April 11, 2023

VIA E-PORTAL

Mr. Adam Teitzman, Clerk
Office of the Commission Clerk
Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, FL 32399-0850

Re: Docket No. 20230029 - GU: Petition for approval of gas utility access and replacement directive, by Florida Public Utilities Company.

Dear Mr. Teitzman:
Attached for filing, please find Florida Public Utilities Company's Responses to Staff's First Data Requests issued in the above-referenced docket on March 30, 2023.

Thank you for your assistance with this filing. As always, please don't hesitate to let me know if you have any questions whatsoever.

Sincerely,

MEK

Docket No. 20230029 - GU: Petition for approval of gas utility access and replacement directive, by Florida Public Utilities Company.

FLORIDA PUBLIC UTILITIES COMPANY'S RESPONSES TO
 STAFF'S FIRST DATA REQUESTS

1. Please refer to Florida Public Utilities Company's (FPUC or Utility) petition for approval of gas utility access and replacement directive (GUARD). Please indicate whether or not each of the improvements proposed under FPUC's GUARD program are the result of an official regulatory requirement (such as a requirement from the Pipeline and Hazardous Materials Safety Administration (PHMSA) or other regulatory authority). If so, please identify each requirement and the regulatory authorities that issued each requirement for each proposed improvement. If not, please provide FPUC's perceived justification for each requested improvement.

Company Response:

The specific proposed improvements requested under the FPUC's GUARD program are not the result of an official regulatory requirement but are driven by risks identified under the ongoing FPUC Distribution Integrity Management Program (DIMP), as well as by multiple special DIMP risk assessments performed by an independent outside contractor. Enhancing safety by identifying and reducing pipeline integrity risks is the purpose of the PHMSA 2009 regulatory requirement, "Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines". In addition, in 2011, PHMSA issued a "Call to Action" to accelerate the repair, rehabilitation, and replacement of the highest risk pipeline infrastructure. Although the 2012 FPUC GRIP program focused on eliminating high-risk facilities such as bare steel and cast iron pipe, the FPUC GUARD program will further reduce distribution system integrity risks by eliminating pending threats such as vintage plastic pipe subject to brittle failures (PHMSA 1999 advisory bulletins (ADB-99-01 and ADB-99-02)), inaccessible gas main and gas services that exist in the rear of customer homes, steel pipe with corrosion control challenges, and aging infrastructure. While the Company's systems are safe and adhere to industry standards, this program will ensure that our facilities continue to meet ongoing federal initiatives and appropriately reduce any unnecessary risks to the public due to facilities that are aged or inaccessible.
2. Please identify and provide any studies conducted supporting the need for the proposed GUARD improvements and its benefits to the general body of ratepayers.

Company Response:

The Company's independent outside contractor performed and prepared two different studies. The first was a risk analysis of the existing FPUC facilities of record that exist within the rear lot areas of premises, and the second outlined a risk analysis of the "problematic" and
"reliability" facilities of record that pose a heightened risk for breach or failure; and thus, an elevated safety risk as well. The GUARD Program would give FPUC the ability to take proactive measures to enhance the safety and reliability of its system for years to come, and the FPUC customers will benefit from a safer and more reliable natural gas service and a sustainable system for many upcoming decades. More information about these analyses is provided in the response to Data Request question 6B and 6C.
3. Please refer to FPUC's petition, paragraph 3, on pages 2 through 3, for the following questions.
a. Please explain how the 10 -year term was determined for the GUARD program. For each alternative term considered, please explain why it was not selected.
b. Please explain how the estimated total GUARD program cost shown in Exhibit 2 of the petition was developed.
c. Please provide a table identifying the estimated annual GUARD program costs by each proposed improvement for each year of the 10-year program term.

Company Response:

3A - The Company anticipates that it will be able to complete the work detailed in this filing within the 10 -year timespan. After this initial term, the Company wishes to continue to use the program and established reporting methods to include additional projects in the scope of the GUARD as assessments of the systems are completed and projects are identified. This will allow the Company to continue to complete the work in a timely manner in order to keep the system safe without the increased cost of a rate case. As the previously approved GRIP program was a 10 -year program, FPUC believes that it is prudent to re-evaluate the GUARD program after a similar 10 year period. While the identification of risk under the Company's DIMP will always be ongoing, an approved GUARD program will substantially improve the risk profile of the Company's system.

3B - The Company utilized historical costs from the GRIP program in order to establish a loaded run rate by proposed improvement type, adjusted for future value for the potential for inflated construction costs that may occur during the 10 -year program. The run rate was then extended against the planned scope of replacement each year in order to obtain the total GUARD program cost. For each project type, the Company used the recommendations of the independent outside contractor to determine the anticipated scope of construction work.

3 C - A table identifying the estimated annual GUARD program costs by each proposed improvement for each year of the 10 -year program term has been provided and is attached as Exhibit ROG 3C - GUARD Program Costs.

While the Company will do its best to adhere to its plan to the best of its ability, the projects filed and completed each year may vary based on a multitude of variables that may or may not
be in the Company's control such as timelines, construction planning, cost of projects, contractor resources, risk factors, or other construction inputs.
4. Please provide a construction timeline detailing anticipated construction activities throughout the 10-year term of the GUARD program.

Company Response:
A program construction schedule identifying the timeline of projects for the 10 -year term of the GUARD program has been provided and is attached as Exhibit DR 4 - GUARD Construction Schedule. While the Company will do its best to adhere to its plan to the best of its ability, the projects filed and completed each year may vary based on a multitude of variables that may or may not be in the Company's control such as timelines, construction planning, cost of projects, contractor resources, risk factors, or other construction inputs.
5. Please refer to FPUC's petition, paragraph 7, on page 4, for the following questions.
a. Please identify all remaining activities under the Utility's current Gas Reliability Infrastructure Program (GRIP). As part of this response, please identify the current status and the estimated completion date for each remaining activity.
b. Please identify which components of the GUARD program are currently included under the GRIP.
c. Provide the total GRIP investment to date (2012-2023).

Company Response:

5 A - The last GRIP project to be completed is the West Palm Beach project. The Company is currently working on coordinating with the City of West Palm Beach and acquiring permits for the project. The Company estimates completing the project by the end of July 2023. The estimated cost of the project is $\$ 170,000$.

5B - None of the proposed GUARD projects were included in GRIP program or the recently approved rate case. However, per paragraph 15 of the petition any remaining bare steel, cast iron, and steel tubing services that are discovered that would've been eligible under GRIP will be completed under GUARD as it is discovered.

5 C - The total estimated GRIP investment from 2012-2023 is $\$ 203,176,721$. This includes the West Palm Beach project in progress and any residual restoration from other GRIP projects.
6. Please refer to FPUC's petition, paragraph 8, on pages 4 through 5, for the following questions.
a. Please identify the outside contractor utilized, and detail how this contractor was selected. As part of this response, please identify the contractor cost and all alternative contractors considered, if any, along with the associated cost and reason they were not selected for each.
b. Please detail the results of the data analysis and risk assessment conducted by the outside contractor.

c. Please provide a copy of the outside contractor's recommendation and prioritization of facilities that need to be replaced.

d. Please state if FPUC will seek recovery of the contractor fees. If yes, please explain in which proceeding.

Company Response:
6A - FPUC utilized the services of independent outside contractor "R.J. Ruiz and Associates, Inc." dba "RUIZ" to facilitate the DIMP review of the Company's natural gas facilities of record. The Cost of services for RUIZ fell below the Company's internal procurement policy requirement to issue a bid. This contractor was selected because of their prior relationship with the Company, professional engineering expertise, unique experience, and immense knowledge in natural gas distribution and transmission systems, and in assessing gas distribution system DIMP risk. Key staff members for the contractor have been intimately involved in similar assessments and similar programs for other natural gas utilities in Florida (i.e. the Florida City Gas SAFE program), which was similarly focused on rear easement access projects. Alternative contractors were considered, but RUIZ was the most qualified for the subject matter and scope of this assessment due to his work with other similar programs. The total estimated cost for the services of R.J. Ruiz and Associates is $\$ 40,000$.

6B - RUIZ performed a thorough review of the records provided by the Company, collaborated with the Company's Subject Matter Experts to complete data analyses, conducted two different DIMP risk assessments, and developed a DIMP risk ranking model to arrive at the following conclusion: we have high confidence that FPUC's natural gas system is overall safe and reliable, but there are several opportunities for improvement.

The Company currently operates and maintains over four hundred forty-six (446) miles of residential rear lot natural gas distribution mains, of which approximately two hundred thirtyseven (237) miles are at a higher risk of failure. The risk assessments that were completed demonstrate that certain threats do exist on the FPUC natural gas distribution facilities of record located within rear lots of residential homes, and these two hundred thirty-seven (237) miles of gas pipe segments have a higher likelihood of failure and consequence of failure when compared to other rear-lot facilities that FPUC operates.

The Company currently operates over ninety-seven (97) miles of pipe that is at increased risk because it is constructed of material that has been identified as being subject to heighted risk of failure. Approximately seventy-six (76) miles of these facilities are considered to show a moderate-to-high level of risk. The issues that these problematic facility segments show are, among other items, pipeline under buildings, Aldyl-A plastic pipe, difficult to locate plastic pipe due to deteriorated tracer tape or wire, inability to complete multiple inactive service disconnections due to faulty fittings, coated steel pipe with disbondment issues or cathodic protection integrity issues such as stray current or isolated steel, and exposed pipe.

The Company also operates approximately sixty-six (66) "span pipe" segments that also show a considerable level of risk. These are aboveground and exposed pipe segments that are not only
subject to natural force or outside force damage, but also demonstrate historical issues around coating deterioration, sagged pipe and stresses associated with movement.

In addition, twenty-two (22) of the Company's district metering and pressure regulating stations and city gate tap stations also show moderate-to-high levels of risk. Four (4) stations have notable evidence of corroded pipe, equipment and features, while the others show the presence of obsolete equipment currently in-service which presents challenges for maintenance and operations.

6C - A copy of the outside contractor's final engineering reports executive summary and recommendations has been provided as attached Exhibit DR 6C-1 - Ruiz Executive Summary - Rear Lot and Exhibit DR 6C-2 - Ruiz Executive Summary - Problematic.

6 D - Similar to the treatment of other engineering, designing and planning construction costs, the Company plans to capitalize the costs of RUIZ. The costs will be included in the initial projects for 2023.
7. Please provide a general description of the locations of proposed GUARD projects to be completed from April 2023 to December 2024.

Company Response:

The Company plans to initially focus on rear lot and problematic pipe replacement projects in the City of Winter Springs, the Town of Lake Park, and at the Village of Indiantown. The 2023 Span pipe replacement projects will take place in unincorporated Palm Beach County and within the city of West Palm Beach. In 2024, the Company plans to have ongoing projects within multiple areas of its service territory, including Palm Beach County and the Central Florida areas of its system such as Winter Haven, Sanford, Debary, and the New Smyrna Beach area.

8. Please provide Exhibit 4 in Excel format.

Company Response:

The Excel version of Exhibit 4 has been provided as Exhibit DR 8 -GUARD Revenue Requirements.
9. Referring to Exhibit 4, page 2 of 3, of the petition, please explain the beginning balance of \$5.84 M. Does this amount include the remaining balance of GRIP investments that was not rolled into rate base in Docket No. 20220067-GU (rate case docket)?

Company Response:

The GUARD beginning balance of $\$ 5.84 \mathrm{MM}$ represents GRIP investments from 2022 not rolled into rate base in the recent rate case Docket No. 20220067-GU.
10. Paragraph 31 of the petition states "A full assessment of the system for projects and facilities that could fall under this project is still in progress." However, paragraph 8
states that the company will utilize the contractor's recommendation and prioritization of facilities. Please explain the process of how the company prioritizes facilities.

Company Response:
At the time of filing the GUARD application only a preliminary assessment was completed by the Contractor. The Company has received the final risk assessment reports prepared by the outside contractor, which outlines and ranks the risk of the facilities considered for replacement under the scope of this program. The risk ranking methodology utilized by the contractor is in accordance with section 192.1007(c) of Title 49 of the Code of Federal Regulations, which considers and evaluates current and potential threats on the gas distribution system as well as the likelihood and consequence of failure by pipe segment. The results of the contractor report were reviewed and adjusted by the Company's subject matter experts. The Company will prioritize the facilities for replacement based on highest risk of failure identified in the contractor's risk assessment, input from the Company subject matter experts, and from the Company's DIMP, which considers factors such as pipe diameter, material, pipeline class locations, surrounding population density, leak history, areas with common risky materials and other environmental factors. Paragraph 31 of the petition states that the full assessment is still progress because the Company intends on conducting this DIMP risk assessment annually to ensure all areas are being assessed and that the highest risk areas are being addressed earlier in the program.

11. Please refer to FPUC's petition, paragraph 30, on page 13, for the following questions.

 a. Please identify the estimated construction-related savings and all associated benefits FPUC anticipates by implementing the GUARD program now as opposed to later.b. Please explain the process the Utility intends to use to select construction contractors for the GUARD program.

Company Response:

11A - FPUC established an accelerated 10-year term for the GUARD because the Company believes that implementation of this program now, as opposed to later or on a more gradual basis, may have the added benefit of construction-related savings over the life of the program. The Company believes that material and construction labor costs may increase as a direct result of inflation, market conditions and other factors. Addressing the Company's construction needs now will avoid the impact of market increases to the extent that much of GUARD replacement activity may be addressed during the earlier years of the Program. FPUC will always consider cost saving measures such as coordinating with other utilities, municipalities, and sharing restoration costs with other utilities and contractors.

11B - The Company will strictly adhere to its supply chain and procurement procedures for vendor selection. FPUC will prepare a Request for Proposal outlining the specific requirements and expectations of the program and will release invitations to bid on the projects under the program to multiple qualified Contractors for competitive bidding. Contractor selection
procedures will follow an intense evaluation of qualifications, safety record, diversity, experience, and pricing.
12. Please refer to FPUC's petition, paragraph 10, on pages 5 through 6, for the following questions.
a. Please detail what criteria FPUC used to determine that approximately 237 miles of mains require replacement of the 446 miles of mains identified as being located in rear easements/difficult to access areas.
b. Please explain how the Utility intends to refine its estimate of the miles of mains that will be replaced under the GUARD program. As part of this response, please indicate what additional data the Utility requires to refine this estimate, and identify how long the refinement process is expected to take.
c. Please identify any plans for the remainder of mains located in rear easements/difficult to access areas that are not planned for replacement under the GUARD program.

Company Response:

12A - The DIMP risk ranking model (developed by the contractor) analyzes risk characteristics of likelihood and consequence of failure which were input from sources such as existing rear mains with historical leaks by cause, rear mains with historical inaccessible "Cannot-Get-In (CGI)" locations, attributes of the rear mains such as pressure, material and diameter of pipeline. It also uses public GIS data to determine population density in order to consider both the number of structures within proximity and the average distance between main and structure. The risk model is geo-spatially aware which means the cause and consequence scores are unique to the geographical location of the main. It uses both the attributes of the pipeline, CGI data, and leak repair data while considering the physical location of the data to produce geographically accurate risk scores. Because the model indicated rear lot segments were considered "high risk" based on the aforementioned approach, an additional review was conducted. From that review, segments that existed within a common residential neighborhood development that were installed during the same time frame and contained pipeline segments of similar characteristics such as diameter, material type, and coating type, were grouped as "contiguous high risk" mains. From the total rear lot mileage of four hundred forty-six (446) miles, the total mileage of contiguous high risk mains with a Risk Rank priority 1 is two hundred thirty-seven (237) miles.

