Gulf Power

July 31, 2020

Mr. Adam Teitzman, Commission Clerk
Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, FL 32399-0850

Re: Environmental Cost Recovery Clause
Docket No. 20200007-El
Dear Mr. Teitzman:
Attached is Gulf Power Company's 2020 Estimated Actual Testimony and Exhibit to be filed in the above-referenced docket. The testimonies consist of the following:

1. Prepared direct testimony and exhibits of Michael W. Sole.
2. Prepared direct testimony and exhibit of Richard L. Hume.

Pursuant to the Order Establishing Procedure in this docket, electronic copies of exhibits MWS-1, MWS-2 and RLH-2 will be provided to the parties under separate cover.

Sincerely,

S/Richard Hume

Richard Hume
Regulatory Issues Manager
md
Attachments
cc: Florida Public Service Commission
Charles Murphy, Sr Attorney, Office of the General Counsel (5 copies)
Gulf Power Company
Russell Badders, Esq., VP \& Associate General Counsel

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

ENVIRONMENTAL COST RECOVERY CLAUSE

DOCKET NO. 20200007-EI

PREPARED DIRECT TESTIMONY OF Richard L. Hume

ESTIMATED/ACTUAL TRUE-UP FILING FOR THE PERIOD

JANUARY 2020 - DECEMBER 2020

July 31, 2020

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

 GULF POWER COMPANY TESTIMONY OF RICHARD L. HUMEDOCKET NO. 20200007-EI

JULY 31, 2020

Q. Please state your name and address.
A. My name is Richard Hume. My business address is Gulf Power Company, 700 Universe Boulevard, Juno Beach, FL 33408.
Q. By whom are you employed and in what capacity?
A. I am employed by Gulf Power Company ("Gulf" or the "Company") as Manager of Regulatory Issues, in the Regulatory \& State Governmental Affairs Department.
Q. Have you previously filed testimony in this docket?
A. Yes.
Q. What is the purpose of your testimony?
A. The purpose of my testimony is to present for Commission review and approval the Actual/Estimated True-up associated with Gulf's environmental compliance activities for the period January 2020 through December 2020.
Q. Have you prepared or caused to be prepared under your direction, supervision or control an exhibit in this proceeding?
A. Yes, I have. My Exhibit RLH-2 consists of nine forms, PSC Forms 42-1E through 429E, included in Appendix I.

- Form 42-1E provides a summary of the Actual/Estimated True-up amount for the period January 2020 through December 2020.
- Forms 42-2E and 42-3E reflect the calculation of the Actual/Estimated Trueup amount for the period.
- Forms 42-4E and 42-6E reflect the Actual/Estimated O\&M and capital cost variances as compared to original projections for the period.
- Forms 42-5E and 42-7E reflect jurisdictional recoverable O\&M and capital project costs for the period.
- Form 42-8E (pages 8 through 42) reflect the monthly calculations of recoverable costs associated with each capital project for the current recovery period.
- Form 42-9E provides the capital structure, components and cost rates relied upon to calculate the rate of return applied to capital investment amounts included for recovery for the period January 2020 through December 2020.

Q. Please explain the calculation of the Environmental Cost Recovery Clause ("ECRC") Actual/Estimated True-Up amount Gulf is requesting this Commission to approve.

A. The Actual/Estimated True-Up amount for the period January 2020 through December 2020 is an over-recovery, including adjustments and interest, of $\$ 2,837,159$ (Appendix I, page 1, line 4). The Actual/Estimated True-Up amount is calculated on Form 42-2E by comparing actual data for January 2020 through May 2020 and revised estimates for June 2020 through December 2020 to original projections for the same period. The over-recovery of $\$ 2,788,240$ shown on page 2 , line 5 plus the interest provision of $\$ 47,030$ shown on line 6 , which is calculated on Form 42-3E, plus adjustment of $\$ 1,889$ shown on line 10 , results in the final over-recovery of $\$ 2,837,159$, shown on line 11 . The adjustment of $\$ 1,889$ represents carrying costs related to the deferred amortization for the reclassification associated with Plant Smith
and Plant Scholz pond closure projects which were moved from capital accounts to deferred FERC 182 regulatory asset accounts during the fall of 2019. This was discussed in Witness Hume's 2019 ECRC Final True-up testimony, filed on April 1, 2020.
Q. Are all costs listed in Forms 42-4E through 42-8E attributable to environmental compliance projects approved by the Commission?
A. Yes.
Q. What jurisdictional factors were used to calculate projected recoverable costs for the period January 2020 through December 2020?
A. The demand jurisdictional factors applied in the calculation of retail revenue requirements is 97.23427 percent, which is based upon Gulf's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule 256.0437, F.A.C. The energy jurisdictional factors for each month are the same as those used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors. Due to new stratified wholesale agreement with Florida Public Utilities Company ("FPU"), Gulf is in process of determining the appropriate stratified jurisdictional factors to be completed before the end of the year. Any eventual over or under-recovery of costs due to changes in jurisdictional allocations will be handled through the final true-up process.
Q. How do the actual/estimated project costs for January 2020 through December 2020 compare with original projections for the same period?
A. Form 42-4E (Appendix I, page 4) shows that total O\&M project costs are $\$ 7,831,254$ lower than projected and Form 42-6E (Appendix I, page 6) shows that total capital project revenue requirements are $\$ 1,305,837$ lower than projected. Significant project variances are explained in Gulf Witness Sole's testimony.
Q. Please explain the variance associated with the Scherer/Flint credit?
A. The Flint contract and resulting Scherer credit expired on December 31, 2019. The
final December 2019 credit booked in January 2020 was not included in the 2020 projection filing, resulting in a variance of $\$ 127,104$.
Q. Does this conclude your testimony?
A. Yes.

8
\qquad

 都 都

AFFIDAVIT

STATE OF FLORIDA) COUNTY OF ESCAMBIA)

Before me, the undersigned authority, personally appeared Richard L. Hume, who being first duly sworn, deposes and says that he is the Regulatory Issues Manager of Gulf Power Company, a Florida corporation, that the foregoing is true and correct to the best of his knowledge and belief. He is personally known to me.

Sworn to and subscribed before me by means of \qquad physical presence or \qquad online notarization this \qquad day of
 , 2020.

Notary Public, State of Florida at Large

APPENDIX I

ENVIRONMENTAL COST RECOVERY COMMISSION FORMS 42-1E THROUGH 42-9E

JANUARY 2020 - DECEMBER 2020 ACTUAL/ESTIMATED TRUE-UP

RLH-2
DOCKET NO. 20200007-EI EXHIBIT

PAGES 1-44
JULY 31, 2020
Notes:
The adjustment in March 2020 are carrying costs related to the deferred amortization for the reclassification associated with Plant Smith and Plant Scholz pond closure projects
Notes:
1 Actual interest rates are developed using the AA financial 30 -day rates as published by the Federal Reserve. Estimated interest rates are based on the actual rates for May 2020 .

January 2020 - December 2020													
	Actual January	Actual February	Actual March	Actual April	Actual May	Estimated June	Estimated July	Estimated August	Estimated September	$\begin{gathered} \text { Estimated } \\ \text { October } \\ \hline \end{gathered}$	Estimated November	Estimated December	Total
1 Beg. True-Up Amount (Form 42-2E, Lines $7+7 \mathrm{a}$)	\$12,397,546	\$10,689,370	\$8,044,647	\$4,672,976	\$3,127,027	\$2,027,151	\$4,759,181	\$11,007,395	\$14,768,228	\$16,278,412	\$15,027,701	\$10,506,873	
2 Ending True-Up Amount Before Interest	\$10,673,843	\$8,032,169	\$4,661,107	\$3,123,340	\$2,027,001	\$4,758,954	\$11,006,867	\$14,767,364	\$16,277,372	\$15,026,652	\$10,506,017	\$8,728,357	
3 Total of Beginning \& Ending True-up (Lines $1+2$)	\$23,071,389	\$18,721,539	\$12,705,754	\$7,796,315	\$5,154,029	\$6,786,104	\$15,766,048	\$25,774,759	\$31,045,600	\$31,305,064	\$25,533,718	\$19,235,230	
4 Average True-Up Amount (Line $3 \times 1 / 2$)	\$11,535,694	\$9,360,770	\$6,352,877	\$3,898,158	\$2,577,014	\$3,393,052	\$7,883,024	\$12,887,380	\$15,522,800	\$15,652,532	\$12,766,859	\$9,617,615	
5 Interest Rate (First Day of Reporting Business Month) ${ }^{1}$	1.59000\%	1.64000\%	1.56000\%	2.21000\%	0.06000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	
6 Interest Rate (First Day of Subsequent Business Month) ${ }^{1}$	1.64000\%	1.56000\%	2.21000\%	0.06000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	
7 Total of Beginning and Ending Interest Rates (Line 5 + Line 6	3.23000\%	3.20000\%	3.77000\%	2.27000\%	0.14000\%	0.16000\%	0.16000\%	0.16000\%	0.16000\%	0.16000\%	0.16000\%	0.16000\%	
8 Average Interest Rate (Line $7 \times 1 / 2$)	1.61500\%	1.60000\%	1.88500\%	1.13500\%	0.07000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	0.08000\%	
9 Monthly Average Interest Rate (Line $8 \times 1 / 12$)	0.13460\%	0.13330\%	0.15710\%	0.09460\%	0.00580\%	0.00670\%	0.00670\%	0.00670\%	0.00670\%	0.00670\%	0.00670\%	0.00670\%	
10 Interest Provision for the Month (Line $4 \times$ Line 9)	\$15,527	\$12,478	\$9,980	\$3,688	\$149	\$227	\$528	\$863	\$1,040	\$1,049	\$855	\$644	\$47,030

Line	O \& M Project	Actual January	Actual February	$\begin{aligned} & \text { Actual } \\ & \text { March } \end{aligned}$	Actual April	$\begin{gathered} \text { Actual } \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \text { Estimated } \\ \text { June } \end{gathered}$	$\begin{gathered} \text { Estimated } \\ \text { July } \end{gathered}$	Estimated August	Estimated September	Estimated October	Estimated November	Estimated December	Twelve Month Amount	Method of Demand	lassification Energy
1	Description of O\& M Activities															
	1 Sulfur	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2 Air Emission Fees	\$3,475	$(\$ 6,635)$	\$137,213	\$16,883	\$11,153	(\$34,821)	\$12,976	\$12,976	\$12,976	\$12,976	\$12,976	\$78,587	\$270,737	\$0	\$270,737
	3 Title V	\$12,225	\$21,892	\$18,269	\$16,531	\$13,808	\$17,757	\$23,526	\$16,987	\$17,757	\$17,757	\$16,987	\$23,530	\$217,024	\$0	\$217,024
	4 Asbestos Fees	\$2,329	\$1,000	\$51,500	(\$18)	\$733	(\$54,543)	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000	\$1,000	\$0
	5 Emission Monitoring	\$46,081	\$40,695	\$41,240	\$60,469	\$88,633	\$50,350	\$91,108	\$52,876	\$53,173	\$53,048	\$53,048	\$57,819	\$688,542	\$0	\$688,542
	6 General Water Quality	$(\$ 67,189)$	\$80,089	\$121,111	\$47,195	\$88	\$125,226	\$153,164	\$170,590	\$154,187	\$201,001	\$166,923	\$105,527	\$1,257,915	\$1,257,915	\$0
	7 Groundwater Contamination Investigation	\$219,935	\$175,562	\$189,139	\$247,262	\$398,113	\$125,498	\$153,015	\$100,498	\$126,498	\$126,498	\$126,498	\$102,498	\$2,091,013	\$2,091,013	\$0
	8 State NPDES Administration	\$3,020	\$3,120	\$16,727	\$14,246	\$16,326	(\$38,423)	\$0	\$0	\$0	\$0	\$0	\$34,500	\$49,516	\$49,516	\$0
	9 Lead \& Copper Rule	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	10 Environmental Auditing/Assessment	(\$4,912)	\$0	\$0	\$0	\$28,500	(\$26,000)	\$0	\$0	\$0	\$2,500	\$2,500	\$0	\$2,588	\$2,588	\$0
	11 General Solid \& Hazardous Waste	\$116,157	\$103,716	\$15,721	\$61,184	\$52,120	\$95,146	\$86,808	\$117,192	\$101,754	\$91,282	\$71,545	\$45,352	\$957,980	\$957,980	\$0
	12 Above Ground Storage Tanks	\$6,447	\$11,325	\$8,149	\$18,811	\$12,166	\$34,190	\$20,000	\$4,000	\$36,000	\$33,590	\$6,000	\$6,000	\$196,679	\$196,679	\$0
	13 Low NOx	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	14 Ash Pond Diversion Curtains	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	15 Mercury Emissions	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	16 Sodium Injection	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	17 Gulf Coast Ozone Study	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	18 SPCC Substation Project	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	19 FDEP NOx Reduction Agreement	\$78,137	\$5,299	(\$23,349)	\$3,073	\$3,309	\$26,727	\$38,979	\$45,366	\$37,999	\$3,927	\$3,927	\$3,927	\$227,320	\$0	\$227,320
	20 Air Quality Compliance Program	\$1,147,480	\$731,047	\$1,745,060	\$728,491	\$1,120,104	\$1,292,806	\$1,575,768	\$1,709,679	\$1,310,422	\$1,382,405	\$2,829,096	\$1,426,418	\$16,998,777	\$0	\$16,998,777
	21 MACTICR	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	22 Crist Water Conservation	\$0	\$0	\$0	\$0	\$16,509	\$50,000	\$67,000	\$12,000	\$12,000	\$20,978	\$30,000	\$0	\$208,487	\$208,487	\$0
	23 Coal Combustion Residuals	\$466,919	\$304,789	\$183,026	\$65,932	\$1,455,371	\$386,462	(\$2,280,949)	(\$17,909)	\$94,619	\$105,504	\$95,593	\$141,487	\$1,000,844	\$1,000,844	\$0
	24 Smith Water Conservation	\$4,254	\$2,466	\$2,933	(\$1,373)	\$120	\$4,058	\$4,058	\$4,058	\$4,058	\$4,058	\$4,058	\$4,058	\$36,806	\$36,806	\$0
	25 Mercury Allowances	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	26 Annual NOx Allowances	\$929	(\$286)	\$0	\$176	\$0	\$93	\$81	\$99	\$87	\$60	\$58	\$67	\$1,362	\$0	\$1,362
	27 Seasonal NOx Allowances	(\$24)	\$0	\$0	(\$32)	\$0	\$375	\$417	\$426	\$383	\$0	\$0	\$0	\$1,545	\$0	\$1,545
	28 SO2 Allowances	\$4,293	\$1,395	\$0	\$18,846	(\$5)	\$1,491	\$1,184	\$1,193	\$1,126	\$622	\$117	\$155	\$30,417	\$0	\$30,417
2	Total of O \& M Activities	\$2,039,556	\$1,475,475	\$2,506,739	\$1,297,675	\$3,217,047	\$2,056,392	(\$52,865)	\$2,230,033	\$1,963,040	\$2,056,207	\$3,419,327	\$2,029,926	\$24,238,551	\$5,802,827	\$18,435,724
	Recoverable Costs Allocated to EnergyRecoverable Costs Allocated to Demand	\$1,292,596	\$793,407	\$1,918,433	\$844,436	\$1,237,002	\$1,354,777	\$1,744,038	\$1,839,603	\$1,433,923	\$1,470,796	\$2,916,209	\$1,590,503	\$18,435,724		
4		\$746,960	\$682,068	\$588,306	\$453,238	\$1,980,046	\$701,614	(\$1,796,903)	\$390,429	\$529,117	\$585,411	\$503,117	\$439,423	\$5,802,827		
5	Retail Energy Jurisdictional Factor (C) Retail Demand Jurisdictional Factor (D)	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000			
6		0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427			
Jurisdictional Energy Recoverable Costs (A) Jurisdictional Demand Recoverable Costs (B)		\$1,294,147	\$794,359	\$1,920,735	\$845,449	\$1,238,486	\$1,356,403	\$1,746,131	\$1,841,811	\$1,435,644	\$1,472,561	\$2,919,709	\$1,592,412	\$18,457,847		
		\$726,301	\$663,204	\$572,035	\$440,703	\$1,925,283	\$682,210	(\$1,747,206)	\$379,631	\$514,483	\$569,220	\$489,203	\$427,270	\$5,642,337		
9	Total Jurisdictional Recoverable Costs for O \& M Activities (Lines $7+8$)															
		\$2,020,448	\$1,457,563	\$2,492,770	\$1,286,152	\$3,163,769	\$2,038,613	(\$1,075)	\$2,221,442	\$1,950,127	\$2,041,781	\$3,408,911	\$2,019,681	\$24,100,184		

ANUARY 2020 THROUGH DECEMBER 2020
For Program: Air Quality Assurance Testing

$\frac{\text { Notes: }}{\text { (A) }}$ Description and reason for 'Other' adjustments to net investment for this program, if applicable.
Description and reason for 'Other' adjustments to net investment for this program, if applicable.
Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
The equity component has been grossed up for taxes. The approved ROE is 10.25%,
Applicable amortization period.

The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
JANUARY 2020 THROUGH DECEMBER 2020
For Program: Crist 5,6 \& 7 Precipitator Programs

[^0]
6 Average Net Investment
7 Return on Average Net Investment
a Equity Component (Line $6 \times$ Equity Component $\times 1 / 12$) (D)
b \quad Debt Component (Line $6 \times$ Debt Component $\times 1 / 12$)
8 Investment Expenses

$\xrightarrow{2}$

Page 10 of 44
JANUARY 2020 THROUGH DECEMBER 2020
For Program: Low NOx Burners, Crist $6 \& 7$

JANUARY 2020 THROUGH DECEMBER 2020 For Program: CEMS - Plants Crist \& Daniel														
Line	Description \quadBeginning of Period Amount	Actual January	$\begin{aligned} & \text { Actual } \\ & \text { February } \end{aligned}$	Actual March	Actual April	Actual May	Estimated June	Estimated July	$\begin{gathered} \text { Estimated } \\ \text { August } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Estimated } \\ & \text { September } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Estimated } \\ \text { October } \end{gathered}$	Estimated November	Estimated December	Twelve Month Total
1	Investments													
	a Expenditures/Additions	0	0	0	0	0	0	0	0	0	0	0	0	0
	b Clearings to Plant	0	0	0	0	0	0	0	0	0	0	0	0	0
	c Retirements	0	0	0	0	0	0	0	0	0	0	0	0	0
	d Other	0	0	0	0	0	0	0	0	0	0	0	0	0
	e PIS Adjustment	0	0	0	0	0	0	0	0	0	0	0	0	0
	f Accumulated Depreciation Adjustment	(29)	0	0	0	0	0	0	0	0	0	0	0	(29)
2	Plant-in-Service/Depreciation Base (B) 4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	4,712,783	
3	Less: Accumulated Depreciation (C) 266,590	251,344	236,127	220,911	205,694	190,477	175,261	160,044	144,828	129,611	114,394	99,178	83,961	
4	CWIP - Non Interest Bearing 0	0	0	0	0	0	0	0	0	0	0	0	0	
5	Net Investment (Lines $2+3+4$ (A$) \quad$ ($4,979,373$	4,964,127	4,948,910	4,933,694	4,918,477	4,903,260	4,888,044	4,872,827	4,857,611	4,842,394	4,827,177	4,811,961	4,796,744	
6	Average Net Investment	4,971,750	4,956,519	4,941,302	4,926,085	4,910,869	4,895,652	4,880,435	4,865,219	4,850,002	4,834,786	4,819,569	4,804,352	
7	Return on Average Net Investment													
	a Equity Component (Line $6 \times$ Equity Component $\times 1 / 12$) (D)	22,890	22,820	22,750	22,680	22,610	22,540	23,372	23,300	23,227	23,154	23,081	23,008	275,430
	b Debt Component (Line $6 \times$ Debt Component \times 1/12)	5,777	5,759	5,742	5,724	5,706	5,689	5,120	5,104	5,088	5,072	5,056	5,040	64,876
8	Investment Expenses													
	a Depreciation (E)	15,217	15,217	15,217	15,217	15,217	15,217	15,217	15,217	15,217	15,217	15,217	15,217	182,599
	b Amortization (F)	0	0	0	0	0	0	0	0	0	0	0	0	0
	c Dismantlement	0	0	0	0	0	0	0	0	0	0	0	0	0
	d Property Taxes	872	872	872	872	872	872	872	872	872	872	872	872	10,460
	e Other (G)	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Total System Recoverable Expenses (Lines $7+8$)	44,755	44,668	44,580	44,492	44,404	44,317	44,580	44,491	44,403	44,314	44,225	44,136	533,364
	$\begin{array}{ll}\text { a } & \text { Recoverable Costs Allocated to Energy } \\ \text { b } & \text { Recoverable Costs Allocated to Demand }\end{array}$	3,443	3,436	3,429	3,422	3,416	3,409	3,429	3,422	3,416	3,409	3,402	3,395	41,028
		41,313	41,232	41,151	41,070	40,989	40,908	41,151	41,069	40,987	40,905	40,823	40,741	492,336
10	Energy Jurisdictional Factor (J)	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
11	Demand Jurisdictional Factor (K)	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	
12	Retail Energy-Related Recoverable Costs (H)	3,447	3,440	3,433	3,427	3,420	3,413	3,433	3,427	3,420	3,413	3,406	3,399	41,077
13	Retail Demand-Related Recoverable Costs (I)	40,170	40,091	40,012	39,934	39,855	39,776	40,013	39,933	39,853	39,774	39,694	39,614	478,720
14	Total Jurisdictional Recoverable Costs (Lines $12+13$)	43,617	43,531	43,446	43,360	43,275	43,189	43,446	43,360	43,273	43,186	43,100	43,013	519,797

Notes:
(A)
(Bue to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs.
(C)
Descripte begion of Adjing of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
(D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
(E) Applicable depreciation rate or rates.
(F) Applicable amortization period.
(G)
Description and reason for "Other" adjustments to investment expenses for this program.
(H) Line 9a \times Line $10 \times$ x line loss multiplier
(I)
Line $9 \mathrm{~b} \times$ Line 11 .
(J)
The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

JANUARY 2020 THROUGH DECEMBER 2020 For Program: Raw Water Well Flowmeters - Plants Crist \& Smith															
Line	Description	$\begin{array}{\|c\|} \hline \text { Beginning of } \\ \text { Period Amount } \\ \hline \end{array}$	Actual	$\begin{array}{c\|} \hline \text { Actual } \\ \text { February } \\ \hline \end{array}$	$\begin{aligned} & \text { Actual } \\ & \text { March } \end{aligned}$	$\begin{aligned} & \hline \text { Actual } \\ & \text { April } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Actual } \\ \text { May } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { Estimated } \\ \text { June } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Estimated } \\ \text { July } \end{array}$	Estimated	Estimated September	$\begin{aligned} & \text { Estimated } \\ & \text { October } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Estimated } \\ \text { November } \end{array}$	Estimated December	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Twelve Month } \\ \text { Total } \end{array} \\ \hline \end{array}$
Investments															
	a Expenditures/Additions		0	0	0	0	0	0	0	0	0	0	0	0	0
	b Clearings to Plant		0	0	0	0	0	0	0	0	0	0	0	0	0
	c Retirements		0	0	0	0	0	0	0	0	0	0	0	0	0
	d Other		0	0	0	0	0	0		0	0	0	0	0	0
2	Plant-in-Service/Depreciation Base (B)	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	149,950	
3	Less: Accumulated Depreciation (C)	$(50,859)$	$(51,359)$	(51,859)	$(52,359)$	$(52,859)$	$(53,358)$	$(53,858)$	$(54,358)$	$(54,858)$	$(55,358)$	$(55,858)$	$(56,357)$	$(56,857)$	
4	CWIP - Non Interest Bearing	0	0	0	0	0)	0	0	0	0	0	0	0	
5	Net Investment (Lines $2+3+4$ (A)	99,090	98,591	98,091	97,591	97,091	96,591	96,091	95,592	95,092	94,592	94,092	93,592	93,092	
6	Average Net Investment		98,840	98,341	97,841	97,341	96,841	96,341	95,841	95,342	94,842	94,342	93,842	93,342	
Return on Average Net Investment															
	a Equity Component (Line $6 \times$ Equity Component $\times 1 / 12$	12) (D)	455	453	450	448	446	444	459	457	454	452	449	447	5,414
	b Debt Component (Line $6 \times$ Debt Component $\times 1 / 12$)		115	114	114	113	113	112	101	100	99	99	98	98	1,276
8	Investment Expenses														
	a Depreciation (E)		500	500	500	500	500	500	500	500	500	500	500	500	5,998
	b Amortization (F)		0	0	0	0	0	0	0	0	0	-	0	0	0
	c Dismantlement		0	0	0	0	0	0	0	0	0	0	0		0
	d Property Taxes		0	0	0	0	0	0	0	0	0	0	0	0	0
	e Other (G)		0	0	0	0	0	0	0	0	0	0	0	0	0
9	Total System Recoverable Expenses (Lines $7+8$)		1,070	1,067	1,064	1,061	1,058	1,055	1,059	1,056	1,054	1,051	1,048	1,045	12,688
	a Recoverable Costs Allocated to Energy b Recoverable Costs Allocated to Demand		82	82	82	82	81	81	81	81	81	81	81	80	976
			987	985	982	979	977	974	978	975	972	970	967	964	11,712
1011	Energy Jurisdictional Factor (J)		1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
	Demand Jurisdictional Factor (K)		0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	
12	Retail Energy-Related Recoverable Costs (H)		82	82	82	82	81	81	82	81	81	81	81	80	977
13	Retail Demand-Related Recoverable Costs (I) Total Jurisdictional Recoverable Costs (Lines $12+13$)		960	958	955	952	950	947	951	948	946	943	940	938	11,388
14			1,043	1,040	1,037	1,034	1,031	1,028	1,032	1,030	1,027	1,024	1,021	1,018	$\underline{ } 12,365$

[^1]
(A) Prior period adjustment to reserve balance made in May 2020 .
(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
(C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
(D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
(E) Applicable depreciation rate or rates.
(F) Applicable amortization period.
(G) Description and reason for "Other" adjustments to investment expenses for this program.
(H) Line 9 x Line $10 \times$ line loss multiplier
(I) Line $9 b \times$ Line 11 .
(J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculatio
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filied with the Commi
(J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^2]NUARY 2020 THROUGH DECEMBER 2020
For Program: Sodium Injection System

JANUARY 2020 THROUGH DECEMBER 2020 For Program: Sodium Injection System															
Line	Description	$\left\lvert\, \begin{gathered}\text { Begining of } \\ \text { Period Amount }\end{gathered}\right.$	$\begin{aligned} & \text { Actual } \\ & \text { January } \end{aligned}$	$\begin{gathered} \text { Actual } \\ \text { February } \end{gathered}$	$\begin{aligned} & \text { Actual } \\ & \text { March } \end{aligned}$	$\begin{aligned} & \text { Actual } \\ & \text { April } \end{aligned}$	$\begin{aligned} & \text { Actual } \\ & \text { May } \end{aligned}$	Estimated ${ }_{\text {June }}$	${ }_{\text {Estimated }}^{\text {July }}$	Estimated	Estimated	Estimated October	$\begin{aligned} & \text { Estimated } \\ & \text { November } \end{aligned}$	Estimated	$\underbrace{\substack{\text { Twelve Month }}}_{\text {Tolve }}$
1	Investments														
	a Expenditures/Additions		0	0	0	0	0	0	0	0	0	0	0	0	0
	b Clearings to Plant		0	0	0	0	0	0	0	0	0	0	0	0	0
	c Retirements		0	0	0	0	0	0	0	0	0	0	0	0	0
	d Other		${ }^{0}$	${ }^{0}$	${ }^{0}$	0	${ }^{0}$	2	${ }^{0}$	${ }^{0}$	${ }^{0}$	${ }^{0}$	${ }^{0}$	${ }^{0}$	0
2	Plant-in-Service/Depreciation Base (B)	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	284,622	
3	Less: Accumulated Depreciation (C)	(140,871)	$(141,819)$	$(142,768)$	(143,717)	$(144,666)$	(145,614)	$(146,563)$	(147,512)	$(148,460)$	$(149,409)$	$(150,358)$	(151,307)	$(152,255)$	
4	CWIP - Non Interest Bearing	0	0	0	0	0	0	0	0	0	0)	0)	
5	Net Investment (Lines $2+3+4$ (A)	143,751	142,802	141,854	140,905	139,956	139,007	138,059	137,110	136,161	135,213	134,264	133,315	132,366	
6	Average Net Investment		143,277	142,328	141,379	140,431	139,482	138,533	137,584	136,636	135,687	134,738	133,789	132,841	
7	Retum on Average Net Investment														
	$\begin{array}{ll}\text { a } & \text { Equity Component (Line } 6 \times \text { Equity Component } \times 1 / 12)(\mathrm{D}) \\ \mathrm{b} & \text { Debt Component (Line } 6 \times \text { Debt Component } \times 1 / 12)\end{array}$		166	165	164	163	162	161	144	143	142	141	140	139	1,833
8	Investment Expenses														
			949	949	949	949	949	949	949	949	949	949	949	949	11,385
			0	0	0	0	0	0	0	0	0	0	0	0	0
	$\begin{array}{ll}\text { b } & \text { Amortization (F) } \\ \text { c } & \text { Dismantlement }\end{array}$		0	0	0	0	0	0			0	0	0	0	0
	$\begin{array}{ll}\text { c } & \text { Dismantlement } \\ \text { d } & \text { Property Taxes }\end{array}$		0	0	0	0	0	0	0	0	0	0	0	0	0
	deOroperty TaxesOth)		0	0	0	0	0	0	0	0	0	0	0	0	0
9			1,775	1,769	1,764	1,758	1,753	1,748	1,752	1,746	1,741	1,735	1,730	1,724	20,996
			137	136	136	135	135	134	135	134	134	133	133	133	1,615
	$\begin{array}{ll}\text { a } & \text { Recoverable Costs Allocated to Energy } \\ \mathrm{b} & \text { Recoverable Costs Allocated to Demand }\end{array}$		1,638	1,633	1,628	1,623	1,618	1,613	1,617	1,612	1,607	1,602	1,597	1,592	19,381
${ }_{11}^{10}$			1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
	Energy Jurisdictional Factor (J) Demand Jurisdictional Factor (K)		0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	
12	Retail Energy-Related Recoverable Costs (H)		137		136	135	135	135	135	135	134	134	133	133	1,617
13	Retail Demand-Related Recoverable Costs (1) ${ }_{\text {Total }}$ Jurisdictional Recoverable Costs (Lines $\left.12+13\right)$		1,593	1,588	1,583	1,578	1,573	1,568	1,572	1,567	1,563	1,558	1,553	1,548	18,845
14			1,730	1,724	1,719	1,714	1,708	1,703	1,707	1,702	1,697	1,691	1,686	1,680	20,462

[^3]| JANUARY 2020 THROUGH DECEMBER 2020 For Program: Smith Stormwater Collection System | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Description | Beginning of Period Amount | Actual January | Actual February | Actual March | Actual April | Actual May | Estimated June | $\begin{gathered} \hline \text { Estimated } \\ \text { July } \end{gathered}$ | Estimated August | Estimated September | Estimated October | Estimated November | Estimated | Twelve Month Total |
| Investments | | | | | | | | | | | | | | | |
| | a Expenditures/Additions | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | b Clearings to Plant | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | c Retirements | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | d Other | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | Plant-in-Service/Depreciation Base (B) | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | 2,764,379 | |
| 3 | Less: Accumulated Depreciation (C) | $(2,186,795)$ | $(2,197,622)$ | $(2,208,449)$ | (2,219,277) | $(2,230,104)$ | $(2,240,931)$ | $(2,251,758)$ | $(2,262,585)$ | $(2,273,412)$ | $(2,284,240)$ | $(2,295,067)$ | $(2,305,894)$ | $(2,316,721)$ | |
| 4 | CWIP - Non Interest Bearing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 5 | Net Investment (Lines $2+3+4$ (A) | 577,583 | 566,756 | 555,929 | 545,102 | 534,275 | 523,448 | 512,621 | 501,793 | 490,966 | 480,139 | 469,312 | 458,485 | 447,658 | |
| 6 | Average Net Investment | | 572,170 | 561,343 | 550,516 | 539,688 | 528,861 | 518,034 | 507,207 | 496,380 | 485,553 | 474,726 | 463,898 | 453,071 | |
| Return on Average Net Investment | | | | | | | | | | | | | | | |
| | a Equity Component (Line $6 \times$ Equity Component $\times 1 / 12$ | (D) | 2,634 | 2,584 | 2,535 | 2,485 | 2,435 | 2,385 | 2,429 | 2,377 | 2,325 | 2,273 | 2,222 | 2,170 | 28,854 |
| | b Debt Component (Line $6 \times$ Debt Component \times 1/12) | | 665 | 652 | 640 | 627 | 615 | 602 | 532 | 521 | 509 | 498 | 487 | 475 | 6,822 |
| 8 | Investment Expenses | | | | | | | | | | | | | | |
| | a Depreciation (E) | | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 10,827 | 129,926 |
| | b Amortization (F) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | c Dismantlement | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | d Property Taxes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | e Other (G) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | Total System Recoverable Expenses (Lines 7 + 8) | | 14,126 | 14,064 | 14,001 | 13,939 | 13,877 | 13,814 | 13,788 | 13,725 | 13,662 | 13,599 | 13,535 | 13,472 | 165,602 |
| | a Recoverable Costs Allocated to Energy | | 1,087 | 1,082 | 1,077 | 1,072 | 1,067 | 1,063 | 1,061 | 1,056 | 1,051 | 1,046 | 1,041 | 1,036 | 12,739 |
| | b Recoverable Costs Allocated to Demand | | 13,040 | 12,982 | 12,924 | 12,867 | 12,809 | 12,752 | 12,728 | 12,669 | 12,611 | 12,553 | 12,494 | 12,436 | 152,864 |
| 11 | Energy Jurisdictional Factor (J) | | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | |
| | Demand Jurisdictional Factor (K) | | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | |
| 12 | Retail Energy-Related Recoverable Costs (H) | | 1,088 | 1,083 | 1,078 | 1,074 | 1,069 | 1,064 | 1,062 | 1,057 | 1,052 | 1,047 | 1,042 | 1,038 | 12,754 |
| 13 | Retail Demand-Related Recoverable Costs (I)
 Total Jurisdictional Recoverable Costs (Lines $12+13$) | | 12,679 | 12,623 | 12,567 | 12,511 | 12,455 | 12,399 | 12,376 | 12,319 | 12,262 | 12,205 | 12,149 | 12,092 | 148,636 |
| 14 | | | 13,767 | 13,706 | 13,645 | 13,584 | 13,524 | 13,463 | 13,437 | 13,376 | 13,314 | 13,253 | 13,191 | 13,129 | 161,390 |

[^4]| JANUARY 2020 THROUGH DECEMBER 2020 For Program: Smith Waste Water Treatment Facility | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Description | $\begin{array}{\|c\|} \hline \text { Beginning of } \\ \text { Period Amount } \\ \hline \end{array}$ | $\begin{aligned} & \text { Actual } \\ & \text { January } \end{aligned}$ | $\begin{gathered} \text { Actual } \\ \text { February } \end{gathered}$ | Actual | $\begin{gathered} \text { Actual } \\ \text { April } \end{gathered}$ | $\begin{gathered} \text { Actual } \\ \text { May } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Estimated } \\ \text { June } \end{gathered}$ | Estimated July | $\begin{aligned} & \text { Estimated } \end{aligned}$ | $\begin{array}{l\|} \hline \text { Estimated } \\ \text { September } \end{array}$ | $\begin{aligned} & \hline \text { Estimated } \\ & \text { October } \end{aligned}$ | $\begin{aligned} & \text { Estimated } \\ & \text { November } \end{aligned}$ | Estimated December | $\begin{array}{\|c\|} \hline \text { Twelve Month } \\ \text { Total } \end{array}$ |
| 1 Investments | | | | | | | | | | | | | | | |
| | a Expenditures/Additions | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | b Clearings to Plant | | 0 | 464,658 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 464,658 |
| | c Retirements | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | d Other | | $(7,018)$ | 13,505 | 9,030 | 7,069 | ${ }^{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22,586 |
| | e PIS Adjustment | | O | $(464,658)$ | 0 | 0 | 464,658 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | ${ }^{\text {f }}$ Accumulated Depreciation Adjustment | | 4,596 | 0 | ${ }^{0}$ | | $(3,553)$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | 1,043 |
| 2 | Plant-in-Service/Depreciation Base (B) | 178,962 | 178,962 | 178,962 | 178,962 | 178,962 | 643,620 | 643,620 | 643,620 | 643,620 | 643,620 | 643,620 | 643,620 | 643,620 | |
| 3 | Less: Accumulated Depreciation (C) | 128,007 | 124,884 | 137,688 | 146,017 | 152,385 | 146,311 | 143,790 | 141,269 | 138,748 | 136,228 | 133,707 | 131,186 | 128,665 | |
| | CWIP - Non Interest Bearing | 464,658 | 464,658 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 5 | Net Investment (Lines $2+3+4$ (A) | 771,626 | 768,503 | 316,650 | 324,978 | 331,347 | 789,930 | 787,410 | 784,889 | 782,368 | 779,847 | 777,326 | 774,805 | 772,285 | |
| 6 | Average Net Investment | | 770,065 | 542,576 | 320,814 | 328,163 | 560,639 | 788,670 | 786,149 | 783,628 | 781,108 | 778,587 | 776,066 | 773,545 | |
| 7 | Return on Average Net Investment | | | | | | | | | | | | | | |
| | a Equity Component (Line $6 \times$ Equity Component $\times 1 / 12$ | 12) (D) | 3,545 | 2,498 | 1,477 | 1,511 | 2,581 | 3,631 | 3,765 | 3,753 | 3,741 | 3,729 | 3,717 | 3,705 | 37,652 |
| | b Debt Component (Line $6 \times$ Debt Component $\times 1 / 12$) | | 895 | 630 | 373 | 381 | 651 | 916 | 825 | 822 | 819 | 817 | 814 | 811 | 8,756 |
| 8 | Investment Expenses | | | | | | | | | | | | | | |
| | a Depreciation (E) | | 701 | 701 | 701 | 701 | 2,521 | 2,521 | 2,521 | 2,521 | 2,521 | 2,521 | 2,521 | 2,521 | 22,970 |
| | b Amortization (F) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | c Dismantlement | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | d Property Taxes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | e Other (G) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | Total System Recoverable Expenses (Lines $7+8$) | | 5,141 | 3,829 | 2,551 | 2,593 | 5,753 | 7,068 | 7,110 | 7,096 | 7,081 | 7,066 | 7,052 | 7,037 | 69,378 |
| | a Recoverable Costs Allocated to Energy | | 395 | 295 | 196 | 199 | 443 | 544 | 547 | 546 | 545 | 544 | 542 | 541 | 5,337 |
| | b Recoverable Costs Allocated to Demand | | 4,746 | 3,535 | 2,355 | 2,394 | 5,311 | 6,525 | 6,563 | 6,550 | 6,536 | 6,523 | 6,509 | 6,496 | 64,041 |
| 10 | Energy Juriscictional Factor (J) | | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | |
| 11 | Demand Jurisdictional Factor (K) | | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | 0.9723427 | |
| 12 | Retail Energy-Related Recoverable Costs (H) | | 396 | 295 | 196 | 200 | 443 | 544 | 548 | 546 | 545 | 544 | 543 | 542 | 5,343 |
| 13 | Retail Demand-Related Recoverable Costs (1) | | 4,614 | 3,437 | 2,289 | 2,327 | 5,164 | 6,344 | 6,382 | 6,369 | 6,355 | 6,342 | 6,329 | 6,316 | 62,270 |
| 14 | Total Jurisdictional Recoverable Costs (Lines $12+13$) | | 5.010 | 3,732 | 2,486 | 2,527 | 5,607 | 6,889 | 6,930 | 6,915 | 6,901 | 6.886 | 6,872 | 6,858 | 67,613 |

[^5]JANUARY 2020 THROUGH DECEMBER 2020
For Program: Daniel Ash Management Program

[^6](J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule 25-6.0437, F.A.C.

