

William P. Cox Senior Counsel Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 (561) 304-5662 (561) 691-7135 (Facsimile)

April 2, 2024

-VIA ELECTRONIC FILING-

Adam Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

Re: Docket No. 20240012-EG: Commission Review of Numeric Conservation Goals (Florida Power & Light Company)

Dear Mr. Teitzman:

In accordance with Rule 25-17.0021, Florida Administrative Code, please find enclosed for filing in the above referenced docket Florida Power & Light Company's ("FPL's") Petition for Approval of Numeric Conservation Goals, along with the testimony and exhibits of three witnesses.

This filing is being made via the Florida Public Service Commission's Web Based Electronic Filing portal and consists of four submittals. This letter, the petition, and the certificate of service are being filed as document 1 of 4. The remaining documents will be submitted as follows:

- Prefiled Testimony and Exhibits of J. Floyd, FPL (document 2 of 4);
- Prefiled Testimony and Exhibits of A. Whitley, FPL (document 3 of 4);
- Prefiled Testimony and Exhibits of J. Herndon, Resource Innovations (document 4 of 4).

Please contact me if there are any questions regarding this filing.

Sincerely,

s/ William P. Cox William P. Cox Fla. Bar No. 0093531

Enclosures

cc: Counsel for Parties of Record (w/encl.)

Florida Power & Light Company

700 Universe Boulevard, Juno Beach, FL 33408

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

Commission Review of Numeric Conservation Goals (Florida Power & Light

Company)

Docket No: 20240012-EG

Filed: April 2, 2024

FLORIDA POWER & LIGHT COMPANY'S PETITION FOR APPROVAL OF NUMERIC CONSERVATION GOALS

Pursuant to Sections 366.81 and 366.82, Florida Statutes ("F.S."), and Rule 25-

17.0021, Florida Administrative Code ("F.A.C."), Florida Power & Light Company ("FPL"

or the "Company") petitions the Florida Public Service Commission ("Commission") to

approve FPL's proposed numeric conservation goals for the years 2025-2034, as found on

page 1 of Exhibit JNF-4 attached to FPL witness John Floyd's testimony. In support of this

petition, FPL states:

1. FPL is a public utility subject to the jurisdiction of the Commission pursuant

to Chapter 366 of the Florida Statutes. The Commission has jurisdiction pursuant to

Sections 366.81 and 366.82, F.S., to establish numeric conservation goals for each affected

electric utility. The Commission will establish conservation goals for FPL in this

proceeding. The establishment of FPL's conservation goals will affect the need for and

selection of resource alternatives by FPL, and the goals will be the target for FPL to meet in

its subsequent filing of a Demand-Side Management ("DSM") Plan; therefore, FPL's

substantial interests will be determined in this proceeding.

1

2. The names and addresses of FPL's representatives to receive communications regarding this docket are:

Kenneth A. Hoffman Vice President, Regulatory Affairs Florida Power & Light Company 134 W. Jefferson Street Tallahassee, FL 32301

Telephone: (850) 521-3919 Facsimile: (850) 521-3939 Email: Ken.Hoffman@fpl.com William P. Cox Senior Counsel Christopher T. Wright Managing Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408-0420 Telephone: (561) 304-5662

Facsimile: (561) 691-7135 Email: will.p.cox@fpl.com

christopher.wright@fpl.com

3. This Petition is being filed consistent with Rule 28-106.201, F.A.C. The agency affected is the Florida Public Service Commission, located at 2540 Shumard Oak Blvd, Tallahassee, FL 32399. This case does not involve reversal or modification of an agency decision or an agency's proposed action. Therefore, paragraph (c) and portions of paragraphs (e), (f), and (g) of subsection (2) of such rule are not applicable to this Petition. In compliance with paragraph (d), FPL states that it is not known which, if any, of the issues of material fact set forth in the body of this Petition, or the supporting testimony and exhibits filed herewith, may be disputed by others planning to participate in this proceeding.

BACKGROUND AND OVERVIEW

4. Rule 25-17.0021, F.A.C., establishes that the Commission shall set DSM goals for each utility at least once every five years. This rule was promulgated pursuant to the Florida Energy Efficiency and Conservation Act ("FEECA"), Sections 366.80-366.83 and 403.519, F.S. Each utility is required to propose numeric goals for the ten-year period and provide ten-year projections of the total cost-effective, summer and winter peak demand

savings (MW) and annual energy savings (GWh) reasonably achievable in the residential and commercial/industrial classes through DSM. These goals must be based upon the utility's most recent planning process. *See* Rule 25-17.0021(1)-(3), F.A.C.

- 5. FPL is an industry leader in DSM and has been offering DSM programs for more than forty years, predating Florida's adoption of FEECA. Through year-end 2023, FPL has avoided the need to construct the equivalent of more than 66 new 100 megawatt ("MW") generating units (a Summer peak demand reduction of 5,579 MW) and has reduced annual energy consumption by 100,422 gigawatt hours ("GWh") at the generator equal to approximately 73% of the electric consumption of all of FPL's customers for a year.
- 6. FPL's supply-side efficiency improvements have also yielded significant benefits for its customers. For example, due to a reduction in the average heat rate of its generation fleet, FPL uses 27% less fossil fuel to produce the same number of kilowatt-hours in 2023 than it did in 2001.
- 7. Importantly, FPL has achieved these demand-side and supply-side savings while keeping electric rates low for all customers not just those who choose to participate in DSM programs. To this point, FPL's typical residential bill is approximately 32% lower than the national average as of the time of this filing.
- 8. FPL's proposed DSM goals for the 2025-2034 timeframe were developed consistent with the requirements of Rule 25-17.0021, F.A.C. As explained below and in FPL's supporting testimonies and exhibits, FPL's proposed DSM goals largely continue the existing DSM programs with a few additional measures and enhancements, including expansion of the existing low-income weatherization program, introduction of a new low-income Renter Pilot, and expansion of the On Call® load-management program. FPL's

proposed DSM goals will ensure that FPL continues to offer meaningful DSM programs to its customers that provide real energy and demand savings opportunities, while keeping electric service rates low for all FPL customers.

9. The testimony and exhibits of FPL witnesses John N. Floyd and Andrew W. Whitley, and witness Jim Herndon with Resource Innovations further support and explain FPL's proposed DSM goals and are incorporated herein by reference.¹

DEVELOPMENT OF PROPOSED DSM GOALS

- 10. FPL followed a rigorous analytical process similar to the process it has used in past DSM goal-setting proceedings to develop DSM goals. This process utilizes current forecasts and assumptions and appropriately reflects FPL's specific resource needs and system costs.
- 11. Specifically, FPL followed the process prescribed by the FEECA statute and Commission rules in developing its proposed DSM goals, which primarily included a Technical Potential ("TP") Study, DSM measure screening utilizing Commission prescribed cost-effectiveness tests, and the development of proposed goals based on the reasonably achievable demand and energy savings of potential DSM programs. In their testimonies filed with this Petition, witness Herndon discusses the TP study, FPL witness Whitley discusses measure screening and FPL's resource planning process, and FPL witness Floyd addresses the goals and program development process.
 - 12. In summary, this process includes the following key steps:

¹ The testimony and exhibits of Jim Herndon with Resource Innovations, a consultant retained by the FEECA utilities, is included with this filing, including his market potential study used by each utility in support of the goals to be established in this and each utility's respective docket.

- First, a TP analysis determines the breadth of measures to be considered and their maximum hypothetical demand and energy savings, conducted by witness Herndon;
- Second, FPL's resource needs during the DSM goals timeframe are determined, conducted by FPL witness Whitley and FPL's Integrated Resource Planning group;
- Third, as required by Rule 25-17.0021, F.A.C., a preliminary economic costeffectiveness screening of the DSM measures is performed using the
 Participant, Rate Impact Measure ("RIM"), and Total Resource Cost ("TRC")
 preliminary screening tests, their maximum rebate amounts are calculated,
 and the impact of free riders is taken into account, conducted by FPL witness
 Whitley;
- Fourth, the ten-year projection for the amount of DSM that is reasonably achievable is determined based on potential programs for each of the goals scenarios as prescribed by the Commission rule, conducted by FPL witness Floyd;
- Fifth, supply and DSM-based resource plans are developed, conducted by
 FPL witness Whitley; and
- Sixth, those resource plans are analyzed from both economic and non-economic (*i.e.*, fuel usage and system emission) perspectives to determine the optimum level of DSM goals, conducted by FPL witness Whitley.

RESULTS OF DSM GOAL-SETTING ANALYSES

- 13. FPL understands the need to offer its customers meaningful DSM programs that provide real energy and demand savings opportunities. For over four decades, FPL has accomplished this through utilization of the RIM test. Goals based on RIM ensure all customers benefit both those who voluntarily participate in DSM programs and those who cannot or elect not to participate. Based on FPL's avoided cost profile and the available energy-efficiency measures to consider for programs, however, a RIM-only DSM proposal would result in a zero goal for efficiency savings.
- 14. While FPL supports the use of the RIM test as the primary cost-effectiveness standard to set DSM goals, the Company also recognizes that appropriately tailored DSM programs and goals should be consistent with the objective of FEECA to reduce the growth rate of electricity consumption. FPL examined various options to continue providing cost-effective DSM that keeps rates low while at the same time offering meaningful programs to help customers that elect to participate to reduce their energy consumption.
- 15. After careful analysis, FPL recommends goals for the period 2025-2034 that reflect continuation of its existing DSM programs with several enhancements, including additional support for FPL's Low Income program, a new pilot program for low-income renters, and a new addition to FPL's Residential On Call® load-management program to provide an on-bill upgrade option for heating, ventilation, and air conditioning ("HVAC") systems.
- 16. The proposed DSM Goals include FPL's load-management programs, which all pass the RIM test with the exception of the Commercial/Industrial Demand Reduction ("CDR") program, which only passes the TRC test. These proposed goals also include the

continuation and expansion of FPL's current energy-efficiency programs, all of which pass the TRC test but do not pass the RIM test. FPL's proposed DSM goals are essentially an approach that results in potential programs that have demand and energy impacts in between those under the RIM and TRC tests, with little incremental rate impact beyond what customers are incurring under FPL's current DSM goals.

17. This proposal of RIM- and TRC-passing existing programs will allow FPL to continue delivering meaningful energy-efficiency savings options to homeowners, renters, businesses, and low-income customers. The proposed goals incorporate adjustments in participation levels to reflect market conditions and adjustments in projections based on the 2024 TP Study measure impacts. The results of FPL's analysis support FPL's proposed goals and enhanced programs of 408 Summer MW, 316 Winter MW, and 885 GWh for the 2025-2034 DSM goals period.

LOW-INCOME CUSTOMER PROGRAM EXPANSION, RENTER PILOT PROGRAM, AND ENHANCED RESIDENTIAL ON CALL® PROGRAM

- 18. FPL is proposing to expand its existing Low-Income program. Although this program is not cost-effective, it is consistent with Order No. PSC-2019-0509-FOF-EG in the Commission's 2019 Conservation Goals docket for FPL (Docket No. 20190015-EG), as well as with Order No. PSC-2020-0274-PAA-EG in the Commission's DSM Plan docket for FPL (Docket No. 20200056-EG), wherein the Commission affirmed FPL's commitment to supporting low-income customers.
- 19. FPL is also proposing a new pilot program to serve a population that has been traditionally underserved by DSM programs low-income customers who rent their residences. FPL is proposing a new approach that would allow low-income renters to

receive the energy-saving benefit of more efficient HVAC equipment while keeping the property owners whole from a capital investment perspective, thereby addressing the existing split-incentive problem that exists between tenants and landlords. Under a proposed limited pilot to evaluate this program, FPL would pay the incremental cost of a more efficient HVAC unit, up to \$1,000, with the property owner only covering the installed cost for code-compliant equipment. This approach will serve to help eliminate any disincentive the landlord may have to make an incremental investment in energy-efficient equipment, while at the same time allowing the low-income renter to receive the benefit of the more efficient HVAC equipment by reducing their energy consumption and electric bill.

20. With many traditional energy efficiency measures no longer viable due, in part, to the impact of Codes and Standards, FPL has continued to search for potential next-generation DSM measures. To that end, FPL's goals proposal includes an enhanced Residential On Call® program that will bring new HVAC systems to customers as a part of the traditional load-management program, including a new On Bill HVAC option for the Residential On Call® program as described by FPL witness Floyd. As part of its culture of continuous improvement, FPL will continue to evaluate new and alternative technologies that can be cost-effectively deployed for control of behind-the-meter appliances.

CONCLUSION

21. In total, FPL proposes goals with a ten-year impact of 408 Summer MW, 316 Winter MW, and 885 GWh energy reduction to be achieved through 10 programs as described in FPL witness Floyd's testimony.

22. Collectively, FPL's proposed potential DSM programs focus on the highest

priorities of weather-sensitive peak demand, continue to provide customer incentives for

making energy-efficient investments, and can be delivered with little incremental bill impact

to customers. FPL's proposal will establish DSM goals at a reasonable and appropriate level

given current projections of FPL system costs while continuing to maintain low electric rates

for all FPL customers.

WHEREFORE, for the reasons above and more fully supported by the testimony

and exhibits filed with this Petition, FPL respectfully requests that the Commission approve

the proposed numeric conservation goals for FPL attached to the direct testimony of FPL

witness Floyd as Exhibit JNF-4.

Respectfully submitted,

By: s/William P. Cox

William P. Cox. Senior Counsel

Fla. Bar No. 0093531

Christopher T. Wright, Managing Attorney

Fla. Auth. House Counsel No. 1007055

Florida Power & Light Company

700 Universe Boulevard

Juno Beach, FL 33408

Telephone: (561) 304-5662

Facsimile: (561) 691-7135

will.p.cox@fpl.com

christopher.wright@fpl.com

9

CERTIFICATE OF SERVICE Docket No. 20240012-EG

I HEREBY CERTIFY that a true and correct copy of FPL's Petition for Approval of Numeric Conservation Goals with accompanying testimony and exhibits was served by electronic delivery this 2nd day of April, 2024 to the following:

Walt Trierweiler
Patricia A. Christensen
Office of Public Counsel
c/o The Florida Legislature
111 W. Madison Street, Room 812
Tallahassee, Florida 32399
trierweiler.walt@leg.state.fl.us
christensen.patty@leg.state.fl.us
Attorneys for the Citizens of the State
of Florida

Jacob Imig
Jonathan Rubottom
Office of the General Counsel
Florida Public Service Commission
2540 Shumard Oak Blvd.
Tallahassee, Florida 32399-0850
jimig@psc.state.fl.us
jrubotto@psc.state.fl.us
discovery-gcl@psc.state.fl.us

By: <u>s/William P. Cox</u> William P. Cox

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSIO
2	FLORIDA POWER & LIGHT COMPANY
3	DIRECT TESTIMONY OF JOHN N. FLOYD
4	DOCKET NO. 20240012-EG
5	APRIL 2, 2024
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1		TABLE OF CONTENTS
2		
3	I.	INTRODUCTION3
4	II.	FPL'S HISTORICAL DSM ACHIEVEMENTS7
5	III.	FACTORS IMPACTING DSM GOALS11
6	IV.	DSM GOALS AND PROGRAMS PROCESS17
7	V.	FPL PROPOSED GOALS AND PROGRAMS25
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

I. INTRODUCTION

-		
^)	

1

- 3 Q. Please state your name, business address, employer and position.
- 4 A. My name is John N. Floyd. My business address is One Energy Place, Pensacola,
- 5 Florida 32520. I am employed by Florida Power & Light Company (FPL or the
- 6 Company) as Director, Demand-Side Management Strategy.
- 7 Q. Please describe your duties and responsibilities in that position.
- 8 A. I am responsible for development of strategy, program implementation,
- 9 regulatory filings, reporting, and cost management for FPL's Demand-Side
- Management (DSM)-related activities.
- 11 Q. Please describe your educational background and professional experience.
- 12 A. I have a Bachelor of Electrical Engineering from Auburn University. After
- completing a commission in the United States Air Force, I began my career in
- the electric utility industry at Gulf Power Company, a former Southern Company
- operating subsidiary. During my 29-year tenure, I held various positions with the
- 16 company in Power Generation, Metering, Power Delivery, and Customer
- Service. In 2019, I joined FPL as the DSM Regulatory Support Manager and
- was promoted to my current position as Director of DSM Strategy in 2023.

1	Q.	Have you previously testified before the Florida Public Service
2		Commission (FPSC or Commission)?
3	A.	Yes. I have testified in multiple DSM goals proceedings and other DSM-related
4		dockets on behalf of Gulf Power and FPL.
5	Q.	Are you sponsoring any exhibits in this case?
6	A.	Yes. I am sponsoring Exhibits JNF-1 through JNF-5, which are attached to my
7		testimony:
8		• JNF-1 – Historical DSM Participation and Achievements
9		• JNF-2 – Current DSM Programs and Associated Measures
10		• JNF-3 – List of Measures Evaluated for Technical Potential
1		• JNF-4 – 2025-2034 Goals Scenarios and Potential Programs
12		• JNF-5 – Comparison of Current Programs to Proposed Programs
13	Q.	Please summarize your testimony.
14	A.	The Florida Energy Efficiency and Conservation Act (FEECA) and
15		Commission rules require that utilities develop and offer DSM programs to
16		cost-effectively reduce weather-sensitive peak-demand and the overall growth
17		rate of electricity consumption in the state. FPL has successfully implemented
18		this policy by providing impactful DSM programs that keep rates low and meet
19		customer needs.
20		
21		FPL followed the process prescribed by the FEECA statute and Commission
22		rules in developing the goals scenarios described throughout my testimony. In

general, the process included development of a Technical Potential (TP) Study,

measure-screening utilizing Commission-prescribed cost-effectiveness tests, and goal development based on the reasonably achievable demand and energy savings of potential DSM programs. Witness Jim Herndon with Resource Innovations discusses the TP study, FPL witness Andrew Whitley discusses measure screening and FPL's resource planning process, and I address the goal and program development process.

FPL is committed to continuing to provide DSM programs that keep rates low and meet customers' needs. For more than four decades, FPL has accomplished this through utilization of the Rate Impact Measure (RIM) test. Goals based on RIM ensure all customers benefit – both those who voluntarily participate in DSM programs and those who cannot or elect not to participate. Based on FPL's avoided cost profile and the available energy-efficiency measures to consider for programs, however, a RIM-only DSM proposal would result in a zero goal for efficiency savings.

While FPL supports the use of the RIM test as the primary cost-effectiveness standard to set DSM goals, the Company also recognizes that appropriately tailored DSM programs and goals are consistent with the objective of FEECA to reduce the growth rate of electricity consumption. FPL explored various options to maintain cost-effective DSM initiatives that ensure affordable rates, while also providing valuable programs to help customers reduce their energy usage.

After careful analysis, FPL recommends goals for the period 2025-2034 that reflect continuation of its current portfolio of energy-efficiency and load-management programs, expansion of the existing low-income weatherization program, and introduction of a new low-income Renter Pilot. FPL's proposal also includes expansion of our industry-leading On Call® load-management program with a new HVAC on-bill option. This new option expands the On Call® load-management program to allow greater customer access to new energy-saving HVAC equipment in a way that also passes the RIM cost-effectiveness test. Under this program, a customer will receive a new efficient HVAC unit that FPL will have the ability to control in peak demand situations.

Collectively, FPL's proposed DSM programs focus on the highest priorities of weather-sensitive peak demand, continue to provide customer incentives for making energy-efficient investments, and can be delivered with little to no incremental bill impact to customers. In total, FPL proposes goals with a tenyear impact of 408 Summer MW, 316 Winter MW, and 885 GWh energy reduction to be achieved through 10 energy-efficiency and load-management programs as further described later in my testimony. FPL's proposal will establish DSM goals at a reasonable and appropriate level given current projections of FPL system costs while continuing to maintain low electric rates for all FPL customers.

II. FPL'S HISTORICAL DSM ACHIEVEMENTS

_		

Q. Please provide an overview of FPL's history and results in implementing DSM.

FPL began offering DSM programs in the late 1970s prior to the Florida Legislature's adoption of FEECA in 1980. Since then, FPL has maintained a continuous commitment to cost-effective DSM as a complement to evolving Florida Building Code and federal appliance efficiency standards (collectively, Codes and Standards). As described in greater detail by FPL witness Whitley, FPL has made DSM an integral part of its resource planning process and has consistently evaluated DSM in accordance with the Commission's long-standing goal-setting policies. Through this process, FPL has developed a wide array of cost-effective load-management and energy-efficiency programs for both residential and business customers, which have achieved significant reductions in energy consumption and peak demand. As shown on Exhibit JNF-1, there have been approximately 10.5 million participants in these programs (some customers have participated in multiple programs) since inception.

Through 2023, FPL's highly effective DSM efforts have resulted in a cumulative summer peak demand reduction of 5,579 MW. After accounting for the 20% total reserve margin requirement, this equates to eliminating the need to construct the equivalent of approximately 66 new 100-MW generating units. Cumulative energy consumption savings are 100,422 GWh at the

generator, equal to approximately 73% of the consumption of all FPL customers
for one year. At the same time, the discipline of working within the traditional
Commission goal-setting policies and requirements has helped ensure FPL's
electric rates remain low. As of the time of this filing, FPL's typical residential
bill is approximately 32% lower than the national average.

6 Q. Please describe FPL's currently offered DSM programs and their achievements.

FPL's current programs are focused on helping customers save with financial incentives to install energy-efficient appliances and building-envelope improvements (energy efficiency), as well as bill credits for allowing FPL to control large appliances or facility loads during peak conditions (load management). FPL's current programs and included measures are shown on Exhibit JNF-2.

A.

Load Management – FPL operates one of the largest load-management programs in the nation. As of year-end 2023, FPL's Residential On Call® program, established in 1986, was the largest residential program in the United States with about 653,000 participants. Along with FPL's more than 17,000 business load-management participants, FPL currently has more than 1,700 MW of Summer load-management demand reduction available for use by FPL system operators.

Energy Efficiency – FPL has also offered large energy-efficiency programs for

decades. More than two million customers have participated in FPL's residential HVAC energy-efficiency program, making their homes' largest sources of energy consumption more efficient than required by the Codes and Standards that were applicable at the time of installation. Likewise, more than 24,000 business customers have participated in FPL's HVAC program, installing efficient direct expansion and chiller units as well as Thermal Energy Storage systems. In addition, more than 21,400 business customers have participated in FPL's Business Lighting program, which encourages customers to replace existing lights with light-emitting diodes (LED). Since 2019, FPL has served 33,947 low-income customers with direct installation of weatherization and energy savings measures.

Customer Education (Surveys) – Since 1981, FPL has emphasized energy-efficiency education for customers regardless of whether they own or rent their home or business. FPL uses residential Home Energy Surveys (HES) and Business Energy Evaluations (BEE) as foundational components of the DSM portfolio. The surveys and evaluations are used for customer education on conservation measures that make economic sense for customers, whether offered as a part of FPL's DSM programs or not. FPL has performed close to 4.5 million HESs and almost 275,000 BEEs via online, phone, and on-site delivery channels. Since 2019, more than 300 residential customers per day had a HES, and 20 business customers per workday had FPL conduct a BEE. In addition to the utility-provided educational resources, customers also have

access to many other public sources of information (including the U.S. Department of Energy's ENERGY STAR® program and website, in addition to contractors, appliance retailers, and manufacturers) to help them decide on what actions they wish to implement to use energy more efficiently.

Q. How is FPL continuing to explore innovative approaches to DSM?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A.

FPL has a long history of evaluating new technologies to meet customer needs and provide cost-effective demand-side solutions. For example, in Docket No. 20210015-EI, the Commission approved a limited pilot for FPL to evaluate smart electrical panels as a next-generation DSM solution that could benefit customers through increased visibility and control of their energy usage and provide FPL capabilities to manage certain large appliance loads during peak times. To date, 100 smart panels have been installed in customer homes. FPL has gained valuable insights on customer interest in the technology, installation and commissioning of the panels, appliance usage profiles, and loadmanagement functionality. Although these smart panels deliver on providing visibility and control of major circuits, their high cost remains a barrier to largescale use for utility DSM in the near-term. As part of its culture of continuous improvement, FPL will continue to evaluate new and alternative technologies that can be cost-effectively deployed for control of behind-the-meter appliances.

III. FACTORS IMPACTING DSM GOALS

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

1

Q. What are the main factors that impact potential DSM goals and how?

There are two main factors that impact the level of goals for DSM. The first factor in determining the appropriate level of DSM goals is the potential demand and energy savings in the marketplace. To determine the potential savings for utility DSM programs, all commercially available options for reducing demand and energy are evaluated. As outlined in Commission Rule 25-17.0021, Florida Administrative Code (F.A.C.), these options are in the form of demand-side conservation and efficiency "measures," including demandside renewable energy systems that can be implemented by customers. The determination of the potential savings begins with a Technical Potential Study, which quantifies the theoretical maximum savings opportunity for these measures. As discussed in more detail in later sections of my testimony, the study for the 2024 DSM goals process included 436 energy-efficiency, demandresponse and demand-side renewable energy measures - significantly more than were evaluated in 2019. An important aspect of this evaluation is that it only includes potential savings above current and known future Codes and Standards. Codes and Standards establish the baseline from which utility DSM opportunities exist. While customers benefit from increasing Codes and Standards absent any utility DSM, the result of increasing Codes and Standards is a reduction in the incremental benefits of DSM to the utility system and to customers.

The second factor is cost-effectiveness. Cost-effectiveness, in general terms, is a comparison of the benefits and costs of DSM options. The Commission has recognized three industry standard tests as described in Rule 25-17.008(3), "Florida Public Service Commission Cost Effectiveness Manual for Demand Side Management Programs and Self-Service Wheeling Proposals" (7-7-91) for the purposes of evaluating cost-effectiveness since the earliest goal-setting docket in 1993. These tests are the RIM test, the Total Resource Cost (TRC) test, and the Participant test.

9 Q. Please explain the cost-effectiveness tests and how they impact potential
10 DSM goals.

The RIM, TRC and Participant tests measure cost-effectiveness from different perspectives and thus consider different costs and benefits. First, I will discuss the RIM and TRC tests as they measure cost-effectiveness from the utility system perspective.

A.

The RIM test measures the impact on rates resulting from a DSM program and represents the perspective of non-participants. The TRC test measures the impact on total costs to the utility and customer base. The RIM and TRC tests both consider the same benefits of DSM, that is the utility system savings, or avoided cost, of reducing peak demand and energy requirements to be met. These benefits are in the form of avoided generation, transmission, and distribution capital and O&M costs as well as net fuel impacts.

The difference in the RIM and TRC tests is which costs are included. The RIM test includes consideration of the cost of incentives paid to participating customers, the revenue impact resulting from the DSM program, and the cost of implementing the program itself (administrative cost). Consideration of these costs is consistent with Section 366.82(3), Florida Statutes, which is part of the FEECA Statute.

As mentioned earlier, the TRC test considers the same benefits as RIM, but different costs. Specifically, the TRC test only considers the incremental cost of the measure (equipment) and the administrative cost of implementing the program. Notably, the TRC test does not address one of the required costs identified in Section 366.82(3)(b), Florida Statutes, the cost of utility incentives. The TRC test also does not measure impact on electricity rates for customers, both participants and non-participants.

The Commission has long recognized the benefit of utilizing the RIM test as it serves the interest of both customers who participate in utility DSM programs as well as customers who cannot, or elect not to, participate in these programs. In short, the RIM test ensures that even non-participants benefit from utility DSM through downward pressure on electric rates. So, by utilizing the RIM test to establish DSM goals, the Commission can be assured that all customers will benefit through electric rates that are lower than they would otherwise be

without implementation of the program. The cost of RIM-passing programs is justified on this basis. Utilizing the TRC test to measure the cost-effectiveness of DSM, however, can expose all utility customers, whether they participate in a DSM program or not, to higher electric rates resulting from unrecovered revenue requirements. For these reasons, use of the TRC test without appropriate guardrails and limits on cost would be inconsistent with the Commission's statutory obligations to avoid undue rate impact.

Given that RIM-passing programs result in the lowest rate impact, benefit all customers, and avoid cross-subsidization of participants by non-participants, FPL supports utilizing the RIM test as a primary means of evaluating cost-effectiveness and establishing goals.

The third cost-effectiveness test used by the Commission to evaluate DSM goals is the Participant test. This test measures cost-effectiveness from the perspective of the customer participating in the DSM program or measure. It is a simple test that evaluates the economic payback to a potential participant in a DSM program. The benefits considered in the Participant test are the bill savings and incentives received associated with a particular measure, while the costs are the incremental equipment costs borne by the customer. The incentives include both upfront contributions by the utility and tax credits. For example, by considering both the costs of adopting a higher-efficiency HVAC system and the resulting bill savings, the Participant test measures whether the

investment pays for itself over time. From a practical and logical standpoint, this is the primary evaluation a customer considers for making an energy-efficiency investment, and therefore, a utility DSM program should pass this test. This concept of economic payback is also useful in limiting incentive costs so as not to unnecessarily incent a customer to make an investment that otherwise already has a very strong value proposition.

Q. Please elaborate on the impacts Codes and Standards have on potential for cost-effective DSM.

Increased Codes and Standards impact all residents and businesses by mandating higher energy-efficiency minimums for prospective end-use equipment installations and/or building design improvements. The impact of Codes and Standards for FPL is two-fold: a reduction in the forecast of energy and peak demand; and a reduction in the incremental savings potential for utility DSM. FPL witness Whitley discusses the impact of Codes and Standards on FPL's load forecast for energy and peak demand.

A.

In addition to the impact on FPL's load forecast, Codes and Standards also reduce the savings potential for utility DSM. First, any utility-offered measures that are no longer above Codes and Standards are rendered obsolete. The previously achieved utility participation and energy and demand savings are now attained by the Codes and Standards instead, thereby replacing efficiency savings that had been obtained from DSM programs.

Second, the "baseline" efficiency level also increases, reducing the incremental savings that remaining DSM measures could achieve. For example, in 2023, the U.S. Department of Energy (DOE) increased the minimum efficiency standard for residential air conditioning from 14 Seasonal Energy Efficiency Rating (SEER) to 15 SEER. This increase in minimum required efficiency resulted in a loss of 0.145 Summer kW and 350 annual kWh incremental savings for all higher SEER units. For a customer installing a new HVAC system beginning in January 2023, that customer automatically realizes this amount of efficiency savings compared to the previous minimum standard. For a utility DSM program, however, the result of this change reduces savings from incrementally higher efficiency units, which impacts opportunity for DSM program savings and cost-effectiveness.

A.

Q. How do utility programs and initiatives complement these Codes and Standards to reduce overall energy use?

Utilities play two key roles in improving the overall efficiency of energy utilization by customers. The first role is through education. FPL provides information to customers about ways to save energy through our energy survey programs, on FPL.com, through FPL's Customer Care Centers, through community events and presentations, and through various other media channels. To date, FPL has performed close to 4.5 million residential energy surveys, providing education and information about specific ways customers

¹ The DOE also introduced a new SEER2 unit of measure to reflect changes in the test procedure to measure HVAC system efficiency. For simplicity, FPL will continue to reference SEER ratings unless otherwise indicated.

can reduce energy consumption. Second, utilities offer cost-effective programs that are designed to encourage adoption of technology that is above these minimum Codes and Standards as part of approved DSM programs. These programs help customers save energy and help the utility system operate more efficiently for the benefit of all customers.

IV. DSM GOALS AND PROGRAMS PROCESS

- 9 Q. Please provide an overview of the process and main analyses performed to
 10 develop FPL's proposed DSM goals and potential programs for the period
 11 2025-2034?
- 12 A. The process for developing DSM goals and programs is outlined in the FEECA
 13 Statute, Section 366.82(3) and (7), F.S., and Commission Rule 25-17.0021,
 14 F.A.C. Specifically, DSM goals development involves three primary
 15 interrelated analyses as part of FPL's resource planning process:
 - (1) **Technical Potential** (**TP**) determines the breadth of measures to be considered and their maximum hypothetical demand and energy savings;
 - (2) Measure Screening economic screening of the DSM measures based on Commission-approved cost effectiveness tests and an assessment of free-ridership; and
 - (3) **Program Development and Goals Scenarios** projection of the ten-year (2025-2034) program potential and development of the RIM and TRC goals scenarios.

FPL and the other five utilities subject to FEECA (FEECA Utilities) worked jointly on certain aspects of the analyses and engaged a nationally recognized DSM consultant, Resource Innovations, which has performed many of these types of studies, to assist with portions of the work. Resource Innovations conducted the TP analysis for FPL and the other FEECA Utilities. Resource Innovations also assisted FPL with adoption modeling as part of developing the goals scenarios.

Q. Please briefly describe the Technical Potential (TP) Analysis.

A.

Rule 25-17.0021(2) requires utilities to "... assess the full technical potential of all available demand-side conservation and efficiency measures, including demand-side renewable energy systems..." The purpose of the TP Analysis is to identify the theoretical maximum limit for reducing Summer and Winter electric peak demand and energy. The TP assumes every identified potential end-use measure (or measures) is installed everywhere it is "technically" feasible to do so from an engineering standpoint. The TP does not consider cost, customer acceptance, or any other real-world constraints (such as product availability, contractor/vendor capacity, cost-effectiveness, or customer preferences). Therefore, the TP is purely hypothetical and in no way reflects the MW and MWh savings that could potentially be achieved through real-world voluntary utility DSM programs.

Resource Innovations performed the TP analysis for each of the FEECA Utilities. This included coordinating development of the DSM measure list and collecting all data necessary to perform the analysis. The analysis required extensive iterative analytical work and continuous collaboration among the FEECA Utilities to ensure that it was comprehensive. Witness Herndon's testimony provides the analysis details and results. During the development of the measure list for the TP analysis, the FEECA Utilities requested input from various stakeholders in previous DSM dockets. Multiple stakeholders provided recommendations on additional measures that should be included for this study. The FEECA Utilities reviewed each recommendation and incorporated all qualifying recommendations received from these stakeholders. In total, there were 436 unique energy-efficiency, demand-response, and demand-side renewable measures evaluated for Technical Potential. When considering the unique measure impacts across multiple customer segments, building types and rates, these 436 measures represent over 20,000 calculations for each step of the Technical Potential and measure screening process. A full list of measures evaluated in the Technical Potential Study is provided in Exhibit JNF-3, pages 1-14.

Q. Please briefly describe the measure-screening process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

The measure-screening process is a multi-step economic analysis that includes calculation of cost-effectiveness and payback for each of the DSM measures identified in the Technical Potential Study. This process narrows the list of measures to be considered for potential programs. As prescribed by Rule 25-

17.0021 and described in the testimony of FPL witness Whitley, FPL used the RIM test for the RIM goals scenario and the TRC test for the TRC goals scenario, as well as the Participant test for both scenarios, to screen these measures for cost-effectiveness. The initial measure screening only considered the measure peak demand and energy savings and measure cost to ensure the maximum number of measures were screened for further consideration. Measure screening also included eliminating measures with a payback period less than two years as a means of addressing free ridership in the goals development process. Subsequent cost-effectiveness analysis added assumptions for administrative cost to further refine the potential measures to be considered for programs. The analytical tools utilized to conduct measure screening were also used to calculate sensitivities of the results based on differing payback periods, higher and lower fuel cost projections, and inclusion of potential CO₂ costs as DSM benefits.

A.

15 Q. Please briefly describe the program development and goals scenario 16 analysis.

Developing the proposed goals involved a multi-step, iterative process that began with compiling all the measures that survived the measure-screening process for each of the cost-effectiveness scenarios (RIM and TRC). These measures represent components of potential programs that can be offered to customers. Experienced FPL DSM program managers crafted potential programs using the passing measures, based on common measure types and program delivery channels. Then, adoption projections were developed

utilizing measure-level adoption modeling and historical FPL program participation to produce program-level participation projections. Finally, the programs were re-evaluated for cost-effectiveness using the program-level participation projections and more specific administrative and incentive cost assumptions. The programs for each of the goals scenarios are described in Section V of my testimony.

7 Q. Please explain the process FPL used to develop its goals scenarios.

The process used to develop the two goals scenarios is the same basic approach used by FPL and relied upon by the Commission in the 2019 DSM goals docket. For each measure that passed the cost-effectiveness and payback screening under either RIM/Participant test or TRC/Participant test, FPL used a combination of quantitative information, qualitative information, and FPL's market experience to develop projections for each of the goals scenarios.

A.

Voluntary DSM programs attract participants through marketing, education, training, and by providing financial incentives. A customer's decision whether to participate in a DSM program is the result of many interrelated factors. These factors are reflected in FPL's program adoption projection. FPL calculated the estimated ten-year adoption of each potential program in the goals scenarios by relying on a number of elements that reflect FPL's and Resource Innovations' customer and market experience:

Historical FPL Adoption Rates – provided "baseline" market 1 2 experience reflecting both the empirical and the non-quantifiable factors (such as customer awareness); 3 **Projected Changes in Market Conditions** – used to adjust historic 4 adoption for changes, such as saturation of a program or changes to 5 incentives; 7 Payback Acceptance Curves – provided the percent of expected market adoption based on years-to-payback. Multiple curves are 8 differences used account for in adoption of new 10 technologies/programs, existing programs, and level of maturity of 11 programs. 12 FPL's proposed goals build on historic achievements of existing programs, with 13 adjustments for market changes and program modifications. For programs with 14 measures that are not a part of FPL's current portfolio, FPL relied on Resource 15 Innovations' measure adoption models to forecast ramp rate and overall 16 projections for the ten-year period. For new programs, FPL considered start-17 18 up processes, including system modifications and third-party agreements, as applicable, in estimating the ramp up of projected adoption. 19 20 21 For residential program participation projections, each customer residence represents one participant. For business programs, the qualification of a 22

23

"participant" was standardized to one Summer kW, since projects widely vary

across the multiple business types. The projected adoption values were then translated into their respective kW and kWh amounts and summed to create the residential and business sector goals for each of the goals scenarios.