12B - Based on the data provided within the DIMP risk assessment reports, The Company has high levels of confidence on the initial two hundred thirty-seven (237) rear lot miles necessary to be replaced. However, during specific project limit selection of the two hundred thirty-seven (237) rear lot miles to be replaced, certain design requirements may cause slight adjustments in actual rear main to be retired due to factors such as maintaining cathodic protection continuity, feasibility of construction installation means and methods, and other considerations. The Company anticipates this mileage adjustment to be minor in nature.

12 C - The remainder of mains located in rear easements/difficult to access areas that are not planned for replacement under the GUARD program will continue to be monitored closely and continue to be operated and maintained. The Company will continue to conduct its annual DIMP risk assessment to ensure all areas are being assessed and that the highest risk areas are being addressed during the scope of the program. FPUC will determine through the annual DIMP risk assessments if additional rear lot mains require replacement in the future.
13. Considering some pipelines are on private property and/or have rear access, would the property owner need to be onsite at the time of the work being done?

Company Response:

The Company's planned construction activities under this program will take place on road rights-of-way so property owner involvement should be minimal. As with all construction projects, however, the Company will be notifying all adjoining landowners of the planned construction activities well in advance of beginning each project. For the rear easement access projects, the Company's contractor will need to access the customer's private property for purposes of installing new service lines, relocating or replacing natural gas meters, relighting gas appliances, and cutting off and removing the retired gas service "risers". The Company and its contractors will schedule and coordinate these efforts very closely with each property owner to ensure a seamless transition and minimal impact to the customer.
14. Please refer to FPUC's petition, paragraph 20, on page 10. Please explain how the estimate of 20 percent more mains to be installed than retired was determined.

Company Response:

Exhibit 3 of the petition demonstrates a schematic drawing example of how additional mains are needed to be installed in order to retire existing rear lot mains. The example shows a common scenario where in order to retire a single existing rear lot main, which is currently common to service natural gas to premises on both sides of the neighborhood block (red lines), the Company may need to install two (2) mains, each within either side of the front road rights-of-way (brown/yellow lines). On a contiguous project, these new front gas mains (brown/yellow lines) would then be common to premises on both sides of the street which would involve both "shortside" service lines as well as "longside" service line road crossings. The Company estimates that for every five (5) rear lot gas mains to be retired, six (6) new front gas mains will be necessary, which equates to a 20 percent difference of mains installed versus retired.
15. Please list the municipalities and communities that have a single source of gas. Have those communities experienced any gas emergency situations and hence the need to have an additional backup natural gas supply pipeline? Please discuss.

Company Response:

The Company is not proposing to build a second feed or to loop all communities that have a single source of gas. However, communities such as Palm Beach Shores, Singer Island, South

Palm Beach, Manalapan, New Smyrna Beach, Edgewater, Deerfield Beach, and Hypoluxo Island are particularly vulnerable to service disruption based on their location on islands or peninsulas, as well as other factors. While these communities have experienced small outages and disruptions, there have not been any recent gas emergency situations that required additional backup supply. However, given the increased risk of disruption due to third party damage and natural disasters associated with these locations, the Company will continue to monitor and prioritize projects as necessary in order to mitigate risks for failure. Additionally, repairing subaqueous facilities requires additional expertise and coordination with contactors and municipalities to mend those facilities if they were to be damaged. Repairs across bridge spans could also require bridge lane shutdowns that could cause traffic disruptions to the community.
16. If work on a gas pipeline is expected to cause outages, how long should a customer or business be expected to be without natural gas as the petition, on paragraph 18 states that some communities have a single gas pipeline?

Company Response:

Under normal operating conditions, Company-scheduled gas pipeline construction, maintenance, or work is generally performed in a way that does not cause outages. Paragraph 18 of the petition elaborates on the risk of certain service territory communities that currently lack redundancy due to a single source pipeline. These instances represent risk primarily due to potential third-party excavation damage or other outside force risk of rupture. Thus, while planned work by the utility on the line should not entail an outage, or an outage of any significance, an "uncontrollable" rupture caused by a third party to one of these pipelines that serve as the sole source of natural gas to the community, could have a duration of multiple weeks.
17. Paragraph 20 of the petition states that "polyethylene pipe will be used for most replacement and relocation of pipe as well as installation of new pipe." Please state the estimated lifespan of the polyethylene pipe.

Company Response:
According to industry standard specifications such as American Society for Testing and Materials (ASTM) D2513: "Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings", as well as publications by the Plastics Pipe Institute (PPI), the life expectancy of polyethylene pipe is conservatively 50 to 100 years.
"Durability - PE pipe installations are cost-effective and have long-term cost advantages due to the pipe's physical properties, leak-free joints and reduced maintenance costs. The PE pipe industry estimates a service life for PE pipe to be, conservatively, 50-100 years provided that the system has been properly designed, installed and operated in accordance with industry established practice and the manufacturer's recommendations. This longevity confers savings in replacement costs for generations to come. Properly designed and installed PE piping
systems require little on-going maintenance. PE pipe is resistant to most ordinary chemicals and is not susceptible to galvanic corrosion or electrolysis. "1

However as stated in the most recent rate case the approved depreciation rate for mains and services are 1.60% and 2.50%, which equates to a depreciable life of 75 years and 55 years respectively. ${ }^{2}$
18. Please refer to FPUC's petition, paragraph 16, on page 8, for the following questions.
a. Please detail any reliability issues experienced at each of the proposed locations for the reliability improvements under the GUARD program by year for the past 10 years. As part of this response, please indicate whether or not FPUC's system reliability would be affected if these improvements are not made. If so, please explain how.
b. Please identify a Commission Order where a similar project has been approved outside of a base rate proceeding.

Company Response:

18 A - In general, the Company's natural gas pipeline system is safe and reliable, but the Company has identified several communities that are at higher risk for reliability issues than others, which can rise to the level of a safety risk depending upon the community and its residents. In most cases, these communities have experienced dangerously low gas pressures as a result of cold weather demand. The risk of disruption due to increased demand from existing and potential customers is therefore significant. Many customers in these areas, including residential, commercial and emergency facilities, use natural gas to fuel generators to be used in cases of emergency and loss of electric power. In the event of a natural disaster, including hurricanes, systems that regularly experience low pressure will be particularly susceptible to complete loss of pressure and outage if widespread generators are activated at the same time. Widespread loss of electric power and natural gas as an emergency fuel source would be catastrophic.

In other cases, the risk of outages and disruption arises from the location of the single feed serving those communities, especially if the pipeline is sub-aqueous to the intercoastal canal system. Should third-party damage in a water way cause an interruption in service to the only feed to these communities, it may take weeks to repair the damage and restore service.

The reliability projects proposed by the Company would achieve reinforcement and improve reliability to the areas they serve and mitigate the risks uncontrollable outages and interruption of services to customers as a result of cold weather usage, natural disasters, and third-party damages to specific communities.

[^0]18B - The Company is not aware of a Florida Commission Order for similar projects done under the requested circumstances. However, FPUC does not anticipate another rate case proceeding in the immediate future and the risks and reliability issues described exist today and increase over time.
19. Please refer to FPUC's petition, paragraph 17, on pages 8 through 9. Please identify all instances where cold weather has caused volumetric pressure to fall to dangerously low levels by year for the past 10 years. As part of this response, please identify the number of customer outages experienced during each occurrence as a result.

Company Response:

The Company has a data storage limitation of 15,000 pipeline volumetric readings of which a subset are instances where weather has caused volumetric pressure to fall to dangerously low levels. However, the Company is able to provide, as Exhibit DR 19, Examples of LowPressure Readings and Alerts, which is a summary of the low-pressure readings from July 17, 2021 to April 3, 2023 for those segments where cold weather has caused volumetric pressure to fall to low levels. Low pressure occurrences are based on hourly readings, and FPUC's Talon system issues automated alerts to key operations personnel every four (4) hours while the low-pressure condition exists.

Reliability projects included in GUARD are preventive measures in order prevent loss of pressure from cold weather from taking place in communities most susceptible to a lowpressure event, as a result of the increased demand from existing and potential residential, commercial and emergency facility customers. These projects would also mitigate the uncontrollable outages and risks interruption of services to customers as a result of natural disasters and third-party damages to specific communities.
20. Please refer to FPUC's petition, paragraph 18, on page 9. Please identify the number of "uncontrollable outages" that have occurred in communities served by a single gas pipeline by year for the past 10 years.

Company Response:

According to rule FAC 25-12.084.3, "Each operator shall immediately report to the Commission any distribution system-related accident or failure which interrupts service to either 10% or more of its meters or 500 or more meters." Using this as the basis for what is considered an "uncontrollable outage", the Company would need to manually extract from its databases the number of outages associated with communities such as Palm Beach Shores, Singer Island, South Palm Beach, Manalapan, New Smyrna Beach, Edgewater, Deerfield Beach, and Hypoluxo Island that are particularly vulnerable to service disruption based on their location on islands or peninsulas, as well as other factors.
21. Page 1 of the petition refers to "distribution lines and services that are made of suspect material identified since GRIP was implemented." Please identify the pipe materials that are considered "suspect material."

Company Response:
Examples of suspect materials of distribution mains and services include xtrubed steel tubing, vintage plastic materials such as Aldyl-A plastic pipe subject to brittle-like cracking installed from prior to 1974 through 1990, and certain orange plastic pipe and some black plastic pipe typically installed during the 1970s and 1980s that also has a potential for brittle-like cracking. For more information refer to paragraph 15 of the petition.
22. Please refer to FPUC's petition, paragraph 12, on pages 6 through 7. For each type of distribution mains and service lines in need of expedited replacement, please explain how each was determined to need expedited replacement, and identify any issues the Utility has encountered with each type by year for the past 10 years.

Company Response:

While the Company's systems are safe and adhere to industry standards, this GUARD program will ensure that our facilities continue to meet ongoing federal initiatives and appropriately reduce any unnecessary risks to the public due to facilities that are aged or inaccessible. Responses to questions $6 \mathrm{~B}, 11 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~B}$ and 12 C detail the need to expedite replacement of the facilities.
23. Please refer to FPUC's petition, paragraph 14, on page 7, for the following questions.
a. Please provide a preliminary estimate of the amount of shallow/exposed pipe that would need expedited replacement, and identify the estimated total replacement cost. If unknown, please explain how FPUC intends to investigate this issue, and identify when the Utility intends to provide an estimate of the associated costs to the Commission.
b. Please indicate whether or not it is standard practice for FPUC to replace shallow/exposed pipe as it is discovered. If so, please explain why expedited replacement of shallow/exposed pipe is necessary for inclusion in the GUARD program.

Company Response:
23 A - At the time the filing, the Company and RUIZ were still preparing their initial assessments of the Company's facilities. Since those assessments were complete, the Company's preliminary estimate of the amount of shallow/exposed pipe that would need expedited replacement is approximately 2.80 miles, some of which are major feeder lines that are exposed within major river channels and lakes. These locations represent the portions of pipeline that could be exposed laying at the bottom of the waterways due to erosion over the years. This risk represents likelihood and consequence of failure associated with threats around outside force damages as these waterways are navigable, as well as corrosion threats and other
integrity concerns. The Company also intends on monitoring additional areas of SME-reported shallow distribution pipe and will report to the Commission as deemed necessary. The costs of these projects are still being determined. The timing of these projects will be based on the risk assessment and other factors for the projects compared to other projects.

23B - Yes, the Company's standard practice is to replace minor shallow/exposed pipeline segments as they are discovered, based on the scope and risk. However, the shallow/exposed pipe segments that are identified in the response to question 23A that would be included in the GUARD program, are large scale and highly complex construction projects, and are therefore not routine replacement of shallow/exposed pipeline projects. As part of the Company's ongoing risk ranking and assessment, it anticipates that it will include more shallow/exposed pipe projects as they are found.
24. Exhibit 5 of the petition contains FPUC's proposed tariff revisions related to the GUARD program for which the Utility is seeking implementation in January 2024. Para graph 29 of the petition states that the first true up filing for a combined remaining GRIP and proposed GUARD will be made in September 2023. Please discuss what the differences would be of the tariffs filed in this docket and what the company plans to file in September 2023. Will the September filing include tariffs?

Company Response:
The rates in the tariff sheets provided in this docket were calculated using an estimate of expenses for GUARD in 2023. The Company anticipates that the rates in the tariff sheets to be filed in September 2023 will be calculated based upon actuals for the first 4 months of the program, April - July 2023, and an estimate for the remainder of the year.
25. FPUC is requesting the proposed GUARD factors be effective in January 2024. However, First Revised Sheet No. 7.403 indicates year 2023. Please explain.

Company Response:

The Company proposes an effective date of January 1, 2024, for the first factors that would include GUARD costs, but the Company would like the program itself to be effective April 1, 2023. Tariff Sheet 7.403, which pertains to the effective dates of the GUARD factors erroneously indicates effectiveness during calendar year 2023, when it should be 2024.
26. Referring to First Revised Sheet No. 7.405, please explain why FPUC is proposing to delete "grossed up for federal and state income taxes" language from the Ad valorem taxes.

Company Response:
The referenced edit to Sheet No. 7.405 was made in error and not intended to be included.
27. Assuming FPUC does not petition the Commission for a rate case in the next 10 years, what is FPUC's estimated average annual customer rate impact of the proposed GUARD for each customer class for 2024 through 2034 ?

Company Response:
Exhibit ROG 27 - FPUC Projected Customer Impact extrapolates the estimated cost of the GUARD program over the lifespan of the proposed contemplated work. The costs per year in the attachment are estimated expenses per year for the program. While the Company will attempt to adhere to the proposed timing and cost projects it provided to the best of its ability, the projects filed and completed each year will vary based on a multitude of variables that may or may not be in the Company's control such as timelines, construction planning, cost of projects, contractor resources, risk factors or other construction inputs.
(Table per Data Request 3C)

Proposed Improvement	2023	2024	2025	2026		2027		2028		2029		2030		2031		2032	Total
Access Rear Easement Projects	\$ 5,010,000	\$ 20,798,814	\$ 20,798,814	\$ 20,798,814	\$	20,798,814	\$	20,798,814	\$	20,798,814	\$	20,798,814	\$	20,798,814	\$	2,575,450	\$ 173,975,965
Span Pipe Replacement Projects	\$ 2,600,000	\$ 846,947	\$ 2,258,524	\$ 2,258,524	\$	2,258,524	\$	2,258,524	\$	2,258,524	\$	2,258,524	\$	2,258,524	\$	1,129,262	\$ 20,385,879
Obsolete Facility Projects	\$	\$ 1,155,005	\$ 1,155,005	\$ 1,155,005	\$	1,155,005	\$	1,155,005	\$	1,155,005	\$	1,155,005	\$	1,155,005	\$	1,155,005	\$ 10,395,041
Pipeline Loop Projects	\$	\$ 1,689,261	\$ 1,689,261	\$ 1,689,261	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 5,067,783
Secondary Feed Projects	\$	\$	\$ 1,688,288	\$ 1,688,288	\$	1,688,287	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 5,064,864
Total	\$ 7,610,000	\$ 24,490,027	\$ 27,589,893	\$ 27,589,893	\$	25,900,631	\$	24,212,343	\$	24,212,343	\$	24,212,343	\$	24,212,343	\$	4,859,717	\$ 214,889,532
Cumulative YOY	\$ 7,610,000	\$ 32,100,027	\$ 59,689,919	\$ 87,279,812		113,180,442	\$	137,392,786	\$	161,605,129	\$	185,817,472	\$	210,029,815	\$	214,889,532	

	$\underbrace{\text { ancememem }}$				${ }_{\text {a }}^{\text {axa }}$			analema		\％ameme
				T－	\square					
边										
					\square					
为										
Sminemememb										
Sememememe						\square				
Aemberime										
						\square				
						胃				
$x^{\text {a }}$										
边										
							－			
								\square		

PURPOSE

The purpose of this study was to perform a formal risk assessment on the rear lot portions of the existing natural gas distribution system that is owned and operated by Florida Public Utilities Company (FPUC). FPUC has noted that its employees and representatives have had many cases of incomplete work orders and have experienced general challenges around accessing its rear lot gas mains, services and meters due to a variety of reasons. The study identifies current and potential threats that are present on these rear lot natural gas distribution systems and establishes a relative risk rank for each of the rear lot pipeline segments, in order for FPUC to have a full understanding of its risk and for FPUC to make decisions on how to mitigate them.