URRY 2020 THROUGH DECEMBER 2020
For Program: SPCC Compliance

[^7]JANUARY 2020 THROUGH DECEMBER 2020
For Program: Crist Common FTIR Monitor

The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.
JANUARY 2020 THROUGH DECEMBER 2020
For Program: Plant NPDES Permit Compliance Progra

Notes: Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs.
(A)
Timing of CWIP transfers, under the new automated data environment, oreates the need for catcotup adjustments until fully implemented
Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
Applicable amortization period.
Lesc 9 x Line $10 \times$ line loss multiplier
ine $9 \mathrm{ab} \times$ Line 11 .
(J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

Line		Description	$\begin{gathered} \hline \text { Beginning of } \\ \text { Period Amount } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Actual } \\ & \text { January } \end{aligned}$	$\begin{aligned} & \hline \text { Actual } \\ & \text { February } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Actual } \\ & \text { March } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Actual } \\ \text { April } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Estimated } \\ \text { June } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Estimated } \\ \text { July } \end{gathered}$	Estimated August	Estimated September	$\begin{aligned} & \hline \text { Estimated } \\ & \text { October } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Estimated } \\ & \text { November } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Estimated } \\ & \text { December } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Twelve Month } \\ \text { Total } \end{array}$
Investments																
		Expenditures/Additions		258,626	377,494	316,304	39,535	549,804	197,198	498,481	1,056,326	1,235,345	627,654	178,134	2,871,141	8,206,042
		Clearings to Plant		34,419	11,845	806,381	682,034	21,349	0	0	0	0	0	0	525,594	2,081,622
		Retirements		40,957	0	374,957	282,271	89,201	600,000	0	0	0	0	0	250,000	1,637,386
		Other		$(129,681)$	47,578	$(54,597)$	31,487	27,284	$(88,211)$	8,440	2,102	2,102	2,102	2,102	73,461	$(75,832)$
	e	PIS Adjustments		$(1,703,482)$	1,472,003	(289)	(0)	231,971	0	0	0	0	0	0	0	202
		Accumulated Depreciation Adjustments		$(6,717)$	$(5,599)$	0	0	1,720	0	0	0	0	0	0	0	$(10,596)$
2		ant-in-Service/Depreciation Base (B)	1,343,294,490	1,341,584,470	1,343,068,318	1,343,499,454	1,343,899,217	1,344,063,335	1,343,463,335	1,343,463,335	1,343,463,335	1,343,463,335	1,343,463,335	1,343,463,335	1,343,738,929	
3		ss: Accumulated Depreciation (C)	$(316,705,226)$	$(320,700,107)$	(324,561,152)	$(328,144,832)$	$(331,736,747)$	$(335,524,821)$	$(338,753,270)$	$(342,484,068)$	$(346,221,204)$	$(349,958,340)$	$(353,695,476)$	$(357,432,612)$	$(360,848,389)$	
4		WIP - Non Interest Bearing	2,015,378	2,239,585	2,605,234	2,115,157	1,472,658	2,001,113	2,198,311	2,696,792	3,753,118	4,988,463	5,616,117	5,794,250	8,139,797	
5		t Investment (Lines $2+3+4$) (A)	1,028,604,642	1,023,123,948	1,021, 112,401	1,017,469,779	1,013,635,127	1,010,539,627	1,006,908,377	1,003,676,059	1,000,995,249	998,493,458	995,383,976	991,824,973	991,030,338	
6		erage Net Investment		1,025,864,295	1,022,118,174	1,019,291,090	1,015,552,453	1,012,087,377	1,008,724,002	1,005,292,218	1,002,335,654	999,744,354	996,938,717	993,604,475	991,427,656	
7		turn on Average Net Investment														
		Equity Component (Line $6 \times$ Equity Compo	ent $\times 1 / 12$ (${ }^{\text {(})}$	4,723,079	4,705,832	4,692,816	4,675,603	4,659,650	4,644,165	4,814,344	4,800,185	4,787,776	4,774,340	4,758,372	4,747,947	56,784,111
		Debt Component (Line $6 \times$ Debt Compone	$\times 1 / 12)$	1,192,054	1,187,701	1,184,416	1,180,072	1,176,046	1,172,137	1,054,552	1,051,450	1,048,732	1,045,789	1,042,291	1,040,008	13,375,248
8		vestment Expenses														
		Depreciation (E)		3,879,150	3,882,732	3,883,433	3,884,751	3,885,356	3,719,314	3,718,314	3,718,314	3,718,314	3,718,314	3,718,314	3,718,314	45,444,622
		Amortization (F)		20,291	20,291	20,607	20,923	20,923	20,923	20,923	20,923	20,923	20,923	20,923	20,923	249,500
		Dismantlement		0	0	0	0	-	-	0	0	0	0	0	0	0
		Property Taxes		546,264	540,462	540,462	540,462	540,462	540,462	540,462	540,462	540,462	540,462	540,462	540,462	6,491,349
		Other (G)		0	0	0	0	0	0	0	0	0	0	0	0	0
9		tal System Recoverable Expenses (Lines $7+$		10,360,838	10,337,019	10,321,735	10,301,812	10,282,438	10,097,003	10,148,596	10,131,336	10,116,208	10,099,828	10,080,363	10,067,655	122,344,829
		Recoverable Costs Allocated to Energy		796,988	795,155	793,980	792,447	790,957	776,693	780,661	779,334	778,170	776,910	775,413	774,435	9,411,141
	b	Recoverable Costs Allocated to Demand		9,563,850	9,541,864	9,527,756	9,509,365	9,491,481	9,320,310	9,367,935	9,352,002	9,338,038	9,322,918	9,304,950	9,293,220	112,933,688
10		ergy Jurisdictional Factor (J)		1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
11		mand Jurisdictional Factor (K)		0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	
12		tail Energy-Related Recoverable Costs (H)		797,944	796,109	794,932	793,398	791,906	777,625	781,598	780,269	779,104	777,842	776,343	775,364	9,422,434
13		etail Demand-Related Recoverable Costs (I)		9,299,340	9,277,961	9,264,244	9,246,361	9,228,972	9,062,535	9,108,843	9,093,351	9,079,773	9,065,072	9,047,601	9,036,194	109,810,247
14		tal Jurisdictional Recoverable Costs (Lines 1	13)	10,097,284	10,074,071	10,059,176	10,039,759	10,020,878	9,840,160	9,890,441	9,873,620	9,858,876	9,842,914	9,823,944	9,811,559	119,232,681

Notes:
(A) Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs.
Timing of CWIP transfers, under the new automated data environment, creates the need for catchup adjustments until fully implemented.
(B) Applicable beainning of period and end of period depereciable base by production plant name(s), unitits), or plant account(s). Timing of CWIP transfers, under the new automated data environment, creates the need for catchup adjustments unti fully implemented
(B) Applicable beigining of period and end of period depreciabbe base by production plant namees(s), unit(s). or plant account(s).
(C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
(D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
(D) The equity component has been grossed up for taxes. The approved ROE is 10.25%
(E) Applicable depreciation rate or rates.
(F) Aplicable amortization period.
(F) Applicable amortization period.
(G) Description and reason for "Other adjustments to investment expenses for this program.
(H) Line $9 \mathrm{a} \times$ Line $10 \times \mathrm{x}$ line loss multiplier
(J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.
NUARY 2020 THROUGH DECEMBER 2020
For Program: General Water Quality

Nom	
$\underset{\sim}{\hat{\sigma}} \underset{\sim}{\dot{\sigma}}$	
$\begin{aligned} & \curvearrowleft \sim \\ & \underset{\sim}{\infty} \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	
${\underset{\infty}{\infty}}_{\infty}^{\infty} \stackrel{\infty}{\tau}$	

[^8]ENVIRONMENTAL COST RECOVERY CLAUSE

Notes:
(A) Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs. (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). (B) Applicable beginning of feriod and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
(C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
(D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
(E) Applicable depreciation rate or rates.
(F) Aplicable amortization period
(F) Applicable amortization period.
(G) Description and reason for "Other" adjustments to investment expenses for this program.
(H) Line $9 a \times$ Line $10 \times$ line loss multiplier
(J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
(K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.
JANUARY 2020 THROUGH DECEMBER 2020
For Program: 316 (b) Intake Structure Regulation

[^9]ARY 2020 THROUGH DECEMBER 2020
For Program: SO2 Allowances

JANUARY 2020 THROUGH DECEMBER 2020For Program: SO2 Allowances															
Line	Description	Beginning of Period Amount	Actual January	$\begin{gathered} \text { Actual } \\ \text { February } \\ \hline \end{gathered}$	Actual March	$\begin{gathered} \text { Actual } \\ \text { April } \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ \text { May } \end{gathered}$	$\begin{gathered} \hline \text { Estimated } \\ \text { June } \end{gathered}$	$\begin{gathered} \text { Estimated } \\ \text { July } \end{gathered}$	$\begin{gathered} \hline \text { Estimated } \\ \text { August } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Estimated } \\ & \text { September } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Estimated } \\ \text { October } \\ \hline \end{gathered}$	Estimated November	Estimated December	Twelve Month Total
1 Investments															
	a Purchases/Transfers		0	0	0	0	0	0	0	0	0	0	0	0	
	b Sales/Transfers		0	0	0	0	0	0	0	0	0	0	0	0	
	c Auction Proceeds/Other		0	0	0	24	0	0	0	0	0	0	0	0	
2	Working Capital														
	a FERC 158.1 Allowance Inventory	6,302,888	6,298,581	6,297,186	6,297,186	6,278,336	6,278,336	6,276,841	6,275,653	6,274,455	6,273,325	6,272,698	6,272,577	6,272,417	
	b FERC 158.2 Allowances Withheld	0	0	-	0	0	0	0	0	0	0	0	0	0	
	c FERC 182.3 Other Regl. Assets - Losses	0	0	0	0	0	0	0)	0	0	0	0	0	
	d FERC 254 Regulatory Liabilities - Gains	(161)	(147)	(147)	(147)	(167)	(163)	(158)	(154)	(149)	(145)	(140)	(136)	(131)	
3	Total Working Capital Balance	6,302,727	6,298,434	6,297,039	6,297,039	6,278,169	6,278,174	6,276,683	6,275,499	6,274,306	6,273,180	6,272,557	6,272,441	6,272,286	
4	Average Net Working Capital Balance		6,300,581	6,297,737	6,297,039	6,287,604	6,278,171	6,277,428	6,276,091	6,274,902	6,273,743	6,272,869	6,272,499	6,272,363	
5	Return on Average Net Working Capital Balance														
	a Equity Component (Line $4 \times$ Equity Component \times	1/12) (A)	29,008	28,995	28,992	28,948	28,905	28,901	30,056	30,051	30,045	30,041	30,039	30,038	354,018
	b Debt Component (Line $4 \times$ Debt Component $\times 1$		7,321	7,318	7,317	7,306	7,295	7,294	6,584	6,582	6,581	6,580	6,580	6,580	83,339
6	Total Return Component (D)		36,329	36,313	36,309	36,254	36,200	36,196	36,640	36,633	36,626	36,621	36,619	36,618	437,357
7	Expenses														
	a Gains		(15)	0	0	(3)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(54)
	b Losses		0	0	0	0	0	0	0	0	0	0	0	0	0
	c SO2 Allowance Expense		4,307	1,395	0	18,849	0	1,495	1,188	1,198	1,130	627	121	160	30,471
8	Net Expenses (E)		4,293	1,395	0	18,846	(5)	1,491	1,184	1,193	1,126	622	117	155	30,417
9	Total System Recoverable Expenses (Lines 6 +8)		40,622	37,708	36,309	55,100	36,195	37,687	37,824	37,826	37,752	37,244	36,735	36,773	467,774
	a Recoverable Costs Allocated to Energy		7,087	4,189	2,793	21,635	2,780	4,275	4,002	4,011	3,943	3,439	2,933	2,972	64,060
	b Recoverable Costs Allocated to Demand		33,535	33,519	33,516	33,466	33,415	33,411	33,821	33,815	33,809	33,804	33,802	33,801	403,714
10	Energy Jurisdictional Factor (F)		1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
11	Demand Jurisdictional Factor (G)		0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	0.9723427	
12	Retail Energy-Related Recoverable Costs (B)		7,096	4,194	2,796	21,661	2,783	4,280	4,007	4,016	3,948	3,444	2,937	2,975	64,137
13	Retail Demand-Related Recoverable Costs (C)		32,607	32,592	32,589	32,540	32,491	32,487	32,886	32,880	32,874	32,869	32,867	32,866	392,549
14	Total Jurisdictional Recoverable Costs (Lines $12+1$		39,703	36,786	35,385	54,200	35,275	36,768	36,893	36,896	36,822	36,313	35,804	35,842	456,686

Notes:
(A) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
(B) Line $9 a \times$ Line $10 \times$ line loss multiplier
(C) Line $9 b \times$ Line 11 .
(D) Line 6 is reported on Schedule 3P.
(F) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
The The demand jurisdictional factors for each month are based on actual 2018 retail kilowatt-hour sales expressed as a percentage of 2018 total territorial kilowatt-hour sales, pending final calculation of the stratified jurisdictional demand factors.
ANUARY 2020 THROUGH DECEMBER 2020
For Program: Seasonal NOx Allowances

JANUARY 2020 THROUGH DECEMBER 2020
For Program: Regulatory Asset Smith Units 1 \&

Project Number	Project	Plant	$\begin{aligned} & \text { Amortization } \\ & \text { /Depreciation } \end{aligned}$	Plant	Plant	Monthly Depr Rate
1	401-Air Quality Assurance Testing	Other	A	83,954	83,954	
2	402-Crist 5, 6 \& 7 Precipitator Projects	Crist	D	33,657,087	33,657,087	0.3333333
3	403-Crist 7 Flue Gas Conditioning	Crist	D	0	0	0.3333333
4	404-Low NOx Burners, Crist 6 \& 7	Crist Amort	A	143,759	143,759	0.0119048
4	404-Low NOx Burners, Crist 6 \& 7	Crist	D	13,384,173	13,384,173	0.3333333
5	405-CEMS - Plants Crist \& Daniel	Crist	D	4,086,636	4,086,636	0.3333333
5	405-CEMS - Plants Crist \& Daniel	Crist Amort	A	0	0	0.0119048
5	405-CEMS - Plants Crist \& Daniel	Daniel	D	67,461	67,461	0.2500000
5	405-CEMS - Plants Crist \& Daniel	Daniel CEMs	D	558,686	558,686	0.2500000
6	406-Substation Contamination Remediation	Ft Walton	D	2,775,019	2,775,019	0.2583333
6	406-Substation Contamination Remediation	Laguna	D	339,156	339,156	0.1416667
6	406-Substation Contamination Remediation	Distribution	D	131,648	608,648	0.2583333
7	407-Raw Water Well Flowmeters Plants Crist \& Smith	Crist	D	149,950	149,950	0.3333333
7	407-Raw Water Well Flowmeters Plants Crist \& Smith	Smith (355)	D	0	0	0.3916667
8	408-Crist Cooling Tower Cell	Crist	D	0	0	0.3333333
9	409-Crist Dechlorination System	Crist	D	380,697	380,697	0.3333333
10	410-Crist Diesel Fuel Oil Remediation	Crist	D	20,968	20,968	0.3333333
11	411-Crist Bulk Tanker Unloading Second Containment	Crist	D	101,495	101,495	0.3333333
12	412-Crist IWW Sampling System	Crist	D	59,543	59,543	0.3333333
13	413-Sodium Injection System	Crist	D	284,622	284,622	0.3333333
13	413-Sodium Injection System	Smith	D	0	0	
14	414-Smith Stormwater Collection System	Smith (355)	D	2,764,379	2,764,379	0.3916667
15	415-Smith Waste Water Treatment Facility	Smith (355)	D	178,962	643,620	0.3916667
16	416-Daniel Ash Management Project	Daniel	D	14,939,561	14,939,561	0.2500000
16	416-Daniel Ash Management Project	Other	D	0	0	
17	417-Smith Water Conservation	Smith (355)	D	21,018,243	21,590,761	0.3916667
18	418-Underground Fuel Tank Replacement	Other	D	0	0	
19	419-Crist FDEP Agreement for Ozone Attainment	Crist	D	118,758,299	118,758,299	0.3333333
19	419-Crist FDEP Agreement for Ozone Attainment	Crist Amort	A	825,620	825,620	0.0119048
20	420-SPCC Compliance	Crist	D	919,836	919,836	0.3333333
20	420-SPCC Compliance	Other Amort	A	13,195	13,195	0.0119048
20	420-SPCC Compliance	Smith (355)	D	14,895	14,895	0.3916667
21	421-Crist Common FTIR Monitor	Crist	D	0	0	0.3333333
22	422-Precipitator Upgrades for CAM Compliance	Crist	D	13,895,639	13,895,639	0.3333333
23	423-Plant Groundwater Investigation	Other	D	0	0	
24	424-Crist Water Conservation	Crist	D	19,748,717	19,983,662	0.3333333
25	425-Plant NPDES Permit Compliance Projects	Crist	D	6,153,140	9,372,327	0.3333333
25	425-Plant NPDES Permit Compliance Projects	Smith (355)	D	3,798,266	3,798,266	0.3916667
26	426-Air Quality Compliance Program	Crist	D	193,354,217	193,354,419	0.3333333
26	426-Air Quality Compliance Program	Crist SCR	D	65,329	65,329	0.3333333
26	426-Air Quality Compliance Program	Crist SCR Amort	A	105,607	105,607	0.0119048
26	426-Air Quality Compliance Program	Crist Scrubber	D	586,883,361	587,330,241	0.3333333
26	426-Air Quality Compliance Program	Crist Scrubber Amort	A	730,203	730,203	0.0119048
26	426-Air Quality Compliance Program	Crist Scrubber (353)	D	2,986,187	2,986,187	0.2333333
26	426-Air Quality Compliance Program	Crist Scrubber (352)	D	176,690	176,690	0.1416667
26	426-Air Quality Compliance Program	Crist Scrubber (354)	D	565,062	565,062	0.1666667
26	426-Air Quality Compliance Program	Crist Scrubber (355)	D	502,662	502,662	0.3833333
26	426-Air Quality Compliance Program	Crist Scrubber (356)	D	576,009	576,009	0.2166667
26	426-Air Quality Compliance Program	Daniel	D	13,882,987	13,882,987	0.2500000
26	426-Air Quality Compliance Program	Daniel 1 Scrubber	D	360,297,878	360,582,168	0.2500000
26	426-Air Quality Compliance Program	Daniel 2 Scrubber	D	0	0	0.2500000
26	426-Air Quality Compliance Program	Scherer	D	15,044,458	14,674,528	0.1833333
26	426-Air Quality Compliance Program	Scherer Scrubber	D	72,289,440	72,289,504	0.1833333
26	426-Air Quality Compliance Program	Scherer Scrubber Amort	A	20,761	20,761	0.0119048
26	426-Air Quality Compliance Program	Scherer Scrubber (352)	D	32,707	32,707	0.1416667
26	426-Air Quality Compliance Program	Scherer Scrubber (353)	D	1,599,066	1,599,066	0.2333333
26	426-Air Quality Compliance Program	Scherer Baghouse	D	46,154,432	46,154,432	0.1833333
26	426-Air Quality Compliance Program	Scherer SCR	D	47,797,695	47,880,628	0.1833333
26	426-Air Quality Compliance Program	Scholz	D	0	0	
26	426-Air Quality Compliance Program	Smith	D	229,742	229,742	0.5250000
27	427-General Water Quality	Crist	D	852,461	996,766	0.3333333
27	427-General Water Quality	Crist Sampling Boat	D	0	0	0.0166667
28	428-Coal Combustion Residuals	Crist	D	790,872	675,957	0.3333333
28	428-Coal Combustion Residuals	Daniel	D	104,724	21,243,089	0.2500000
28	428-Coal Combustion Residuals	Scherer	D	16,088,112	29,280,122	0.1833333
28	428-Coal Combustion Residuals	Scherer	L	0	0	
28	428-Coal Combustion Residuals	Scholz	D	0	0	
28	428-Coal Combustion Residuals	Smith	D	0	0	
28	428-Coal Combustion Residuals	Smith (355)	D	2,601,638	2,601,638	0.3916667
28	428-Coal Combustion Residuals	Smith Pond Closure	D	0	29,453,436	0.5250000
28	428-Coal Combustion Residuals	Scholz Pond Closure	D	0	0	
28	428-Coal Combustion Residuals	CCR-C	D	0	0	
28	428-Coal Combustion Residuals	CCR-D	D	0	0	
28	428-Coal Combustion Residuals	CCR-S	D	0	0	
29	429-Steam Electric Effluent Limitations Guidelines	Crist	D	5,657,885	5,657,885	0.3333333
29	429-Steam Electric Effluent Limitations Guidelines	Scherer	D	384,575	384,575	0.1833333
30	430-316(B) Intake Structure Regulation	Smith (355)	D	0	0	0.3916667
		Total		,629,028,360	,698,254,307	

January 2020 - June 2020FPSC Capital Structure and Cost Rates							
Line	Capital Component	(1)	(2)	(3)	(4)	(5)	(6)
			Ratio	Cost Rate	Weighted Cost Rate	Revenue Requirement Rate	Monthly Revenue Requirement Rate
		Jurisdictional Rate Base Test Year					
		(\$000's)	\%	\%	\%	\%	\%
1	Long-Term Debt	894,848	34.5416	3.91	1.3519	1.3519	
2	Short-Term Debt	20,976	0.8097	2.96	0.0240	0.0240	
3	Preferred Stock	0	0.0000	0.00	0.0000	0.0000	
4	Common Stock	1,053,681	40.6728	10.25	4.1690	5.5234	
5	Customer Deposits	22,119	0.8538	2.08	0.0178	0.0178	
6	Deferred Taxes	598,399	23.0986				
7	Investment Tax Credit	608	$\underline{0.0235}$	7.34	0.0017	0.0021	
8	Total	$\underline{\underline{2}, 590,631}$	100.0000		5.5644	6.9192	$\underline{\underline{0.5766}}$
ITC Component:							
9	Debt	894,848	45.9243	3.91	1.7974	0.0004	
10	Equity-Preferred	0	0.0000	0.00	0.0000	0.0000	
11	-Common	1,053,681	54.0757	10.25	5.5428	0.0017	
12		1,948,530	$\underline{100.0000}$		$\underline{\underline{7.3402}}$	$\underline{0.0021}$	
Breakdown of Revenue Requirement Rate of Return between Debt and Equity:							
13	Total Debt Component (Lines 1, 2, 5, and 9)					1.3941	0.1162
14	Total Equity Component (Lines 3, 4, 10, and 11)					5.5251	0.4604
15	Total Revenue Requirement Rate of Return					$\underline{\underline{6.9192}}$	$\underline{\underline{0.5766}}$

Column:

(1) Based on the May 2019 Surveillance Report, Schedule 4.

Adjusted to achieve the 53.5% equity ratio as prescribed in the 2018 Tax Reform Settlement Agreement in Docket No. 20180039-EI.
(2) Column (1) / Total Column (1)
(3) Based on the May 2019 Surveillance Report, Schedule 4.
(4) Column (2) x Column (3)
(5) For equity components: Column (4) / (1-.245218); $24.5218 \%=$ effective income tax rate For debt components: Column (4)
(6) Column (5) /12

Line	Capital Component	(1)	(2)	(3)	(4)	(5)	(6)
							Monthly
		Jurisdictional		Cost Rate	Weighted Cost Rate	Revenue	Revenue
		Rate Base				Requirement	Requirement
		Test Year	Ratio			Rate	Rate
		(\$000's)	\%	\%	\%	\%	\%
1	Long-Term Debt	877,077	31.6409	3.76	1.1912	1.1912	
2	Short-Term Debt	141,485	5.1041	0.92	0.0470	0.0470	
3	Preferred Stock	0	0.0000	0.00	0.0000	0.0000	
4	Common Stock	1,171,867	42.2754	10.25	4.3332	5.7410	
5	Customer Deposits	20,015	0.7220	2.69	0.0194	0.0194	
6	Deferred Taxes	558,907	20.1627				
7	Investment Tax Credit	2,632	0.0949	7.47	$\underline{0.0071}$	$\underline{0.0071}$	
8	Total	$\underline{\underline{2,771,983}}$	$\underline{\underline{100.0000}}$		$\underline{\underline{5.5979}}$	$\underline{\underline{7.0057}}$	$\underline{\underline{0.5838}}$
	ITC Component:						
9	Debt	877,077	42.8063	3.76	1.6116	0.0015	
10	Equity-Preferred	0	0.0000	0.00	0.0000	0.0000	
11	-Common	1,171,867	57.1937	10.25	5.8624	0.0056	
12		$\underline{\underline{2,048,944}}$	$\underline{\underline{100.0000}}$		$\underline{\underline{7.4740}}$	$\underline{0.0071}$	
	Breakdown of Revenue Requirement Rate of Return between Debt and Equity:						
13	Total Debt Component (Lines 1, 2, 5, and 9)					1.2591	0.1049
14	Total Equity Component (Lines 3, 4, 10, and 11)					5.7466	$\underline{0.4789}$
15	Total Revenue Requirement Rate of Return					$\underline{\underline{7.0057}}$	$\underline{\underline{0.5838}}$

Column:
(1) Based on the May 2020 Surveillance Report, Schedule 4.

Adjusted to achieve the 53.5\% equity ratio as prescribed in the 2018 Tax Reform Settlement Agreement in Docket No. 20180039-El.
(2) Column (1) / Total Column (1)
(3) Based on the May 2019 Surveillance Report, Schedule 4.
(4) Column (2) x Column (3)
(5) For equity components: Column (4) / (1-.245218); $24.5218 \%=$ effective income tax rate For debt components: Column (4)
(6) Column (5) /12

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

ENVIRONMENTAL COST RECOVERY CLAUSE

DOCKET NO. 20200007-EI

PREPARED DIRECT TESTIMONY OF Michael W. Sole

ESTIMATED/ACTUAL TRUE-UP FILING FOR THE PERIOD

JANUARY 2020 - DECEMBER 2020

July 31, 2020

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION GULF POWER COMPANY

TESTIMONY OF MICHAEL W. SOLE
DOCKET NO. 20200007-EI
JULY 31, 2020

Q. Please state your name and address.

A. My name is Michael W. Sole and my business address is 700 Universe Boulevard, Juno Beach, Florida 33408.
Q. By whom are you employed and in what capacity?
A. I am employed by NextEra Energy, Inc. ("NEE") as Vice President of Environmental Services.
Q. Please describe your educational background and professional experience.
A. I received a Bachelor of Science degree in Marine Biology from the Florida Institute of Technology in 1986. I served as an Officer in the United States Marine Corps from 1985 through 1990, attaining the rank of Captain. I was employed by the Florida Department of Environmental Protection ("FDEP") in multiple roles from 1990 to 2010 and served as the Secretary of the FDEP from 2007-2010. I have been employed by NEE or its subsidiary Florida Power \& Light Company ("FPL") since 2010. In November 2016, I assumed the position of Vice President of Environmental Services for NEE and its subsidiaries including Gulf Power Company ("Gulf") which was acquired by NEE in 2019. In that role, I am responsible for FPL's and Gulf's environmental licensing and compliance efforts. In May 2017, I was appointed by Governor Scott to the Florida Fish and Wildlife Conservation Commission ("FWC").

Q. What is the purpose of your testimony in this proceeding?

A. The purpose of my testimony is to explain the reasons for significant variances in costs associated with O\&M expenses and capital investments which support Gulf's Environmental Cost Recovery Clause ("ECRC") actual/estimated true-up filing for the period January through December 2020. This true-up is based on five months of actual data and seven months of estimated data.
Q. Have you provided an exhibit that contains information to which you will refer in your testimony?
A. Yes, I am sponsoring the following exhibits:

- MWS-1 - Federal Coal Combustion Residuals Rule and 2018 Amendment (40 CFR Parts 257 and 261)
- MWS-2 - Mississippi PSC Order dated October 28, 2019
Q. Please explain the reasons for any significant variance in costs associated with O\&M expenses and capital investments.
A. The significant variances in Gulf's 2020 recoverable O\&M expenses and capital revenue requirements from projection amounts are associated with the following projects:

Capital Variance Explanations

Project 6. Substation Contamination Remediation

Project revenue requirements are $\$ 60,133$, or 12.6% lower than previously projected. The variance is primarily attributed to the retirement of the Ft. Walton substation groundwater remediation system. The retirement balance was inadvertently omitted in 2019 causing an overstatement in the revenue requirement that carried forward in the 2020 Projection Filing. In addition, 2019 costs for
construction of the new remediation system were lower than estimated, which impacted the revenue requirement in 2020.

Project 17. Smith Water Conservation Program

Project revenue requirements are $\$ 849,203$ or 26.9% lower than previously projected. The variance is primarily due to postponing construction of the Plant Smith Underground Injection Control ("UIC") wastewater treatment system and its associated pump station from the Fall of 2020 to early 2021 due to additional time required to finalize the reclaimed water supply contract negotiations. The new treatment system and permanent pump station are required to begin using reclaimed water for Unit 3's cooling tower water supply. Gulf has completed installation of three deep injection wells, piping, and initial equipment needed for the reclaimed water pump station.

Project 28. Coal Combustion Residuals ("CCR")

Project revenue requirements are $\$ 1,658,908$ or 22.1% higher than previously projected. The variance is primarily due to the addition of costs for CCR activities at Plant Daniel which were deferred from the 2020 Projection Filing pending further review and approval from the Mississippi Public Service Commission ("MPSC"). In addition, approximately $\$ 5.9$ million of costs associated with ash excavation and placement for the Smith and Scholz ash pond closure projects were reclassified from O\&M to capital to properly account for the deferred regulatory asset. These ash handling costs are appropriate for inclusion in the total ash pond closure costs to be amortized over the life of the project.

As noted in Gulf's 2019 and 2020 ECRC Projection Filings filed August 24, 2018 and August 30, 2019, respectively, Plant Daniel is required to construct new wastewater treatment and ash handling systems for the wastewater streams being routed to the pond (bottom ash and low volume wastewater) prior to beginning ash pond closure activities. Plant Daniel is installing a temporary wastewater treatment system for low volume wastewater streams while the plant closes and repurposes the bottom ash pond to serve as a low volume wastewater treatment pond. The Unit 1 and Unit 2 dry bottom ash conversion projects are scheduled to be placed inservice in 2020 to meet the Federal requirements provided by the Coal Combustion Residual rule located in Title 40 Code of Federal Regulations ("CFR") Parts 257 and 261 or "CCR Rule" adopted in April of 2015 and amended in July of 2018. A copy of the CCR Rule is attached as MWS-1.

Plant Daniel must cease placing CCR and non-CCR wastewater streams into the ash pond, in accordance with the CCR Rule unless Mississippi Power Company ("MPC") commits to permanent cessation of coal operations at Plant Daniel under the alternative closure requirements in 40 CFR Part 257.103. MPC has determined that early retirement of the Daniel Units 1 and 2 is not a viable compliance option due to transmission constraints and the reliability risk in the region. In addition, early retirement would require acceleration of other closure obligations.

On October 28, 2019 the MPSC issued an order finding that public convenience and necessity require the proposed Plant Daniel CCR projects. A copy of the MPSC Order, dated October 28, 2019, is attached as Exhibit MWS-2. As documented in the MPSC Order, Plant Daniel must complete the following CCR projects in
sequential order to comply with the Federal CCR requirements; 1) conversion of the bottom ash collection systems to new systems that will not require use of the ash pond for the discharge of any CCR waste stream, 2) closure of the ash pond by removing all CCR material, and 3) construction of a new low-volume wastewater treatment system on the site of the former ash pond. The ash pond closure must be completed within five years of the commencement of closure activities pursuant to 40 CFR Part 257.102 unless the facility demonstrates that it was not feasible to complete closure within the required timeframes due to factors beyond the facility's control.

The Gulf Power CCR Program was approved for recovery through the ECRC in PSC Order No. 15-0536-FOF-EI, with the reasonableness and prudence of individual project expenditures subject to the Commission's review in future proceedings. The Daniel CCR wastewater treatment and bottom ash handling costs originally projected for the 2019 timeframe were included in Gulf's ECRC jurisdictional revenue requirements approved in PSC Order No. 2018-0594-FOFEI. As noted in Gulf Witness Markey's 2019 ECRC Projection testimony, Plant Daniel will need "to construct a new wastewater treatment and ash handling system" prior to beginning closure activities. Gulf included capital expenditures for the Daniel CCR projects in its 2019 Projection Filing; however, the projects were subsequently delayed until 2020 due to timing of vendor selection and equipment fabrication.

As explained in Gulf Witness Markey's 2020 ECRC Projection Testimony, Plant Daniel dry bottom ash handling projects are scheduled to be placed in-service in

Page 5

2020 in order to meet the Federal CCR requirement to cease receipt of CCR and non-CCR wastestreams (40 CFR Part 257.101). Gulf has projected $\$ 19.1$ million of ECRC capital expenditures for the Daniel CCR projects and $\$ 3.3$ million for cost of removal for the Daniel ash pond closure in the 2020 Actual/Estimated filing. The Daniel CCR project meets the criteria for cost recovery established by the Commission in Order No. PSC-94-0044-FOF-EI in that the costs associated with it are not recovered through any other cost recovery mechanism or through base rates and will be incurred after April 13, 1993. In addition, the Daniel CCR projects are necessary to ensure compliance with the Federal CCR Rule, which is legally mandated under a governmentally imposed environmental regulation.