4 Q. How did FPL address free ridership in developing the proposed goals?

FPL and all FEECA utilities utilized the two-year payback screening criterion to minimize the impact of "free riders." The term "free riders" refers to the fact that many cost-effective conservation measures will be undertaken on a customer's own volition, without the need for a promotion or incentive provided by the customer's utility company and paid for by the general body of customers of the utility. It simply recognizes that "rational" customers will act in their own economic self-interest and take measures to reduce energy consumption if it is sufficiently attractive economically for them to do so without a utility incentive payment. It is an example of a free-market economy working as it should – rational economic decisions being made in one's best interest without government intervention through mandates or provision of incentives.

A.

A good example would be a customer deciding to install a programmable thermostat. Customers make the economic decision to invest in such measures because it quickly benefits them economically. However, if such a customer also receives a utility incentive, then they become a free rider. If costs are incurred to incentivize such free riders, rates for the general body of customers will be higher than necessary to achieve the same level of conservation.

It should be emphasized that the ultimate goal is to achieve the maximum amount of cost-effective conservation by the most efficient means. The objective is not to set DSM goals at any cost or higher than they should be simply for the sake of having higher goals. Indeed, doing so would be inconsistent with the requirement of Rules 25-17.008 and 25-17.021 that the DSM goals are to be cost-effective. As such, a proper recognition of free riders is necessary to achieve the appropriate goals.

The Commission has used a two-year payback criterion for decades as the threshold below which a customer would be a free rider and, therefore, should not be considered eligible for an additional utility-provided incentive. This policy has been litigated in multiple previous DSM goals proceedings wherein the Commission has determined it was an appropriate metric for determining free riders. In fact, the Commission reaffirmed their position in the 2014 DSM goals docket, Order No. PSC-14-0696-FOF-EU, stating, "[w]e approved goals based on a two-year payback criterion to identify free riders since 1994 and we find it appropriate to continue this policy."

FPL submits that the two-year payback screening criterion remains an effective common-sense approach that is both reasonable and administratively efficient for meeting the requirement in Rule 25-17.0021 that goals reflect consideration

of free riders. It avoids unnecessary incentives (and their associated impacts on the rates of non-participants).

3 Q. Did FPL conduct any sensitivities on the free ridership period?

A. Yes. FPL analyzed the impact of applying one- and three-year payback period screens as part of the measure-screening process. A summary of measures removed and added, at the building-type level, for each of the evaluation sensitivities is shown in FPL witness Whitley's Exhibit AWW-3.

8

V. FPL PROPOSED GOALS AND PROGRAMS

10

11

12

9

Q. Did FPL develop proposed goals for each of the two goals scenarios described in the DSM Goals Rule?

- Yes. FPL developed goals for each of the two goals scenarios following the 13 A. 14 same process described earlier. For the RIM and Participant test scenario, RIM-15 passing programs are projected to achieve 198 Summer MW, 173 Winter MW, 16 and 1 GWh annual energy reduction over the period 2025-2034. For the TRC 17 and Participant test scenario, all potential TRC-passing programs are projected to achieve 511 Summer MW, 507 Winter MW, and 1,509 GWh annual energy 18 19 reduction over the period 2025-2034. The annual goals for each scenario are shown in Exhibit JNF-4, page 1. 20
- 21 Q. What are the programs for the RIM and TRC goals scenarios?
- 22 A. For the RIM and Participant test scenario, the programs are:

1	Residen	tial Sector:
2	1. F	Residential Load Management (On Call®) with new HVAC on-
3	b	pill option
4	Comme	rcial/Industrial Sector:
5	1. E	Business On Call®
6	2. (Commercial/Industrial Demand Reduction (CDR)
7	3. E	Business Custom Incentive
8		
9	For the TRC and	d Participant test scenario, the programs are:
10	Residen	tial Sector:
11	1. F	Residential HVAC Plus
12	2. F	Residential Building Envelope
13	3. F	Residential Low Income
14	4. V	Whole Home Plus
15	5. F	Retail Products
16	6. F	Residential Load Management (On Call®) with new HVAC on-
17	b	pill option
18	Comme	rcial/Industrial Sector:
19	1. F	Business HVAC Plus
20	2. F	Business Lighting Plus
21	3. F	Business Water Heating
22	4. E	Business Refrigeration
23	5. H	Business Motors and Drives

1		6. Business Cooking
2		7. Commercial/Industrial Demand Reduction (CDR)
3		8. Business On Call®
4		9. Business Custom Incentive
5		The goals scenarios also include FPL's foundational Residential and Business
6		Survey programs and the Conservation Research and Development (CRD)
7		program. These programs will be included in all scenarios. The full list of
8		potential programs, savings, annual participation projections and annual costs
9		are included in Exhibit JNF-4, pages 2-34.
10	Q.	What are the projected costs and rate impacts of these scenarios?
1	A.	The total cost of the RIM and Participant test scenario is estimated to be \$385
12		million over the ten-year goal period. The estimated residential rate impact ² of
13		the RIM and Participant test scenario begins at \$0.35 and declines to \$0.27 over
14		the ten-year goals period for a customer using 1,000 kWh per month.
15		
16		For the scenario that includes all TRC and Participant test passing programs,
17		the total cost is estimated to be \$626 million over the ten-year goals period. The
18		estimated residential rate impact of the TRC and Participant test scenario begins
19		at \$0.51 and slightly decreases to \$0.45 over the ten-year goals period for a
20		customer using 1,000 kWh per month.

² Energy Conservation Cost Recovery Clause.

1		Projections of costs and rate impacts for all scenarios do not include Energy
2		Survey programs, FPL's Commercial Load Control programs - Commercial
3		Industrial Load Control (CILC) and Commercial/Industrial Demand Reduction
4		(CDR) programs and FPL's CRD program. Costs for these programs are
5		assumed to be the same for all goals scenarios.
6	Q.	What goals and programs are FPL proposing for the period 2025-2034?
7	Α.	FPL is proposing goals of 408 Summer MW, 316 Winter MW, and 885 Annual
8		GWh reductions over the period 2025-2034. The proposed DSM goals include
9		FPL's load-management programs, which all pass the RIM test with the
10		exception of the CDR program, which only passes the TRC test. These
11		proposed goals also include the continuation and enhancement of FPL's current
12		energy-efficiency programs, all of which pass the TRC test but do not pass the
13		RIM test. The five Residential and five Commercial/Industrial programs
14		associated with these proposed goals are summarized below:
15		Residential Sector:
16		1. Residential HVAC
17		2. Residential Ceiling Insulation
18		3. Residential Low Income
19		a. Renter Pilot
20		4. Residential New Construction (BuildSmart®)
21		5. Residential Load Management (On Call®) with new HVAC on-
22		bill option

Commercial/Industrial Sector:

1. Business HVAC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

- 2. Business Lighting
- 3. Commercial/Industrial Demand Reduction
 - 4. Business Custom Incentive
 - 5. Business On Call®

This proposal of RIM- and TRC-passing programs will allow FPL to continue delivering meaningful energy-efficiency savings options to all customers including owners, renters, and low-income customers. The proposed goals factor in adjustments in participation levels to reflect market conditions and adjustments in projections based on the 2024 TP Study measure impacts. FPL has successfully built awareness of these programs with customers and contractors alike such that they can continue without any new start-up costs or ramp-up and be delivered with little or no incremental bill impact. Projections associated with the HVAC on-bill option ramp up, as this is a new program option that is planned to be delivered through a network of HVAC contractors. Additionally, the Low-Income program will add ceiling insulation for qualifying homes to increase the energy savings for these customers and the Renter Pilot is expected to bring additional benefits to low-income renters. The complete list of proposed programs and goals is shown on Exhibit JNF-4, page 1 and pages 23-34.

1 Q. What are the projected costs and rate impacts of FPL's proposed goals?

- A. The total cost of FPL's proposed goals and programs is estimated to be \$525

 million over the ten-year goal period. The estimated residential rate impact of

 FPL's proposed goals and programs begins at \$0.46 and decreases to \$0.37 over

 the ten-year goals period for a customer using 1,000 kWh per month. FPL's

 proposed goals and programs, including the enhancements, are estimated to

 have lower costs compared to FPL's projected program costs in 2024.
- 8 Q. How does the cost of FPL's proposed goals and programs compare to the
 9 projected costs for the TRC scenario?
- 10 A. The TRC scenario has much higher costs than the FPL proposed goals and programs. The cost of additional energy-efficiency programs in the TRC 11 scenario is about 50% higher in 2025 and increases to almost double the cost of 12 FPL's proposed energy-efficiency programs over the ten-year goals period. 13 14 The TRC scenario is expected to cost customers about \$100 million more than FPL's proposed goals and programs over the ten-year goals period. 15 16 comparison of the ECCR rate impacts for each of the scenarios can be found in 17 Exhibit JNF-4, page 1.
- 18 Q. Please describe the proposed HVAC on-bill tariff option for On Call[®].
- 19 A. The foundation of FPL's overall DSM program is On Call[®]. On Call[®] is the
 20 largest residential demand-response program in the country and a key
 21 component of FPL's success in implementing cost-effective DSM for almost
 22 40 years. Currently, On Call[®] provides bill credits to customers for allowing
 23 FPL to control customer-owned HVAC, water heating, and pool pump

appliances. FPL is proposing to expand the program in an innovative way by offering an on-bill payment option for efficient HVAC equipment. Through a voluntary tariff, this HVAC on-bill option would provide interested customers an opportunity to acquire a new, more energy-efficient HVAC unit for a fixed monthly charge. FPL would own and maintain the HVAC unit and the monthly charge would cover the capital cost of the HVAC equipment plus all maintenance and repairs of the unit for the ten-year duration of the tariffed agreement. In exchange for the right to control the unit during peak periods (load management), FPL would reduce the total cost to be collected over the term of the agreement and provide that savings to participating customers. Assuming the unit being replaced by the customer is less efficient than the current minimum standard, the customer would further benefit from the efficiency savings of the unit towards their energy consumption and monthly bill. The customer would also receive an upfront rebate from FPL's Residential HVAC program if selecting a qualifying high-efficiency unit. Since each HVAC installation is unique in terms of size and scope, the monthly charge would be structured as a formula based on the installed capital cost and expenses for each specific unit.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

Q. Is this HVAC on-bill option cost-effective for FPL customers?

Yes. The program would be designed for the participants to pay all of the equipment and expenses of the program, while the general body of customers benefit from the avoided capacity savings related to FPL retaining control of the HVAC equipment. Notably, the program passes the RIM test and benefits

participants with reduced monthly equipment charges similar to how other On
 Call[®] customers benefit with monthly bill credits.

3 Q. How does the HVAC on-bill program impact the ECCR rate for FPL's 4 customers?

Like other DSM programs, all costs associated with the HVAC on-bill tariff
would be recovered through the ECCR mechanism. All of the monthly program
revenues would also flow through the ECCR clause to offset program expenses.

Since this program passes RIM, the general body of customers is assured the
overall benefits of the program exceed costs, net of program revenues, over the
term of the HVAC on-bill service agreement.

11 Q. How do FPL's proposed programs benefit customers who rent?

A.

All of FPL's proposed DSM programs are inclusive of renter participation. FPL's energy survey programs provide renters with free energy assessments and recommendations for low- and no-cost actions that can be taken to reduce energy consumption. With landlord approval, renters can participate in FPL's load-management programs and benefit from other DSM programs that encourage energy efficiency. However, FPL recognizes that renters face a unique obstacle when it comes to making investments in energy-efficiency measures. Sometimes referred to as a the "landlord renter split incentive," the traditional value proposition for making an energy-efficiency investment does not hold true when the party paying the utility bill is not the same as the party making the capital investment. Landlords are typically responsible for equipment installations, replacements, and maintenance, while renters are

typically responsible for paying the utility bill for the unit they are renting. This creates a split in the traditional economic value proposition for making energyefficiency investments. Since landlords do not pay the utility bill, there is no economic incentive to them for making incremental investments in more efficient appliances or building improvements. Renters, on the other hand, typically pay the utility bill yet do not have the opportunity to make capital investments that can produce energy-efficiency savings. This results in renters having less options to manage their utility expenses and increase their energy efficiency. FPL has historically addressed this situation first by offering energy surveys to all customers, whether they rent or own. An energy survey identifies not only investment opportunities to improve energy efficiency, but also many behavioral and no/low-cost actions renters can take to save energy. Examples include recommendations for thermostat settings, utilization of LED light bulbs, proper use of ceiling fans, and keeping windows and blinds closed. FPL also allows participation in other programs, including On Call®, with landlord agreement. Yet these options still do not overcome the landlord-renter split incentive.

18

19

20

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

FPL is proposing a new approach to overcoming this split incentive in a manner that allows low-income renters to receive the energy-saving benefit of more efficient HVAC equipment while keeping the landlord whole from a capital investment perspective. Proposed as a limited pilot to evaluate the effectiveness of this approach, FPL will pay the incremental cost of a more efficient HVAC

unit, up to \$1,000, such that the landlord will only cover the cost of installing code-compliant equipment when replacing an HVAC unit for a tenant property. This will eliminate the disincentive the landlord has to make an incremental investment in energy-efficient equipment while allowing the low-income renter to receive the benefit of the more efficient HVAC equipment on their energy consumption and electric bill. FPL is proposing to operate this pilot for three years with an annual cap of 500 participants.

8 Q. In development of the proposed programs, did FPL include any measures 9 that were eliminated during the screening process?

Yes. FPL's proposed Low Income program includes six measures that were eliminated in the measure screening due to the free-ridership screen. While the savings of these measures provide a reasonable economic value proposition for adoption, FPL recognizes that low-income customers may not have the financial resources or awareness to adopt such measures. Therefore, FPL believes a modest inclusion of appropriately tailored measures specifically for low-income customers is reasonable and does not unduly burden the general body of customers with their limited cost.

A.

FPL also leveraged the benefits of certain heat pump measures, when combined with Air Conditioning measures, to ensure continuation of existing Residential HVAC program has broad applicability across FPL's customer base.

Q. Do FPL's proposed programs include any modifications or enhancements to increase participation?

Yes. FPL is proposing to continue each of its long-standing DSM programs with adjustments and enhancements intended to simplify program offerings, improve participation and results, and to reflect current market conditions. In the residential sector, FPL is proposing to increase the Residential HVAC program incentive to increase participating independent contractor (PIC) engagement and resulting program participation. FPL has experienced a decline in PIC participation in recent years which has negatively impacted program enrollments. By increasing the customer incentive, FPL expects more PICs will voluntarily participate in the program, leading to increased overall customer participation.

A.

For the Residential On Call[®] program, FPL is adding a new HVAC on-bill option to increase participation. Since 2020, participation in the On Call[®] program has been significantly below the projections in the 2020 DSM Plan. The HVAC on-bill option is expected to increase overall participation in the program in a manner that keeps the program cost-effective.

In the commercial/industrial sector, FPL proposes to enhance the design of the Business HVAC program. FPL's current program design has been less effective in reaching the small and medium business sector. The enhancements include adding PICs as a delivery channel for small and medium business

HVAC systems and simplifying the incentive structure to foster greater participation by these customers. Many small business HVAC systems are installed and serviced by HVAC contractors who serve the residential market and are already PICs for FPL's residential program. By enhancing the Business HVAC program to include these PICs, FPL expects to increase participation by small and medium business customers. Larger systems will continue to be enrolled through FPL customer advisors and other independent engineering and construction contractors. A comparison of the proposed and current programs, including added and removed measures, is shown in Exhibit JNF-5.

- Q. Are there any restrictions to FPL's proposed program designs from current settlement agreements?
- 12 A. No. FPL's proposed program designs are not impacted by the Company's 2021
 13 base rate case settlement agreement. FPL's settlement agreement as approved
 14 by the Commission only limits modifications to the CDR and CILC bill credits,
 15 and FPL is not proposing any such modifications to those programs in this
 16 proceeding.³

³ See Docket No. 20210015-EI, *In re: Petition by FPL for Base Rate Increase and Rate Unification*, Joint Motion for Approval of Settlement on behalf of FPL, OPC, FRF, FIPUG, and SACE, filed Aug. 10, 2021, Attachment A, Stipulation and Settlement Agreement at p.6; Final Order Approving 2021 Stipulation and Settlement Agreement, Order No. PSC-2021-0446-S-EI (Dec. 2, 2021); Supplemental Final Order, Order No. PSC-2024-0078-FOF-EI (March 25, 2024).

- Q. How does FPL propose to ensure continuation of these programs does not cause increased costs generally associated with non-RIM passing programs?
- A. FPL proposes to limit costs of non-RIM passing programs by capping participation once sector-level goals are met. This limitation on participation would only apply to energy-efficiency programs and provides a way to limit overall portfolio costs while still making valuable energy savings programs available to FPL customers. The Commission has previously approved such an approach with FPL's current DSM Plan.
- 10 Q. Does this conclude your direct testimony?
- 11 A. Yes.

			Cumulative	- Inception	to Year-End	2023*
Curre	nt DSM Programs	Inception Date	Participants	Summer MW	Winter MW	GWh
Resid	ential					
1	Home Energy Survey**	1/1981	4,456,559	n/a	n/a	n/a
2	Load Management (On Call®)	7/1986	652,942	831	743	28
3	Air Conditioning	10/1990	2,051,376	1,357	473	32,707
4	New Construction (BuildSmart®)	2/1996	67,820	51	36	1,116
5	Ceiling Insulation	10/1981	590,344	265	309	11,826
6	Low Income	3/2005	51,429	18	5	114
Business						
7	Business Energy Evaluation**	10/1990	274,707	n/a	n/a	n/a
8	Commercial/Industrial Demand Reduction	5/2000	738	414	266	48
9	Commercial/Industrial Load Control	4/1988	324	442	376	111
10	Business On Call®	6/1995	17,178	67	-	2
11	Heating, Ventilating & Air Conditioning	2/1990	24,199	458	119	14,346
12	Lighting	6/1984	21,463	325	202	24,368
13	Custom Incentive	4/1993	129	55	64	4,781
Curre	nt DSM Programs Total		8,209,208	4,284	2,593	89,447
Disco	ntinued DSM Programs***		2,295,981	1,295	1,119	10,974

10,505,189

5,579

3,712

100,422

Notes:

Grand Total

- * MW and GWh values are at the generator
- ** No MW or GWh savings attributed to Survey programs
- $\ensuremath{^{***}}$ Ongoing savings related to participation in discontinued FPL programs

Programs	Measures (if multiple per Program)		
Residential Energy Survey	Online Home Energy Survey (OHES)		
	Phone Energy Survey (PES)		
	Home Energy Survey (HES)		
Residential Load Management (On Call®)			
Residential Air Conditioning			
Residential New Construction (BuildSmart®)			
Residential Ceiling Insulation			
Residential Low Income	Energy Survey		
	Weatherization (Caulking/Stripping)		
	Duct Testing & Repair		
	Air Conditioning Unit Maintenance		
	Air Conditioning Outdoor Coil Cleaning		
	Faucet Aerators		
	Low-Flow Showerhead		
	LED		
	Water Heater Pipe Wrap		
Business Energy Evaluation (BEE)	Online BEE		
	Phone BEE		
	Field BEE		
Business On Call®			
Commercial/Industrial Demand Reduction			
Commercial/Industrial Load Control (Closed)			
Business Heating, Ventilating, & Air	Chillers		
Conditioning (HVAC)	Thermal Energy Storage (TES)		
	Split/Packaged Direct Expansion (DX)		
	Demand Control Ventilation (DCV)		
	Energy Recovery Ventilation (ERV)		
Business Lighting	High Bay Light Emitting Diodes (LED)		
	Pulse Start Metal Halide (PSMH) Lighting		
	Premium Linear Fluorescent Lamps with High Efficiency		
	Electronic Ballasts		
	Compact Fluorescent Lamps (CFL)		
Business Custom Incentive (BCI)			
Conservation Research & Development (CRD)			
Cogeneration & Small Power Production			

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 1 of 14

Residential EE

Measure	Description
120v Heat Pump Water Heater 50 Gallons	120v Heat Pump Water Heater 50 Gallons
Air Sealing-Infiltration Control	Standard Heating and Cooling System with Improved Infiltration Control
Air-to-Water Heat Pump	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	ASHP 15 SEER from base electric resistance
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF
Basement or Crawlspace Wall Insulation R-15	Increased Basement or Crawlspace Wall Insulation (R-15)
Bathroom Faucet Aerators	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm
CEE Advanced Tier Clothes Dryer	CEE Advanced Tier Clothes Dryer
CEE Advanced Tier Clothes Washer	Tier 3 CEE Clothes washer
CEE Tier 3 Refrigerator	Residential Tier 3 Refrigerator
Ceiling Insulation (R11 to R30)	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes, bring to current code
Ceiling Insulation (R11 to R38)	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes
Ceiling Insulation (R11 to R49)	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes - Beyond Code
Ceiling Insulation (R19 to R30)	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes, bring to current code
Ceiling Insulation (R19 to R38)	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes
Ceiling Insulation (R19 to R49)	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes - Beyond Code
Ceiling Insulation (R2 to R30)	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes, bring to current code
Ceiling Insulation (R2 to R38)	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes
Ceiling Insulation (R2 to R49)	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code
Ceiling Insulation (R30 to R38)	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes
Ceiling Insulation (R30 to R49)	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code
Ceiling Insulation (R38 to R49)	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2
Central AC - 24 SEER/22.9 SEER2	Central AC - 24 SEER/22.9 SEER2
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2
Central AC Tune Up	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics
Dehumidifier Recycling	No dehumidifier
Drain Water Heat Recovery	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger
Duct Insulation	Standard Electric Heating and Central AC with Insulated Ductwork
Duct Repair	Duct Repair to eliminate/minimize leaks, includes testing and sealing
ECM Circulator Pump	Install ECM Circulator Pump
Energy Star Air Purifier	One Air Purifier meeting ENERGY STAR 2.0 Standards
Energy Star Audio-Video Equipment	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards
Energy Star Bathroom Ventilating Fan	Bathroom Exhaust Fan meeting current ENERGY STAR Standards
Energy Star Ceiling Fan	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards
Energy Star Clothes Dryer	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 2 of 14

L	L
Energy Star Clothes Washer	One Clothes Washer meeting ENERGY STAR 8.1 Standards
Energy Star Dehumidifier	One Dehumidifier meeting ENERGY STAR 5.0 Standards One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water
Energy Star Dishwasher	heating
Energy Star Dishwasher (Gas Water Heating)	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating
Energy Star Door	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)
ENERGY STAR EV supply equipment (level 2 charger)	Level 2 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	One Freezer meeting current ENERGY STAR 5.1 Standards
Energy Star Ground Source Heat Pump	Energy Star GSHP, 17.1 SEER, 12 HSPF
Energy Star Imaging Equipment	One imaging device meeting current ENERGY STAR Standards
Energy Star Monitor	One Monitor meeting ENERGY STAR 8.0 Standards
Energy Star Personal Computer	One Personal Computer meeting ENERGY STAR 8.0 Standards
Energy Star Refrigerator	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards
Energy Star Room AC	Room AC meeting current ENERGY STAR standards
Energy Star Set-Top Receiver	One Set-top Box meeting ENERGY STAR 4.1 Standards
Energy Star TV	One Television meeting ENERGY STAR 9.0 Standards
Energy Star Windows	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)
Exterior Wall Insulation	Increased Exterior Above-Grade Wall Insulation (R-13)
Filter Whistle	Install the Furnace Filter Alarm
Floor Insulation	Increased Floor Insulation (R-30)
Freezer Recycling	No Freezer
Green Roof	Vegetated Roof Surface on top of Standard Roof
Heat Pump Clothes Dryer	One Heat Pump Clothes Dryer
Heat Pump Pool Heater	Heat Pump Swimming Pool Heater
Heat Pump Tune Up	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	CEE Advanced Tier Heat Pump Water Heater 50 Gallons
Heat Pump Water Heater 50 Gallons-ENERGY STAR	Heat Pump Water Heater 50 Gallons
Heat Pump Water Heater 80 Gallons-ENERGY STAR	Energy Star Heat Pump Water Heater 80 Gallons
Heat Trap	Heat Trap
High Efficiency Convection Oven	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards
High Efficiency Induction Cooktop	One residential induction cooktop
Home Energy Management System	Typical HVAC by Building Type Controlled by Energy Management System
Hot Water Pipe Insulation	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5
HVAC ECM Motor	A brushless permanent magnet (ECM) blower motor for electric furnace
HVAC Economizer	Install residential economizer
HVAC Zoning System	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat
Indoor Daylight Sensor	Install Indoor Daylight Sensors, 500 Watts Controlled
Induction Range	Residential induction range
Instantaneous Hot Water System	Instantaneous Hot Water System
Kitchen Faucet Aerators	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm
LED - 9W CFL Baseline	LED (assume 9W) replacing CFL baseline lamp
LED - 9W_Halogen Baseline	LED (assume 9W) replacing EISA-2020 compliant baseline lamp
LED Specialty Lamps-5W Chandelier	5 W Chandelier LED
Linear LED	Linear LED Lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm
New Construction - Whole Home Improvements - Tier 1	Performance-based improvements in new homes - 20% savings
New Construction - Whole Home Improvements - Tier 2	Performance-based improvements in new homes - 35% savings

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 3 of 14

Occupancy Sensors Switch Mounted	Switch Mounted Occupancy Sensor, 500 Watts Controlled
Outdoor Lighting Timer	Timer on Outdoor Lighting, Controlling 120 Watts
Outdoor Motion Sensor	Motion Sensor on Outdoor Lighting, Controlling 120 Watts
Ozone Laundry	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer
Programmable Thermostat	Standard Heating and Cooling System with Programmable Thermostat
Properly Sized CAC	Properly Sized Central Air Conditioning
Radiant Barrier	Radiant Barrier
Reflective Roof	Reflective Roof Treatment
Refrigerator Coil Cleaning	Refrigerator Coil Cleaning
Refrigerator Recycling	No Refrigerator
Residential Whole House Fan	Standard Central Air Conditioning with Whole House Fan
Sealed crawlspace	Encapsulated and semi-conditioned crawlspace
Smart Breaker	Smart Breaker
Smart Panel	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end- use appliances by customer
Smart Power Strip	Smart plug strips for entertainment centers and home office
Smart Thermostat	Standard Heating and Cooling System with Smart Thermostat
Solar Attic Fan	Standard Central Air Conditioning with Solar Attic Fan
Solar Pool Heater	Solar Swimming Pool Heater
Solar Powered Pool Pumps	Solar Powered Pool Pump
Solar Thermal Water Heating System	Solar Thermal System with Electric Backup
Spray Foam Insulation (Base R11)	Open cell spray foam along roofline in existing (1982-1985) homes
Spray Foam Insulation (Base R19)	Open cell spray foam along roofline in existing (1982-1985) homes
Spray Foam Insulation (Base R2)	Open cell spray foam along roofline in older (pre-1982) homes
Spray Foam Insulation (Base R30)	Open cell spray foam along roofline in existing (1986-2020) homes
Thermostatic Shower Restriction Valve	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Variable Refrigerant Flow (VRF) HVAC Systems
Water Heater Blanket	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap
Water Heater Thermostat Setback	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F
Water Heater Timeclock	Water Heater Timeclock
Weather stripping	Specific quantity of weather stripping to seal
Window Caulking	Window caulking
Window Sun Protection	Window Film Applied to Standard Window

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 4 of 14

Commercial EE

Measure	Description
1.5HP Open Drip-Proof (ODP) Motor	High Efficiency 1.5 HP Open-Drip Proof Motor
10HP Open Drip-Proof (ODP) Motor	High Efficiency 10 HP Open-Drip Proof Motor
20HP Open Drip-Proof (ODP) Motor	High Efficiency 20 HP Open-Drip Proof Motor
Advanced Rooftop Controller	Advanced Rooftop Controller
Air Compressor Optimization	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor
Air Curtains	Air Curtain across door opening
Airside Economizer	Airside Economizer
Anti-Sweat Controls	One Medium Temperature Reach-In Case with Anti-Sweat Heater Controls
Auto Off Time Switch	· · · · · · · · · · · · · · · · · · ·
	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing
Beverage Vending Machine Controls	controls
Bi-Level Lighting Control (Exterior)	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled
Bi-Level Lighting Control (Interior)	Bi-Level Controls on Interior Lighting, 500 Watts Controlled
Ceiling Insulation (R19 to R30)	Blown-in insulation in ceiling cavity/attic
Ceiling Insulation (R19 to R38)	Blown-in insulation in ceiling cavity/attic
Ceiling Insulation (R19 to R49)	Blown-in insulation in ceiling cavity/attic - Beyond Code
Ceiling Insulation (R2 to R30)	Blown-in insulation in ceiling cavity/attic
Ceiling Insulation (R2 to R38)	Blown-in insulation in ceiling cavity/attic
Ceiling Insulation (R2 to R49)	Blown-in insulation in ceiling cavity/attic - Beyond Code
Chilled Water Reset	One Chiller with Reset of Chilled Water Temperature Setpoint
Chiller maintenance	O&M improvements to restore chiller performance
CO Sensors for Parking Garage Exhaust	Enclosed Parking Garage Exhaust with CO Control
Commercial Duct Sealing	Standard Electric Heating and Central AC with Improved Duct Sealing
Commercial Strategic Energy Management	Commercial Strategic Energy Management
Custom measure - Non-lighting	Custom Improvement to Facility's Operations
Data Center Hot Cold Aisle	Equipment configuration that saves HVAC
Dedicated Outside Air System (DOAS)	Install Dedicated Outside Air System (DOAS)
Demand Controlled Circulating Systems	Recirculation Pump with Demand Control Mechanism
Demand Controlled Ventilation	Return Air System with CO2 Sensors
Demand Defrost	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle
Destratification Fans	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level
Door Gasket (Cooler)	New Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	New Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger
Dual Enthalpy Economizer	Standard HVAC Unit with an economizer and dual enthalpy differential control
Duct Insulation	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)
Ductless Mini-Split AC	Ductless Mini-Split AC, 4 Ton, 16 SEER
Ductless Mini-Split HP	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF
DX Coil Cleaning	DX Coil Cleaning

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 5 of 14

ECM Motors on Furnaces	Variable Speed Electronically Commutated Motor for an Electric Furnace
Efficient Battery Charger	Efficient Battery Charger
Efficient Exhaust Hood	Kitchen ventilation with automatically adjusting fan controls
Efficient Motor Belts	Synchronous belt, 98% efficiency
Efficient New Construction Lighting	Efficient New Construction Lighting, 15% Better than Code
Energy Recovery Ventilation System (ERV)	Unitary Cooling Equipment that Incorporates Energy Recovery
Energy Star Combination Oven	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards
Energy Star Commercial Clothes Washer	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards
Energy Star Commercial Dishwasher	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards
Energy Star Commercial Glass Door Freezer	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards
Energy Star Commercial Glass Door Refrigerator	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards
Energy Star Commercial Solid Door Freezer	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards
Energy Star Commercial Solid Door Refrigerator	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards
Energy Star convection oven	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards
Energy Star EV Chargers	Level 2 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards
Energy Star Griddle	One Griddle meeting current ENERGY STAR Version 1.2 Standards
Energy Star Hot Food Holding Cabinet	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards
Energy Star Ice Maker	One Continuous Self-Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards
ENERGY STAR Imaging Equipment	One imaging device meeting current ENERGY STAR Standards
Energy Star LED Directional Lamp	Energy Star 7.6W Directional LED lamp
Energy Star Monitors	One Monitor meeting ENERGY STAR 8.0 Standards
Energy Star PCs	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards
Energy Star room AC	Room AC meeting current ENERGY STAR standards
Energy Star Servers	One Server meeting ENERGY STAR 2.0 Standards
Energy Star Steamer	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards
Energy Star Uninterruptable Power Supply	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards
ENERGY STAR Water Cooler	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards
Energy Star windows	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)
Engine Block Timer	Plug-in timer that activates engine block timer to reduce unnecessary run time
Escalator Motor Efficiency Controller	Install Escalator Motor Efficiency Controller
Facility Commissioning	Perform facility commissioning to optimize building operations in new facilities
Facility Energy Management System	Typical HVAC by Building Type Controlled by Energy Management System
Faucet Aerator	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm
Floating Head Pressure Controls	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Increased Floor Insulation (R-19)
Geothermal Heat Pump	Geothermal Heat Pump
Green roof	Vegetated Roof Surface on top of Standard Roof

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 6 of 14

HE Air Cooled Chiller - All Compressor Types - 100 Tons	HE Air Cooled Chiller - Air Compressor Types - 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER
HE DX 11.25-20.0 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER
HE DX 5.4-11.25 Tons Elect Heat	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER
HE DX 5.4-11.25 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER
HE DX Less than 5.4 Tons Elect Heat	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER
HE DX Less than 5.4 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons
Heat Pump Pool Heater Commercial	High Efficiency Pool Heater Eff. >=84%
Heat Pump Water Heater	Efficient 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	20 HP VFD Air Compressor
High Efficiency Data Center Cooling	High Efficiency CRAC (computer room air conditioner)
High Efficiency PTAC	High Efficiency PTAC
High Efficiency PTHP	High Efficiency PTHP
High Efficiency Refrigeration Compressor_Discus	High Efficiency Refrigeration Compressors
High Efficiency Refrigeration Compressor_Scroll	High Efficiency Refrigeration Compressors
High Speed Fans	High Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4
Hotel Card Energy Control Systems	Guest Room HVAC Unit Controlled by Hotel-Key-Card Activated Energy Control System
Indoor daylight sensor	Install Indoor Daylight Sensors, 500 Watts Controlled
Induction Cooktops	Efficient Induction Cooktop
Infiltration Reduction - Air Sealing	Reduced leakage through caulking, weather-stripping
Instantaneous Hot Water System Commercial	Instantaneous Hot Water System
LED - 14W_CFL Baseline	LED (assume 14W) replacing CFL
LED - 9W Flood_CFL Baseline	LED (assume 9W) replacing CFL
LED Canopy Lighting (Exterior)	One 67.2W LED Canopy Light
LED Display Lighting (Exterior)	One Letter of LED Signage, < 2ft in Height
LED Display Lighting (Interior)	One Letter of LED Signage, < 2ft in Height
LED Exit Sign	One 5W Single-Sided LED Exit Sign
LED Exterior Wall Packs	One 35W LED Wall Pack
LED High Bay_HID Baseline	One 140W High Bay LED Fixture
LED High Bay_LF Baseline	One 140W High Bay LED Fixture
LED Linear - Fixture Replacement	2x4 LED Troffer
LED Linear - Lamp Replacement	Linear LED (16W)
LED Parking Lighting	One 160W LED Area Light
LEED New Construction Whole Building	LEED New Construction Whole Building
	

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 7 of 14

Light Tube	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space
Low Flow Shower Head	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm
Low-Flow Pre-Rinse Sprayers	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm
Network PC Power Management	One computer and monitor attached to centralized energy management system that controls when
Networked Lighting Controls	desktop computers and monitors plugged into a n Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled
Night Covers for Display Cases	One Open Vertical Case with Night Covers
Occupancy Sensors, Ceiling Mounted	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled
Occupancy Sensors, Switch Mounted	Switch Mounted Occupancy Sensor, 500 Watts Controlled
Outdoor Lighting Controls	Install Exterior Photocell Dimming Controls, 500 Watts Controlled
Outdoor motion sensor	Install Exterior Motion Sensor, 500 Watts Controlled
Ozone Laundry Commercial	Add a new ozone laundry system onto a commercial clothes washer
Programmable thermostat	Pre-set programmable thermostat that replaces manual thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Medium Temperature Reach-In Case with equivalent size Electronically Commutated Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Medium Temperature Walk-In Case with Electronically Commutated Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Medium Temperature Reach-In Case with equivalent size Q-Sync Evaporator Fan Motor
Reflective Roof Treatment	Reflective Roof Treatment
Refrigerated Display Case LED Lighting	60" Refrigerated Case LED Strip
Refrigerated Display Case Lighting Controls	Occupancy Sensors for Refrigerated Case Lighting to reduce run time
Refrigeration Commissioning	Commissioned Refrigeration System
Refrigeration Economizer	Walk-in refrigerator with economizer
Regenerative Drive Elevator Motor	Regenerative drive produced energy when motor in overhaul condition
Retro-Commissioning (Existing Construction)	Perform facility retro-commissioning, including assessment, process improvements, and optimization of energy-consuming equipment and systems
Roof Insulation	Roof Insulation (built-up roof applicable to flat/low slope roofs)
Server Virtualization	2 Virtual Host Server
Smart Strip Plug Outlet	One Smart Strip Plug Outlet
Smart thermostat	Thermostats that include "smart" features such as occupancy sensors, geo-fencing, multi-zone sensors
Solar Pool Heater Commercial	Solar Swimming Pool Heater
Solar Powered Pool Pump	Solar Powered Pool Pump Motor
Solar Thermal Water Heating System Commercial	Solar Thermal System with Electric Backup
Strip Curtains - Freezers	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway
Strip Curtains - Refrigerators	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway
Suction Pipe Insulation - Freezers	Suction Pipe Insulation - Freezers
Suction Pipe Insulation - Refrigerators	Suction Pipe Insulation - Refrigerators
Thermal Energy Storage	Deploy thermal energy storage technology (ice harvester, etc.) to shift load
	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves
Thermostatic Shower Restriction Valve Commercial	Time Clock Controlled Lighting, 500 Watts Controlled
Thermostatic Shower Restriction Valve Commercial Time Clock Control	Variable Refrigerant Flow (VRF) HVAC Systems
	· without remigeration (vitar) in vite by sterill
Time Clock Control	Variable Air Volume Distribution System