METHODS USED

RUIZ used information provided by FPUC to perform a risk assessment for each segment of rear lot main that FPUC currently operates.

The historical leak data and historical "Cant Get In" (CGI) data, along with associated attribute data, was geo-coded by address location and into a spatial GIS environment. FPUC rear lot gas main data was also imported into GIS and cleaned. Together this data was used to identify the leaks and CGI that have occurred within areas of rear-lot gas facilities.

Two different risk analyses were then conducted to identify and rank threats on the rear lot natural gas distribution systems. The first being a system risk assessment which was based on historical leaks that have occurred on rear lot facilities from 2017 through mid July of 2022. The rear lot leak data was exported from GIS and was given a relative risk rank by leak cause and sub threat. The second risk analysis was a Subject Matter Expert (SME) Risk Assessment that was conducted based on feedback from SHEs during an in-person meeting. The combined system risk assessment and SME Risk Assessment established a risk rank by threat type in the existing FPUC system.

The final step was to rank each segment of rear lot main based on its Relative Risk Of Failure, using the risk rank by threat type established. A model was developed to assign a risk rank to each rear lot main based on its likelihood and consequence of failure associated with historical threats and similar pipe characteristics. The pre-final model was then manually analyzed for quality control and was slightly adjusted to ensure areas where SMEs identify threats were captured and ranked appropriately. The resulting risk pipe segments were conservatively grouped based on contiguous mains that exist within common neighborhood developments, in order to obtain the final risk ranks and risk priority orders for all FPUC existing rear lot facilities of record.

FINDINGS AND CONCLUSIONS

RUIZ performed a thorough review of the records provided by FPUC, collaborated with the FPUC
SHEs to complete data analyses, conducted risk assessments, and developed a risk ranking model to arrive at the following conclusion:

FPUC currently operates and maintains over 446 miles of residential rear lot natural gas distribution main, of which approximately 237 miles are at a higher risk of failure. The risk assessments that were completed demonstrate that certain threats do exist on the FPUC natural gas distribution facilities of record located within rear lots of residential homes, and these 237 miles of gas pipe segments have a higher likelihood of failure and consequence of failure when compared to other rear-lot facilities that FPUC operates.

RECOMMENDATIONS

Gas distribution mains and services that are located within the rear of residential homes presents a challenge to most natural gas local distribution companies. The condition presents issues with access for operating and maintaining the system, conducting compliance repairs, and responding to emergency situations. This report, along with the current FPUC Distribution Integrity Management Program, identifies certain threats that exist on the FPUC natural gas distribution system, including those portions of the system that exist within the rear of residential homes, which essentially worsens the threat because of the lack of proper accessibility.

RUIZ hereby provides the following recommendations:

- FPUC should continuously monitor system threats, adjust and re-prioritize pipe segment risk ranks as needed, and deploy short-term risk mitigation activities.
- FPUC should continue to strengthen the FPUC Damage Prevention Program.
- FPUC should consider deploying a long-term program to replace aging Rear Lot natural gas infrastructure, giving priority to those rear main segments considered "high-risk" and risk priority order "1".
- FPUC should use new polyethylene pipe per ASTM standard D-2513 for areas considered for new construction and for replacement.

PURPOSE

The purpose of this study was to perform a formal risk assessment on the portions of the natural gas distribution mains and services of record considered "problematic" that are owned and operated by Florida Public Utilities Company (FPUC). FPUC has noted that its employees and representatives have had several work orders and cases of leaks, threats and other general challenges around existing main or service segments made of Xtrubed steel tubing, Aldyl-A vintage plastic, also known areas of exposed above ground mainlines crossing certain features such as waterways (Span Pipes), city gate and regulator station sites that currently have obsolete valves, regulators, and other equipment, areas of the system where shallow main and services are present, and even facilities made of bare steel (those residual portions not replaced under GRIP). The study identifies current and potential threats that are present on these portions of the natural gas distribution systems and establishes a relative risk rank for each of the main segments in the system, for FPUC to have a full understanding of its risk and for FPUC to make decisions on how to mitigate them. The study also observes areas of the system that are a threat for "reliability" purposes, such as areas of the system that lack redundancy because they are fed from a single source, and areas of the system that have presented operating pressure problems related to small diameter pipe networks during peak loading.

METHODS USED

RUIZ used information provided by FPUC to perform a risk assessment for each segment of "problematic" and "reliability" mains and services that FPUC currently operates.

The methods used for this risk assessment resemble those utilized and summarized during the "FPUC Rear Lot Facilities Risk Analysis" exercise and report dated September 9th, 2022. The GIS historical leak data that was geo-coded by address used for the said analysis, along with associated attribute data, was utilized to buffer the leaks to mains based on Aldyl-A failures, Xtrubed steel tubing failures, bare steel failures, and similar problematic leak types. Then, system threat risk characteristics of likelihood and consequence of failure were input from sources such as mains with historical leaks by cause, attributes of the rear mains like pressure, material and diameter of pipeline, were fed into the same risk ranking model which runs a script using GIS research tools to determine a risk ranking score.

Risk ranking on Span Pipe segments were further supplemented from FPUC-provided historical above ground inspection reports performed and completed by operator qualified FPUC employees. The reports were analyzed for past coating failures, presence of atmospheric corrosion and even certain pipe spans that have sagged and lack proper support. The risk rank for the above ground segments considers potential impact radius based on pressure, diameter, and class location dependent on population density and vicinity to structures intended for human occupancy.

Historical issues at city gate purchase stations, district regulator stations, and other metering and regulator sites were observed from reports generated by the Subject Matter Experts (SMEs) that normally maintain and operate these sites. A total of 21 different sites have concerns, some of which being obsolete pressure regulators, inoperable valves, and corrosion issues. Each site's relative risk was ranked based on the threat type risk rank methodology established during the "FPUC Rear Lot Facilities Risk Analysis".

The preliminary results of the risk analysis were reviewed with individual subject matter experts from each of the divisions of FPUC. The purpose of the review was to validate and calibrate the results of the risk ranking model against the experience and system knowledge of the subject matter experts that know the distribution system. The final risk rank for each "problematic" segment was based on best available data which have been reviewed and approved by the FPUC area subject matter experts.

FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

While the Florida Public Utilities Company (FPUC) natural gas distribution system of record is relatively healthy in nature, this study has identified there are certain threats that are present in the system, that represents a considerable level of risk. These threats were categorized by two major categories, "Problematic" pipe, and "Reliability" areas of concern.

RUIZ performed a thorough review of the records provided by FPUC, and collaborated with the FPUC SMEs to complete data analyses, conduct risk assessments, and developed a risk ranking model to arrive at the following conclusions and recommendations:

- FPUC operates over 97 miles of at-risk problematic pipe, of which approximately 76 miles of these facilities are considered to show a moderate-to-high level of risk. The problems that these facility segments show are, among other items, pipeline under buildings, Aldyl-A plastic pipe, difficult to locate plastic pipe due to deteriorated tracer tape or wire, inability to complete multiple inactive service disconnections due to faulty fittings, coated steel pipe with disbondment issues or cathodic protection integrity issues such as stray current or isolated steel, thin wall pipe, and exposed pipe.
- RECOMMENDATION NO. 1: FPUC should consider deploying a long-term program to replace moderate to high risk "problematic" natural gas infrastructure, giving priority to those segments considered "high-risk". The existing problematic mains and services presents operational risks and challenges for FPUC and its customers.
- FPUC currently operates and maintains 66 above ground "span pipe" segments of which 51 show moderate-to-high levels of risk. These are aboveground and exposed pipe segments that are not only subject to natural force or outside force damages, but also demonstrate historical issues around coating deterioration, sagged pipe and stresses associated to movement.
- RECOMMENDATION NO. 2: FPUC should consider deploying a long-term program to replace moderate to high-risk span pipe segments in the distribution system. The replacement pipe should be installed via horizontal directional drilling at proper depths underneath the waterways or ditches. This will drastically reduce the risk of span pipes and will also reduce O\&M expenses related to maintenance.
- 21 of the Company's district metering and pressure regulating stations and city gate purchase tap stations also show considerable levels of risk. SMEs have reported that Four (4) stations have notable evidence of corroded pipe, equipment and features, while another 17 show the presence of obsolete equipment currently in-service which present challenges for maintenance and operations such as discontinued pressure regulators with inability to purchase replacement parts, difficult to operate plug or gate valves, inability to bypass a flow meter for differential testing, proving, or similar maintenance without shutting-in the station, and the inability to test regulator lockup without shutting-in the station due to missing run isolation valves.
- RECOMMENDATION NO. 3: FPUC should evaluate the feasibility of replacing corroded and obsolete equipment at the 21 existing district regulator stations and city gate stations. Depending on layout of the existing stations, it may be possible to replace certain pipe run segments or swap out flanged end regulators for more modern equipment without having to incur the cost of renewing and rebuilding the entire station
- FPUC Subject Matter Experts have reported historical areas of risk related to "single point of failure" areas fed by a single gas main line with no redundancy. Since excavation damages are the highest threat to the FPUC system, there is a considerable level of probability that these segments may sustain a rupture by outside forces. Should there be a third-party excavation damage on a mainline segment that serves as the only feed to an entire subsystem, the FPUC customers would likely endure a mass outage that will cause considerable inconvenience for many days, as well as FPUC will incur excess O\&M expenses in labor needed to reactivate and relight the customer services and gas appliances and equipment.
- RECOMMENDATION NO. 4: FPUC should consider deploying capital for reliability projects that will introduce a secondary source of gas pipeline to those subnetworks that are currently operating off of a single source mainline that lack redundancy, giving priority to those subnetworks that contain a large number of active FPUC customers.
- FPUC has also reported certain areas of the network with small diameter pipe, which have historically caused low pressure and "no-gas" situations under peak "design-day" loading during cold weather days
- RECOMMENDATION NO. 5: For proper prediction of vulnerability related to possible low pressure events and capacity concerns, It is recommended for FPUC to invest in the installation of additional remote real time electronic pressure recording devices at the locations of these areas of concern. FPUC should also invest in formal hydraulic system capacity planning, modeling, and studies, to predict and determine the probable outcomes associated to cold weather events and other system design heating degree day conditions
- As a general note, and specifically for the other areas of system risk identified in this study, which has not been specifically summarized in this section:
- RECOMENDATION NO. 6: FPUC should continuously monitor system threats, adjust and re-prioritize pipe segment risk ranks as needed, and deploy short-term risk mitigation activities. FPUC should continue advocating its Distribution Integrity Management Program and monitor system threats continuously to re-prioritize the ranks of risky mains as needed and on a periodic basis (minimum once per year). Continue to deploy robust leak survey programs using advanced new technology, deploy enhanced and remote corrosion monitoring activities, and conduct preventative maintenance to ensure short term risk of failure is mitigated in any way possible.
- RECOMMENDATION NO. 7: FPUC should continue to strengthen the FPUC Damage Prevention Program. Continue the all-employee culture for Patrolling the FPUC Gas System, Public Awareness, and Damage Prevention in accordance with RP 1162 / 49 CFR 192.616. Initiatives should have a strong emphasis on homeowner educational notifications for excavation 811 laws and safety tips, using social media, radio announcements, TV commercials, mailers, and other methods. Continue to perform general contractor excavator training and educational seminars and meetings. FPUC should take the lead on hosting state-wide seminars in front of builder associations, local and state fire departments, annual FDOT Utility coordination conferences, and similar type events.

Hourly Low Pressure Readings

Lane Asphalts				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	12,799	100.0	91.9	92%
Medium Alert	2,068	100.0	82.8	83%
High Alert	99	100.0	76.3	76%
Critical Alert	32	100.0	72.4	72%

10Most Recent Low Pressure Days Nominal			
Lowest Daily Date and Time	Pressure (psi) Pressure (psi)	Pressure	
$1 / 16 / 202310: 00$	100.0	46.6	47%
$1 / 15 / 202319: 00$	100.0	47.2	47%
$4 / 21 / 202213: 00$	100.0	30.4	30%
$2 / 15 / 20229: 00$	100.0	47.2	47%
$2 / 14 / 20229: 00$	100.0	41.7	42%
$2 / 10 / 20228: 00$	100.0	43.6	44%
$2 / 1 / 20228: 00$	100.0	44.0	44%
$1 / 31 / 20229: 00$	100.0	46.9	47%
$1 / 24 / 20229: 00$	100.0	42.8	43%
$1 / 23 / 202221: 00$	100.0	46.8	47%

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 80% of nominal pressure
Medium Alert: Pressure Reading between 80% and 60% of nominal pressure
High Alert: Pressure Reading between 60% and 50% of nominal pressure
Critical Alert: Pressure Reading below 50% of nominal pressure

Hourly Low Pressure Readings

Boston Whaler				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	14,682	55.0	54.6	99%
Medium Alert	237	55.0	44.7	81%
High Alert	50	55.0	44.2	80%
Critical Alert	12	55.0	35.1	64%

Most Recent Low Pressure Days Nominal Lowest Daily Date and Time			
$1 / 16 / 20237: 00$	55.0	\% of Nominal Pressure (psi)	Pressure (psi)
$1 / 15 / 202321: 00$	55.0	26.9	49%
$2 / 15 / 20221: 00$	55.0	27.6	50%
$2 / 14 / 20229: 00$	55.0	27.9	51%
$2 / 10 / 20229: 00$	55.0	27.5	50%
$2 / 7 / 202210: 00$	55.0	27.7	50%
$1 / 31 / 20222: 00$	55.0	32.5	59%
$1 / 30 / 202220: 00$	55.0	27.2	49%
$1 / 24 / 20226: 00$	55.0	27.1	49%
$1 / 18 / 20229: 00$	55.0	26.8	49%
	26.5	48%	

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 80% of nominal pressure Medium Alert: Pressure Reading between 80% and 60% of nominal pressure High Alert: Pressure Reading between 60% and 50% of nominal pressure Critical Alert: Pressure Reading below 50\% of nominal pressure

Hourly Low Pressure Readings

South Ocean				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	6,755	20.0	18.9	95%
Medium Alert	305	20.0	14.8	74%
High Alert	23	20.0	11.1	56%
Critical Alert	4	20.0	6.7	33%

10 Most Recent Low Pressure Days Nominal Lowest Daily			
Date and Time Pressure (psi)	\% of Nominal Pressure (psi)	Pressure	

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 90% of nominal pressure Medium Alert: Pressure Reading between 90% and 80% of nominal pressure
High Alert: Pressure Reading between 80% and 50% of nominal pressure Critical Alert: Pressure Reading below 50\% of nominal pressure

Hourly Low Pressure Readings

North Ocean				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	2,427	20.0	19.3	96%
Medium Alert	390	20.0	17.3	86%
High Alert	105	20.0	14.9	74%
Critical Alert	-	20.0		