Project 30. 316(b) Cooling Water Intake Structure Regulation

Project revenue requirements are $\$ 97,137$ or 45.9% lower than previously projected. The variance is primarily due to delays associated with replacing the Plant Smith intake pumps with new lower capacity pumps. Gulf initially planned to place the new pumps in-service in March 2020; however, the replacement was re-scheduled to January 2021 in order to coordinate with other projects.

O\&M Variance Explanations

Project 6. General Water Quality

Project expenditures are $\$ 284,645$ or 18.5% lower than previously projected. The variance is primarily due to costs for Plant Smith's industrial wastewater permit renewal being less than originally projected and costs for Plant Daniel's
groundwater monitoring being lower than previously projected. In addition, Plant Crist was not able to complete the Spring 2020 thermal study due to Units 4 and 5 being offline during the sampling period. The variance was partially offset by costs projected for modification of the Plant Scholz stormwater pond and additional Plant Scholz wastewater sampling expenses.

Project 19. FDEP NOx Reduction Agreement

Project expenditures are $\$ 333,411$ or 59.5% lower than previously projected. The variance is primarily due to maintenance costs associated with the Crist Unit 7 Selective Catalytic Reduction ("SCR") project being less than originally projected.

Project 22. Crist Water Conservation

Project expenditures are $\$ 162,508$ or 353.4% higher than previously projected. The variance is due to chemical and maintenance costs associated with Plant Crist's reclaimed water system being greater than originally projected. These costs are associated with replacing the reclaimed water line air relief valves, dispersant tank, as well as acid lines which were originally scheduled to be replaced during the Fall 2019.

Project 23. Coal Combustion Residuals

Project expenditures are $\$ 5,865,228$ or 85.4% lower than previously projected. The variance is primarily due to reclassification of ash handling costs required for the Smith and Scholz ash pond closure projects as discussed above.
Q. Does this conclude your testimony?
A. Yes.

AFFIDAVIT

STATE OF FLORIDA
COUNTY OF ESCAMBIA

Docket No. 20200007-EI

Before me, the undersigned authority, personally appeared Michael W. Sole, who being first duly sworn, deposes and says that he is the Vice President of Environmental Services of Gulf Power Company, a Florida corporation, that the foregoing is true and correct to the best of his knowledge and belief. He is personally known to me.

Vice President, Environmental Services

Sworn to and subscribed before me by means of \qquad physical presence or \qquad online notarization this \qquad day of July \qquad , 2020.

available and applicable voluntary consensus standards.
This rulemaking involves technical standards. EPA has decided to use the following technical standards in this rule: (1) RCRA Subpart D, Section 257.70 liner design criteria for new CCR landfills and any lateral expansion of a CCR landfill includes voluntary consensus standards developed by ASTM International and EPA test methods such as SW-846, (2) Section 257.71 liner design criteria for existing CCR surface impoundments include voluntary consensus standards developed by ASTM International and EPA test methods such as SW-846, (3) Section 257.72 liner design criteria for new CCR surface impoundments and any lateral expansion of a CCR surface impoundment include voluntary consensus standards developed by ASTM International and EPA test methods such as SW-846, and (4) Section 257.73 structural stability standards for new and existing surface impoundments use the ASTM D 698 and 1557 standards for embankment compaction.

J. Executive Order 12898: Federal

 Actions To Address Environmental Justice in Minority Populations and Low-Income PopulationsExecutive Order (E.O.) 12898 (59 FR 7629, Feb. 16, 1994) establishes federal executive policy on environmental justice. Its main provision directs federal agencies, to the greatest extent practicable and permitted by law, to make environmental justice part of their mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of their programs, policies, and activities on minority populations and low-income populations in the United States.

EPA has determined that this final rule will not have disproportionately high and adverse human health or environmental effects on minority or low-income populations because it increases the level of environmental protection for all affected populations without having any disproportionately high and adverse human health or environmental effects on any population, including any minority or low-income population.
EPA's risk assessment for this action did not separately evaluate either minority or low income populations. However, to evaluate the demographic characteristics of communities that may be affected by the CCR rule, the RIA compares the demographic characteristics of populations surrounding coal-fired electric utility
plants with broader population data for two geographic areas: (1) One-mile radius from CCR management units (i.e., landfills and impoundments) likely to be affected by groundwater releases from both landfills and impoundments; and (2) watershed catchment areas downstream of surface impoundments that receive surface water run-off and releases from CCR impoundments and are at risk of being contaminated from CCR impoundment discharges (e.g., unintentional overflows, structural failures, and intentional periodic discharges).

For the population as a whole 24.8% belong to a minority group and 11.3% falls below the Federal Poverty Level. For the population living within one mile of plants with surface impoundments 16.1% belong to a minority group and 13.2% live below the Federal Poverty Level. These minority and low-income populations are not disproportionately high compared to the general population. The percentage of minority residents of the entire population living within the catchment areas downstream of surface impoundments is disproportionately high relative to the general population, i.e., 28.7%, versus 24.8% for the national population. Also, the percentage of the population within the catchment areas of surface
impoundments that is below the Federal Poverty Level is disproportionately high compared with the general population, i.e., 18.6% versus 11.3% nationally.

Comparing the population percentages of minority and low income residents within one mile of landfills to those percentages in the general population, EPA found that minority and low-income residents make up a smaller percentage of the populations near landfills than they do in the general population, i.e., minorities comprised 16.6% of the population near landfills versus 24.8% nationwide and low-income residents comprised 8.6\% of the population near landfills versus 11.3% nationwide. In summary, although populations within the catchment areas of plants with surface impoundments appear to have disproportionately high percentages of minority and low-income residents relative to the nationwide average, populations surrounding plants with landfills do not. Because landfills are less likely than impoundments to experience surface water run-off and releases, catchment areas were not considered for landfills.

Because the CCR rule is risk-reducing, with reductions in risk occurring largely within the surface water catchment zones around, and groundwater
beneath, coal-fired electric utility plants, the rule will not result in new disproportionate risks to minority or low-income populations.

K. Congressional Review Act

The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small Business Regulatory Enforcement Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the Federal Register. A Major rule cannot take effect until 60 days after it is published in the Federal Register. This action is a "major rule" as defined by 5 U.S.C. 804(2). This rule will be effective 180 days after its publication in the Federal Register.

List of Subjects

40 CFR Part 257

Environmental protection, Beneficial use, Coal combustion products, Coal combustion residuals, Coal combustion waste, Disposal, Hazardous waste, Landfill, Surface impoundment.

40 CFR Part 261

Environmental protection, Hazardous waste, Recycling, Reporting and recordkeeping requirements.

Dated: December 19, 2014.
Gina McCarthy,

Administrator.

For the reasons set out in the preamble, title 40, chapter I, of the Code of Federal Regulations is amended as follows:

PART 257-CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES

- 1. The authority citation for part 257 continues to read as follows:
Authority: 42 U.S.C. 6907(a)(3), 6912(a)(1), 6944(a); 33 U.S.C. 1345(d) and (e).
- 2. Section 257.1 is amended by:
- a. Adding a sentence at the end of paragraph (a) introductory text; ■ b. Revising paragraphs (a)(1) and (2); and
■ c. Adding paragraph (c)(12).
The revisions and additions read as follows:

§257.1 Scope and purpose.

(a) * * * Unless otherwise provided, the criteria in $\S \$ 257.50$ through 257.107 are adopted for determining which CCR landfills and CCR surface impoundments pose a reasonable probability of adverse effects on health or the environment under sections 1008(a)(3) and 4004(a) of the Act.
(1) Facilities failing to satisfy any of the criteria in $\S \S 257.1$ through 257.4 or $\S \S 257.5$ through 257.30 or $\S \S 257.50$ through 257.107 are considered open dumps, which are prohibited under section 4005 of the Act.
(2) Practices failing to satisfy any of the criteria in $\S \S 257.1$ through 257.4 or $\S \S 257.5$ through 257.30 or $\S \$ 257.50$ through 257.107 constitute open dumping, which is prohibited under section 4005 of the Act.
(c) * * *
(12) Except as otherwise specifically provided in subpart D of this part, the criteria in subpart A of this part do not apply to CCR landfills, CCR surface impoundments, and lateral expansions of CCR units, as those terms are defined in subpart D of this part. Such units are instead subject to subpart D of this part.

- 3. Section 257.2 is amended by adding in alphabetical order definitions for "CCR landfill" and "CCR surface impoundment" to read as follows:

§257.2 Definitions.

CCR landfill means an area of land or an excavation that receives CCR and which is not a surface impoundment, an underground injection well, a salt dome formation, a salt bed formation, an underground or surface coal mine, or a cave. For purposes of this subpart, a CCR landfill also includes sand and gravel pits and quarries that receive CCR, CCR piles, and any practice that does not meet the definition of a beneficial use of CCR.
CCR surface impoundment means a natural topographic depression, manmade excavation, or diked area, which is designed to hold an accumulation of CCR and liquids, and the unit treats, stores, or disposes of CCR.

- 4. Part 257 is amended by:
- a. Adding and reserving subpart C;
and
- b. Adding subpart D.

The additions read as follows:

Subpart C-[Reserved]

Subpart D-Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments

General Provisions

Sec.
257.50 Scope and purpose.
257.51 Effective date of this subpart.
257.52 Applicability of other regulations.
257.53 Definitions.

Location Restrictions
257.60 Placement above the uppermost aquifer.
257.61 Wetlands.
257.62 Fault areas.
257.63 Seismic impact zones.
257.64 Unstable areas.

Design Criteria

257.70 Design criteria for new CCR landfills and any lateral expansion of a CCR landfill.
257.71 Liner design criteria for existing CCR surface impoundments.
257.72 Design criteria for new CCR surface impoundments and any lateral expansion of a CCR surface impoundment.
257.73 Structural integrity criteria for existing CCR surface impoundments.
257.74 Structural integrity criteria for new CCR surface impoundments and any lateral expansion of a CCR surface impoundment.

Operating Criteria

257.80 Air criteria.
257.81 Run-on and run-off controls for CCR landfills.
257.82 Hydrologic and hydraulic capacity requirements for CCR surface impoundments.
257.83 Inspection requirements for CCR surface impoundments.
257.84 Inspection requirements for CCR landfills.
Groundwater Monitoring and Corrective Action
257.90 Applicability.
257.91 Groundwater monitoring systems.
257.92 [Reserved]
257.93 Groundwater sampling and analysis requirements.
257.94 Detection monitoring program.
257.95 Assessment monitoring program.
257.96 Assessment of corrective measures.
257.97 Selection of remedy.
257.98 Implementation of the corrective action program.
Closure and Post-Closure Care
257.100 Inactive CCR surface impoundments.
257.101 Closure or retrofit of CCR units.
257.102 Criteria for conducting the closure or retrofit of CCR units.
257.103 Alternative closure requirements. 257.104 Post-closure care requirements.

Recordkeeping, Notification, and Posting of Information to the Internet
257.105 Recordkeeping requirements. 257.106 Notification requirements.
257.107 Publicly accessible internet site requirements.

Subpart D-Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments

§257.50 Scope and purpose.

(a) This subpart establishes minimum national criteria for purposes of determining which solid waste disposal facilities and solid waste management practices do not pose a reasonable probability of adverse effects on health or the environment under sections 1008(a)(3) and 4004(a) of the Resource Conservation and Recovery Act.
(b) This subpart applies to owners and operators of new and existing landfills and surface impoundments, including any lateral expansions of such units that dispose or otherwise engage in solid waste management of CCR generated from the combustion of coal at electric utilities and independent power producers. Unless otherwise provided in this subpart, these requirements also apply to disposal units located off-site of the electric utility or independent power producer. This subpart also applies to any practice that does not meet the definition of a beneficial use of CCR.
(c) This subpart also applies to inactive CCR surface impoundments at active electric utilities or independent power producers, regardless of the fuel currently used at the facility to produce electricity.
(d) This subpart does not apply to CCR landfills that have ceased receiving CCR prior to October 19, 2015.
(e) This subpart does not apply to electric utilities or independent power producers that have ceased producing electricity prior to October 19, 2015.
(f) This subpart does not apply to wastes, including fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated at facilities that are not part of an electric utility or independent power producer, such as manufacturing facilities, universities, and hospitals. This subpart also does not apply to fly ash, bottom ash, boiler slag, and flue gas desulfurization materials, generated primarily from the combustion of fuels (including other fossil fuels) other than coal, for the purpose of generating electricity unless the fuel burned consists of more than fifty percent (50%) coal on a total heat input or mass input basis, whichever results in the greater mass feed rate of coal.
(g) This subpart does not apply to practices that meet the definition of a beneficial use of CCR.
(h) This subpart does not apply to CCR placement at active or abandoned underground or surface coal mines.
(i) This subpart does not apply to municipal solid waste landfills that receive CCR.

§257.51 Effective date of this subpart.

The requirements of this subpart take effect on October 19, 2015.

§257.52 Applicability of other regulations.

(a) Compliance with the requirements of this subpart does not affect the need for the owner or operator of a CCR landfill, CCR surface impoundment, or lateral expansion of a CCR unit to comply with all other applicable federal, state, tribal, or local laws or other requirements.
(b) Any CCR landfill, CCR surface impoundment, or lateral expansion of a CCR unit continues to be subject to the requirements in §§ 257.3-1, 257.3-2, and 257.3-3.

§257.53 Definitions.

The following definitions apply to this subpart. Terms not defined in this section have the meaning given by RCRA.

Acre foot means the volume of one acre of surface area to a depth of one foot.
Active facility or active electric utilities or independent power producers means any facility subject to the requirements of this subpart that is in operation on October 14, 2015. An electric utility or independent power producer is in operation if it is generating electricity that is provided to electric power transmission systems or to electric power distribution systems on or after October 14, 2015. An off-site disposal facility is in operation if it is accepting or managing CCR on or after October 14, 2015.

Active life or in operation means the period of operation beginning with the initial placement of CCR in the CCR unit and ending at completion of closure activities in accordance with $\S 257.102$.

Active portion means that part of the CCR unit that has received or is receiving CCR or non-CCR waste and that has not completed closure in accordance with § 257.102.

Aquifer means a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs.

Area-capacity curves means graphic curves which readily show the reservoir water surface area, in acres, at different elevations from the bottom of the reservoir to the maximum water surface, and the capacity or volume, in acre-feet,
of the water contained in the reservoir at various elevations.

Areas susceptible to mass movement means those areas of influence (i.e., areas characterized as having an active or substantial possibility of mass movement) where, because of natural or human-induced events, the movement of earthen material at, beneath, or adjacent to the CCR unit results in the downslope transport of soil and rock material by means of gravitational influence. Areas of mass movement include, but are not limited to, landslides, avalanches, debris slides and flows, soil fluctuation, block sliding, and rock fall.

Beneficial use of CCR means the CCR meet all of the following conditions:
(1) The CCR must provide a functional benefit;
(2) The CCR must substitute for the use of a virgin material, conserving natural resources that would otherwise need to be obtained through practices, such as extraction;
(3) The use of the CCR must meet relevant product specifications, regulatory standards or design standards when available, and when such standards are not available, the CCR is not used in excess quantities; and
(4) When unencapsulated use of CCR involving placement on the land of 12,400 tons or more in non-roadway applications, the user must demonstrate and keep records, and provide such documentation upon request, that environmental releases to groundwater, surface water, soil and air are comparable to or lower than those from analogous products made without CCR, or that environmental releases to groundwater, surface water, soil and air will be at or below relevant regulatory and health-based benchmarks for human and ecological receptors during use.

Closed means placement of CCR in a CCR unit has ceased, and the owner or operator has completed closure of the CCR unit in accordance with § 257.102 and has initiated post-closure care in accordance with § 257.104.

Coal combustion residuals (CCR) means fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers.

CCR fugitive dust means solid airborne particulate matter that contains or is derived from CCR, emitted from any source other than a stack or chimney.

CCR Iandfill or landfill means an area of land or an excavation that receives CCR and which is not a surface
impoundment, an underground injection well, a salt dome formation, a salt bed formation, an underground or surface coal mine, or a cave. For purposes of this subpart, a CCR landfill also includes sand and gravel pits and quarries that receive CCR, CCR piles, and any practice that does not meet the definition of a beneficial use of CCR.

CCR pile or pile means any noncontainerized accumulation of solid, non-flowing CCR that is placed on the land. CCR that is beneficially used offsite is not a CCR pile.

CCR surface impoundment or impoundment means a natural topographic depression, man-made excavation, or diked area, which is designed to hold an accumulation of CCR and liquids, and the unit treats, stores, or disposes of CCR.

CCR unit means any CCR landfill, CCR surface impoundment, or lateral expansion of a CCR unit, or a combination of more than one of these units, based on the context of the paragraph(s) in which it is used. This term includes both new and existing units, unless otherwise specified.

Dike means an embankment, berm, or ridge of either natural or man-made materials used to prevent the movement of liquids, sludges, solids, or other materials.

Displacement means the relative movement of any two sides of a fault measured in any direction.

Disposal means the discharge, deposit, injection, dumping, spilling, leaking, or placing of any solid waste as defined in section 1004(27) of the Resource Conservation and Recovery Act into or on any land or water so that such solid waste, or constituent thereof, may enter the environment or be emitted into the air or discharged into any waters, including groundwaters. For purposes of this subpart, disposal does not include the storage or the beneficial use of CCR.

Downstream toe means the junction of the downstream slope or face of the CCR surface impoundment with the ground surface.

Encapsulated beneficial use means a beneficial use of CCR that binds the CCR into a solid matrix that minimizes its mobilization into the surrounding environment.

Existing CCR landfill means a CCR landfill that receives CCR both before and after October 14, 2015, or for which construction commenced prior to October 14, 2015 and receives CCR on or after October 14, 2015. A CCR landfill has commenced construction if the owner or operator has obtained the federal, state, and local approvals or permits necessary to begin physical
construction and a continuous on-site, physical construction program had begun prior to October 14, 2015.
Existing CCR surface impoundment means a CCR surface impoundment that receives CCR both before and after October 14, 2015, or for which construction commenced prior to October 14, 2015 and receives CCR on or after October 14, 2015. A CCR surface impoundment has commenced construction if the owner or operator has obtained the federal, state, and local approvals or permits necessary to begin physical construction and a continuous on-site, physical construction program had begun prior to October 14, 2015.
Facility means all contiguous land, and structures, other appurtenances, and improvements on the land, used for treating, storing, disposing, or otherwise conducting solid waste management of CCR. A facility may consist of several treatment, storage, or disposal operational units (e.g., one or more landfills, surface impoundments, or combinations of them).

Factor of safety (Safety factor) means the ratio of the forces tending to resist the failure of a structure to the forces tending to cause such failure as determined by accepted engineering practice.
Fault means a fracture or a zone of fractures in any material along which strata on one side have been displaced with respect to that on the other side.

Flood hydrograph means a graph showing, for a given point on a stream, the discharge, height, or other characteristic of a flood as a function of time.

Freeboard means the vertical distance between the lowest point on the crest of the impoundment dike and the surface of the waste contained therein.
Free liquids means liquids that readily separate from the solid portion of a waste under ambient temperature and pressure.

Groundwater means water below the land surface in a zone of saturation.
Hazard potential classification means the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances. The hazardous potential classifications include high hazard potential CCR surface impoundment, significant hazard potential CCR surface impoundment, and low hazard potential CCR surface impoundment, which terms mean:
(1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-
operation will probably cause loss of human life.
(2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
(3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.
Height means the vertical measurement from the downstream toe of the CCR surface impoundment at its lowest point to the lowest elevation of the crest of the CCR surface impoundment.
Holocene means the most recent epoch of the Quaternary period, extending from the end of the Pleistocene Epoch, at 11,700 years before present, to present.

Hydraulic conductivity means the rate at which water can move through a permeable medium (i.e., the coefficient of permeability).

Inactive CCR surface impoundment means a CCR surface impoundment that no longer receives CCR on or after October 14, 2015 and still contains both CCR and liquids on or after October 14, 2015.

Incised CCR surface impoundment means a CCR surface impoundment which is constructed by excavating entirely below the natural ground surface, holds an accumulation of CCR entirely below the adjacent natural ground surface, and does not consist of any constructed diked portion.
Indian country or Indian lands means:
(1) All land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent, and including rights-of-way running throughout the reservation;
(2) All dependent Indian communities within the borders of the United States whether within the original or subsequently acquired territory thereof, and whether within or without the limits of the State; and
(3) All Indian allotments, the Indian titles to which have not been extinguished, including rights of way running through the same.

Indian Tribe or Tribe means any Indian tribe, band, nation, or community recognized by the Secretary of the Interior and exercising substantial
governmental duties and powers on Indian lands.
Inflow design flood means the flood hydrograph that is used in the design or modification of the CCR surface impoundments and its appurtenant works.
In operation means the same as active life.

Karst terrain means an area where karst topography, with its characteristic erosional surface and subterranean features, is developed as the result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features present in karst terranes include, but are not limited to, dolines, collapse shafts (sinkholes), sinking streams, caves, seeps, large springs, and blind valleys.
Lateral expansion means a horizontal expansion of the waste boundaries of an existing CCR landfill or existing CCR surface impoundment made after October 14, 2015.
Liquefaction factor of safety means the factor of safety (safety factor) determined using analysis under liquefaction conditions.

Lithified earth material means all rock, including all naturally occurring and naturally formed aggregates or masses of minerals or small particles of older rock that formed by crystallization of magma or by induration of loose sediments. This term does not include man-made materials, such as fill, concrete, and asphalt, or unconsolidated earth materials, soil, or regolith lying at or near the earth surface.
Maximum horizontal acceleration in lithified earth material means the maximum expected horizontal acceleration at the ground surface as depicted on a seismic hazard map, with a 98% or greater probability that the acceleration will not be exceeded in 50 years, or the maximum expected horizontal acceleration based on a sitespecific seismic risk assessment.

New CCR landfill means a CCR landfill or lateral expansion of a CCR landfill that first receives CCR or commences construction after October 14, 2015. A new CCR landfill has commenced construction if the owner or operator has obtained the federal, state, and local approvals or permits necessary to begin physical construction and a continuous on-site, physical construction program had begun after October 14, 2015. Overfills are also considered new CCR landfills.
New CCR surface impoundment means a CCR surface impoundment or lateral expansion of an existing or new CCR surface impoundment that first receives CCR or commences construction after October 14, 2015. A
new CCR surface impoundment has commenced construction if the owner or operator has obtained the federal, state, and local approvals or permits necessary to begin physical construction and a continuous on-site, physical construction program had begun after October 14, 2015.

Operator means the person(s) responsible for the overall operation of a CCR unit.
Overfill means a new CCR landfill constructed over a closed CCR surface impoundment.
Owner means the person(s) who owns a CCR unit or part of a CCR unit.

Poor foundation conditions mean those areas where features exist which indicate that a natural or humaninduced event may result in inadequate foundation support for the structural components of an existing or new CCR unit. For example, failure to maintain static and seismic factors of safety as required in §§257.73(e) and 257.74(e) would cause a poor foundation condition.
Probable maximum flood means the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the drainage basin.
Qualified person means a person or persons trained to recognize specific appearances of structural weakness and other conditions which are disrupting or have the potential to disrupt the operation or safety of the CCR unit by visual observation and, if applicable, to monitor instrumentation.
Qualified professional engineer means an individual who is licensed by a state as a Professional Engineer to practice one or more disciplines of engineering and who is qualified by education, technical knowledge and experience to make the specific technical certifications required under this subpart. Professional engineers making these certifications must be currently licensed in the state where the CCR unit(s) is located.
Recognized and generally accepted good engineering practices means engineering maintenance or operation activities based on established codes, widely accepted standards, published technical reports, or a practice widely recommended throughout the industry. Such practices generally detail approved ways to perform specific engineering, inspection, or mechanical integrity activities.

Retrofit means to remove all CCR and contaminated soils and sediments from the CCR surface impoundment, and to ensure the unit complies with the requirements in § 257.72

Representative sample means a sample of a universe or whole (e.g., waste pile, lagoon, and groundwater) which can be expected to exhibit the average properties of the universe or whole. See EPA publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Chapter 9 (available at http:// www.epa.gov/epawaste/hazard/ testmethods/sw846/online/index.htm) for a discussion and examples of representative samples.

Run-off means any rainwater, leachate, or other liquid that drains over land from any part of a CCR landfill or lateral expansion of a CCR landfill.

Run-on means any rainwater, leachate, or other liquid that drains over land onto any part of a CCR landfill or lateral expansion of a CCR landfill.

Sand and gravel pit or quarry means an excavation for the extraction of aggregate, minerals or metals. The term sand and gravel pit and/or quarry does not include subsurface or surface coal mines.

Seismic factor of safety means the factor of safety (safety factor) determined using analysis under earthquake conditions using the peak ground acceleration for a seismic event with a 2% probability of exceedance in 50 years, equivalent to a return period of approximately 2,500 years, based on the U.S. Geological Survey (USGS) seismic hazard maps for seismic events with this return period for the region where the CCR surface impoundment is located.

Seismic impact zone means an area having a 2% or greater probability that the maximum expected horizontal acceleration, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10 g in 50 years.

Slope protection means engineered or non-engineered measures installed on the upstream or downstream slope of the CCR surface impoundment to protect the slope against wave action or erosion, including but not limited to rock riprap, wooden pile, or concrete revetments, vegetated wave berms, concrete facing, gabions, geotextiles, or fascines.

Solid waste management or management means the systematic administration of the activities which provide for the collection, source separation, storage, transportation, processing, treatment, or disposal of solid waste.

State means any of the fifty States in addition to the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana Islands.

State Director means the chief administrative officer of the lead state agency responsible for implementing the state program regulating disposal in CCR landfills, CCR surface impoundments, and all lateral expansions of a CCR unit.
Static factor of safety means the factor of safety (safety factor) determined using analysis under the long-term, maximum storage pool loading condition, the maximum surcharge pool loading condition, and under the end-ofconstruction loading condition.

Structural components mean liners, leachate collection and removal systems, final covers, run-on and run-off systems, inflow design flood control systems, and any other component used in the construction and operation of the CCR unit that is necessary to ensure the integrity of the unit and that the contents of the unit are not released into the environment.

Unstable area means a location that is susceptible to natural or humaninduced events or forces capable of impairing the integrity, including structural components of some or all of the CCR unit that are responsible for preventing releases from such unit. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and karst terrains.

Uppermost aquifer means the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural ground surface to which the aquifer rises during the wet season.
Waste boundary means a vertical surface located at the hydraulically downgradient limit of the CCR unit. The vertical surface extends down into the uppermost aquifer.

Location Restrictions

§257.60 Placement above the uppermost

 aquifer.(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must be constructed with a base that is located no less than 1.52 meters (five feet) above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table). The owner or operator must demonstrate by the dates specified in paragraph (c) of this section
that the CCR unit meets the minimum requirements for placement above the uppermost aquifer.
(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.
(c) The owner or operator of the CCR unit must complete the demonstration required by paragraph (a) of this section by the date specified in either paragraph (c)(1) or (2) of this section.
(1) For an existing CCR surface impoundment, the owner or operator must complete the demonstration no later than October 17, 2018.
(2) For a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit, the owner or operator must complete the demonstration no later than the date of initial receipt of CCR in the CCR unit.
(3) The owner or operator has completed the demonstration required by paragraph (a) of this section when the demonstration is placed in the facility's operating record as required by §257.105(e).
(4) An owner or operator of an existing CCR surface impoundment who fails to demonstrate compliance with the requirements of paragraph (a) of this section by the date specified in paragraph (c)(1) of this section is subject to the requirements of $\S 257.101(\mathrm{~b})(1)$.
(5) An owner or operator of a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit who fails to make the demonstration showing compliance with the requirements of paragraph (a) of this section is prohibited from placing CCR in the CCR unit.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in $\S 257.105(\mathrm{e})$, the notification requirements specified in $\S 257.106(\mathrm{e})$, and the internet requirements specified in §257.107(e).

§257.61 Wetlands.

(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in wetlands, as defined in $\S 232.2$ of this chapter, unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that the CCR unit meets the requirements of paragraphs (a)(1) through (5) of this section.
(1) Where applicable under section 404 of the Clean Water Act or applicable state wetlands laws, a clear and objective rebuttal of the presumption that an alternative to the CCR unit is
reasonably available that does not involve wetlands.
(2) The construction and operation of the CCR unit will not cause or contribute to any of the following:
(i) A violation of any applicable state or federal water quality standard;
(ii) A violation of any applicable toxic effluent standard or prohibition under section 307 of the Clean Water Act;
(iii) Jeopardize the continued existence of endangered or threatened species or result in the destruction or adverse modification of a critical habitat, protected under the Endangered Species Act of 1973; and
(iv) A violation of any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972 for the protection of a marine sanctuary.
(3) The CCR unit will not cause or contribute to significant degradation of wetlands by addressing all of the following factors:
(i) Erosion, stability, and migration potential of native wetland soils, muds and deposits used to support the CCR unit;
(ii) Erosion, stability, and migration potential of dredged and fill materials used to support the CCR unit;
(iii) The volume and chemical nature of the CCR;
(iv) Impacts on fish, wildlife, and other aquatic resources and their habitat from release of CCR;
(v) The potential effects of catastrophic release of CCR to the wetland and the resulting impacts on the environment; and
(vi) Any additional factors, as necessary, to demonstrate that ecological resources in the wetland are sufficiently protected.
(4) To the extent required under section 404 of the Clean Water Act or applicable state wetlands laws, steps have been taken to attempt to achieve no net loss of wetlands (as defined by acreage and function) by first avoiding impacts to wetlands to the maximum extent reasonable as required by paragraphs (a)(1) through (3) of this section, then minimizing unavoidable impacts to the maximum extent reasonable, and finally offsetting remaining unavoidable wetland impacts through all appropriate and reasonable compensatory mitigation actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and
(5) Sufficient information is available to make a reasoned determination with respect to the demonstrations in paragraphs (a)(1) through (4) of this section.
(b) The owner or operator of the CCR unit must obtain a certification from a
qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.
(c) The owner or operator of the CCR unit must complete the demonstrations required by paragraph (a) of this section by the date specified in either paragraph (c)(1) or (2) of this section.
(1) For an existing CCR surface impoundment, the owner or operator must complete the demonstration no later than October 17, 2018.
(2) For a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit, the owner or operator must complete the demonstration no later than the date of initial receipt of CCR in the CCR unit.
(3) The owner or operator has completed the demonstration required by paragraph (a) of this section when the demonstration is placed in the facility's operating record as required by § 257.105(e).
(4) An owner or operator of an existing CCR surface impoundment who fails to demonstrate compliance with the requirements of paragraph (a) of this section by the date specified in paragraph (c)(1) of this section is subject to the requirements of $\S 257.101(\mathrm{~b})(1)$.
(5) An owner or operator of a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit who fails to make the demonstrations showing compliance with the requirements of paragraph (a) of this section is prohibited from placing CCR in the CCR unit.
(d) The owner or operator must comply with the recordkeeping requirements specified in §257.105(e), the notification requirements specified in §257.106(e), and the Internet requirements specified in § 257.107(e).

§257.62 Fault areas.

(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located within 60 meters (200 feet) of the outermost damage zone of a fault that has had displacement in Holocene time unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that an alternative setback distance of less than 60 meters (200 feet) will prevent damage to the structural integrity of the CCR unit.
(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.
(c) The owner or operator of the CCR unit must complete the demonstration
required by paragraph (a) of this section by the date specified in either paragraph (c)(1) or (2) of this section.
(1) For an existing CCR surface impoundment, the owner or operator must complete the demonstration no later than October 17, 2018.
(2) For a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit, the owner or operator must complete the demonstration no later than the date of initial receipt of CCR in the CCR unit.
(3) The owner or operator has completed the demonstration required by paragraph (a) of this section when the demonstration is placed in the facility's operating record as required by §257.105(e).
(4) An owner or operator of an existing CCR surface impoundment who fails to demonstrate compliance with the requirements of paragraph (a) of this section by the date specified in paragraph (c)(1) of this section is subject to the requirements of § 257.101 (b)(1).
(5) An owner or operator of a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit who fails to make the demonstration showing compliance with the requirements of paragraph (a) of this section is prohibited from placing CCR in the CCR unit.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(e), the notification
requirements specified in §257.106(e), and the Internet requirements specified in §257.107(e).

§257.63 Seismic impact zones.

(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in seismic impact zones unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that all structural components including liners, leachate collection and removal systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material for the site.
(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.
(c) The owner or operator of the CCR unit must complete the demonstration required by paragraph (a) of this section by the date specified in either paragraph (c)(1) or (2) of this section.
(1) For an existing CCR surface impoundment, the owner or operator
must complete the demonstration no later than October 17, 2018.
(2) For a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit, the owner or operator must complete the
demonstration no later than the date of initial receipt of CCR in the CCR unit.
(3) The owner or operator has completed the demonstration required by paragraph (a) of this section when the demonstration is placed in the facility's operating record as required by §257.105(e).
(4) An owner or operator of an existing CCR surface impoundment who fails to demonstrate compliance with the requirements of paragraph (a) of this section by the date specified in paragraph (c)(1) of this section is subject to the requirements of § 257.101 (b)(1).
(5) An owner or operator of a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit who fails to make the demonstration showing compliance with the requirements of paragraph (a) of this section is prohibited from placing CCR in the CCR unit.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(e), the notification requirements specified in § 257.106(e), and the Internet requirements specified in §257.107(e).

§257.64 Unstable areas.

(a) An existing or new CCR landfill, existing or new CCR surface
impoundment, or any lateral expansion of a CCR unit must not be located in an unstable area unless the owner or operator demonstrates by the dates specified in paragraph (d) of this section that recognized and generally accepted good engineering practices have been incorporated into the design of the CCR unit to ensure that the integrity of the structural components of the CCR unit will not be disrupted.
(b) The owner or operator must consider all of the following factors, at a minimum, when determining whether an area is unstable:
(1) On-site or local soil conditions that may result in significant differential settling;
(2) On-site or local geologic or geomorphologic features; and
(3) On-site or local human-made features or events (both surface and subsurface).
(c) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.
(d) The owner or operator of the CCR unit must complete the demonstration required by paragraph (a) of this section by the date specified in either paragraph (d)(1) or (2) of this section.
(1) For an existing CCR landfill or existing CCR surface impoundment, the owner or operator must complete the demonstration no later than October 17, 2018.
(2) For a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit, the owner or operator must complete the demonstration no later than the date of initial receipt of CCR in the CCR unit.
(3) The owner or operator has completed the demonstration required by paragraph (a) of this section when the demonstration is placed in the facility's operating record as required by §257.105(e).
(4) An owner or operator of an existing CCR surface impoundment or existing CCR landfill who fails to demonstrate compliance with the requirements of paragraph (a) of this section by the date specified in paragraph (d)(1) of this section is subject to the requirements of $\S 257.101$ (b)(1) or (d)(1), respectively.
(5) An owner or operator of a new CCR landfill, new CCR surface impoundment, or any lateral expansion of a CCR unit who fails to make the demonstration showing compliance with the requirements of paragraph (a) of this section is prohibited from placing CCR in the CCR unit.
(e) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(e), the notification requirements specified in §257.106(e), and the Internet requirements specified in §257.107(e).