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 8 of 14

VFD on HVAC Pump	VFD on HVAC Pump
VSD Controlled Compressor	Refrigeration System with VSD Control
Wall Insulation	Increased Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Seals to reduce infiltration losses at loading dock
Water Cooled Refrigeration Heat Recovery	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water
Water Heater Setback	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.
Water source heat pump	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP
Waterside Economizer	Waterside Economizer
Window shade film	Window Film with SHGC of 0.35 Applied to Standard Window
Zero Energy Doors	Install zero energy doors for a reach-in refrigerated cooler or freezer

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 9 of 14

Industrial EE Measures

1.53P Open Disp-Proof (ODP) Motor 18th POpen Disp-Proof (ODP) Motor 18th Efficiency 1.5 HP Open-Disp Proof Motor 201P Open Disp-Proof (ODP) Motor 18th Efficiency 2.5 HP Open-Disp Proof Motor 201P Open Disp-Proof (ODP) 201P Open Di	Measure	Description
Dill Popen Dip-Proof (ODP) Motor Japhase High Frequency Battery Charger - I shift Advanced Rooflep Centroller Anno Off Time Swick Anno Off Time Swick Anno Off Time Swick on Internet Inglithing, 500 Wasts Controlled Anno Off Time Swick on Internet Inglithing, 500 Wasts Controlled Anno Off Time Swick on Internet Inglithing, 500 Wasts Controlled Anno Off Time Swick on Internet Inglithing, 500 Wasts Controlled Anno Off Roefley Centrol (Internet) Beleved Centrols on Internet Englithing, 500 Wasts Controlled Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Soppoint Cogged Belt on 15th ODP Motor 15th ODP Motor with Cogged Belts Installed on Stepply andror Resum Art Para Cogged Belt on 15th ODP Motor 15th ODP Motor with Cogged Belts Installed on Stepply andror Resum Art Para Compressed Air Society Tank Compressed Air Society Condensate Drains Compressed Air Society Condensate Drains Controller Water Temperature with Reserver Tank Custom Rassaw - Non-Lighting Custom Improvement Featility Operations Adjusted Reserver Tank Custom Rassaw - Non-Lighting Custom Rassaw - Non-Lighting Custom Rassaw - Non-Lighting Dairy Refingention Heat Receivery Dermand Controlled Ventilation Resum Air Experts with refinemin heat receivery task installed Delicited Outside Air System (DOAS) Dermand Controlled Ventilation Resum Air Experts with Reservery Dermand Controlled Ventilation Resum Air Experts with Reservery Dermand Compressed Air Nozake Da	1.5HP Open Drip-Proof (ODP) Motor	High Efficiency 1.5 HP Open-Drip Proof Motor
1-phase High Trequency Battery Charger - 1 shift Advanced Rooftop Controller Advanced	10HP Open Drip-Proof (ODP) Motor	High Efficiency 10 HP Open-Drip Proof Motor
Advanced Roothop Controller Air Compressor Optimization Air Curtain across does opening Airisde Conomizer Airisde Conomizer Auto Claser on Refrigerator Door Bell-evel Lighting Control, 500 Watts Controlled Conges Belt on 400 DOP Motor Auto Claser Research Auto DoP Motor with Cogged Belts Installed on Supply and or Return Air Fans Conges Belt on 400 DOP Motor Auto Congessed Air Dockand Doyce Auto Auto Controlled Water Air Dockand Doyce Compressed Air Dockand Doyce Compressed Air Social Doyce Compressed Air Social Doyce Compressed Air Social Doyce Congressed Air Social Doyce Congessed Air Social Conference Auto English Manager Andrew Air Spatema Manager Andrew Air Spatema Value Air Spatema Controlled Congest Belts Installed Controlled Air Social Consisted Air Spatema (DOAS) Demand Controlled Verdalation Demand Controlled Verdalation Return Air Spatema with Cot Sensors Demand Controlled Verdalation Auto Controlled Verdalation Air Congessed Air Nozzles Demand Controlled Verdalation Air Congessed Air Nozzles Demand Controlled Verdalation Air Congessed Air Nozzles Bifician New Construction Light	20HP Open Drip-Proof (ODP) Motor	High Efficiency 20 HP Open-Drip Proof Motor
Ar Compressor Optimization Performing Routine Maintenance on 2007P Intel Modulation Fixed-Speed Compressor Air curtains Ari Curtains across door opening Anick economizer Anno Oli Time Switch on Interior Lighting, 500 Watts Controlled Anno Oli Time Switch on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Control (Exterior) Install Exterior Bi-Level Lighting, 500 Watts Controlled Bi-Level Lighting Control (Exterior) Bi-Level Control on Deteror Lighting, 500 Watts Controlled Bi-Level Lighting Control (Exterior) Bi-Level Control on Deteror Lighting, 500 Watts Controlled Bi-Level Control on Supply and/or Return Air Fam Congressed Air Desiceant Dayer Belt on 15th ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fam Compressed Air Desiceant Dayer Belt on 15th ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fam Compressed Air No-Los Condensetor brins Demand Commolided Wenthalion Return Air System with Decaded Outside Air System (PiOA)s Demand Commolided Wenthalion Belting Bi-Light Decaded Outside Air System (PiOA)s Demand Commolided Wenthalion Demand Commolided Wenthalion Bi-Level Control on Desicant Code Desicant Code Control on Desicant Code Control on Desicant Code Contro	3-phase High Frequency Battery Charger - 1 shift	3-phase High Frequency Battery Charger
Air Cutrains Air Curtain across door opening Airside economizer Airside economizer Airside economizer Auto Off Time Switch Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Courtor (Exterior) Bi-Level Lighting Courtor (Exterior) Bi-Level Control on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Courtor (Interior) Bi-Level Control on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Courtor (Interior) Bi-Level Control on Interior Lighting, 500 Watts Controlled Congest Belt on 15th ODP Motor Controlled Watter Reset Congest Belt on 15th ODP Motor With Cogged Belts Installed on Supply and/or Return Air Faus Cogged Belts on 15th ODP Motor with Cogged Belts Installed on Supply and/or Return Air Faus Congressed Air Desiceant Dryer Leated regenerative desiceant dryer without dew point demand controls Compressed Air No. Loss Condensate Drains Unterly Refrigeration Supply and Compressed Air Molecular Compressed Air Molecular Drains Compressed Air Storage Tank United Modulation Fixed Speed Compressor with Receiver Tank Custom Measure - Nove Lighting Custom Intervenent to Facility's Operations Custom Intervenent to Facility's Operations United Refressor Controlled Ventilation Return Air System with Demand-Controlled Electric Defiost Cycle Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with Demand-Controlled Electric Defiost Cycle Dev Point Sensor Control for Desicant CA Dryer Develor	Advanced Rooftop Controller	Advanced Rooftop Controller
Airside Economizer Auts Closer on Refrigentor Door One Medium Temperature Walk-In Refrigentor Door with Auto-Closer Auto-Off Time Switch an Interior Lighting, 500 Wats Controlled Bit-level Lighting Control (Exterior) Install Exterior Bit-level Lighting, 500 Wats Controlled Bit-level Lighting Control (Exterior) Bit-level Lighting Control (Exterior) Bit-level Correls on Interior Lighting, 500 Wats Controlled Bit-level Lighting Control (Butterior) Bit-level Lighting Control (Butterior) Bit-level Lighting Control (Butterior) Bit-level Correls on Interior Lighting, 500 Wats Controlled Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Setpoint Coaged Belt on ISlay ODP Motor 15llip ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor 40ll PODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor 40ll PODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor 40ll PODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on ISlay ODP Motor with Coaged Belts Installed on Supply ander Return Air Fans Coaged Belt on Islay ODP Motor with Coaged Belts Installed Return Air Fans Coaged Belt on Islay Develor	Air Compressor Optimization	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor
Auto Closer on Refrigerator Door Auto Off Time Switch on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Control (Exterior) Bi-Level Lighting Control (Exterior) Bi-Level Lighting Control (Exterior) Bi-Level Lighting Control (Interior) Bi-Level Lighting Light	Air curtains	Air Curtain across door opening
Auto-Off Time Switch Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled Bi-Level Lighting Control (Exterior) Install Exterior Bi-Level Lighting Control, 500 Watts Controlled Bi-Level Lighting Control (Interior) Bi-Level Lighting Control, 500 Watts Controlled Bi-Level Lighting Control (Interior) Bi-Level Lighting, 500 Watts Controlled Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Setpoint Cogged Belts on 15tp ODP Motor 15tp ODP Motor 40th Cogged Belts Installed on Supply and/or Return Air Fans Cogged Belt on 40tp ODP Motor 40th PODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air Desiscant Dyer heated regenerative desiscant dryer without dew point demand controls Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air Storage Tank 20 IIP Inlet Medulation Fixed-Speed Compressor with Receiver Tank Custom Improvement to Facility's Operations Oping Refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Designation equipment with refrigeration heat recovery tank installed Designation Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Proceer System with CO2 Sensors Demand Defrost Walk-In Proceer System with Demand-Controlled Electric Defrost Cycle Dow Point Sensor Control for Desistant CA Dryer 1000 CFM Heated Desistant Air Dryer with Dew Point Controls Dip Irrigation Nozzles Flow Control Nozzles Flow Control Nozzles Dail Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control Microl Cleaning Efficient Compressed Air Nozzles Efficient New Construction Lighting 15% Better than Code Efficient Compressed Air Nozzles Efficient New Construction Lighting 15% Better than Code Efficient New Construction Lighting Efficient Luboratory Fune Hood Variable Air Volume High Performance Fune Hood Energ	Airside economizer	Airside Economizer
Bi-Level Lighting Control (Exterior) Bi-Level Lighting Control (Exterior) Bi-Level Lighting Control (Interior) Bi-Level Lighting Control (Interior) Bi-Level Controls on Interior Lighting, 500 Watts Controlled Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Setpoint Cogged Belt on 15tp ODP Motor STHP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Constant Measure - Non-Lighting Custom Improvement to Facility's Operations Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Controlled Ventilation Return Air System with Co2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dow Point Sensor Control for Descicant CA Dryer 1000 CFM Heated Desciant Air Dryer with Dew Point Controls Dip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HYAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning Efficient New Construction Lighting, 15% Better than Code Electric Actuator Energy Efficient Dip Type Transformer (CSL-3) Energy Efficient Dip Type Transformer (CSL-3) Energy Efficient Dip Type Transformer (CSL-3) Energy Star LED Directional Lamp Energy Star ToW Directional L	Auto Closer on Refrigerator Door	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer
Bi-Level Lighting Control (Interior) Bi-Level Controls on Interior Lighting, 500 Watts Controlled Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Setpoint Cogged Belt on 15hp ODP Motor IstIP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air Desicuant Dryer heated regenerative desicuant dryer without dew point demand controls Compressed Air Ne-Loss Condemsate Drainin Install no-loss condensate drains Compressed Air Ne-Loss Condensate Drainin Install no-loss condensate drains Compressed Air Storage Tank 20 HIP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Measure - Non-Lighting Custom Improvement to Facility's Operations Dairy Refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dow Point Sensor Control for Desiciant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Dip Irrigation Nozzles Dual Enthalpy Economizer Sandard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning Efficient Compressed Air Nozzles Efficient New Construction Lighting, 15% Better than Code Electric Actuators Energy Efficient Laboratory Furne Hood Variable Air Volume High Performance Furne Hood Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Dry Type Transformer (ESL-3) Energy Efficient Dry Type Transformer (ESL-3) Energy Efficient Dry Type Transformer (ESL-3) Energy Star 7.6W Directional LED Imp Energy Star 7.6W Directional LED Imp Energy Star vindows Lington Drive Cooling Equipment that Incorporates Energy Recovery Energy Star vindows Lington Drive Cooling Equipment that Incorporates Energy Recovery Energy Star Toom on Room AC meeting current	Auto Off Time Switch	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled
Chilled Water Reset One Chiller with Reset of Chilled Water Temperature Setpoint Cogged Belt on 15hp ODP Motor 15hp ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Cogged Belt on 40hp ODP Motor 40hP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air Desiceant Dryer heated regenerative desiceant dryer without dew point demand controls Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air Storage Tank 20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Improvement to Facility's Operations refrigeration letar Recovery refrigeration equipment with refrigeration heat recovery tank installed Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Pennand Controlled Vertilation Return Air System with CO2 Sensors Pennand Defrost Walk-in Freezer System with Demand-Controlled Electric Defrost Cycle Deap Point Sensor Control for Desistant CA Dryer 1000 CFM Heated Desistant Air Dryer with Dew Point Controls Dir Irrigation Nozzles Dail Inflahpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Fificient New Construction Lighting Efficient Town Construction Lighting Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Transformers Energy Star Volume High Performance Furne Hood Energy Efficient Transformers Energy Star Volume High Performance Energy Recovery Energy Star LED Directional Lamp Energy Star Volume High Performance Energy Recovery Energy Star Volume High Performance Energy Recovery Energy Star Volume High Performance Energy Star Version 6.0 Requiremen	Bi-Level Lighting Control (Exterior)	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled
Cogged Belt on 15hp ODP Motor 15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Cogged Belt on 40hp ODP Motor 40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air Desiceant Dryer beated regenerative desiceant dryer without dew point demand controls Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air Storage Tank 20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Miprovement to Facility's Operations refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Dip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Efficient New Construction Lighting Efficient New Construction Lighting Efficient New Construction Lighting Efficient These Construction Lighting Efficient Tansformers Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Star Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star Ventilation System Energy Star Ventilation System Inorgine Block Timer An engine block heater operated by an outdoor plug-in timer	Bi-Level Lighting Control (Interior)	Bi-Level Controls on Interior Lighting, 500 Watts Controlled
Cogged Belt on 40hp ODP Motor 40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans Compressed Air Desiceant Dryer heated regenerative desiceant dryer without dew point demand controls Install no-loss condensate drains Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air Storage Tank 20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Improvement to Facility's Operations Perifigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dow Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Drip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Li4* Engineered Air Nozzle Efficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Energy Efficient Laboratory Fune Hood Variable Air Volume High Performance Fune Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Transformers Energy Star 7.6W Directional LED Jamp Energy Star LED Directional Lamp Energy Star 7.6W Directional LED Jamp Energy Star vom ae Room AC meeting eurrent ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer A nengine block heater operated by an outdoor plug-in timer	Chilled Water Reset	One Chiller with Reset of Chilled Water Temperature Setpoint
Compressed Air Desiceant Dryer beated regenerative desiceant dryer without dew point demand controls Compressed Air No-Loss Condensate Drains Install no-loss condensate drains Compressed Air No-Loss Condensate Drains 20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Improvement to Facility's Operations refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Dip Irrigation Nozzles Flow Control Nozzles Dial Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning Efficient Compressed Air Nozzles Efficient New Construction Lighting Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Star LED Directional Lamp Energy Star Vow Directional LED lamp Energy Star Vow On AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Cogged Belt on 15hp ODP Motor	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans
Compressed Air No-Loss Condensate Drains Install no-loss condensate drains 20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank Custom Measure - Non-Lighting Custom Masure - Non-Lighting Custom Marsure - Non-Lighting Custom Marsure - Non-Lighting Custom Marsure - Non-Lighting Custom Marsure - Non-Lighting Custom Masure - Non-Lighting -	Cogged Belt on 40hp ODP Motor	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans
Custom Measure - Non-Lighting Custom Improvement to Facility's Operations Dairy Refrigeration Heat Recovery Pedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Drip Irrigation Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles H/4" Engineered Air Nozzle Efficient New Construction Lighting Efficient New Construction Lighting Efficient New Construction Lighting Efficient Transformers Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Transformers Energy Star Volume High Performance Fume Hood Energy Efficient Transformers Energy Star 7.6W Directional LED lamp Energy Star room ac Energy Star vindows 100f2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Compressed Air Desiccant Dryer	heated regenerative desiccant dryer without dew point demand controls
Custom Measure - Non-Lighting Custom Improvement to Facility's Operations Pairy Refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Install Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer Install Dedicated Dusicant Air Dryer with Dew Point Controls Prip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Ifficient New Construction Lighting Efficient New Construction Lighting. 15% Better than Code Electric Actuators Electric Actuators Electric Actuator Energy Efficient Laboratory Fune Hood Variable Air Volume High Performance Fune Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star LED Directional Lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Compressed Air No-Loss Condensate Drains	Install no-loss condensate drains
Dairy Refrigeration Heat Recovery refrigeration equipment with refrigeration heat recovery tank installed Dedicated Outside Air System (DOAS) Install Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Drip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzle Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuators Electric Actuators Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Transformers Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star CoW Directional LED lamp Energy Star Vension 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Compressed Air Storage Tank	20 HP Inlet Modulation Fixed-Speed Compressor with Receiver Tank
Dedicated Outside Air System (DOAS) Demand Controlled Ventilation Return Air System with CO2 Sensors Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Drip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles I/4" Engineered Air Nozzle Efficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuators Energy Efficient Laboratory Fune Hood Variable Air Volume High Performance Fune Hood Energy Efficient Transformers Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star CoW Directional LED lamp Energy Star voma ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Custom Measure - Non-Lighting	Custom Improvement to Facility's Operations
Demand Controlled Ventilation Return Air System with CO2 Sensors Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Prip Irrigation Nozzles Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Ithe Engineered Air Nozzle Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Venoma a Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer A engine block heater operated by an outdoor plug-in timer	Dairy Refrigeration Heat Recovery	refrigeration equipment with refrigeration heat recovery tank installed
Demand Defrost Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle Dew Point Sensor Control for Dessicant CA Dryer I000 CFM Heated Desicant Air Dryer with Dew Point Controls Drip Irrigation Nozzles Flow Control Nozzles Plow Control Nozzles Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles I/4" Engineered Air Nozzle Efficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Venom ac Room AC meeting current ENERGY STAR standards Energy Star windows I00ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Dedicated Outside Air System (DOAS)	Install Dedicated Outside Air System (DOAS)
Dew Point Sensor Control for Dessicant CA Dryer 1000 CFM Heated Desicant Air Dryer with Dew Point Controls Flow Control Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles 1/4" Engineered Air Nozzle Efficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Volume High Performance Fume Hood An engine block heater operated by an outdoor plug-in timer	Demand Controlled Ventilation	Return Air System with CO2 Sensors
Drip Irrigation Nozzles Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Ifficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuators Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Yoom ac Room AC meeting current ENERGY STAR standards Energy Star Windows Inoffic of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Demand Defrost	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle
Dual Enthalpy Economizer Standard HVAC Unit with an economizer and dual enthalpy differential control DX Coil Cleaning DX Coil Cleaning Efficient Compressed Air Nozzles Efficient New Construction Lighting Efficient New Construction Lighting Efficient New Construction Lighting Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Dew Point Sensor Control for Dessicant CA Dryer	1000 CFM Heated Desicant Air Dryer with Dew Point Controls
DX Coil Cleaning Efficient Now Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Venom ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Drip Irrigation Nozzles	Flow Control Nozzles
Efficient Compressed Air Nozzles Efficient New Construction Lighting Efficient New Construction Lighting Electric Actuators Electric Actuators Energy Efficient Laboratory Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Venting Current ENERGY STAR standards Energy Star windows Energy Star Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Dual Enthalpy Economizer	Standard HVAC Unit with an economizer and dual enthalpy differential control
Efficient New Construction Lighting Efficient New Construction Lighting, 15% Better than Code Electric Actuators Electric Actuator Energy Efficient Laboratory Fume Hood Variable Air Volume High Performance Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star 7.6W Directional LED lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	DX Coil Cleaning	DX Coil Cleaning
Electric Actuators Energy Efficient Laboratory Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star 7.6W Directional LED lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Efficient Compressed Air Nozzles	1/4" Engineered Air Nozzle
Energy Efficient Laboratory Fume Hood Energy Efficient Transformers Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star Y.6W Directional LED lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Efficient New Construction Lighting	Efficient New Construction Lighting, 15% Better than Code
Energy Efficient Dry Type Transformer (CSL-3) Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Electric Actuators	Electric Actuator
Energy Recovery Ventilation System Unitary Cooling Equipment that Incorporates Energy Recovery Energy Star LED Directional Lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Energy Efficient Laboratory Fume Hood	Variable Air Volume High Performance Fume Hood
Energy Star LED Directional Lamp Energy Star 7.6W Directional LED lamp Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Energy Efficient Transformers	Energy Efficient Dry Type Transformer (CSL-3)
Energy Star room ac Room AC meeting current ENERGY STAR standards Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Energy Recovery Ventilation System	Unitary Cooling Equipment that Incorporates Energy Recovery
Energy Star windows 100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21) Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Energy Star LED Directional Lamp	Energy Star 7.6W Directional LED lamp
Engine Block Timer An engine block heater operated by an outdoor plug-in timer	Energy Star room ac	Room AC meeting current ENERGY STAR standards
	Energy Star windows	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)
Facility Commissioning Perform facility commissioning	Engine Block Timer	An engine block heater operated by an outdoor plug-in timer
	Facility Commissioning	Perform facility commissioning

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 10 of 14

Facility Energy Management System	Typical HVAC by Building Type Controlled by Energy Management System
Fan Thermostat Controller	Typical HVAC by Building Type with Fan Thermostat Controller Installed
Floating Head Pressure Controller	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Heal Pressure Control Valve
Grain Bin Aeration Control System	Grain Storage Fan System with Automatic Controls
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HE Air Cooled Chiller - All Compressor Types - 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER
HE DX 11.25-20.0 Tons Elec Heat	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER
HE DX 11.25-20.0 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER
HE DX 5.4-11.25 Tons Elect Heat	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER
HE DX 5.4-11.25 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER
HE DX Less than 5.4 Tons Elect Heat	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER
HE DX Less than 5.4 Tons Other Heat	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled
High Efficiency Air Compressor	20 HP VFD Air Compressor
High Efficiency Refrigeration Compressor - Discus	High Efficiency Refrigeration Compressors
High Efficiency Refrigeration Compressor - Scroll	High Efficiency Refrigeration Compressors
High Efficiency Welder	High Efficiency Welder
High Speed Fans	High Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	20' High Volume Low Speed Fan
Indoor Agriculture - LED Grow Lights	LED grow light
Indoor daylight sensor	Install Indoor Daylight Sensors, 500 Watts Controlled
Industrial Duct Sealing	Standard Electric Heating and Central AC with Improved Duct Sealing
Injection Mold and Extruder Barrel Wraps	2' Diameter, 20' Long Machine Barrel with 1" Insulation
Insulated Pellet Dryer Tanks and Ducts	Insulation for Pellet Tank and Duct
LED - 14W_CFL Baseline	LED (assume 14W) replacing CFL
LED Canopy Lighting (Exterior)	One 67.2W LED Canopy Light
LED Display Lighting (Exterior)	One Letter of LED Signage, < 2ft in Height
LED Display Lighting (Interior)	One Letter of LED Signage, < 2ft in Height
LED exit sign	One 5W Single-Sided LED Exit Sign
LED Exterior Wall Packs	One 35W LED Wall Pack
LED High Bay_HID Baseline	One 140W High Bay LED Fixture
LED High Bay_LF Baseline	One 140W High Bay LED Fixture
LED High Bay_LF Baseline LED Linear - Fixture Replacement	One 140W High Bay LED Fixture 2x4 LED Troffer Fixture
0 12	· ·

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 11 of 14

LEED New Construction Whole Building	LEED Qualifying New Construction
Light Tube	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space
Low Energy Livestock Waterer	Install Thermostatically Controlled Livestock Watering System
Low Pressure Sprinkler Nozzles	Low Pressure Irrigation Nozzles operate at 35 psi or lower
Low Pressure-drop Filters	20 HP Inlet Modulation Fixed-Speed Compressor with Low Pressure Drop Filter
Milk Pre-Cooler	Installed pre-cooler heat exchanger
Networked Lighting Controls	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled
Occupancy Sensors, Ceiling Mounted	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled
Occupancy sensors, switch mounted	Switch Mounted Occupancy Sensor, 500 Watts Controlled
Outdoor Lighting Controls	Install Exterior Photocell Dimming Controls, 500 Watts Controlled
Outdoor motion sensor	Install Exterior Motion Sensor, 500 Watts Controlled
Packaged Terminal AC	High Efficiency Packaged Terminal AC
Process Cooling Ventilation Reduction	Standard Process Cooling with Reduced Ventilation
Programmable thermostat	Standard Heating and Cooling System with Programmable Thermostat
Reflective Roof Treatment	Reflective Roof Treatment
Refrigeration Commissioning	Commissioned Refrigeration System
Retro-Commissioning (Existing Construction)	Perform Facility Retro-commissioning
Roof insulation	Roof Insulation (built-up roof applicable to flat/low slope roofs)
Smart thermostat	Standard Heating and Cooling System with Smart Thermostat
Strategic Energy Management	SEM goal setting and tracking
Synchronous Belt on 15hp ODP Motor	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	Deploy thermal energy storage technology (ice harvester, etc.) to shift load
Time Clock Control	Time Clock Controlled Lighting, 500 Watts Controlled
VAV System	Variable Air Volume Distribution System
VFD on Air Compressor	20 HP VFD Air Compressor
VFD on Cooling Tower Fans	Cooling Tower Fans with VFD Control
VFD on HVAC Fan	5 HP HVAC Fan Motor, with VFD Control
VFD on HVAC Pump	VFD on HVAC Pump
VFD on process pump	20 HP Process Pump Equipped with VFD Control
VSD Controlled Compressor	Refrigeration System with VSD Control
Water source heat pump	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP
Waterside economizer	Waterside Economizer
Window shade film	Window Film with SHGC of 0.35 Applied to Standard Window

Residential DR Measures

Measure	Description
Central air conditioner - Load Shed	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats – BYOT	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can preprogram to curtail load when an event is called.
Water heater control	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Load control program with switch installed on pool pump
Room AC	Load control program that is focused on room AC units rather than central AC
Managed EV Charging – switch	Load control switch that is installed on an EV charger
Managed EV Charging – telematics	Direct load control program leveraging EV smart charging software
Battery Storage with PV	PV charges battery and battery discharges to grid

Small/Medium Business DR Measures

Measure	Description
Central air conditioner - Load Shed	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats – BYOT*	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can preprogram to curtail load when an event is called.
Managed EV Charging – switch	Load control switch that is installed on an EV charger
Managed EV Charging – telematics	Direct load control program leveraging EV smart charging software
Battery Storage with PV	PV charges battery and battery discharges to grid

Docket No. 20240012-EG List of Measures Evaluated for Technical Potential Exhibit JNF-3, Page 13 of 14

Large Commercial & Industrial DR Measures

Measure	Description
CPP + Tech	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can preprogram to curtail load when an event is called.
Auto DR	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes opt-out of specific events
Firm Service Level	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Customer agrees to reduce usage by an agreed upon amount when notified

Residential DSRE Measures

Measure	Description						
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections						
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation						

Non-Residential DSRE

Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation
CHP – Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen
CHP – Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP – Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP – Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator

				F	RIM						
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Cumulative
				Sumr	ner MW						
Residential	10.45	11.10	11.84	12.23	12.61	13.00	13.40	13.80	14.20	14.62	127.26
Commercial/Industrial	9.10	9.01	8.92	6.43	6.37	6.31	6.25	6.20	6.14	6.09	70.81
Total ¹	19.54	20.11	20.76	18.66	18.98	19.31	19.65	19.99	20.34	20.71	198.06
				Wint	ter MW	<u> </u>	<u> </u>	<u> </u>			•
Residential	10.33	11.32	12.50	13.00	13.52	14.06	14.63	15.21	15.82	16.47	136.87
Commercial/Industrial	4.85	4.80	4.75	3.24	3.21	3.18	3.15	3.12	3.08	3.05	36.43
Total ¹	15.18	16.12	17.25	16.25	16.73	17.24	17.77	18.33	18.91	19.52	173.30
				Annı	ıal GWh			<u>'</u>	'		•
Residential	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Commercial/Industrial	0.15	0.15	0.15	0.12	0.12	0.12	0.12	0.12	0.12	0.12	1.32
Total ¹	0.15	0.15	0.15	0.13	0.13	0.13	0.13	0.13	0.12	0.12	1.34
Rate Impact (\$/1,000 kwh) ²	\$0.35	\$0.34	\$0.33	\$0.32	\$0.32	\$0.31	\$0.30	\$0.29	\$0.28	\$0.27	
	70.55	Ç0.5-T	70.55		IRC	70.51	70.50	70.23	70.20	70.27	
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Cumulative
					ner MW						-
Residential	28.85	29.41	30.18	30.70	31.29	31.93	32.56	33.23	33.90	34.62	316.67
Commercial/Industrial	20.08	20.21	20.39	18.28	18.61	18.95	19.24	19.48	19.64	19.71	194.60
Total ¹	48.94	49.62	50.57	48.98	49.91	50.87	51.81	52.71	53.54	54.33	511.27
	.0.5 .	.5.02	50.57		ter MW	30.07	32.02	92.72	33.3.	5 1.05	311.127
Residential	24.64	26.86	29.49	31.61	33.77	35.82	37.67	39.30	40.71	41.96	341.85
Commercial/Industrial	16.58	16.71	16.86	15.69	15.94	16.24	16.52	16.76	16.91	16.99	165.19
Total ¹	41.22	43.57	46.36	47.29	49.71	52.06	54.19	56.06	57.63	58.96	507.04
	71.22	13.37	10.50		ıal GWh	32.00	31.13	30.00	37.03	30.30	307.04
Residential	57.31	59.32	61.94	65.05	68.36	71.54	74.33	76.78	78.82	80.62	694.08
Commercial/Industrial	73.19	74.33	75.75	78.07	80.51	82.98	85.21	87.04	88.37	89.18	814.63
Total ¹	130.50	133.65	137.69	143.12	148.87	154.51	159.54	163.82	167.19	169.80	1,508.71
Rate Impact (\$/1,000 kwh) ²				-							1,308.71
Rate Impact (\$/1,000 kWII)	\$0.51	\$0.51	\$0.50	\$0.50	\$0.50 POSED	\$0.49	\$0.48	\$0.47	\$0.46	\$0.45	
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Cumulative
	2023	2020	2027		ner MW	2030	2031	2032	2033	2034	Cullidiative
Residential	25.19	25.42	25.80	25.80	25.92	26.07	26.26	26.49	26.75	27.05	260.76
Commercial/Industrial	16.24	16.26	16.28	13.89	13.94	14.00	14.05	14.11	14.17	14.23	147.17
Total ¹	41.43	41.68	42.08	39.70	39.86	40.06	40.31	40.60	40.92	41.28	407.93
Total	41.43	41.00	42.06		ter MW	40.00	40.31	40.00	40.32	41.20	407.93
Residential	19.73	20.61	21.70	22.09	22.55	23.04	23.57	24.13	24.73	25.38	227.53
Commercial/Industrial	9.65	9.68	9.71	8.28	8.33	8.38	8.43	8.48	8.54	25.38 8.59	88.06
Total ¹	29.38	30.29	31.41	30.36	30.87	31.42	32.00	32.61	33.27	33.97	315.59
Total	25.30	30.29	31.41		ıal GWh	31.42	32.00	32.01	33.27	33.97	313.39
Residential	39.31	20 55	37.90	36.88		26.02	35.71	25 46	25.26	25 12	266.62
Commercial/Industrial	48.40	38.55 49.13	49.87	50.60	36.41 51.37	36.03 52.15	52.95	35.46 53.76	35.26 54.58	35.12 55.42	366.63 518.24
Total ¹	1										
	87.71	87.68	87.77	87.48	87.79	88.18	88.66	89.22	89.85	90.54	884.88
Rate Impact (\$/1,000 kwh) ²	\$0.46	\$0.45	\$0.44	\$0.43	\$0.42	\$0.41	\$0.40	\$0.39	\$0.38	\$0.37	1

¹⁾ May not add due to rounding

²⁾ ECCR rate impact does not include survey programs, CILC/CDR program, CRD program and common expenses

RIM

Program:

Residential Load Management (On Call®)

Summary Program Description: Monthly bill credits for direct load control of HVAC, water heating and pool pumps

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,492	3,580	3,665	3,747	3,825	3,899	3,967	4,031	4,088	4,141
Summer MW*	9.84	10.09	10.33	10.56	10.78	10.99	11.18	11.36	11.52	11.67
Winter MW*	9.18	9.41	9.63	9.85	10.06	10.25	10.43	10.60	10.75	10.89
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 36,096,985	\$ 36,892,908	\$ 36,575,978	\$ 36,226,577	\$ 36,076,647	\$ 35,743,139	\$ 35,394,142	\$ 34,775,464	\$ 34,458,901	\$ 34,169,780

Program Measures

HVAC

Water Heater

Pool Pump

\$(000)	RIM	TRC	Participant
NPV Benefits	49,599	49,599	23,046
NPV Cost	39,338	16,293	0
Ratio	1.26	3.04	INFINITE

^{*} Values are @ Generator

RIM

Program: Residential Load Management (On Call®)
Summary Program Description: HVAC on bill with direct load control

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	300	500	750	825	908	998	1,098	1,208	1,329	1,462
Summer MW*	0.60	1.01	1.51	1.66	1.83	2.01	2.21	2.44	2.68	2.95
Winter MW*	1.15	1.91	2.87	3.15	3.47	3.81	4.20	4.62	5.08	5.58
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Program Cost Estimate**	\$ 1,094,767	\$ 1,046,738	\$ 983,119	\$ 882,810	\$ 751,076	\$ 595,062	\$ 425,137	\$ (21,112)	\$ (170,438)	\$ (294,583)

Program Measures

HVAC

\$(000)	RIM	TRC	Participant	
NPV Benefits	9,434	9,434	3,815	
NPV Cost	6,582	3,013	3,013	
Score	1.43	3.13	1.27	

^{*} Values are @ Generator

^{**} Program costs net of program revenues

Program: Business On Call®

RIM

Summary Program Description: Monthly bill credits for direct load control of HVAC

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	1,090	1,081	1,072	1,065	1,058	1,052	1,046	1,041	1,036	1,032
Summer MW*	1.15	1.14	1.13	1.12	1.12	1.11	1.10	1.10	1.09	1.09
Winter MW*	-	ı	-	-	-	-	-	ı	ı	1
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 2,758,904	\$ 2,749,796	\$ 2,738,657	\$ 2,726,489	\$ 2,713,294	\$ 2,700,835	\$ 2,687,582	\$ 2,674,571	\$ 2,661,746	\$ 2,648,824

Program Measures

HVAC

\$(000)	RIM	TRC	Participant	
NPV Benefits	4,495	4,495	2,943	
NPV Cost	4,292	1,351	0	
Ratio	1.05	3.33	INFINITE	

^{*} Values are @ Generator

RIM

Program:

CDR

Summary Program Description: Bill credits for control of customer loads >200 kW

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	7,500	7,425	7,351	5,000	4,950	4,901	4,851	4,803	4,755	4,707
Summer MW*	7.92	7.84	7.76	5.28	5.23	5.17	5.12	5.07	5.02	4.97
Winter MW*	4.82	4.78	4.73	3.22	3.18	3.15	3.12	3.09	3.06	3.03
Annual GWh*	0.09	0.09	0.09	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Program Cost Estimate	\$ 37,511,423	\$ 37,733,106	\$ 37,951,050	\$ 37,939,285	\$ 37,934,424	\$ 37,925,002	\$ 37,911,063	\$ 37,892,653	\$ 37,869,816	\$ 37,842,597

Program Measures

Controllable Load

\$(000)	RIM	TRC	Participant		
NPV Benefits	27,621	27,621	37,483		
NPV Cost	38,101	690	0		
Ratio	0.72	40.06	INFINITE		

^{*} Values are @ Generator

Program: Business Custom Incentive

RIM

Summary Program Description: Customized incentives for qualifying energy efficiency projects

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	25	25	25	25	25	25	25	25	25	25
Summer MW*	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Winter MW*	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Annual GWh*	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Program Cost Estimate	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000

Program Measures

Non-Specified

^{*} Values are @ Generator

Program: Residential HVAC Plus

TRC

Summary Program Description: Tiered upfront incentives for installation of energy efficient HVAC equipment and duct sealing

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	24,913	25,778	26,729	27,749	28,795	29,812	30,779	31,704	32,591	33,464
Summer MW*	4.26	4.52	4.82	5.15	5.50	5.85	6.18	6.51	6.82	7.14
Winter MW*	9.69	11.00	12.48	14.07	15.65	17.11	18.36	19.40	20.24	20.93
Annual GWh*	22.71	25.03	27.64	30.49	33.37	36.07	38.48	40.58	42.41	44.03
Program Cost Estimate	\$ 6,492,727	\$ 6,898,655	\$ 7,354,392	\$ 7,846,675	\$ 8,349,026	\$ 8,750,742	\$ 9,183,455	\$ 9,575,341	\$ 9,930,186	\$ 10,260,076

Program Measures

ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)

Properly Sized CAC

Duct Repair

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2

\$(000)	RIM	TRC	Participant		
NPV Benefits	192,512	192,512	543,304		
NPV Cost	436,911	95,290	83,046		
Score	0.44	2.02	6.54		

^{*} Values are @ Generator

Program: Residential Building Envelope

TRC

Summary Program Description: Upfront incentives for installation of qualifying ceiling insulation and windows

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,131	2,881	2,673	2,507	2,373	2,258	2,143	2,008	1,837	1,634
Summer MW*	5.14	4.63	4.17	3.76	3.40	3.07	2.77	2.50	2.25	2.03
Winter MW*	1.90	1.72	1.55	1.41	1.28	1.16	1.05	0.95	0.86	0.77
Annual GWh*	10.46	9.43	8.51	7.68	6.94	6.28	5.68	5.13	4.63	4.16
Program Cost Estimate	\$ 1,148,314	\$ 1,084,933	\$ 1,041,752	\$ 1,020,174	\$ 1,013,556	\$ 999,822	\$ 987,315	\$ 950,930	\$ 879,780	\$ 776,472

Program Measures

Energy Star Windows Ceiling Insulation(R2 to R30) Ceiling Insulation(R2 to R38)