Most Recent Critical Pressure Days Nominal Lowest Pressure			
Date and Time of Nominal			
Pressure (psi)	(psi)	Pressure	
$3 / 20 / 202310: 00$	20.0	15.1	76%
$3 / 16 / 202310: 00$	20.0	15.8	79%
$2 / 13 / 202310: 00$	20.0	14.4	72%
$2 / 4 / 202310: 00$	20.0	15.0	75%
$1 / 16 / 20239: 00$	20.0	15.6	78%
$1 / 15 / 202310: 00$	20.0	13.8	69%
$1 / 14 / 202310: 00$	20.0	12.3	61%
$1 / 11 / 20239: 00$	20.0	15.9	79%
$12 / 29 / 202210: 00$	20.0	15.3	76%
$12 / 27 / 202210: 00$	20.0	15.6	78%

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 90% of nominal pressure Medium Alert: Pressure Reading between 90% and 80% of nominal pressure High Alert: Pressure Reading between 80% and 50% of nominal pressure Critical Alert: Pressure Reading below 50\% of nominal pressure

Hourly Low Pressure Readings

Ritz Carlton				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	6,180	20.0	19.1	96%
Medium Alert	1,626	20.0	17.2	86%
High Alert	477	20.0	14.7	74%
Critical Alert	1	20.0	9.9	49%

10 Most Recent Critical Pressure Days			
Date and Time	Nominal Pressure (psi)	Lowest Pressure (psi)	\% of Nominal Pressure
3/31/2023 9:00	20.0	14.4	72\%
3/23/2023 9:00	20.0	15.8	79\%
3/22/2023 10:00	20.0	15.1	75\%
3/21/2023 9:00	20.0	14.9	74\%
3/20/2023 10:00	20.0	13.1	65\%
3/17/2023 10:00	20.0	14.7	74\%
3/16/2023 10:00	20.0	13.3	67\%
3/15/2023 10:00	20.0	15.2	76\%
2/18/2023 9:00	20.0	16.0	80\%
1/14/2023 10:00	20.0	9.9	49\%

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 90% of nominal pressure Medium Alert: Pressure Reading between 90% and 80% of nominal pressure High Alert: Pressure Reading between 80% and 50% of nominal pressure Critical Alert: Pressure Reading below 50\% of nominal pressure

Hourly Low Pressure Readings

Embassy Deerfield				
Alert Type*	\# of Alerts	Nominal Pressure (psi)	Average Pressure (psi)	\% of Nominal Pressure
Low Alert	976	50.0	48.5	97\%
Medium Alert	7	50.0	39.3	79\%
High Alert	-	50.0		
Critical Alert	3	50.0	20.1	40\%
10 Most Recent Critical Pressure Days				
	Date and Time	Nominal Pressure (psi)	Lowest Pressure (psi)	\% of Nominal Pressure
	4/1/2023 10:00	50.0	49.7	99\%
	3/31/2023 10:00	50.0	47.7	95\%
	3/30/2023 11:00	50.0	48.3	97\%
	3/24/2023 11:00	50.0	49.2	98\%
	3/23/2023 10:00	50.0	49.0	98\%
	3/22/2023 11:00	50.0	48.3	97\%
	1/14/2023 12:00	50.0	39.3	79\%
	12/26/2022 12:00	50.0	39.4	79\%
	1/29/2022 12:00	50.0	39.9	80\%
	7/22/2021 17:00	50.0	19.1	38\%

*Alert Type based on the nominal pressure of this system
Low Alert: Pressure Reading between 100% and 80% of nominal pressure Medium Alert: Pressure Reading between 80% and 60% of nominal pressure High Alert: Pressure Reading between 60\% and 50\% of nominal pressure Critical Alert: Pressure Reading below 50\% of nominal pressure

Exhibit DR 27
 21 pages

Florida Public Utilities Company
 Gas Utility Access and Replace Directive
 Calculation of Equity and Debt Returns

Bcgirnirg Halm:s	$\begin{gathered} \text { Farcaur } \\ \text { inn } \end{gathered}$	Forecar Fist	Ferreast M $1 \times x$	$\begin{aligned} & \text { Farciar } \\ & \text { Ant } \end{aligned}$	Forscast 3 Mr	$\begin{aligned} & \text { Forccast } \\ & \text { ILmon } \end{aligned}$	Focreaut H	Fercour Aw	Forscur Sn	Forecust 오	$\begin{aligned} & F_{\text {ercaus }} \\ & \operatorname{Nan} \end{aligned}$	Frrtaist Des	
	so	so	so	574,083	574,039	574,039	574,039	574,039	574,039	574,039	574,089	574,059	56,696800
	50	\$0	50	(574,089)	(574.089)	(574,089)	(574,059)	($374+058$)	(574,059)	(574,059)	(574,089)	(574,089)	($56,681.500$)
	50	so	so	\$111,467	\$101,467	\$101,467	s101,67	\$101, 57	\$101,467	5101,67	5101,467	stit,67	5913,200
	50	so	so	(510,467)	(510,467)	(5101,467)	(s10), 6 67)	(5101, 6 67)	(5101,467)	(5101, 567)	(5101,467)	($\$ 101,667$)	(5913,200$)$
	50	50	so	50	so	so	S0	50	50	so	so	so	30
	50	50	so	so	50	so	50	so	50	so	30	sa	so
	so	so	so	374,659	574,089	574,089	574,089	574,089	574,039	574,039	574,089	\$74,059	\$6,696,800
	50	50	so	5101,467	8101,467	5101,467	561,467	5101,467	S101,667	510,467	sla1,667	5101,667	3913,200
	50	50	50	so	so	so	50	so	50	50	so	50	so
50	50	50	50	50	so	50	50	so	50	so	so	so	so
50	50	50	50	so	50	50	50	50	50	50	50	50	50
50	so	50	50	50	50	50	50	so	50	so	so	50	so
\$3,755,806	\$3,755,806	53,73,806	53,75,806	54,459,895	\$ $5,243,984$	\$5,984,072	56,732,161	57,476,250	88,220,39	58,964,428	39,708,517	\$10,452,606	\$10,452,606
52,033,527	52,931527	52,83,527	52033,527	52,18,993	52,286,460	\$2,387,927	52,48,393	52,990,850	\$2,692,327	52,793,793	\$2,85, 260	\$2,596,721	
50	50	50	50	so	50	50	50	50	so	50	30	s0	so
35,83,332	55,839,332	55,839,332	\$5,839,332	$56,684.818$	57,53, 444	58,375,999	59,721,555	\$10,667,10	\$10,912.666	511,738,221	512,603,771	513,49333	513,450,332
52,31,377	(33.33534)	(5354,692)	(53,551.0.0)	(53,563359)	(5, 53, 9 911)	(53, 585.668$)$	(53,598,655)	(53,612,818)	($53,628,184$)	(53,64,753)	(53,662,526)	(53,681,509)	(53,681.502)
	\$2,303,983	\$2,29+,640	32,285,297		53,936,903	12,790,303	55,622,899	5 5,45t,293	57,284,482	SB,113,168	S8,941,251	39,767,810	\$9,767,83]
	2,30,663	52,29,315	\$2,28,966	2,703,386	3,39,001	4,371.163	5s,206, 61	56,038, 386	54,869,377	57,698,973	58,372,360	5, 3, 54,340	
	1.60\%	1.600\%	$1.600^{\circ} \mathrm{O}$	1.60\%	1.60:6	1.650:	1.60\%	1.50%	1.60\%	$1.60 \%^{\circ}$.	1.60\%	1.00\%	
	250\%\%	2509%	2.59\%	250\%	25096	2.509\%	2.80\%.	2.50\%	2.50\% 0	2.50\%	200\%	2.50\%	
	2.50:	2.50\%	2.500%	2.50\%	2.50\%	2.56\%	250\%	250\%	2.5006	2.50\%	250\%	2.50%	
	6239\%	6295	624\%\%	62946	624\%\%	6.24\%	$6.24{ }^{\circ}$	6.24\%	6.24\%	624\%	624\%	6.24\%	
	1.34\%	1.34\%	134\%	1.35%	$13.4{ }^{\circ}$	13.46	134\%	13,4\%	134\%	134\%\%	134\%	134\%\%	
	S12,033	511,964	\$11,916	514,067	518,419	\$22,35	327,092	\$31,422	\$35,74	550,661	\$4,372	548,676	\$318,493
	52.58	52.571	52581	53,23	53,958	5:,891	55,323	55733	57,682	88,610	59, 3,3	S10,461	5684 52
	S14.593	514.536	314, +77	S17,093	522.373	527,618	S32,915	\$38,173	3+3, 2 27	\$78,671	553,903	59,137	${ }^{5386,951}$
	ss,ow	5s,008	ss,008	55,088	3gido	s4.902	57,984	\$8,976	50,68	510,260	511,53	512,945	595,809
	51,31	5,3,41	\$4,341	54,341	54,552	54,763	54,975	55,186	55,398	53,699	5, 8120	54,932	559,698
			so	\$0	50	so	50	sa	so	30	so	so	\$0
	53,886	53.856	53.856	53,886	53,856	53,356	53,886	53,856	53,886	53,886	53,886	53,885	\$46,267
	31,00	51,009	\$1,000	51,009	St,006	St,006	S1,00	51,000	\$1.00	\$1,000	\$1,000	\$1,000	512.009
	514,204	\$14,204	514,204	514,204	\$15,607	\$16,611	S17,815	519,018	520.222	521.425	522629	538832	5211,74
	528,79	529,740	528,68!	\$31,294	337,780	541,299	550.729	557,193	50.548	570.6\%	576.537	\$82969	5600,725

Boginuing	$\begin{aligned} & \text { Farecant } \\ & \text { tan } \end{aligned}$	$\begin{gathered} F_{\text {ctercart }} \\ \text { Eccb } \end{gathered}$	$\begin{aligned} & \text { Forraatr } \\ & \text { Mar } \end{aligned}$	$\begin{aligned} & \text { Ferctart } \\ & \text { der } \end{aligned}$	$\begin{aligned} & \text { Fertcast } \\ & \mathrm{Mex} \end{aligned}$			$\begin{gathered} \text { Fextiart } \\ \text { Abog } \end{gathered}$	$\begin{gathered} \text { Ferizatr } \\ \mathbf{S e n} \end{gathered}$	$\begin{gathered} F_{\text {ereceart }} \\ \cline { 2 - 4 } \end{gathered}$	$\begin{aligned} & \text { Foreseuz } \\ & \mathrm{Nay} \end{aligned}$	$\begin{gathered} \text { Fcrectus } \\ \text { Exs } \end{gathered}$	
	51,839,336	51,839,376	51,839,325	51,839,336	51,839,326	51,839,336	st, 33,326	s1,839,326	51,839,376	51,839,336	51,83, 3 326	51,839,336	522,071,944
	($51,839,376$)	($\$ 1,839,326)$	($\$ 1,839,326$)	($31,339,326)$	($51,339,326$)	($51,839,326$)	($51,839,325)$	(31,839, 3 26)	($51,839,326$)	($51,839,326$)	($51,834,326$)	(51,839,326)	(522,07,914)
	532,,882	5321,892	\$321,882	3321,882	5321,882	5321,882	5321,882	5321,882	\$321,882	5321,832	5321,882	5321,832	53,662,885
	(5321,832)	(3321,822)	(5321,882)	(3321,882)	(5321,882)	(5321,832$)$	(5321,882)	(5321,882)	(3521,882)	(5321,832)	(532,882)	(5312,882)	(53,862,588)
	5137,949	5137,999	\$137,949	3137,599	5137,949	5137,949	\$137,94	5137,949	\$137,94	5137,949	\$317,949	5137,949	51,63, 394
	(51377949)	(51377949)	(5137,94)	(5137,949)	(5137,949)	(5137,929)	(5137,949)	(5137,949)	(5137,949)	(5137,949]	(5137,949)	(5137,999)	($51,655,394$)
	51,839,326	51,839,376	5t,839,326	51,839,325	\$1,839,326	\$1,839,326	51,839,326	51,399,326	S1,839,326	51,899,326	\$1,839,326	51,839,326	522,071,944
	5321,832	\$321,862	5321,882	5321,882	S321,852	5321,832	5321,892	S321,882	5321,882	5321,832	5321,882	\$321,882	33,862, 885
	\$137,949	5137,949	\$137,949	\$137,949	\$137,949	5137,949	5137,948	5337,949	5137,949	5131,949	5137,49	513,249	51,65, 394
50	50	50	30	so	30	30	so	so	30	so	50	50	so
so	50	50	50	50	50	50	50	50	50	so	50	50	so
50	50	50	10	50	so	10	50	50	so	so	\$0	so	so
530,041,627	531,883,954	533,723,280	533,562,606	533,40,932	539,241,258	\$41,050,535	\$42,919,911	34,789,237	546,598,563	548,437,889	550,277,216	\$52,116.542	552.116 .542
56,423,330	56,77, 1713	57,09,495	57,380,977	57,72,899	58,03,741	58,336,623	58,67, 593	59,000,387	50,322,269	59,64, 151	59,965,033	5t0,287,945	510.287,915
S1, $59,+192$	S1, (0) 3 St	St, 255,301	51,883,250	52,021,193	S2,150,149	52,297,048	52,35,048	\$2,572.997	\$2,70,977	52818, 996	52,986846	53,124,795	33,12,795
537,239,397	540,238.517	\$42.537.673	541,836.833	547.135 .920	549, 335,148	$551233+306$	554,033.154	\$56,323.621	558,631,779	569,930,937	569,230,095	869,32,232	$\frac{\text { S6,528, \%s2 }}{}$
($51,126,521$)	($51,183,366)$	($54,2+3,520)$	(517307.135$)$	($51,37,161$)	(54,44, 597)	($51,518,43)$	($5+595,700)$	(54,576367)	($54,763,+55$	($54,8+7,933$)	($54,938,831)$	(5 S $, 033,140$)	(5, 5 , $3,3,14$)
\$3,812,338	536,055,202	538,294,155	510,529,697	5\$2,761.829	\$4,980,551	St7, 219,863	\$19, 3 ,37,784	\$ $51.566,24$	S $53,8771,334$	5 $56,033,007$	Ss8,291.263	S60, 936,112	5 $50 .+56,112$
	[3+,931,020	337,171,778	333,119,926	511,565,763	513,876,190	516,103.207	518,326,813	550,577,093	532,763,794	S4.917.169	\$57,187,134	\$99,393,688	
	1.60\%	1.69%	1.60\%	1.69\%	1.699%	1.69%	1.60\%	1.697%	1.602\%	1.609\%	1.60\%;	1.50\%;	
	2.50\%	2.5096	2.50\%	2.50\%	250\%\%	2.50\%	250\%	2.50\%	2.50\% 6	2.506	250\%	250\%	
	2.80%	250%	25036	2.50:\%	2.50\%	2.50\%	$2.50 \% 6$	2.5006	250:\%	2.50%	2300%	2.50\%	
	6.24%	6.24\%	624%	625%	624\%\%	624\%	6.24\%	624:\%	624\%	624\%	624%	6.24**	
	134\%	135\%	134\%	1.158	134\%	134%	134\%	1314\%	1.34\%	13.46	1344*	134.4*	
	s181,m	S193,436	5205,078	5216702	5228.307	5279.896	5251,46\%	5263,019	527,554	5286,071	5207,570	\$309,082	\$2,946,927
	533,68	5+1.574	54.976	546.574	549068	331.559	354,04	566.528	599,098	56t. 183	\$6a, 954	566,422	5633388
	\$220, 813	\$235,010	5729,154	5263,275	5277, 376	5291,554	53as, 12	3119,47	5331831	5347,534	\$361,525	5375,774	83,580,286
	580,060	\$42,512	\$41,96	\$77, 17	\$49,809	\$32,322	ss4,74	557,227	559,679	362,131	564,54	567,036	5642,375
	\$13,386	\$14,057	\$14,727	\$15,398	\$16,068	\$16,739	\$17,410	\$18,880	\$18,751	S19,21	520,092	520,763	520, 899
	53,349	53,636	53,923	st,211	54,988	54,786	55,073	35,360	55,648	55,935	56.223	54,510	559.152
	\$56,335	\$56,339	\$55,355	\$56,353	586.339	\$56,393	\$56,359	\$ 515359	\$56,339	\$56,335	556,33s	\$56,335	5676,257
	51,039	51,000	S1,000	51,008	\$1,000	S $1,0 \times 0$	St,0\%	\$1,000	St,090	51,000	\$1,000	\$1,000	S12,000
	511.6. ${ }^{\text {a }}$	5117.559	5120.970	51210380	5127,791	S111.201	S13,611	S118,022	S14, 132	S114,83	3148,253	5151.654	511.59+,875
	533,994	5352570	5370.123	5337,656	5105,166	5122.655	\$710.123	5157,569	5+7,593	\$192396	\$509778	\$327,137	55,175,161