Design Criteria

§257.70 Design criteria for new CCR landfills and any lateral expansion of a CCR

 landfill.(a)(1) New CCR landfills and any lateral expansion of a CCR landfill must be designed, constructed, operated, and maintained with either a composite liner that meets the requirements of paragraph (b) of this section or an alternative composite liner that meets the requirements in paragraph (c) of this section, and a leachate collection and removal system that meets the requirements of paragraph (d) of this section.
(2) Prior to construction of an overfill the underlying surface impoundment must meet the requirements of §257.102(d).
(b) A composite liner must consist of two components; the upper component
consisting of, at a minimum, a 30-mil geomembrane liner (GM), and the lower component consisting of at least a twofoot layer of compacted soil with a hydraulic conductivity of no more than 1×10^{-7} centimeters per second (cm/ sec). GM components consisting of high density polyethylene (HDPE) must be at least $60-\mathrm{mil}$ thick. The GM or upper liner component must be installed in direct and uniform contact with the compacted soil or lower liner component. The composite liner must be:
(1) Constructed of materials that have appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrogeologic forces), physical contact with the CCR or leachate to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation;
(2) Constructed of materials that provide appropriate shear resistance of the upper and lower component interface to prevent sliding of the upper component including on slopes;
(3) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression, or uplift; and
(4) Installed to cover all surrounding earth likely to be in contact with the CCR or leachate.
(c) If the owner or operator elects to install an alternative composite liner, all of the following requirements must be met:
(1) An alternative composite liner must consist of two components; the upper component consisting of, at a minimum, a $30-\mathrm{mil}$ GM, and a lower component, that is not a geomembrane, with a liquid flow rate no greater than the liquid flow rate of two feet of compacted soil with a hydraulic conductivity of no more than 1×10^{-7} $\mathrm{cm} / \mathrm{sec}$. GM components consisting of high density polyethylene (HDPE) must be at least $60-\mathrm{mil}$ thick. If the lower component of the alternative liner is compacted soil, the GM must be installed in direct and uniform contact with the compacted soil.
(2) The owner or operator must obtain certification from a qualified professional engineer that the liquid flow rate through the lower component of the alternative composite liner is no greater than the liquid flow rate through two feet of compacted soil with a hydraulic conductivity of $1 \times 10^{-7} \mathrm{~cm} /$ sec. The hydraulic conductivity for the two feet of compacted soil used in the comparison shall be no greater than $1 \times$
$10^{-7} \mathrm{~cm} / \mathrm{sec}$. The hydraulic conductivity of any alternative to the two feet of compacted soil must be determined using recognized and generally accepted methods. The liquid flow rate comparison must be made using Equation 1 of this section, which is derived from Darcy's Law for gravity flow through porous media.
(Eq. 1)

$$
\frac{Q}{A}=q=k\left(\frac{h}{t}+1\right)
$$

Where,
$\mathrm{Q}=$ flow rate (cubic centimeters/second); $A=$ surface area of the liner (squared centimeters);
$q=$ flow rate per unit area (cubic centimeters/ second/squared centimeter);
$\mathrm{k}=$ hydraulic conductivity of the liner (centimeters/second);
$\mathrm{h}=$ hydraulic head above the liner (centimeters); and
$t=$ thickness of the liner (centimeters).
(3) The alternative composite liner must meet the requirements specified in paragraphs (b)(1) through (4) of this section.
(d) The leachate collection and removal system must be designed, constructed, operated, and maintained to collect and remove leachate from the landfill during the active life and postclosure care period. The leachate collection and removal system must be:
(1) Designed and operated to maintain less than a 30-centimeter depth of leachate over the composite liner or alternative composite liner;
(2) Constructed of materials that are chemically resistant to the CCR and any non-CCR waste managed in the CCR unit and the leachate expected to be generated, and of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying waste, waste cover materials, and equipment used at the CCR unit; and
(3) Designed and operated to minimize clogging during the active life and post-closure care period.
(e) Prior to construction of the CCR landfill or any lateral expansion of a CCR landfill, the owner or operator must obtain a certification from a qualified professional engineer that the design of the composite liner (or, if applicable, alternative composite liner) and the leachate collection and removal system meets the requirements of this section.
(f) Upon completion of construction of the CCR landfill or any lateral expansion of a CCR landfill, the owner or operator must obtain a certification from a qualified professional engineer that the composite liner (or, if applicable, alternative composite liner) and the leachate collection and removal
system has been constructed in accordance with the requirements of this section.
(g) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in $\S 257.105(\mathrm{f})$, the notification
requirements specified in $\S 257.106(\mathrm{f})$, and the Internet requirements specified in §257.107(f).

§257.71 Liner design criteria for existing

(a)(1) No later than October 17, 2016,
the owner or operator of an existing CCR surface impoundment must document whether or not such unit was constructed with any one of the following:
(i) A liner consisting of a minimum of two feet of compacted soil with a hydraulic conductivity of no more than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$;
(ii) A composite liner that meets the requirements of $\S 257.70$ (b); or
(iii) An alternative composite liner that meets the requirements of § 257.70(c).
(2) The hydraulic conductivity of the compacted soil must be determined using recognized and generally accepted methods.
(3) An existing CCR surface impoundment is considered to be an existing unlined CCR surface impoundment if either:
(i) The owner or operator of the CCR unit determines that the CCR unit is not constructed with a liner that meets the requirements of paragraphs (a)(1)(i), (ii), or (iii) of this section; or
(ii) The owner or operator of the CCR unit fails to document whether the CCR unit was constructed with a liner that meets the requirements of paragraphs (a)(1)(i), (ii), or (iii) of this section.
(4) All existing unlined CCR surface impoundments are subject to the requirements of $\S 257.101$ (a).
(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer attesting that the documentation as to whether a CCR unit meets the requirements of paragraph (a) of this section is accurate.
(c) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in $\S 257.105(\mathrm{f})$, the notification requirements specified in $\S 257.106(\mathrm{f})$, and the Internet requirements specified in § 257.107(f).
§257.72 Liner design criteria for new CCR surface impoundments and any lateral expansion of a CCR surface impoundment.
(a) New CCR surface impoundments and lateral expansions of existing and new CCR surface impoundments must
be designed, constructed, operated, and maintained with either a composite liner or an alternative composite liner that meets the requirements of
§257.70(b) or (c).
(b) Any liner specified in this section must be installed to cover all surrounding earth likely to be in contact with CCR. Dikes shall not be constructed on top of the composite liner.
(c) Prior to construction of the CCR surface impoundment or any lateral expansion of a CCR surface impoundment, the owner or operator must obtain certification from a qualified professional engineer that the design of the composite liner or, if applicable, the design of an alternative composite liner complies with the requirements of this section.
(d) Upon completion, the owner or operator must obtain certification from a qualified professional engineer that the composite liner or if applicable, the alternative composite liner has been constructed in accordance with the requirements of this section.
(e) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(f), the notification requirements specified in $\S 257.106(f)$, and the Internet requirements specified in § 257.107(f).

§ 257.73 Structural integrity criteria for existing CCR surface impoundments.

(a) The requirements of paragraphs (a)(1) through (4) of this section apply to all existing CCR surface impoundments, except for those existing CCR surface impoundments that are incised CCR units. If an incised CCR surface impoundment is subsequently modified (e.g., a dike is constructed) such that the CCR unit no longer meets the definition of an incised CCR unit, the CCR unit is subject to the requirements of paragraphs (a)(1) through (4) of this section.
(1) No later than, December 17, 2015, the owner or operator of the CCR unit must place on or immediately adjacent to the CCR unit a permanent identification marker, at least six feet high showing the identification number of the CCR unit, if one has been assigned by the state, the name associated with the CCR unit and the name of the owner or operator of the CCR unit.
(2) Periodic hazard potential classification assessments. (i) The owner or operator of the CCR unit must conduct initial and periodic hazard potential classification assessments of the CCR unit according to the timeframes specified in paragraph (f) of
this section. The owner or operator must document the hazard potential classification of each CCR unit as either a high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment. The owner or operator must also document the basis for each hazard potential classification.
(ii) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial hazard potential classification and each subsequent periodic classification specified in paragraph (a)(2)(i) of this section was conducted in accordance with the requirements of this section.
(3) Emergency Action Plan (EAP)—(i) Development of the plan. No later than April 17, 2017, the owner or operator of a CCR unit determined to be either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment under paragraph (a)(2) of this section must prepare and maintain a written EAP. At a minimum, the EAP must:
(A) Define the events or circumstances involving the CCR unit that represent a safety emergency, along with a description of the procedures that will be followed to detect a safety emergency in a timely manner;
(B) Define responsible persons, their respective responsibilities, and notification procedures in the event of a safety emergency involving the CCR unit;
(C) Provide contact information of emergency responders;
(D) Include a map which delineates the downstream area which would be affected in the event of a CCR unit failure and a physical description of the CCR unit; and
(E) Include provisions for an annual face-to-face meeting or exercise between representatives of the owner or operator of the CCR unit and the local emergency responders.
(ii) Amendment of the plan. (A) The owner or operator of a CCR unit subject to the requirements of paragraph (a)(3)(i) of this section may amend the written EAP at any time provided the revised plan is placed in the facility's operating record as required by $\S 257.105(\mathrm{f})(6)$. The owner or operator must amend the written EAP whenever there is a change in conditions that would substantially affect the EAP in effect.
(B) The written EAP must be evaluated, at a minimum, every five years to ensure the information required in paragraph (a)(3)(i) of this section is accurate. As necessary, the EAP must be updated and a revised EAP placed in
the facility's operating record as required by $\S 257.105(\mathrm{f})(6)$.
(iii) Changes in hazard potential classification. (A) If the owner or operator of a CCR unit determines during a periodic hazard potential assessment that the CCR unit is no longer classified as either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment, then the owner or operator of the CCR unit is no longer subject to the requirement to prepare and maintain a written EAP beginning on the date the periodic hazard potential assessment documentation is placed in the facility's operating record as required by $\S 257.105(f)(5)$.
(B) If the owner or operator of a CCR unit classified as a low hazard potential CCR surface impoundment subsequently determines that the CCR unit is properly re-classified as either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment, then the owner or operator of the CCR unit must prepare a written EAP for the CCR unit as required by paragraph (a)(3)(i) of this section within six months of completing such periodic hazard potential assessment.
(iv) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the written EAP, and any subsequent amendment of the EAP, meets the requirements of paragraph (a)(3) of this section.
(v) Activation of the EAP. The EAP must be implemented once events or circumstances involving the CCR unit that represent a safety emergency are detected, including conditions identified during periodic structural stability assessments, annual inspections, and inspections by a qualified person.
(4) The CCR unit and surrounding areas must be designed, constructed, operated, and maintained with vegetated slopes of dikes not to exceed a height of 6 inches above the slope of the dike, except for slopes which are protected with an alternate form(s) of slope protection.
(b) The requirements of paragraphs (c) through (e) of this section apply to an owner or operator of an existing CCR surface impoundment that either:
(1) Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
(2) Has a height of 20 feet or more.
(c)(1) No later than October 17, 2016, the owner or operator of the CCR unit must compile a history of construction, which shall contain, to the extent feasible, the information specified in
paragraphs (c)(1)(i) through (xi) of this section.
(i) The name and address of the person(s) owning or operating the CCR unit; the name associated with the CCR unit; and the identification number of the CCR unit if one has been assigned by the state.
(ii) The location of the CCR unit identified on the most recent U.S. Geological Survey (USGS) $71 / 2$ minute or 15 minute topographic quadrangle map, or a topographic map of equivalent scale if a USGS map is not available.
(iii) A statement of the purpose for which the CCR unit is being used.
(iv) The name and size in acres of the watershed within which the CCR unit is located.
(v) A description of the physical and engineering properties of the foundation and abutment materials on which the CCR unit is constructed.
(vi) A statement of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR unit; the method of site preparation and construction of each zone of the CCR unit; and the approximate dates of construction of each successive stage of construction of the CCR unit.
(vii) At a scale that details engineering structures and appurtenances relevant to the design, construction, operation, and maintenance of the CCR unit, detailed dimensional drawings of the CCR unit, including a plan view and cross sections of the length and width of the CCR unit, showing all zones, foundation improvements, drainage provisions, spillways, diversion ditches, outlets, instrument locations, and slope protection, in addition to the normal operating pool surface elevation and the maximum pool surface elevation following peak discharge from the inflow design flood, the expected maximum depth of CCR within the CCR surface impoundment, and any identifiable natural or manmade features that could adversely affect operation of the CCR unit due to malfunction or mis-operation.
(viii) A description of the type, purpose, and location of existing instrumentation.
(ix) Area-capacity curves for the CCR unit.
(x) A description of each spillway and diversion design features and capacities and calculations used in their determination.
(xi) The construction specifications and provisions for surveillance, maintenance, and repair of the CCR unit.
(xii) Any record or knowledge of structural instability of the CCR unit.
(2) Changes to the history of construction. If there is a significant change to any information compiled under paragraph (c)(1) of this section, the owner or operator of the CCR unit must update the relevant information and place it in the facility's operating record as required by $\S 257.105(\mathrm{f})(9)$.
(d) Periodic structural stability assessments. (1) The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed,
constructed, operated, and maintained with:
(i) Stable foundations and abutments;
(ii) Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown;
(iii) Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit;
(iv) Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection;
(v) A single spillway or a combination of spillways configured as specified in paragraph $(d)(1)(v)(A)$ of this section. The combined capacity of all spillways must be designed, constructed, operated, and maintained to adequately manage flow during and following the peak discharge from the event specified in paragraph $(d)(1)(v)(B)$ of this section.
(A) All spillways must be either:
(1) Of non-erodible construction and designed to carry sustained flows; or
(2) Earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.
(B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
(1) Probable maximum flood (PMF)
for a high hazard potential CCR surface impoundment; or
(2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
(3) 100-year flood for a low hazard potential CCR surface impoundment.
(vi) Hydraulic structures underlying the base of the CCR unit or passing
through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure; and
(vii) For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.
(2) The periodic assessment described in paragraph $(\mathrm{d})(1)$ of this section must identify any structural stability deficiencies associated with the CCR unit in addition to recommending corrective measures. If a deficiency or a release is identified during the periodic assessment, the owner or operator unit must remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.
(3) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial assessment and each subsequent periodic assessment was conducted in accordance with the requirements of this section.
(e) Periodic safety factor assessments. (1) The owner or operator must conduct an initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in paragraphs (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.
(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50 .
(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40 .
(iii) The calculated seismic factor of safety must equal or exceed 1.00 .
(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20 .
(2) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating
that the initial assessment and each subsequent periodic assessment specified in paragraph (e)(1) of this section meets the requirements of this section.
(f) Timeframes for periodic assessments-(1) Initial assessments. Except as provided by paragraph (f)(2) of this section, the owner or operator of the CCR unit must complete the initial assessments required by paragraphs (a)(2), (d), and (e) of this section no later than October 17, 2016. The owner or operator has completed an initial assessment when the owner or operator has placed the assessment required by paragraphs (a)(2), (d), and (e) of this section in the facility's operating record as required by $\S 257.105(\mathrm{f})(5)$, (10), and (12).
(2) Use of a previously completed assessment(s) in lieu of the initial assessment(s). The owner or operator of the CCR unit may elect to use a previously completed assessment to serve as the initial assessment required by paragraphs (a)(2), (d), and (e) of this section provided that the previously completed assessment(s):
(i) Was completed no earlier than 42 months prior to October 17, 2016; and
(ii) Meets the applicable requirements of paragraphs (a)(2), (d), and (e) of this section.
(3) Frequency for conducting periodic assessments. The owner or operator of the CCR unit must conduct and complete the assessments required by paragraphs (a)(2), (d), and (e) of this section every five years. The date of completing the initial assessment is the basis for establishing the deadline to complete the first subsequent assessment. If the owner or operator elects to use a previously completed assessment(s) in lieu of the initial assessment as provided by paragraph (f)(2) of this section, the date of the report for the previously completed assessment is the basis for establishing the deadline to complete the first subsequent assessment. The owner or operator may complete any required assessment prior to the required deadline provided the owner or operator places the completed assessment(s) into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing subsequent assessments is based on the date of completing the previous assessment. For purposes of this paragraph (f)(3), the owner or operator has completed an assessment when the relevant assessment(s) required by paragraphs (a)(2), (d), and (e) of this section has been placed in the facility's operating record as required by § $257.105(\mathrm{f})(5)$, (10), and (12).
(4) Closure of the CCR unit. An owner or operator of a CCR unit who either fails to complete a timely safety factor assessment or fails to demonstrate minimum safety factors as required by paragraph (e) of this section is subject to the requirements of $\S 257.101$ (b)(2).
(g) The owner or operator of the CCR unit must comply with the
recordkeeping requirements specified in §257.105(f), the notification requirements specified in §257.106(f), and the internet requirements specified in § 257.107 (f).

§ 257.74 Structural integrity criteria for new CCR surface impoundments and any lateral expansion of a CCR surface

 impoundment.(a) The requirements of paragraphs (a)(1) through (4) of this section apply to all new CCR surface impoundments and any lateral expansion of a CCR surface impoundment, except for those new CCR surface impoundments that are incised CCR units. If an incised CCR surface impoundment is subsequently modified (e.g., a dike is constructed) such that the CCR unit no longer meets the definition of an incised CCR unit, the CCR unit is subject to the requirements of paragraphs (a)(1) through (4) of this section.
(1) No later than the initial receipt of CCR, the owner or operator of the CCR unit must place on or immediately adjacent to the CCR unit a permanent identification marker, at least six feet high showing the identification number of the CCR unit, if one has been assigned by the state, the name associated with the CCR unit and the name of the owner or operator of the CCR unit.
(2) Periodic hazard potential classification assessments. (i) The owner or operator of the CCR unit must conduct initial and periodic hazard potential classification assessments of the CCR unit according to the timeframes specified in paragraph (f) of this section. The owner or operator must document the hazard potential classification of each CCR unit as either a high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment. The owner or operator must also document the basis for each hazard potential classification.
(ii) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial hazard potential classification and each subsequent periodic classification specified in paragraph (a)(2)(i) of this section was
conducted in accordance with the requirements of this section.
(3) Emergency Action Plan (EAP)-(i) Development of the plan. Prior to the initial receipt of CCR in the CCR unit, the owner or operator of a CCR unit determined to be either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment under paragraph (a)(2) of this section must prepare and maintain a written EAP. At a minimum, the EAP must:
(A) Define the events or circumstances involving the CCR unit that represent a safety emergency, along with a description of the procedures that will be followed to detect a safety emergency in a timely manner;
(B) Define responsible persons, their respective responsibilities, and notification procedures in the event of a safety emergency involving the CCR unit;
(C) Provide contact information of emergency responders;
(D) Include a map which delineates the downstream area which would be affected in the event of a CCR unit failure and a physical description of the CCR unit; and
(E) Include provisions for an annual face-to-face meeting or exercise between representatives of the owner or operator of the CCR unit and the local emergency responders.
(ii) Amendment of the plan. (A) The owner or operator of a CCR unit subject to the requirements of paragraph (a)(3)(i) of this section may amend the written EAP at any time provided the revised plan is placed in the facility's operating record as required by $\S 257.105(\mathrm{f})(6)$. The owner or operator must amend the written EAP whenever there is a change in conditions that would substantially affect the EAP in effect.
(B) The written EAP must be evaluated, at a minimum, every five years to ensure the information required in paragraph (a)(3)(i) of this section is accurate. As necessary, the EAP must be updated and a revised EAP placed in the facility's operating record as required by § 257.105 (f)(6).
(iii) Changes in hazard potential classification. (A) If the owner or operator of a CCR unit determines during a periodic hazard potential assessment that the CCR unit is no longer classified as either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment, then the owner or operator of the CCR unit is no longer subject to the requirement to prepare and maintain a written EAP beginning on the date the periodic hazard potential assessment documentation is
placed in the facility's operating record as required by $\S 257.105(\mathrm{f})(5)$.
(B) If the owner or operator of a CCR unit classified as a low hazard potential CCR surface impoundment subsequently determines that the CCR unit is properly re-classified as either a high hazard potential CCR surface impoundment or a significant hazard potential CCR surface impoundment, then the owner or operator of the CCR unit must prepare a written EAP for the CCR unit as required by paragraph (a)(3)(i) of this section within six months of completing such periodic hazard potential assessment.
(iv) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the written EAP, and any subsequent amendment of the EAP, meets the requirements of paragraph (a)(3) of this section.
(v) Activation of the EAP. The EAP must be implemented once events or circumstances involving the CCR unit that represent a safety emergency are detected, including conditions identified during periodic structural stability assessments, annual inspections, and inspections by a qualified person.
(4) The CCR unit and surrounding areas must be designed, constructed, operated, and maintained with vegetated slopes of dikes not to exceed a height of six inches above the slope of the dike, except for slopes which are protected with an alternate form(s) of slope protection.
(b) The requirements of paragraphs (c) through (e) of this section apply to an owner or operator of a new CCR surface impoundment and any lateral expansion of a CCR surface impoundment that either:
(1) Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
(2) Has a height of 20 feet or more.
(c)(1) No later than the initial receipt of CCR in the CCR unit, the owner or operator unit must compile the design and construction plans for the CCR unit, which must include, to the extent feasible, the information specified in paragraphs (c)(1)(i) through (xi) of this section.
(i) The name and address of the person(s) owning or operating the CCR unit; the name associated with the CCR unit; and the identification number of the CCR unit if one has been assigned by the state.
(ii) The location of the CCR unit identified on the most recent U.S. Geological Survey (USGS) $71 / 2$ minute or 15 minute topographic quadrangle map,
or a topographic map of equivalent scale if a USGS map is not available.
(iii) A statement of the purpose for which the CCR unit is being used.
(iv) The name and size in acres of the watershed within which the CCR unit is located.
(v) A description of the physical and engineering properties of the foundation and abutment materials on which the CCR unit is constructed.
(vi) A statement of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR unit; the method of site preparation and construction of each zone of the CCR unit; and the dates of construction of each successive stage of construction of the CCR unit.
(vii) At a scale that details engineering structures and appurtenances relevant to the design, construction, operation, and maintenance of the CCR unit, detailed dimensional drawings of the CCR unit, including a plan view and cross sections of the length and width of the CCR unit, showing all zones, foundation improvements, drainage provisions, spillways, diversion ditches, outlets, instrument locations, and slope protection, in addition to the normal operating pool surface elevation and the maximum pool surface elevation following peak discharge from the inflow design flood, the expected maximum depth of CCR within the CCR surface impoundment, and any identifiable natural or manmade features that could adversely affect operation of the CCR unit due to malfunction or mis-operation.
(viii) A description of the type, purpose, and location of existing instrumentation.
(ix) Area-capacity curves for the CCR unit.
(x) A description of each spillway and diversion design features and capacities and calculations used in their determination.
(xi) The construction specifications and provisions for surveillance, maintenance, and repair of the CCR unit.
(xii) Any record or knowledge of structural instability of the CCR unit.
(2) Changes in the design and construction. If there is a significant change to any information compiled under paragraph (c)(1) of this section, the owner or operator of the CCR unit must update the relevant information and place it in the facility's operating record as required by $\S 257.105(\mathrm{f})(13)$.
(d) Periodic structural stability
assessments. (1) The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments
and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with:
(i) Stable foundations and abutments;
(ii) Adequate slope protection to
protect against surface erosion, wave action, and adverse effects of sudden drawdown;
(iii) Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit;
(iv) Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection;
(v) A single spillway or a combination of spillways configured as specified in paragraph $(d)(1)(v)(A)$ of this section. The combined capacity of all spillways must be designed, constructed, operated, and maintained to adequately manage flow during and following the peak discharge from the event specified in paragraph $(d)(1)(v)(B)$ of this section.
(A) All spillways must be either:
(1) Of non-erodible construction and designed to carry sustained flows; or
(2) Earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.
(B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
(1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
(2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
(3) 100-year flood for a low hazard potential CCR surface impoundment.
(vi) Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure; and
(vii) For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability
during low pool of the adjacent water body or sudden drawdown of the adjacent water body.
(2) The periodic assessment described in paragraph (d)(1) of this section must identify any structural stability deficiencies associated with the CCR unit in addition to recommending corrective measures. If a deficiency or a release is identified during the periodic assessment, the owner or operator unit must remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.
(3) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial assessment and each subsequent periodic assessment was conducted in accordance with the requirements of this section.
(e) Periodic safety factor assessments. (1) The owner or operator must conduct an initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in paragraphs (e)(1)(i) through (v) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.
(i) The calculated static factor of safety under the end-of-construction loading condition must equal or exceed 1.30. The assessment of this loading condition is only required for the initial safety factor assessment and is not required for subsequent assessments.
(ii) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50 .
(iii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
(iv) The calculated seismic factor of safety must equal or exceed 1.00.
(v) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.
(2) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial assessment and each subsequent periodic assessment specified in paragraph (e)(1) of this section meets the requirements of this section.
(f) Timeframes for periodic assessments-(1) Initial assessments. Except as provided by paragraph (f)(2) of this section, the owner or operator of the CCR unit must complete the initial assessments required by paragraphs (a)(2), (d), and (e) of this section prior to the initial receipt of CCR in the unit. The owner or operator has completed an initial assessment when the owner or operator has placed the assessment required by paragraphs (a)(2), (d), and (e) of this section in the facility's operating record as required by §257.105(f)(5), (10), and (12).
(2) Frequency for conducting periodic assessments. The owner or operator of the CCR unit must conduct and complete the assessments required by paragraphs (a)(2), (d), and (e) of this section every five years. The date of completing the initial assessment is the basis for establishing the deadline to complete the first subsequent assessment. The owner or operator may complete any required assessment prior to the required deadline provided the owner or operator places the completed assessment(s) into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing subsequent assessments is based on the date of completing the previous assessment. For purposes of this paragraph (f)(2), the owner or operator has completed an assessment when the relevant assessment(s) required by paragraphs (a)(2), (d), and (e) of this section has been placed in the facility's operating record as required by $\S 257.105(f)(5)$, (10), and (12).
(3) Failure to document minimum safety factors during the initial assessment. Until the date an owner or operator of a CCR unit documents that the calculated factors of safety achieve the minimum safety factors specified in paragraphs (e)(1)(i) through (v) of this section, the owner or operator is prohibited from placing CCR in such unit.
(4) Closure of the CCR unit. An owner or operator of a CCR unit who either fails to complete a timely periodic safety factor assessment or fails to demonstrate minimum safety factors as required by paragraph (e) of this section is subject to the requirements of $\S 257.101$ (c).
(g) The owner or operator of the CCR unit must comply with the
recordkeeping requirements specified in §257.105(f), the notification requirements specified in § 257.106(f), and the internet requirements specified in § 257.107(f).

Operating Criteria

§257.80 Air criteria.

(a) The owner or operator of a CCR landfill, CCR surface impoundment, or any lateral expansion of a CCR unit must adopt measures that will effectively minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR units, roads, and other CCR management and material handling activities.
(b) CCR fugitive dust control plan. The owner or operator of the CCR unit must prepare and operate in accordance with a CCR fugitive dust control plan as specified in paragraphs (b)(1) through (7) of this section. This requirement applies in addition to, not in place of, any applicable standards under the Occupational Safety and Health Act.
(1) The CCR fugitive dust control plan must identify and describe the CCR fugitive dust control measures the owner or operator will use to minimize CCR from becoming airborne at the facility. The owner or operator must select, and include in the CCR fugitive dust control plan, the CCR fugitive dust control measures that are most appropriate for site conditions, along with an explanation of how the measures selected are applicable and appropriate for site conditions. Examples of control measures that may be appropriate include: Locating CCR inside an enclosure or partial enclosure; operating a water spray or fogging system; reducing fall distances at material drop points; using wind barriers, compaction, or vegetative covers; establishing and enforcing reduced vehicle speed limits; paving and sweeping roads; covering trucks transporting CCR; reducing or halting operations during high wind events; or applying a daily cover.
(2) If the owner or operator operates a CCR landfill or any lateral expansion of a CCR landfill, the CCR fugitive dust control plan must include procedures to emplace CCR as conditioned CCR. Conditioned CCR means wetting CCR with water to a moisture content that will prevent wind dispersal, but will not result in free liquids. In lieu of water, CCR conditioning may be accomplished with an appropriate chemical dust suppression agent.
(3) The CCR fugitive dust control plan must include procedures to log citizen complaints received by the owner or operator involving CCR fugitive dust events at the facility.
(4) The CCR fugitive dust control plan must include a description of the procedures the owner or operator will
follow to periodically assess the effectiveness of the control plan.
(5) The owner or operator of a CCR unit must prepare an initial CCR fugitive dust control plan for the facility no later than October 19, 2015, or by initial receipt of CCR in any CCR unit at the facility if the owner or operator becomes subject to this subpart after October 19, 2015. The owner or operator has completed the initial CCR fugitive dust control plan when the plan has been placed in the facility's operating record as required by $\S 257.105(\mathrm{~g})(1)$.
(6) Amendment of the plan. The owner or operator of a CCR unit subject to the requirements of this section may amend the written CCR fugitive dust control plan at any time provided the revised plan is placed in the facility's operating record as required by $\$ 257.105(\mathrm{~g})(1)$. The owner or operator must amend the written plan whenever there is a change in conditions that would substantially affect the written plan in effect, such as the construction and operation of a new CCR unit.
(7) The owner or operator must obtain a certification from a qualified professional engineer that the initial CCR fugitive dust control plan, or any subsequent amendment of it, meets the requirements of this section.
(c) Annual CCR fugitive dust control report. The owner or operator of a CCR unit must prepare an annual CCR fugitive dust control report that includes a description of the actions taken by the owner or operator to control CCR fugitive dust, a record of all citizen complaints, and a summary of any corrective measures taken. The initial annual report must be completed no later than 14 months after placing the initial CCR fugitive dust control plan in the facility's operating record. The deadline for completing a subsequent report is one year after the date of completing the previous report. For purposes of this paragraph (c), the owner or operator has completed the annual CCR fugitive dust control report when the plan has been placed in the facility's operating record as required by § $257.105(\mathrm{~g})(2)$.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(g), the notification requirements specified in § 257.106(g), and the internet requirements specified in § $257.107(\mathrm{~g})$.

§257.81 Run-on and run-off controls for CCR landfills.

(a) The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must
design, construct, operate, and maintain:
(1) A run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25 -year storm; and
(2) A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24 -hour, 25 -year storm.
(b) Run-off from the active portion of the CCR unit must be handled in accordance with the surface water requirements under § 257.3-3.
(c) Run-on and run-off control system plan-(1) Content of the plan. The owner or operator must prepare initial and periodic run-on and run-off control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this section. These plans must document how the run-on and run-off control systems have been designed and constructed to meet the applicable requirements of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator has completed the initial run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by $\S 257.105(\mathrm{~g})(3)$.
(2) Amendment of the plan. The owner or operator may amend the written run-on and run-off control system plan at any time provided the revised plan is placed in the facility's operating record as required by $\S 257.105(\mathrm{~g})(3)$. The owner or operator must amend the written run-on and runoff control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.
(3) Timeframes for preparing the initial plan-(i) Existing CCR landfills. The owner or operator of the CCR unit must prepare the initial run-on and runoff control system plan no later than October 17, 2016.
(ii) New CCR landfills and any lateral expansion of a CCR landfill. The owner or operator must prepare the initial runon and run-off control system plan no later than the date of initial receipt of CCR in the CCR unit.
(4) Frequency for revising the plan. The owner or operator of the CCR unit must prepare periodic run-on and runoff control system plans required by paragraph (c)(1) of this section every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first subsequent plan. The owner or operator may complete any required plan prior to the required deadline provided the owner or operator places the completed plan into the facility's operating record
within a reasonable amount of time. In all cases, the deadline for completing a subsequent plan is based on the date of completing the previous plan. For purposes of this paragraph (c)(4), the owner or operator has completed a periodic run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by $\S 257.105(\mathrm{~g})(3)$.
(5) The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic run-on and run-off control system plans meet the requirements of this section.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(g), the notification requirements specified in § $257.106(\mathrm{~g})$, and the internet requirements specified in § $257.107(\mathrm{~g})$.

§257.82 Hydrologic and hydraulic capacity requirements for CCR surface impoundments.

(a) The owner or operator of an existing or new CCR surface impoundment or any lateral expansion of a CCR surface impoundment must design, construct, operate, and maintain an inflow design flood control system as specified in paragraphs (a)(1) and (2) of this section.
(1) The inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood specified in paragraph (a)(3) of this section.
(2) The inflow design flood control system must adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood specified in paragraph (a)(3) of this section.
(3) The inflow design flood is:
(i) For a high hazard potential CCR surface impoundment, as determined under § 257.73(a)(2) or §257.74(a)(2), the probable maximum flood;
(ii) For a significant hazard potential CCR surface impoundment, as determined under $\S 257.73$ (a)(2) or §257.74(a)(2), the 1,000-year flood;
(iii) For a low hazard potential CCR surface impoundment, as determined under §257.73(a)(2) or §257.74(a)(2), the 100-year flood; or
(iv) For an incised CCR surface impoundment, the 25-year flood.
(b) Discharge from the CCR unit must be handled in accordance with the surface water requirements under §257.3-3.
(c) Inflow design flood control system plan-(1) Content of the plan. The owner or operator must prepare initial
and periodic inflow design flood control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this section. These plans must document how the inflow design flood control system has been designed and constructed to meet the requirements of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator of the CCR unit has completed the inflow design flood control system plan when the plan has been placed in the facility's operating record as required by § $257.105(\mathrm{~g})(4)$.
(2) Amendment of the plan. The owner or operator of the CCR unit may amend the written inflow design flood control system plan at any time provided the revised plan is placed in the facility's operating record as required by § $257.105(\mathrm{~g})(4)$. The owner or operator must amend the written inflow design flood control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.
(3) Timeframes for preparing the initial plan-(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must prepare the initial inflow design flood control system plan no later than October 17, 2016.
(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator must prepare the initial inflow design flood control system plan no later than the date of initial receipt of CCR in the CCR unit.
(4) Frequency for revising the plan. The owner or operator must prepare periodic inflow design flood control system plans required by paragraph (c)(1) of this section every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first periodic plan. The owner or operator may complete any required plan prior to the required deadline provided the owner or operator places the completed plan into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing a subsequent plan is based on the date of completing the previous plan. For purposes of this paragraph (c)(4), the owner or operator has completed an inflow design flood control system plan when the plan has been placed in the facility's operating record as required by § $257.105(\mathrm{~g})(4)$.
(5) The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic inflow design flood control system plans meet the requirements of this section.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(g), the notification requirements specified in § 257.106(g), and the internet requirements specified in § $257.107(\mathrm{~g})$.

§257.83 Inspection requirements for CCR surface impoundments.

(a) Inspections by a qualified person. (1) All CCR surface impoundments and any lateral expansion of a CCR surface impoundment must be examined by a qualified person as follows:
(i) At intervals not exceeding seven days, inspect for any appearances of actual or potential structural weakness and other conditions which are disrupting or have the potential to disrupt the operation or safety of the CCR unit;
(ii) At intervals not exceeding seven days, inspect the discharge of all outlets of hydraulic structures which pass underneath the base of the surface impoundment or through the dike of the CCR unit for abnormal discoloration, flow or discharge of debris or sediment; and
(iii) At intervals not exceeding 30 days, monitor all CCR unit instrumentation.
(iv) The results of the inspection by a qualified person must be recorded in the facility's operating record as required by $\S 257.105(\mathrm{~g})(5)$.
(2) Timeframes for inspections by a qualified person-(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section no later than October 19, 2015.
(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section upon initial receipt of CCR by the CCR unit.
(b) Annual inspections by a qualified professional engineer. (1) If the existing or new CCR surface impoundment or any lateral expansion of the CCR surface impoundment is subject to the periodic structural stability assessment requirements under $\S 257.73$ (d) or §257.74(d), the CCR unit must additionally be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:
(i) A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., CCR unit design and construction information required by $\S \S 257.73$ (c)(1) and 257.74(c)(1), previous periodic structural stability assessments required under §§ 257.73(d) and 257.74(d), the results of inspections by a qualified person, and results of previous annual inspections);
(ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures; and
(iii) A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.
(2) Inspection report. The qualified professional engineer must prepare a report following each inspection that addresses the following:
(i) Any changes in geometry of the impounding structure since the previous annual inspection;
(ii) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection;
(iii) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;
(iv) The storage capacity of the impounding structure at the time of the inspection;
(v) The approximate volume of the impounded water and CCR at the time of the inspection;
(vi) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit and appurtenant structures; and (vii) Any other change(s) which may have affected the stability or operation of the impounding structure since the previous annual inspection.
(3) Timeframes for conducting the initial inspection-(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must complete the initial inspection required by paragraphs (b)(1) and (2) of this section no later than January 18, 2016.
(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator of the CCR unit must complete the initial annual inspection required by paragraphs (b)(1) and (2) of this section is completed no later than 14 months
following the date of initial receipt of CCR in the CCR unit.
(4) Frequency of inspections. (i) Except as provided for in paragraph (b)(4)(ii) of this section, the owner or operator of the CCR unit must conduct the inspection required by paragraphs (b)(1) and (2) of this section on an annual basis. The date of completing the initial inspection report is the basis for establishing the deadline to complete the first subsequent inspection. Any required inspection may be conducted prior to the required deadline provided the owner or operator places the completed inspection report into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing subsequent inspection reports is based on the date of completing the previous inspection report. For purposes of this section, the owner or operator has completed an inspection when the inspection report has been placed in the facility's operating record as required by § $257.105(\mathrm{~g})(6)$.
(ii) In any calendar year in which both the periodic inspection by a qualified professional engineer and the quinquennial (occurring every five years) structural stability assessment by a qualified professional engineer required by $\$ \S 257.73(\mathrm{~d})$ and $257.74(\mathrm{~d})$ are required to be completed, the annual inspection is not required, provided the structural stability assessment is completed during the calendar year. If the annual inspection is not conducted in a year as provided by this paragraph (b)(4)(ii), the deadline for completing the next annual inspection is one year from the date of completing the quinquennial structural stability assessment.
(5) If a deficiency or release is identified during an inspection, the owner or operator must remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.
(c) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § $257.105(\mathrm{~g})$, the notification requirements specified in § $257.106(\mathrm{~g})$, and the internet requirements specified in § 257.107(g).

§257.84 Inspection requirements for CCR landfills.