\$(000)	RIM	TRC	Participant		
NPV Benefits	68,177	68,177	118,366		
NPV Cost	94,012	30,429	27,580		
Score	0.73	2.24	4.29		

^{*} Values are @ Generator

Program:

Residential Low Income Weatherization

Summary Program Description: Direct installation of energy saving measures

TRC

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	11,000	11,110	11,221	11,333	11,447	11,561	11,677	11,793	11,911	12,031
Summer MW*	5.57	5.63	5.68	5.74	5.80	5.86	5.92	5.97	6.03	6.09
Winter MW*	0.85	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.92
Annual GWh*	10.21	10.31	10.41	10.52	10.62	10.73	10.84	10.94	11.05	11.16
Program Cost Estimate	\$ 4,719,000	\$ 4,766,190	\$ 4,813,852	\$ 4,861,990	\$ 4,910,610	\$ 4,959,716	\$ 5,009,314	\$ 5,059,407	\$ 5,110,001	\$ 5,161,101

Program Measures

Weatherization (Caulking/Stripping)
Duct Testing & Repair
Air Conditioning Unit Maintenance
Air Conditioning Outdoor Coil Cleaning
Faucet Aerators - Kitchen and Bathroom
Low-Flow Showerhead
Water Heater Pipe Wrap
Ceiling Insulation
LED

\$(000)	RIM	TRC	Participant		
NPV Benefits	100,966	100,966	172,224		
NPV Cost	163,620	29,729	0		
Score	0.62	3.40	INFINITE		

^{*} Values are @ Generator

Program: Residential Whole Home Plus

Summary Program Description: Tiered upfront incentives for energy efficient new home construction

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	4,748	4,775	4,817	4,868	4,923	4,984	5,045	5,123	5,223	5,348
Summer MW*	2.83	2.84	2.86	2.90	2.94	2.99	3.04	3.12	3.22	3.36
Winter MW*	1.31	1.30	1.30	1.30	1.32	1.33	1.34	1.37	1.41	1.47
Annual GWh*	10.15	10.14	10.21	10.32	10.47	10.64	10.81	11.09	11.48	12.02
Program Cost Estimate	\$ 1,299,337	\$ 1,294,909	\$ 1,303,232	\$ 1,318,526	\$ 1,337,201	\$ 1,336,974	\$ 1,359,586	\$ 1,396,384	\$ 1,450,709	\$ 1,525,898

Program Measures

New Construction - Whole Home Improvements - Tier 1 New Construction - Whole Home Improvements - Tier 2 BuildSmart® - Non-Specified

\$(000)	RIM	TRC	Participant
NPV Benefits	71,449	71,449	165,023
NPV Cost	131,383	35,684	31,005
Score	0.54	2.00	5.32

^{*} Values are @ Generator

Program: Residential Retail Products

Summary Program Description: Incentives for various retail energy efficiency products

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	258,515	269,535	282,315	297,308	313,420	328,996	342,750	354,091	361,889	366,831
Summer MW*	0.61	0.70	0.80	0.92	1.04	1.16	1.26	1.33	1.37	1.38
Winter MW*	0.57	0.68	0.80	0.96	1.12	1.27	1.39	1.46	1.46	1.40
Annual GWh*	3.77	4.40	5.16	6.03	6.95	7.82	8.53	9.03	9.25	9.25
Program Cost Estimate	\$ 413,210	\$ 466,969	\$ 530,029	\$ 600,957	\$ 674,347	\$ 653,738	\$ 706,122	\$ 752,034	\$ 791,178	\$ 825,673

Program Measures

Energy Star Clothes Washer Hot Water Pipe Insulation LED Specialty Lamps-5W Chandelier Smart Thermostat

\$(000)	RIM	TRC	Participant
NPV Benefits	34,504	34,504	102,784
NPV Cost	83,899	32,695	27,341
Score	0.41	1.06	3.76

^{*} Values are @ Generator

Program:

TRC

Residential Load Management (On Call®)

Summary Program Description: Monthly bill credits for direct load control of HVAC, water heating and pool pumps

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,492	3,580	3,665	3,747	3,825	3,899	3,967	4,031	4,088	4,141
Summer MW*	9.84	10.09	10.33	10.56	10.78	10.99	11.18	11.36	11.52	11.67
Winter MW*	9.18	9.41	9.63	9.85	10.06	10.25	10.43	10.60	10.75	10.89
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 36,096,985	\$ 36,892,908	\$ 36,575,978	\$ 36,226,577	\$ 36,076,647	\$ 35,743,139	\$ 35,394,142	\$ 34,775,464	\$ 34,458,901	\$ 34,169,780

Program Measures

HVAC

Water Heater

Pool Pump

\$(000)	RIM	TRC	Participant
NPV Benefits	49,599	49,599	23,046
NPV Cost	39,338	16,293	0
Ratio	1.26	3.04	INFINITE

^{*} Values are @ Generator

Goals Scenario: TRC

Program: Residential Load Management (On Call®)
Summary Program Description: HVAC on bill with direct load control

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	300	500	750	825	908	998	1,098	1,208	1,329	1,462
Summer MW ¹	0.60	1.01	1.51	1.66	1.83	2.01	2.21	2.44	2.68	2.95
Winter MW ¹	1.15	1.91	2.87	3.15	3.47	3.81	4.20	4.62	5.08	5.58
Annual GWh ¹	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Program Cost Estimate ²	\$ 1,094,767	\$ 1,046,738	\$ 983,119	\$ 882,810	\$ 751,076	\$ 595,062	\$ 425,137	\$ (21,112)	\$ (170,438)	\$ (294,583)

¹⁾ Values are @ Generator

Program Measures

HVAC

\$(000)	RIM	TRC	Participant
NPV Benefits	9,434	9,434	3,815
NPV Cost	6,582	3,013	3,013
Score	1.43	3.13	1.27

²⁾ Program costs net of program revenues

Program: Business HVAC Plus

Summary Program Description: Tiered upfront incentives for installation of energy efficient HVAC equipment

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	5,863	5,958	6,070	6,235	6,398	6,571	6,731	6,868	6,968	7,025
Summer MW*	6.19	6.29	6.41	6.58	6.76	6.94	7.11	7.25	7.36	7.42
Winter MW*	7.37	7.41	7.46	7.56	7.61	7.73	7.85	7.97	8.06	8.12
Annual GWh*	35.90	36.21	36.62	37.41	38.23	39.12	39.96	40.70	41.25	41.57
Program Cost Estimate	\$ 4,201,770	\$ 4,298,865	\$ 4,417,284	\$ 4,593,701	\$ 4,774,134	\$ 4,889,388	\$ 5,065,042	\$ 5,210,049	\$ 5,305,495	\$ 5,338,554

Program Measures

Commercial Duct Sealing
Smart Thermostat
Industrial Duct Sealing
Airside Economizer

ECM Motors on FurnacesHigh Volume Low Speed Fan (HVLS)Waterside EconomizerInfiltration Reduction - Air SealingVFD on Cooling Tower FansCustom Measure - Non-Lighting

Chilled Water Reset HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons VAV System HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons

Facility Energy Management System_VT HE DX Less than 5.4 Tons Elect Heat Efficient Exhaust Hood HE DX Less than 5.4 Tons Other Heat

Energy Star Room AC High Efficiency PTAC
Facility Energy Management System_SC High Efficiency PTHP
Facility Energy Management System_SH Water Source Heat Pump
VFD on HVAC Fan VFD on HVAC Pump

Strategic Energy Management

Cost Effectiveness

\$(000)	RIM	TRC	Participant
NPV Benefits	208,555	208,555	537,863
NPV Cost	460,073	146,722	137,637
Score	0.45	1.42	3.91

^{*} Values are @ Generator

Docket No. 20240012-EG 2025-2034 Goals Scenarios and Potential Programs Exhibit JNF-4, Page 14 of 34 Program:

Business Lighting Plus

Summary Program Description:

Upfront incentives for installation of energy efficiency lighting products

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,535	3,586	3,639	3,700	3,759	3,823	3,889	3,956	4,024	4,093
Summer MW*	3.73	3.79	3.84	3.91	3.97	4.04	4.11	4.18	4.25	4.32
Winter MW*	3.29	3.34	3.39	3.44	3.50	3.55	3.61	3.68	3.74	3.80
Annual GWh*	28.85	29.27	29.70	30.20	30.67	31.19	31.73	32.28	32.83	33.39
Program Cost Estimate	\$ 606,054	\$ 607,817	\$ 609,319	\$ 613,980	\$ 616,288	\$ 618,661	\$ 624,163	\$ 629,882	\$ 635,343	\$ 640,143

Program Measures

Occupancy Sensors, Ceiling Mounted

LED Exterior Wall Packs

Outdoor Motion Sensor

LED Parking Lighting

LED High Bay_HID Baseline

LED High Bay_LF Baseline

LED Linear - Fixture Replacement

\$(000)	RIM	TRC	Participant		
NPV Benefits	148,236	148,236	415,653		
NPV Cost	346,766	103,687	102,559		
Score	0.43	1.43	4.05		

^{*} Values are @ Generator

Program: Business Water Heating

Summary Program Description: Upfront incentives for installation of energy efficient water heating equipment

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	225	291	366	447	526	597	652	686	698	692
Summer MW*	0.24	0.31	0.39	0.47	0.56	0.63	0.69	0.72	0.74	0.73
Winter MW*	0.37	0.48	0.60	0.73	0.85	0.97	1.05	1.11	1.13	1.12
Annual GWh*	2.00	2.56	3.19	3.88	4.55	5.15	5.61	5.90	6.00	5.95
Program Cost Estimate	\$ 488,288	\$ 618,067	\$ 766,814	\$ 929,264	\$ 1,086,673	\$ 1,169,504	\$ 1,273,049	\$ 1,334,278	\$ 1,349,107	\$ 1,325,934

Program Measures

Demand Controlled Circulating Systems
Drain Water Heat Recovery
Faucet Aerator
Heat Pump Water Heater
Solar Thermal Water Heating System Commercial
Thermostatic Shower Restriction Valve Commercial

\$(000)	RIM	TRC	Participant		
NPV Benefits	19,566	19,566	57,789		
NPV Cost	51,001	15,775	13,510		
Score	0.38	1.24	4.28		

^{*} Values are @ Generator

Program: Business Refrigeration

Summary Program Description: Upfront incentives for installation of energy efficient refrigeration equipment

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	83	84	84	86	86	86	87	88	89	90
Summer MW*	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10
Winter MW*	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.08
Annual GWh*	0.58	0.58	0.59	0.60	0.60	0.60	0.61	0.62	0.62	0.63
Program Cost Estimate	\$ 131,773	\$ 133,391	\$ 134,722	\$ 136,489	\$ 136,630	\$ 131,115	\$ 132,681	\$ 134,338	\$ 135,819	\$ 136,966

Program Measures

Anti-Sweat Controls Refrigerated Display Case LED Lighting VSD Controlled Compressor

\$(000)	RIM	TRC	Participant		
NPV Benefits	3,036	3,036	8,791		
NPV Cost	7,813	2,631	2,238		
Score	0.39	1.15	3.93		

^{*} Values are @ Generator

Program: Business Motors and Drives

Summary Program Description: Upfront incentives for installation of energy efficient motors and drives

	2025		2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	58	0	536	499	505	523	541	556	563	558	544
Summer MW*	0.6	1	0.57	0.53	0.53	0.55	0.57	0.59	0.59	0.59	0.57
Winter MW*	0.5	5	0.50	0.47	0.47	0.49	0.51	0.52	0.53	0.53	0.51
Annual GWh*	4.7	'9	4.42	4.11	4.16	4.32	4.48	4.62	4.67	4.63	4.50
Program Cost Estimate	\$ 929,36	9 \$	865,690	\$ 811,712	\$ 817,704	\$ 841,539	\$ 814,523	\$ 833,541	\$ 842,521	\$ 838,574	\$ 821,676

Program Measures

Escalator Motor Efficiency Controller High Efficiency Air Compressor VFD on Process Pump Synchronous Belt on 75hp ODP Motor Synchronous Belt on 15hp ODP Motor Synchronous Belt on 5hp ODP Motor

\$(000)	RIM	TRC	Participant
NPV Benefits	21,641	21,641	64,583
NPV Cost	57,270	17,249	14,304
Score	0.38	1.25	4.52

^{*} Values are @ Generator

Program: Business Cooking

Summary Program Description: Upfront incentives for installation of energy efficient cooking equipment

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	75	104	136	170	201	230	253	270	281	289
Summer MW*	0.08	0.11	0.14	0.18	0.21	0.24	0.27	0.28	0.30	0.30
Winter MW*	0.04	0.06	0.07	0.09	0.11	0.13	0.14	0.15	0.15	0.16
Annual GWh*	0.43	0.59	0.77	0.96	1.14	1.31	1.44	1.53	1.60	1.64
Program Cost Estimate	\$ 40,758	\$ 56,137	\$ 73,377	\$ 91,643	\$ 108,803	\$ 109,136	\$ 120,036	\$ 128,188	\$ 133,751	\$ 137,277

Program Measures

Energy Star Convection Oven Energy Star Steamer

\$(000)	RIM	TRC	Participant		
NPV Benefits	5,372	5,372	13,421		
NPV Cost	11,827	3,416	2,761		
Score	0.45	1.57	4.86		

^{*} Values are @ Generator

TRC

Program: Co

Commercial/Industrial Demand Reduction

Summary Program Description: Bill credits for control of customer loads >200 kW

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	7,500	7,425	7,351	5,000	4,950	4,901	4,851	4,803	4,755	4,707
Summer MW*	7.92	7.84	7.76	5.28	5.23	5.17	5.12	5.07	5.02	4.97
Winter MW*	4.82	4.78	4.73	3.22	3.18	3.15	3.12	3.09	3.06	3.03
Annual GWh*	0.09	0.09	0.09	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Program Cost Estimate	\$ 37,511,423	\$ 37,733,106	\$ 37,951,050	\$ 37,939,285	\$ 37,934,424	\$ 37,925,002	\$ 37,911,063	\$ 37,892,653	\$ 37,869,816	\$ 37,842,597

Program Measures

Controllable Load

\$(000)	RIM	TRC	Participant
NPV Benefits	27,621	27,621	37,483
NPV Cost	38,101	690	0
Ratio	0.72	40.06	INFINITE

^{*} Values are @ Generator

TRC

Program:

Business On Call®

Summary Program Description: Monthly

Monthly bill credits for direct load control of HVAC

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	1,090	1,081	1,072	1,065	1,058	1,052	1,046	1,041	1,036	1,032
Summer MW*	1.15	1.14	1.13	1.12	1.12	1.11	1.10	1.10	1.09	1.09
Winter MW*	-	-	-	-	-	-	-	-	=	-
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 2,758,904	\$ 2,749,796	\$ 2,738,657	\$ 2,726,489	\$ 2,713,294	\$ 2,700,835	\$ 2,687,582	\$ 2,674,571	\$ 2,661,746	\$ 2,648,824

Program Measures

HVAC

\$(000)	RIM	TRC	Participant
NPV Benefits	4,495	4,495	2,943
NPV Cost	4,292	1,351	0
Ratio	1.05	3.33	INFINITE

^{*} Values are @ Generator

Program:

Business Custom Incentive

Summary Program Description: Customized incentives for qualifying energy efficiency projects

	20	25	2026	2027		2028	202	29	2030		2031		2032	2033	2034
Participants		73	82	93		109		128	146	•	162	•	176	188	198
Summer MW*		0.08	0.09	0.10)	0.12		0.14	0.15		0.17		0.19	0.20	0.21
Winter MW*		0.07	0.08	0.09)	0.10		0.12	0.13		0.15		0.16	0.18	0.18
Annual GWh*		0.55	0.61	0.68	;	0.80		0.94	1.07		1.18		1.29	1.38	1.45
Program Cost Estimate	\$ 1	23,666	\$ 139,873	\$ 158,845	\$	188,734	\$ 22	21,937	\$ 241,096	\$	267,860	\$	290,568	\$ 309,174	\$ 324,050

Program Measures

Ceiling Insulation(R2 to R30)
Reflective Roof Treatment
Efficient Battery Charger
Ozone Laundry Commercial
LEED New Construction Whole Building
Grain Bin Aeration Control System
Energy Efficient Transformers
Low Pressure-Drop Filters
Dairy Refrigeration Heat Recovery
Milk Pre-Cooler
Other

	RIM	TRC	Participant
NPV Benefits	4,341	4,341	12,651
NPV Cost	11,213	3,705	3,169
Score	0.39	1.17	3.99

^{*} Values are @ Generator

Goals Scenario: Proposed

Program: Residential HVAC

Summary Program Description: Upfront incentives for installation of energy efficient HVAC systems

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	20,000	20,200	20,402	20,606	20,812	21,020	21,230	21,443	21,657	21,874
Summer MW*	2.53	2.56	2.58	2.61	2.64	2.66	2.69	2.72	2.74	2.77
Winter MW*	6.12	6.18	6.25	6.31	6.37	6.44	6.50	6.57	6.63	6.70
Annual GWh*	14.11	14.25	14.40	14.54	14.69	14.83	14.98	15.13	15.28	15.43
Program Cost Estimate	\$ 4,892,820	\$ 4,941,748	\$ 4,991,166	\$ 5,041,078	\$ 5,091,488	\$ 5,142,403	\$ 5,193,827	\$ 5,245,766	\$ 5,298,223	\$ 5,351,205

Program Measures

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2

\$(000)	RIM	TRC	Participant
NPV Benefits	87,280	87,280	249,559
NPV Cost	205,047	32,886	24,404
Score	0.43	2.65	10.23

^{*} Values are @ Generator

Goals Scenario: Proposed

Program: Residential Ceiling Insulation

Summary Program Description: Upfront incentives for installation of ceiling insulation in qualifying homes

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,000	2,700	2,430	2,187	1,968	1,771	1,594	1,435	1,291	1,162
Summer MW*	5.12	4.61	4.15	3.74	3.36	3.03	2.72	2.45	2.21	1.99
Winter MW*	1.89	1.70	1.53	1.38	1.24	1.12	1.01	0.90	0.81	0.73
Annual GWh*	10.43	9.39	8.45	7.60	6.84	6.16	5.54	4.99	4.49	4.04
Program Cost Estimate	\$ 1,045,624	\$ 941,061	\$ 846,955	\$ 762,260	\$ 686,034	\$ 617,430	\$ 555,687	\$ 500,119	\$ 450,107	\$ 405,096

Program Measures

Ceiling Insulation(R2 to R30) Ceiling Insulation(R2 to R38)

\$(000)	RIM	TRC	Participant
NPV Benefits	69,736	69,736	119,449
NPV Cost	94,006	27,039	24,601
Score	0.74	2.58	4.86

^{*} Values are @ Generator

Proposed

Program: **Summary Program Description:**

Residential Low Income Weatherization Direct installation of energy saving measures

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	11,000	11,110	11,221	11,333	11,447	11,561	11,677	11,793	11,911	12,031
Summer MW*	5.57	5.63	5.68	5.74	5.80	5.86	5.92	5.97	6.03	6.09
Winter MW*	0.85	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.92
Annual GWh*	10.21	10.31	10.41	10.52	10.62	10.73	10.84	10.94	11.05	11.16
Program Cost Estimate	\$ 4,719,000	\$ 4,766,190	\$ 4,813,852	\$ 4,861,990	\$ 4,910,610	\$ 4,959,716	\$ 5,009,314	\$ 5,059,407	\$ 5,110,001	\$ 5,161,101

Program Measures

Weatherization (Caulking/Stripping) **Duct Testing & Repair** Air Conditioning Unit Maintenance Air Conditioning Outdoor Coil Cleaning Faucet Aerators - Kitchen and Bathroom Low-Flow Showerhead Water Heater Pipe Wrap **Ceiling Insulation** LED

\$(000)	RIM	TRC	Participant
NPV Benefits	100,966	100,966	172,224
NPV Cost	163,620	29,729	0
Score	0.62	3.40	INFINITE

^{*} Values are @ Generator

Goals Scenario: Proposed

Program: Residential Low Income Renter Pilot

Summary Program Description: Landlord incentive for high efficiency HVAC equipment

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	500	500	500	=	-	-	-	-	-	-
Summer MW*	0.06	0.06	0.06	-	-	-	1	-	-	-
Winter MW*	0.04	0.04	0.04	=	-	-	-	-	-	-
Annual GWh*	0.46	0.46	0.46	-	-	-	1	-	-	1
Program Cost Estimate	\$ 500,000	\$ 500,000	\$ 500,000	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Program Measures

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)

ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2

\$(000)	RIM	TRC	Participant
NPV Benefits	880	880	3,131
NPV Cost	2,930	608	256
Score	0.30	1.45	12.25

^{*} Values are @ Generator

Proposed

Program:

Residential New Construction (BuildSmart®)

Summary Program Description:

Incentives to encourage builders to design and construct energy efficient new homes

	2	2025	202	26	20	27	2028	2029	2030	2031	2032	2033	2034
Participants		3,700		3,737		3,774	3,812	3,850	3,889	3,928	3,967	4,007	4,047
Summer MW*		1.45		1.46		1.47	1.49	1.50	1.52	1.53	1.55	1.57	1.58
Winter MW*		0.51		0.51		0.52	0.52	0.53	0.53	0.54	0.54	0.55	0.56
Annual GWh*		4.09		4.13		4.18	4.22	4.26	4.30	4.35	4.39	4.43	4.48
Program Cost Estimate	\$	412,893	\$ 417	7,022	\$ 42	21,193	\$ 425,405	\$ 429,659	\$ 433,955	\$ 438,295	\$ 442,678	\$ 447,104	\$ 451,575

Program Measures

Non-Specified

\$(000)	RIM	TRC	Participant		
NPV Benefits	32,226	32,226	64,133		
NPV Cost	52,338	17,317	13,740		
Score	0.62	1.86	4.67		

^{*} Values are @ Generator

Proposed

Program:

Residential Load Management (On Call®)

Summary Program Description:

Monthly bill credits for direct load control of HVAC, water heating and pool pumps

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,492	3,580	3,665	3,747	3,825	3,899	3,967	4,031	4,088	4,141
Summer MW*	9.84	10.09	10.33	10.56	10.78	10.99	11.18	11.36	11.52	11.67
Winter MW*	9.18	9.41	9.63	9.85	10.06	10.25	10.43	10.60	10.75	10.89
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 36,096,985	\$ 35,846,170	\$ 35,592,860	\$ 35,343,767	\$ 35,325,571	\$ 35,148,077	\$ 34,969,005	\$ 34,796,576	\$ 34,629,339	\$ 34,464,362

Program Measures

HVAC

Water Heater

Pool Pump

\$(000)	RIM	TRC	Participant
NPV Benefits	49,599	49,599	23,046
NPV Cost	39,338	16,293	0
Ratio	1.26	3.04	INFINITE

^{*} Values are @ Generator

Goals Scenario: Proposed

Program: Residential Load Management (On Call®)
Summary Program Description: HVAC on bill with direct load control

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	300	500	750	825	908	998	1,098	1,208	1,329	1,462
Summer MW ¹	0.60	1.01	1.51	1.66	1.83	2.01	2.21	2.44	2.68	2.95
Winter MW ¹	1.15	1.91	2.87	3.15	3.47	3.81	4.20	4.62	5.08	5.58
Annual GWh ¹	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Program Cost Estimate ²	\$ 1,094,767	\$ 1,046,738	\$ 983,119	\$ 882,810	\$ 751,076	\$ 595,062	\$ 425,137	\$ (21,112)	\$ (170,438)	\$ (294,583)

¹⁾ Values are @ Generator

Program Measures

HVAC

\$(000)	RIM	TRC	Participant
NPV Benefits	9,434	9,434	3,815
NPV Cost	6,582	3,013	3,013
Score	1.43	3.13	1.27

²⁾ Program costs net of program revenues

Proposed

Program:

Business Heating, Ventilating, & Air Conditioning (HVAC)

Summary Program Description: Upfront incentives for installation of energy efficient HVAC systems

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	3,700	3,737	3,774	3,812	3,850	3,889	3,928	3,967	4,007	4,047
Summer MW*	3.91	3.95	3.98	4.02	4.07	4.11	4.15	4.19	4.23	4.27
Winter MW*	1.98	2.00	2.02	2.04	2.06	2.08	2.11	2.13	2.15	2.17
Annual GWh*	23.24	23.48	23.71	23.95	24.19	24.43	24.67	24.92	25.17	25.42
Program Cost Estimate	\$ 2,228,473	\$ 2,250,758	\$ 2,273,266	\$ 2,295,998	\$ 2,318,958	\$ 2,342,148	\$ 2,365,569	\$ 2,389,225	\$ 2,413,117	\$ 2,437,248

Program Measures

HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons

HE DX Less than 5.4 Tons Elect Heat

HE DX Less than 5.4 Tons Other Heat

High Efficiency PTAC

High Efficiency PTHP

Water Source Heat Pump

VFD on HVAC Pump

\$(000)	RIM	TRC	Participant		
NPV Benefits	125,588	125,588	337,589		
NPV Cost	287,119	89,854	84,937		
Ratio	0.44	1.40	3.97		

^{*} Values are @ Generator

Proposed

Program:

Business Lighting

Summary Program Description:

Upfront incentives for installation of energy efficient LED lighting

	20	25	2026	2027	2028		2029	2030	2031	2032	2033	2034
Participants		3,070	3,132	3,194	3,258	8	3,323	3,390	3,458	3,527	3,597	3,669
Summer MW*		3.24	3.31	3.37	3.44	4	3.51	3.58	3.65	3.72	3.80	3.87
Winter MW*		2.82	2.88	2.93	2.99	9	3.05	3.11	3.18	3.24	3.30	3.37
Annual GWh*		25.00	25.50	26.01	26.53	3	27.06	27.60	28.15	28.72	29.29	29.88
Program Cost Estimate	\$ 31	12,761	\$ 319,017	\$ 325,397	\$ 331,905	5 \$	\$ 338,543	\$ 345,314	\$ 352,220	\$ 359,265	\$ 366,450	\$ 373,779

Program Measures

LED High Bay_HID Baseline

LED High Bay_LF Baseline

LED Linear - Fixture Replacement

\$(000)	RIM	TRC	Participant
NPV Benefits	130,380	130,380	363,775
NPV Cost	303,224	94,022	93,040
Ratio	0.43	1.39	3.91

^{*} Values are @ Generator

Program:

Commercial/Industrial Demand Reduction

Summary Program Description: Bill credits for control of customer loads >200 kW

Proposed

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	7,500	7,425	7,351	5,000	4,950	4,901	4,851	4,803	4,755	4,707
Summer MW*	7.92	7.84	7.76	5.28	5.23	5.17	5.12	5.07	5.02	4.97
Winter MW*	4.82	4.78	4.73	3.22	3.18	3.15	3.12	3.09	3.06	3.03
Annual GWh*	0.09	0.09	0.09	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Program Cost Estimate	\$ 37,511,423	\$ 37,733,106	\$ 37,951,050	\$ 37,939,285	\$ 37,934,424	\$ 37,925,002	\$ 37,911,063	\$ 37,892,653	\$ 37,869,816	\$ 37,842,597

Program Measures

Controllable Load

\$(000)	RIM	TRC	Participant
NPV Benefits	27,621	27,621	37,483
NPV Cost	38,101	690	0
Ratio	0.72	40.06	INFINITE

^{*} Values are @ Generator

Goals Scenario: Proposed

Program: Business Custom Incentive

Summary Program Description: Customized incentives for qualifying energy efficiency projects

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	25	25	25	25	25	25	25	25	25	25
Summer MW*	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Winter MW*	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Annual GWh*	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Program Cost Estimate	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000	\$ 20,000

Program Measures

Non-Specified

^{*} Values are @ Generator

Proposed

Program:

Business On Call®

Summary Program Description:

Monthly bill credits for direct load control of HVAC

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Participants	1,090	1,081	1,072	1,065	1,058	1,052	1,046	1,041	1,036	1,032
Summer MW*	1.15	1.14	1.13	1.12	1.12	1.11	1.10	1.10	1.09	1.09
Winter MW*	-	-	-	-	-	-	-	-	=	-
Annual GWh*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Program Cost Estimate	\$ 2,758,904	\$ 2,749,796	\$ 2,738,657	\$ 2,726,489	\$ 2,713,294	\$ 2,700,835	\$ 2,687,582	\$ 2,674,571	\$ 2,661,746	\$ 2,648,824

Program Measures

HVAC

\$(000)	RIM	TRC	Participant
NPV Benefits	3,036	3,036	8,791
NPV Cost	7,813	2,631	2,238
Score	0.39	1.15	3.93

^{*} Values are @ Generator

		roposed DSM Programs			
Comment Box sources	Decreed Decree	Differences			
Current Programs	Proposed Programs	Measures Removed	Measures Added		
Residential Sector Programs	Residential Sector Programs				
Residential Home Energy Survey	Residential Home Energy Survey	None	None		
Residential Load Management (On Call®)	Residential Load Management (On Call®)	None	HVAC On Bill Option		
Residential Air Conditioning	Residential Air Conditioning	None	None		
Residential New Construction (BuildSmart®)	Residential New Construction (BuildSmart®)	None	None		
Residential Ceiling Insulation	Residential Ceiling Insulation	None	None		
Residential Low Income	Residential Low Income	None	Ceiling Insulation		
	Residential Low Income Renter (Pilot)	New	New		
Business Sector Programs	Business Sector Programs				
Business Energy Survey	Business Energy Survey	None	None		
Business On Call	Business On Call	None	None		
Commercial/Industrial Demand Reduction	Commercial/Industrial Demand Reduction	None	None		
Commercial/Industrial Load Control (CILC)	Commercial/Industrial Load Control (CILC)	None	None		
Business Heating, Ventilating, & Air	Business Heating, Ventilating, & Air	1. Thermal Energy Storage (TES)	1. VFD on HVAC pump		
Conditioning (HVAC)	Conditioning (HVAC)	2. Glycol cooled computer room units (with & w/o			
		economizer)			
		3. Demand Control Ventilation (DCV)			
		Energy Recovery Ventilation (ERV)			
Business Lighting	Business Lighting	1. Premium linear fluorescent lamps with high-efficiency	1. LED Linear Fixture Replacement		
		ballasts			
		2. Compact fluorescent lamp (CFL) fixtures			
		3. Pulse-start metal halide (PSMH)			
Business Custom Incentive (BCI)	Business Custom Incentive (BCI)	None	None		
Other Programs	Other Programs				
Conservation Research & Development (CRD)	Conservation Research & Development (CRD)	None	None		

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSIO
2	FLORIDA POWER & LIGHT COMPANY
3	DIRECT TESTIMONY OF ANDREW W. WHITLEY
4	DOCKET NO. 20240012-EG
5	APRIL 2, 2024
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1		TABLE OF CONTENTS
2		
3	I.	INTRODUCTION
4	II.	FPL'S RESOURCE PLANNING PROCESS
5	III.	STEP 2 OF FPL'S PLANNING PROCESS: METHODS AND
6		ASSUMPTIONS USED TO PROJECT FPL'S RESOURCE NEEDS 15
7	IV.	STEP 3 OF FPL'S PLANNING PROCESS: OVERVIEW OF
8		PRELIMINARY ECONOMIC SCREENING TESTS FOR DSM 20
9	V.	STEP 5 OF FPL'S PLANNING PROCESS: DEVELOPMENT OF THE
10		RESOURCE PLANS
11	VI.	STEP 6 OF FPL'S PLANNING PROCESS: ANALYSES OF THE
12		RESOURCE PLANS
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

I. INTRODUCTION

_	
٠,	
_	

A.

- Q. Please state your name, business address, employer and position.
- A. My name is Andrew W. Whitley. My business address is 700 Universe Blvd.,

 Juno Beach, Florida 33408. I am employed by Florida Power & Light

 Company (FPL) as Engineering Manager in the Integrated Resource Planning

 department of FPL's Finance Business Unit.
 - Q. Please describe your duties and responsibilities in that position.
 - A. In my current position as Engineering Manager of Integrated Resource Planning, I am responsible for the management and coordination of economic analyses of alternatives to meet FPL's resource needs and maintain system reliability. These analyses are designed to determine the magnitude and timing of resource needs for the FPL system and then develop the integrated resource plan with which those resource needs will be met. The analyses are also designed to identify potential opportunities to improve system economics and/or enhance system reliability for customers.

Q. Please describe your educational background and professional experience.

I graduated from Lehigh University in 2004 with a Bachelor of Science in Mechanical Engineering. I joined FPL in 2004 as part of FPL's Distribution Business Unit (now part of the Power Delivery business unit) and performed various engineering tasks related to providing new service as well as maintaining the reliability of existing services to FPL's customers. In 2007, I joined the team now known as the Integrated Resource Planning (IRP) group. Since that time, I have been involved in and supported a variety of resource

1		planning projects for FPL, including FPL's Ten Year Site Plans (TYSP), Solar
2		Base Rate Adjustments (SoBRA), need determination proceedings for new
3		power plants under the Florida Power Plant Siting Act, (including the
4		Okeechobee Clean Energy Center in 2015 and the Dania Beach Clean Energy
5		Center in 2018), Base Rate proceedings, and the Demand-Side Management
6		(DSM) goals proceedings. I became the Manager of the IRP group in 2022
7		and have served as the project leader for FPL's TYSPs since 2022.
8	Q.	Have you previously testified on resource planning issues before the

- Florida Public Service Commission (FPSC or the Commission)?
- Yes. I testified in FPL's 2019 DSM goals proceeding (Docket No. 20190015-10 A. EG). My testimony in that docket focused on FPL's resource planning 11 process and how it related to the development of demand-side management 12 portfolios. I also provided testimony on resource planning topics in FPL's 13 14 2024 Fuel and Purchased Power Cost-Recovery Clause Docket (Docket No. 20230001-EI). In addition, I appeared before the Commission at its 2022 and 15 2023 workshops on the Florida utilities' TYSPs. 16

Q. Are you sponsoring any exhibits in this case?

9

17

20

21

22

23

- Yes. I am sponsoring Exhibits AWW-1 through AWW-17, which are A. 18 19 attached to my testimony:
 - Exhibit AWW-1 Economic Elements Accounted for in DSM Preliminary Screening Tests: Benefits & Costs
 - Exhibit AWW-2 Summary Results of Preliminary Economic Screening of Individual DSM Measures

1	•	Exhibit AWW-3 – Summary Results of Preliminary Economic
2		Screening of Individual DSM Measures: Sensitivity Cases
3	•	Exhibit AWW-4 - Forecasted Fuel and Environmental Compliance
4		Costs
5	•	Exhibit AWW-5 - Projection of FPL's Resource Needs for 2024 -
6		2035 with No Incremental DSM Signups After 2024
7	•	Exhibit AWW-6 - Comparison of DSM Reasonably Achievable
8		Summer MW Values with FPL's Projected Summer Resource Needs
9	•	Exhibit AWW-7 – Overview of Supply Only and With DSM Resource
10		Plans
11	•	Exhibit AWW-8 – Levelized System Average Electric Rate
12		Calculation for the Supply Only Resource Plan
13	•	Exhibit AWW-9 – Levelized System Average Electric Rate
14		Calculation for the RIM Resource Plan
15	•	Exhibit AWW-10 – Levelized System Average Electric Rate
16		Calculation for the FPL Proposed Resource Plan
17	•	Exhibit AWW-11 – Levelized System Average Electric Rate
18		Calculation for the TRC Resource Plan
19	•	Exhibit AWW-12 - Comparison of the Resource Plans: Economic
20		Analyses Results
21	•	Exhibit AWW-13 – Additional Cost Needed to be Added to the RIM
22		Plan to Increase its Levelized System Average Electric Rate to That of
23		the TRC Plan

1		• Exhibit AWW-14 – Additional Cost Needed to be Added to the FPL
2		Proposed Plan to Increase its Levelized System Average Electric Rate
3		to That of the TRC Plan
4		• Exhibit AWW-15 – Comparison of the Resource Plans: Projection of
5		System Average Electric Rates and Customer Bills (Assuming 1,000
6		kWh Usage)
7		• Exhibit AWW-16 – Comparison of the Resource Plans: Projection of
8		System Emissions
9		• Exhibit AWW-17 – Comparison of the Resource Plans: Projection of
10		System Oil and Natural Gas Usage
1	Q.	Please summarize your testimony.
12	A.	Using FPL's resource planning process and the latest forecasts, assumptions,
13		and cost estimates, FPL's proposed DSM goals are 408 megawatts (MW)
14		Summer demand, 316 MW Winter demand, and 885 gigawatt-hours (GWh)
15		energy reduction for the period 2025 through 2034. In my testimony, I
16		explain:
17		- FPL's resource planning process, how it applies to DSM options, and
18		how it treats DSM and supply options equally;
19		- A review of the relevant assumptions used in FPL's resource planning
20		process;
21		- The various tests used in the preliminary cost-effectiveness screening
22		and the results of this screening of DSM measures;

1		- How the projected portfolios of DSM compare to FPL's resource
2		needs in the 2025-2034 timeframe;
3		- The Supply Only Resource Plan, With DSM Resource Plans, and how
4		all of these plans compare on both economic and non-economic bases;
5		and
6		- How the final resource plan based on FPL's proposed DSM goals will
7		continue to provide reliable electric service for FPL's customers at low
8		electric rates.
9		
10		II. FPL'S RESOURCE PLANNING PROCESS
11		
12	Q.	Are FPL's proposed DSM goals based on FPL's most recent resource
13		planning process?
14	A.	Yes. Beginning in 2023, and continuing into the first quarter of 2024, FPL
15		undertook a months-long process to determine its resource plan for use in the
16		2024 DSM goals filing, as well as all other 2024 analyses, including the 2024
17		TYSP. The assumptions used in FPL's planning process were developed in
18		late 2023 and early 2024 and accurately represent a current projection of
19		FPL's system for the ten-year planning period of 2025 through 2034.

l	Q.	Why did FPL develop its proposed DSM goals based upon its most recent
2		planning process?