Florida Public Uulitites Company
Gas Lility Acccses nd Replec Drambive
 Fer Thern Rate

$\begin{gathered} \text { RMIE } \\ \text { SCMEDME } \\ \hline \end{gathered}$	$\begin{gathered} 2023 \\ \text { MIERNS } \\ \hline \end{gathered}$	services cos $\%$		$\begin{aligned} & \text { Manss } \\ & \text { cos } \end{aligned}$	$\begin{gathered} \text { MsR } \\ \cos \% \end{gathered}$	$\begin{aligned} & \text { SERYICES } \\ & \text { REYREO } \end{aligned}$	$\begin{gathered} \text { MANS } \\ \text { BEY REQ } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSR } \\ \text { REVREEQ } \\ \hline \end{gathered}$	$\begin{gathered} \text { GUARD } \\ \text { HEYREO } \\ \hline \end{gathered}$	$\begin{gathered} \text { Bollars } \\ \text { PERR } \\ \text { nERM } \end{gathered}$	$\begin{gathered} \text { tax } \\ \text { EACIOR } \\ \hline \end{gathered}$	$\begin{gathered} \text { GUARD } \\ \text { FACTORS } \\ \text { FERTHERYY } \end{gathered}$	trptcal AnNual therms	$\begin{gathered} \text { ANUUAL } \\ \hline \text { COST } \end{gathered}$	AVERAGO MONTFEY cosT \qquad
Pestit	1,520,128		27.37\%	120\%	1209\%	3198,303	519,80	\$3,736	\$251,847	50,16567	1.00503	50.16654	44	\$8.96	s0.7s
res. 2	5,973,749		36.0\%\%	4.71%	4.71\%\%	5251.350	5195,174	\$4,638	\$474,163	sa07935	1.00503	50.07975	139	512.58	51.0\%
Res-3	12,959,345		19.15\%\%	10.05\%	10.05\%	5138,714	5415,929	331,59	\$585,838	5004521	1.00503	so.ast3	cos	530.21	52.58
res-5G	96,799		1.05\%	0.09\%	0.05\% $\%$	57,879	33,874	5291	512,043	50.12505	1.00503	50.12569	wos	513.71	51.14
G5. 1	691,996		3.10\%	0.64\%	$0^{0.60 \% \%}$	522,479	524,831	51,852	59,0,172	50.07106	1.00803	50.07142	322	523.01	51.92
GS. 2	7,23,026		514\%	603:	$6.03{ }^{\circ}$ \%	530,024	5249,458	\$18,709	5888,191	50.04124	1.00503	50.04145	2,902	5120.31	510.03
cs-3	11,772,978		3.30\%	997\%	9.57\%	524,659	53964378	\$29,728	5450,765	5003829	1.00803	S0038:8	77312	3281.39	523.45
©S 4	24,944,739		$365^{\circ} \mathrm{O}$	1988\%	19.88.0	526,503	583,124	561,734	3911,361	0.0364	1.00503	0.03672	17,803	3633.78	554.48
cs. 5	12,599,603		0.55\%\%	9.71\%	9.71%	53,265	S401,906	539,143	S336,014	50.03474	1.00503	$50.03+92$	110,084	\$3,473.92	\$320.33
GS6 6	11,918,15s		$0.21{ }^{\circ}$	923\%	9234	51,339	5362,134	528,600	5412,33	$50.03+60$	1.001503	50.04477	350,33	\$12,188.45	\$1,015.70
Gs-7	9,260,735		0.05\%\%	7.06\%	7.06\% ${ }^{\text {\% }}$	5883	\$292,776	521.936	\$314,995	50.03i01	1.00503	50.03419	771,723	\$26,381.60	52.188 .17
Gs. 3 (A - D)	22,737,656		0.05% \%	1726\%	17.26*	5353	571,661	\$53,56	5768,599	50.03310	1.00533	50.03337	2,842,207	\$96,533.10	S8,96008
COMAMT	9,503.499		$0.17^{\text {\% }}$	358\%	3.58\%	\$1,243	S14,133	541,40	\$160,486	50.01639	1.00503	50.01697	589,969	\$9,487.87	\$790.65
Comengy	1,467,075		$0.01{ }^{\circ}$ \%	0.8\%\%	0.89\%	570	\$36,795	52,760	539,625	50.02697	1.06503	\$0.0271	340,759	50,23734	5769.78
COATOL	92,723		$0.00 \% 6$	005\%	0.08\%	5133	53,166	5237	53,936	50.03546	1.00503	50.03564	3,433	\$122.56	51021
COM HSG	62,693		0.51\%\%	006\%	$0.06{ }^{6}$	53,726	52.332	5175	\$6,233	50.0942	1.00503	samem	207	52067	81.72
total	132,791,038		$1 \mathrm{cos}^{\circ} \mathrm{*}$	100%	$100{ }^{+}$,	724,523	+180,129	310.510	, 1.175						

Begrarsing Bataxa	$\underset{\substack{\text { Fotacest } \\ k m}}{ }$	$\begin{aligned} & \text { Foricant } \\ & \text { Eth } \end{aligned}$	$\begin{gathered} \text { Farcoust } \\ \text { Mir } \end{gathered}$	$\begin{gathered} F_{\substack{\text { cercuser } \\ \text { Anf }}} \end{gathered}$		$\begin{gathered} \text { Fouccost } \\ \operatorname{Lan} \end{gathered}$	Foceteat dit	Ferccoust Aw	$\begin{aligned} & F_{\text {ortcust }} \\ & \text { 家品 } \end{aligned}$	$\begin{aligned} & \text { Forcous } \\ & \mathbf{Q A t} \end{aligned}$	$\begin{aligned} & \text { Fictcoust } \\ & \mathrm{Nan} \end{aligned}$	Farcourd Dss	Yitur End Idtamparac
	$\begin{gathered} 51,83,326 \\ (51,839,326) \end{gathered}$	$\begin{gathered} 51,839,326 \\ (51,839,326) \end{gathered}$	$\begin{gathered} 51,839,326 \\ (51,839326) \end{gathered}$	$\begin{gathered} \$ 1,839,326 \\ (51,339,326) \end{gathered}$	$\begin{gathered} 51,339,326 \\ (51,839326) \end{gathered}$	$\begin{gathered} 51,839,325 \\ (51,839,326) \end{gathered}$	$\begin{gathered} s, 1,899326 \\ (51.83926) \end{gathered}$	$\begin{gathered} 51,839,326 \\ (51,839,326) \end{gathered}$	$\begin{gathered} 51,839,326 \\ (51,83,326) \end{gathered}$	\$1,839,326 ($\$ 1,839,326$)	$\begin{gathered} \$ 1,89,3,36 \\ (51,839,326) \end{gathered}$	$\begin{gathered} 51,839,326 \\ (51,839,326) \end{gathered}$	522,071,914 ($322.071,914$)
	\$311,882	5321,832	5321,882	5321,832	\$321,882	\$321,832	5321,882	5321,882	5321,882	5311,882	5312,882	5321,832	\$3,262,385
	(5321,832)	(5321,882)	(5321,882)	(5321,822)	(5321,882)	(5321,882)	(5321,882)	(5321,482)	(3321,882)	(5321,8827	(534,882)	(5321,82)	(31,862,585)
	\$137,949	\$137,949	\$137,949	5137,949	5137,949	¢137,949	\$137,96	5137,949	5137,99	5137,949	\$13,949	\$137,249	\$1,655,394
	(5177,94)	(5137,949)	(5137,949$)$	(S137,949)	(5137999)	(5137,943)	(5137,949)	(5137,969)	(51378,45)	(5137,949)	(5137,94)	(5137,949)	($51,6553,394$)
	\$1,33, 3 , 6	51,1399,36	51,839,376	57,839,326	51,899326	51,839,376	51,839,326	51,83, 326	\$1,83,326	\$1,839,366	51,839,326	31,899,376	52, 071,914
	5321,832	532,882	532,482	5321,482	\$321,882	5321,882	5321,882	\$32,882	531,882	531,882	5312,882	\$321,882	53,862,885
	5137,949	5137,949	5137,949	S137,949	5137,942	5137,949	5137,942	5137,949	5137,949	5137,29	5137,949	5137,949	51,659,394
so	50	so	so	so	50	so	so	50	so	so	50	so	50
so	50	50	so	50	so	so	50	50	50	so	50	s0	so
50	50	50	50	so	so	50	50	50	50	50	sa	so	sa
\$52,16,542	\$53,955,868	555,795,194	557,634,520	559,47,8,87	561,313,173	563,152,499	564,991,423	s $66,831,151$	565,670,778	570,50,804	57234,130	57,188,466	574,188,456
S10,287,915	510,609,798	510,931,680	511,231,662	S11,575,44	511,897,326	\$12,219,208	\$12,514,090	512.862^{2972}	S13,184,85;	513,505,736	513,828,618	S14, 150, 500	\$14,150,500
53, 12,793	53.262745	53,400.69+	53,531,64+	53.676593	53,814.543	53.952,92	54,070.41	54,228.391	54.365340	St,504,200	31.642,239	\$t,780,189	54,780189
S63529,252	567,828,410	570,127,568	572,426,726	574,72,883	877,025,041	579,324,193	581623,377	583,922.54	586,211,672	588.520 .8370	5918,819,583	599,119,4+5	39,119,1+5
(53,033,140)	(85.130.859)	(55,231.989)	(5, 335,529)	(55,44,180)	(55,555,841)	(55.670,612)	(55.788.794)	(55.910386)	(56,035,388)	(86.16,801)	(56,295.623)	(56, 93.8859	(56,30.857)
- 560.496 .112	\$62,697.331	366.895.579	S67, 098.1 .197	369,28t,064	571,462.201	\$77.633.587	573.831,563	578.012,129	580.186 .284	5823377008	384,524.363	\$86,688,287	386,688,287
	\$61,596,332	50,796,565	565,992,886	36,185,800	570, 775,302	572,561,39	574,74+,075	576,93346	577,099,206	581,271,656	\$83,40,696	${ }^{383,606,325}$	
	1.66\%	1.664%	1.60:\%	1.50\%	1.60\% ${ }^{\text {a }}$	1.60\%	1.56\%	1.60\% ${ }^{\text {a }}$	150:\%	1.60:3	1.60\%	1.64\%	
	250\%	2.50:0	2.50\%	2.50\%	2.50\%	2.50:6	250%	250\%	250\%	2.50:\%	250\%	2.50\%	
	2.50\%	2.50\%	2.509	2.50\%	2.500°	2.50%	2.500^{5}	2.50\%	2.50%	2.50\%	2.50%	2.20\%	
	624.0	6.24\%	6.249;	$6.24{ }^{\circ}$ \%	6.245\%	6.24%	62.46	6240%	$62+8{ }^{4}$	624\%	6.240	624\%	
	$13.3{ }^{\circ}$	1.34°	13,48\%	1.34%	134\%	134%	134%	$13.3{ }^{\circ}$	134\%	134\%	134\%	1.34%	
	3120,516	5331,962	\$353,391	\$53,801	5166,194	5317,569	5388,927	\$400, 267	5+11,589	5172,893	\$131,179	545,488	8,597,73
	S65,886	Sn,316	53,802	\$76,251	578,703	381,48	383,589	S85,026	\$88,49	591,859	593,315	\$95,736	5988,153
	\$389,902	5403,308	S 517,183	5313,056	5414,897	\$ 518,767	5472,516	5186,293	5 S006043	5513,782	5327, ${ }^{\text {d }}$,	\$541,184	\$5,585,888
	569,489	\$71,941	57,394	\$76,846	579,298	\$81,791	884,203	588,656	589,103	591,561	594,0]3	596,465	5095,72s
	S21,433	52,104	s22,74	523,45	524,116	524,786	S59.457	526,127	526,798	527,46	528,139	528,80	5301,457
	56,797	57,085	57,372	57,660	57.937	${ }_{58,234}$	${ }_{56,522}$	58809	\$9,097	59,384	59,674	\$9,959	Stu0, 337
	stoc, 827	\$100,827	5100,827	S10, 827	S100,827	5100,827	5100.827	slocs 827	5100.827	S100,827	\$100,827	51008827	\$1,207,922
	S1,000	s1,00	51,090	st.0.0	S1,00	St,000	St,000	Sl, 000	S1.000	51,009	51,000	51.000	512000
	5199,546	53102939	52043,367	\$269,777	5213,188	5216.598	S220,003	5233,419	\$226,829	5330,240	5233,650	52370,031	52619,641
	5889.948	5606.264	563,559	3640,833	\$658.035	\$675.315	9692,524	\$70.7.72	3726.877	574, 21	576,144	5778.245	88.205.529