(a) Inspections by a qualified person. (1) All CCR landfills and any lateral expansion of a CCR landfill must be examined by a qualified person as follows:
(i) At intervals not exceeding seven days, inspect for any appearances of actual or potential structural weakness
and other conditions which are disrupting or have the potential to disrupt the operation or safety of the CCR unit; and
(ii) The results of the inspection by a qualified person must be recorded in the facility's operating record as required by § $257.105(\mathrm{~g})(8)$.
(2) Timeframes for inspections by a qualified person-(i) Existing CCR landfills. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section no later than October 19, 2015.
(ii) New CCR landfills and any lateral expansion of a CCR landfill. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section upon initial receipt of CCR by the CCR unit.
(b) Annual inspections by a qualified professional engineer. (1) Existing and new CCR landfills and any lateral expansion of a CCR landfill must be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:
(i) A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., the results of inspections by a qualified person, and results of previous annual inspections); and
(ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit.
(2) Inspection report. The qualified professional engineer must prepare a report following each inspection that addresses the following:
(i) Any changes in geometry of the structure since the previous annual inspection;
(ii) The approximate volume of CCR contained in the unit at the time of the inspection;
(iii) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit; and
(iv) Any other change(s) which may have affected the stability or operation of the CCR unit since the previous annual inspection.
(3) Timeframes for conducting the initial inspection-(i) Existing CCR landfills. The owner or operator of the CCR unit must complete the initial inspection required by paragraphs (b)(1) and (2) of this section no later than January 18, 2016.
(ii) New CCR landfills and any lateral expansion of a CCR landfill. The owner or operator of the CCR unit must complete the initial annual inspection required by paragraphs (b)(1) and (2) of this section no later than 14 months following the date of initial receipt of CCR in the CCR unit.
(4) Frequency of inspections. The owner or operator of the CCR unit must conduct the inspection required by paragraphs (b)(1) and (2) of this section on an annual basis. The date of completing the initial inspection report is the basis for establishing the deadline to complete the first subsequent inspection. Any required inspection may be conducted prior to the required deadline provided the owner or operator places the completed inspection report into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing subsequent inspection reports is based on the date of completing the previous inspection report. For purposes of this section, the owner or operator has completed an inspection when the inspection report has been placed in the facility's operating record as required by § $257.105(\mathrm{~g})(9)$.
(5) If a deficiency or release is identified during an inspection, the owner or operator must remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.
(c) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § $257.105(\mathrm{~g})$, the notification requirements specified in § $257.106(\mathrm{~g})$, and the internet requirements specified in § $257.107(\mathrm{~g})$.

Groundwater Monitoring and Corrective Action

§257.90 Applicability.

(a) Except as provided for in $\S 257.100$ for inactive CCR surface impoundments, all CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under $\S \$ 257.90$ through 257.98.
(b) Initial timeframes-(1) Existing CCR landfills and existing CCR surface impoundments. No later than October 17, 2017, the owner or operator of the CCR unit must be in compliance with the following groundwater monitoring requirements:
(i) Install the groundwater monitoring system as required by § 257.91;
(ii) Develop the groundwater sampling and analysis program to include selection of the statistical
procedures to be used for evaluating groundwater monitoring data as required by $\S 257.93$;
(iii) Initiate the detection monitoring program to include obtaining a minimum of eight independent samples for each background and downgradient well as required by $\S 257.94$ (b); and
(iv) Begin evaluating the groundwater monitoring data for statistically significant increases over background levels for the constituents listed in appendix III of this part as required by §257.94.
(2) New CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units. Prior to initial receipt of CCR by the CCR unit, the owner or operator must be in compliance with the groundwater monitoring requirements specified in paragraph (b)(1)(i) and (ii) of this section. In addition, the owner or operator of the CCR unit must initiate the detection monitoring program to include obtaining a minimum of eight independent samples for each background well as required by § 257.94(b).
(c) Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit as required by this subpart, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action throughout the active life and post-closure care period of the CCR unit.
(d) In the event of a release from a CCR unit, the owner or operator must immediately take all necessary measures to control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of contaminants into the environment. The owner or operator of the CCR unit must comply with all applicable requirements in §§257.96, 257.97, and 257.98.
(e) Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater
monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by $\S 257.105(\mathrm{~h})(1)$. At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:
(1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
(3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98 , a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
(4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
(5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98 .
(f) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in $\S 257.105(\mathrm{~h})$, the notification requirements specified in $\S 257.106(\mathrm{~h})$, and the internet requirements specified in §257.107(h).

§257.91 Groundwater monitoring systems.

(a) Performance standard. The owner or operator of a CCR unit must install a groundwater monitoring system that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer that:
(1) Accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit. A determination of background
quality may include sampling of wells that are not hydraulically upgradient of the CCR management area where:
(i) Hydrogeologic conditions do not allow the owner or operator of the CCR unit to determine what wells are hydraulically upgradient; or
(ii) Sampling at other wells will provide an indication of background groundwater quality that is as representative or more representative than that provided by the upgradient wells; and
(2) Accurately represent the quality of groundwater passing the waste boundary of the CCR unit. The downgradient monitoring system must be installed at the waste boundary that ensures detection of groundwater contamination in the uppermost aquifer. All potential contaminant pathways must be monitored.
(b) The number, spacing, and depths of monitoring systems shall be determined based upon site-specific technical information that must include thorough characterization of:
(1) Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and
(2) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.
(c) The groundwater monitoring system must include the minimum number of monitoring wells necessary to meet the performance standards specified in paragraph (a) of this section, based on the site-specific information specified in paragraph (b) of this section. The groundwater monitoring system must contain:
(1) A minimum of one upgradient and three downgradient monitoring wells; and
(2) Additional monitoring wells as necessary to accurately represent the quality of background groundwater that has not been affected by leakage from the CCR unit and the quality of groundwater passing the waste boundary of the CCR unit.
(d) The owner or operator of multiple CCR units may install a multiunit groundwater monitoring system instead of separate groundwater monitoring systems for each CCR unit.
(1) The multiunit groundwater monitoring system must be equally as capable of detecting monitored constituents at the waste boundary of
the CCR unit as the individual groundwater monitoring system specified in paragraphs (a) through (c) of this section for each CCR unit based on the following factors:
(i) Number, spacing, and orientation of each CCR unit;
(ii) Hydrogeologic setting;
(iii) Site history; and
(iv) Engineering design of the CCR unit.
(2) If the owner or operator elects to install a multiunit groundwater monitoring system, and if the multiunit system includes at least one existing unlined CCR surface impoundment as determined by $\S 257.71$ (a), and if at any time after October 19, 2015 the owner or operator determines in any sampling event that the concentrations of one or more constituents listed in appendix IV to this part are detected at statistically significant levels above the groundwater protection standard established under § 257.95(h) for the multiunit system, then all unlined CCR surface impoundments comprising the multiunit groundwater monitoring system are subject to the closure requirements under § 257.101(a) to retrofit or close.
(e) Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well borehole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of groundwater samples. The annular space (i.e., the space between the borehole and well casing) above the sampling depth must be sealed to prevent contamination of samples and the groundwater.
(1) The owner or operator of the CCR unit must document and include in the operating record the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices. The qualified professional engineer must be given access to this documentation when completing the groundwater monitoring system certification required under paragraph (f) of this section.
(2) The monitoring wells, piezometers, and other measurement, sampling, and analytical devices must be operated and maintained so that they perform to the design specifications throughout the life of the monitoring program.
(f) The owner or operator must obtain a certification from a qualified professional engineer stating that the groundwater monitoring system has been designed and constructed to meet the requirements of this section. If the groundwater monitoring system
includes the minimum number of monitoring wells specified in paragraph (c)(1) of this section, the certification must document the basis supporting this determination.
(g) The owner or operator of the CCR unit must comply with the
recordkeeping requirements specified in §257.105(h), the notification
requirements specified in § $257.106(\mathrm{~h})$, and the internet requirements specified in § 257.107(h).

§257.92 [Reserved]

§257.93 Groundwater sampling and analysis requirements.
(a) The groundwater monitoring program must include consistent sampling and analysis procedures that are designed to ensure monitoring results that provide an accurate representation of groundwater quality at the background and downgradient wells required by $\S 257.91$. The owner or operator of the CCR unit must develop a sampling and analysis program that includes procedures and techniques for:
(1) Sample collection;
(2) Sample preservation and shipment;
(3) Analytical procedures;
(4) Chain of custody control; and
(5) Quality assurance and quality control.
(b) The groundwater monitoring program must include sampling and analytical methods that are appropriate for groundwater sampling and that accurately measure hazardous constituents and other monitoring parameters in groundwater samples. For purposes of $\S \S 257.90$ through 257.98, the term constituent refers to both hazardous constituents and other monitoring parameters listed in either appendix III or IV of this part.
(c) Groundwater elevations must be measured in each well immediately prior to purging, each time groundwater is sampled. The owner or operator of the CCR unit must determine the rate and direction of groundwater flow each time groundwater is sampled. Groundwater elevations in wells which monitor the same CCR management area must be measured within a period of time short enough to avoid temporal variations in groundwater flow which could preclude accurate determination of groundwater flow rate and direction.
(d) The owner or operator of the CCR unit must establish background groundwater quality in a hydraulically upgradient or background well(s) for each of the constituents required in the particular groundwater monitoring program that applies to the CCR unit as determined under § 257.94(a) or
§257.95(a). Background groundwater quality may be established at wells that are not located hydraulically upgradient from the CCR unit if it meets the requirements of $\S 257.91$ (a)(1).
(e) The number of samples collected when conducting detection monitoring and assessment monitoring (for both downgradient and background wells) must be consistent with the statistical procedures chosen under paragraph (f) of this section and the performance standards under paragraph (g) of this section. The sampling procedures shall be those specified under $\S 257.94$ (b) through (d) for detection monitoring, §257.95(b) through (d) for assessment monitoring, and §257.96(b) for corrective action.
(f) The owner or operator of the CCR unit must select one of the statistical methods specified in paragraphs (f)(1) through (5) of this section to be used in evaluating groundwater monitoring data for each specified constituent. The statistical test chosen shall be conducted separately for each constituent in each monitoring well.
(1) A parametric analysis of variance followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's mean and the background mean levels for each constituent.
(2) An analysis of variance based on ranks followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's median and the background median levels for each constituent.
(3) A tolerance or prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data and the level of each constituent in each compliance well is compared to the upper tolerance or prediction limit.
(4) A control chart approach that gives control limits for each constituent.
(5) Another statistical test method that meets the performance standards of paragraph (g) of this section.
(6) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR management area. The certification must include a narrative description of the statistical method selected to evaluate the groundwater monitoring data.
(g) Any statistical method chosen under paragraph (f) of this section shall comply with the following performance standards, as appropriate, based on the statistical test method used:
(1) The statistical method used to evaluate groundwater monitoring data shall be appropriate for the distribution of constituents. Normal distributions of data values shall use parametric methods. Non-normal distributions shall use non-parametric methods. If the distribution of the constituents is shown by the owner or operator of the CCR unit to be inappropriate for a normal theory test, then the data must be transformed or a distribution-free (non-parametric) theory test must be used. If the distributions for the constituents differ, more than one statistical method may be needed.
(2) If an individual well comparison procedure is used to compare an individual compliance well constituent concentration with background constituent concentrations or a groundwater protection standard, the test shall be done at a Type I error level no less than 0.01 for each testing period. If a multiple comparison procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05 ; however, the Type I error of no less than 0.01 for individual well comparisons must be maintained. This performance standard does not apply to tolerance intervals, prediction intervals, or control charts.
(3) If a control chart approach is used to evaluate groundwater monitoring data, the specific type of control chart and its associated parameter values shall be such that this approach is at least as effective as any other approach in this section for evaluating groundwater data. The parameter values shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentration values for each constituent of concern.
(4) If a tolerance interval or a predictional interval is used to evaluate groundwater monitoring data, the levels of confidence and, for tolerance intervals, the percentage of the population that the interval must contain, shall be such that this approach is at least as effective as any other approach in this section for evaluating groundwater data. These parameters shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentration values for each constituent of concern.
(5) The statistical method must account for data below the limit of detection with one or more statistical procedures that shall at least as effective as any other approach in this section for evaluating groundwater data. Any practical quantitation limit that is used in the statistical method shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions that are available to the facility.
(6) If necessary, the statistical method must include procedures to control or correct for seasonal and spatial variability as well as temporal correlation in the data.
(h) The owner or operator of the CCR unit must determine whether or not there is a statistically significant increase over background values for each constituent required in the particular groundwater monitoring program that applies to the CCR unit, as determined under §257.94(a) or § 257.95(a).
(1) In determining whether a statistically significant increase has occurred, the owner or operator must compare the groundwater quality of each constituent at each monitoring well designated pursuant to § 257.91(a)(2) or (d)(1) to the background value of that constituent, according to the statistical procedures and performance standards specified under paragraphs (f) and (g) of this section.
(2) Within 90 days after completing sampling and analysis, the owner or operator must determine whether there has been a statistically significant increase over background for any constituent at each monitoring well.
(i) The owner or operator must measure "total recoverable metals" concentrations in measuring groundwater quality. Measurement of total recoverable metals captures both the particulate fraction and dissolved fraction of metals in natural waters. Groundwater samples shall not be fieldfiltered prior to analysis.
(j) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(h), the notification requirements specified in § 257.106(h), and the Internet requirements specified in §257.107(h).

§257.94 Detection monitoring program.

(a) The owner or operator of a CCR unit must conduct detection monitoring at all groundwater monitoring wells consistent with this section. At a minimum, a detection monitoring program must include groundwater
monitoring for all constituents listed in appendix III to this part.
(b) Except as provided in paragraph (d) of this section, the monitoring frequency for the constituents listed in appendix III to this part shall be at least semiannual during the active life of the CCR unit and the post-closure period. For existing CCR landfills and existing CCR surface impoundments, a minimum of eight independent samples from each background and
downgradient well must be collected and analyzed for the constituents listed in appendix III and IV to this part no later than October 17, 2017. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, a minimum of eight independent samples for each background well must be collected and analyzed for the constituents listed in appendices III and IV to this part during the first six months of sampling.
(c) The number of samples collected and analyzed for each background well and downgradient well during subsequent semiannual sampling events must be consistent with $\S 257.93$ (e), and must account for any unique
characteristics of the site, but must be at least one sample from each background and downgradient well.
(d) The owner or operator of a CCR unit may demonstrate the need for an alternative monitoring frequency for repeated sampling and analysis for constituents listed in appendix III to this part during the active life and the post-closure care period based on the availability of groundwater. If there is not adequate groundwater flow to sample wells semiannually, the alternative frequency shall be no less than annual. The need to vary monitoring frequency must be evaluated on a site-specific basis. The demonstration must be supported by, at a minimum, the information specified in paragraphs (d)(1) and (2) of this section.
(1) Information documenting that the need for less frequent sampling. The alternative frequency must be based on consideration of the following factors:
(i) Lithology of the aquifer and unsaturated zone;
(ii) Hydraulic conductivity of the aquifer and unsaturated zone; and
(iii) Groundwater flow rates.
(2) Information documenting that the alternative frequency will be no less effective in ensuring that any leakage from the CCR unit will be discovered within a timeframe that will not materially delay establishment of an assessment monitoring program.
(3) The owner or operator must obtain a certification from a qualified
professional engineer stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).
(e) If the owner or operator of the CCR unit determines, pursuant to §257.93(h) that there is a statistically significant increase over background levels for one or more of the constituents listed in appendix III to this part at any monitoring well at the waste boundary specified under §257.91(a)(2), the owner or operator must:
(1) Except as provided for in paragraph (e)(2) of this section, within 90 days of detecting a statistically significant increase over background levels for any constituent, establish an assessment monitoring program meeting the requirements of $\S 257.95$.
(2) The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under $\S 257.95$. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90(\mathrm{e})$, in addition to the certification by a qualified professional engineer.
(3) The owner or operator of a CCR unit must prepare a notification stating that an assessment monitoring program has been established. The owner or operator has completed the notification when the notification is placed in the facility's operating record as required by § $257.105(\mathrm{~h})(5)$.
(f) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(h), the notification
requirements specified in $\S 257.106(\mathrm{~h})$, and the Internet requirements specified in §257.107(h).

§257.95 Assessment monitoring program.

(a) Assessment monitoring is required whenever a statistically significant increase over background levels has been detected for one or more of the constituents listed in appendix III to this part.
(b) Within 90 days of triggering an assessment monitoring program, and annually thereafter, the owner or operator of the CCR unit must sample and analyze the groundwater for all constituents listed in appendix IV to this part. The number of samples collected and analyzed for each well during each sampling event must be consistent with §257.93(e), and must account for any unique characteristics of the site, but must be at least one sample from each well.
(c) The owner or operator of a CCR unit may demonstrate the need for an alternative monitoring frequency for repeated sampling and analysis for constituents listed in appendix IV to this part during the active life and the post-closure care period based on the availability of groundwater. If there is not adequate groundwater flow to sample wells semiannually, the alternative frequency shall be no less than annual. The need to vary monitoring frequency must be evaluated on a site-specific basis. The demonstration must be supported by, at a minimum, the information specified in paragraphs (c)(1) and (2) of this section.
(1) Information documenting that the need for less frequent sampling. The alternative frequency must be based on consideration of the following factors:
(i) Lithology of the aquifer and unsaturated zone;
(ii) Hydraulic conductivity of the aquifer and unsaturated zone; and
(iii) Groundwater flow rates.
(2) Information documenting that the alternative frequency will be no less effective in ensuring that any leakage from the CCR unit will be discovered within a timeframe that will not materially delay the initiation of any necessary remediation measures.
(3) The owner or operator must obtain a certification from a qualified professional engineer stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must
include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).
(d) After obtaining the results from the initial and subsequent sampling events required in paragraph (b) of this section, the owner or operator must:
(1) Within 90 days of obtaining the results, and on at least a semiannual basis thereafter, resample all wells that were installed pursuant to the requirements of $\S 257.91$, conduct analyses for all parameters in appendix III to this part and for those constituents in appendix IV to this part that are detected in response to paragraph (b) of this section, and record their concentrations in the facility operating record. The number of samples collected and analyzed for each background well and downgradient well during subsequent semiannual sampling events must be consistent with §257.93(e), and must account for any unique characteristics of the site, but must be at least one sample from each background and downgradient well;
(2) Establish groundwater protection standards for all constituents detected pursuant to paragraph (b) or (d) of this section. The groundwater protection standards must be established in accordance with paragraph (h) of this section; and
(3) Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by $\S 257.90$ (e).
(e) If the concentrations of all constituents listed in appendices III and IV to this part are shown to be at or below background values, using the statistical procedures in $\S 257.93(\mathrm{~g})$, for two consecutive sampling events, the owner or operator may return to detection monitoring of the CCR unit. The owner or operator must prepare a notification stating that detection monitoring is resuming for the CCR unit. The owner or operator has completed the notification when the notification is placed in the facility's operating record as required by § $257.105(\mathrm{~h})(7)$.
(f) If the concentrations of any constituent in appendices III and IV to this part are above background values, but all concentrations are below the groundwater protection standard
established under paragraph (h) of this section, using the statistical procedures in $\S 257.93(\mathrm{~g})$, the owner or operator must continue assessment monitoring in accordance with this section.
(g) If one or more constituents in appendix IV to this part are detected at statistically significant levels above the groundwater protection standard established under paragraph (h) of this section in any sampling event, the owner or operator must prepare a notification identifying the constituents in appendix IV to this part that have exceeded the groundwater protection standard. The owner or operator has completed the notification when the notification is placed in the facility's operating record as required by § 257.105(h)(8). The owner or operator of the CCR unit also must:
(1) Characterize the nature and extent of the release and any relevant site conditions that may affect the remedy ultimately selected. The characterization must be sufficient to support a complete and accurate assessment of the corrective measures necessary to effectively clean up all releases from the CCR unit pursuant to $\S 257.96$. Characterization of the release includes the following minimum measures:
(i) Install additional monitoring wells necessary to define the contaminant plume(s);
(ii) Collect data on the nature and estimated quantity of material released including specific information on the constituents listed in appendix IV of this part and the levels at which they are present in the material released;
(iii) Install at least one additional monitoring well at the facility boundary in the direction of contaminant migration and sample this well in accordance with paragraph (d)(1) of this section; and
(iv) Sample all wells in accordance with paragraph $(\mathrm{d})(1)$ of this section to characterize the nature and extent of the release.
(2) Notify all persons who own the land or reside on the land that directly overlies any part of the plume of contamination if contaminants have migrated off-site if indicated by sampling of wells in accordance with paragraph $(\mathrm{g})(1)$ of this section. The owner or operator has completed the notifications when they are placed in the facility's operating record as required by § $257.105(\mathrm{~h})(8)$.
(3) Within 90 days of finding that any of the constituents listed in appendix IV to this part have been detected at a statistically significant level exceeding the groundwater protection standards the owner or operator must either:
(i) Initiate an assessment of corrective measures as required by $\S 257.96$; or
(ii) Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90(\mathrm{e})$, in addition to the certification by a qualified professional engineer.
(4) If a successful demonstration has not been made at the end of the 90 day period provided by paragraph (g)(3)(ii) of this section, the owner or operator of the CCR unit must initiate the assessment of corrective measures requirements under § 257.96.
(5) If an assessment of corrective measures is required under $\S 257.96$ by either paragraph $(\mathrm{g})(3)(\mathrm{i})$ or $(\mathrm{g})(4)$ of this section, and if the CCR unit is an existing unlined CCR surface impoundment as determined by $\S 257.71$ (a), then the CCR unit is subject to the closure requirements under $\S 257.101$ (a) to retrofit or close. In addition, the owner or operator must prepare a notification stating that an assessment of corrective measures has been initiated.
(h) The owner or operator of the CCR unit must establish a groundwater protection standard for each constituent in appendix IV to this part detected in the groundwater. The groundwater protection standard shall be:
(1) For constituents for which a maximum contaminant level (MCL) has been established under $\S \S 141.62$ and 141.66 of this title, the MCL for that constituent;
(2) For constituents for which an MCL has not been established, the background concentration for the constituent established from wells in accordance with § 257.91 ; or
(3) For constituents for which the background level is higher than the MCL identified under paragraph (h)(1)
of this section, the background concentration.
(i) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(h), the notification requirements specified in $\S 257.106(\mathrm{~h})$, and the Internet requirements specified in §257.107(h).

§257.96 Assessment of corrective measures.

(a) Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90$ (e), in addition to the certification by a qualified professional engineer.
(b) The owner or operator of the CCR unit must continue to monitor groundwater in accordance with the assessment monitoring program as specified in $\S 257.95$.
(c) The assessment under paragraph (a) of this section must include an analysis of the effectiveness of potential corrective measures in meeting all of the requirements and objectives of the remedy as described under $\S 257.97$ addressing at least the following:
(1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
(2) The time required to begin and complete the remedy;
(3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).
(d) The owner or operator must place the completed assessment of corrective measures in the facility's operating record. The assessment has been completed when it is placed in the facility's operating record as required by § 257.105(h)(10).
(e) The owner or operator must discuss the results of the corrective measures assessment at least 30 days prior to the selection of remedy, in a public meeting with interested and affected parties.
(f) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(h), the notification requirements specified in §257.106(h), and the Internet requirements specified in § 257.107(h).

§257.97 Selection of remedy.

(a) Based on the results of the corrective measures assessment conducted under $\S 257.96$, the owner or operator must, as soon as feasible, select a remedy that, at a minimum, meets the standards listed in paragraph (b) of this section. This requirement applies to, not in place of, any applicable standards under the Occupational Safety and Health Act. The owner or operator must prepare a semiannual report describing the progress in selecting and designing the remedy. Upon selection of a remedy, the owner or operator must prepare a final report describing the selected remedy and how it meets the standards specified in paragraph (b) of this section. The owner or operator must obtain a certification from a qualified professional engineer that the remedy selected meets the requirements of this section. The report has been completed when it is placed in the operating record as required by $\S 257.105(\mathrm{~h})(12)$.
(b) Remedies must:
(1) Be protective of human health and the environment;
(2) Attain the groundwater protection standard as specified pursuant to § 257.95(h);
(3) Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in appendix IV to this part into the environment;
(4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems;
(5) Comply with standards for management of wastes as specified in § $257.98(\mathrm{~d})$.
(c) In selecting a remedy that meets the standards of paragraph (b) of this section, the owner or operator of the

CCR unit shall consider the following evaluation factors:
(1) The long- and short-term effectiveness and protectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful based on consideration of the following:
(i) Magnitude of reduction of existing risks;
(ii) Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy;
(iii) The type and degree of long-term management required, including monitoring, operation, and maintenance;
(iv) Short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and redisposal of contaminant;
(v) Time until full protection is achieved;
(vi) Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with
excavation, transportation, re-disposal, or containment;
(vii) Long-term reliability of the engineering and institutional controls; and
(viii) Potential need for replacement of the remedy.
(2) The effectiveness of the remedy in controlling the source to reduce further releases based on consideration of the following factors:
(i) The extent to which containment practices will reduce further releases; and
(ii) The extent to which treatment technologies may be used.
(3) The ease or difficulty of implementing a potential remedy(s) based on consideration of the following types of factors:
(i) Degree of difficulty associated with constructing the technology;
(ii) Expected operational reliability of the technologies;
(iii) Need to coordinate with and obtain necessary approvals and permits from other agencies;
(iv) Availability of necessary
equipment and specialists; and
(v) Available capacity and location of needed treatment, storage, and disposal services.
(4) The degree to which community concerns are addressed by a potential remedy(s).
(d) The owner or operator must specify as part of the selected remedy a
schedule(s) for implementing and completing remedial activities. Such a schedule must require the completion of remedial activities within a reasonable period of time taking into consideration the factors set forth in paragraphs (d)(1) through (6) of this section. The owner or operator of the CCR unit must consider the following factors in determining the schedule of remedial activities:
(1) Extent and nature of contamination, as determined by the characterization required under § $257.95(\mathrm{~g})$;
(2) Reasonable probabilities of remedial technologies in achieving compliance with the groundwater protection standards established under §257.95(h) and other objectives of the remedy;
(3) Availability of treatment or disposal capacity for CCR managed during implementation of the remedy;
(4) Potential risks to human health and the environment from exposure to contamination prior to completion of the remedy;
(5) Resource value of the aquifer including:
(i) Current and future uses;
(ii) Proximity and withdrawal rate of users;
(iii) Groundwater quantity and quality;
(iv) The potential damage to wildlife, crops, vegetation, and physical structures caused by exposure to CCR constituents;
(v) The hydrogeologic characteristic of the facility and surrounding land; and
(vi) The availability of alternative water supplies; and
(6) Other relevant factors.
(e) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(h), the notification requirements specified in §257.106(h), and the Internet requirements specified in § 257.107(h).

§257.98 Implementation of the corrective action program.

(a) Within 90 days of selecting a remedy under $\S 257.97$, the owner or operator must initiate remedial activities. Based on the schedule established under §257.97(d) for implementation and completion of remedial activities the owner or operator must:
(1) Establish and implement a corrective action groundwater monitoring program that:
(i) At a minimum, meets the requirements of an assessment monitoring program under § 257.95;
(ii) Documents the effectiveness of the corrective action remedy; and
(iii) Demonstrates compliance with the groundwater protection standard pursuant to paragraph (c) of this section.
(2) Implement the corrective action remedy selected under $\S 257.97$; and
(3) Take any interim measures necessary to reduce the contaminants leaching from the CCR unit, and/or potential exposures to human or ecological receptors. Interim measures must, to the greatest extent feasible, be consistent with the objectives of and contribute to the performance of any remedy that may be required pursuant to § 257.97. The following factors must be considered by an owner or operator in determining whether interim measures are necessary:
(i) Time required to develop and implement a final remedy;
(ii) Actual or potential exposure of nearby populations or environmental receptors to any of the constituents listed in appendix IV of this part;
(iii) Actual or potential contamination of drinking water supplies or sensitive ecosystems;
(iv) Further degradation of the groundwater that may occur if remedial action is not initiated expeditiously;
(v) Weather conditions that may cause any of the constituents listed in appendix IV to this part to migrate or be released;
(vi) Potential for exposure to any of the constituents listed in appendix IV to this part as a result of an accident or failure of a container or handling system; and
(vii) Other situations that may pose threats to human health and the environment.
(b) If an owner or operator of the CCR unit, determines, at any time, that compliance with the requirements of § 257.97(b) is not being achieved through the remedy selected, the owner or operator must implement other methods or techniques that could feasibly achieve compliance with the requirements.
(c) Remedies selected pursuant to § 257.97 shall be considered complete when:
(1) The owner or operator of the CCR unit demonstrates compliance with the groundwater protection standards established under § 257.95(h) has been achieved at all points within the plume of contamination that lie beyond the groundwater monitoring well system established under § 257.91.
(2) Compliance with the groundwater protection standards established under § 257.95(h) has been achieved by demonstrating that concentrations of constituents listed in appendix IV to this part have not exceeded the groundwater protection standard(s) for a
period of three consecutive years using the statistical procedures and performance standards in § 257.93(f) and (g).
(3) All actions required to complete the remedy have been satisfied.
(d) All CCR that are managed pursuant to a remedy required under § 257.97, or an interim measure required under paragraph (a)(3) of this section, shall be managed in a manner that complies with all applicable RCRA requirements.
(e) Upon completion of the remedy, the owner or operator must prepare a notification stating that the remedy has been completed. The owner or operator must obtain a certification from a qualified professional engineer attesting that the remedy has been completed in compliance with the requirements of paragraph (c) of this section. The report has been completed when it is placed in the operating record as required by § 257.105(h)(13).
(f) The owner or operator of the CCR unit must comply with the
recordkeeping requirements specified in §257.105(h), the notification
requirements specified in $\S 257.106(\mathrm{~h})$, and the internet requirements specified in § 257.107(h).

Closure and Post-Closure Care

§257.100 Inactive CCR surface impoundments.

(a) Except as provided by paragraph (b) of this section, inactive CCR surface impoundments are subject to all of the requirements of this subpart applicable to existing CCR surface impoundments.
(b) An owner or operator of an inactive CCR surface impoundment that completes closure of such CCR unit, and meets all of the requirements of either paragraphs (b)(1) through (4) of this section or paragraph (b)(5) of this section no later than April 17, 2018, is exempt from all other requirements of this subpart.
(1) Closure by leaving CCR in place. If the owner or operator of the inactive CCR surface impoundment elects to close the CCR surface impoundment by leaving CCR in place, the owner or operator must ensure that, at a minimum, the CCR unit is closed in a manner that will:
(i) Control, minimize or eliminate, to the maximum extent feasible, postclosure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;
(ii) Preclude the probability of future impoundment of water, sediment, or slurry;
(iii) Include measures that provide for major slope stability to prevent the
sloughing or movement of the final cover system; and
(iv) Minimize the need for further maintenance of the CCR unit.
(2) The owner or operator of the inactive CCR surface impoundment must meet the requirements of paragraphs (b)(2)(i) and (ii) of this section prior to installing the final cover system required under paragraph (b)(3) of this section.
(i) Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residues.
(ii) Remaining wastes must be stabilized sufficient to support the final cover system.
(3) The owner or operator must install a final cover system that is designed to minimize infiltration and erosion, and at a minimum, meets the requirements of paragraph (b)(3)(i) of this section, or the requirements of an alternative final cover system specified in paragraph (b)(3)(ii) of this section.
(i) The final cover system must be designed and constructed to meet the criteria specified in paragraphs (b)(3)(i)(A) through (D) of this section.
(A) The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natural subsoils present, or a permeability no greater than 1×10^{-5} centimeters/second, whichever is less.
(B) The infiltration of liquids through the CCR unit must be minimized by the use of an infiltration layer that contains a minimum of 18 inches of earthen material.
(C) The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.
(D) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.
(ii) The owner or operator may select an alternative final cover system design, provided the alternative final cover system is designed and constructed to meet the criteria in paragraphs (b)(3)(ii)(A) through (C) of this section.
(A) The design of the final cover system must include an infiltration layer that achieves an equivalent reduction in infiltration as the infiltration layer specified in paragraphs (b)(3)(i)(A) and (B) of this section.
(B) The design of the final cover system must include an erosion layer that provides equivalent protection from wind or water erosion as the erosion layer specified in paragraph (b)(3)(i)(C) of this section.
(C) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.
(4) The owner or operator of the CCR surface impoundment must obtain a written certification from a qualified professional engineer stating that the design of the final cover system meets either the requirements of paragraphs (b)(3)(i) or (ii) of this section.
(5) Closure through removal of CCR. The owner or operator may alternatively elect to close an inactive CCR surface impoundment by removing and decontaminating all areas affected by releases from the CCR surface impoundment. CCR removal and decontamination of the CCR surface impoundment are complete when all CCR in the inactive CCR surface impoundment is removed, including the bottom liner of the CCR unit.
(6) The owner or operator of the CCR surface impoundment must obtain a written certification from a qualified professional engineer that closure of the CCR surface impoundment under either paragraphs (b)(1) through (4) or (b)(5) of this section is technically feasible within the timeframe in paragraph (b) of this section.
(7) If the owner or operator of the CCR surface impoundment fails to complete closure of the inactive CCR surface impoundment within the timeframe in paragraph (b) of this section, the CCR unit must comply with all of the requirements applicable to existing CCR surface impoundments under this subpart.
(c) Required notices and progress reports. An owner or operator of an inactive CCR surface impoundment that closes in accordance with paragraph (b) of this section must complete the notices and progress reports specified in paragraphs (c)(1) through (3) of this section.
(1) No later than December 17, 2015, the owner or operator must prepare and place in the facility's operating record a notification of intent to initiate closure of the CCR surface impoundment. The notification must state that the CCR surface impoundment is an inactive CCR surface impoundment closing under the requirements of paragraph (b) of this section. The notification must also include a narrative description of how the CCR surface impoundment will be closed, a schedule for completing closure activities, and the required certifications under paragraphs (b)(4) and (6) of this section, if applicable.
(2) The owner or operator must prepare periodic progress reports summarizing the progress of closure implementation, including a description
of the actions completed to date, any problems encountered and a description of the actions taken to resolve the problems, and projected closure activities for the upcoming year. The annual progress reports must be completed according to the following schedule:
(i) The first annual progress report must be prepared no later than 13 months after completing the notification of intent to initiate closure required by paragraph (c)(1) of this section.
(ii) The second annual progress report must be prepared no later than 12 months after completing the first progress report required by paragraph (c)(2)(i) of this section.
(iii) The owner or operator has completed the progress reports specified in paragraph (c)(2) of this section when the reports are placed in the facility's operating record as required by

§257.105(i)(2).

(3) The owner or operator must prepare and place in the facility's operating record a notification of completion of closure of the CCR surface impoundment. The notification must be submitted within 60 days of completing closure of the CCR surface impoundment and must include a written certification from a qualified professional engineer stating that the CCR surface impoundment was closed in accordance with the requirements of either paragraph (b)(1) through (4) or (b)(5) of this section.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(i), the notification requirements specified in $\S 257.106$ (i), and the internet requirements specified in §257.107(i).

§257.101 Closure or retrofit of CCR units.