A. There are two important reasons FPL used its most recent planning process to
develop its DSM goals. First, it is required by the Commission's DSM Goals
Rule 25-17.0021(3), Florida Administrative Code. Second, it is important for
a utility to use its own resource planning process while setting DSM goals, or
performing the analysis of any resource option, because each utility's system
has its own specific characteristics that can alter the timing and magnitude of
its resource needs and influence the cost-effectiveness of resource options.

Q. What are the objectives of FPL's integrated resource planning process?

A. There are three main goals of FPL's resource planning process:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- Identify the timing of FPL's resource needs. The timing of future resource needs is largely determined by reliability standards (such as reserve margins and loss-of-load probability requirements).
- 2. Identify the magnitude of these resource needs, *i.e.*, how many MW of capacity are needed to satisfy reliability criteria.
- 3. Identify the type of resources, either supply-side or demand-side, that can meet these capacity needs. On an economic basis, this selection is determined by the option that is projected to result in the lowest electric rates for FPL's customers.

Q. Please provide an overview of FPL's IRP process.

A. An overview of FPL's IRP process is presented annually in FPL's TYSP.

FPL's IRP process can be summarized by the following four tasks:

I	-	<u>Task 1:</u>	Determine the magnitude and timing of FPL's new resource
2		needs.	

A.

- <u>Task 2:</u> Identify the resource options and resource plans that are available to meet the determined magnitude and timing of FPL's resource needs (*i.e.*, identify the available competing options and resource plans).
- <u>Task 3:</u> Evaluate the competing resource options and resource plans based on system economics and non-economic factors.
- <u>Task 4:</u> Select a resource plan, as needed, to meet nearer-term options.

Q. How does FPL apply its IRP process to the specific analyses that are needed to develop DSM goals?

To develop proposed DSM goals for the Commission's review, FPL freezes DSM additions in its assumptions before the start of the next DSM goals period. FPL assumes no incremental DSM and, "starting from scratch," projects how much DSM should be implemented for the next ten years. FPL approaches that task by applying its IRP process through a well-established six-step analysis. This same basic process has been used by FPL in prior DSM goals dockets.

- Q. When evaluating the economics of supply-side or demand-side resource options to meet its reliability criteria, does FPL select these resources on the basis of lowest cumulative present value of revenue requirements (CPVRR)?
 - A. No. When evaluating the economics among supply-side and demand-side resource alternatives, FPL bases its evaluation on the system average electric rates. If, for example, two resource plans satisfy all of FPL's reliability requirements, the more economic plan for all of FPL's customers is the plan that results in the lowest Levelized System Average Electric Rate. This calculation is performed by dividing a utility's annual revenue requirements for that year by the utility's Net Electric Load (NEL) for that year. This same calculation is performed for each year of the analysis, then the results for all years are summed on a present value basis. This cumulative present value is then converted into a Levelized System Average Electric Rate for the period of the analysis.

Note that if one were comparing two resource plans that have the same level of DSM, the two plans will have the same NEL. Therefore, the plan with the lower CPVRR in that scenario also would have the lower Levelized System Average Electric Rate. However, when comparing plans with different DSM portfolios, those plans will have different NELs and cannot be evaluated on CPVRR alone. Therefore, in order to compare plans with different DSM

portfolios on an economic basis, it is appropriate to analyze each plan based on the Levelized System Average Electric Rate.

Q. Please summarize the six-step resource planning process for developing DSM goals.

A. The process can be summarized as follows:

Step 1: The Technical Potential for DSM is determined in which practical considerations of cost, market forces, the utility's resource needs, and other factors are all ignored. The end result of this step is a list of individual DSM measures that are theoretically available in a utility's service territory. Witness Herndon with Resource Innovations describes in his direct testimony the development of the projected Technical Potential values for FPL that were used in the rest of FPL's analyses.

Step 2: Assuming no incremental DSM signups occur after December 31, 2024, FPL's projected resource needs for 2025 through 2034 were determined. Two determinations of resource needs are made: one if the resource needs are theoretically met solely by Supply options; and one if the resource needs are theoretically met solely by DSM options. These two projections are different because of FPL's 20% total reserve margin criterion. For example, if the resource need to be met solely by DSM options for a given year is 100 MW, the resource need to be met solely by Supply options for the same year is $100 \text{ MW} \times (1 + 0.2) = 120 \text{ MW}$.

The results of these determinations are used in two ways. First, using the projected resource needs, if the needs are met solely by Supply options, a generation addition is selected for use in the preliminary economic screening of DSM measures, which occurs in Step 3. Second, these determinations are used later in Step 5 to create a "Supply Only" Resource Plan and "With DSM" Resource Plans, which are then used for the detailed system economic and non-economic analyses that occur in Step 6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Step 3: In this step, each individual DSM measure identified in the Step 1 Technical Potential work is analyzed using a series of preliminary economic screening evaluations against a single Supply option that DSM could potentially avoid or defer. The screening evaluations divide into two separate paths depending on the primary costeffectiveness test used in the analysis. Consistent with the Commission's DSM Goals Rule 25-17.0021, one path utilizes both the Rate Impact Measure (RIM) test and the Participant test, while the other path utilizes the Total Resource Cost (TRC) test and the Participant test. At the end of the screening for both of these paths, two more steps are conducted on both of the screening paths. First, the remaining measures are screened for free riders based on a "years-to-payback" test. Second, the maximum incentive the utility can offer and preserve cost-effectiveness for each remaining DSM measure is calculated.

Step 4: The remaining DSM measures that pass the respective economic screening tests in Step 3, together with their accompanying maximum incentive levels, are then analyzed to develop potential DSM programs and portfolios over the 2025 through 2034 DSM goals period. Again, this step is divided into two separate paths of analysis depending on the cost-effectiveness screening tests that are being applied. The resulting projection for each DSM program represents the projected maximum annual signups for each year of the ten-year DSM goals period. Cumulatively, the sum of these projected maximum annual signups for each DSM program identifies how many MW of DSM resources are projected to be available each year to potentially meet FPL's projected annual FPL witness Floyd addresses the process of resource needs. evaluating the DSM program portfolios from the remaining DSM measures, using program-specific administrative costs, incentives, and adoption projections to determine the reasonably achievable DSM program potential over the period 2025-2034 in his direct testimony.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Step 5: In this step, the projections of resource needs developed previously in Step 2 are used again in several ways. First, FPL uses the projection of resource needs, if the needs are met solely by Supply options, to develop a resource plan in which only Supply options are added. This resource plan is referred to as the "Supply Only"

Resource Plan. Next, FPL compares the projected maximum annual DSM MW signups identified in Step 4 to the projected annual resource needs if those needs are met solely by DSM options. From this comparison, the "With DSM" Resource Plans are developed. These resource plans may consist solely of DSM measures, or a combination of DSM and Supply options, for the ten-year period. At the conclusion of Step 5, the Supply Only and the With DSM Resource Plans have been developed for more detailed system analyses in Step 6.

Step 6: The resource plans from Step 5 are analyzed from both economic and non-economic perspectives. The recommended resource plan based on these perspectives is identified, and the amount of incremental DSM included in that plan is selected as FPL's proposed DSM goals for the 2025 - 2034 time period.

- Q. Does FPL's six-step analytical resource planning process outlined above result in Supply and DSM resource options being evaluated on a level playing field?
- A. Yes. FPL's analyses evaluate both Supply and DSM resource options in terms of each resource option's ability to meet FPL's resource needs. In addition, these analyses allow the resources to be fully evaluated from both economic and non-economic perspectives, using an identical set of evaluation metrics. For the economic analyses, all projected cost impacts on the electric rate levels of FPL's customers are accounted for in these analyses.

1	Q.	Which of the six steps outlined above will you be addressing in your
2		testimony?

A. My testimony addresses Steps 2, 3, 5, and 6 of this process, along with other topics. Witness Herndon addresses Step 1, and witness Floyd addresses Step 4 and portions of Step 5 along with other topics.

III. STEP 2 OF FPL'S PLANNING PROCESS: METHODS AND ASSUMPTIONS USED TO PROJECT FPL'S RESOURCE NEEDS

Q. How does FPL determine its projected future resource needs?

A. FPL uses three reliability criteria in projecting its future resource needs. One criterion is a minimum total reserve margin of 20% for both Summer and Winter peak hours. The 20% total reserve margin criterion was approved by the FPSC in Order No. PSC-99-2507-S-EU issued in Docket No. 981890-EU.

The second reliability criterion used by FPL is a Loss-of-Load-Probability (LOLP) criterion. LOLP is a projection of how well an electric utility system may be able to meet its firm demand (*i.e.*, a measure of how often firm load may exceed available resources). In contrast to a reserve margin approach that looks at the one Summer peak hour and the one Winter peak hour, the LOLP approach looks at the peak hourly demand for each day of the year. The LOLP approach takes into consideration the probability of individual generators being out-of-service due to scheduled maintenance or forced

outages. LOLP is typically expressed in terms of "numbers of times per year" that the system firm demand could not be served. FPL's LOLP criterion is a maximum of 0.1 days per year. This LOLP criterion is commonly used throughout the electric utility industry.

The third reliability criterion used by FPL is a minimum generation-only reserve margin (GRM) of 10%. The issue of having a sufficient generation component of the projected total reserve margin has been discussed annually in FPL's TYSP beginning in 2011, and the GRM was adopted by FPL as a reliability criterion beginning in 2014. The GRM must be applied only after evaluating the amount of DSM in a resource plan to determine whether the resource plan is too dependent upon DSM.

- Q. What forecasts and assumptions did FPL use in its 2024 planning process?
- A. Every year, FPL updates its forecasts as part of its IRP process and in support of filing its yearly TYSP, including considerations of supply-side efficiencies. In its 2024 resource planning work, including the DSM portfolio analyses for this docket, FPL is using the following forecasts:
 - A forecast of fuel prices (natural gas, coal, and oil), dated September
 1, 2023;
 - 2. A forecast of projected hourly load, dated November 1, 2023; and

1		3. A forecast of carbon dioxide (CO ₂) compliance costs, dated September
2		28, 2022.1
3		As discussed in FPL's 2024 TYSP, FPL made a number of actions regarding
4		its resource mix that affected its projected resource needs in the 2024 planning
5		process. These actions include:
6		- The retirement of Plant Daniel Units 1 & 2 in 2024;
7		- The transition of Gulf Clean Energy Center Units 4 and 5 to "extreme
8		weather reserve" status by the end of 2024 and 2026, respectively;
9		- The retirement of FPL's ownership portion of Scherer Unit 3 by the
10		end of 2028;
11		- The cumulative addition of approximately 21,000 MW (nameplate) of
12		solar by the end of 2033, which is the last year addressed in the 2024
13		TYSP; and
14		- The cumulative addition of approximately 4,000 MW (nameplate) of
15		battery storage by the end of 2033.
16	Q.	Does the load forecast used in the analysis account for the projected
17		energy-efficiency impacts of Florida Building Code and federal
18		equipment manufacturing standards (collectively, Codes and Standards)?
19	A.	Yes. FPL's current projection of the impact of Codes and Standards on the
20		2034 Net Energy for Load (NEL) is 11,438,429 megawatt-hours (MWh).
21		This means that very significant amounts of energy efficiency will still be
22		delivered to FPL's customers by Codes and Standards alone. To provide

¹ Use of this forecast in one of the sensitivity analyses is explained later in my testimony.

l	context, FPL's 2024 NEL forecast for the year 2034 is 155,677,526 MWh,
2	which means that the energy reduction delivered through Codes and Standards
3	represents more than 7% of the total of FPL's projected NEL.

Q. From a resource planning perspective, does the energy-efficiency impact of Codes and Standards differ at all from energy efficiency resulting from utility DSM programs?

- A. No. Both types of energy efficiency act to reduce FPL's peak demand and energy on the customer side of the meter. One kW of peak demand reduction will avoid or defer new generation whether it comes from Codes and Standards or from a utility-sponsored DSM program. Likewise, the associated fuel and emission impacts from one kWh of energy reduction will be realized regardless of the impetus for that energy reduction.
 - Q. Once all of these forecasts and assumptions were developed, how did FPL develop the resource plans you discuss in this docket?
 - A. FPL developed these resource plans using the AURORA planning model. The AURORA model utilizes dynamic programming to conduct an extensive evaluation of all possible resource plans that can meet a utility's reliability requirements. FPL and the Commission have relied upon this model in numerous prior proceedings, and it was used to develop FPL's 2024 TYSP. AURORA incorporated a number of FPL forecasts and assumptions into its analysis including the following:
 - The 20% total Reserve Margin reliability criterion described earlier;

- Forecasts for peak load, energy, fuel prices, and environmental compliance costs;

- The existing capabilities of the units on FPL's systems, and any

planned changes to those units; and

- Projections of fixed and variable costs, and the operating characteristics, of a variety of generation options to meet FPL's resource needs in the future.

After incorporating all of these parameters, AURORA evaluated hundreds of possible resource plans that met FPL's future resource needs using only generation or supply options. At the end of this evaluation, the resource plan with the lowest projected electric rate and best reliability for FPL's customers was identified as FPL's Supply Only Plan.

Q. What Supply option was selected for use in the preliminary costeffectiveness screening?

A. A 1,991 MW (Summer) combined-cycle (CC) unit with a projected in-service year of 2033 was selected as the unit to be considered potentially avoidable for the preliminary screening work. As much of the screening work was conducted in 2023 (before the 2024 TYSP was finalized), the screening analysis was based on the 2033 CC unit that was in FPL's resource plan from the 2023 TYSP.

Q. Why did FPL select the 2033 CC unit as its avoided unit?

A. This unit was selected based on several factors. First, as part of the 2023 TYSP, it was one of the most economic generation additions available.

Second, it was located far enough in the future to allow DSM additions a meaningful chance to potentially avoid or defer it. Finally, selection of a fossil unit conforms to the legislative policy in Section 366.82(2), Florida Statutes, to design DSM goals that increase the conservation of expensive resources, such as petroleum fuels, as well as the legislative policy in Section 366.92, Florida Statutes, to promote the development of renewable energy and lessen Florida's dependence on natural gas and fuel oil for the production of electricity.²

IV. STEP 3 OF FPL'S PLANNING PROCESS: OVERVIEW OF PRELIMINARY ECONOMIC SCREENING TESTS FOR DSM

Q. Which preliminary screening tests for DSM were used in this step of FPL's DSM goals development analyses?

A. FPL used four DSM screening tests in these analyses. Three of these screening tests address cost-effectiveness: the Participant screening test, the RIM preliminary screening test, and the TRC preliminary screening test. The fourth screening test addresses an evaluation of free ridership, the years-to-payback screening test using a two-year criterion. All four tests are designed

.

² See also In re: Commission review of numeric conservation goals (Florida Power & Light Company), Docket Nos. 130199-EI et al., Order No. PSC-14-0696-FOF-EU, p. 14 (FPSC Dec. 16, 2014) ("Demand-side management is an alternate resource to generation driven by economic and reliability considerations for Florida's electric utilities. The economics of demand-side management are similar to generation, with a focus on fixed capacity and avoidable fossil fuel cost. The reliability considerations of demand-side management are significantly different, however, as measures tend to be implemented in small increments over time, rely upon voluntary participation of customers, and are typically not dispatchable by the utility.")

to provide preliminary economic screening information regarding the individual DSM measures being evaluated. The intent of the Participant test is to determine if it makes economic sense for an individual customer to participate in a specific DSM measure. The intent of the RIM test is to measure the effect of a DSM measure on FPL's electric rates, which impact both participants and non-participants. The intent of the TRC test is to measure the cost of a DSM measure to both the utility and its customers, without consideration of the impact to rates. The intent of the years-to-payback test is to address the "free rider" issue so the utility and all of its customers are not making incentive payments and incurring administrative costs for DSM measures that customers likely would install even without an incentive payment.

A.

Q. Is FPL accounting for any projected environmental compliance costs in the screening tests in the current analyses?

Yes, but only for two types of emissions. FPL is accounting for projected compliance costs for sulfur dioxide (SO₂) and nitrogen oxides (NO_x) in both the RIM and TRC preliminary screening tests. However, consistent with the direction provided in the Order Establishing Procedure for this docket (Order No. PSC-2024-0022-PCO-EG), FPL is not accounting for projected CO₂ compliance costs in these screening tests. Rather, because FPL considers CO₂ compliance costs in all of its other resource planning analyses, FPL analyzed the impact of projected CO₂ compliance costs in a sensitivity screening analysis. In order to indicate whether CO₂ costs are included in the screening

1	analyses, I will use the terminology of "w/ CO2" and "w/o CO2" for the
2	different analyses.

- Q. Have the four preliminary screening tests been used by FPL in prior DSM goals filings?
- A. Yes, all four tests have been used in prior filings. However, the goals proposed in FPL's prior DSM goals dockets have been based on the RIM and Participant tests and a years-to-payback screen of two years.
- Q. Please discuss the primary differences between the Participant, RIM, and
 TRC preliminary screening tests.
- A. A summary of the costs and benefits considered by each test during the costeffectiveness screening is provided in Exhibit AWW-1. As shown in Exhibit

 AWW-1, the primary differences between these three tests result from the
 perspective that each test attempts to capture. FPL witness Floyd provides a
 more detailed description of the different cost-effectiveness tests and what
 each one does and does not account for.
- Q. What is the objective of the preliminary economic screening of individual

 DSM measures with the Commission's DSM cost-effectiveness tests that

 is carried out in Step 3 of FPL's resource planning process?

20

21

22

23

A. The objective of the economic screening of DSM measures with the Commission's cost-effectiveness tests (Participant, TRC, and RIM tests) is to identify all of the measures that are potentially cost-effective (in that their benefits are higher than their associated costs). These measures that are potentially cost-effective can be combined first into DSM programs and then

	into one or more DSM portfolios that meet some or all FPL's projected
2	resource needs. The resource plans can then be compared on an economic
3	basis to the Supply Only Plan established earlier.

Q. Please provide an overview of how the preliminary economic screening of individual DSM measures was conducted.

4

15

16

17

18

19

20

21

22

23

- A. The economic screening process begins when the Technical Potential study is 6 complete. That study describes all the prospective individual DSM measures and their associated characteristics, such as life of measure, kW reduction, and 8 kWh savings. These measures are then screened to develop two DSM 9 portfolios: (1) a RIM portfolio that is comprised of all measures that pass the 10 RIM and Participant cost-effectiveness tests and the years-to-payback screen; 11 and (2) a TRC portfolio that passes the TRC test, the Participant test and the 12 years-to-payback screen. Based on the results of these screens, the passing 13 14 measures have their maximum incentives determined.
 - Q. Why does the screening process differ depending on the tests used for cost-effectiveness?
 - A. The paths of the cost-effectiveness screening diverge depending on if the RIM or the TRC test is used as the primary determinant of cost-effectiveness. In both cases, there are four overall steps in the screening process. The details of these steps and how they differ from test to test are provided below:
 - Step 1: For the RIM path, the benefits of the measure are compared to the unrecovered revenue requirements. For the TRC path, the benefits of the measure are compared to the participants' incremental cost.

Step 2: For both the RIM and TRC paths, the benefits of the measure are compared to the administrative costs being added to the costs already accounted for in Step 1.

A.

A.

- Step 3: For the RIM path only, the incentive payments needed for the measure to pass the Participant test are now accounted for.
- Step 4: For both the RIM and TRC paths, any measures that do not pass the years-to-payback test for free riders are screened out.

Q. How does a years-to-payback screening test account for free riders?

A years-to-payback screening with a two-year criterion assumes that a customer would adopt an energy-efficiency measure with no additional incentive if the economic payback for that measure was less than two years. This screening test recognizes that "rational" customers will act in their own economic interest and engage in energy efficiency measures that reduce their energy consumption, if it is economic to do so even without incentives. This ensures that incentives (and their associated impact to the electric rates of both participants and non-participants) will not be provided unnecessarily. FPL witness Floyd provides further details on the use of the two-year payback screening to account for free ridership.

Q. What were the results of the preliminary economic screening?

The results of the economic screening are provided in Exhibit AWW-2. In summary, of the 20,068 measure permutations that came out of the Technical Potential study, 20 passed the RIM and Participant tests and the two years-to-payback screen path, and 3,433 measures passed the TRC test, the Participant

test, and the two years-to-payback screening path. The difference in the number of measures that pass under the RIM path versus the TRC path is a result of the different costs that are included in each cost-effectiveness screening test as explained above and in the testimony of FPL witness Floyd.

Q. Did FPL perform any additional sensitivity case screening analyses of the DSM measures?

A. Yes. Sensitivities were developed for High and Low forecasts of fuel prices, longer and shorter years-to-payback criteria, and inclusion of compliance costs for CO₂. The results of these sensitivities can be seen in Exhibit AWW-3 (and the results with CO₂ are also presented in Exhibit AWW-2).

Q. How were the various fuel cost sensitivity forecasts and years-to-payback sensitivity periods developed?

FPL followed its usual practice in the development of the High and Low fuel cost forecasts. A Medium fuel cost forecast was first developed. Then FPL adjusted the Medium fuel cost forecast upwards (for the High fuel cost forecast sensitivity) and downwards (for the Low fuel cost forecast sensitivity), by multiplying the annual cost values from the Medium fuel cost forecast by a factor of (1 plus the historical volatility in the 12-month forward price, one year ahead) for the High fuel cost forecast sensitivity, and by a factor of (1 minus the historical volatility of the 12-month forward price, one year ahead) for the Low fuel cost forecast sensitivity.

A.

1	For the development of years-to-payback criterion sensitivity values, FPL
2	added or subtracted one year to or from its base case two years-to-payback
3	criterion, resulting in three years-to-payback, and one year-to-payback,
4	sensitivity case criteria. FPL believes that this variation is sufficient to
5	illustrate the sensitivity of the screening process to differences in the years-to-
6	payback criterion.

- Q. What fuel cost forecast is FPL basing its proposed DSM goals on and 7 why? 8
- A. FPL is basing its proposed 2025-2034 DSM goals on its Medium fuel forecast 9 that is presented in Exhibit AWW-4. The Medium fuel forecast represents a 10 middle ground of fuel scenarios and is consistent with the methodology used 11 in all of FPL's recent filings before the Commission. 12
- Q. Please discuss the CO₂ compliance cost forecast values in Column (8) of 13 14 Exhibit AWW-4.
- Since 2007, FPL has evaluated potential CO₂ regulation and/or legislation and 15 A. has used projected compliance costs for CO₂ emissions from the consultant 16 17 ICF in its resource planning work. The values for CO₂ compliance costs in Exhibit AWW-4 represent the latest forecast FPL received from ICF in 18 19 October of 2022.
- 20 Q. Does FPL use a CO₂ compliance cost forecast in all of its other resource 21 planning analyses?
- 22 A. Yes, FPL has consistently used a forecast of CO₂ compliance in all of its 23 resource plan analyses for more than fifteen years.

l	Q.	Earlier you stated that, at the conclusion of the cost-effectiveness
2		screening, maximum incentives were calculated for each passing measure.
3		How were these maximum incentives calculated?
1	A.	For the RIM path of cost-effectiveness testing, the maximum incentives for

- A. For the RIM path of cost-effectiveness testing, the maximum incentives for measures that pass all four steps were calculated based on two parameters:
 - 1. How much incentive can be offered and still allow the measure to pass the RIM and Participant tests?
 - 2. How much incentive can be offered and still allow the measure to pass the years-to-payback test?

The smaller of these two incentives is the maximum incentive that could be offered for measures that pass the RIM path of cost-effectiveness testing. For example, assume that a measure passes all four screening steps in the RIM path. The one-time payment that can be offered for this measure that still allows a RIM test result greater than 1.005 is \$1,000. The one-time payment that can be offered for this measure while still allowing it to pass the years-to-payback test is \$500. Based on these two values, the maximum incentive that could be offered is \$500 – offering a larger incentive would cause the measure to fail the years-to-payback test.

For the TRC path of cost-effectiveness testing, only the years-to-payback criterion was used to determine the maximum incentive, as the TRC test does not include the consideration of incentive payments as a cost. For example, a

particular measure could pass the TRC test and have a one-time payment of

1		\$500 that still passes the two-year payback screen. Lowering this one-time
2		payment below \$500 would have no effect on the outcome of the TRC test.
3	Q.	How were these maximum incentives used in the overall DSM analysis?
4	A.	The two sets (RIM path and TRC path) of passing measures and their
5		associated maximum incentives developed in Step 3 are used in Step 4 to
6		develop the programs for each of the goals scenarios required by the rule.
7		This process is described in detail by FPL witness Floyd. The goals and
8		programs developed in Step 4 for FPL's recommended portfolio and for each
9		of the cost-effectiveness scenarios are used in Step 5 to develop the associated
10		resource plans, which I describe next, to accurately compare all of the impacts
11		of the DSM goals in Step 6.
12		
13	v.	STEP 5 OF FPL'S PLANNING PROCESS: DEVELOPMENT OF THE
14		RESOURCE PLANS
15		
16	Q.	What are FPL's resource needs during the 2025-2034 DSM goals
17		timeframe?
18	A.	Exhibit AWW-5 details FPL's resource needs for this timeframe and two
19		additional years using the resource planning process I previously described.

Q.	What were the reasonably achievable DSM program values and how does
	this DSM program potential match up with FPL's projected resource
	needs?

- The results of the evaluation of reasonably achievable DSM, which are A. discussed in detail in FPL witness Floyd's direct testimony, were used as inputs for the resource planning process. Exhibit AWW-6 presents the 6 projected total annual Summer MW for DSM programs identified in each of FPL's goals scenarios in Columns 1 through 3. These annual DSM Summer MW values are also compared to the annual resource need projections in Exhibit AWW-5 and presented in Column 4 of Exhibit AWW-6. 10
- Q. Please describe the "Supply Only" Resource Plan and the "With DSM" Resource Plans that were developed for further analyses. 12
- A. A summary of these four plans is presented in Exhibit AWW-7. For the 13 14 "Supply Only" plan, DSM additions were assumed to be "frozen" after 2024. All of the resource needs identified in Exhibit AWW-6 were met with future 15 16 supply-side resource options, including battery storage units.

18

19

20

21

22

23

1

2

3

4

5

7

8

9

11

A total of three "With DSM" resource plans were developed for further analysis. The first "With DSM" plan is the RIM Resource Plan. This plan is based on the measures that passed both the RIM and Participant tests, as well as passing the two-year payback screening for free riders. The second "With DSM" plan is the TRC Resource Plan. This plan is based on measures that passed the TRC test and Participant test for cost-effectiveness and the twoyear payback screening for free riders. The final "With DSM" plan is the FPL Proposed Resource Plan. This plan was developed based on FPL's recommended DSM portfolio that largely continues the currently offered DSM programs with notable enhancements as further described by FPL witness Floyd. The DSM additions in the FPL Proposed Resource Plan are essentially an approach that results in DSM goals that have demand and energy impacts in between those under the RIM Resource Plan and the TRC Resource Plan. The economic and non-economic impacts of each of these plans are analyzed in Step 6, which I describe next.

VI. STEP 6 OF FPL'S PLANNING PROCESS: ANALYSES OF THE RESOURCE PLANS

Q. Please describe how the economic analysis of the Supply Only and "With DSM" Resource Plans is conducted.

A. The economic analysis of the resource plans compares the Levelized System

Average Electric Rate for each plan. Exhibits AWW-8 through AWW-11

present the calculations of the Levelized System Average Electric Rate and
the fixed and variable costs that comprise the projected annual revenue
requirements from which the rate is derived for each resource plan evaluated.

The calculation consists of three basic steps. First, the projected annual
revenue requirements and annual GWh served are used to calculate a
projected system average electric rate for each year as shown in Column 9 of

Exhibits AWW-8 through AWW-11. Second, each of these projected annual electric rates is converted to a present value, and these present values are summed in Column 10. Third, an annual electric rate value is developed in Column 11 that, when held constant in each year, with these values converted to a present value and summed, has an identical net present value sum in Column 12 to that of the present value sum in Column 10. This constant electric rate value is the Levelized System Average Electric Rate for this resource plan.

Q. What were the results of the economic analysis of the resource plans?

A.

- The results of the economic analysis of the resource plans are presented in Exhibit AWW-12, which provides the projected Levelized System Average Electric Rate for each resource plan. As shown on Exhibit AWW-12, the RIM Resource Plan provides the lowest Levelized System Average Electric Rate for FPL's customers, while the TRC Resource Plan provides the highest Levelized System Average Electric Rate for FPL's customers. The Levelized System Average Electric Rate for the FPL Proposed Resource Plan is between those of the RIM and TRC Resource Plans.
- Q. Are the differences in the Levelized System Average Electric Rates between the three resource plans presented in Exhibit AWW-12 meaningful?
 - A. Yes. This is demonstrated in Exhibit AWW-13. This exhibit compares the levelized rates for the RIM Resource Plan, the TRC Resource Plan, and the FPL Proposed Resource Plan. As shown in the exhibit, the seemingly modest

differential in levelized rates between the RIM-based and TRC-based plans equates to a very large one-time cost of approximately \$2.3 billion in year 2034 being added to the RIM-based DSM plan. Exhibit AWW-14 shows a similar comparison between the FPL Proposed Plan and the TRC Plan.

Q. Were electric rates and customer bills projected and compared for the ten-year goal-setting period for each resource plan?

A.

A.

Yes. Exhibit AWW-15 provides a comparison of electric rates and customer bills for the "Supply Only Resource Plan and the three "With DSM" Resource Plans. In comparing the three "With DSM" Resource Plans during 2025-2034, the RIM Resource Plan is projected to result in the lowest electric rates and average customer bills in each year. The TRC Resource Plan is projected to result in the highest electric rates and the highest average customer bills in each year. The FPL Proposed Resource Plan falls in between the RIM and TRC Resource Plans.

Q. How would you summarize the economic analyses results?

Two results from the economic analyses are noteworthy. First, the RIM Resource Plan helps meet FPL's resource needs through 2034 while providing the lowest Levelized System Average Electric Rates over the analysis period and the lowest electric rates of the "With DSM" Resource Plans for each year in the 2025-2034 time period. The FPL Proposed Resource plan also meets all of FPL's resource needs through 2034, and while the FPL Proposed Resource Plan raises customer electric rates relative to the RIM Resource Plan, it results in minimal incremental rate impact beyond what customers are

1	incurring under FPL's current approved DSM goals. The TRC Resource Plan
2	meets FPL's resource needs through 2034 and increases customer electric
3	rates relative to both the RIM Resource Plan and FPL Proposed Resource
4	Plan.

Q. What different perspectives of the FPL system were considered in the non-economic analyses?

- A. The non-economic analyses focused on two perspectives that address the years 2025-2034. The first perspective is a direct comparison of projected annual SO₂, NO_x, and CO₂ emissions for the FPL system for each of the resource plans. The second perspective is a direct comparison of projected annual FPL system oil and natural gas usage for the resource plans.
- Q. Would you please present the results of the non-economic analyses?
- 13 A. Yes. The results of the non-economic analyses are presented in Exhibits
 14 AWW-16 and AWW-17. There is very little difference among the four
 15 resource plans for these non-economic factors.
- Q. Does FPL's 10% GRM requirement impact FPL's proposed DSM goals?
- 17 A. No. The GRM criterion does not impact FPL's proposed DSM goals.
- Q. What are the proposed DSM goals under the FPL Proposed Resource Plan?
- A. The proposed DSM goals based on the FPL Proposed Resource Plan are 408

 MW Summer demand, 316 MW Winter demand, and 885 GWh energy

 reduction for the period 2025 through 2034, which are further explained by

 FPL witness Floyd.

1	Q.	From a resource planning perspective, are the DSM goals based on the
2		FPL Proposed Resource Plan reasonable?
3	A.	Yes. The resource plan associated with FPL's proposed DSM goals fulfills
4		the primary drivers of FPL's resource planning process:
5		- The timing and magnitude of resource needs: via a combination of
6		DSM and supply resources, the FPL Proposed Resource Plan ensures
7		that all of FPL's resources needs are met throughout the time period of
8		the analysis and all of FPL's reliability criteria are satisfied.
9		- The FPL Proposed Resource Plan is consistent with the Commission's
10		DSM Goals Rule 25-17.0021, which was recently amended to require
11		utilities to submit DSM goals based on programs developed under both
12		the RIM and TRC cost-effectiveness tests.
13		- The rate impact to FPL's customers: the FPL Proposed Resource Plan
14		has minimal incremental rate impact to customers beyond what they
15		are currently paying under the existing DSM goals, which have been in
16		place for the last ten years.
17		FPL witness Floyd further explains why FPL believes the proposed DSM
18		goals are reasonable and appropriate.
19	Q.	Does this conclude your direct testimony?
20	Α	Yes

	Participant- Incurred Economic	Included in the Participant	Utility- Incurred Economic	Included in the RIM	Included in the TRC
Economic Elements	Impacts	Screening Test?	Impacts	Screening Test?	Screening Test?
Benefits					
Generation Capital and O&M			X	Yes	Yes
Transmission Capital and O&M			X	Yes	Yes
Distribution Capital and O&M			X	Yes	Yes
Net System Fuel Impacts			X	Yes	Yes
Bill Savings by Participants	X	Yes			
Incentives Received by Participants	X	Yes			
Tax Credits Received by Participants	X	Yes			
Costs					
Utility Equipment & Administration			X	Yes	Yes
Incentives Paid to Participants			X	Yes	No
Unrecovered Revenue Requirements			X	Yes	No
Equipment Capital and O&M	X	Yes			Yes

Notes: - "X" indicates that this economic element is a potential benefit or cost that may result from a DSM measure.

^{- &}quot;Yes" indicates that this economic element is accounted for in the DSM preliminary screening test.

Docket No. 20240012-EG Summary Results of Preliminary Economic Screening of Individual DSM Measures Exhibit AWW-2, Page 1 of 1

Summary Results of Preliminary Economic Screening of Individual DSM Measures (w/o and w/ CO₂ Costs)

Number of DSM Measures* Evaluated in Preliminary Economic Screening = 20,068

w/o CO₂ Costs

w/ CO2 Costs

Notes

		-			-	
Screening Step	RIM Test Preliminary Economic Screening	TRC Test Preliminary Economic Screening		RIM Test Preliminary Economic Screening	TRC Test Preliminary Economic Screening	
Step (1) Total Number of DSM Measures at Starting Point =	20,068	20,068		20,068	20,068	
a) Number of DSM Measures Removed After Accounting for Unrecovered Revenue Requirements = b) Number of DSM Measures Removed After Accounting for	19,969 N.A.	N.A. 12,134		19,953 N.A.	N.A. 11,662	(1)
Participant Costs = c) Number of DSM Measures Remaining After Screening Step 1 =	99	7,934		115	8,406	
Step (2) Number of DSM Measures Removed After Also Accounting for Administrative Costs =	35	968		29	754	
Number of DSM Measures Remaining After Screening Step 2 =	64	6,966		86	7,652	
Step (3) Number of DSM Measures Removed After Also Accounting Incentive Payments Needed to Bring the Participant Test Ratio Up to 1.00 for Certain Measures =	24	N.A.		46	N.A.	(3)
Number of DSM Measures Remaining After Screening Step 3 =	40	6,966	ł	40	7,652	ł
Step (4) Number of DSM Measures Removed If Participant Payback is Less Than 2 Years Without Incentive Payments =	20	4,151		20	4,219	
Number of DSM Measures Remaining After Screening Step 4 =	20	2,815		20	3,433]
Final Number of DSM Measures Remaining After the Preliminary Economic Screening =	20	2,815		20	3,433	

Notes:

^{* &}quot;DSM Measures" refers to the unique permutations of each measure - for example, different building types for a business lighting measure

⁽¹⁾ Unrecovered revenue requirements affect all customers in regard to electric rates. The RIM test accounts for this cost impact on all customers. However, the TRC Test does not account for this cost impact to all customers.

⁽²⁾ Participant costs are <u>not</u> costs that all customers of an electric utility pay for through electric rates. Therefore, these costs are not accounted for in the RIM test that accounts for all costs incurred by all utility customers through electric rates. However, despite the fact that these costs are already accounted for in the Participant Test, the TRC test includes these costs.

⁽³⁾ Incentive payments by a utility to participating customers are costs that all customers of an electric utility pay for through electric rates. Therefore, incentive payments are accounted for in the RIM Test. However, the TRC Test does not account for these costs.

Summary Results of Preliminary Economic Screening of Individual DSM Measures: Sensitivity Cases

		w/ or	Years -to-		
Base or	Fuel	w/o CO ₂	Payback Test	Number of DS	M Measures**
Sensitivity	Cost	Compliance	Criterion	Surviving RIM	Surviving TRC
Case	Forecast	Costs	(Years)	Path Screening	Path Screening
Base Case w/o CO ₂ *	Medium	w/o	2	20	2,815
Base Case w/ CO ₂ *	Medium	w/	2	20	3,433
Sensitivity Case 1	High	w/o	2	20	3,433
Sensitivity Case 2	Low	w/o	2	20	2,197
Sensitivity Case 3	Medium	w/o	1	34	4,010
Sensitivity Case 4	Medium	w/o	3	20	1,684

^{*} These results were previously presented in Exhibit AWW-2.

^{** &}quot;DSM Measures" refers to the unique permutations of each measure - for example, different building types for a business lighting measure.