Begixuing Balmise		$\begin{gathered} \text { Fatecast } \\ \text { Eet } \end{gathered}$	$\begin{gathered} \text { Forsecar } \\ \text { Misk } \end{gathered}$	$\begin{gathered} F_{\text {arsfart }} \\ \text { AItr } \end{gathered}$	$\begin{aligned} & \text { Ferceast } \\ & \mathbf{M g r} \end{aligned}$	$\begin{aligned} & \text { Faricart } \\ & \text { Lwat } \end{aligned}$	$\underset{\substack{\text { Fercast } \\ \text { tit }}}{ }$	$\begin{gathered} \text { Faxeax } \\ \text { dus } \end{gathered}$	$\begin{aligned} & \text { Fareast } \\ & \text { Sax } \end{aligned}$	$\begin{aligned} & F_{\text {execourt }}^{\text {ox }} \end{aligned}$	$\begin{aligned} & \text { Forctast } \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} \text { Forscoust } \\ \text { Rasi } \end{gathered}$	$\begin{aligned} & \text { Mexi End } \\ & \text { Iratinalnacis } \end{aligned}$
	51,726,709	(51.766769			($51,726,709$		$51,726,793$ $(151,726,709)$	$\underset{\substack{\text { (51,726,709) }}}{51,769}$		51,726709 ($51,726,769)$	51.726709 ($51.726,709)$	\$1,726,709 (51,726,705)	520,720,505 ($320,720,505)$
	($51,2726,708)$		$\xrightarrow{(51,726,703)} \mathbf{5 3 0 2 1 1 4}$	$\underset{\substack{(15,726,70) \\ 5302174 \\ 1}}{ }$	$\underset{\substack{(15,76,703) \\ 5302174}}{(50,17)}$	$(15,726,709)$ 5302174 $(1) 217$	($51,726,703$)	$\underset{\substack{(51,726,703) \\ 5302174}}{(5074}$	$\begin{gathered} (\$ 1,726,709) \\ \$ 302,174 \\ \hline \end{gathered}$	($51,726,769$) $\$ 302,177$	($51,726,709$)	$(51,726,705)$ 5302174 $(5327$	(320,720,505) 53,626,088
	$\begin{gathered} 530,174 \\ (5302174) \end{gathered}$	$\begin{gathered} 3302,174 \\ (5302,174) \end{gathered}$	$\begin{aligned} & 5302,174 \\ & (5302,174) \end{aligned}$	$\begin{gathered} \$ 302,174 \\ (5302174) \end{gathered}$	$\begin{gathered} 5302,174 \\ (5302.174) \end{gathered}$	$\begin{gathered} 5302.174 \\ (5302,174) \end{gathered}$	$\begin{gathered} \$ 302,174 \\ (\$ 302,174) \end{gathered}$	$\begin{gathered} \$ 302,174 \\ (\$ 302,174) \end{gathered}$	$\begin{gathered} \$ 302,174 \\ (\$ 302,174) \end{gathered}$	$\$ 302,174$ $(\$ 302,174)$	5302,174 $(5302,174)$	5302,174 $(5392,174)$	$33,66,008$ $(\$ 3,26,088)$
	5129,503	\$129,503	5129.503	5129,503	5129,003	5129,503	5129,503	5129503	5129,503	\$129,503	5122,503	\$119,503	\$1,554,038
	(5129,503)	(5129,503)	(5129,503$)$	(5129.503)	(5129,503)	(5129,903)	(51299503)	(5129,503)	(5129.503)	(5127,503)	(512, 5033)	(5129,503)	(51,54,038)
	51,726709	51,726,709	51,726,709	51,72,709	51,784,709	St,724,709	\$5,726,709	51,726709	51,726,709	\$1,726,709	\$1,726,709	51,726,709	520,720,503
	5302174	5302,174	5302.174	5302,174	5302,174	5322,174	5302.174	5302174	5302174	5302,04	5302,177	${ }^{5302,174}$	53,626038
	\$129,503	5129,503	5129,503	\$129,593	5129,503	5129,503	5129,503	\$129,03	5129,503	5129,503	5129,503	512,.503	51,54,038
so	50	50	50	so	so	so	50	so	50	50	10	50	so
so	50	50	so	50	so	50	50	50	so	50	${ }^{80}$	50	50
50	50	so	so	50	so	so	so	50	50	50	50	so	50
57, 188,46	575.915.165	577,641,874	\$70,369,582	581,095,291	582,82,000	581,54,7,709	\$85,275,17	588,002,126	589,728,835	\$91, 5 5,54	\$93,182,252	594,903,961	591,983,961
514,150,500	514,452,674	54,734,849	515.057.023	S15,359,197	515,661,371	515,963,545	516,265.719	516,567, 873	516,870,167	\$17,172,241	S11,774,915	\$17,776,589	\$11,776,519
St,76, 189	\$1,909,692	55,039,195	55,168,998	55,798,731	\$5,47,705	51,557,108	58,686971	55,815,214	55,945,717	36.075.220	56,204,23	\$6,334,227	\$6,334,227
593,119.145	595,277,531	\$97, 133,917	599,591,303	\$101,752,689	slo3silioy	\$106,069, 69	\$108,227,817	$5110,386,733$	5112,54+5619		3116861330	\$119,009,776	\$119.019.776
($56,433,859$)	($56,569,485$)	(56,711,34)	($56.856,3.34$)	($57,004,575$)	(57,156003)	($57,310,643$)	(57,468,79)	(57, 62, 317)	(s7.993,957)	(37.961,193)	(88.31.840)	(198305,685)	(58305,685)
586,683, 287	S88,703, 045	5 $50,721,607$	\$92,737,963	\$8, 7, 78.114	596,735,067	598,788,818	\$100, 789,368	\$102,786,766	\$10, 780,862	S106771,807	5108,729,590	5110744092	S110741,092
	587,605,166	\$89,716,325	591.731,282	593,743,037		\$97,786,942	399,739,093	S411,38,042	\$103,753,769	5105,76, ${ }^{\text {a }}$	5167,733,618	S10, 2, 72, 821	
	$1.60{ }^{\text {P }}$	1.60\%	1.60%	1.60\%	1.60\% \%	1.60\%	1.60\%	1.60\%	1.60\%	1.60\%	160%	160\%	
	250\%	2.50\%	250\%	250\%	2.50%	2.509%	250\%	250%,	2.5000	2.50\%	2.50%	2.50\%\%	
	250\%\%	2.50\%	2.50;	$2.50{ }^{\circ} \mathrm{B}$	2.50\% 6	250:	2.50\%	2.56\%	2.50\%	250:\%	2.50\%	2.50\%	
	6.24%	6.24\%	624\%	624\%	6.240%	624\%	6.246°	624\%	6.24\%	624\%\%	677\%	$6.24{ }^{\circ}$	
	$1.3 .4{ }^{4}$	134\%	134\%	13.3*	1.34\%	1.34%	1.34\%	1.34%	13:306	134\%\%	1.34%	1349\%	
	3456,33	\$166,834	5177,319	5487,787	5498,298	\$108,673	5s19,091	5529,493	\$339,877	3sso,245	\$560,997	\$570,932	56,165,419
	598,076	51040333	\$102586	5104.836	5107,082	5189325	5111.564	s113,799	S116,031	5118,760	\$120, 48	\$122,06	\$1,32,082
	3531,469	3657,167	\$379,505	${ }^{3592}$ 2,623	5655321	\$617,988	5630.655	\$643.292	3655,509	3668, 010	5631.031	S 693,697	57,450,501
	598,918	\$tal,2io	\$103,522	\$105,823	3108,127	3110, 29	\$112,732	Stis, 034	S117,336	5119,638	\$121,94	\$124,243	51,338,966
	529,180	530,110	530,739	\$31,369	531,988	532,628	533,297	533,887	53,516	[33,146	\$33,776	536,485	5395.311
	510,219	510,193	510.763	511,038	511,308	511,578	511,847	512,117	512,387	\$12,657	512,927	513,196	5ti0, 49
	514,480	\$14,4,40	\$144,480	314,480	514,480	\$1+4,480	\$14,480	S14,450	314,480	S14\%,480	514,480	$514+480$	\$1,733,765
	31,000	51,000	51,000	51,000		51,000	\$1,000	\$1,009	51,003	51.007	S1,040	11,000	512.003
	5884.107	5287,309	5290310	3293,712	\$296,914	3300.115	3303,317	\$306,518	\$309,720	5311292	5316.123	5319,323	53,620.392
	5838.516	\$854,476	3870,415	388633	3902,231	3918.113	5993.972	3949810	3965629	5381,227	\$997.20s	51.012962	S11,111,093

Begirsing 	$\begin{gathered} \text { Forctart } \\ \text { Iza } \end{gathered}$	Fractout形	$\begin{aligned} & \text { Fortowt } \\ & \frac{\mathrm{Nax}}{} \end{aligned}$	$\begin{gathered} \text { Ferreart } \\ \text { AlII } \end{gathered}$	Forctout	$\begin{gathered} \text { Farcuit } \\ \text { imp } \end{gathered}$		$\begin{gathered} \text { Fetcout } \\ \text { dixz } \end{gathered}$	$\begin{aligned} & \text { Ferecart } \\ & \text { Sar } \end{aligned}$	$\begin{gathered} \text { Forrasest } \\ \text { and } \end{gathered}$	$\begin{aligned} & \text { Fertsust } \\ & \operatorname{Now} \end{aligned}$	$\begin{aligned} & \text { Farrasest } \\ & \text { Dxic } \end{aligned}$	
	51,614,156 (51,614,195)	$51,61+156$ ($51,614,156$)	51,64,156 ($51,614,155$)	\$1.614,156 ($51,614,186$)	$31,614,156$ ($51,614,156$)	S1,614,156 ($51,614,156$	51,614,156 ($51,644,156$)	$\begin{gathered} 51,614,156 \\ (51,61,156) \end{gathered}$	$\begin{gathered} 51,61 f, 195 \\ (51,664,156) \end{gathered}$	$\begin{gathered} 51,61+, 156 \\ (51,61+156) \end{gathered}$	$51,61+156$ $(51,51,56)$ ($51,61,156$)	$\begin{gathered} 51,61+, 156 \\ (15,61+1.56) \end{gathered}$	519,369,874 ($519,369,87$)
	5282,477	5282,477	\$282,477	5282,477	\$282,477	3252,477	3282, 477	5232, 77	5282,47	. 5282477	5282,77	$5282+77$	53,389,728
	(5282,777)	($\$ 282,377$	(3222,477)	(3282, 517)	(5282,477)	(5282,47)	(3282,47)	(5282,477)	(5282,477$)$	(5222,477$)$	(5282, 577)	(5282, 777	(53, 38,788)
	5121,062	5121,062	5121,062	\$121,662	\$121,062	\$121,062	\$121,062	\$121,062	\$121,062	S12, 062	5121,052	5121,052	\$1,352,41
	(5121,063)	(5121,062)	(5121,062)	(5121,062)	(st21,062)	(5121,062$)$	(1121,062)	(5121,062)	(5121,062$)$	(s121,062)	(5121,052)	(5121,062)	(51, 5152.741$)$
	\$1,61, 1 , 56	51,614,196	51,61, 156	51,614,156	51,64,156	\$1,64,136	\$1,61,156	\$1,61,1,156	\$5,614,156	\$1,614,136	51,614,156	\$1,614,156	519,36,874
	5282,771	5282,47	5282, 77	5282.477	5282.477	5282.477	5282.477	5284, 77	5282, 17	5238277	5282, 777	5282,77	33, 38,728
	5121,062	\$121,062	5121,062	5121,062	st21,052	5121,052	5121,062	5121,062	5121,062	\$121,062	5121,052	S121,062	\$1,452,41
so	50	so	so	so	so	so	50	50	50	50	50	50	50
50	50	50	50	50	50	50	so	so	50	50	so	so	so
50	50	50	50	so	50	50	50	50	50	50	50	50	50
594,503,961	\$56,53,117	593,137,273	\$99,71,430	\$10t,365,386	\$102,999,42	\$107,593,988	5104,208,054	5107,822,211	5109,466367	\$111,050,523	\$112,66,679	5114,217,833	511+,278,835
\$17,776,589	518,059,065	518,34,543	518,52, 021	518,906,498	519,188,975	519, 71.453	519,733,930	\$20,036,407	\$20,314,885	520,601, , 62	520,83,839	\$21,16, 317	521,16, 317
\$6,334,287	56,45,238	56576350	56,607, 12	56818,474	56,90,335	57,000,597	\$7,181.659	57,302720	57,42,782	57, 54.8 .84	57,659,906	57,785,967	57,786,267
\$119.019,776	\$121.037, +7	\$123,053,167	\$125,072.862	5127,090,557	S129 1082, ${ }^{\text {a }}$	\$131.1239.98	$51331+3.64$	5133.161338	\$137,179031	$\frac{5139.196,729}{}$	S111.214.124	5143.232119	514,2,22119
(58.305 .688)	($88,482,713$)	(88.662734)	(58.845.749)	($59,031.755$)	(59,20,756)	(59,412,749)	(59, 007.735)	($50,805,713$)	(510,006695)		($510,412,507)$	(510,627,557)	(510,627,557)
\$110,714,092	\$112,551,798	514,392,432	5116,227,14	3118,038,802	5119,887, 997	5121.731.193	3123.35,963	\$125:335.623	\$127,172,39	\$128,986,079	s130,796.817	5132604.56	\$132,641,562
	\$11,64, 133	3113,773.595	3115, 309773	S117122.988	1118,973,19	5120,500313	5122.24.594	\$124,44,767	3126,263987	3128.079.214	\$129,891.48	\$131,700,681	
	1.60\%	1.65\%	1.60\%	1.60%	1.60\%	160%	1.60%	1.60%	1.60\% 6	1.60\%	1.50\%\%	1.66%	
	2.50:\%	2.50\%	2.50\%\%	2.50\%	250\%	250\%	250:\%	2.50%	2.50\%	2500°	2.50%	$250{ }^{\circ}$	
	2.50%	250\%	2.50\%\%	2.56\%	2.59\%	2590\%	2.59\%	2.50\%	2.50%	$25^{3} 0^{\circ}$	250\%	2.50%	
	6.24!	6.24\%	6249\%	6279\%	6399\%	629\%\%	6.24\%	$6.24{ }^{\circ}$	$6.24{ }^{4}$ *	62.4%	$624+5$	624**	
	134\%	13.34°	1.340%	1.34\%	1.34\%	134\%\%	134\%	$13.3{ }^{\circ}$	134%	134\%	134\%	134\%	
	\$510,884	\$590,454	sematme	560, 547	5619,070	5628,578	5635,070	5617,59	5657,008	S656,453	5675,883	3685,298	37,588,801
	5124,84	S125,801	5128,955	513t,003	\$133,052	si3s,095	S137,135	\$133,172	514,205	5143,235	\$145,262	5147,285	51,633,47
	5705,728	5717,355	\$728.933	57.0 .552	5332122	5763.673	5775,216	5786,719	5798,213	5802,689	3822, 215	81832,583	39,201,488
	\$126,545	512,697	5130,850	\$133.002	5135.154	\$137,306	\$139,459	\$141.511	\$43,763	\$145,915	S148,067	sisc,2zo	51,653,589
	537,095	\$37,623	\$38,212	\$38,800	\$39339	539,97	540,568	541,154	541,743	542,331	542,920	543.503	S183,25s
	\$13,49	\$13,701	\$13,953	514,20s	511,57	314,710	\$14,962	\$15,214	\$15,46	S15,718	S15,971	\$16, 213	5178,023
	\$184.523	5184.523	5184,523	\$184,523	5184,523	5184,523	5184,523	5184.523	5184,523	5184,533	5184,523	\$184,523	52,24, 282
	S1.000	S1,03	S1,000	51,000	51.500	S1,000	51,00	51.000	St,090	51.023	S1,00	S1,009	St2,003
	5362.352	5365,545	536.538	5371,531	3171.524	8377,516	5380,509	3383,502	5886,995	3339,483	5332.881	5398.474	54.588.155
	31,068,280	31,032.900	51,097501	51,112,083	51.122 .646	\$1, $1+1,190$	51.35.715	51.170.221	31,18,708	St.199.177	\$1,273,625	51,228,057	513,780.103