(a) The owner or operator of an existing unlined CCR surface impoundment, as determined under §257.71(a), is subject to the requirements of paragraph (a)(1) of this section.
(1) Except as provided by paragraph (a)(3) of this section, if at any time after October 19, 2015 an owner or operator of an existing unlined CCR surface impoundment determines in any sampling event that the concentrations of one or more constituents listed in appendix IV to this part are detected at statistically significant levels above the groundwater protection standard established under §257.95(h) for such CCR unit, within six months of making such determination, the owner or operator of the existing unlined CCR surface impoundment must cease placing CCR and non-CCR wastestreams
into such CCR surface impoundment and either retrofit or close the CCR unit in accordance with the requirements of §257.102.
(2) An owner or operator of an existing unlined CCR surface impoundment that closes in accordance with paragraph (a)(1) of this section must include a statement in the notification required under § 257.102 (g) or $(k)(5)$ that the CCR surface impoundment is closing or retrofitting under the requirements of paragraph (a)(1) of this section.
(3) The timeframe specified in paragraph (a)(1) of this section does not apply if the owner or operator complies with the alternative closure procedures specified in § 257.103.
(4) At any time after the initiation of closure under paragraph (a)(1) of this section, the owner or operator may cease closure activities and initiate a retrofit of the CCR unit in accordance with the requirements of § $257.102(\mathrm{k})$.
(b) The owner or operator of an existing CCR surface impoundment is subject to the requirements of paragraph (b)(1) of this section.
(1) Except as provided by paragraph (b)(4) of this section, within six months of determining that an existing CCR surface impoundment has not demonstrated compliance with any location standard specified in §§257.60(a), 257.61(a), 257.62(a), 257.63(a), and 257.64(a), the owner or operator of the CCR surface impoundment must cease placing CCR and non-CCR wastestreams into such CCR unit and close the CCR unit in accordance with the requirements of §257.102.
(2) Within six months of either failing to complete the initial or any subsequent periodic safety factor assessment required by $\S 257.73$ (e) by the deadlines specified in $\S 257.73(\mathrm{f})(1)$ through (3) or failing to document that the calculated factors of safety for the existing CCR surface impoundment achieve the minimum safety factors specified in §257.73(e)(1)(i) through (iv), the owner or operator of the CCR surface impoundment must cease placing CCR and non-CCR wastestreams into such CCR unit and close the CCR unit in accordance with the requirements of § 257.102.
(3) An owner or operator of an existing CCR surface impoundment that closes in accordance with paragraphs (b)(1) or (2) of this section must include a statement in the notification required under § $257.102(\mathrm{~g})$ that the CCR surface impoundment is closing under the requirements of paragraphs (b)(1) or (2) of this section.
(4) The timeframe specified in paragraph (b)(1) of this section does not apply if the owner or operator complies with the alternative closure procedures specified in § 257.103.
(c) The owner or operator of a new CCR surface impoundment is subject to the requirements of paragraph (c)(1) of this section.
(1) Within six months of either failing to complete the initial or any subsequent periodic safety factor assessment required by $\S 257.74(\mathrm{e})$ by the deadlines specified in § $257.74(\mathrm{f})(1)$ through (3) or failing to document that the calculated factors of safety for the new CCR surface impoundment achieve the minimum safety factors specified in §257.74(e)(1)(i) through (v), the owner or operator of the CCR surface
impoundment must cease placing CCR and non-CCR wastestreams into such CCR unit and close the CCR unit in accordance with the requirements of §257.102.
(2) An owner or operator of an new CCR surface impoundment that closes in accordance with paragraph (c)(1) of this section must include a statement in the notification required under $\S 257.102(\mathrm{~g})$ that the CCR surface impoundment is closing under the requirements of paragraph (c)(1) of this section.
(d) The owner or operator of an existing CCR landfill is subject to the requirements of paragraph (d)(1) of this section.
(1) Except as provided by paragraph (d)(3) of this section, within six months of determining that an existing CCR landfill has not demonstrated compliance with the location restriction for unstable areas specified in §257.64(a), the owner or operator of the CCR unit must cease placing CCR and non-CCR waste streams into such CCR landfill and close the CCR unit in accordance with the requirements of § 257.102.
(2) An owner or operator of an existing CCR landfill that closes in accordance with paragraph (d)(1) of this section must include a statement in the notification required under $\S 257.102$ (g) that the CCR landfill is closing under the requirements of paragraph (d)(1) of this section.
(3) The timeframe specified in paragraph (d)(1) of this section does not apply if the owner or operator complies with the alternative closure procedures specified in § 257.103.

§257.102 Criteria for conducting the closure or retrofit of CCR units.

(a) Closure of a CCR landfill, CCR surface impoundment, or any lateral expansion of a CCR unit must be
completed either by leaving the CCR in place and installing a final cover system or through removal of the CCR and decontamination of the CCR unit, as described in paragraphs (b) through (j) of this section. Retrofit of a CCR surface impoundment must be completed in accordance with the requirements in paragraph (k) of this section.
(b) Written closure plan-(1) Content of the plan. The owner or operator of a CCR unit must prepare a written closure plan that describes the steps necessary to close the CCR unit at any point during the active life of the CCR unit consistent with recognized and generally accepted good engineering practices. The written closure plan must include, at a minimum, the information specified in paragraphs (b)(1)(i) through (vi) of this section.
(i) A narrative description of how the CCR unit will be closed in accordance with this section.
(ii) If closure of the CCR unit will be accomplished through removal of CCR from the CCR unit, a description of the procedures to remove the CCR and decontaminate the CCR unit in accordance with paragraph (c) of this section.
(iii) If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover system, designed in accordance with paragraph (d) of this section, and the methods and procedures to be used to install the final cover. The closure plan must also discuss how the final cover system will achieve the performance standards specified in paragraph (d) of this section.
(iv) An estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit.
(v) An estimate of the largest area of the CCR unit ever requiring a final cover as required by paragraph (d) of this section at any time during the CCR unit's active life.
(vi) A schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including identification of major milestones such as coordinating with and obtaining necessary approvals and permits from other agencies, the dewatering and stabilization phases of CCR surface impoundment closure, or installation of the final cover system, and the estimated timeframes to complete each step or phase of CCR unit closure. When preparing the written closure plan, if the
owner or operator of a CCR unit estimates that the time required to complete closure will exceed the timeframes specified in paragraph (f)(1) of this section, the written closure plan must include the site-specific information, factors and considerations that would support any time extension sought under paragraph (f)(2) of this section.
(2) Timeframes for preparing the initial written closure plan-(i) Existing CCR landfills and existing CCR surface impoundments. No later than October 17, 2016, the owner or operator of the CCR unit must prepare an initial written closure plan consistent with the requirements specified in paragraph (b)(1) of this section.
(ii) New CCR landfills and new CCR surface impoundments, and any lateral expansion of a CCR unit. No later than the date of the initial receipt of CCR in the CCR unit, the owner or operator must prepare an initial written closure plan consistent with the requirements specified in paragraph (b)(1) of this section.
(iii) The owner or operator has completed the written closure plan when the plan, including the certification required by paragraph (b)(4) of this section, has been placed in the facility's operating record as required by § $257.105(\mathrm{i})(4)$.
(3) Amendment of a written closure plan. (i) The owner or operator may amend the initial or any subsequent written closure plan developed pursuant to paragraph (b)(1) of this section at any time.
(ii) The owner or operator must amend the written closure plan whenever:
(A) There is a change in the operation of the CCR unit that would substantially affect the written closure plan in effect; or
(B) Before or after closure activities have commenced, unanticipated events necessitate a revision of the written closure plan.
(iii) The owner or operator must amend the closure plan at least 60 days prior to a planned change in the operation of the facility or CCR unit, or no later than 60 days after an unanticipated event requires the need to revise an existing written closure plan. If a written closure plan is revised after closure activities have commenced for a CCR unit, the owner or operator must amend the current closure plan no later than 30 days following the triggering event.
(4) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the initial and any amendment of
the written closure plan meets the requirements of this section.
(c) Closure by removal of CCR. An owner or operator may elect to close a CCR unit by removing and decontaminating all areas affected by releases from the CCR unit. CCR removal and decontamination of the CCR unit are complete when constituent concentrations throughout the CCR unit and any areas affected by releases from the CCR unit have been removed and groundwater monitoring concentrations do not exceed the groundwater protection standard established pursuant to §257.95(h) for constituents listed in appendix IV to this part.
(d) Closure performance standard when leaving CCR in place-(1) The owner or operator of a CCR unit must ensure that, at a minimum, the CCR unit is closed in a manner that will:
(i) Control, minimize or eliminate, to the maximum extent feasible, postclosure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;
(ii) Preclude the probability of future impoundment of water, sediment, or slurry;
(iii) Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period;
(iv) Minimize the need for further maintenance of the CCR unit; and
(v) Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.
(2) Drainage and stabilization of CCR surface impoundments. The owner or operator of a CCR surface impoundment or any lateral expansion of a CCR surface impoundment must meet the requirements of paragraphs (d)(2)(i) and (ii) of this section prior to installing the final cover system required under paragraph (d)(3) of this section.
(i) Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residues.
(ii) Remaining wastes must be stabilized sufficient to support the final cover system.
(3) Final cover system. If a CCR unit is closed by leaving CCR in place, the owner or operator must install a final cover system that is designed to minimize infiltration and erosion, and at a minimum, meets the requirements of paragraph (d)(3)(i) of this section, or the requirements of the alternative final cover system specified in paragraph (d)(3)(ii) of this section.
(i) The final cover system must be designed and constructed to meet the criteria in paragraphs (d)(3)(i)(A) through (D) of this section. The design of the final cover system must be included in the written closure plan required by paragraph (b) of this section.
(A) The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natural subsoils present, or a permeability no greater than 1×10^{-5} $\mathrm{cm} / \mathrm{sec}$, whichever is less.
(B) The infiltration of liquids through the closed CCR unit must be minimized by the use of an infiltration layer that contains a minimum of 18 inches of earthen material.
(C) The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.
(D) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.
(ii) The owner or operator may select an alternative final cover system design, provided the alternative final cover system is designed and constructed to meet the criteria in paragraphs (f)(3)(ii)(A) through (D) of this section. The design of the final cover system must be included in the written closure plan required by paragraph (b) of this section.
(A) The design of the final cover system must include an infiltration layer that achieves an equivalent reduction in infiltration as the infiltration layer specified in paragraphs (d)(3)(i)(A) and (B) of this section.
(B) The design of the final cover system must include an erosion layer that provides equivalent protection from wind or water erosion as the erosion layer specified in paragraph (d)(3)(i)(C) of this section.
(C) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.
(iii) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the design of the final cover system meets the requirements of this section.
(e) Initiation of closure activities.

Except as provided for in paragraph (e)(4) of this section and §257.103, the owner or operator of a CCR unit must commence closure of the CCR unit no later than the applicable timeframes specified in either paragraph (e)(1) or (2) of this section.
(1) The owner or operator must commence closure of the CCR unit no
later than 30 days after the date on which the CCR unit either:
(i) Receives the known final receipt of waste, either CCR or any non-CCR waste stream; or
(ii) Removes the known final volume of CCR from the CCR unit for the purpose of beneficial use of CCR.
(2)(i) Except as provided by paragraph (e)(2)(ii) of this section, the owner or operator must commence closure of a CCR unit that has not received CCR or any non-CCR waste stream or is no longer removing CCR for the purpose of beneficial use within two years of the last receipt of waste or within two years of the last removal of CCR material for the purpose of beneficial use.
(ii) Notwithstanding paragraph (e)(2)(i) of this section, the owner or operator of the CCR unit may secure an additional two years to initiate closure of the idle unit provided the owner or operator provides written documentation that the CCR unit will continue to accept wastes or will start removing CCR for the purpose of beneficial use. The documentation must be supported by, at a minimum, the information specified in paragraphs (e)(2)(ii)(A) and (B) of this section. The owner or operator may obtain two-year extensions provided the owner or operator continues to be able to demonstrate that there is reasonable likelihood that the CCR unit will accept wastes in the foreseeable future or will remove CCR from the unit for the purpose of beneficial use. The owner or operator must place each completed demonstration, if more than one time extension is sought, in the facility's operating record as required by $\S 257.105(\mathrm{i})(5)$ prior to the end of any two-year period.
(A) Information documenting that the CCR unit has remaining storage or disposal capacity or that the CCR unit can have CCR removed for the purpose of beneficial use; and
(B) Information demonstrating that that there is a reasonable likelihood that the CCR unit will resume receiving CCR or non-CCR waste streams in the foreseeable future or that CCR can be removed for the purpose of beneficial use. The narrative must include a best estimate as to when the CCR unit will resume receiving CCR or non-CCR waste streams. The situations listed in paragraphs (e)(2)(ii)(B)(1) through (4) of this section are examples of situations that would support a determination that the CCR unit will resume receiving CCR or non-CCR waste streams in the
foreseeable future.
(1) Normal plant operations include periods during which the CCR unit does not receive CCR or non-CCR waste
streams, such as the alternating use of two or more CCR units whereby at any point in time one CCR unit is receiving CCR while CCR is being removed from a second CCR unit after its dewatering.
(2) The CCR unit is dedicated to a coal-fired boiler unit that is temporarily idled (e.g., CCR is not being generated) and there is a reasonable likelihood that the coal-fired boiler will resume operations in the future.
(3) The CCR unit is dedicated to an operating coal-fired boiler (i.e., CCR is being generated); however, no CCR are being placed in the CCR unit because the CCR are being entirely diverted to beneficial uses, but there is a reasonable likelihood that the CCR unit will again be used in the foreseeable future.
(4) The CCR unit currently receives only non-CCR waste streams and those non-CCR waste streams are not generated for an extended period of time, but there is a reasonable likelihood that the CCR unit will again receive non-CCR waste streams in the future.
(iii) In order to obtain additional time extension(s) to initiate closure of a CCR unit beyond the two years provided by paragraph (e)(2)(i) of this section, the owner or operator of the CCR unit must include with the demonstration required by paragraph (e)(2)(ii) of this section the following statement signed by the owner or operator or an authorized representative:
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this demonstration and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
(3) For purposes of this subpart, closure of the CCR unit has commenced if the owner or operator has ceased placing waste and completes any of the following actions or activities:
(i) Taken any steps necessary to implement the written closure plan required by paragraph (b) of this section;
(ii) Submitted a completed application for any required state or agency permit or permit modification; or
(iii) Taken any steps necessary to comply with any state or other agency standards that are a prerequisite, or are otherwise applicable, to initiating or completing the closure of a CCR unit.
(4) The timeframes specified in paragraphs (e)(1) and (2) of this section do not apply to any of the following owners or operators:
(i) An owner or operator of an inactive CCR surface impoundment closing the
CCR unit as required by $\S 257.100$ (b);
(ii) An owner or operator of an existing unlined CCR surface impoundment closing the CCR unit as required by $\S 257.101$ (a);
(iii) An owner or operator of an existing CCR surface impoundment closing the CCR unit as required by §257.101(b);
(iv) An owner or operator of a new CCR surface impoundment closing the
CCR unit as required by $\S 257.101$ (c); or
(v) An owner or operator of an existing CCR landfill closing the CCR unit as required by $\S 257.101$ (d).
(f) Completion of closure activities. (1) Except as provided for in paragraph (f)(2) of this section, the owner or operator must complete closure of the CCR unit:
(i) For existing and new CCR landfills and any lateral expansion of a CCR landfill, within six months of commencing closure activities.
(ii) For existing and new CCR surface impoundments and any lateral expansion of a CCR surface impoundment, within five years of commencing closure activities.
(2)(i) Extensions of closure timeframes. The timeframes for completing closure of a CCR unit specified under paragraphs (f)(1) of this section may be extended if the owner or operator can demonstrate that it was not feasible to complete closure of the CCR unit within the required timeframes due to factors beyond the facility's control. If the owner or operator is seeking a time extension beyond the time specified in the written closure plan as required by paragraph (b)(1) of this section, the demonstration must include a narrative discussion providing the basis for additional time beyond that specified in the closure plan. The owner or operator must place each completed demonstration, if more than one time extension is sought, in the facility's operating record as required by §257.105(i)(6) prior to the end of any two-year period. Factors that may support such a demonstration include:
(A) Complications stemming from the climate and weather, such as unusual amounts of precipitation or a significantly shortened construction season;
(B) Time required to dewater a surface impoundment due to the volume of CCR contained in the CCR unit or the characteristics of the CCR in the unit;
(C) The geology and terrain
surrounding the CCR unit will affect the amount of material needed to close the CCR unit; or
(D) Time required or delays caused by the need to coordinate with and obtain necessary approvals and permits from a state or other agency.
(ii) Maximum time extensions. (A) CCR surface impoundments of 40 acres or smaller may extend the time to complete closure by no longer than two years.
(B) CCR surface impoundments larger than 40 acres may extend the timeframe to complete closure of the CCR unit multiple times, in two-year increments. For each two-year extension sought, the owner or operator must substantiate the factual circumstances demonstrating the need for the extension. No more than a total of five two-year extensions may be obtained for any CCR surface impoundment.
(C) CCR landfills may extend the timeframe to complete closure of the CCR unit multiple times, in one-year increments. For each one-year extension sought, the owner or operator must substantiate the factual circumstances demonstrating the need for the extension. No more than a total of two one-year extensions may be obtained for any CCR landfill.
(iii) In order to obtain additional time extension(s) to complete closure of a CCR unit beyond the times provided by paragraph (f)(1) of this section, the owner or operator of the CCR unit must include with the demonstration required by paragraph (f)(2)(i) of this section the following statement signed by the owner or operator or an authorized representative:
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this demonstration and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
(3) Upon completion, the owner or operator of the CCR unit must obtain a certification from a qualified professional engineer verifying that closure has been completed in accordance with the closure plan specified in paragraph (b) of this section and the requirements of this section.
(g) No later than the date the owner or operator initiates closure of a CCR unit, the owner or operator must prepare a notification of intent to close a CCR unit. The notification must include the certification by a qualified professional engineer for the design of the final cover system as required by §257.102(d)(3)(iii), if applicable. The
owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{i})(7)$.
(h) Within 30 days of completion of closure of the CCR unit, the owner or operator must prepare a notification of closure of a CCR unit. The notification must include the certification by a qualified professional engineer as required by $\S 257.102(f)(3)$. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by $\S 257.105(\mathrm{i})(8)$.
(i) Deed notations. (1) Except as provided by paragraph (i)(4) of this section, following closure of a CCR unit, the owner or operator must record a notation on the deed to the property, or some other instrument that is normally examined during title search.
(2) The notation on the deed must in perpetuity notify any potential purchaser of the property that:
(i) The land has been used as a CCR unit; and
(ii) Its use is restricted under the postclosure care requirements as provided by § 257.104(d)(1)(iii).
(3) Within 30 days of recording a notation on the deed to the property, the owner or operator must prepare a notification stating that the notation has been recorded. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{i})(9)$.
(4) An owner or operator that closes a CCR unit in accordance with paragraph (c) of this section is not subject to the requirements of paragraphs (i)(1) through (3) of this section.
(j) The owner or operator of the CCR unit must comply with the closure recordkeeping requirements specified in § 257.105(i), the closure notification requirements specified in § 257.106(i), and the closure Internet requirements specified in $\S 257.107$ (i).
(k) Criteria to retrofit an existing CCR surface impoundment. (1) To retrofit an existing CCR surface impoundment, the owner or operator must:
(i) First remove all CCR, including any contaminated soils and sediments from the CCR unit; and
(ii) Comply with the requirements in § 257.72.
(iii) A CCR surface impoundment undergoing a retrofit remains subject to all other requirements of this subpart, including the requirement to conduct any necessary corrective action.
(2) Written retrofit plan-(i) Content of the plan. The owner or operator must prepare a written retrofit plan that
describes the steps necessary to retrofit the CCR unit consistent with recognized and generally accepted good engineering practices. The written retrofit plan must include, at a minimum, all of the following information:
(A) A narrative description of the specific measures that will be taken to retrofit the CCR unit in accordance with this section.
(B) A description of the procedures to remove all CCR and contaminated soils and sediments from the CCR unit.
(C) An estimate of the maximum amount of CCR that will be removed as part of the retrofit operation.
(D) An estimate of the largest area of the CCR unit that will be affected by the retrofit operation.
(E) A schedule for completing all activities necessary to satisfy the retrofit criteria in this section, including an estimate of the year in which retrofit activities of the CCR unit will be completed.
(ii) Timeframes for preparing the initial written retrofit plan. (A) No later than 60 days prior to date of initiating retrofit activities, the owner or operator must prepare an initial written retrofit plan consistent with the requirements specified in paragraph $(\mathrm{k})(2)$ of this section. For purposes of this subpart, initiation of retrofit activities has commenced if the owner or operator has ceased placing waste in the unit and completes any of the following actions or activities:
(1) Taken any steps necessary to implement the written retrofit plan;
(2) Submitted a completed application for any required state or agency permit or permit modification; or
(3) Taken any steps necessary to comply with any state or other agency standards that are a prerequisite, or are otherwise applicable, to initiating or completing the retrofit of a CCR unit.
(B) The owner or operator has completed the written retrofit plan when the plan, including the certification required by paragraph (k)(2)(iv) of this section, has been placed in the facility's operating record as required by $\S 257.105(\mathrm{j})(1)$.
(iii) Amendment of a written retrofit plan. (A) The owner or operator may amend the initial or any subsequent written retrofit plan at any time.
(B) The owner or operator must amend the written retrofit plan whenever:
(1) There is a change in the operation of the CCR unit that would substantially affect the written retrofit plan in effect; or
(2) Before or after retrofit activities have commenced, unanticipated events
necessitate a revision of the written retrofit plan.
(C) The owner or operator must amend the retrofit plan at least 60 days prior to a planned change in the operation of the facility or CCR unit, or no later than 60 days after an unanticipated event requires the revision of an existing written retrofit plan. If a written retrofit plan is revised after retrofit activities have commenced for a CCR unit, the owner or operator must amend the current retrofit plan no later than 30 days following the triggering event.
(iv) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the activities outlined in the written retrofit plan, including any amendment of the plan, meet the requirements of this section.
(3) Deadline for completion of activities related to the retrofit of a CCR unit. Any CCR surface impoundment that is being retrofitted must complete all retrofit activities within the same time frames and procedures specified for the closure of a CCR surface impoundment in $\S 257.102(\mathrm{f})$ or, where applicable, § 257.103.
(4) Upon completion, the owner or operator must obtain a certification from a qualified professional engineer verifying that the retrofit activities have been completed in accordance with the retrofit plan specified in paragraph $(\mathrm{k})(2)$ of this section and the requirements of this section.
(5) No later than the date the owner or operator initiates the retrofit of a CCR unit, the owner or operator must prepare a notification of intent to retrofit a CCR unit. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(j)(5)$.
(6) Within 30 days of completing the retrofit activities specified in paragraph $(\mathrm{k})(1)$ of this section, the owner or operator must prepare a notification of completion of retrofit activities. The notification must include the certification by a qualified professional engineer as required by paragraph (k)(4) of this section. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{j})(6)$.
(7) At any time after the initiation of a CCR unit retrofit, the owner or operator may cease the retrofit and initiate closure of the CCR unit in accordance with the requirements of § 257.102.
(8) The owner or operator of the CCR unit must comply with the retrofit recordkeeping requirements specified in
§ 257.105(j), the retrofit notification requirements specified in § 257.106(j), and the retrofit Internet requirements specified in § 257.107(j).

§257.103 Alternative closure

 requirements.The owner or operator of a CCR landfill, CCR surface impoundment, or any lateral expansion of a CCR unit that is subject to closure pursuant to $\S 257.101(\mathrm{a})$, (b)(1), or (d) may continue to receive CCR in the unit provided the owner or operator meets the
requirements of either paragraph (a) or (b) of this section.
(a)(1) No alternative CCR disposal capacity. Notwithstanding the provisions of $\S 257.101$ (a), (b)(1), or (d), a CCR unit may continue to receive CCR if the owner or operator of the CCR unit certifies that the CCR must continue to be managed in that CCR unit due to the absence of alternative disposal capacity both on-site and off-site of the facility. To qualify under this paragraph (a)(1), the owner or operator of the CCR unit must document that all of the following conditions have been met:
(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification under this section;
(ii) The owner or operator has made, and continues to make, efforts to obtain additional capacity. Qualification under this subsection lasts only as long as no alternative capacity is available. Once alternative capacity is identified, the owner or operator must arrange to use such capacity as soon as feasible;
(iii) The owner or operator must remain in compliance with all other requirements of this subpart, including the requirement to conduct any necessary corrective action; and
(iv) The owner or operator must prepare an annual progress report documenting the continued lack of alternative capacity and the progress towards the development of alternative CCR disposal capacity.
(2) Once alternative capacity is available, the CCR unit must cease receiving CCR and initiate closure following the timeframes in $\S 257.102$ (e) and (f).
(3) If no alternative capacity is identified within five years after the initial certification, the CCR unit must cease receiving CCR and close in accordance with the timeframes in $\S 257.102(\mathrm{e})$ and (f).
(b)(1) Permanent cessation of a coalfired boiler(s) by a date certain. Notwithstanding the provisions of §257.101(a), (b)(1), and (d), a CCR unit may continue to receive CCR if the
owner or operator certifies that the
facility will cease operation of the coalfired boilers within the timeframes specified in paragraphs (b)(2) through (4) of this section, but in the interim period (prior to closure of the coal-fired boiler), the facility must continue to use the CCR unit due to the absence of alternative disposal capacity both onsite and off-site of the facility. To qualify under this paragraph (b)(1), the owner or operator of the CCR unit must document that all of the following conditions have been met:
(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification under this section.
(ii) The owner or operator must remain in compliance with all other requirements of this subpart, including the requirement to conduct any necessary corrective action; and
(iii) The owner or operator must prepare an annual progress report documenting the continued lack of alternative capacity and the progress towards the closure of the coal-fired boiler.
(2) For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler must cease operation and the CCR surface impoundment must have completed closure no later than October 17, 2023.
(3) For a CCR surface impoundment that is larger than 40 acres, the coalfired boiler must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.
(4) For a CCR landfill, the coal-fired boiler must cease operation, and the CCR landfill must complete closure no later than April 19, 2021.
(c) Required notices and progress reports. An owner or operator of a CCR unit that closes in accordance with paragraphs (a) or (b) of this section must complete the notices and progress reports specified in paragraphs (c)(1) through (3) of this section.
(1) Within six months of becoming subject to closure pursuant to $\S 257.101(\mathrm{a}),(\mathrm{b})(1)$, or (d), the owner or operator must prepare and place in the facility's operating record a notification of intent to comply with the alternative closure requirements of this section. The notification must describe why the CCR unit qualifies for the alternative closure provisions under either paragraph (a) or (b) of this section, in addition to providing the documentation and certifications required by paragraph (a) or (b) of this section.
(2) The owner or operator must prepare the periodic progress reports required by paragraphs (a)(1)(iv) or (b)(1)(iii), in addition to describing any problems encountered and a description of the actions taken to resolve the problems. The annual progress reports must be completed according to the following schedule:
(i) The first annual progress report must be prepared no later than 13 months after completing the notification of intent to comply with the alternative closure requirements required by paragraph (c)(1) of this section.
(ii) The second annual progress report must be prepared no later than 12 months after completing the first annual progress report. Additional annual progress reports must be prepared within 12 months of completing the previous annual progress report.
(iii) The owner or operator has completed the progress reports specified in paragraph (c)(2) of this section when the reports are placed in the facility's operating record as required by

§ 257.105(i)(10).

(3) An owner or operator of a CCR unit must also prepare the notification of intent to close a CCR unit as required by § $257.102(\mathrm{~g})$.
(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in $\S 257.105(\mathrm{i})$, the notification requirements specified in $\S 257.106(i)$, and the Internet requirements specified in § 257.107(i).

§257.104 Post-closure care requirements.

(a) Applicability. (1) Except as provided by either paragraph (a)(2) or (3) of this section, § 257.104 applies to the owners or operators of CCR landfills, CCR surface impoundments, and all lateral expansions of CCR units that are subject to the closure criteria under § 257.102.
(2) An owner or operator of a CCR unit that elects to close a CCR unit by removing CCR as provided by §257.102(c) is not subject to the postclosure care criteria under this section.
(3) An owner or operator of an inactive CCR surface impoundment that elects to close a CCR unit pursuant to the requirements under § 257.100 (b) is not subject to the post-closure care criteria under this section.
(b) Post-closure care maintenance requirements. Following closure of the CCR unit, the owner or operator must conduct post-closure care for the CCR unit, which must consist of at least the following:
(1) Maintaining the integrity and effectiveness of the final cover system, including making repairs to the final
cover as necessary to correct the effects of settlement, subsidence, erosion, or other events, and preventing run-on and run-off from eroding or otherwise damaging the final cover;
(2) If the CCR unit is subject to the design criteria under § 257.70, maintaining the integrity and effectiveness of the leachate collection and removal system and operating the leachate collection and removal system in accordance with the requirements of § 257.70; and
(3) Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with the requirements of $\S \S 257.90$ through 257.98.
(c) Post-closure care period. (1) Except as provided by paragraph (c)(2) of this section, the owner or operator of the CCR unit must conduct post-closure care for 30 years.
(2) If at the end of the post-closure care period the owner or operator of the CCR unit is operating under assessment monitoring in accordance with § 257.95, the owner or operator must continue to conduct post-closure care until the owner or operator returns to detection monitoring in accordance with § 257.95.
(d) Written post-closure plan-(1) Content of the plan. The owner or operator of a CCR unit must prepare a written post-closure plan that includes, at a minimum, the information specified in paragraphs (d)(1)(i) through (iii) of this section.
(i) A description of the monitoring and maintenance activities required in paragraph (b) of this section for the CCR unit, and the frequency at which these activities will be performed;
(ii) The name, address, telephone number, and email address of the person or office to contact about the facility during the post-closure care period; and
(iii) A description of the planned uses of the property during the post-closure period. Post-closure use of the property shall not disturb the integrity of the final cover, liner(s), or any other component of the containment system, or the function of the monitoring systems unless necessary to comply with the requirements in this subpart. Any other disturbance is allowed if the owner or operator of the CCR unit demonstrates that disturbance of the final cover, liner, or other component of the containment system, including any removal of CCR, will not increase the potential threat to human health or the environment. The demonstration must be certified by a qualified professional engineer, and notification shall be provided to the State Director that the demonstration has been placed in the
operating record and on the owners or operator's publicly accessible Internet site.
(2) Deadline to prepare the initial written post-closure plan-(i) Existing CCR landfills and existing CCR surface impoundments. No later than October 17, 2016, the owner or operator of the CCR unit must prepare an initial written post-closure plan consistent with the requirements specified in paragraph (d)(1) of this section.
(ii) New CCR landfills, new CCR surface impoundments, and any lateral expansion of a CCR unit. No later than the date of the initial receipt of CCR in the CCR unit, the owner or operator must prepare an initial written postclosure plan consistent with the requirements specified in paragraph (d)(1) of this section.
(iii) The owner or operator has completed the written post-closure plan when the plan, including the certification required by paragraph (d)(4) of this section, has been placed in the facility's operating record as required by $\S 257.105(\mathrm{i})(4)$.
(3) Amendment of a written postclosure plan. (i) The owner or operator may amend the initial or any subsequent written post-closure plan developed pursuant to paragraph (d)(1) of this section at any time.
(ii) The owner or operator must amend the written closure plan whenever:
(A) There is a change in the operation of the CCR unit that would substantially affect the written post-closure plan in effect; or
(B) After post-closure activities have commenced, unanticipated events necessitate a revision of the written post-closure plan.
(iii) The owner or operator must amend the written post-closure plan at least 60 days prior to a planned change in the operation of the facility or CCR unit, or no later than 60 days after an unanticipated event requires the need to revise an existing written post-closure plan. If a written post-closure plan is revised after post-closure activities have commenced for a CCR unit, the owner or operator must amend the written post-closure plan no later than 30 days following the triggering event.
(4) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the initial and any amendment of the written post-closure plan meets the requirements of this section.
(e) Notification of completion of postclosure care period. No later than 60 days following the completion of the post-closure care period, the owner or operator of the CCR unit must prepare
a notification verifying that post-closure care has been completed. The notification must include the certification by a qualified professional engineer verifying that post-closure care has been completed in accordance with the closure plan specified in paragraph (d) of this section and the requirements of this section. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{i})(13)$.
(f) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(i), the notification
requirements specified in $\S 257.106(i)$, and the Internet requirements specified in § 257.107(i).

Recordkeeping, Notification, and Posting of Information to the Internet

§257.105 Recordkeeping requirements.

(a) Each owner or operator of a CCR unit subject to the requirements of this subpart must maintain files of all information required by this section in a written operating record at their facility.
(b) Unless specified otherwise, each file must be retained for at least five years following the date of each occurrence, measurement, maintenance, corrective action, report, record, or study.
(c) An owner or operator of more than one CCR unit subject to the provisions of this subpart may comply with the requirements of this section in one recordkeeping system provided the system identifies each file by the name of each CCR unit. The files may be maintained on microfilm, on a computer, on computer disks, on a storage system accessible by a computer, on magnetic tape disks, or on microfiche.
(d) The owner or operator of a CCR unit must submit to the State Director and/or appropriate Tribal authority any demonstration or documentation required by this subpart, if requested, when such information is not otherwise available on the owner or operator's publicly accessible Internet site.
(e) Location restrictions. The owner or operator of a CCR unit subject to this subpart must place the demonstrations documenting whether or not the CCR unit is in compliance with the requirements under $\S \S 257.60(\mathrm{a})$, 257.61(a), 257.62(a), 257.63(a), and 257.64(a), as it becomes available, in the facility's operating record.
(f) Design criteria. The owner or operator of a CCR unit subject to this subpart must place the following
information, as it becomes available, in the facility's operating record:
(1) The design and construction certifications as required by $\S 257.70$ (e) and (f).
(2) The documentation of liner type as required by $\S 257.71$ (a).
(3) The design and construction certifications as required by $\S 257.72$ (c) and (d).
(4) Documentation prepared by the owner or operator stating that the permanent identification marker was installed as required by $\S \S 257.73$ (a)(1) and 257.74(a)(1).
(5) The initial and periodic hazard potential classification assessments as required by $\S \S 257.73(\mathrm{a})(2)$ and 257.74(a)(2).
(6) The emergency action plan (EAP), and any amendment of the EAP, as required by $\$ \S 257.73$ (a)(3) and 257.74(a)(3), except that only the most recent EAP must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
(7) Documentation prepared by the owner or operator recording the annual face-to-face meeting or exercise between representatives of the owner or operator of the CCR unit and the local emergency responders as required by
§§257.73(a)(3)(i)(E) and
257.74(a)(3)(i)(E).
(8) Documentation prepared by the owner or operator recording all activations of the emergency action plan as required by $\S \S 257.73$ (a)(3)(v) and 257.74(a)(3)(v).
(9) The history of construction, and any revisions of it, as required by §257.73(c), except that these files must be maintained until the CCR unit completes closure of the unit in accordance with § 257.102.
(10) The initial and periodic structural stability assessments as required by $\S \S 257.73(\mathrm{~d})$ and 257.74(d).
(11) Documentation detailing the corrective measures taken to remedy the deficiency or release as required by §§257.73(d)(2) and 257.74(d)(2).
(12) The initial and periodic safety factor assessments as required by §§257.73(e) and 257.74(e).
(13) The design and construction plans, and any revisions of it, as required by §257.74(c), except that these files must be maintained until the CCR unit completes closure of the unit in accordance with § 257.102.
(g) Operating criteria. The owner or operator of a CCR unit subject to this subpart must place the following information, as it becomes available, in the facility's operating record:
(1) The CCR fugitive dust control plan, and any subsequent amendment of
the plan, required by $\S 257.80$ (b), except that only the most recent control plan must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
(2) The annual CCR fugitive dust control report required by $\S 257.80$ (c).
(3) The initial and periodic run-on and run-off control system plans as required by $\S 257.81$ (c).
(4) The initial and periodic inflow design flood control system plan as required by § 257.82 (c).
(5) Documentation recording the results of each inspection and instrumentation monitoring by a qualified person as required by §257.83(a).
(6) The periodic inspection report as required by $\S 257.83(\mathrm{~b})(2)$.
(7) Documentation detailing the corrective measures taken to remedy the deficiency or release as required by §§257.83(b)(5) and 257.84(b)(5).
(8) Documentation recording the results of the weekly inspection by a qualified person as required by §257.84(a).
(9) The periodic inspection report as required by § 257.84(b)(2).
(h) Groundwater monitoring and corrective action. The owner or operator of a CCR unit subject to this subpart must place the following information, as it becomes available, in the facility's operating record:
(1) The annual groundwater monitoring and corrective action report as required by $\S 257.90$ (e).
(2) Documentation of the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices as required by $\S 257.91$ (e)(1).
(3) The groundwater monitoring system certification as required by § 257.91(f).
(4) The selection of a statistical method certification as required by § $257.93(\mathrm{f})(6)$.
(5) Within 30 days of establishing an assessment monitoring program, the notification as required by § $257.94(\mathrm{e})(3)$.
(6) The results of appendices III and IV to this part constituent concentrations as required by § 257.95(d)(1).
(7) Within 30 days of returning to a detection monitoring program, the notification as required by § 257.95(e).
(8) Within 30 days of detecting one or more constituents in appendix IV to this part at statistically significant levels above the groundwater protection standard, the notifications as required by $\S 257.95$ (g).
(9) Within 30 days of initiating the assessment of corrective measures requirements, the notification as required by $\S 257.95(\mathrm{~g})(5)$.
(10) The completed assessment of corrective measures as required by §257.96(d).
(11) Documentation prepared by the owner or operator recording the public meeting for the corrective measures assessment as required by $\S 257.96$ (e).
(12) The semiannual report describing the progress in selecting and designing the remedy and the selection of remedy report as required by $\S 257.97$ (a), except that the selection of remedy report must be maintained until the remedy has been completed.
(13) Within 30 days of completing the remedy, the notification as required by § 257.98(e).
(i) Closure and post-closure care. The owner or operator of a CCR unit subject to this subpart must place the following information, as it becomes available, in the facility's operating record:
(1) The notification of intent to initiate closure of the CCR unit as required by $\$ 257.100$ (c)(1).
(2) The annual progress reports of closure implementation as required by §257.100(c)(2)(i) and (ii).
(3) The notification of closure completion as required by § 257.100(c)(3).
(4) The written closure plan, and any amendment of the plan, as required by § 257.102(b), except that only the most recent closure plan must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
(5) The written demonstration(s), including the certification required by § 257.102 (e)(2)(iii), for a time extension for initiating closure as required by §257.102(e)(2)(ii).
(6) The written demonstration(s), including the certification required by § 257.102(f)(2)(iii), for a time extension for completing closure as required by § $257.102(f)(2)(\mathrm{i})$.
(7) The notification of intent to close a CCR unit as required by $\S 257.102(\mathrm{~g})$.
(8) The notification of completion of closure of a CCR unit as required by § 257.102(h).
(9) The notification recording a notation on the deed as required by §257.102(i).
(10) The notification of intent to comply with the alternative closure requirements as required by §257.103(c)(1).
(11) The annual progress reports under the alternative closure requirements as required by §257.103(c)(2).
(12) The written post-closure plan, and any amendment of the plan, as required by $\S 257.104$ (d), except that only the most recent closure plan must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
(13) The notification of completion of post-closure care period as required by § 257.104(e).
(j) Retrofit criteria. The owner or operator of a CCR unit subject to this subpart must place the following information, as it becomes available, in the facility's operating record:
(1) The written retrofit plan, and any amendment of the plan, as required by § $257.102(\mathrm{k})(2)$, except that only the most recent retrofit plan must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
(2) The notification of intent that the retrofit activities will proceed in accordance with the alternative procedures in §257.103.
(3) The annual progress reports required under the alternative requirements as required by $\S 257.103$.
(4) The written demonstration(s), including the certification in § 257.102(f)(2)(iii), for a time extension for completing retrofit activities as required by $\S 257.102(\mathrm{k})(3)$.
(5) The notification of intent to initiate retrofit of a CCR unit as required by § $257.102(\mathrm{k})(5)$.
(6) The notification of completion of retrofit activities as required by §257.102(k)(6).