Forecasted Fuel and Environmental Compliance Costs

(1) (2) (3) (4) (5) (6) (7) (8)

Fuel Costs * Environmental Compliance Costs

							1		
	Natural Gas	Light Oil	Coal	Natural Gas	Natural Gas				
	Medium	Medium	Medium	High	Low	SO_2	NO_X	CO ₂ **	
	(Nominal \$	(Nominal \$	(Nominal \$	(Nominal \$	(Nominal \$	(Nominal \$	(Nominal \$	(Nominal \$	
<u>Year</u>	per mmBtu)	per mmBtu)	per mmBtu)	per mmBtu)	per mmBtu)	per ton)	per ton)	per ton)	
2024	\$3.81	\$21.26	\$3.41	\$4.42	\$3.20	\$0	\$125	\$0	
2025	\$4.30	\$19.88	\$3.49	\$4.99	\$3.62	\$0	\$125	\$0	
2026	\$5.06	\$19.48	\$3.76	\$5.87	\$4.25	\$0	\$125	\$0	
2027	\$4.97	\$19.27	\$3.92	\$5.77	\$4.18	\$0	\$125	\$0	
2028	\$5.37	\$18.92	\$3.93	\$6.23	\$4.51	\$0	\$125	\$0	
2029	\$5.54	\$19.09	\$3.99	\$6.43	\$4.66	\$0	\$125	\$0 \$0	
2030	\$5.33	\$19.33	\$4.05	\$6.18	\$4.47	\$0 \$0	\$125	\$0 \$0	
2031	\$5.32	\$19.58	\$4.11	\$6.18	\$4.47	\$0 \$0	\$125 \$125	\$0 \$0	
2032	\$5.38	\$19.88	\$4.17	\$6.24	\$4.52	\$0 \$0	\$125 \$125	\$0 \$0	
2032	\$5.59	\$19.88	\$4.17 \$4.23	\$6.48	\$4.69	\$0 \$0	\$125 \$125	\$0 \$0	
2033	\$5.81	\$20.09	\$4.23 \$4.28	\$6.74	\$4.88	\$0 \$0	\$125 \$125	\$0 \$0	
2034	\$6.10	\$20.20	\$4.28	\$7.08	\$5.12	\$0 \$0	\$125 \$125	\$0 \$0	
2036	\$6.29	\$20.81	\$4.38	\$7.29	\$5.28	\$0	\$125	\$3	
2037	\$6.54	\$21.22	\$4.45	\$7.59	\$5.50	\$0	\$125	\$7	
2038	\$6.82	\$21.71	\$4.51	\$7.91	\$5.73	\$0	\$125	\$10	
2039	\$7.03	\$22.25	\$4.58	\$8.16	\$5.91	\$0	\$125	\$14	
2040	\$7.53	\$22.80	\$4.67	\$8.73	\$6.33	\$0	\$125	\$18	
2041	\$7.91	\$23.36	\$4.74	\$9.17	\$6.64	\$0	\$125	\$21	
2042	\$8.11	\$23.92	\$4.82	\$9.40	\$6.81	\$0	\$125	\$24	
2043	\$8.40	\$24.50	\$4.90	\$9.75	\$7.06	\$0	\$125	\$27	
2044	\$9.01	\$24.80	\$4.98	\$10.45	\$7.57	\$0	\$125	\$31	
2045	\$9.52	\$25.08	\$5.08	\$11.04	\$8.00	\$0	\$125	\$36	
2046	\$9.77	\$25.41	\$5.17	\$11.33	\$8.21	\$0	\$125	\$40	
2047	\$10.22	\$25.73	\$5.26	\$11.86	\$8.59	\$0	\$125	\$45	
2048	\$10.76	\$26.06	\$5.36	\$12.48	\$9.04	\$0	\$125	\$50	
2049	\$11.37	\$26.40	\$5.46	\$13.18	\$9.55	\$0	\$125	\$56	
2050	\$12.30	\$26.75	\$5.57	\$14.26	\$10.33	\$0	\$125	\$62	
2051	\$12.24	\$26.83	\$5.68	\$14.20	\$10.28	\$0	\$125	\$63	
2052	\$12.19	\$26.91	\$5.79	\$14.14	\$10.24	\$0	\$125	\$65	
2053	\$12.14	\$26.99	\$5.90	\$14.08	\$10.20	\$0	\$125	\$66	
2054	\$12.09	\$27.07	\$6.00	\$14.02	\$10.15	\$0	\$125	\$67	
2055	\$12.04	\$27.15	\$4.68	\$13.96	\$10.11	\$0	\$125	\$69	
2056	\$11.99	\$27.23	\$6.22	\$13.90	\$10.07	\$0	\$125	\$70	
2057	\$11.94	\$27.31	\$6.33	\$13.85	\$10.03	\$0	\$125	\$72	
2058	\$11.89	\$27.39	\$6.43	\$13.79	\$9.98	\$0	\$125	\$73	
2059	\$11.84	\$27.47	\$6.54	\$13.73	\$9.94	\$0	\$125	\$75	
2060	\$11.79	\$27.55	\$6.65	\$13.67	\$9.90	\$0	\$125	\$76	
2061	\$11.74	\$27.63	\$6.76	\$13.61	\$9.86	\$0	\$125	\$78	
2062	\$11.69	\$27.72	\$6.87	\$13.56	\$9.82	\$0	\$125	\$80	
2063	\$11.64	\$27.80	\$6.97	\$13.50	\$9.77	\$0	\$125	\$81	
2064	\$11.59	\$27.88	\$7.08	\$13.44	\$9.73	\$0	\$125	\$83	
2065	\$11.54	\$27.96	\$7.19	\$13.38	\$9.69	\$0 \$0	\$125 \$125	\$85	
2066	\$11.34 \$11.49	\$27.90	\$7.19	\$13.33	\$9.65	\$0 \$0	\$125 \$125	\$83 \$87	
2067	\$11.49 \$11.44	\$28.03	\$7.30 \$7.41	\$13.33	\$9.61	\$0 \$0	\$125 \$125	\$88	
2068	\$11.44	\$28.13	\$7.41 \$7.51	\$13.27 \$13.22	\$9.57	\$0 \$0	\$125 \$125	\$90	
	\$11.39 \$11.34	\$28.21	\$7.51 \$7.62	\$13.22 \$13.16	\$9.53 \$9.53	\$0 \$0		\$90 \$92	
2069							\$125 \$125		
2070	\$11.30	\$28.38	\$7.73	\$13.10	\$9.49	\$0	\$125	\$94	

^{*} The forecasted fuel cost values shown above are a subset of the numerous forecasted fuel cost values for delivery to different plants, from different pipelines, etc. The natural gas price represents the weighted average FGT Firm price forecast, the oil price represents the Light Oil price forecast, and the coal price represents the Scherer 3 price forecast.

^{**} The CO₂ compliance costs shown above were used with the "w/CO₂ cost" sensitivity screening analysis.

Docket No. 20240012-EG Projection of FPL's Resource Needs for 2024 - 2035 with No Incremental DSM Signups After 2024 Exhibit AWW-5, Page 1 of 1

(2,366)

(1,971)

23.0%

Projection of FPL's Resource Needs for 2024 - 2035 with No Incremental DSM Signups After 2024 (MW at Generator)

	<u>Summer</u>										
	(1)	(2)	(3) = (1)+(2)	(4)	(5)	(6) = (4)-(5)	(7) = (3)-(6)	(8) = (7)/(6)	(9) = ((3)-(4))/(4)	(10) = ((6)*1.20)-(3)	(11) = (10)/1.20)
August of the Year	Projections of FPL Unit Capability * (MW)	Projections of Firm Purchases (MW)	Projection of Total Capacity (MW)	Peak Load Forecast * * _(MW)	Summer DSM Forecast * * * (MW)	Forecast of Firm Peak (MW)	Forecast of Summer Reserves (MW)	Forecast of Summer Reserve Margins w/o Additions (%)	Forecast of Summer Generation Only Reserve Margins w/o Additions (%)	MW Needed to Meet 20% Reserve Margin if Provided by Supply Options Only (MW)	MW Needed to Meet 20% Reserve Margin if Supplied by DSM Options Only (MW)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	31,575 32,059 32,841 33,158 33,466 33,579 33,893 34,205 34,481 34,756 34,741 34,726	240 239 239 239 239 239 238 238 198 198 127 127	31,814 32,299 33,080 33,397 33,705 33,817 34,132 34,443 34,679 34,954 34,869 34,854	27,785 28,039 28,273 28,477 28,819 29,160 29,544 29,998 30,644 31,278 31,917 32,573	1,846 1,865 1,853 1,833 1,815 1,799 1,785 1,769 1,754 1,740 1,726	25,939 26,174 26,420 26,644 27,004 27,361 27,759 28,229 28,890 29,538 30,191 30,847	5,876 6,125 6,660 6,753 6,701 6,456 6,373 6,214 5,788 5,415 4,678 4,007	22.7% 23.4% 25.2% 25.3% 24.8% 23.6% 23.0% 20.0% 18.3% 15.5% 13.0%	14.5% 15.2% 17.0% 17.3% 17.0% 16.0% 15.5% 14.8% 13.2% 11.8% 9.2% 7.0%	(688) (890) (1,376) (1,424) (1,300) (984) (821) (568) (10) 492 1,360 2,163	(573) (742) (1,147) (1,186) (1,083) (820) (684) (474) (9) 410 1,133 1,802
						Winter	<u>r</u>				
	(1)	(2)	(3) = (1)+(2)	(4)	(5)	(6) = (4)-(5)	(7) = (3)-(6)	(8) = (7)/(6)	(9) = ((3)-(4))/(4)	(10) = ((6)*1.20)-(3)	(11) = (10)/1.20)
January of the Year	Projections of FPL Unit Capability * (MW)	Projections of Firm Purchases (MW)	Projection of Total Capacity (MW)	Peak Load Forecast * * (MW)	Winter DSM Forecast * * * (MW)	Forecast of Firm Peak (MW)	Forecast of Winter Reserves (MW)	Forecast of Winter Reserve Margins w/o Additions (%)	Forecast of Winter Generation Only Reserve Margins w/o Additions (%)	MW Needed to Meet 20% Reserve Margin if Provided by Supply Options Only (MW)	MW Needed to Meet 20% Reserve Margin if Supplied by DSM Options Only (MW)
2024 2025 2026 2027 2028 2029 2030	29,677 29,737 30,364 30,729 31,061 31,214 31,579	223 223 223 219 219 219 219	29,899 29,959 30,587 30,948 31,280 31,433 31,798	22,486 22,715 23,049 23,375 23,711 24,037 24,436	1,382 1,402 1,397 1,383 1,369 1,359 1,348	21,105 21,313 21,651 21,991 22,342 22,678 23,088	8,795 8,646 8,935 8,956 8,938 8,755 8,710	41.7% 40.6% 41.3% 40.7% 40.0% 38.6% 37.7%	33.0% 31.9% 32.7% 32.4% 31.9% 30.8% 30.1%	(4,574) (4,383) (4,605) (4,558) (4,470) (4,219) (4,092)	(3,811) (3,653) (3,838) (3,798) (3,725) (3,516) (3,410)
2031 2032 2033 2034 2035	31,947 32,314 32,681 32,679	219 219 179 179	32,166 32,533 32,860 32,858	24,737 25,211 25,685 26,163	1,338 1,327 1,317 1,307	23,399 23,884 24,368 24,856	8,766 8,649 8,492 8,003	37.5% 36.2% 34.9% 32.2%	30.0% 29.0% 27.9% 25.6%	(4,086) (3,873) (3,619) (3,031)	(3,405) (3,227) (3,016) (2,526)

^{*} FPL generating unit capability values shown above assume the following major changes to the FPL system:

26,658

32,786

109

2035

32,677

1,307

25,351

7,436

29.3%

⁻ Addition of a cumulative 21,009 MW (nameplate) of solar by 2033

⁻ Addition of a cumulative 4,022 MW (nameplate) of battery storage by 2033

⁻ Retirement of FPL's ownership portion of the Daniel 1 &2 units in 2024 and the Scherer 3 unit in 2028

^{**} The Peak Load Forecast is FPL's November 2023 load forecast.

^{* * *} DSM values shown represent no incremental DSM signups after December 2024 and attrition of participants in FPL's load control programs

Comparison of DSM Reasonably Achievable Summer MW Values with FPL's Projected Summer Resource Needs

(Assuming the Resource Needs are Met Solely by DSM)
(MW at Generator)

 $(1) \qquad \qquad (2) \qquad \qquad (3)$

	FPL Proposed	RIM	TRC	Projected FPL
	Plan	Plan	Plan	Resource Needs
	Cumulative DSM	Cumulative DSM	Cumulative DSM	if Resource Needs
	Reasonably	Reasonably	Reasonably	are Met Solely
	Achievable MW	Achievable MW	Achievable MW	by DSM *
Year	(Summer MW)	(Summer MW)	(Summer MW)	(Summer MW)
2024				
2025	41	20	49	
2026	83	40	99	
2027	125	60	149	
2028	165	79	198	
2029	205	98	248	
2030	245	117	299	(684)
2031	285	137	351	(474)
2032	326	157	403	(9)
2033	367	177	457	410
2034	408	198	511	1,133

^{*} The projected Summer resource need values in Column (4) are from Exhibit AWW-5, Column 11.

Docket No. 20240012-EG
Comparison of DSM Reasonably
Achievable Summer MW Values with
FPL's Projected Summer Resource Needs
Exhibit AWW-6, Page 1 of 1

Overview of Supply Only and With DSM Resource Plans

	Supply Only Resour	ce Plan	
		Cumulative	Total
	Generation	DSM	Reserve
	Additions	Additions	Margin
	(MW)	(MW)	(%)
Year			
2025	1,490 MW Solar	0	23.4%
	2,235 MW Solar		
2026	522 MW Battery Storage	0	25.2%
	2,235 MW Solar		
2027	300 MW Battery Storage	0	25.3%
	2,235 MW Solar		
2028	300 MW Battery Storage	0	24.8%
	2,235 MW Solar		
2029	300 MW Battery Storage	0	23.6%
	2,235 MW Solar		
2030	300 MW Battery Storage	0	23.0%
	2,235 MW Solar		
2031	300 MW Battery Storage	0	22.0%
	2,235 MW Solar		
2032	300 MW Battery Storage	0	20.0%
	2,235 MW Solar		
2033	1,700 MW Battery Storage	0	20.0%
	3x1 Martin CC, (1,991 MW)		
2034	700 MW Battery Storage	0	24.4%
2035		0	21.7%
2036	1 x 660 MW Filler	0	21.0%

FPL Proposed DSM R	esource Plan	
Generation	Cumulative DSM	Total Reserve
Additions (MW)	Additions (MW)	Margin (%)
1,490 MW Solar	41	23.6%
2,235 MW Solar 522 MW Battery Storage	83	25.7%
2,235 MW Solar 300 MW Battery Storage	125	26.1%
2,235 MW Solar 300 MW Battery Storage	165	25.8%
2,235 MW Solar 300 MW Battery Storage	205	24.8%
2,235 MW Solar 300 MW Battery Storage	245	24.4%
2,235 MW Solar 300 MW Battery Storage	285	23.7%
2,235 MW Solar 300 MW Battery Storage	326	21.9%
2,235 MW Solar 400 MW Battery Storage	367	20.5%
3x1 Martin CC, (1,991 MW) 3,000 MW Battery Storage	408	27.5%
	408	24.7%
	408	21.7%

RIM Resource	Plan	
	Cumulative	Total
Generation	DSM	Reserve
Additions	Additions	Margin
(MW)	(MW)	(%)
1,490 MW Solar	20	23.5%
2,235 MW Solar		
522 MW Battery Storage	40	25.5%
2,235 MW Solar		
300 MW Battery Storage	60	25.8%
2,235 MW Solar		
300 MW Battery Storage	79	25.4%
2,235 MW Solar		
300 MW Battery Storage	98	24.3%
2,235 MW Solar		
300 MW Battery Storage	117	23.8%
2,235 MW Solar		
300 MW Battery Storage	137	23.0%
2,235 MW Solar		
300 MW Battery Storage	157	21.2%
2,235 MW Solar		
500 MW Battery	177	20.0%
3x1 Martin CC, (1,991 MW)		
1,000 MW Battery Storage	198	25.0%
	198	22.3%
1 x 660 MW Filler	198	21.5%

TRC Resource I	Plan	
Generation Additions (MW)	Cumulative DSM Additions (MW)	Total Reserve Margin (%)
(MW)	(MW)	(%)
1,490 MW Solar	49	23.6%
2,235 MW Solar 522 MW Battery Storage	99	25.7%
2,235 MW Solar 300 MW Battery Storage	149	26.1%
2,235 MW Solar 300 MW Battery Storage	198	25.9%
2,235 MW Solar 300 MW Battery Storage	248	25.0%
2,235 MW Solar 300 MW Battery Storage	299	24.6%
2,235 MW Solar 300 MW Battery Storage	351	23.9%
2,235 MW Solar 300 MW Battery Storage	403	22.1%
2,235 MW Solar 300 MW Battery Storage	457	20.6%
3x1 Martin CC, (1,991 MW) 2,300 MW Battery Storage	511	27.3%
	511	24.5%
	511	21.5%

^{*} Includes system costs not affected by the resource plan such as existing generation, T&D, staff, and DSM costs not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

^{**} DSM energy reductions are incremental from 2024.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	(1)	(2)	(3)	(4)		(6)	(7)	= (6) - (7)			(11)	=(11)*(1)
					=(2)+(3)+(4)			= (6) - (7)	=((5)/(8))/10	= (9) *(1)		=(11)*(1)
					_							
	Annual			Non-Resource	System			Load Forecast	Annual	Annual	Nominal	NPV
	Discount	Resource Plan	Resource Plan	Plan Other	Revenue	Load	DSM Energy	NEL Adjusted	Electric	Electric	Levelized System	Levelized System
	Factor	Variable Costs	Fixed Costs	System Costs *	Requirements	Forecast NEL	Reduction **	by DSM	Rate	Rate	Average Rate	Average Rate
Year	8.14%	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(GWh)	(GWh)	(GWh)	(cents/kWh, Nom)	(cents/kWh, NPV)	(cents/kWh)	(cents/kWh)
2024	1.000	2,699,246	172,693	10,999,155	13,871,093	140,469	113	140,356	9.88280	9.88280	14.8311	14.8311
2025	0.925	2,847,613	366,493	11,341,613	14,555,719	141,761	113	141,647	10.27603	9.50218	14.8311	13.7142
2026	0.855	2,961,980	1,004,777	12,296,936	16,263,693	142,991	113	142,878	11.38296	9.73310	14.8311	12.6815
2027	0.791	2,534,978	1,522,352	12,934,262	16,991,592	144,053	114	143,939	11.80469	9.33359	14.8311	11.7265
2028	0.731	2,353,351	2,005,256	13,212,472	17,571,079	145,101	114	144,987	12.11904	8.86054	14.8311	10.8434
2029	0.676	2,086,767	2,476,150	13,591,962	18,154,878	146,551	114	146,437	12.39775	8.38171	14.8311	10.0268
2030	0.625	1,569,627	2,890,450	13,974,533	18,434,610	148,290	114	148,176	12.44103	7.77758	14.8311	9.2717
2031	0.578	1,186,025	3,307,007	14,390,022	18,883,054	149,578	114	149,464	12.63389	7.30337	14.8311	8.5735
2032	0.535	932,796	3,719,112	14,842,757	19,494,666	151,677	114	151,563	12.86240	6.87553	14.8311	7.9279
2033	0.494	812,095	4,123,196	15,344,989	20,280,280	153,686	114	153,572	13.20574	6.52747	14.8311	7.3309
2034	0.457	987.075	4,408,393	15,895,257	21,290,726	155,678	115	155,563	13.68624	6.25553	14.8311	6.7788
2035	0.423	1,374,102	4,265,690	16,484,421	22,124,213	157,715	115	157,601	14.03814	5.93318	14.8311	6.2683
2036	0.391	1,844,494	4,215,201	17,107,511	23,167,207	159,679	115	159,564	14.51906	5.67433	14.8311	5.7963
2037	0.361	2,412,485	4,213,275	17,748,649	24,374,409	161,502	115	161,387	15.10308	5.45808	14.8311	5.3598
2037	0.334	3,031,481	4,502,938	18,403,005	25,937,424	163,154	115	163,040	15.90866	5.31626	14.8311	4.9562
2039	0.334	3,635,852	4,302,938		27,191,924	163,134	115	163,040	16.52879	5.10753	14.8311	4.5829
		, ,		19,064,579		,						
2040	0.286	4,371,817	4,512,871	19,741,619	28,626,306	165,935	115	165,820	17.26346	4.93283	14.8311	4.2378
2041	0.264	4,954,973	4,539,708	20,139,168	29,633,849	164,919	115	164,804	17.98127	4.75101	14.8311	3.9187
2042	0.244	5,607,834	4,545,868	20,570,229	30,723,931	166,511	115	166,396	18.46432	4.51125	14.8311	3.6236
2043	0.226	6,312,067	4,428,547	21,008,142	31,748,756	168,119	115	168,005	18.89755	4.26941	14.8311	3.3507
2044	0.209	6,941,810	4,482,669	21,453,011	32,877,491	169,744	115	169,629	19.38198	4.04910	14.8311	3.0984
2045	0.193	7,581,281	4,476,140	21,904,944	33,962,365	171,385	115	171,270	19.82970	3.83067	14.8311	2.8650
2046	0.179	7,991,831	4,376,717	22,364,049	34,732,597	173,042	115	172,928	20.08502	3.58780	14.8311	2.6493
2047	0.165	8,630,540	4,376,952	22,830,437	35,837,929	174,717	115	174,602	20.52547	3.39037	14.8311	2.4498
2048	0.153	9,344,055	4,432,045	23,304,219	37,080,319	176,408	115	176,294	21.03328	3.21262	14.8311	2.2653
2049	0.141	10,121,546	4,489,324	23,785,509	38,396,378	178,116	115	178,002	21.57076	3.04660	14.8311	2.0947
2050	0.131	11,201,318	4,375,839	24,274,422	39,851,579	179,842	115	179,728	22.17331	2.89587	14.8311	1.9370
2051	0.121	11,471,454	4,391,153	24,771,076	40,633,683	181,585	115	181,471	22.39130	2.70412	14.8311	1.7911
2052	0.112	11,992,264	4,676,253	25,275,591	41,944,108	183,346	115	183,232	22.89130	2.55632	14.8311	1.6562
2053	0.103	13,079,727	4,933,238	25,788,088	43,801,052	185,125	115	185,010	23.67493	2.44473	14.8311	1.5315
2054	0.095	13,601,306	4,983,412	26,307,139	44,891,857	186,921	115	186,807	24.03115	2.29464	14.8311	1.4162
2055	0.088	13,850,868	4,847,019	26,834,393	45,532,280	188,736	115	188,622	24.13946	2.13140	14.8311	1.3095
2056	0.082	14,801,911	5,372,049	27,369,977	47,543,937	190,569	115	190,455	24.96335	2.03816	14.8311	1.2109
2057	0.075	15,203,330	5,260,021	27,914,017	48,377,369	192,421	115	192,307	25.15636	1.89925	14.8311	1.1197
2058	0.070	15,425,469	5,370,422	28,466,646	49,262,536	194,292	115	194,177	25.36989	1.77113	14.8311	1.0354
2059	0.065	15,797,078	5,438,062	29,027,995	50,263,134	196,181	115	196,067	25.63574	1.65492	14.8311	0.9574
2060	0.060	16,102,643	5,513,827	29,598,199	51,214,668	198,090	115	197,975	25.86924	1.54423	14.8311	0.8853
2061	0.055	16,382,860	5,499,767	30,177,395	52,060,022	200.018	115	199,903	26.04263	1.43751	14.8311	0.8187
2062	0.053	16,733,724	5,271,060	30,765,721	52,770,505	201,965	115	201,851	26.14336	1.33440	14.8311	0.7570
2063	0.031	17,540,730	5,530,457	31,363,319	54,434,507	203,932	115	203,818	26.70745	1.26053	14.8311	0.7000
2063	0.047	18,051,284	5,658,466	31,363,319	55,073,069	205,932	115	205,818	26.75986	1.16790	14.8311	0.6473
2064	0.044	18,407,589	5,636,875	31,363,319	55,407,783	203,919	115	203,803	26.66246	1.07602	14.8311	0.5985
	0.040					207,926	115	207,812		0.99377	14.8311	
2066		18,777,128	5,739,538	31,363,319	55,879,985	,	115	,	26.62987			0.5535 0.5118
2067	0.035	19,137,348	5,826,643	31,363,319	56,327,311	212,002		211,888	26.58358	0.91733 0.84757	14.8311	0.5118
2068	0.032	19,461,212	6,006,689	31,363,319	56,831,221	214,071	115	213,956	26.56205		14.8311	
2069	0.030	19,839,088	5,831,846	31,363,319	57,034,254	216,161	115	216,046	26.39909	0.77893	14.8311	0.4376
2070	0.027	20,246,974	6,144,812	31,363,319	57,755,106	218,272	115	218,157	26.47406	0.72232	14.8311	0.4047
										191.97550		191.97550

^{*} Includes system costs not affected by the resource plan such as existing generation, T&D, staff, and DSM costs not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

Docket No. 20240012-EG
Levelized System Average Electric Rate
Calculation for the RIM Resource Plan
Exhibit AWW-9, Page 1 of 1

^{**} DSM energy reductions are incremental from 2024.

	(1)	(2)	(2)	(4)	(5)	(0)	(7)	(0)	(0)	(10)	(11)	(12)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
					=(2)+(3)+(4)			= (6) - (7)	=((5)/(8))/10	= (9) *(1)		=(11)*(1)
	Annual			Non-Resource	System			Load Forecast	Annual	Annual	Nominal	NPV
	Discount	Resource Plan	Resource Plan	Plan Other	Revenue	Load	DSM Energy	NEL Adjusted	Electric	Electric	Levelized System	Levelized System
	Factor	Variable Costs	Fixed Costs	System Costs *	Requirements	Forecast NEL	Reduction **	by DSM	Rate	Rate	Average Rate	Average Rate
Year	8.14%	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(GWh)	(GWh)	(GWh)	(cents/kWh, Nom)	(cents/kWh, NPV)	(cents/kWh)	(cents/kWh)
2024	1.000	2,698,824	172,693	10,999,155	13,870,672	140,469	113	140,356	9.88250	9.88250	14.8485	14.8485
2025	0.925	2,844,460	378,968	11,341,613	14,565,041	141,761	201	141,560	10.28897	9.51415	14.8485	13.7303
2026	0.855	2,955,492	1,015,395	12,296,936	16,267,824	142,991	289	142,702	11.39982	9.74752	14.8485	12.6964
2027	0.791	2,531,108	1,531,236	12,934,262	16,996,606	144,053	376	143,677	11.82976	9.35341	14.8485	11.7402
2028	0.731	2,340,043	2,012,082	13,212,472	17,564,597	145,101	464	144,637	12.14389	8.87871	14.8485	10.8561
2029	0.676	2,068,999	2,481,309	13,591,962	18,142,269	146,551	552	145,999	12.42628	8.40100	14.8485	10.0386
2030	0.625	1,550,197	2,893,964	13,974,533	18,418,694	148,290	640	147,650	12.47455	7.79853	14.8485	9.2826
2031	0.578	1,163,233	3,308,892	14,390,022	18,862,146	149,578	728	148,849	12.67198	7.32539	14.8485	8.5836
2032	0.535	909,703	3,719,379	14,842,757	19,471,839	151,677	818	150,860	12.90724	6.89950	14.8485	7.9372
2033	0.494	799,057	4,098,843	15,344,989	20,242,889	153,686	908	152,779	13.24982	6.54926	14.8485	7.3395
2034	0.457	846,719	4,696,437	15,895,257	21,438,413	155,678	998	154,679	13.85989	6.33490	14.8485	6.7868
2035	0.423	1,235,907	4,506,974	16,484,421	22,227,302	157,715	998	156,717	14.18306	5.99443	14.8485	6.2757
2036	0.391	1,722,448	4,321,798	17,107,511	23,151,757	159,679	998	158,681	14.59017	5.70212	14.8485	5.8031
2037	0.361	2,293,857	4,186,624	17,748,649	24,229,130	161,502	998	160,503	15.09570	5.45541	14.8485	5.3661
2038	0.334	2,904,770	4,485,667	18,403,005	25,793,442	163,154	998	162,156	15.90655	5.31555	14.8485	4.9620
2039	0.309	3,502,023	4,450,104	19,064,579	27,016,706	164,627	998	163,629	16.51096	5.10202	14.8485	4.5883
2040	0.286	4,224,490	4,461,454	19,741,619	28,427,563	165,935	998	164,937	17.23544	4.92482	14.8485	4.2428
2041	0.264	4,799,755	4,499,155	20,139,168	29,438,079	164,919	998	163,920	17.95875	4.74507	14.8485	3.9233
2042	0.244	5,454,498	4,481,986	20,570,229	30,506,713	166,511	998	165,513	18.43164	4.50327	14.8485	3.6278
2043	0.226	6,148,262	4,504,729	21,008,142	31,661,132	168,119	998	167,121	18.94503	4.28013	14.8485	3.3546
2044	0.209	6,772,594	4,457,055	21,453,011	32,682,660	169,744	998	168,746	19.36800	4.04618	14.8485	3.1020
2045	0.193	7,393,400	4,405,548	21,904,944	33,703,892	171,385	998	170,387	19.78082	3.82122	14.8485	2.8684
2046	0.179	7,807,402	4,450,236	22,364,049	34,621,688	173,042	998	172,044	20.12370	3.59471	14.8485	2.6524
2047	0.165	8,445,471	4,319,912	22,830,437	35,595,819	174,717	998	173,719	20.49050	3.38459	14.8485	2.4527
2048	0.153	9,145,723	4,339,017	23,304,219	36,788,959	176,408	998	175,410	20.97312	3.20343	14.8485	2.2680
2049	0.141	9,906,850	4,391,602	23,785,509	38,083,960	178,116	998	177,118	21.50197	3.03689	14.8485	2.0972
2050	0.131	10,978,179	4,305,484	24,274,422	39,558,085	179,842	998	178,844	22.11875	2.88874	14.8485	1.9392
2051	0.121	11,240,533	4,282,113	24,771,076	40,293,722	181,585	998	180,587	22.31260	2.69461	14.8485	1.7932
2052	0.112	11,759,395	4,560,642	25,275,591	41,595,629	183,346	998	182,348	22.81111	2.54736	14.8485	1.6582
2053	0.103	12,860,981	4,836,349	25,788,088	43,485,418	185,125	998	184,127	23.61711	2.43876	14.8485	1.5333
2054	0.095	13,391,506	4,828,110	26,307,139	44,526,756	186,921	998	185,923	23.94898	2.28680	14.8485	1.4178
2055	0.088	13,654,207	4,864,268	26,834,393	45,352,869	188,736	998	187,738	24.15751	2.13300	14.8485	1.3111
2056	0.082	14,595,288	5,194,695	27,369,977	47,159,960	190,569	998	189,571	24.87715	2.03113	14.8485	1.2123
2057	0.075	14,996,865	5,295,014	27,914,017	48,205,896	192,421	998	191,423	25.18290	1.90125	14.8485	1.1210
2058	0.070	15,219,363	5,214,789	28,466,646	48,900,799	194,292	998	193,294	25.29871	1.76616	14.8485	1.0366
2059	0.065	15,594,296	5,273,132	29,027,995	49,895,423	196,181	998	195,183	25.56339	1.65025	14.8485	0.9585
2060	0.060	15,921,899	5,354,935	29,598,199	50,875,033	198,090	998	197,092	25.81288	1.54087	14.8485	0.8864
2061	0.055	16,175,609	5,374,204	30,177,395	51,727,208	200,018	998	199,020	25.99102	1.43466	14.8485	0.8196
2062	0.051	16,519,169	5,138,209	30,765,721	52,423,099	201,965	998	200,967	26.08543	1.33144	14.8485	0.7579
2063	0.047	17,349,218	5,636,001	31,363,319	54,348,538	203,932	998	202,934	26.78137	1.26402	14.8485	0.7008
2064	0.044	17,861,299	5,551,696	31,363,319	54,776,315	205,919	998	204,921	26.73043	1.16661	14.8485	0.6480
2065	0.040	18,219,167	5,508,714	31,363,319	55,091,201	207,926	998	206,928	26.62331	1.07444	14.8485	0.5992
2066	0.037	18,608,157	5,576,712	31,363,319	55,548,188	209,954	998	208,956	26.58368	0.99205	14.8485	0.5541
2067	0.035	18,961,075	5,693,950	31,363,319	56,018,344	212,002	998	211,004	26.54846	0.91612	14.8485	0.5124
2068	0.032	19,254,978	5,820,945	31,363,319	56,439,243	214,071	998	213,073	26.48823	0.84521	14.8485	0.4738
2069	0.030	19,645,491	6,016,986	31,363,319	57,025,797	216,161	998	215,163	26.50356	0.78201	14.8485	0.4381
2070	0.027	20,055,695	5,979,662	31,363,319	57,398,677	218,272	998	217,274	26.41767	0.72078	14.8485	0.4051
										192.20101		192.20101

^{*} Includes system costs not affected by the resource plan such as existing generation, T&D, staff, and DSM costs not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

^{**} DSM energy reductions are incremental from 2024.

^{*} Includes system costs not affected by the resource plan such as existing generation, T&D, staff, and DSM costs not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

^{**} DSM energy reductions are incremental from 2024.