Exginning Bytnes	$\underset{\substack{\text { Faccout } \\ \text { int }}}{ }$	$\begin{gathered} \text { Fascast } \\ \text { Estb } \end{gathered}$	$\begin{gathered} \text { Forwart } \\ \text { Mar } \end{gathered}$	$\begin{aligned} & \text { Fericius } \\ & \text { AII } \end{aligned}$	$\begin{aligned} & \text { Farcour } \\ & \text { Six: } \end{aligned}$	$\begin{aligned} & \text { Foricust } \\ & \text { tum } \end{aligned}$	$\begin{gathered} \text { Ecrecuive } \\ \text { tat } \end{gathered}$	Farsciurt A농	Forkens S	Forcourt 여	$\begin{gathered} \text { Fcrecous } \\ \operatorname{Nax} \end{gathered}$	Fcreard Des	Yiur End Ictal bilaric
	$51,614,156$ ($51.615,156$)	\$1,614,156 (51,614,156)	$\$ 1.614 .156$ ($\$ 1,614,156$)	51,614,156 $(51,614,156)$	\$1,614,156 ($51,514,186$)	\$3,614,156 ($\$ 1,614,156$)	51,614,156 ($\$ 1,615,156$)	51,614,156 ($51,615,156$)	$51,614,156$ (51,615,156)	$\$ 1,614,156$ (51,614,156)	\$1,64,156 (51,614,156)	\$1,614,156 (51,61,1,156)	519,369,874 ($519,369,874$)
	5282, 477	5282,777	(282, 277	(282, 377	(5282,477	528, 5177	5282,47	S232, 777	5282,777	\$282, 277	\$382, 777	5132,777	53,339,788
	(5782,477)	(5282,4777$)$	(5282,777$)$	(5222,677$)$	(5282,47]	(5282,477)	(5282,477)	(5382,477$)$	(5282,477)	(5252,477)	(3282,477)	(3222,577)	(53,359,278)
	5121,052	5121,062	5121,062	5121,062	5121,062	5121,052	5121,062	5121,062	5121,062	\$121,662	S121,062	S121,062	51, 522,74
	(5121,062)	(5121,062$)$	(5121,062)	(5121,062)	(5121,062)	(5121,0627$)$	(1121,062)	(5121,062)	(5121,062)	(5121,062)	(5121,062)	(5121,062)	($51,452,741$)
	31,614,156	51,61,1,156	\$1,64,156	51,614,156	51,664,156	51,614,156	\$1,614,456	\$1,614,156	\$1,614,156	51,64,736	51,61, 156	\$1,614,156	\$19,36, 874
	\$232,77	5182,477	5282,477	5282, 77	$5282 .+77$	5282,477	5282,577	5282.477	5282,177	\$282,477	5282,477	5282,177	53,389,728
	\$121,062	5121,052	5121,052	5121,052	5121,062	5121,062	5121,062	\$121,062	5121,062	5121,062	5121,062	5121,052	\$1,432,74
so	50	so	50	so	so	50	\$0	50	50	50	50	so	so
50	50	50	50	so	so	50	50	50	59	50	50	s3	so
50	50	30	so	so	so	50	50	50	50	50	50	53	30
5114,278,835	515,592,992	5117,507,2,48	519,121,304	\$120,735,460	5122,399,916	\$123,963,773	5125,571,929	5127,192,085	\$128,606,241	5130,420,397	\$132,03,554	5133,448,710	513,64,710
521,166,317	521,48,794	521,31,271	522,013,79	522,296,226	522,573,703	522,86t,181	\$23,143,558	523,26, 136	523,708,613	523,991,090	\$27,27, 568	521,586,045	324,55,045
57,786,967	57,08,029	38,029,091	S4.150.152	S88,271.24	\$8.392.276	58.313338	38.64,399	38,755,461	58.876.53	\$8,977,384	52,118.646	59,239,708	59,339,708
\$113.73, 119	\$1+5.219.815	\$117,267,510	\$14,9,235,203	5111,302,900	5133,310.598	\$155,388,291	5157.355,986	5139373 ,88	5161.391377	5163.099 .072	5165,266.767	3167,41.462	5167.41.462
(510.627.557)	($510,840,501$)	(511.056,437)	($511,275,366$)	(511,497,288)	(511,722 203)	(511,950,11])	(512,181012)	(512+14,906)	(512,651,792)	(512.891.672)	(153, 134.541	(513,380.410)	(513) $380+10)$
5832,601, 362	\$1134,693 314	\$136,211,073	\$138,(m), 839	5139,8015,612	S141,598,392	S143,38,180	\$115, 174,974	5146,988,776	5118,739,581	5150.517,300	S152292223	S194,054,053	S154,054,033
	\$13,506,938	\$13,30,193	\$137,110, +36	5188.907,726	SH0,702,00?	5112, +93.286	\$14.312.577	5146066.875	\$117, $81+2,180$	\$192,628,492	S151,04, 81	5153,178,133	
	1.60%	1.arso	1.60\%	1.56\%	1.60\%\%	1.60\%\%	1.6ero	1.00\%	1.00:\%	1.60\%	1.65\%	1.6\%	
	230\%\%	2.50\%	2.50\%\%	2.50\%	2.50\%	2.50\%	2.56\%	2.50\%	250\%	2.50\%	230\%	2.54\%	
	2.50\%	2.50\%	2.50\%\%	250\%	2500%	2.50%	250\%	2.00\%	2.56\%	2.50\%	$2.50 \% \%$	2.50\%	
	624\%	6.24\%	6.24\%	624\%	624\%:	624\%	624\%	624\%	6.24\%	624\%	6.24\%\%	624\%	
	134\%	134\%\%	134\%\%	134\%	134\%\%	134**	134\%*	134\%	134\%	139%	134\%	1.34\%	
	5694,695	\$70,079	\$713,47	572,799	\$732,135	5711,466	3750,762	3760,951	3769,325	\$778,534	5787,827	5997,054	88,982,217
	519,305	\$151,322	\$153,335	515S3,45	5157,352	5159,355	\$161,35	516,351	5165,345	5167,335	5169,321	\$177,394	51,921,025
	3844,002	3855,401	${ }^{5866,782}$	5878, 141	\$838, 887	598.8811	59\%2,116	\$923,403	5931.670	5945.918	5937,148	5\%88,359	510:876.242
	\$152,372	5134,524	\$156,676	3158.828	\$160,981	1863,133	S15s,28s	\$867,37	\$169.589	5771.742	5173,594	\$176,46	51,970,507
	54;,096	54,685	515,273	54,862	\$45,450	847,039	\$47,627	548,216	518,804	519393	549,981	590,570	5567,999
	516,475	516,727	\$16,979	\$17,232	\$17,48	517,736	517,988	s18,241	518,493	\$18,745	518,997	519259	5214347
	5221,008	5221,008	5221,008	\$221,038	5221,008	\$221,003	\$221,003	5221,008	\$221,008	5221,098	5221,008	\$221,008	\$2,62,091
	51,000	51,000	51.000	s1,00	51.000	51,009	51,003	51,000	\$1,6\%	S1000	St,000	51.030	\$12,003
	8131,951	5237,944	\$40.937	3413,930	$51+6,9723$	541,916	5152,508	\$153,901	5188,894	5461.887	\$164.880	54678873	55, 516.94
	51.278.952	51.293 .345	51.3077319	\$1,322074	51,36410	\$1,350,727	51.365,025	51,379304	S1.393.564	S1,407,605	51,422028	51,33632	816,29, 185

Florida Public Utillies Company

Ga tulity Atess and Rephze Disective

	2023	Sterves		mans	Mas	SErvicts	Maln's	A 4 R	guarb	$\begin{gathered} \text { BOLLARS } \\ \text { PER } \end{gathered}$	tax	guard factors	TMPICAL ANMUAL	amaual.	average MONTEIY
scimbue	Therns	cos ${ }_{\text {\% }}$		cos \%	cos\%	REVREQ	revreo	mevreo	beybeo	theram	factor	PER ThERM	niersis	cosf	\cos T
RES. 1	1,520,128		27.37! 6	120\%	120\%	\$624,324	515¢, 816	\$11,761	ST92,991	50.52150	1.00503	50.51422	54	528.20	5233
RES.2	5,975,74		36.99\%\%	4.71\%	4.71\%	5832265	5614.476	546,086	51,422.827	S0.29931	1.00503	50.25107	159	53992	53.33
res. 3	12,959,345		19.15\%	10.05\%	10.05\%	\$136,720	\$1,399,488	598,212	51,84,419	50.42332	1.00503	50.14304	${ }_{655}$	395.11	\$7.93
2.5.5G	94299		1.09\%	0.05\%	0.s\%	524,807	s12,195	5915	33,917	50.3937	1.00503	50.39572	108	543.16	53.an
GS-4	691,996		3.10\%	0.600°	0.60\%	570,771	578,777	55,863	\$53, 811	S0.22372	1.00503	S0.2214	322	512.3	56.0
O5.2	7,230,026		514\%	$6.03{ }^{\circ} \mathrm{b}$	6.03\%	591,526	5785,379	\$88,503	5998,808	50.12935	1.00503	30.13050	2902	5378.78	531.56
GS-3	11,772,098		3.40\%	957\%	9.57 \%	\$77,636	S1,247,933	593,595	\$1,49,164	s0.1205s	1.00503	59.12115	7312	\$885.90	57383
as-4	24,94,789		3.65\%	19.88%	19.88\%	583,40	52,591,477	\$194,361	52,869,278	0.11503	1.00503	0.1156	17,805	52,05832	5771.53
Gs-5	12,40,603		0.55\%	9.71\%	9.71%	512.882	51,265,339	594,900	51,372,721	50.10938	1.00503	50.10993	110,084	\$12,101.98	51,008. 30
Gs-6	11,918,15s		0.21\%	9.23\%	923\%\%	54,846	51,203,083	590,323	51,29, 166	50.10592	1.00503	50.00347	350,54	538,373.62	53,19773
6s-7	9,200,735		0.05\%	7.06\%	7.05\%	51,835	5920,816	509,061	5991,712	50.10709	1.00503	50.10763	771,728	58,05832	56,921.53
G5.8(A.D)	22,737,546		0.05\%\%	17.26\%\%	17.26\%	5,110	52,299,840	5168,738	52,419,698	50.10642	1.00503	50,0009	2,842,207	5301,48232	525,331.86
condint	9,502,159		0.17\%	356\%	388\%	\$3,913	\$+66, 373	534,978	5505,264	50.05317	1.00503	50.0534	588,968	529,87050	52.489 .24
conemy	1.169.075		901\% ${ }^{\text {\% }}$	0.89\%	0.89\%	5221	5115,843	38,688	\$124,732	\$003492	1.00503	50.03535	370,799	529,08232	52,42.53
contol	99,723		$0.02 ? 6$	$0.08{ }^{\text {d }}$ \%	0.08%	\$120	59,966	5747	511,134	50.114	1.00503	50.11221	3,439	5385.85	532.15
conesg	62,63		0.51%	0.06\%	0.06\%	511,731	\$7,342	5351	\$19,624	s031301	1.00503	5031459	207	565.69	\$5.12
hotal	132,791,038		100%	10	1098	2, 281,045	13,034,518	577,591	16,293,185						

Digivring Bulance	$\begin{gathered} \text { Farcant } \\ \operatorname{lin} \end{gathered}$	$\begin{gathered} \text { Fertiont } \\ \text { Fsb } \end{gathered}$	$\begin{aligned} & \text { Foratast } \\ & \text { Mar } \end{aligned}$	$\begin{aligned} & \text { Factoser } \\ & \text { Any } \end{aligned}$	$\begin{aligned} & \text { Fesecart } \\ & \text { May } \end{aligned}$	$\underset{\substack{\text { Forcast }}}{\substack{\text { ent }}}$	$\begin{gathered} \text { Factant } \\ \underset{H}{2} \end{gathered}$	$\begin{aligned} & \text { Fartayst } \\ & \text { Atas } \end{aligned}$		$\begin{gathered} \text { Foricians } \\ \text { Dat } \end{gathered}$	$\begin{aligned} & \text { Foricurt } \\ & \mathrm{Navy} \end{aligned}$	$\begin{gathered} \text { Forecant } \\ \text { Des } \end{gathered}$	$\begin{gathered} \text { Yers Ent } \\ \text { Italimane } \end{gathered}$
	51,614,196	51,614,156	51,61,156	51,61,156	\$1,614,156	51,614,156	\$1,614,136	51,61,156	\$1,614,156	51,614,156	\$1,614,156	\$1,614,186	519,369,874
	(51,614,156)	($51,61+1569$	(51,54, 1566)	(51,517,156)	($51,614,185)$	(51,614,156)	(517,61+1, 56)	(51,54, 1566	($51,614,566)$	(51,614, 566)	($51,614,186)$	(51,61+,56)	($519,36,8774$
	5282,77	5282, 77	$5282+77$	5282,47	5282.477	5282, 27	5282.477	5282,477	5282.47	5282,477	5282,477	5282,77	53,389,728
	(5282, 477)	(5282,777$)$	(5282,777)	(5282,47)	(5882,477	(5282, 477)	(5282, 77)	($5282,+77)$	(5282, 777)	(5282,477)	(5282,477)	(5282,477)	(33,769,788)
	5121,062	5121,062	5127,062	5121,062	5121,062	5121,062	S121,062	5121,062	5121,062	\$127,052	\$121,062	5171,062	51,42,711
	(5121,062)	(51212,063$)$	(5121,062)	(5121,062)	(5121,062)	(51212,0627$)$	(\$121,062)	(5121,062)	(5121,062)	(5121,062)	(5121,062)	(5121,052)	($51,442,411)$
	51,64,156	51,614,156	51,614,156	51,61+,156	\$1,61, 156	51,61, ,156	51,61,156	51,614,156	\$1,61,156	51.614,156	51,614,156	\$1,61,156	519,36,374
	5282.477	5282,477	S282,477	5282,47	5282,477	5282,47	5282,477	5282,477	5788.477	5182,477	5232.477	5282,477	53,389, 728
	512,,062	5121,062	\$121,062	\$121,062	\$121,062	5137,062	5121,062	5121,052	\$111,062	s121,0\%2	\$121,062	5121,052	$51,452,741$
50	50	50	so	so	50	50	50	so	50	50	so	50	so
so	50	50	50	50	50	50	50	50	50	50	\$0	so	54
50	50	50	50	50	50	50	50	so	50	50	so	so	so
5133,68,710	s135,262,865	\$134,877,022	\$138,491,178	\$140,105,335	314,719,491	514,33,647	\$14,977,803	3146,561,89	\$148,176,116	5149,790,272	\$151.404.428	5153,018,584	5153,018.58+
52, 585,045	524,838,527	\$23,121,000	\$25,403,477	523,68,954	525,969,33	525,259,909	526,533,186	526,81, 8 ,84	527,098,341	527,360,318	527,663,296	527,94,773	527,945,773
59,23,708	59,36,370	59,481,831	59,602,803	50,723,95s	59,15,016	52,66, 078	S10,087, 40	\$10,208,202	sto 329263	510, 50,325	510.571317	510,692,48	510,622,418
S167,4+7,67	\$169,662158	S177,479,833.	5173, 197.548	5172,515,243	5177,532,939	\$170,550,63	\$181, 588.329	5183, \$85,024	5185, 03.73	\$187,621,45	S1899,639,110	S191,556,805	Stili,s5,805
[$513,350,410]$	($513,629,268)$	($513,881,119)$	($514,135,964$)	($51+393,801$)	($514,651,63$)	(514,918,45]	($515,185,769$)	($515,55,078$)	($515,727,880$)	(516,003,671)	(516,282, 62)	(516,56, 242)	(516,56, 242)
S154, 1064,053	S155,832,887	sis7,998,734	5159,3661.585	S161,121, +13	S162,878,508	3161, $6,32,180$	3166,383,960	S168,130,946	S169,875, 8 +10	\$177,6177,741	5173.356,649	\$175,092,563	
	Sist, 818,771	S156,75.812	3158.160,159	\$160,21531	3161.459375	\$16,735,214	\$165,507,620	5167,237,03	5169,003,393	5170,766,790	5172, +87,195	S177,27, 6006	
	1.60%	1.50\%	1.66%	1.66\%\%	1.609%	1.60\%	1.60\%	1.50\%\%	1.60\%	1.60\%	1.607\%	1.60\%,	
	$2.50{ }^{\circ}$	2.50\%	2.50\%\%	2.50\%	2.50\%	2.50\%	2.50\%\%	$2.50 \% 3$	2.50%	250\%	2.50\%	2.50\%	
	2.50%	250\%	230%	2508	$2 \mathrm{SO}^{\text {a }}$	250\%	250\%	2500°	250:6	2.30.0	2.50\%	250\%	
	6.24\%	6.24\%*	624**	624\%	629?	624\%	624%	624\%	624:	624:	624\%	$6.24{ }^{\circ} \mathrm{F}$	
	134**	134\%\%	13.40	134.\%	13.45	$13.3{ }^{\text {\% }}$	134**	135\%	13.40	1.34\%	134\%	1.34*	
	\$806,266	5815.462	5824,643	5833,608	5822,958	\$852,62	S86,2t0	\$870.313	5879,400	\$838,472	\$897,528	5906.569	\$10,278,721
	5773,284	5175,261	5177,234	5179,203	5181.170	5183,133	5185,693	\$187,049	5189,002	5100.952	5192.698	599,841	\$2209,120
	3979,530	\$990,723	51,01, 877	51,013, 12	51,02, 128	51,03, 235	51,046 3 , 3	\$1,557,362	31,068,402	\$1,079, 174	51,030,136	St, 101,110	S12, $87,8,11$
	5178,198	5180,950	\$182,93	\$18,655	5185,07	\$188,959	\$19,112	\$193,264	\$195,416	5197,568	5199,720	5201,873	52,280,435
	551,188	512,747	\$22,335	\$52,924	533,512	\$54,101	\$44,659	S55,278	5s5,866	556,45	557,043	557,632	5652,742
	\$t9,502	\$19,34	520,005	520,238	\$20,510	520,763	S21,015	521,267	\$21,519	521,772	522027	522,276	5250,465
	5256,73	5256,773	5356,773	5256,773	5236,773	5386,733	\$236,773	5256,773	\$256,773	5256,73	5256,73	5256,773	83,081,281
				S1,600	51,000	51,000	St,000	51,003	\$1,000	\$1,000	51,000	51,000	S12000
	5506.632	5509,625	5912.618	5515.510	5188633	\$521.996	5924.569	5527,582	5330.373	\$83,968	5336, 561	5339,554	\$5,27,113
	51,486,182	\$1,900,378	\$1.514, 998	31,532,622	31.512,731	51.556831	81,50,892	51,58,941	51,598,977	\$1,612992	51,626,987	51,60,563	518,761.954