§257.106 Notification requirements.

(a) The notifications required under paragraphs (e) through (i) of this section must be sent to the relevant State Director and/or appropriate Tribal authority before the close of business on the day the notification is required to be completed. For purposes of this section, before the close of business means the notification must be postmarked or sent by electronic mail (email). If a notification deadline falls on a weekend or federal holiday, the notification deadline is automatically extended to the next business day.
(b) If any CCR unit is located in its entirety within Indian Country, the notifications of this section must be sent to the appropriate Tribal authority. If any CCR unit is located in part within Indian Country, the notifications of this section must be sent both to the appropriate State Director and Tribal authority.
(c) Notifications may be combined as long as the deadline requirement for each notification is met.
(d) Unless otherwise required in this section, the notifications specified in this section must be sent to the State Director and/or appropriate Tribal authority within 30 days of placing in the operating record the information required by $\S 257.105$.
(e) Location restrictions. The owner or operator of a CCR unit subject to the requirements of this subpart must notify the State Director and/or appropriate Tribal authority that each demonstration specified under § $257.105(\mathrm{e})$ has been placed in the operating record and on the owner or operator's publicly accessible internet site.
(f) Design criteria. The owner or operator of a CCR unit subject to this subpart must notify the State Director and/or appropriate Tribal authority when information has been placed in the operating record and on the owner or operator's publicly accessible internet site. The owner or operator must:
(1) Within 60 days of commencing construction of a new CCR unit, provide notification of the availability of the design certification specified under $\S 257.105(f)(1)$ or (3). If the owner or operator of the CCR unit elects to install an alternative composite liner, the owner or operator must also submit to the State Director and/or appropriate Tribal authority a copy of the alternative composite liner design.
(2) No later than the date of initial receipt of CCR by a new CCR unit, provide notification of the availability of the construction certification specified under § $257.105(f)(1)$ or (3).
(3) Provide notification of the availability of the documentation of liner type specified under § $257.105(f)(2)$.
(4) Provide notification of the availability of the initial and periodic hazard potential classification assessments specified under § $257.105(\mathrm{f})(5)$.
(5) Provide notification of the availability of emergency action plan (EAP), and any revisions of the EAP, specified under §257.105(f)(6).
(6) Provide notification of the availability of documentation prepared by the owner or operator recording the annual face-to-face meeting or exercise between representatives of the owner or operator of the CCR unit and the local emergency responders specified under § 257.105(f)(7).
(7) Provide notification of documentation prepared by the owner or operator recording all activations of the emergency action plan specified under § $257.105(\mathrm{f})(8)$.
(8) Provide notification of the availability of the history of construction, and any revision of it, specified under §257.105(f)(9).
(9) Provide notification of the availability of the initial and periodic structural stability assessments specified under §257.105(f)(10).
(10) Provide notification of the availability of the documentation detailing the corrective measures taken to remedy the deficiency or release specified under § $257.105(\mathrm{f})(11)$.
(11) Provide notification of the availability of the initial and periodic safety factor assessments specified under § 257.105(f)(12).
(12) Provide notification of the availability of the design and construction plans, and any revision of them, specified under § $257.105(\mathrm{f})(13)$.
(g) Operating criteria. The owner or operator of a CCR unit subject to this subpart must notify the State Director and/or appropriate Tribal authority when information has been placed in the operating record and on the owner or operator's publicly accessible internet site. The owner or operator must:
(1) Provide notification of the availability of the CCR fugitive dust control plan, or any subsequent amendment of the plan, specified under $\S 257.105(\mathrm{~g})(1)$.
(2) Provide notification of the availability of the annual CCR fugitive dust control report specified under § 257.105(g)(2).
(3) Provide notification of the availability of the initial and periodic run-on and run-off control system plans specified under § $257.105(\mathrm{~g})(3)$.
(4) Provide notification of the availability of the initial and periodic inflow design flood control system plans specified under $\S 257.105(\mathrm{~g})(4)$.
(5) Provide notification of the availability of the periodic inspection reports specified under § $257.105(\mathrm{~g})(6)$.
(6) Provide notification of the availability of the documentation detailing the corrective measures taken to remedy the deficiency or release specified under $\S 257.105(\mathrm{~g})(7)$.
(7) Provide notification of the availability of the periodic inspection reports specified under § $257.105(\mathrm{~g})(9)$.
(h) Groundwater monitoring and corrective action. The owner or operator of a CCR unit subject to this subpart must notify the State Director and/or appropriate Tribal authority when information has been placed in the operating record and on the owner or operator's publicly accessible internet site. The owner or operator must:
(1) Provide notification of the availability of the annual groundwater
monitoring and corrective action report specified under §257.105(h)(1).
(2) Provide notification of the availability of the groundwater monitoring system certification specified under $\S 257.105(\mathrm{~h})(3)$.
(3) Provide notification of the availability of the selection of a statistical method certification specified under § 257.105(h)(4).
(4) Provide notification that an assessment monitoring programs has been established specified under § 257.105(h)(5).
(5) Provide notification that the CCR unit is returning to a detection monitoring program specified under § 257.105(h)(7).
(6) Provide notification that one or more constituents in appendix IV to this part have been detected at statistically significant levels above the groundwater protection standard and the notifications to land owners specified under § 257.105(h)(8).
(7) Provide notification that an assessment of corrective measures has been initiated specified under § $257.105(\mathrm{~h})(9)$.
(8) Provide notification of the availability of assessment of corrective measures specified under § 257.105(h)(10).
(9) Provide notification of the availability of the semiannual report describing the progress in selecting and designing the remedy and the selection of remedy report specified under §257.105(h)(12).
(10) Provide notification of the completion of the remedy specified under § 257.105(h)(13).
(i) Closure and post-closure care. The owner or operator of a CCR unit subject to this subpart must notify the State Director and/or appropriate Tribal authority when information has been placed in the operating record and on the owner or operator's publicly accessible Internet site. The owner or operator must:
(1) Provide notification of the intent to initiate closure of the CCR unit specified under $\$ 257.105(\mathrm{i})(1)$.
(2) Provide notification of the availability of the annual progress reports of closure implementation specified under $\S 257.105(\mathrm{i})(2)$.
(3) Provide notification of closure completion specified under § 257.105(i)(3).
(4) Provide notification of the availability of the written closure plan, and any amendment of the plan, specified under § 257.105(i)(4).
(5) Provide notification of the availability of the demonstration(s) for a time extension for initiating closure specified under $\S 257.105(\mathrm{i})(5)$.
(6) Provide notification of the availability of the demonstration(s) for a time extension for completing closure specified under §257.105(i)(6).
(7) Provide notification of intent to close a CCR unit specified under §257.105(i)(7).
(8) Provide notification of completion of closure of a CCR unit specified under §257.105(i)(8).
(9) Provide notification of the deed notation as required by $\S 257.105(\mathrm{i})(9)$.
(10) Provide notification of intent to comply with the alternative closure requirements specified under § $257.105(\mathrm{i})(10)$.
(11) The annual progress reports under the alternative closure requirements as required by §257.105(i)(11).
(12) Provide notification of the availability of the written post-closure plan, and any amendment of the plan, specified under §257.105(i)(12).
(13) Provide notification of completion of post-closure care specified under § 257.105(i)(13).
(j) Retrofit criteria. The owner or operator of a CCR unit subject to this subpart must notify the State Director and/or appropriate Tribal authority when information has been placed in the operating record and on the owner or operator's publicly accessible Internet site. The owner or operator must:
(1) Provide notification of the availability of the written retrofit plan, and any amendment of the plan, specified under $\S 257.105(\mathrm{j})(1)$.
(2) Provide notification of intent to comply with the alternative retrofit requirements specified under § $257.105(\mathrm{j})(2)$.
(3) The annual progress reports under the alternative retrofit requirements as required by § $257.105(\mathrm{j})(3)$.
(4) Provide notification of the availability of the demonstration(s) for a time extension for completing retrofit activities specified under §257.105(j)(4).
(5) Provide notification of intent to initiate retrofit of a CCR unit specified under § 257.105(j)(5).
(6) Provide notification of completion of retrofit activities specified under § 257.105(j)(6).

§257.107 Publicly accessible Internet site requirements.

(a) Each owner or operator of a CCR unit subject to the requirements of this subpart must maintain a publicly accessible Internet site (CCR Web site) containing the information specified in this section. The owner or operator's Web site must be titled "CCR Rule Compliance Data and Information."
(b) An owner or operator of more than one CCR unit subject to the provisions
of this subpart may comply with the requirements of this section by using the same Internet site for multiple CCR
units provided the CCR Web site clearly delineates information by the name or identification number of each unit.
(c) Unless otherwise required in this section, the information required to be posted to the CCR Web site must be made available to the public for at least five years following the date on which the information was first posted to the CCR Web site.
(d) Unless otherwise required in this section, the information must be posted to the CCR Web site within 30 days of placing the pertinent information required by $\S 257.105$ in the operating record.
(e) Location restrictions. The owner or operator of a CCR unit subject to this subpart must place each demonstration specified under $\S 257.105(\mathrm{e})$ on the owner or operator's CCR Web site.
(f) Design criteria. The owner or operator of a CCR unit subject to this subpart must place the following information on the owner or operator's CCR Web site:
(1) Within 60 days of commencing construction of a new unit, the design certification specified under
§ $257.105(\mathrm{f})(1)$ or (3).
(2) No later than the date of initial receipt of CCR by a new CCR unit, the construction certification specified under §257.105(f)(1) or (3).
(3) The documentation of liner type specified under §257.105(f)(2).
(4) The initial and periodic hazard potential classification assessments specified under §257.105(f)(5).
(5) The emergency action plan (EAP) specified under § $257.105(\mathrm{f})(6)$, except that only the most recent EAP must be maintained on the CCR Web site irrespective of the time requirement specified in paragraph (c) of this section.
(6) Documentation prepared by the owner or operator recording the annual face-to-face meeting or exercise between representatives of the owner or operator of the CCR unit and the local emergency responders specified under §257.105(f)(7).
(7) Documentation prepared by the owner or operator recording any activation of the emergency action plan specified under § $257.105(\mathrm{f})(8)$.
(8) The history of construction, and any revisions of it, specified under § $257.105(\mathrm{f})(9)$.
(9) The initial and periodic structural stability assessments specified under § 257.105(f)(10).
(10) The documentation detailing the corrective measures taken to remedy the
deficiency or release specified under § $257.105(f)(11)$.
(11) The initial and periodic safety factor assessments specified under § $257.105(\mathrm{f})(12)$.
(12) The design and construction plans, and any revisions of them, specified under § 257.105(f)(13).
(g) Operating criteria. The owner or operator of a CCR unit subject to this subpart must place the following information on the owner or operator's CCR Web site:
(1) The CCR fugitive dust control plan, or any subsequent amendment of the plan, specified under $\S 257.105(\mathrm{~g})(1)$ except that only the most recent plan must be maintained on the CCR Web site irrespective of the time requirement specified in paragraph (c) of this section.
(2) The annual CCR fugitive dust control report specified under § $257.105(\mathrm{~g})(2)$.
(3) The initial and periodic run-on and run-off control system plans specified under $\$ 257.105(\mathrm{~g})(3)$.
(4) The initial and periodic inflow design flood control system plans specified under $\S 257.105(\mathrm{~g})(4)$.
(5) The periodic inspection reports specified under § 257.105(g)(6).
(6) The documentation detailing the corrective measures taken to remedy the deficiency or release specified under § 257.105(g)(7).
(7) The periodic inspection reports specified under § $257.105(\mathrm{~g})(9)$.
(h) Groundwater monitoring and corrective action. The owner or operator of a CCR unit subject to this subpart must place the following information on the owner or operator's CCR Web site:
(1) The annual groundwater monitoring and corrective action report specified under § 257.105(h)(1).
(2) The groundwater monitoring system certification specified under § 257.105(h)(3).
(3) The selection of a statistical method certification specified under § 257.105(h)(4).
(4) The notification that an assessment monitoring programs has been established specified under § 257.105(h)(5).
(5) The notification that the CCR unit is returning to a detection monitoring program specified under § 257.105(h)(7).
(6) The notification that one or more constituents in appendix IV to this part have been detected at statistically significant levels above the groundwater protection standard and the notifications to land owners specified under §257.105(h)(8).
(7) The notification that an assessment of corrective measures has been initiated specified under §257.105(h)(9).
(8) The assessment of corrective measures specified under § $257.105(\mathrm{~h})(10)$.
(9) The semiannual reports describing the progress in selecting and designing remedy and the selection of remedy report specified under § 257.105(h)(12), except that the selection of the remedy report must be maintained until the remedy has been completed.
(10) The notification that the remedy has been completed specified under § 257.105(h)(13).
(i) Closure and post-closure care. The owner or operator of a CCR unit subject to this subpart must place the following information on the owner or operator's CCR Web site:
(1) The notification of intent to initiate closure of the CCR unit specified under §257.105(i)(1).
(2) The annual progress reports of closure implementation specified under §257.105(i)(2).
(3) The notification of closure completion specified under § $257.105(\mathrm{i})(3)$.
(4) The written closure plan, and any amendment of the plan, specified under § 257.105(i)(4).
(5) The demonstration(s) for a time extension for initiating closure specified under §257.105(i)(5).
(6) The demonstration(s) for a time extension for completing closure specified under §257.105(i)(6).
(7) The notification of intent to close a CCR unit specified under

§ 257.105(i)(7).

(8) The notification of completion of closure of a CCR unit specified under §257.105(i)(8).
(9) The notification recording a notation on the deed as required by § 257.105(i)(9).
(10) The notification of intent to comply with the alternative closure requirements as required by § $257.105(\mathrm{i})(10)$.
(11) The annual progress reports under the alternative closure requirements as required by § 257.105(i)(11).
(12) The written post-closure plan, and any amendment of the plan, specified under § 257.105(i)(12).
(13) The notification of completion of post-closure care specified under
§ 257.105(i)(13).
(j) Retrofit criteria. The owner or operator of a CCR unit subject to this subpart must place the following information on the owner or operator's CCR Web site:
(1) The written retrofit plan, and any amendment of the plan, specified under § 257.105(j)(1).
(2) The notification of intent to comply with the alternative retrofit
requirements as required by
§ $257.105(\mathrm{j})(2)$.
(3) The annual progress reports under the alternative retrofit requirements as required by § $257.105(\mathrm{j})(3)$.
(4) The demonstration(s) for a time extension for completing retrofit activities specified under $\S 257.105(\mathrm{j})(4)$.
(5) The notification of intent to retrofit a CCR unit specified under
§ 257.105(j)(5).
(6) The notification of completion of retrofit activities specified under
§257.105(j)(6).

- 5. Amend part 257 by adding
"Appendix III to Part 257" and
"Appendix IV to Part 257" to read as follows:
Appendix III to Part 257—Constituents for Detection Monitoring

| Common name 1 |
| :--- | :--- |
| Boron |
| Calcium |
| Chloride |
| Fluoride |
| pH |
| Sulfate |
| Total Dissolved Solids (TDS) |

${ }^{1}$ Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
Appendix IV to Part 257-Constituents for Assessment Monitoring
Common name ${ }^{1}$

Antimony

Arsenic
Barium
Beryllium
Cadmium
Chromium
Cobalt
Fluoride
Lead
Lithium
Mercury
Molybdenum
Selenium
Thallium
Radium 226 and 228 combined

[^10]
PART 261—IDENTIFICATION AND LISTING OF HAZARDOUS WASTE

■ 6. The authority citation for part 261 continues to read as follows:
Authority: 42 U.S.C. 6905, 6912(a), 6921, 6922, 6924(y) and 6938.
■ 7. Section 261.4 is amended by revising paragraph (b)(4) to read as follows:
§261.4 Exclusions.
(b) * * * * *
(4)(i) Fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels, except as provided by $\S 266.112$ of this chapter for facilities that burn or process hazardous waste.
(ii) The following wastes generated primarily from processes that support the combustion of coal or other fossil fuels that are co-disposed with the wastes in paragraph (b)(4)(i) of this section, except as provided by § 266.112 of this chapter for facilities that burn or process hazardous waste:
(A) Coal pile run-off. For purposes of paragraph (b)(4) of this section, coal pile run-off means any precipitation that drains off coal piles.
(B) Boiler cleaning solutions. For purposes of paragraph (b)(4) of this section, boiler cleaning solutions means water solutions and chemical solutions
used to clean the fire-side and waterside of the boiler.
(C) Boiler blowdown. For purposes of paragraph (b)(4) of this section, boiler blowdown means water purged from boilers used to generate steam.
(D) Process water treatment and demineralizer regeneration wastes. For purposes of paragraph (b)(4) of this section, process water treatment and demineralizer regeneration wastes means sludges, rinses, and spent resins generated from processes to remove dissolved gases, suspended solids, and dissolved chemical salts from combustion system process water.
(E) Cooling tower blowdown. For purposes of paragraph (b)(4) of this section, cooling tower blowdown means water purged from a closed cycle cooling system. Closed cycle cooling systems include cooling towers, cooling ponds, or spray canals.
(F) Air heater and precipitator washes. For purposes of paragraph (b)(4) of this section, air heater and
precipitator washes means wastes from cleaning air preheaters and electrostatic precipitators.
(G) Effluents from floor and yard drains and sumps. For purposes of paragraph (b)(4) of this section, effluents from floor and yard drains and sumps means wastewaters, such as wash water, collected by or from floor drains, equipment drains, and sumps located inside the power plant building; and wastewaters, such as rain runoff, collected by yard drains and sumps located outside the power plant building.
(H) Wastewater treatment sludges. For purposes of paragraph (b)(4) of this section, wastewater treatment sludges refers to sludges generated from the treatment of wastewaters specified in paragraphs (b)(4)(ii)(A) through (F) of this section.

* * * * *

[FR Doc. 2015-00257 Filed 4-16-15; 8:45 am] BILLING CODE 6560-50-P
residents within one mile of landfills to those percentages in the general population, EPA found that minority and low-income residents make up a smaller percentage of the populations near landfills than they do in the general population, i.e., minorities comprised 16.6 percent of the population near landfills versus 24.8 percent nationwide and low-income residents comprised 8.6 percent of the population near landfills versus 11.3 percent nationwide. In summary, although populations within the catchment areas of plants with surface impoundments appear to have disproportionately high percentages of minority and low-income residents relative to the nationwide average, populations surrounding plants with landfills do not. Because landfills are less likely than impoundments to experience surface water run-off and releases, catchment areas were not considered for landfills.
The CCR rule is risk-reducing with reductions in risk occurring largely within the surface water catchment zones around, and groundwater beneath, coal-fired electric utility plants. Since the CCR rule is riskreducing and this action does not add to risks, this action will not result in new disproportionate risks to minority or low-income populations.

L. Congressional Review Act (CRA)

This action is subject to the CRA, and the EPA will submit a rule report to each House of the Congress and to the Comptroller General of the United States. This action is not a "major rule" as defined by 5 U.S.C. 804(2).

List of Subjects in $\mathbf{4 0}$ CFR Part 257

Environmental protection, Beneficial use, Coal combustion products, Coal combustion residuals, Coal combustion waste, Disposal, Hazardous waste, Landfill, Surface impoundment.
Dated: July 17, 2018.
Andrew R. Wheeler,
Acting Administrator.
For the reasons set out in the preamble, title 40, chapter I, of the Code of Federal Regulations is amended as follows:

PART 257-CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES

- 1. The authority citation for part 257 is revised to read as follows:
Authority: 42 U.S.C. 6907 (a)(3), 6912(a)(1), 6944(a), $6945(\mathrm{~d}) ; 33$ U.S.C. 1345 (d) and (e).

■ 2. Section 257.53 is amended by adding the definitions of
"Nonparticipating State", "Participating State", and "Participating State Director" in alphabetical order to read as follows:

§257.53 Definitions.

Nonparticipating State means a State-
(1) For which the Administrator has not approved a State permit program or other system of prior approval and conditions under RCRA section 4005(d)(1)(B);
(2) The Governor of which has not submitted to the Administrator for approval evidence to operate a State permit program or other system of prior approval and conditions under RCRA section 4005(d)(1)(A);
(3) The Governor of which provides notice to the Administrator that, not fewer than 90 days after the date on which the Governor provides the notice to the Administrator, the State will relinquish an approval under RCRA section 4005(d)(1)(B) to operate a permit program or other system of prior approval and conditions; or
(4) For which the Administrator has withdrawn approval for a permit program or other system of prior approval and conditions under RCRA section 4005(d)(1)(E).

Participating State means a state with a state program for control of CCR that has been approved pursuant to RCRA section 4005(d).

Participating State Director means the chief administrative officer of any state agency operating the CCR permit program in a participating state or the delegated representative of the Participating State Director. If responsibility is divided among two or more state agencies, Participating State Director means the chief administrative officer of the state agency authorized to perform the particular function or procedure to which reference is made.

■ 3. Section 257.60 is amended by revising paragraph (b) to read as follows:

§257.60 Placement above the uppermost aquifer.

(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration meets the
requirements of paragraph (a) of this section.

■ 4. Section 257.61 is amended by revising paragraph (b) to read as follows:

§257.61 Wetlands.

(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration meets the requirements of paragraph (a) of this section.

* * * * *

■ 5. Section 257.62 is amended by revising paragraph (b) to read as follows:

§257.62 Fault areas.

(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration meets the requirements of paragraph (a) of this section.

* * * * *

■ 6. Section 257.63 is amended by revising paragraph (b) to read as follows:

§257.63 Seismic impact zones.

(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration meets the requirements of paragraph (a) of this section.

■ 7. Section 257.64 is amended by revising paragraph (c) to read as follows:

§257.64 Unstable areas.

(c) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration meets the requirements of paragraph (a) of this section.

■ 8. Section 257.70 is amended by revising paragraphs (c)(2), (e), and (f) to read as follows:
§257.70 Design criteria for new CCR landfills and any lateral expansion of a CCR landfill.

$$
(\mathrm{c}) * * *
$$

(2) The owner or operator must obtain certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the liquid flow rate through the lower component of the alternative composite liner is no greater than the liquid flow rate through two feet of compacted soil with a hydraulic conductivity of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$. The hydraulic conductivity for the two feet of compacted soil used in the comparison shall be no greater than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$. The hydraulic conductivity of any alternative to the two feet of compacted soil must be determined using recognized and generally accepted methods. The liquid flow rate comparison must be made using Equation 1 of this section, which is derived from Darcy's Law for gravity flow through porous media.
(Eq. 1):

$$
\frac{Q}{A}=q=k\left(\frac{h}{t}+1\right)
$$

Where:
$\mathrm{Q}=$ flow rate (cubic centimeters/second);
A = surface area of the liner (squared centimeters);
$\mathrm{q}=$ flow rate per unit area (cubic centimeters/ second/squared centimeter);
$\mathrm{k}=$ hydraulic conductivity of the liner (centimeters/second);
$\mathrm{h}=$ hydraulic head above the liner (centimeters); and
$\mathrm{t}=$ thickness of the liner (centimeters).
(e) Prior to construction of the CCR landfill or any lateral expansion of a CCR landfill, the owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the design of the composite liner (or, if applicable, alternative composite liner) and the leachate collection and removal system meets the requirements of this section.
(f) Upon completion of construction of the CCR landfill or any lateral expansion of a CCR landfill, the owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the design of the composite liner (or, if applicable, alternative composite liner) and the leachate collection and removal
system have been constructed in accordance with the requirements of this section.
*

- 9. Section 257.71 is amended by revising paragraph (b) to read as follows:
§257.71 Liner design criteria for existing CCR surface impoundments.
(b) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the documentation as to whether a CCR unit meets the requirements of paragraph (a) of this section is accurate.

■ 10. Section 257.72 is amended by revising paragraphs (c) and (d) to read as follows:

§257.72 Liner design criteria for new CCR surface impoundments and any lateral expansion of a CCR surface impoundment.

* ${ }^{*}$ (c) Prior to construction of the CCR surface impoundment or any lateral expansion of a CCR surface impoundment, the owner or operator must obtain certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the design of the composite liner or, if applicable, the design of an alternative composite liner complies with the requirements of this section.
(d) Upon completion, the owner or operator must obtain certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the composite liner or if applicable, the alternative composite liner has been constructed in accordance with the requirements of this section.
\square 11. Section 257.80 is amended by revising paragraph (b)(7) to read as follows:

§257.80 Air criteria.

* (b) * * *
(7) The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the initial CCR fugitive dust control plan, or any subsequent amendment of it, meets the requirements of this section.

■ 12. Section 257.81 is amended by revising paragraph (c)(5) to read as follows:
§257.81 Run-on and run-off controls for
CCR landfills.

* * * *

(c) * *
(5) The owner or operator must obtain
a certification from a qualified
professional engineer or approval from
the Participating State Director or
approval from EPA where EPA is the
permitting authority stating that the
initial and periodic run-on and run-off
control system plans meet the
requirements of this section.

* * * * \quad *
■ 13. Section 257.82 is amended by
revising paragraph (c)(5) to read as
follows: follows:

§257.82 Hydrologic and hydraulic

 capacity requirements for CCR surface impoundments.(c) * * *
(5) The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the initial and periodic inflow design flood control system plans meet the requirements of this section.

■ 14. Section 257.90 is amended by revising paragraph (a) and adding paragraph (g) to read as follows:

§§257.90 Applicability.

(a) All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under $\S \S 257.90$ through 257.99, except as provided in paragraph (g) of this section.
(g) Suspension of groundwater monitoring requirements. (1) The Participating State Director or EPA where EPA is the permitting authority may suspend the groundwater monitoring requirements under $\S \S 257.90$ through 257.95 for a CCR unit for a period of up to ten years, if the owner or operator provides written documentation that, based on the characteristics of the site in which the CCR unit is located, there is no potential for migration of any of the constituents listed in appendices III and IV to this part from that CCR unit to the uppermost aquifer during the active life of the CCR unit and the post-closure care period. This demonstration must be certified by a qualified professional
engineer and approved by the
Participating State Director or EPA where EPA is the permitting authority, and must be based upon:
(i) Site-specific field collected measurements, sampling, and analysis of physical, chemical, and biological processes affecting contaminant fate and transport, including at a minimum, the information necessary to evaluate or interpret the effects of the following properties or processes on contaminant fate and transport:
(A) Aquifer Characteristics, including hydraulic conductivity, hydraulic gradient, effective porosity, aquifer thickness, degree of saturation, stratigraphy, degree of fracturing and secondary porosity of soils and bedrock, aquifer heterogeneity, groundwater discharge, and groundwater recharge areas;
(B) Waste Characteristics, including quantity, type, and origin;
(C) Climatic Conditions, including annual precipitation, leachate generation estimates, and effects on leachate quality;
(D) Leachate Characteristics, including leachate composition, solubility, density, the presence of immiscible constituents, Eh, and pH; and
(E) Engineered Controls, including liners, cover systems, and aquifer controls (e.g., lowering the water table). These must be evaluated under design and failure conditions to estimate their long-term residual performance.
(ii) Contaminant fate and transport predictions that maximize contaminant migration and consider impacts on human health and the environment.
(2) The owner or operator of the CCR unit may renew this suspension for additional ten year periods by submitting written documentation that the site characteristics continue to ensure there will be no potential for migration of any of the constituents listed in Appendices III and IV of this part. The documentation must include, at a minimum, the information specified in paragraphs $(\mathrm{g})(1)(\mathrm{i})$ and $(\mathrm{g})(1)(\mathrm{ii})$ of this section and a certification by a qualified professional engineer and approved by the State Director or EPA where EPA is the permitting authority. The owner or operator must submit the documentation supporting their renewal request for the state's or EPA's review and approval of their extension one year before the groundwater monitoring suspension is due to expire. If the existing groundwater monitoring extension expires or is not approved, the owner or operator must begin groundwater monitoring according to paragraph (a) of this section within 90
days. The owner or operator may continue to renew the suspension for ten-year periods, provided the owner or operator demonstrate that the standard in paragraph $(\mathrm{g})(1)$ of this section continues to be met for the unit. The owner or operator must place each completed demonstration in the facility's operating record.
(3) The owner or operator of the CCR unit must include in the annual groundwater monitoring and corrective action report required by $\S 257.90$ (e) or §257.100(e)(5)(ii) any approved no migration demonstration.
■ 15. Section 257.91 is amended by revising paragraph (f) to read as follows:

§257.91 Groundwater monitoring systems.

(f) The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the groundwater monitoring system has been designed and constructed to meet the requirements of this section. If the groundwater monitoring system includes the minimum number of monitoring wells specified in paragraph (c)(1) of this section, the certification must document the basis supporting this determination.

■ 16. Section 257.93 is amended by revising paragraph (f)(6) to read as follows:
§257.93 Groundwater sampling and analysis requirements.

* * * * *

(f) * * *
(6) The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR management area. The certification must include a narrative description of the statistical method selected to evaluate the groundwater monitoring data.

* * * * * * * revising paragraphs (d)(3) and (e)(2) to read as follows:
§257.94 Detection monitoring program.
(d) * * *
(3) The owner or operator must obtain a certification from a qualified
professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § $257.90(\mathrm{e})$.

(e) * * *

(2) The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under $\S 257.95$. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90$ (e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

- 18. Section 257.95 is amended by revising paragraphs (c)(3), (g)(3)(ii), (h)(2) and (3) to read as follows:
§257.95 Assessment monitoring program.
(c) * * *
(3) The owner or operator must obtain a certification from a qualified
professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).
* *

(g)
$(3) *$${ }^{*}$ *
(3) * * *
(ii) Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in Appendix III and Appendix IV of this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90(\mathrm{e})$, in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority.
(h) * * *
(2) For the following constituents:
(i) Cobalt 6 micrograms per liter ($\mu \mathrm{g}$ / l);
(ii) Lead $15 \mu \mathrm{~g} / \mathrm{l}$;
(iii) Lithium $40 \mu \mathrm{~g} / \mathrm{l}$; and
(iv) Molybdenum $100 \mu \mathrm{~g} / \mathrm{l}$.
(3) For constituents for which the background level is higher than the levels identified under paragraphs (h)(1) and $(\mathrm{h})(2)$ of this section, the background concentration.

■ 19. Section 257.96 is amended by revising paragraph (a) to read as follows:

§257.96 Assessment of corrective measures.

(a) Within 90 days of finding that any constituent listed in Appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under §257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90 -day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by $\S 257.90$ (e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority.

■ 20. Section 257.97 is amended by revising paragraph (a) to read as follows:

§257.97 Selection of remedy.

(a) Based on the results of the corrective measures assessment conducted under $\S 257.96$, the owner or operator must, as soon as feasible, select a remedy that, at a minimum, meets the standards listed in paragraph (b) of this section. This requirement applies in addition to, not in place of, any applicable standards under the Occupational Safety and Health Act. The owner or operator must prepare a semiannual report describing the progress in selecting and designing the remedy. Upon selection of a remedy, the owner or operator must prepare a final report describing the selected remedy and how it meets the standards specified in paragraph (b) of this section. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or
approval from EPA where EPA is the permitting authority that the remedy selected meets the requirements of this section. The report has been completed when it is placed in the operating record as required by $\S 257.105(h)(12)$.

- 21. Section 257.98 is amended by revising paragraph (e) to read as follows:

§257.98 Implementation of the corrective action program.

(e) Upon completion of the remedy, the owner or operator must prepare a notification stating that the remedy has been completed. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the remedy has been completed in compliance with the requirements of paragraph (c) of this section. The report has been completed when it is placed in the operating record as required by § 257.105(h)(13).

■ 22. Section 257.101 is amended by revising paragraphs (a)(1) and (b)(1) to read as follows:

§257.101 Closure or retrofit of CCR units.

 (a) * * *(1) Except as provided by paragraph (a)(3) of this section, if at any time after October 19, 2015, an owner or operator of an existing unlined CCR surface impoundment determines in any sampling event that the concentrations of one or more constituents listed in appendix IV of this part are detected at statistically significant levels above the groundwater protection standard established under § 257.95(h) for such CCR unit, within six months of making such determination or no later than October 31, 2020, whichever date is later, the owner or operator of the existing unlined CCR surface impoundment must cease placing CCR and non-CCR wastestreams into such CCR surface impoundment and either retrofit or close the CCR unit in accordance with the requirements of § 257.102.
(b) * * *
(1)(i) Location standard under $\S 257.60$. Except as provided by paragraph (b)(4) of this section, the owner or operator of an existing CCR surface impoundment that has not demonstrated compliance with the location standard specified in §257.60(a) must cease placing CCR and non-CCR wastestreams into such CCR
unit no later than October 31, 2020, and close the CCR unit in accordance with the requirements of $\S 257.102$.
(ii) Location standards under $\S \S 257.61$ through 257.64. Except as provided by paragraph (b)(4) of this section, within six months of determining that an existing CCR surface impoundment has not demonstrated compliance with any location standard specified in §§257.61(a), 257.62(a), 257.63(a), and 257.64(a), the owner or operator of the CCR surface impoundment must cease placing CCR and non-CCR wastestreams into such CCR unit and close the CCR unit in accordance with the requirements of $\S 257.102$.

■ 23. Section 257.102 is amended by revising paragraphs (b)(4), (d)(3)(iii), $(\mathrm{f})(3),(\mathrm{g}),(\mathrm{h}),(\mathrm{k})(2)(\mathrm{iv}),(\mathrm{k})(4)$ and $(\mathrm{k})(6)$ to read as follows:

§257.102 Criteria for conducting the closure or retrofit of CCR units.

(b) * * *
(4) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the initial and any amendment of the written closure plan meets the requirements of this section.
(d) * * *
$(3) * *$
(3) * * *
(iii) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority that the design of the final cover system meets the requirements of this section.
(f) * * *
(3) Upon completion, the owner or operator of the CCR unit must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying that closure has been completed in accordance with the closure plan specified in paragraph (b) of this section and the requirements of this section.
(g) No later than the date the owner or operator initiates closure of a CCR unit, the owner or operator must prepare a notification of intent to close a CCR unit. The notification must include the certification by a qualified professional engineer or the approval
from the Participating State Director or the approval from EPA where EPA is the permitting authority for the design of the final cover system as required by $\S 257.102(\mathrm{~d})(3)(\mathrm{iii})$, if applicable. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{i})(7)$.
(h) Within 30 days of completion of closure of the CCR unit, the owner or operator must prepare a notification of closure of a CCR unit. The notification must include the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority as required by $\S 257.102(f)(3)$. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by $\S 257.105(\mathrm{i})(8)$.

$$
\begin{aligned}
& (\mathrm{k}) \text { * * * } \\
& (2) \text { * * }
\end{aligned}
$$

(iv) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer or an approval from the Participating State Director or an approval from EPA where EPA is the permitting authority that the activities outlined in the written retrofit plan, including any amendment of the plan, meet the requirements of this section.
(4) Upon completion, the owner or operator must obtain a written certification from a qualified professional engineer or an approval from the Participating State Director or an approval from EPA where EPA is the permitting authority verifying that the retrofit activities have been completed in accordance with the retrofit plan specified in paragraph $(\mathrm{k})(2)$ of this section and the requirements of this section.
(6) Within 30 days of completing the retrofit activities specified in paragraph $(\mathrm{k})(1)$ of this section, the owner or operator must prepare a notification of completion of retrofit activities. The notification must include the certification from a qualified professional engineer or an approval from the Participating State Director or an approval from EPA where EPA is the permitting authority has is required by paragraph (k)(4) of this section. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by § $257.105(\mathrm{j})(6)$.