Docket No. 20240012-EG Comparison of the Resource Plans: Economic Analyses Results Exhibit AWW-12, Page 1 of 1

Comparison of the Resource Plans: Economic Analyses Results

	Levelized
	System Average
	Electric Rate
Resource Plan	(cents/kWh)
RIM Plan	14.8311
Supply Only Plan	14.8366
Proposed Plan	14.8485
TRC Plan	14.8849

its Levelized System Average Electric Rate to That of the TRC Plan Docket No. 20240012-EG Additional Cost Needed to be Added to the RIM Plan to Increase Exhibit AWW-13, Page 1 of 1

											o That of the TR		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
						=(2)+(3)+(4)+(5)			= (7) - (8)	= ((6)/(9))/10	= (10) *(1)		= (12) * (1)
	Annual			Non-Resource	"What If"	System			Load Forecast	Annual	Annual	Nominal	NPV
	Discount	Resource Plan	Resource Plan	Plan Other	One-Time	Revenue	Load	DSM Energy	NEL Adjusted	Electric	Electric	Levelized System	Levelized System
	Factor	Variable Costs	Fixed Costs	System Costs *	Cost	Requirements	Forecast NEL	Reduction **	by DSM	Rate	Rate	Average Rate	Average Rate
Year	8.14%	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(GWh)	(GWh)	(GWh)	(cents/kWh, Nom)	(cents/kWh, NPV)	(cents/kWh)	(cents/kWh)
2024	1.000	2,699,246	172,693	10,999,155	0	13,871,093	140,469	113	140,356	9.88280	9.88280	14.8849	14.8849
2025	0.925	2,847,613	366,493	11,341,613	0	14,555,719	141,761	113	141,647	10.27603	9.50218	14.8849	13.7640
2026	0.855	2,961,980	1,004,777	12,296,936	0	16,263,693	142,991	113	142,878	11.38296	9.73310	14.8849	12.7275
2027	0.791	2,534,978	1,522,352	12,934,262	0	16,991,592	144,053	114	143,939	11.80469	9.33359	14.8849	11.7690
2028	0.731	2,353,351	2,005,256	13,212,472	0	17,571,079	145,101	114	144,987	12.11904	8.86054	14.8849	10.8827
2029	0.676	2,086,767	2,476,150	13,591,962	0	18,154,878	146,551	114	146,437	12.39775	8.38171	14.8849	10.0632
2030	0.625	1,569,627	2,890,450	13,974,533	0	18,434,610	148,290	114	148,176	12.44103	7.77758	14.8849	9.3054
2031	0.578	1,186,025	3,307,007	14,390,022	0	18,883,054	149,578	114	149,464	12.63389	7.30337	14.8849	8.6046
2032	0.535	932,796	3,719,112	14,842,757	0	19,494,666	151,677	114	151,563	12.86240	6.87553	14.8849	7.9566
2033	0.494	812,095	4,123,196	15,344,989	0	20,280,280	153,686	114	153,572	13.20574	6.52747	14.8849	7.3575
2034	0.457	987,075	4,408,393	15,895,257	2,369,877	23,660,602	155,678	115	155,563	15.20966	6.95184	14.8849	6.8034
2035	0.423	1,374,102	4,265,690	16,484,421	0	22,124,213	157,715	115	157,601	14.03814	5.93318	14.8849	6.2911
2036	0.391	1,844,494	4,215,201	17,107,511	0	23,167,207	159,679	115	159,564	14.51906	5.67433	14.8849	5.8173
2037	0.361	2,412,485	4,213,275	17,748,649	0	24,374,409	161,502	115	161,387	15.10308	5.45808	14.8849	5.3792
2038	0.334	3,031,481	4,502,938	18,403,005	0	25,937,424	163,154	115	163,040	15.90866	5.31626	14.8849	4.9741
2039	0.309	3,635,852	4,491,492	19,064,579	0	27,191,924	164,627	115	164,512	16.52879	5.10753	14.8849	4.5996
2040	0.286	4,371,817	4,512,871	19,741,619	0	28,626,306	165,935	115	165,820	17.26346	4.93283	14.8849	4.2532
2041	0.264	4,954,973	4,539,708	20,139,168	0	29,633,849	164,919	115	164,804	17.98127	4.75101	14.8849	3.9329
2042	0.244	5,607,834	4,545,868	20,570,229	0	30,723,931	166,511	115	166,396	18.46432	4.51125	14.8849	3.6367
2043	0.226	6,312,067	4,428,547	21,008,142	0	31,748,756	168,119	115	168,005	18.89755	4.26941	14.8849	3.3629
2044	0.209	6,941,810	4,482,669	21,453,011	0	32,877,491	169,744	115	169,629	19.38198	4.04910	14.8849	3.1096
2045	0.193	7,581,281	4,476,140	21,904,944	0	33,962,365	171,385	115	171,270	19.82970	3.83067	14.8849	2.8754
2046	0.179	7,991,831	4,376,717	22,364,049	0	34,732,597	173,042	115	172,928	20.08502	3.58780	14.8849	2.6589
2047	0.165	8,630,540	4,376,952	22,830,437	0	35,837,929	174,717	115	174,602	20.52547	3.39037	14.8849	2.4587
2048	0.153	9,344,055	4,432,045	23,304,219	0	37,080,319	176,408	115	176,294	21.03328	3.21262	14.8849	2.2735
2049	0.141	10,121,546	4,489,324	23,785,509	0	38,396,378	178,116	115	178,002	21.57076	3.04660	14.8849	2.1023
2050	0.131	11,201,318	4,375,839	24,274,422	0	39,851,579	179,842	115	179,728	22.17331	2.89587	14.8849	1.9440
2051	0.121	11,471,454	4,391,153	24,771,076	0	40,633,683	181,585	115	181,471	22.39130	2.70412	14.8849	1.7976
2052	0.112	11,992,264	4,676,253	25,275,591	0	41,944,108	183,346	115	183,232	22.89130	2.55632	14.8849	1.6622
2053	0.103	13,079,727	4,933,238	25,788,088	0	43,801,052	185,125	115	185,010	23.67493	2.44473	14.8849	1.5370
2054	0.095	13,601,306	4,983,412	26,307,139	0	44,891,857	186,921	115	186,807	24.03115	2.29464	14.8849	1.4213
2055	0.088	13,850,868	4,847,019	26,834,393	0	45,532,280	188,736	115	188,622	24.13946	2.13140	14.8849	1.3143
2056	0.082	14,801,911	5,372,049	27,369,977	0	47,543,937	190,569	115	190,455	24.96335	2.03816	14.8849	1.2153
2057	0.075	15,203,330	5,260,021	27,914,017	0	48,377,369	192,421	115	192,307	25.15636	1.89925	14.8849	1.1238
2058	0.070	15,425,469	5,370,422	28,466,646	0	49,262,536	194,292	115	194,177	25.36989	1.77113	14.8849	1.0391
2059	0.065	15,797,078	5,438,062	29,027,995	0	50,263,134	196,181	115	196,067	25.63574	1.65492	14.8849	0.9609
2060	0.060	16,102,643	5,513,827	29,598,199	0	51,214,668	198,090	115	197,975	25.86924	1.54423	14.8849	0.8885
2061	0.055	16,382,860	5,499,767	30,177,395	0	52,060,022	200,018	115	199,903	26.04263	1.43751	14.8849	0.8216
2062	0.051	16,733,724	5,271,060	30,765,721	0	52,770,505	201,965	115	201,851	26.14336	1.33440	14.8849	0.7597
2063	0.047	17,540,730	5,530,457	31,363,319	0	54,434,507	203,932	115	203,818	26.70745	1.26053	14.8849	0.7025
2064	0.044	18,051,284	5,658,466	31,363,319	0	55,073,069	205,919	115	205,805	26.75986	1.16790	14.8849	0.6496 0.6007
2065	0.040	18,407,589	5,636,875	31,363,319	0	55,407,783	207,926	115	207,812	26.66246	1.07602	14.8849	
2066	0.037	18,777,128	5,739,538	31,363,319	0	55,879,985	209,954	115	209,840	26.62987	0.99377	14.8849	0.5555
2067	0.035	19,137,348	5,826,643	31,363,319	0	56,327,311	212,002	115	211,888	26.58358	0.91733	14.8849	0.5136
2068	0.032	19,461,212	6,006,689	31,363,319	0	56,831,221	214,071	115	213,956	26.56205	0.84757	14.8849	0.4750
2069	0.030	19,839,088	5,831,846	31,363,319	0	57,034,254	216,161	115	216,046	26.39909	0.77893	14.8849	0.4392
2070	0.027	20,246,974	6,144,812	31,363,319	0	57,755,106	218,272	115	218,157	26.47406	0.72232	14.8849	0.4061
* includes	system cost	is not affected by	tne resource pla	n such as existing	generation, T&	D, staff, and DSM	costs				192.67180		192.67180

not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

^{**} DSM energy reductions are incremental from August 2019.

its Levelized System Average Electric Rate to That of the TRC Plan Docket No. 20240012-EG Additional Cost Needed to be Added to the FPL Proposed Plan to Increase Exhibit AWW-14, Page 1 of 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	(1)	(2)	(3)	(.)	(5)	=(2)+(3)+(4)+(5)	(,)	(0)	= (7) - (8)	= ((6)/(9))/10	= (10) *(1)	(12)	=(12)*(1)
						(2) (3) (1) (3)			(,, (0)	((0), (>)), 10	(10) (1)		(12) (1)
	Annual			Non-Resource	"What If"	System			Load Forecast	Annual	Annual	Nominal	NPV
	Discount	Resource Plan	Resource Plan	Plan Other	One-Time	Revenue	Load	DSM Energy	NEL Adjusted	Electric	Electric	Levelized System	Levelized System
	Factor	Variable Costs	Fixed Costs	System Costs *	Cost	Requirements	Forecast NEL	Reduction **	by DSM	Rate	Rate	Average Rate	Average Rate
Year	8.14%	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(\$000, Nom)	(GWh)	(GWh)	(GWh)	(cents/kWh, Nom)	(cents/kWh, NPV)	(cents/kWh)	(cents/kWh)
2024	1.000	2,698,824	172,693	10,999,155	0	13,870,672	140,469	113	140,356	9.88250	9.88250	14.8849	14.8849
2025	0.925	2,844,460	378,968	11,341,613	0	14,565,041	141,761	201	141,560	10.28897	9.51415	14.8849	13.7640
2026	0.855	2,955,492	1,015,395	12,296,936	0	16,267,824	142,991	289	142,702	11.39982	9.74752	14.8849	12.7275
2027	0.791	2,531,108	1,531,236	12,934,262	0	16,996,606	144,053	376	143,677	11.82976	9.35341	14.8849	11.7690
2028	0.731	2,340,043	2,012,082	13,212,472	0	17,564,597	145,101	464	144,637	12.14389	8.87871	14.8849	10.8827
2029	0.676	2,068,999	2,481,309	13,591,962	0	18,142,269	146,551	552	145,999	12.42628	8.40100	14.8849	10.0632
2030	0.625	1,550,197	2,893,964	13,974,533	0	18,418,694	148,290	640	147,650	12.47455	7.79853	14.8849	9.3054
2031	0.578	1,163,233	3,308,892	14,390,022	0	18,862,146	149,578	728	148,849	12.67198	7.32539	14.8849	8.6046
2032	0.535	909,703	3,719,379	14,842,757	0	19,471,839	151,677	818	150,860	12.90724	6.89950	14.8849	7.9566
2033	0.494	799,057	4,098,843	15,344,989	0	20,242,889	153,686	908	152,779	13.24982	6.54926	14.8849	7.3575
2034	0.457	846,719	4,696,437	15,895,257	1,593,230	23,031,643	155,678	998	154,679	14.88991	6.80569	14.8849	6.8034
2035	0.423	1,235,907	4,506,974	16,484,421	0	22,227,302	157,715	998	156,717	14.18306	5.99443	14.8849	6.2911
2036	0.391	1,722,448	4,321,798	17,107,511	0	23,151,757	159,679	998	158,681	14.59017	5.70212	14.8849	5.8173
2037	0.361	2,293,857	4,186,624	17,748,649	0	24,229,130	161,502	998	160,503	15.09570	5.45541	14.8849	5.3792
2038	0.334	2,904,770	4,485,667	18,403,005	0	25,793,442	163,154	998	162,156	15.90655	5.31555	14.8849	4.9741
2039	0.309	3,502,023	4,450,104	19,064,579	0	27,016,706	164,627	998	163,629	16.51096	5.10202	14.8849	4.5996
2040	0.286	4,224,490	4,461,454	19,741,619	0	28,427,563	165,935	998	164,937	17.23544	4.92482	14.8849	4.2532
2041	0.264	4,799,755	4,499,155	20,139,168	0	29,438,079	164,919	998	163,920	17.95875	4.74507	14.8849	3.9329
2042	0.244	5,454,498	4,481,986	20,570,229	0	30,506,713	166,511	998	165,513	18.43164	4.50327	14.8849	3.6367
2042	0.226	6,148,262	4,504,729	21,008,142	0	31,661,132	168,119	998	167,121	18.94503	4.28013	14.8849	3.3629
2044	0.209	6,772,594	4,457,055	21,453,011	0	32,682,660	169,744	998	168,746	19.36800	4.04618	14.8849	3.1096
2044	0.193	7,393,400	4,405,548	21,904,944	0	33,703,892	171,385	998	170,387	19.78082	3.82122	14.8849	2.8754
2045	0.179	7,807,402	4,450,236	22,364,049	0	34,621,688	171,363	998	170,387	20.12370	3.59471	14.8849	2.6589
2047	0.165	8,445,471	4,319,912	22,830,437	0	35,595,819	174,717	998	173,719	20.49050	3.38459	14.8849	2.4587
2047	0.163	9,145,723	4,339,017	23,304,219	0	36,788,959	174,717	998	175,410	20.97312	3.20343	14.8849	2.2735
2049	0.133	9,906,850	4,391,602	23,785,509	0	38,083,960	178,116	998	177,118	21.50197	3.03689	14.8849	2.1023
2049	0.141	10,978,179	4,391,002	24,274,422	0	39,558,085	179,842	998	177,118	22.11875	2.88874	14.8849	1.9440
2050	0.131	11,240,533	4,282,113	24,771,076	0	40,293,722	181,585	998	180,587	22.31260	2.69461	14.8849	1.7976
2052	0.121	11,759,395	4,560,642	25,275,591	0	41,595,629	183,346	998	182,348	22.81111	2.54736	14.8849	1.6622
2052	0.112	12,860,981	4,836,349	25,788,088	0	43,485,418	185,125	998	184,127	23.61711	2.43876	14.8849	1.5370
2054	0.103	13,391,506	4,830,349	26,307,139	0	44,526,756	186,921	998	185,923	23.94898	2.28680	14.8849	1.4213
2055	0.093	13,654,207	4,864,268	26,834,393	0	45,352,869	188,736	998	187,738	24.15751	2.13300	14.8849	1.3143
2056	0.082	14,595,288	5,194,695	27,369,977	0	47,159,960	190,569	998	189,571	24.87715	2.03113	14.8849	1.2153
2057	0.082	14,996,865	5,295,014	27,914,017	0	48,205,896	190,309	998	191,423	25.18290	1.90125	14.8849	1.1238
2057	0.073	15,219,363	5,293,014	28,466,646	0	48,900,799	192,421	998	191,423	25.29871	1.76616	14.8849	1.0391
2059	0.070	15,594,296	5,273,132	29,027,995	0	49,895,423	194,292	998	195,294	25.56339	1.65025	14.8849	0.9609
2060	0.063	15,921,899	5,354,935	29,027,993	0	50,875,033	198,090	998	193,183	25.81288	1.54087	14.8849	0.9809
2060	0.055	15,921,899	5,354,935	30,177,395	0	51,727,208	200,018	998	197,092	25.81288	1.43466	14.8849	0.8885
2061	0.055	16,175,609	5,374,204 5,138,209	30,765,721	0	52,423,099	200,018	998	200,967	26.08543	1.43466	14.8849	0.8216
2062	0.051	17,349,218	5,636,001	31,363,319	0		201,965	998	202,934	26.78137	1.33144	14.8849	0.7025
2063	0.047	17,349,218	5,551,696	31,363,319	0	54,348,538 54,776,315	205,932	998	202,934	26.73043	1.26402	14.8849	0.7025
2064	0.044	17,861,299	5,508,714	31,363,319	0	55,091,201	205,919	998	204,921	26.62331	1.07444	14.8849	0.6496
2065	0.040	18,608,157	5,576,712	31,363,319	0	55,548,188	207,926	998	208,928	26.58368	0.99205	14.8849	0.5555
2066	0.037	18,608,157	5,693,950	31,363,319	0	55,548,188	212,002	998	208,956	26.58368	0.99205	14.8849	0.5555
2067	0.035	18,961,075	5,693,950 5,820,945		0	56,439,243	212,002	998	211,004	26.54846	0.91612	14.8849	0.5136
2068	0.032			31,363,319	0	57,025,797		998				14.8849	
2069	0.030	19,645,491	6,016,986	31,363,319			216,161	998	215,163	26.50356	0.78201 0.72078	14.8849	0.4392 0.4061
		20,055,695	5,979,662	31,363,319	0	57,398,677	218,272	998	217,274	26.41767		14.8849	
	-	is not affected by	-	_	-	D, staff, and DSM	COSIS				192.67180]	192.67180

not tied directly to new DSM signups (such as rebates to existing load management participants, etc.).

^{**} DSM energy reductions are incremental from August 2019.

Comparison of the Resource Plans: Projection of System Average Electric Rates and Customer Bills (Assuming 1,000 kWh Usage)

1) Projection of System Average Electric Rates & Customer Bills:

	Supply Only	Supply Only Resource Plan FPL Proposed Resource Plan		RIM Reso	ource Plan	TRC Reso	ource Plan	
	Projected	Projected	Projected Projected		Projected	Projected	Projected	Projected
	Electric Rate	Customer Bill	Electric Rate	Customer Bill	Electric Rate	Customer Bill	Electric Rate	Customer Bill
Year	(cents/kWh)	(\$/1,000 kWh)	(cents/kWh)	(\$/1,000 kWh)	(cents/kWh)	(\$/1,000 kWh)	(cents/kWh)	(\$/1,000 kWh)
2024	9.883	\$98.83	9.883	\$98.83	9.883	\$98.83	9.882	\$98.82
2025	10.275	\$102.75	10.289	\$102.89	10.276	\$102.76	10.298	\$102.98
2026	11.379	\$113.79	11.400	\$114.00	11.383	\$113.83	11.410	\$114.10
2027	11.802	\$118.02	11.830	\$118.30	11.805	\$118.05	11.839	\$118.39
2028	12.117	\$121.17	12.144	\$121.44	12.119	\$121.19	12.161	\$121.61
2029	12.391	\$123.91	12.426	\$124.26	12.398	\$123.98	12.445	\$124.45
2030	12.434	\$124.34	12.475	\$124.75	12.441	\$124.41	12.498	\$124.98
2031	12.622	\$126.22	12.672	\$126.72	12.634	\$126.34	12.699	\$126.99
2032	12.853	\$128.53	12.907	\$129.07	12.862	\$128.62	12.941	\$129.41
2033	13.254	\$132.54	13.250	\$132.50	13.206	\$132.06	13.285	\$132.85
2034	13.723	\$137.23	13.860	\$138.60	13.686	\$136.86	13.852	\$138.52

2) Projection of Average Customer Bill Differentials:

	Bill Differentials for Each Plan Compared to the Supply Only Plan							
	Supply Only	FPL Proposed	RIM	TRC				
Year	Resource Plan	Resource Plan	Resource Plan	Resource Plan				
2024	\$0.00	(\$0.01)	(\$0.00)	(\$0.01)				
2025	\$0.00	\$0.14	\$0.01	\$0.22				
2026	\$0.00	\$0.20	\$0.04	\$0.30				
2027	\$0.00	\$0.27	\$0.02	\$0.36				
2028	\$0.00	\$0.27	\$0.02	\$0.43				
2029	\$0.00	\$0.36	\$0.07	\$0.55				
2030	\$0.00	\$0.40	\$0.07	\$0.64				
2031	\$0.00	\$0.50	\$0.12	\$0.77				
2032	\$0.00	\$0.54	\$0.09	\$0.88				
2033	\$0.00	(\$0.04)	(\$0.48)	\$0.31				
2034	\$0.00	\$1.37	(\$0.37)	\$1.29				

Docket No. 20240012-EG
Comparison of the Resource Plans:
Projection of System Average Electric Rates and
Customer Bills (Assuming 1,000 kWh Usage)
Exhibit AWW-15, Page 1 of 1

Docket No. 20240012-EG Comparison of the Resource Plans: Projection of System Emissions Exhibit AWW-16, Page 1 of 1

Comparison of the Resource Plans: Projection of System Emissions

	SO ₂ (thousand tons)							
Year	Supply Only Resource Plan	FPL Proposed Resource Plan	RIM Resource Plan	TRC Resource Plan				
2024	0.2	0.2	0.2	0.2				
2025	0.2	0.2	0.2	0.2				
2026	0.2	0.2	0.2	0.2				
2027	0.2	0.2	0.2	0.2				
2028	0.2	0.2	0.2	0.2				
2029	0.2	0.2	0.2	0.2				
2030	0.2	0.2	0.2	0.2				
2031	0.1	0.2	0.2	0.2				
2032	0.1	0.2	0.1	0.1				
2033	0.1	0.2	0.2	0.1				
2034	0.1	0.1	0.1	0.1				

	NO _x (thousand tons)							
Year	Supply Only Resource Plan	FPL Proposed Resource Plan	RIM Resource Plan	TRC Resource Plan				
2024	4.4	4.3	4.3	4.3				
2025	4.4	4.4	4.5	4.4				
2026	4.2	4.2	4.2	4.2				
2027	4.1	4.1	4.1	4.1				
2028	3.8	3.8	3.8	3.8				
2029	3.4	3.4	3.4	3.4				
2030	3.2	3.2	3.3	3.2				
2031	3.2	3.2	3.2	3.2				
2032	3.2	3.2	3.2	3.2				
2033	3.0	3.1	3.1	3.1				
2034	2.8	2.8	2.9	2.8				

	CO ₂ (million tons)						
Year	Supply Only Resource Plan	FPL Proposed Resource Plan	RIM Resource Plan	TRC Resource Plan			
2024	38.9	38.9	38.9	38.9			
2025	37.8	37.8	37.8	37.8			
2026	36.0	35.9	36.0	35.9			
2027	34.3	34.2	34.3	34.1			
2028	32.1	32.0	32.1	31.9			
2029	30.6	30.5	30.6	30.3			
2030	29.2	29.0	29.2	28.9			
2031	27.9	27.7	28.0	27.6			
2032	27.2	27.0	27.2	26.8			
2033	26.2	26.3	26.5	26.2			
2034	26.4	25.8	26.6	25.8			

Docket No. 20240012-EG Comparison of the Resource Plans: Projection of System Oil and Natural Gas Usage Exhibit AWW-17, Page 1 of 1

Comparison of the Resource Plans: Projection of System Oil and Natural Gas Usage

	Oil (million mmBtu)						
Year	Supply Only Resource Plan	FPL Proposed Resource Plan	RIM Resource Plan	TRC Resource Plan			
2024	0.0	0.0	0.0	0.0			
2025	0.0	0.0	0.0	0.0			
2026	0.0	0.0	0.0	0.0			
2027	0.1	0.1	0.1	0.1			
2028	0.0	0.0	0.0	0.0			
2029	0.2	0.1	0.1	0.1			
2030	0.0	0.0	0.1	0.0			
2031	0.0	0.0	0.1	0.1			
2032	0.0	0.1	0.0	0.1			
2033	0.0	0.1	0.1	0.1			
2034	0.0	0.0	0.0	0.0			

	Natu	ıral Gas (million mn	nBtu)	
Year	Supply Only Resource Plan	FPL Proposed Resource Plan	RIM Resource Plan	TRC Resource Plan
2024	650.1	650.2	650.2	650.1
2025	630.1	629.4	630.0	629.1
2026	597.6	596.4	597.5	595.8
2027	570.3	568.8	570.1	567.3
2028	533.1	530.9	533.5	529.7
2029	514.9	512.4	515.3	510.6
2030	490.8	487.9	491.3	485.8
2031	469.7	466.6	470.6	464.2
2032	457.6	453.7	457.9	451.1
2033	440.4	442.4	446.1	440.2
2034	443.4	434.4	447.6	434.0

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2	IN RE: COMMISSION REVIEW OF NUMERIC CONSERVATION GOALS
3	
4	DIRECT TESTIMONY OF JIM HERNDON
5 6	DOCKET NO. 20240012-EG (Florida Power & Light Company)
7	DOCKET NO. 20240013-EG (Duke Energy Florida, LLC)
8	DOCKET NO. 20240014-EG (Tampa Electric Company)
9	DOCKET NO. 20240015-EG (Florida Public Utilities Company)
10	DOCKET NO. 20240016-EG (JEA)
11	DOCKET NO. 20240017-EG (Orlando Utilities Commission)
12	
13	APRIL 2, 2024
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 TABLE OF CONTENTS

2		
3	I.	INTRODUCTION3
4	II.	MEASURE IDENTIFICATION AND SELECTION12
5	III.	TECHNICAL POTENTIAL15
6	IV.	ECONOMIC ANALYSIS24
7	V.	MEASURE ADOPTION FORECASTS28
8	VI.	DSM GOAL DEVELOPMENT31
9	VII.	REASONABLENESS OF RI'S ANALYSES33
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

I. INTRODUCTION

2

- 3 Q. Please state your name, position of employment, and business address.
- 4 A. My name is Jim Herndon. I am Vice President in the Advisory Services Practice
- 5 within the Utility Services business unit of Resource Innovations, Inc. (RI). My
- business address is 2500 Regency Parkway, Suite 220, Cary, North Carolina
- 7 27518. A statement of my background and qualifications is attached as Exhibit
- 8 No. JH-1.
- 9 Q. Please discuss your areas of responsibility.
- 10 A. I am responsible for providing consulting services for RI clients in the field of
- Demand-Side Management (DSM) initiatives, which include energy efficiency
- 12 (EE), demand response (DR), and demand-side renewable energy (DSRE). In
- this capacity, I primarily focus on DSM planning, including analysis of DSM
- market impacts, and assisting utilities in the identification of DSM opportunities
- and the development and design of DSM program initiatives. This includes the
- development of market baseline and potential studies, cost-benefit analyses, and
- design of comprehensive DSM programs and portfolios.
- 18 Q. Please describe RI including its history, organization, and services provided.
- 19 A. RI was founded in 2016, and is a globally recognized consulting, software, and
- 20 services firm that provides innovative DSM solutions to utilities, energy
- 21 enterprises, and government entities worldwide. RI merged with Nexant, Inc.,
- in 2021, which provided similar DSM consulting services since its founding in
- 23 2000. RI's Utility Services business unit provides DSM engineering and

- consulting services to government agencies and utilities, and helps residential, commercial, and industrial facility owners manage energy consumption and reduce costs in their facilities. RI also conducts development and implementation services of DSM programs for public and investor-owned utilities, governments, and end-use customers. Our range of experience in the field of EE includes, but is not limited to:
 - Market potential studies
- Program design
 - Program implementation
- Marketing

1

2

4

5

6

7

8

17

18

19

20

21

22

23

- Vendor outreach, education, and training
- Incentive processing and fulfillment
- Turnkey customer service
- Online program tracking and reporting
- Evaluation, measurement and verification (EM&V)

16 Q. What specific projects or studies has RI done to assess DSM potential?

A. RI has conducted over 50 Market Potential Studies (MPS) to identify opportunities for DSM in the United States and Canada. Examples of recent clients include New York Power Authority (NYPA), Duke Energy (Indiana, North Carolina, and South Carolina), Santee Cooper, El Paso Electric, the Independent Electricity System Operator (IESO) of Ontario, Canada, and Sacramento Municipal Utility District (SMUD). In addition, Nexant performed the market potential study for the Florida Energy Efficiency and Conservation

- 1 Act (FEECA) utilities in the DSM goals proceeding conducted in 2019 before 2 this Commission.
- 3 Q. Please summarize your experience with studies assessing DSM potential.
- A. I have been involved in conducting or managing over 30 DSM potential studies 4 over the past 17 years. In addition to these studies, I have led the development 5 of numerous DSM programs and portfolios, managed implementation of 6 residential, commercial, and industrial DSM programs, and conducted third-7 party evaluations of utility DSM programs, providing extensive experience and 8 expertise regarding market analyses, DSM measures and technologies, and utility program structures and best practices that inform the assessment of DSM 10 11 potential.
- 12 Q. Have you previously testified before the Florida Public Service
 13 Commission or in other state regulatory proceedings?
- 14 A. Yes, I provided testimony in the 2019 DSM goals proceeding before this
 15 Commission in support of our market potential studies for each FEECA utility
 16 in that case. I have also submitted testimony before the Virginia State
 17 Corporation Commission, the North Carolina Utilities Commission, the South
 18 Carolina Public Service Commission, the Public Utilities Commission of Ohio,
 19 and the New Jersey Board of Public Utilities.
- 20 Q. What is the purpose of your testimony in this proceeding?
- A. The purpose of my testimony is to introduce and summarize the methodology and findings of the Technical Potential Study (TPS) we conducted for each of the six utilities subject to the requirements of FEECA, collectively the FEECA

Utilities, as well as the additional DSM planning support we provided for a 1 subset of the FEECA Utilities. 2 3 Q. Please describe your role and responsibilities with respect to RI's work for this proceeding. 4 I served as the project manager for RI's work, directly overseeing all phases of A. 5 6 our analysis. Are you sponsoring any exhibits in this case? Q. Yes. I am sponsoring Exhibits No. JH-1 through No. JH-16, which are attached 8 A. to my testimony: 9 Exhibit No. JH-1 – Herndon Background and Qualifications 10 Exhibit No. JH-2 – TPS for Florida Power & Light 11 • Exhibit No. JH-3 – TPS for Duke Energy Florida 12 Exhibit No. JH-4 – TPS for Tampa Electric Company 13 14 Exhibit No. JH-5 – TPS for Florida Public Utilities Company Exhibit No. JH-6 – TPS for JEA 15 Exhibit No. JH-7 – TPS for Orlando Utilities Commission 16 Exhibit No. JH-8 – 2024 Measure Lists 17 Exhibit No. JH-9 – Comparison of Comprehensive 2019 Measure Lists 18 19 to the 2024 Comprehensive Measure Lists Exhibit No. JH-10 - DEF Measure Screening and Economic 20 Sensitivities 21 Exhibit No. JH-11 - FPUC Measure Screening and Economic 22

Sensitivities

- Exhibit No. JH-12 JEA Measure Screening and Economic
 Sensitivities
 - Exhibit No. JH-13 OUC Measure Screening and Economic Sensitivities
 - Exhibit No. JH-14 FPUC Program Development Summary
 - Exhibit No. JH-15 JEA Program Development Summary
- Exhibit No. JH-16 OUC Program Development Summary

Q. What was the scope of work for which RI was retained?

A.

As described in Section 2 of RI's TPS report for each utility, RI was retained by the FEECA Utilities to independently analyze the Technical Potential (TP) for EE, DR, and DSRE across their residential, commercial, and industrial retail customer classes. This work included disaggregation of the current utility load forecasts into their constituent customer-class and end-use components, development of a comprehensive set of DSM measures and quantification of the measures' impacts, and calculation of potential energy and demand savings at the technology, end-use, customer class, and system levels.

In addition, RI was retained by four of the six utilities to conduct an economic analysis of EE, DR, and DSRE measures, designed to determine which measures are cost-effective from different test perspectives and to develop estimates of potential impacts if these measures were adopted in each of these four utility service areas. RI also supported three of the six utilities in developing DSM proposed goals through bundling individual DSM measures

1		into preliminary program concepts and estimating the impacts, including
2		participation, savings, and utility budgets, for these programs.
3	Q.	How, if at all, did the work performed by RI differ across the six FEECA
4		Utilities?
5	A.	The assessment of TP, including the utility forecast disaggregation and
6		customer segmentation, and development of a DSM measure list, was the same
7		for all six FEECA Utilities. The subsequent economic analysis, measure
8		adoption forecasts and development of proposed DSM goals varied in the work
9		RI conducted for individual FEECA Utilities, as follows:
10		• Tampa Electric Company (TECO) conducted their own economic
11		analysis and DSM goal development.
12		• Florida Power & Light (FPL) conducted their own economic analysis
13		and provided RI with the results. RI then developed measure adoption
14		estimates, and FPL conducted their own DSM goal development.
15		Duke Energy Florida (DEF) contracted with RI to conduct the economic
16		analysis and measure adoption forecast, and DEF conducted its own
17		DSM goal development.
18		• JEA, Orlando Utilities Commission (OUC), and Florida Public Utilities
19		Company (FPUC) contracted with RI to conduct the economic analysis
20		and measure adoption forecast, and RI worked collaboratively with each

utility to develop the proposed DSM goals.

Q. What reports have been produced in the scope of RI's work?

2 A. RI has produced six separate TPS reports, one for each FEECA Utility under this scope of work.

4 Q. What were the major steps in the analytical work RI performed?

- The two major steps in RI's scope of work included development of technical potential and, for applicable utilities, creation of proposed DSM goals that aligned with utility program concepts. These steps included the following tasks:
 - Step 1: Technical Potential. The TP analysis established the basis for the development of proposed DSM goals. As summarized in Section 2 of each utility's TPS report, and illustrated in Figure 1 of each report, the key tasks in assessing the technical potential consisted of the following:
 - Load Forecast Disaggregation. To disaggregate the load forecast,

 RI collected utility load forecast data, relevant customer segmentation and end-use consumption data, and supplemented this with existing secondary data to create a disaggregated utility load forecast broken out by customer sector and segment as well as by end-use and equipment type, and calibrated to the overall utility forecast.
 - Comprehensive Measure Development. RI worked collaboratively
 with the FEECA Utilities, who also sought input from various
 external stakeholders, to develop a comprehensive list of DSM
 technologies that are currently commercially available in Florida.

1	For all measures included in the study, RI developed estimates of
2	energy and demand savings, useful life, and incremental cost.
3	• TP Analysis. Using the disaggregated utility load forecast and the
4	DSM measure impacts, RI analyzed the TP for the application of all
5	measures to each utility's retail customers.
6	Step 2: Development of Proposed DSM Goals. The development of
7	proposed goals built on the TP analysis, and included several interim steps,
8	as follows:
9	• Economic Analysis. For a subset of the FEECA Utilities, RI
10	conducted an economic analysis to determine which measures and
11	technologies were preliminarily cost-effective under a Rate Impact
12	Measure (RIM) test scenario or the Total Resource Cost (TRC) test
13	scenario. This step produced a set of measures, and associated energy
14	and demand savings, for each scenario before applying program
15	costs and adoption rates. Key tasks included the following:
16	o Collect utility economic forecast data: RI received current
17	and forecasted avoided energy and avoided capacity costs
18	from each utility.
19	o Apply measure impacts: including energy savings, summer
20	and winter demand savings, incremental cost, and measure
21	useful life to determine total avoided cost benefits, measure
22	costs, and lost revenues.

1	o Determine measures passing RIM test scenario and TRC test
2	scenario: measures with a benefit/cost ratio of less than 1.0
3	were screened from the economic analysis.
4	o RI also performed this economic screening analysis using a
5	set of economic sensitivities.
6	• Measure adoption forecasts. For a subset of the FEECA Utilities,
7	RI updated the economic analysis and developed market adoption
8	estimates for passing measures under each cost-effectiveness test
9	scenario. This step produced an updated "RIM Scenario" and a "TRC
10	Scenario" of passing measures and associated energy and demand
11	savings. Key tasks included:
12	o Applying estimated representative program costs, based on
13	current FEECA program data and other secondary sources,
14	and rerunning the economic analysis for both the TRC and
15	RIM scenarios, including screening these passing measures
16	from the Participant Cost Test (PCT) perspective for each
17	scenario.
18	o Incorporating free ridership screening based on payback
19	analysis, removing measures with a payback of less than two
20	years.
21	o Applying estimated market adoption rates for passing

measures for each scenario, based on economic and market

1	parameters, including payback acceptance, maturity of DSM
2	technology, and current utility offerings.
3	• Measure bundling and program development. For a subset of
4	utilities, RI supported the development of program concepts tha
5	formed the basis for proposed DSM goals. Key tasks included:
6	o Measure bundling: RI worked collaboratively with the
7	FEECA Utilities to identify measures that aligned with
8	current programs or logically made sense to offer as a
9	program.
10	o Estimating program metrics, including annual participation
11	savings, and utility budgets.
12	
13	II. MEASURE IDENTIFICATION AND SELECTION

A.

Q. Please explain the process by which DSM measures were identified.

The starting point for measure identification was the list of measures included in the 2019 Florida TP Studies. Using this set of measures, the FEECA Utilities initially reviewed and added proposed measures, and provided the combined list to RI. RI compared the preliminary list to its DSM measure library, compiled from similar studies conducted in recent years, as well as from other utility DSM programs that RI has designed, implemented, or evaluated. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure

suggestions were reviewed and incorporated into the study, as appropriate, as detailed in Appendix D of each TPS report.

A.

A.

Through months of rigorous discussion with the FEECA Utilities, the parameters for measures to be considered were established. The evaluation of measures to include examined whether the measure was technically feasible and currently commercially available in Florida; additionally, behavioral measures without accompanying physical changes or utility-provided products and tools were excluded, as were fuel-switching measures, other than in the context of DSRE measures. The process to identify DSM measures is more fully described in Section 4 of each TPS report.

11 Q. Was the process of measure identification and selection appropriate for the 12 objectives of the study?

Yes. The measure identification process was robust, comprehensive, and appropriate for the objectives of the study. The final measure list was developed to account for DSM measures that had been considered in prior Florida studies and took full account of current Florida Building Code and federal equipment standards, current FEECA Utilities' program offerings, and the incorporation of DSM measures considered in other potential study reports and other utility DSM program offerings around the country.

Q. Did the process allow for the assessment of the full TP for FEECA Utilities?

Yes. The thorough process for developing the list resulted in a comprehensive set of over 400 unique EE, DR, and DSRE measures that fully addressed DSM opportunities across all electric energy-consuming end-uses at residential,

1		commercial, and industrial facilities in the FEECA Utilities' service areas. The
2		final measure list is provided in Exhibit No. JH-8.
3	Q.	How does the final DSM measure list compare with the measures included
4		in the 2019 TP Study?
5	A.	Exhibit No. JH-9 compares the comprehensive measure list for 2024 to the
6		measure list for the Florida Public Service Commission (Commission) 2019
7		Goals Dockets (Docket Nos. 20190015-EG – 20190021-EG). Compared to the
8		2019 TP, the 2024 TP update added 191 unique measures and eliminated 24
9		unique measures.
10	Q.	What changes to the measure list were associated with changes to building
11		code or appliance standards?
12	A.	The following measures changes were included in the 2024 TP study based on
13		Florida Building Code and federal equipment standards updates:
14		• Residential central air conditioner and heat pump baseline efficiency
15		was updated based on current U.S. Department of Energy, Energy
16		Conservation Standards for Residential Central Air Conditioners and
17		Heat Pumps
18		Residential room air conditioner baseline efficiency was updated based
19		on current U.S. Department of Energy, Energy Conservation Standards
20		for Room Air Conditioners
21		Two speed pool pump and variable speed pool pump measures were
22		eliminated based on current Florida Building Code and U.S. Department

of Energy, Energy Conservation Standards for Dedicated-Purpose Pool Pump Motors.

Q. Once measures were selected, what was the next step in RI's analysis?

Once measures were selected, the next step in RI's analysis was to develop individual impacts for each measure. These impacts included quantifying summer demand (kW), winter demand (kW), and energy savings (kWh), equipment useful life, and incremental costs of the measure. The measure impacts were subsequently applied to the disaggregated utility load forecasts to estimate TP in each utility service area.

A.

III. TECHNICAL POTENTIAL

A.

Q. Please define Technical Potential.

Section 366.82(3) of FEECA requires the Commission to "...evaluate the full technical potential of all available demand-side and supply-side conservation and efficiency measures, including demand-side renewable energy systems." Therefore, a TP analysis is the first in a series of steps in the DSM Goals development process. Its purpose is to identify the theoretical limit to reducing summer and winter electric peak demand and energy. The TP assumes every identified potential end-use measure is installed everywhere it is "technically" feasible to do so from an engineering standpoint, regardless of cost, customer acceptance, or any other real-world constraints (such as product availability,

1	contractor/vendor capacity, cost-effectiveness, normal equipment replacemen
2	rates, or customer preferences).

Therefore, the TP does not reflect the MW and GWh savings that may
be potentially achievable through real-world voluntary utility programs, but
rather it establishes the theoretical upper bound for DSM potential.

Q. Do RI's TPS reports provide a detailed description of RI's methodology, data, and assumptions for estimating TP?

A. Yes. As stated earlier, RI developed individual TPS reports for each of the six

FEECA Utilities. The reports described RI's overall methodology, data, and
assumptions for disaggregating each utility's baseline load forecast,
development of DSM measures, and determination of TP.

12 Q. Do these TPS reports identify the full TP for the FEECA Utilities?

17

18

19

20

21

22

23

A.

13 A. Yes. Each utility report identifies the full TP for the DSM measures analyzed
14 against the utility's baseline load forecast.

15 Q. Please summarize the methodology, source of data, and assumptions used 16 to develop the TP for EE measures for the FEECA Utilities.

As stated above, TP ignores all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE. RI's methodology for estimating EE TP begins with the disaggregated utility load forecast. For the current analysis, RI used the 2023 load forecast from each FEECA Utility, which, for all except FPUC, was based on the most recent Ten-Year Site Plan available at the time the MPS was initiated, which were the 2023 Ten-Year Site Plans.

Next, all technically feasible measures are assigned to the appropriate customer segments and end-uses. The measure kW and kWh impact data collected during DSM measure development are then applied to the baseline forecast, as illustrated in the following equation for the residential sector:

The savings factor, or percentage reduction in electricity consumption resulting from application of the efficient technology, is applied to the baseline energy use intensity to determine the per-home impact, and the other factors listed in the equation above inform the total number of households where the measure is applicable, technically feasible, and has not already been installed. The result of this equation is the total TP for an EE measure or technology.