Brejinexing Buym	$\begin{gathered} \text { Fareasir } \\ \text { kan } \end{gathered}$	Forceas Ext		Ferecast Am	Fateart Uyr	$\begin{gathered} \text { Fcrectur } \\ \text { Iim } \end{gathered}$			Forecase Seto	Forecurt $\mathrm{Q}: 1$	$\begin{gathered} \text { Fraceart } \\ \operatorname{Nan} \end{gathered}$	Forecosy DAi	
	51,6! 4,156 ($51,61 \pm, 156$)	51.614,156 ($51,614,156$)	\$1,614,156 $(\$ 1,61+1 \$ 6)$	$\$ 1,61+, 156$ $(51,614,156)$	\$1,614,156 (51,614,156)	$51,614,156$ (51,614,156)	$\$ 1,614,156$ ($51,614,156$)	$31,614,156$ (51,617,156)	$51,614,156$ ($51,614,156$)	$\$ 1,614,136$ ($51,614,156$)	$51,614,156$ ($\$ 1,614,196$)	$51,614,156$ ($51,614,156$)	$\$ 19369.374$ ($519,369,874$)
	\$232, 177	5232,777	(282, 771	5282+77	(282, ${ }^{\text {c }}$ (7)	(282, 77	(588, 777	(5232,477	(5182,777	(5282,477	5282, 277	(5282,777	33,389,728
	(5282, 5777	(5282, 777)	(52822,477)	(5282, 777)	(5282,477$)$	(5282,477$)$	(52824,777	(5282,4777	(5282, 477)	(5282,477)	(5282.477$)$	(5282,777$)$	($53,389,728$)
	5121,062	5121,062	S121,062	\$121,062	5121,062	5121,052	5121,062	3121,062	S121,062	5121,062	\$121,062	5121,052	31,452,74t
	(5121,062)	(5121,062)	(5121,062$)$	(5121,062)	(5171,062)	(5121,062)	(5121,0627$)$	(5121,06?)	(512,062)	(5121,062)	(5131,062)	(5121,062$)^{\text {a }}$	(51, 452,741$)$
	\$1,611, 5 56	\$1,614,156	\$1,641,56	51,61, 156	51,61+,186	51,61+,156	51,64,156	51,614,156	51,61, 156	51,61,1,156	51,61,136	51,614,156	519,36,874
	5232477	5282,477	5282,477	5282, +77	5282.477	5282,477	5282,47	5282,477	5232,47	\$232,477	\$282,477	\$282,477	\$3,38, 228
	5121,062	5121,051	5121,052	5121,062	5121,062	S121,052	5121,052	5121,022	5121,062	\$121,062	5121,062	\$121,062	\$1,52,741
50	50	\$0	50	50	50	so	so	s0	so	50	50	50	50
50	so	50	50	so	50	so	so	so	so	50	50	sa	50
50	so	50	50	so	so	so	50	50	so	\$0	so	\$0	50
\$153,018,58	\$15¢,632,740	\$156,246,897	5157,661,053	\$159,775,209	\$161,039365	5162,703,521	5164,317,678	5165,931,834	5167,54,980	5169,160,145	5170,774,302	5172,388,49	5612,388,459
527,945.773	528,228,250	528,50,728	528,793,205	522,075,682	529,388,160	529,640,637	520,923,144	530,205,592	530,483,069	530,70,546	53,053,024	531,33,501	531,335,501
510.692,48	510,813,310	\$10,94,572	511,05s,634	511.176 .695	511,297,757	511,418,819	511,53,380	511,600,942	541,72,004	511,903, 666	512,024127	\$12,14.189	512, 55.189
5191.586.805	\$199,67,501	\$195,692,1\%	5197,709,891	\$199,727,586	5201,75,282	\$203,763,977	\$209,780,672	\$207,7983367	5209,816,063	\$811,833,788	5213,851.433	S215,269,488	5215.899.148
(516,56, 242)	(516,83,905)	(517,136,78)	(517, 27.5811$)$	($517,721,293$)	(518,018,038)	($518,317, n$)	($518,620,506$)	(518,926,210)	(519,231,946)	($519,56,656$)	($11.886,3,38$)	($520,179,054$)	(520,179,054)
5175,(92),563	5176,825,485	S178, 5 S5, 114	5180,282,311	\$182,066,294	S183,727,24	5185,45,202	5187,160,166	5188.8772 .338	5150.581 .116	5192287,102	5193,990,993	\$195,6\%0,095	\$195,690,095
	5173,995,024	S171,680, 30	5179,418,883	3181,474,327	5182866,769	3184,586,23	\$186,307,64	5188,066,152	\$189,726,627	\$191, 33,108	519,138,998	S194,4+0,093	
	$1.60{ }^{\circ}$	1.60\%	1.cop	1.66%	1.60\%	$1.60^{\circ}{ }^{\circ}$	1.60\%\%	1.60\%	1.60\%\%	1.60\%	1.60%	1.60%	
	2.50\%	2.50\%*	2.50\%	$2.59{ }^{\text {a }}$ \%	2.509\%	2.500%	250\%*	2.507\%	250\%	2.50\%	250\%	250\%	
	2.50\%	2.50%	250\%	250\%	2.55\%	2.50%	2.50\%\%	2.50\%	2.50:\%	2.50\%	2.500;	2.50%	
	624\%	624\%	6.24:3	624\%	6.24\%	6.24\%	6.24\%	624\%\%	624\%	6.24\% ${ }^{\text {\% }}$	624\%	624\%	
	134\%	134\%	134\%	134\%	134\%	134%	134\%\%	134\%	1.34\%	134\%	134\%	134\%\%	
	5915,593	5921,603	5933,597	5912,573	5981,538	\$56,485	\$569,716	5978,332	\$987,232	\$986,117	51,007,985	51,03, 3 +0	\$11,578,315
	5196781	5198.717	S20,630	5202588	5234506	5205429	5208,39	5210.265	5212.178	S214,037	5215,593	5217.896	52,888, 130
	31.112,374	\$1, 123,320	31, 131,2+7	51,143,135	S1,36,044	51,66,9]	51,17,765	511,888,597	St.198, 119	S1.20, 2,04	\$1,220980	S1,231,736	514,066,745
	5201,025	2206,177	S128,319	5210,481	S212,634	\$214,786	5216,938	S219,093)	\$221,242	\$223,395	5225,47	5227,699	\$2,590,43
	558,220	559,809	\$59,397	559,986	560,574	\$65,163	561,751	552340	\$52,928	563,517	564,105	561,694	5737,485
	522.528	522,783	523,033	323,285	523,537	533,789	524,041	S21,294	524,545	524,773	523,050	\$29,302	5286,984
	5201,821	\$291,821	5291,821	5291,821	5221,521	5291,521	5291,821	5291,821	5291,821	5291.821	5291,821	\$221,821	53,500,851
	51,000	51,000	51,000	58,000	S1,000	5n, \times cos	S1,000	\$1,000	51,000	\$1,000	S1,000	S1,000	512,003
	5577,594	3580.887	5883.880	5586.573	5848,566	5592359	399,592	3598,345	\$601,338	S60, 530	5607.523	S510, 116	57,122,663
	51,589,969	S1,703,507	\$1,717,827	\$1,731.728	51,755,69	31,759,772	51,73, 116	51,787,341	51,80,948	51,84,735	51,828,603	51,882,253	\$21,195, 108

Florida Public Utilites Company Oss Lility Access and Reptice Pirective Fat Thtol R2x					21,195,408										
1. $1 / 1 / 31-12 / 31 / 3] \mathrm{Q}$ Mrins Services M\&R Nit	Maita \& Strvic	Revemse Requi													
2. TRUE-UP from Prio		2eded tru 122		5	-										
3. 2031 Q (x) iffod 1 dx入145 Senvices Mt:R N	Services Replace	equicremers		$\begin{array}{r} \$ 16,966,36 \\ 52,07,57 \\ 51,21,74 \\ \hline 521,195,108 \\ \hline 5 \end{array}$	21,193,40\%										
$\begin{gathered} \text { RaIE } \\ \text { SCHEDUEE } \\ \hline \end{gathered}$	$\begin{gathered} 2023 \\ \text { HIFRUS } \end{gathered}$	$\begin{gathered} \text { SERVICES } \\ \cos \% \end{gathered}$		$\begin{aligned} & \text { Mans } \\ & \text { cosso } \end{aligned}$	$\begin{aligned} & \operatorname{Mik} \\ & \cos 8 \mathrm{o} \\ & \hline \end{aligned}$	SERYICES	$\begin{aligned} & \text { MANS } \\ & \text { REVREO } \end{aligned}$	$\begin{gathered} \text { MKR } \\ \text { REVREO } \\ \hline \end{gathered}$	$\begin{aligned} & \text { GUARD } \\ & \text { REVREO } \end{aligned}$	DOLLADS FER Hhers	$\begin{gathered} \text { TAS } \\ \text { FACTOR } \\ \hline \end{gathered}$	$\begin{gathered} \text { GUARD } \\ \text { FACTORS } \\ \text { PER THERM } \end{gathered}$	TMCAL ANSUAL THERMS	anhual	AVERAGE MONIIEY COSI
RES. 1	1,520,128		27,37\%	1.20\%\%	1.20:\%	\$812,167	5203,998	S15300	51,031,665	$50.6785+$	1.00503	S0.68195	54	536.69	83.05
RES.?	5,975,39		36.995	4.71%	+7198	\$1,032,674	5789,357	\$59,952	51,941,983	50.34088	1.00503	5032061	159	s51.92	\$1,3
RES 3	12,999,345		19.15\%	10.05\%	10.05\%	5368.118	\$1,703,481	\$127,761	52,399,360	50.18515	1.00503	50.18603	653	\$123.73	51031
RES-SG;	96,29\%		1.09\%	0.05\%	009\%\%	\$32,271	st5,86s	\$1,190	519,325	\$0.51221	1.00503	50.5149	109	\$56.14	41.68
08.1	691,996		3.1096	0.60\%	060:0	\$92,064	\$101,599	57,627	5201,350	50.29103	1.00503	50.324	327	59423	37.85
6s-2	7,230,026		4.14\%	6.03\%	6.03%	\$122,666	51,031,681	576,626	51,221,273	50.16892	1.00503	50.1697	2902	5192.74	\$41.06
Gs-3	11,72, 008		3.40\%	9.55\%	9.57\%	S100.995	51,623,403	5121,733	51,846,156	50.15682	1.00503	5015761	7,312	31,152.43	596.04
Gs. 4	24,94,789		3.66\%	19.88\%	19.88\%	5108,545	53,771,189	5252839	53,732,574	0.1996	1.09503	0.15039	17,895	\$2,677.62	5223.14
as-s	12,599,603		0.55\%	9.71%	9.71\%	516,238	\$1,66,049	5123,454	51,78s,40	S0.1429	1.00503	50.1301	10,08+	515,73,18	51,311.93
Gs-6	11,98,855		0210\%	923\%	9.336	56,304	S1,565,008	5117,383	$51,688,753$	50.1470	1.00503	50.4241	350,534	\$49,919.04	\$4.159932
Gs-7	9,260,735		$0.08{ }^{\circ} \mathrm{C}$	7.06%	7.05\%	\$2,387	51,197,857	550,800	\$1,290,033	\$0.13931	1.00503	50.4000	71,728	5103,048.35	59,00.0s
OS. $8(\mathrm{~s}-\mathrm{D})$	22,737,656		0.05\%	17.25\%	17.25\%\%	\$1,44	\$2926,762	\$219,507	53,47,713	50.3884	1.00503	50.13913	2,842207	5395,44320	\$32,953.60
Commint	9,502,159		0.17%	3.58\%	3.85\%	55,090	\$60,693	\$45,502	5657,285	\$0.15917	1.00593	50.06952	\$58,968	536,858,33	53,238.19
conengy	1,469,075		0.01%	0.89%	0.89\%	5287	\$150,997	514,302	5162,286	50.11047	t.0030	50.1102	340,759	537,832.49	53,152.71
COnHe	99,723		0.02\% 6	0.08\%	0.088\%	5546	S12,965	5972	514,483	50.14524	1.00593	50.14597	3,439	5501.94	\$11.83
covesg	62,693		03505	$0.06{ }^{\circ}$	$0.00{ }^{\circ} \mathrm{m}$	5t5,26t	\$8,551	5716	525,528	30.60719	1.01803	50.40924	207	58.68	\$7,06
foral	${ }^{132.792 .038}$		1039	100]	100\%	2,967,357	$16.956,325$	1,271.24	21.185,988						

Tout Quinsed Imextmana

Averae Net Qualifod Imestment

Approved Deprection Rute Nish Approwd Deqrecizion Rut- Sentics

Depretiximen Exprate - strices
Prosty Taxer

Yctal Remon Reguicemzert

[^0]: ${ }^{1}$ Plastic Pipe Institute "Handbook of Polyethylene Pipe", Chapter 1, page 9.
 ${ }^{2}$ As approved in Commission order PSC-2023-0103-FPF-GU in Docket 20220067