■ 24. Section 257.104 is amended by revising paragraphs (d)(1)(iii), (d)(4) and (e) to read as follows:

§257.104 Post-closure care requirements.

(d) * * *
(1) * * *
(iii) A description of the planned uses of the property during the post-closure period. Post-closure use of the property shall not disturb the integrity of the final cover, liner(s), or any other component of the containment system, or the function of the monitoring systems unless necessary to comply with the requirements in this subpart. Any other disturbance is allowed if the owner or operator of the CCR unit demonstrates that disturbance of the final cover, liner, or other component of the containment system, including any removal of CCR, will not increase the potential threat to human health or the environment. The demonstration must be certified by a qualified professional engineer or approved by the Participating State Director or approved from EPA where EPA is the permitting authority, and notification shall be provided to the State Director that the demonstration has been placed in the operating record and on the owners or operator's publicly accessible internet site.
(4) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer or an approval from the Participating State Director or an approval from EPA where EPA is the permitting authority that the initial and any amendment of the written post-closure plan meets the requirements of this section.
(e) Notification of completion of postclosure care period. No later than 60 days following the completion of the post-closure care period, the owner or operator of the CCR unit must prepare a notification verifying that post-closure care has been completed. The notification must include the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority verifying that postclosure care has been completed in accordance with the closure plan specified in paragraph (d) of this section and the requirements of this section. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by $\S 257.105(\mathrm{i})(13)$.

■ 25. Section 257.105 is amended by adding paragraph (h)(14) to read as follows:

```
§257.105 Recordkeeping requirements.
* * * * *
(h) * * *
```

(14) The demonstration, including long-term performance data, supporting the suspension of groundwater monitoring requirements as required by $\S 257.90$ (g).

■ 26. Section 257.106 is amended by adding paragraph (h)(11) to read as follows:

§257.106 Notification requirements.

$$
(\mathrm{h}) * * *
$$

(11) Provide the demonstration supporting the suspension of groundwater monitoring requirements specified under § $257.105(\mathrm{~h})(14)$.

■ 27. Section 257.107 is amended by adding paragraph (h)(11) to read as follows:

§257.107 Publicly accessible internet site requirements.

* h) * * *
(11) The demonstration supporting the suspension of groundwater monitoring requirements specified under §257.105(h)(14).
[FR Doc. 2018-16262 Filed 7-27-18; 8:45 am] BILLING CODE 6560-50-P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

45 CFR Part 153

[CMS-9920-F]

RIN 0938-AT65

Adoption of the Methodology for the

 HHS-Operated Permanent Risk Adjustment Program Under the Patient Protection and Affordable Care Act for the 2017 Benefit YearAGENCY: Centers for Medicare \& Medicaid Services (CMS), Department of Health and Human Services (HHS). ACTION: Final rule.

SUMMARY: This final rule adopts the risk adjustment methodology that HHS previously established for the 2017 benefit year. In February 2018, a district court vacated the use of statewide average premium as a basis for the HHSoperated risk adjustment methodology for the 2014, 2015, 2016, 2017, and 2018
benefit years. Accordingly, HHS is issuing this final rule to allow charges to be collected and payments to be made for the 2017 benefit year. We hereby adopt the final rules set out in the publication in the Federal Register on March 23, 2012 and the publication in the Federal Register on March 8, 2016.
DATES: These provisions of this final rule are effective on July 30, 2018.

FOR FURTHER INFORMATION CONTACT:

Abigail Walker, (410) 786-1725; Adam Shaw, (410) 786-1091; Jaya Ghildiyal, (301) 492-5149; or Adrianne Patterson, (410) 786-0686.

SUPPLEMENTARY INFORMATION:

I. Background

A. Legislative and Regulatory Overview

The Patient Protection and Affordable Care Act (Pub. L. 111-148), was enacted on March 23, 2010; the Health Care and Education Reconciliation Act of 2010 (Pub. L. 111-152) was enacted on March 30, 2010. These statutes are collectively referred to as "PPACA" in this final rule. Section 1343 of the PPACA established an annual permanent risk adjustment program under which payments are collected from health insurance issuers that enroll relatively low-risk populations, and payments are made to health insurance issuers that enroll relatively higher-risk populations. Consistent with section 1321(c)(1) of the PPACA, the Secretary is responsible for operating the risk adjustment program on behalf of any state that elected not to do so. For the 2017 benefit year, HHS is responsible for operation of the risk adjustment program in all 50 states and the District of Columbia.

HHS sets the risk adjustment methodology that it uses in states that elect not to operate the program in advance of each benefit year through a notice-and-comment rulemaking process with the intention that issuers will be able to rely on the methodology to price their plans appropriately (45 CFR 153.320; 76 FR 41930, 41932 through 41933; 81 FR 94058, 94702 (explaining the importance of setting rules ahead of time and describing comments supporting that practice)).

In the July 15, 2011 Federal Register (76 FR 41929), we published a proposed rule outlining the framework for the risk adjustment program. We implemented the risk adjustment program in a final rule, published in the March 23, 2012 Federal Register (77 FR 17219) (Premium Stabilization Rule). In the December 7, 2012 Federal Register (77 FR 73117), we published a proposed rule outlining the proposed Federally certified risk adjustment methodologies for the 2014 benefit year and other
parameters related to the risk adjustment program (proposed 2014 Payment Notice). We published the 2014 Payment Notice final rule in the March 11, 2013 Federal Register (78 FR 15409). In the June 19, 2013 Federal Register (78 FR 37032), we proposed a modification to the HHS-operated methodology related to community rating states. In the October 30, 2013, Federal Register (78 FR 65046), we finalized the proposed modification to the HHS-operated methodology related to community rating states. We published a correcting amendment to the 2014 Payment Notice final rule in the November 6, 2013 Federal Register (78 FR 66653) to address how an enrollee's age for the risk score calculation would be determined under the HHS-operated risk adjustment methodology.

In the December 2, 2013 Federal Register (78 FR 72321), we published a proposed rule outlining the Federally certified risk adjustment methodologies for the 2015 benefit year and other parameters related to the risk adjustment program (proposed 2015 Payment Notice). We published the 2015 Payment Notice final rule in the March 11, 2014 Federal Register (79 FR 13743). In the May 27, 2014 Federal Register (79 FR 30240), the 2015 fiscal year sequestration rate for the risk adjustment program was announced.

In the November 26, 2014 Federal Register (79 FR 70673), we published a proposed rule outlining the proposed Federally certified risk adjustment methodologies for the 2016 benefit year and other parameters related to the risk adjustment program (proposed 2016 Payment Notice). We published the 2016 Payment Notice final rule in the February 27, 2015 Federal Register (80 FR 10749).

In the December 2, 2015 Federal Register (80 FR 75487), we published a proposed rule outlining the Federally certified risk adjustment methodology for the 2017 benefit year and other parameters related to the risk adjustment program (proposed 2017 Payment Notice). We published the 2017 Payment Notice final rule in the March 8, 2016 Federal Register (81 FR 12204).

In the September 6, 2016 Federal Register (81 FR 61455), we published a proposed rule outlining the Federally certified risk adjustment methodology for the 2018 benefit year and other parameters related to the risk adjustment program (proposed 2018 Payment Notice). We published the 2018 Payment Notice final rule in the December 22, 2016 Federal Register (81 FR 94058).

IN RE: PETITION OF MISSISSIPPI POWER COMPANY FOR A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR ENVIRONMENTAL COMPLIANCE ACTIVITIES AUTHORIZING THE CLOSURE OF THE ASH POND, CONSTRUCTION OF LOW VOLUME WASTEWATER TREATMENT FACILITIES, AND CONVERSION OF BOTTOM ASH COLLECTION FACILITIES FOR THE PLANT VICTOR J. DANIEL ELECTRIC GENERATING FACILITY IN JACKSON COUNTY, MISSISSIPPI

ORDER APPROVING PETITION FOR FACILITY CERTIFICATE

THIS CAUSE came on for consideration by the Mississippi Public Service Commission ("Commission") on the request of Mississippi Power Company (the "Company" or "MPCo") for a certificate that the present and future public convenience and necessity requires or will require the closure of the ash pond, construction of a low-volume wastewater facility, and conversion of bottom ash collection facilities (collectively, the "CCR Projects") to ensure continued compliance with federal environmental requirements at the Plant Victor J. Daniel Electric Generating Facility in Jackson County, Mississippi ("Plant Daniel"), pursuant to Sections 77-3-11 and 77-3-13 of the Mississippi Code of 1972, as amended, and Rule 7 of this Commission's Public Utilities Rules of Practice and Procedure ("Rules"). This Commission, being fully apprised in the premises, having considered the documents and record before it, and upon recommendation of the Mississippi Public Utilities Staff ("Staff), finds that the certificate of public convenience and necessity requested by the Company should be granted, and further finds as follows:

[^11]
INTRODUCTION

1. The coal units at Plant Daniel ("Units 1 and 2") were placed in service in 1977 and 1981, respectively, and are the newest coal units in MPCo's fleet, which are capable of generating approximately $1,020 \mathrm{MW}$ (net summer peak) of electricity. ${ }^{1}$ For MPCo, Units 1 and 2 represent the only significant source of fuel diversity remaining in its fleet following the conversion of all their other coal units to natural gas.
2. To support its units, Plant Daniel employs approximately 200 full-time employees on site in Escatawpa, a small, rural community in Jackson County, Mississippi. A significant majority of these jobs directly support the two (2) coal units, and the Plant, in total, contributes over $\$ 18$ million annually to the ad valorem tax collections of Jackson County. Units 1 and 2 each have projected remaining useful lives of over 20 years.
3. Over the course of its service, Plant Daniel, and more particularly Units 1 and 2, has been impacted by the policies of the federal Environmental Protection Agency. For example, the Commission approved in 2012 the construction of a flue gas desulphurization system ("Scrubber") to further the continued operation of Units 1 and 2, which was necessitated by federal regulation and represented over $\$ 600$ million in construction costs. Advancing federal regulations and accommodation of their constrained compliance periods, once again, requires timely action by the Commission.
4. Accordingly, the Commission finds that the Company's petition should be granted for the following reasons and considerations, which will be set forth further in this Order: 1) the proposed projects are required to timely comply with applicable environmental laws respecting ash pond

[^12]closures and coal combustion residuals (CCR); 2) the transmission constraints identified by MPCo create untenable reliability risks to other compliance alternatives; 3) Units 1 and 2 at Plant Daniel have significant remaining useful life and are not scheduled to retire until 2042 and 2046, respectively; ${ }^{2}$ 4) this Commission has previously determined in 2012 when it approved the installation of Scrubber equipment for Units 1 and 2 that preserving coal-fired generation at Plant Daniel provides important fuel diversity and is in the overall best interest of customers; ${ }^{3}$ and 5) the Commission, the Public Utilities Staff and the Company have been diligently and deliberately engaging, for over a year, in economic analysis regarding MPCo's fleet of generating assets in the Commission's Reserve Margin Plan Docket, ${ }^{4}$ where it is most appropriate for this Commission's policies regarding MPCo's existing generating facilities, including Plant Daniel Units 1 and 2, to be addressed.

PROCEDURAL BACKGROUND

5. The Company filed its Petition for Facility Certificate in this docket on July 9, 2019, and noted both in its filing and in accompanying pre-filed testimony the need for the Commission to move quickly to approve the Petition so that MPCo could comply with federal regulatory deadlines. Specifically, MPCo identified November 1, 2019, as the time by which Commission action would be necessary.
6. Notice of the matter was given to all persons interested therein in accordance with Mississippi law by mailing such notice to each public utility which may be affected, as well as by publication on July 20, 2019, in the Clarion Ledger, a newspaper of general circulation in Jackson, Mississippi, by publication on July 19, 2019, in the Mississippi Press, a newspaper

[^13]of general circulation in Jackson County, Mississippi, and by publication on July 18, 2019, in the Sun-Herald, a newspaper of general circulation in Harrison County, Mississippi.
7. Cooperative Energy and the Sierra Club requested and were granted status as intervenors in this docket.
8. On September 13, 2019, the Commission entered its Scheduling Order, specifically noting the time-sensitive nature of the proceedings and finding that the procedure outlined for submissions would promote efficient administration of the proceedings and would be in the best interest of the public and the interested parties. The Scheduling Order also indicated that at the time of issuance no party had submitted pre-filed testimony and only the Staff had completed its data request exchange with the Company. Moreover, at the time the Commission issued the Scheduling Order, no party had contested or otherwise objected to any matter related to the Petition.
9. The Staff conducted a thorough investigation of MPCo's application and submitted numerous data requests to MPCo to which the Company timely and thoroughly responded.
10. The Commission takes notice that while Sierra Club timely intervened, it waited until September 12, 2019, to issue its data requests to MPCo, over two (2) months after the Company filed its petition in this docket and on the eve of this Commission's Scheduling Order. On September 23, 2019, Sierra Club also filed a Motion to Require Supplementation of the Petition and a Revised Scheduling Order, which MPCo opposed. The parties presented oral argument on such Motion on October 24, 2019, and this Commission hereby confirms its denial of Sierra Club's Motion as provided for in this Order.
11. In addition, Sierra Club provided comments on MPCo's Proposed Order in the form of a report from Synapse Energy Economics, Inc. ("Synapse"). Finally, on October 16, 2019, Sierra

Club submitted pre-filed direct testimony of Ms. Rachel Wilson of Synapse. MPCo opposed such filing as being out of time and in violation of scheduling order. The Commission agreed and granted MPCo's Motion to Strike Ms. Wilson's testimony. In both its offered comments and offered testimony, Sierra Club requested a delay of this proceeding similar to the request in Sierra Club's initial motion. Sierra Club's lack of prompt engagement in this proceeding should not delay the Commission's timely resolution of this matter, particularly in light of the Company's need to begin ash pond closure activities in November in order to cease receiving non-CCR waste streams by October 31, 2020, as required by the EPA.
12. On October 4, 2019, the Commission noticed the hearing of this matter and on October 24, 2019, the Commission held the hearing where the witness for MPCo appeared, testified, and was tendered for cross-examination by the parties, the Staff, and the Commission. As part of its case in chief, MPCo offered into evidence the public and confidential responses to Staff's and Sierra Club's data requests, and the Commission hereby incorporates MPCo's responses to all data requests by reference into the record in this proceeding and attaches to this Order the non-confidential versions of same.
13. This Commission has jurisdiction over the parties and subject matter pursuant to Sections 77-3-11 and 77-3-13 of the Mississippi Code of 1972, as amended. Given the considerations above, the Commission further finds that the Scheduling Order and hearing provide sufficient process, and the Commission has had opportunity to hear the positions of the parties through the submissions received and the testimony and evidence presented.

LAW AND EVIDENCE

14. The federal environmental regulations governing CCR at Plant Daniel are similar to the regulations that required the closure of the ash pond facilities at the Company's Plant Jack Watson Electric Generating Plant authorized by this Commission in Docket No. 2016-UA-020. As stated supra, the EPA's CCR rules regulate CCR and non-CCR waste streams and require that MPCo cease placing CCR and non-CCR waste streams into the Plant Daniel ash pond by October 31, 2020, followed by closure of the ash pond, which must occur within five (5) years following the commencement of closure activities. Unless the Company commits to the permanent cessation of coal operations at Plant Daniel under the alternative closure requirements of the CCR Rules, ${ }^{5}$ the Company must cease placing CCR waste streams into the Plant Daniel ash pond by the October 31,2020, deadline established by the EPA. However, under all circumstances, the Company must cease placing non-CCR waste streams (e.g. low volume waste water) into the ash pond by that October

31, 2020 deadline.
15. Sierra Club contends in its comments that MPCo did not adequately consider early retirement for Units 1 and 2 as a compliance alternative. ${ }^{6}$ Sierra Club suggests that early retirement would allow a delay of the ash pond closure until 2023 and avoid the bottom ash conversion project costs. MPCo, however, contends that early retirement would also require the acceleration of several other closure obligations, including asset retirement obligations, and additional non-CCR waste stream treatment expenses by October 31, 2020, while also creating transmission reliability

[^14]concerns. ${ }^{7}$ Sierra Club correctly points out that MPCo's co-owner, Gulf Power Company, has already indicated its intent to retire its ownership interest in Plant Daniel by 2024.
16. In response to data requests, MPCo demonstrated that it would need to finalize several transmission improvements and new projects no later than July 1, 2022 in order to reliably support consideration of early retirement as a technical possibility. ${ }^{8}$ While it might theoretically be possible to develop a planned schedule to accommodate outages and complete the transmission projects by July 1,2022, there are many potential circumstances that could result in an unavoidable delay of the transmission projects, resulting in an unacceptable reliability risk. Events that have the potential to cause delays in schedules cannot be predicted and create uncertainty in the ability to execute a stringent schedule. What can be predicted with certainty is that if: 1) MPCo were to pursue an alternative to cease operation of Plant Daniel on July 1, 2022, so that closure of its impoundment can be completed by the required October 17, 2023, deadline, and 2) the transmission projects were not able to be completed by the July 1, 2022, Plant Daniel shut-down, reliability risk in the region would be unacceptable given that Plant Daniel would not be available for operation nor would the transmission projects be complete.
17. MPCo submits that the transmission constraints foreclose early retirement as a feasible option at this time, regardless of Gulf Power Company's desire to retire its ownership portion, because such constraints would need to be resolved prior to such retirement in 2024. We agree.
18. This Commission finds based upon the evidence in the record that such transmission constraints create an untenable reliability risk to early retirement of Plant Daniel and we are not convinced that the potential capital cost savings of $\$ 12.5$ million 9 for MPCo is worth that reliability

[^15]risk, particularly within the narrow timeframes for compliance established by the EPA. We reiterate that the long-term viability of MPCo's generating fleet, including Plant Daniel Units 1 and 2, as well as the impact of Gulf Power Company's intended retirement, are being considered in the RMP Docket; therefore, we find that the CCR Projects as proposed by MPC provide the most prudent path to compliance with the CCR Rules at this time and under these circumstances. 19. To comply with the EPA's regulations, MPCo must rapidly complete each of the following components of the CCR Projects, and must do so sequentially: 1) MPCo must complete a conversion of the bottom ash collection system that will not require use of the ash pond for the discharge of any CCR waste stream; 2) following the bottom ash conversion, the ash pond itself must be closed by first ceasing receipt of any CCR or non-CCR and then by removing all CCR in accordance with 40 C.F.R. § 257.102 (c); and 3) following the ash pond closure, a new low-volume wastewater treatment system must be constructed on the site of the former ash pond. No party has presented evidence in this proceeding that is contrary to both the specific requirements and timing of compliance activities proposed by MPCo.
20. Time is of the essence. To comply with EPA's timeline, MPCo must begin construction of the CCR Projects no later than November 1, 2019. The total cost for all of the work described herein is approximately $\$ 125$ million. As an undivided owner of 50% of Plant Daniel Units 1 and 2, MPC's portion of the project costs would be approximately $\$ 62.5$ million. ${ }^{10}$
21. As explained in the testimony of Mr. Mark Loughman, MPCo's Director of Environmental Affairs, Plant Daniel's existing Ash Pond must be closed in order to comply with the CCR Rule under Subtitle D of the Resource Conservation and Recovery Act. 40 CFR § 257.60(a) and §

[^16]257.101(b)(l). Its closure is governed by $40 \mathrm{CFR} \S 257.102(\mathrm{c})$, which requires the removal of all CCR from the ash pond and closure of the ash pond within five (5) years of commencing closure activities. More importantly, MPCo must cease placing CCR and non-CCR waste streams into the ash pond no later than October 31, 2020. MPCo currently expects to complete ash pond closure activities at Plant Daniel by the first quarter of 2022. Time is of the essence of these CCR Projects.
22. As Mr. Loughman describes in his testimony, the ash pond currently serves the dual purposes of bottom ash storage and low volume wastewater (LVW) retention of both CCR and non-CCR waste streams. Because the CCR Rule requires MPCo to cease receiving both types of waste streams into the ash pond by October 31, 2020, alternate facilities are required by that deadline to accommodate such waste streams once they can no longer be placed into the ash pond. 23. To that end, the Company plans to close the ash pond as described above in compliance with the applicable laws governing such closures, and to repurpose the former ash pond impoundment to serve as a LVW retention pond as described in Mr. Loughman's testimony. With respect to the bottom ash created by the coal combustion process that is currently sluiced to the ash pond, the Company plans to install a Submerged Grind Conveyor (SGC) system. A second SGC will de-water the bottom ash and transport it to a bunker for storage in compliance with applicable environmental laws and regulations.
24. While Mr. Loughman's testimony is uncontroverted in the record, additional considerations warrant attention. As noted previously, Plant Daniel, particularly its coal units, contribute substantially to the economic well-being of Jackson County. Moreover, that contribution is projected, at least, to continue for another 20 years: Based upon the last depreciation study filed by the Company and approved by this Commission in Docket No. 2014-UN-0276, Plant Daniel Units 1 and 2 have projected retirement dates of 2042 and 2046, respectively.
25. Beyond the local economic contribution, coal-fired generation is MPCo's predominant source of fuel diversity, a policy this Commission has repeatedly observed. Just this past October, the Commission submitted comments in support of the Affordable Clean Energy rule, which confirmed its earlier opposition to the Clean Power Plan. The Commission's comments noted the following regarding the preservation of coal-fired generation in Mississippi: "Because Mississippi's climate and geography limit the potential for extensive investments in renewable sources, preserving some coal-fired generation is currently critical for maintaining fuel diversity and rate stability. ${ }^{11}$ In 2014, the Commission submitted comments in opposition to the Clean Power Plan, again noting the need for fuel diversity and highlighting the detrimental effects of eliminating coal-fired generating resources. ${ }^{12}$
26. Consistent in its approach, in Docket No. 2010-UA-0279, the Commission approved MPCo's construction of a Scrubber for Plant Daniel Units 1 and 2, which preserved MPCo's currently scheduled unit retirement dates. In its order in the Scrubber docket, the Commission indicated its preference for fuel diversity and for the continued operating of coal-fired generation in MPCo's fleet where it stated: "[t]he Commission finds the strategic interest of fuel diversity very compelling and gives significant weight to this consideration. ${ }^{13}$ In that Order, the Commission further explained its rationale for maintaining some fuel diversity by continuing to support the operation of some coal-fired generation at Plant Daniel:

The Commission places superior weight on the benefits of fuel diversity and fuel security offered by the Scrubber Project and finds that these benefits to MPCo's ratepayers conclusively place the Scrubber Project ahead of a combined cycle alternative. Stated differently, the Commission finds that, given the "inconclusive"

[^17]or neutral economics noted by Drs. Vatter and Van Vactor, the strategic benefits of the Scrubber Project make it the best choice to serve the public interest and thereby satisfies the public convenience and necessity. ${ }^{14}$
27. Without Plant Daniel Units 1 and 2, MPCo's owned generating capacity would be 100% dependent upon natural gas, which this Commission believes is not in the best interest of MPCo's customers at this time. ${ }^{15}$
28. As with the Scrubber matter, the Commission may once again face neutral or nondeterminative economic analysis, in which Commission policy considerations and choices will come to the fore. Those deliberations and decisions, however, are best addressed in the Commission's Reserve Margin Plan Docket, since it was established for that purpose.
29. For example, some data requests and responses indicate that if the Commission ordered early retirement of Unit 1 and Unit 2, then approximately $\$ 45$ million of CCR Project related costs could be avoided. However, because early retirement would accelerate other asset retirement obligations and related closure costs, the savings realized would be closer to $\$ 25$ million, which represents approximately $\$ 12.5$ million to MPCo based upon ownership percentage. Assuming those costs could actually be avoided and that the transmission construction schedule risk would be worth taking, MPCo's portion of those savings is relatively small compared to the overall investment at Plant Daniel and is certainly less significant than the weightier decision of whether to retire two units twenty years ahead of schedule that would largely eliminate MPCo's existing fuel diversity.
30. The Staff and its consultants have been diligently working with the Company in the Reserve Margin Docket to present a full picture to this Commission so that it may make the best

[^18]decision possible on a prudent timetable. This Commission finds that an economic re-analysis of Plant Daniel Unit 1 and Unit 2 does not serve the public interest, at this time. To the extent any additional economic analysis regarding MPCo's fleet of generating assets is performed in the Commission's Reserve Margin Docket established in Docket No. 2018-AD-0145, those results and any impacts on this Commission's policies regarding MPCo's existing generating facilities, including Plant Daniel Unit 1 and Unit 2, will be addressed in that proceeding.

CONCLUSION

31. For all the foregoing reasons and for all the reasons set forth in this Order, the Commission hereby finds that the public convenience and necessity requires and will require the CCR Projects proposed in the Company's petition to preserve the continued operation of its only coal-fired generation available for service to customers in Southeast Mississippi. However, acknowledging the ongoing review of MPCo's existing generation facilities in a distinct proceeding - the Reserve Margin Plan Docket - and that differing policy arguments continue to exist surrounding the continued operation of coal-fired generation facilities, generally, the Commission notes that the current deadlines established by the EPA motivate the granting of the instant petition. The granting of this petition does not suggest that the Commission is reaching, or has reached, a conclusion as to the continued operation of Plant Daniel in the Reserve Margin Plan Docket. Moreover, this Order in no way precludes future Commissions from revisiting the question of how to manage the public interest and necessity when considering fuel diversity needs in the future, especially as such diversity relates to the continued operation of coal-fired generation units.
32. The Company has reasonably complied with the applicable filing requirements and has provided information sufficient for the Commission's and the Staffs consideration of this matter.

Therefore, for good cause shown, this Commission waives any other filing requirements as prescribed by this Commission's Rules and not provided by the Company.
33. While this Commission finds that the public convenience and necessity require the CCR Projects, we are sensitive to the positions espoused by Sierra Club in this proceeding regarding the continued review of the long-term viability of Plant Daniel Units 1 and 2, and this Commission's need to carefully consider the potential retirement of those units in the Reserve Margin Plan Docket. To that end, this Commission believes certain safeguards for customers are appropriate as set forth below.

WHEREFORE PREMISES CONSIDERED, it is therefore,
ORDERED, and the Commission hereby finds that the public convenience and necessity requires the CCR Projects as proposed and hereby grants the Company a Certificate of Public Convenience and Necessity authorizing the Company to perform the CCR Projects as described above and in the Company's Petition. It is further,

ORDERED, that as a continuing condition of this Order and the granting of a certificate hereunder, MPCo shall submit monthly reports to the Staff and Commission on the expenditures of the CCR Projects including the cumulative costs incurred to date, the estimated total costs to complete, the estimated total costs to cancel the project and the remaining contingency allowance. It is further,

ORDERED, that MPCo shall file updated analysis in the Reserve Margin Plan, Docket No. 2018-AD-0145, by December 31, 2019. It is further,

ORDERED, and the Commission affirmatively declares that no portion of the costs associated with the CCR Projects that are contractually assigned to Gulf Power Company shall be recoverable by MPCo in its rates. It is further,

ORDERED, that if, upon the conclusion of the Reserve Margin Plan Docket, the Commission determines that the early retirement of Plant Daniel Units 1 and 2 serves the public interest and that the CCR Projects no longer serve the public interest, MPCo will use commercially reasonable efforts to safely and promptly cease those efforts, and any dollars committed to said CCR Projects after the date of such an Order will not be recoverable by MPCo in its rates. It is further,

ORDERED, that Sierra Club is hereby granted late intervenor status in the Reserve Margin Plan Docket, No. 2018-AD-0145, to participate fully as a party in said docket including the right to issue data requests and to file testimony within any deadlines prescribed by the Commission, and the Executive Secretary is directed to enter and Order to such effect. It is further,

ORDERED, that Sierra Club's Motion to Require Supplementation of the Petition and a Revised Scheduling Order is not well-taken, and is denied. It is further,

ORDERED, that MPCo's Motion to Strike Testimony regarding the late-filed testimony of Rachel Wilson is well-taken, and is granted, and that the testimony of David Schmitt that MPCo filed in rebuttal to Ms. Wilson's testimony is also stricken.

This Order shall be deemed issued on the day it is served upon the parties herein by the Executive Secretary of this Commission who shall note the service date in the file of this Docket.

SO ORDERED by this Commission on this the $28^{\frac{L}{d a y}}$ of October, 2019.

BRANDON PRESLEY, CHAIRMAN

Effective this the 28^{+4} day of October, 2019

IN RE: Environmental Cost Recovery Clause

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true copy of the foregoing was furnished by electronic mail this 31st day of July, 2020 to the following:

Ausley Law Firm
James D. Beasley J. Jeffry Wahlen

Malcolm N. Means
Post Office Box 391
Tallahassee, FL 32302
jbeasley@ausley.com
jwahlen@ausley.com
mmeans@ausley.com

PCS Phosphate - White Springs c/o Stone Mattheis Xenopoulos \& Brew, P.C.
James W. Brew/Laura Baker
Eighth Floor, West Tower
1025 Thomas Jefferson St, NW
Washington, DC 20007
jbrew@smxblaw.com
lwb@smxblaw.com

Florida Industrial Power Users Group c/o Moyle Law Firm Jon C. Moyle, Jr. 118 North Gadsden Street
Tallahassee, FL 32301
jmoyle@moylelaw.com
mqualls@moylelaw.com

Florida Power \& Light Company
Maria J. Moncada
David Lee
700 Universe Boulevard
Juno Beach, FL 33408-0420
Maria.moncada@fpl.com
David.lee@fpl.com

Florida Power \& Light Company
Kenneth Hoffman
134 West Jefferson Street
Tallahassee, FL 32301
Kenneth.Hoffman@fpl.com

Office of the General Counsel Charles Murphy
2540 Shumard Oak Blvd
Tallahassee, FL 32399-0850
cmurphy@psc.state.fl.us

Office of Public Counsel
J. Kelly/C. Rehwinkel/P. Christensen
T. David
c/o The Florida Legislature
111 W. Madison Street, Room 812
Tallahassee, FL 32399-1400
Christensen.patty@leg.state.fl.us
KELLY.JR@leg.state.fl.us
David.tad@leg.state.fl.us

Duke Energy Florida, Inc.
Matthew R. Bernier
106 East College Avenue, Suite 800
Tallahassee, FL 32301
Matthew.bernier@duke-energy.com
FLRegulatoryLegal@duke-energy.com

Duke Energy Florida, Inc. Dianne M. Triplett 299 First Avenue North St. Petersburg, FL 33701
Dianne.triplett@duke-energy.com

Tampa Electric Company
Ms. Paula K. Brown, Manager
Regulatory Coordination
P. O. Box 111

Tampa, FL 33601-0111
Regdept@tecoenergy.com

Pinsurt Bryder
RUSSELL A. BADDERS
VP \& Associate General Counsel
Florida Bar No. 007455
Russell.Badders@nexteraenergy.com
Gulf Power Company
One Energy Place
Pensacola FL 32520-0100
(850) 444-6550

STEVEN R. GRIFFIN
Florida Bar No. 0627569
srg@beggslane.com
Beggs \& Lane
P. O. Box 12950

Pensacola FL 32591-2950
(850) 432-2451

Attorneys for Gulf Power

[^0]: Notes. Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (B) Applicable beginning of period and end of period depreciable base by production platht name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.

 Applicable depreciation rate or rates.
 Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (H) Line $9 a \times$ Line $10 \times$ line loss multiplier
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^1]: Notes:
 (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (E) Applicable depreciation rate or rates.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (H) Line 9a \times Line $10 \times$ line loss multiplier
 (I) Line $9 \mathrm{~b} \times$ Line 11 .
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100\%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule 25-6.0437, F.A.C.

[^2]: (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.

 The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (F) Applicable amortization period.
 (G) Description and reason for "Other
 (H) Line $9 \mathrm{a} \times$ Line $10 \times$ line loss multiplier
 (I) Line $9 \mathrm{~b} \times$ Line 11
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^3]: Notes:
 (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s)
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Co
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (I) Line $9 b \times$ Line 11 .
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^4]: Notes.
 (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 Derither
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (E) Applicable depreciation rate or rates.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (H) Line 9a \times Line $10 \times$ line loss multiplier
 (I) Line $9 b \times$ Line 11 .
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule 25-6.0437, F.A.C.

[^5]: (A) Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (E) Applicable amortization period.
 (G) Description and reason for "Other" adju
 (H) Line 9a \times Line $10 \times$ line loss multiplier
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^6]: (A) Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (E) Applicable depreciation rate or rates.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (G) Description and reason for
 (H) Line $9 a \times$ Line $10 \times$ line loss multiplier
 (I)
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule 25-6.0437, F.A.C.

[^7]: Notes: (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (F) Applicable amortization period.
 (G) Description and reason for "Other"
 (H) Line $9 \mathrm{a} \times$ Line $10 \times$ line loss multiplier
 (I) Line $9 \mathrm{~b} \times$ Line 11 .
 (J) The
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^8]: $\frac{\text { Notes: }}{\text { (A) }}$ Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Depreciation expense in order properly account for all ECRC capital costs.
 (A) Due to automation of Gulf Clause schedules and corresponding calculations, we have made adjustments to Plant in Service and Deprece.
 Timing of CWIP transfers, under the enew automated data environment, creates the need for catchup adjustments until fully implemented.
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (E) Applicabule depreciation rate or rates.
 (F) Applicable amortization period.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (H) Line $9 a \times$ Line $10 \times$ line loss muttiplier
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^9]: Notes: (A) Description and reason for 'Other' adjustments to net investment for this program, if applicable.
 (A) Apslicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s),
 (B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s).
 (C) Description of Adjustments to Reserve for Gross Salvage and Other Recoveries and Cost of Removal.
 (D) The equity component has been grossed up for taxes. The approved ROE is 10.25%.
 (E) Applicable depreciation rate or rates.
 (F) Applicable amortization period.
 (G) Description and reason for "Other" adjustments to investment expenses for this program.
 (H) Line 9a \times Line $10 \times$ line loss multiplier
 (J) The energy jurisdictional factors for each month are the same as that used in the fuel clause, or 100%, pending final calculation of the stratified jurisdictional energy factors.
 (K) The demand jurisdictional is based upon Gulf Power's 2018 Cost of Service Load Research Study results filed with the Commission in accordance with Rule $25-6.0437$, F.A.C.

[^10]: ${ }^{1}$ Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

[^11]: **MSPSC Electronic Copy ** 2019-UA-116 Filed on 10/28/2019 **

[^12]: ${ }^{1}$ Plant Daniel is also home to two (2) natural gas-fired combined cycle units (Units 3 and 4) that combined are capable of generating approximately $1,054 \mathrm{MW}$ (net summer peak) of electricity. This Commission also acknowledges that Gulf Power Company (NextEra) owns a 50% undivided interest in Units 1 and 2.

[^13]: ${ }^{2}$ In re: Mississippi Power Company, MPSC Docket No. 2014-UN-0276.
 ${ }^{3}$ In re: Mississippi Power Company, MPSC Docket No. 2010-UA-0279.
 ${ }^{4}$ MPSC Docket No. 2018-AD-0145.

[^14]: ${ }^{5} 40$ C.F.R. §257.103.
 ${ }^{6}$ Id.

[^15]: ${ }^{7}$ MPCo Data Request Responses MPUS 1-8, MPUS 1-8 SUPP., MPUS 1-9, MPUS 1-9 SUPP, MPUS 1-13, and MPUS 1-13 SUPP.
 ${ }^{8}$ Id.
 ${ }^{9} I d$.

[^16]: ${ }^{10}$ In data response MPUS 1-21 (Attachment), MPCo indicated that the estimate may be closer to $\$ 67$ million because a small portion of the CCR Project is necessary to support Plant Daniel Unit 3 and Unit 4, which are wholly owned by MPCo.

[^17]: ${ }^{11}$ MPSC Comments submitted in Emission Guidelines for Greenhouse Gas Emissions from Existing Electric Utility Generating Units; Revisions to Emission Guideline Implementing Regulations; Revisions to New Source Review Program; Proposed Rule, Docket No. EPA-HQ-OAR-2017-0355 (October 30, 2018).
 ${ }_{12}$ See pp. 18-20 of comments of MPSC in Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units; Proposed Rule, Docket No. EPA-HQ-OAR-2013-0602 (2014).
 ${ }^{13}$ In re: Petition of Mississippi Power Company, Order, pg. 12, MPSC Docket No. 2010-UA-0279 (2012).

[^18]: ${ }^{14} \mathrm{Id}$. at 15.
 ${ }^{15} \mathrm{MPCo}$ has approximately 150 megawatts of renewable energy under long-term output power purchase agreements on an energy-only basis (i.e. MPCo does not own the facilities).

