191	\$12,342,710	\$15,767,687	\$19,347,368	\$22,309,164	\$24,822,676	\$27,138,938	\$29,196,621
Distribution Inspection Program	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$966,421
Vegetation Management - Distribution	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Distribution Hardening Lateral Undergrounding	\$188,127	\$460,235	\$769,537	\$1,095,486	\$1,455,469	\$1,938,917	\$2,476,948	\$3,039,281	\$3,504,550	\$3,899,397	\$4,263,258	\$4,589,190
Total Distribution Programs Plant In Service	\$1,385,697	\$3,389,986	\$5,668,239	\$8,069,104	\$10,720,660	\$14,281,627	\$18,244,635	\$22,386,649	\$25,813,714	\$28,722,073	\$31,402,196	\$34,752,233
												<u> </u>
Distribution Average Plant In Service	\$17,069,734											
Transmission Programs Plant In Service												
Transmission Inspection Program	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Transmission Hardening	\$1,197,570	\$2,929,751	\$4,898,702	\$6,973,619	\$9,265,191	\$12,342,710	\$15,767,687	\$19,347,368	\$22,309,164	\$24,822,676	\$27,138,938	\$29,196,621
Vegetation Management - Transmission	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Total Transmission Programs Plant In Service	\$1,197,570	\$2,929,751	\$4,898,702	\$6,973,619	\$9,265,191	\$12,342,710	\$15,767,687	\$19,347,368	\$22,309,164	\$24,822,676	\$27,138,938	\$29,196,621
												<u> </u>
Transmission Average Plant In Service	\$14,682,500											
Total Average Plant In Service	\$31,752,234											
Implementation Cost Allocated to Distribution %	53.76%											
Implementation Cost Allocated to Transmission %	46.24%											