The final component of estimating overall TP is to account for the interaction between measures. In some situations, measures compete with each other, such as a 16 SEER air source heat pump and an 18 SEER air source heat pump. For TP, the measure with the highest savings factor is prioritized. The other interaction is measure overlap, where the impacts of one measure may affect the savings for a subsequent measure. An example of measure overlap would be the installation of an 18 SEER air source heat pump as well as a smart thermostat that optimizes the operation of the heat pump. To account for overlapping impacts, RI's model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on

savings achieved by the preceding measure. For TP, interactive measures are ranked based on the total end-use energy savings percentage, with the measures having a greater savings treated as being implemented first.

A.

Q. Please summarize the methodology, source of data, and assumptions used to develop TP for DR measures for the FEECA Utilities.

TP for DR is effectively the total of customer loads that could be curtailed during conditions when utilities need capacity reductions. Therefore, RI's approach to estimating DR TP focuses on the curtailable load available within the time period of interest. In particular, the analysis focuses on end-uses available for curtailment during peak periods and the magnitude of load within each of these end-uses, beyond that of existing DR enrollment for each utility.

Similar to the estimation of EE TP, the DR analysis begins with a disaggregation of the utility load forecast. RI's approach for load disaggregation to identify DR opportunities is more advanced than that used for most potential studies. Instead of disaggregating annual consumption or peak demand, RI produced end-use load disaggregation for all 8,760 hours of the year. This was needed because customer loads available at times when utility system needs arise can vary substantially. For this study, curtailable load opportunities, coincident with both the summer system peak and winter system peak, were analyzed. Additionally, instead of producing disaggregated loads for the average customer, the study produced loads for several customer segments. RI examined three residential segments based on customer housing type, four

different small commercial and industrial (C&I) segments, and four different large C&I customer segments, for a total of 11 different customer segments. Next, RI identified the available load for the appropriate end-uses that can be curtailed. RI's approach assumed that large C&I customers would forego virtually all electric demand temporarily if the financial incentive was large enough. For residential and small C&I customers, TP for DR is limited by loads that can be controlled remotely at scale. For this study, it was assumed that summer DR capacity for residential customers was comprised of air conditioning (A/C), pool pumps, water heaters, and electric vehicle charging. For small C&I customers, summer capacity was based on A/C load and electric vehicle charging.

For winter capacity, residential DR capacity was based on electric heating loads, pool pumps, water heaters, and electric vehicle charging. For small C&I customers, winter capacity was based on heating load and electric vehicle charging. For eligible loads within these end-uses, the TP was defined as the amount coincident with system peak hours for each season. System peak hours were identified using 2023 system load data. For DR TP, no measure breakout was necessary because all measures targeted the end-uses estimated for TP.

Finally, RI accounted for existing DR by assuming that all customers currently enrolled in a DR program did not have additional load that could be curtailed. As a result, all currently-enrolled DR customers were excluded from the analysis.

- Q. Please summarize the methodology, source of data, and assumptions used to develop TP for DSRE measures for the FEECA Utilities.
- A. TP for DSRE measures was developed using three separate models for each category of DSRE: rooftop photovoltaic (PV); battery storage systems charged from PV systems; and combined heat and power (CHP).
 - For PV systems, RI's approach estimated the square footage of residential and commercial rooftops in the FEECA Utilities' service areas suitable for hosting PV technology, and applied the following formula to estimate overall TP:

The analysis was conducted in five steps, as follows:

<u>Step 1: Building stock characterization</u>: Output of data from the forecast disaggregation conducted for the EE and DR TP analysis were used to characterize residential, commercial, and industrial building stocks.

Step 2: Estimate of feasible roof area: Total available roof area feasible for installing PV systems was calculated using relevant parameters, such as unusable area due to other rooftop equipment and setback requirements, shading from trees, and limitations of roof orientation.

Step 3: Expected power density: A power density of 200 watts per square meter (W/m²) was assumed for estimating technical potential, which corresponds to a panel with roughly 20 percent conversion efficiency, a typical value for current PV installations.

Step 4: Hourly PV generation profile: Hourly generation profiles were estimated using the U.S. Department of Energy National Renewal Energy Laboratory's solar estimation calculator, PVWatts©.

Step 5: Calculate total energy and coincident peak demand potential:

RI's Spatial Penetration and Integration of Distributed Energy

Resources (SPIDER) Model was used to estimate total annual energy

and summer and winter peak demand potential by sector.

For battery storage systems, the TP analysis considered the fact that battery systems on their own do not generate power or create efficiency improvements; they simply store energy for use at different times. Therefore, battery systems energized directly from the grid do not produce additional energy savings, but may be used to shift or curtail load from one period for use in another. Because the DR potential analysis focused on curtailable load opportunities, RI concluded that no additional TP should be claimed. Similarly, battery systems connected to rooftop PV systems do not produce additional energy savings; they do, however, create the opportunity to store excess PV-generated energy during hours where the PV system generates more than the home or business consumes, then uses the stored power during peak periods.

Therefore, to determine additional peak demand reduction available from PV-connected battery storage systems, RI used the following methodology:

 Assumed that every PV system included in the PV TP analysis was installed with a paired storage system. Sized the storage system to peak PV generation and assumed energy storage duration of three hours.

- Applied RI's hourly dispatch optimization model in SPIDER to create an hourly storage dispatch profile that flattened the individual customer's load profile to the greatest extent possible, accounting for (a) a customer's hourly load profile; (b) hourly PV generation profile; and (c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculated the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter).

TP for CHP systems was based on identifying non-residential customer segments with thermal load profiles that allow for the application of CHP, where the waste heat generated can be fully utilized. First, minimum size thresholds were determined for each non-residential segment using a segment-specific thermal factor that considered the power-to-heat ratio of a typical facility in each segment. Next, utility customers were segmented into industry classifications and screened against the size thresholds. Premises with annual kWh consumption that met or exceeded the thresholds were retained in the analysis. Finally, facilities of sufficient size were matched with the appropriately sized CHP technology. RI assigned CHP technologies to customers in a top-down fashion, starting with the largest CHP generators, which yielded the estimated quantity of CHP TP in each utility's service area.

- Q. Did your TP analysis account for interaction among EE, DR, and DSRE technologies?
- A. Yes. While TP was estimated using separate models for EE, DR, and DSRE,

 RI did recognize that interaction occurs among the TP for each, similar to the

 interactions between EE measures applied to the same end-use. For example,

 the installation of more efficient A/C would reduce the peak consumption

 available for DR curtailment. Therefore, to account for this interaction, RI

 incorporated the following assumptions and adjustments to the identified TP:

- EE TP was assumed to be implemented first, and therefore was not adjusted for interaction with DR and DSRE.
- DR TP was applied next, and to account for the impact of EE TP, the
 baseline load forecast for applicable end-uses was adjusted by the EE
 TP, reducing the available load for curtailment.
 - DSRE technologies were applied last and incorporated EE TP and DR TP. For PV systems, the EE potential and DR potential did not impact the amount of PV TP. However, for PV-connected battery systems, the reduced baseline due to EE TP resulted in more PV-generated power available from storage and usable during peak periods. For CHP systems, the reduced baseline, as a result of EE, resulted in a reduction in the number of facilities that met the annual energy threshold for CHP. Installed DR capacity was assumed to not impact CHP potential as CHP system feasibility was determined based on the energy consumption and thermal parameters at the facility.

- Q. Once TP estimates were developed, what was the next step in your analysis?
- A. Upon completion of the TP estimates, the next analysis step for a subset of the utilities was to apply the measure economics (incremental cost) and utility system economics (avoided supply cost, utility electric revenues, and customer bill impacts) to conduct the economic analysis.

7

8

IV. ECONOMIC ANALYSIS

9

13

14

15

16

17

18

10 Q. For which FEECA Utilities did RI conduct economic analyses?

- 11 A. RI worked collaboratively with DEF, OUC, JEA, and FPUC on the economic 12 analysis, as follows:
 - Each utility provided RI with utility-specific economic forecast data, including avoided supply costs and retail rate forecasts. RI incorporated these data into our economic screening module to analyze the cost-effectiveness for individual measures under the cost-effectiveness tests required by the Commission's Order Consolidating Dockets and Establishing Procedure (Order No. PSC-2024-0022-PCO-EG).

19 Q. What cost-effectiveness tests were included in the economic analysis?

20 A. When analyzing DSM measures, different cost-effectiveness tests are
21 considered to reflect the perspectives of different stakeholders. The Ratepayer
22 Impact Measure (RIM) test addresses an electric utility customer perspective,
23 which considers the net impact on electric utility rates associated with a

measure or program. The Total Resource Cost (TRC) test addresses a societal perspective, which considers costs of a DSM measure or program relative to the benefits of avoided utility supply costs. The Participant Cost Test (PCT) addresses a participant perspective, which considers net benefits to those participating in a DSM program.

The calculations were conducted consistent with the Cost Effectiveness Manual for Demand Side Management and Self Service Wheeling Proposals; Florida Public Service Commission, Tallahassee, FL; adopted June 11, 1991. Specific costs and benefits allocated within each cost-effectiveness test (RIM, TRC, and PCT), include the following:

	Ratepayer Impact Measure (RIM) Test
Component	Definition
Benefit	Increase in utility electric revenues Decrease in avoided electric utility supply costs
Cost	Decrease in utility electric revenues Increase in avoided electric utility supply costs Utility program costs, if applicable Utility incentives, if applicable

Total Resource Cost (TRC) Test	
Component	Definition
Benefit	Decrease in avoided electric utility supply costs
Cost	Increase in avoided electric utility supply costs
	Customer incremental costs (less any tax incentives)
	Utility program costs, if applicable

2

1

Participant Cost Test (PCT)	
Component	Definition
Benefit	Decrease in electric bill Utility incentives, if applicable
Cost	Increase in electric bill Customer incremental costs (less any tax incentives)

3

4 Q. What economic screening criteria were applied for this study?

- 5 A. For this study, economic screening was conducted for two Base Case scenarios:
- 6 the RIM Scenario and TRC Scenario. In both scenarios, all measures that
- achieved a cost-effectiveness ratio of 1.0 or higher were considered cost-
- 8 effective from that test's perspective.
- 9 For RI's cost-effectiveness screening for DEF, JEA, OUC, and FPUC,
- additional considerations included the following:
- Individual measures did not include any utility program costs (program
- administrative or incentive costs), and therefore were evaluated on the
- basis of measure cost-effectiveness without any utility intervention.

 Both scenarios required the measures to pass the PCT. Similar to the TRC and RIM perspectives, the PCT screening was conducted without any utility's incentive costs applied to the measure.

4 Q. What was the next step in the economic analysis?

1

2

3

5

6

7

8

9

10

11

12

16

17

18

19

20

21

22

23

A. Once the list of passing measures was identified under each Base Case scenario, the measures were reanalyzed in RI's TEA-POT model to estimate demand and energy savings for each utility. The updated modeling included updated measure rankings to account for changes in measure interaction and overlap. For the economic analysis, the ranking was based on the applicable test perspective in each scenario (RIM or TRC), with the more cost-effective measures being ranked first.

Q. Were any additional economic sensitivities considered?

- 13 A. Yes. As specified in Appendix B of the Order Consolidating Dockets and
 14 Establishing Procedure (Order No. PSC-2024-0022-PCO-EG) in this docket,
 15 economic sensitivities were performed as follows:
 - Avoided fuel cost sensitivity, analyzing the number of measures passing the economic screening based on higher and lower fuel prices.
 - Payback period sensitivity, analyzing the number of measures passing the economic screening based on shorter (one year) and longer (three year) free ridership exclusion periods.
 - For OUC, RI performed an additional sensitivity that reflected the number of measures passing the economic screening when including costs associated with carbon dioxide emissions.

The methodology for each sensitivity was consistent with the analysis of the Base Case scenarios. DEF, JEA, OUC, and FPUC provided RI with avoided supply cost forecasts for the higher and lower fuel price scenarios. The results of these sensitivities are provided in Exhibits No. JH-10 through No. JH-13.

Q. After these additional screenings were performed, what was the next majoractivity?

A. After the economic screening was conducted for the Base Case scenarios and the sensitivities for each utility, the next step in the study was to develop measure adoption estimates for a subset of the utilities.

V. MEASURE ADOPTION FORECASTS

Α.

Q. Were any additional economic screening criteria applied for estimating measure adoption forecasts?

Yes. The associated program costs, including program administrative costs and customer incentives, were included in the economic analysis used for estimating measure adoption forecasts. Because this step occurred prior to each utility developing specific programs aligned with their proposed goals, representative administrative costs were developed using average FEECA Utility program cost data, where available from current programs, and supplemented with other utility program cost data where needed. In order to evenly apply these representative costs to measures with a variety of savings impacts, typical costs were estimated on a variable basis per kWh saved.

In addition, consistent with prior DSM analyses in Florida, free
ridership was addressed by applying a two-year payback criterion, which
eliminated measures having a simple payback of less than two years.

All measures were rescreened for the RIM Scenario and TRC Scenario with the inclusion of these parameters.

6 Q. How were measure incentives determined for this study?

- A. Measure incentives were developed for both the RIM Scenario and TRC Scenario. Under each of these scenarios, the maximum incentive that could be applied while remaining cost-effective was calculated for each measure.
 - For the RIM Scenario, the RIM net benefit for each measure was
 calculated based on total RIM benefits minus total RIM costs. Next, the
 amount required to result in a simple payback period of two years for
 each measure was calculated. The maximum incentive was based on
 the lower of these two values.
 - For the TRC Scenario, since the TRC test does not include utility incentives as a cost or benefit, the maximum incentive was based on the amount required to result in a simple payback period of two years for each measure.
 - Q. Please explain the methodology used by RI to develop measure adoption forecast estimates for the cost-effective EE measures.
 - A. RI's methodology consisted of applying estimates of market adoption, based on utility-sponsored program incentives for all cost-effective EE measures in each Base Case scenario. RI's market adoption estimates used a payback acceptance

criterion to estimate long-run market shares for measures as a function of measure incremental costs and expected bill savings over the measures' effective useful life (inclusive of utility incentives). Incremental adoption estimates were based on the Bass Diffusion Model, which is a mathematical description of how the rate of new product diffusion changes over time. For this study, adoption curve input parameters were developed for each measure based on specific criteria, including measure maturity in the market, overall measure cost, and whether the measure was currently offered through a utility program. RI's TEA-POT model then calculated demand and energy savings by applying these adoption curves to each cost-effective measure.

A.

Q. Please explain the methodology used by RI to develop adoption forecast estimates for the cost-effective DR measures.

Similar to EE measures, RI's methodology for DR included calculating market adoption as a function of the incentives offered to each customer group. For DR measures currently offered by each utility, RI used the current incentive level offered to estimate market adoption. For measures not currently offered by a utility, RI used representative incentive levels offered for similar measures in other markets to estimate market adoption. The utility-specific incentive rates for each DR measure, along with participation rates collected by RI for DR programs around the country, were used to calibrate DR market adoption curves for each technology and customer segment. The calibrated adoption rates were applied to the baseline load forecast to estimate the forecasted adoption estimates for cost-effective DR technologies.

- Q. Please explain the methodology used by RI to develop adoption forecast estimates for the cost-effective DSRE measures.
- A. RI did not produce estimates of adoption forecasts for DSRE measures as none of the measures passed the cost-effectiveness screening for either the RIM or TRC scenarios.
- Q. After estimating measure adoption forecasts, what was the next majoractivity?
- 8 A. The next step in the study was to develop proposed DSM goals for a subset of the utilities.

VI. DSM GOAL DEVELOPMENT

10

11

12

15

16

17

18

19

20

21

22

A.

Q. What additional support did RI provide in development of proposed DSMgoals?

For JEA, OUC, and FPUC, RI assisted with the development of three scenarios:

1) potential DSM programs that contribute to proposed DSM goals (Proposed Goals Scenario), 2) potential DSM programs that pass the Participant and Rate Impact Measure Tests (RIM Scenario), and 3) potential DSM programs that pass the Participant and Total Resource Cost Tests (TRC Scenario). The proposed DSM goal development process and results for each scenario is described in more detail in Exhibit No. JH-14, No. JH-15, and No. JH-16, and consisted of the following steps:

Step 1: Program Review and Measure Bundling. For each scenario, Resource Innovations identified cost-effective measures from the economic analysis described above and reviewed existing utility program offerings to identify and align measures included in the TP study analysis with current programs. Measures included in existing programs but not part of the TRC Scenario or RIM Scenario determined in the economic analysis were identified. In addition, measures that were cost-effective for the TRC Scenario or RIM Scenario but were not currently offered in a utility program were also identified. Based on the program review and measure alignment, measures in each scenario were bundled into preliminary program concepts that might align with current programs or become new program offerings for the utility.

Step 2: Program Refinement and Modeling. Preliminary program

Step 2: Program Refinement and Modeling. Preliminary program concepts and measure bundles were refined into proposed program offerings and incentive and non-incentive budgets, participation estimates, and impacts were developed using RI's TEA-POT model. The modeling results were exported into RI's Program Planner workbook that aggregated the program and portfolio impacts for each scenario. For the TRC Scenario and RIM Scenario no further refinements to the programs were made. For the Proposed Goals scenario, RI continued to work collaboratively with each utility to identify the measures and program concepts that comprise the proposed DSM goals.

1	Q.	was the DSM program development process limited to measures passing
2		the economic screening?
3	A.	No. In addition to measures that passed the TRC Scenario or RIM Scenario
4		screening, the measure bundling and program development process for the
5		Proposed Goals Scenario included additional measures, such as measures that
6		may be included in current programs or could be complementary additions to
7		current programs.
8	Q.	For measures currently offered by each utility, was the analysis limited to
9		the continuation of current programs?
10	A.	No. While continuity in program offerings is typically beneficial for customer
1		and contractor awareness and education, RI and each utility (JEA, OUC, and
12		FPUC) worked collaboratively to identify programs that are of interest to
13		continue and those that may need refinement. RI also provided our expertise in
14		utility program design from around the country to help guide the program
15		development process.
16		
17		VII. REASONABLENESS OF RI'S ANALYSES
18		
19	Q.	Are the methodology and models RI employed to develop TP estimates,
20		economic analysis, measure adoption forecasts, and proposed DSM goals
21		for the FEECA Utilities analytically sound?

A.

22

23

Yes. RI's approach is aligned with industry-standard methods and has been

applied and externally reviewed in numerous regulated jurisdictions. RI's

TEA-POT and SPIDER modeling tools have been specifically developed to accommodate and calibrate to individual utility load forecast data, and they enable the application of individual DSM measures and analysis of market potential at a high resolution—by segment, end-use, equipment type, measure, vintage, and year for each scenario analyzed.

A.

A.

The methodology and rigor of the measure development, technical potential, and economic analysis is also consistent with the analysis conducted for the 2019 energy conservation goals proceedings before this Commission.

Q. Have these methodologies and models been relied upon by other commissions or governmental agencies?

Yes. RI's methodology and the TEA-POT and SPIDER modeling tools have been used in numerous studies in the United States and Canada. RI's tools and results have undergone extensive regulatory review and have been used for the establishment of utility DSM targets in multiple jurisdictions, including North Carolina, South Carolina, Georgia, California, Pennsylvania, Texas, and Ontario.

Q. Are the estimates of the TP developed by RI analytically sound and reasonable?

Yes. The TP was performed under my direction and resulted in a thorough and wide-ranging analysis of DSM opportunities technically feasible in the FEECA Utilities' service areas. The TP process aligned with industry standards and included a greater level of analytic detail than that of comparable models and methodologies.

- The process included extensive iterative analytical work and continuous collaboration with the FEECA Utilities to ensure that it was comprehensive and aligned with the characteristics of their service areas and forecasted loads.
- 4 Q. Is the economic analysis conducted by RI analytically sound and reasonable?
- A. Yes. The economic analysis was based on applying defined economic screening
 metrics to each TP measure to determine cost-effectiveness. The analysis
 included utility-provided economic forecasts to ensure alignment with other
 aspects of utility resource planning and to determine an accurate assessment of
 cost-effective DSM measures for each utility.
- Q. Are the proposed DSM goals that RI helped develop based on reasonable and appropriate analysis of DSM measures and programs?
 - Yes. RI's estimated measure adoption forecasts identified cost-effective DSM opportunities for FEECA Utilities, based on the test perspectives included in each scenario analyzed. These forecasts provided the foundation of the DSM planning process that included a robust analysis of current utility programs, bundling, and alignment of measures analyzed in the potential study as well as the development of cost-effective programs. These programs collectively sum to the sector-level and overall proposed DSM goals for each utility. This process represents a reasonable and appropriate approach to the development of utility DSM goals.
- 22 Q. Does this conclude your direct testimony?
- 23 A. Yes.

13

14

15

16

17

18

19

20

21

A.

Jim Herndon

Vice President

Jim Herndon is a Vice President in the Advisory Services group, focusing on strategic planning and program design to more effectively implement demand-side management (DSM) programs. His work is informed by 22 years of experience performing market assessments, planning portfolios, managing program design and implementation, conducting technical project reviews and analyses, and delivering third-party program evaluations across a variety of sectors. Jim leads potential and market characterization studies, program portfolio development and cost-effectiveness analyses, and provides regulatory support and expert witness testimony for program filings and integrated resource planning (IRP) activities. In these capacities, he serves many electric and natural gas utilities, including Duke Energy, Dominion Energy, Georgia Power Company, Florida Power and Light, Santee Cooper, Columbia Gas of Virginia, and Washington Gas. In each consulting engagement, Jim strives to understand his client's objectives and tailor his team's analyses to leverage best practices, while providing strategic insights with the client's specific needs in mind.

EXPERIENCE

Vice President | Principal Consultant, Resource Innovations / Nexant (2013 - Present)

As an account executive and team leader in the Advisory Services Group, Jim ensures compliance with regulatory and energy program rules and coordinates staff workload and budgets. He works directly with clients, service providers, and customers to provide quality assurance on projects. Jim also manages regional and national client planning and benchmarking studies, as well as third-party impact and process evaluations.

Sr. Project Manager | Project Manager, Resource Innovations / Nexant (2007 - 2012)

As a Senior Project Manager and Southeast regional lead, Jim oversaw design and implementation of utility-sponsored DSM programs, including management of program design, administration, engineering, trade ally, and marketing program teams in NC and SC.

Sr. Project Engineer | Project Engineer, Resource Innovations / Nexant (2002 - 2006)

As a Project Engineer, Jim performed energy audits and analyses on facilities to identify, provide implementation support for, and verify the effectiveness of energy efficiency improvements. He was a Certified Home Energy Report (HERS) rater and supported the implementation of publicly funded energy efficiency and load management programs, including due diligence reviews of energy efficiency projects installed in California, New York, and Utah.

EDUCATION, CERTIFICATIONS, AND LICENSING

M.S. in Engineering Management - Duke University

B.S. in Civil and Environmental Engineering - Duke University

AFFILIATIONS

Southeast Energy Efficiency Alliance (SEEA) - Former Member of the Board of Directors (2014 - 2019)

AREAS OF EXPERTISE

Integrated Resource Planning (IRP) Support • Energy Analysis and Market Characterization • DSM & DER Market Potential Studies • Portfolio Planning, Program Design, and Evaluation • Regulatory Support and Expert Witness • Program Management

Docket Nos. 20240012-EG to 20240017-EG Herndon Background and Qualifications Exhibit JH-1, Page 2 of 4

Jim Herndon, Vice President

REPRESENTATIVE PROJECTS

Florida Power & Light Company - Florida Statewide DSM Technical Potential Study (2017 - 2019, and 2022 - Present)

Jim is leading the Resource Innovations team that was retained by Florida Power & Light in the state of Florida to complete technical potential studies of Demand Side Management (DSM) measures and renewable energy systems on behalf of six utilities. The six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA) include four Florida investor-owned utilities (IOUs): Florida Power & Light Company (FPL), Duke Energy Florida, LLC (DEF), Tampa Electric Company (TECO), and Florida Public Utilities Company (FPUC) that are regulated by the Florida Public Service Commission (FPSC) and two municipal utilities: JEA and Orlando Utilities Commission (OUC) that are not regulated by the FPSC. The FPSC establishes goals for the FEECA utilities to reduce the growth of Florida's peak electric demand and energy consumption and reviews the progress towards those goals frequently (every five years at a minimum). The scope of the studies includes Energy Efficiency (EE), Demand Response (DR), and Distributed Energy Resources (DER) opportunities across the residential, commercial, and industrial sectors, including interaction between these categories of DSM to account for overlapping impacts. In addition to the technical potential analysis, Jim and his team are assessing the economic and achievable opportunities for a subset of the six utilities. The results of this study will be used as the basis of the utilities' DSM goal-setting process for 2025-2034 in the 2024 Florida Goals Proceeding. Following the completion of the studies, Jim will provide regulatory support for these proceedings, including the preparation of direct written testimony, deposition, and support for the discovery process by preparing required responses to data requests and regulatory interrogatories.

Jim also led Resource Innovations' team that conducted the technical potential study and provided regulatory support for the 2019 FEECA goalsetting proceedings.

Duke Energy - Market Potential Studies (2015 - Present)

Jim has directed multiple DSM market potential studies for Duke Energy's North Carolina, South Carolina, Indiana, and Ohio service territories. The studies for each service territory integrated both energy efficiency and demand response opportunities across Duke Energy's residential, commercial, and industrial customer classes; and determined the technical, economic, and program potential. Resource Innovations conducts the studies in close coordination with Duke Energy's IRP team, as well as program design and delivery teams, to provide an accurate assessment of market potential that can be directly applied to Duke Energy's current and future DSM planning efforts.

Duke Energy - Program Evaluations (2014 - Present)

Jim currently serves as the Project Manager for the evaluation, measurement, and verification (EM&V) of six DSM program offerings, which include Duke Energy's Residential HVAC program, MyHER program, EE Education program, Save Energy & Water Kits program, Non-Residential Custom program, and Power Manager program. The evaluation activities include separate impact and process evaluations across Duke Energy's five service territories to assess program performance, adherence to best practices, and opportunities for program improvements. Jim provides daily project management oversight of project staff, coordination of resources, and quality control oversight of project deliverables.

Santee Cooper - Market Assessment, DSM Program Design, and Implementation (2009 - Present)

Jim provides strategic program design support activities for Santee Cooper's suite of energy efficiency programs across the residential and commercial market segments, as well as strategic program advisory services for Santee Cooper's long-term energy reduction goals. Jim also led the market assessment and market potential study that Resource Innovations conducted for Santee Cooper's service territory in 2019 and updated in 2023. The study included primary data collection to

Docket Nos. 20240012-EG to 20240017-EG Herndon Background and Qualifications Exhibit JH-1, Page 3 of 4

Jim Herndon, Vice President

benchmark equipment efficiency and saturation in the service territory and incorporate this data into the development of future market potential. Previously, Jim managed the initial development, rollout, and management of Santee Cooper's commercial energy efficiency programs.

Columbia Gas of Virginia (CVA) - DSM Program Design, Cost-Benefit Analysis, and Implementation (2010 - Present)

Jim is the technical lead for the program design and regulatory support services team assisting CVA's WarmWise program offerings. This support includes portfolio planning and regulatory support for CVA's residential and commercial energy efficiency programs, as well as providing rebate processing and other support services to assist CVA in the implementation of their programs. Jim led portfolio planning efforts, including market characterization analysis, technical analysis of proposed programs and portfolio, development of annual program budgets and savings targets, and regulatory support of CVA's program filings with the Virginia State Corporation Commission, including providing written testimony supporting the analysis.

Dominion Energy - DSM Program Design and Implementation (2020 - Present)

Jim oversees DSM portfolio planning and program design projects for Dominion Energy's natural gas utilities in North Carolina, South Carolina, and Ohio. In each of these service territories, Jim and his team worked collaboratively with Dominion Energy to identify applicable DSM measures, quantify measure impacts, create logical program offerings, and analyze the cost-effectiveness of the offerings. Jim also supported the DSM regulatory process in each jurisdiction through the development of expert witness testimony and assistance with responses to regulatory data requests.

Virginia Natural Gas - DSM Program Design, Cost-Benefit Analysis, and Regulatory Support (2014 - Present)

On behalf of Virginia Natural Gas, Jim leads technical and regulatory support for the residential DSM portfolio. Support activities include program cost-effectiveness analysis and preparation of regulatory filings including annual status updates to the Virginia State Corporation Commission, and technical analysis and testimony for regulatory approval of program updates and modifications.

Georgia Power Company - DSM Program Analysis and IRP Support (2005 - 2019)

Jim provided technical and regulatory support for Georgia Power Company's DSM program analysis in the residential and commercial markets for their 2007, 2010, 2013, 2016, and 2019 IRP filings. The program analysis support included comprehensive compilation and assessment of applicable DSM measures and technologies across the residential, commercial, and industrial sectors, as well as the determination of the overall market potential through four separate technical potential studies (completed in 2007, 2012, 2015, and 2018). Jim also led the portfolio planning efforts that included developing preliminary program designs, savings targets, and budgets, along with supporting cost-effectiveness analysis to determine the feasibility of individual measures and program offerings for implementation.

Elizabethtown Gas - DSM Program Design and Regulatory Support (2016 - 2018)

In support of Elizabethtown Gas, Jim led technical and regulatory support to develop updated DSM program offerings for residential and commercial customers. He worked collaboratively with Elizabethtown Gas to develop cost-beneficial programs for eligible customers. Activities included program cost-effectiveness analysis and testimony preparation for regulatory program filing with the New Jersey Board of Public Utilities.

Dominion Virginia Power - Program Development and Regulatory Support (2014 - 2016)

Jim served as the program design lead and expert witness in support of Dominion Virginia Power's regulatory filing for three proposed DSM program offerings. He provided input on the delivery structure, eligibility criteria, and cost-effectiveness analysis in the development of program offerings.

Docket Nos. 20240012-EG to 20240017-EG Herndon Background and Qualifications Exhibit JH-1, Page 4 of 4

Jim Herndon, Vice President

Additionally, Jim provided written and oral testimony on behalf of Dominion Virginia Power in support of the technical analysis on the feasibility and cost-effectiveness of the programs to the Virginia State Corporation Commission.

Los Angeles Department of Water and Power (LADWP) - Energy Efficiency Potential Study (2013 - 2015)

Jim managed the development of an energy efficiency potential study for the LADWP. Under his direction, his team quantified the energy efficiency potential for LADWP's service territory, including collection of primary data through facility auditing to determine the energy efficiency potential of facilities owned by the City of Los Angeles. The study followed industry best practices to determine energy efficiency potential and undertook unique approaches to aggregate and bundle measures into program delivery channels to identify all possible achievable savings. The study informed LADWP's short-term program planning, as well as updates to their 10-year program planning targets.

CPS Energy - Market Potential Study, DSM Program Design, and M&V (2008 - 2014)

Jim provided technical expertise and support for DSM services to CPS Energy, which included: developing an energy efficiency market potential study, designing, and implementing DSM programs, and performing program measurement and verification (M&V). The comprehensive market potential study analyzed the economic and achievable energy and demand impacts of cost-effective DSM measures across CPS Energy's residential, commercial, and industrial customer segments. The program design utilized the identified market potential to enhance CPS Energy's existing DSM programs and provided recommendations on new programs that target CPS Energy's long-term energy efficiency goals. Jim and his team also provided annual M&V of CPS Energy's DSM programs.

Danville Utilities - Residential Program Design and Implementation (2011 - 2013)

Jim led the initial development of Danville Utilities' Home\$ave program in Virginia. This residential program initiative included a suite of energy efficiency measures targeting Danville's residential customer base. Jim managed the rollout of the program offering that included rebate processing, trade ally outreach, marketing support, and verification of measure installation and achieved energy savings.

CONFERENCE PRESENTATIONS

Herndon, J. (2023). "Foundations of Energy Efficiency: Program Planning & Delivery", Southeast Energy Summit, October 2023, Atlanta, GA.

Herndon, J.; Jacot, D. (2015). "LADWP EE Potential Study: Innovative Approach to Achievable Potential," International Energy Program Evaluation Conference (IEPEC), August 2015, Long Beach, CA.

Technical Potential Study of Demand Side Management

Florida Power & Light Company

Date: 03.07.2024

Table of Contents

1.1 Method 1.1.1 1.1.2 1.1.3 1.2 Saving 1.2.1 1.2.2 1.2.3	mmary EE Potential	iii iv iv iv iv iv
1.1 Method 1.1.1 1.1.2 1.1.3 1.2 Saving 1.2.1 1.2.2 1.2.3	DR Potential DSRE Potential DSRE Potential DSRE Potential DSRE Potential DR Potential DR Potential	iii iv iv iv iv iv
1.1.2 1.1.3 1.2 Savind 1.2.1 1.2.2 1.2.3	DR Potential DSRE Potential gs Potential EE Potential DR Potential DSRE Potential	iv iv iv v
1.1.3 1.2 Savine 1.2.1 1.2.2 1.2.3	DSRE Potentialgs Potential EE Potential DR Potential	iv iv iv
1.2 Saving 1.2.1 1.2.2 1.2.3	gs Potential EE Potential DR Potential DSRE Potential	iv iv v
1.2.1 1.2.2 1.2.3	EE Potential	iv
1.2.2 1.2.3	DR Potential DSRE Potential	V
1.2.3	DSRE Potential	
_		vi
Introduct	•	
	ion	1
2.1 Techr	nical Potential Study Approach	1
2.2 EE Po	tential Overview	3
2.3 DR Pc	otential Overview	3
2.4 DSRE	Potential Overview	4
Baseline	Forecast Development	5
3.1 Marke	et Characterization	5
3.1.1	Customer Segmentation	5
3.1.2	Forecast Disaggregation	7
3.2 Analy	sis of Customer Segmentation	9
3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9
3.2.2 Analysis	Non-Residential (Commercial and Industrial) Customers (EE and DSRE	10
3.2.3	Commercial and Industrial Accounts (DR Analysis)	12
3.3 Analy	sis of System Load	12
3.3.1	System Energy Sales	12
3.3.2	System Demand	13
3.3.3	Load Disaggregation	13
	2.2 EE Po 2.3 DR Po 2.4 DSRE Baseline I 3.1 Marke 3.1.1 3.1.2 3.2 Analy 3.2.1 3.2.2 Analysis 3.2.3 3.3 Analy 3.3.1 3.3.2	2.2 EE Potential Overview 2.3 DR Potential Overview 2.4 DSRE Potential Overview Baseline Forecast Development 3.1 Market Characterization 3.1.1 Customer Segmentation 3.1.2 Forecast Disaggregation 3.2 Analysis of Customer Segmentation 3.2.1 Residential Customers (EE, DR, and DSRE Analysis) 3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis) 3.2.3 Commercial and Industrial Accounts (DR Analysis) 3.3 Analysis of System Load 3.3.1 System Energy Sales 3.3.2 System Demand

4	DSM Mea	asure Development	16
	4.1 Meth	odology	16
	4.2 EE M	easures	16
	4.3 DR M	leasures	19
	4.4 DSRE	Measures	20
5	Technical	l Potential	22
	5.1 Meth	odology	22
	5.1.1	EE Technical Potential	22
	5.1.2	DR Technical Potential	25
	5.1.3	DSRE Technical Potential	27
	5.1.4	Interaction of Technical Potential Impacts	31
	5.2 EETe	echnical Potential	32
	5.2.1	Summary	32
	5.2.2	Residential	33
	5.2.3	Non-Residential	35
	5.3 DR Te	echnical Potential	38
	5.3.1	Residential	39
	5.3.2	Non-Residential	39
	5.4 DSRE	Technical Potential	40
Аp	pendix A	EE Measure List	A-1
Аp	pendix B	DR Measure List	B-1
Аp	pendix C	DSRE Measure List	C-1
Ap	pendix D	External Measure Suggestions	D-1

Executive Summary

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of Florida Power & Light Company's (FPL) service area.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for FPL.

1.1.2 DR Potential

The assessment of DR potential in FPL's service area was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for FPL when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	5,257	3,983	22,839
Non-Residential ¹	2,831	2,493	15,299
Total	8,088	6,476	38,138

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	
Residential	14,527	7,650	
Non-Residential	8,741	8,460	
Total	23,268	16,110	

¹ Non-Residential results include all commercial and industrial customer segments.

V

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of FPL's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)	
PV Systems	PV Systems			
Residential	9,142	1,438	71,354	
Non-Residential	2,699	196	18,926	
Total	11,841	1,634	90,280	
Battery Storage charged from PV Systems				
Residential	1,456	4,811	0	
Non-Residential	379	1,013	0	
Total	1,835	5,824	0	
CHP Systems				
Total	1,857	979	8,171	

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

2 Introduction

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

• Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of FPL's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with FPL's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

Introduction

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's
 official electric energy forecast to create a baseline electric energy forecast. This
 forecast does not include any utility-specific assumptions around DSM performance.
 Resource Innovations applied customer segmentation and consumption data from
 each utility and data from secondary sources to describe baseline customer-class and
 end-use components. Additional details on the forecast disaggregation are included in
 Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to FPL's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to FPL's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for FPL, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

Introduction

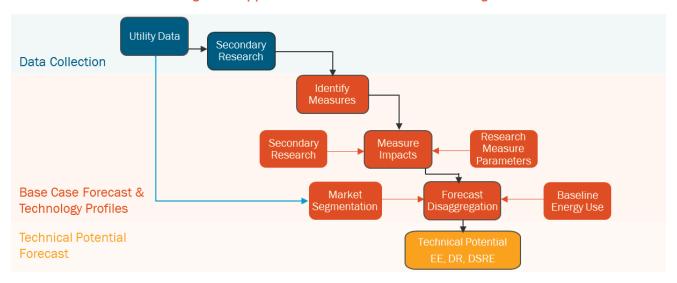


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with FPL. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at account-level interval data for a sample of customers within each segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak.

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 11 of 85

Introduction

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3.1 Market Characterization

The FPL base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of FPL's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Table 4. Customer Segmentation

Residential	Commercial		Indust	rial
Single Family	Assembly	Miscellaneous	Agriculture and	Primary
			Assembly	Resources
				Industries
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/
	University		Plastics	Clay/Concrete
Manufactured	Grocery	Restaurant	Construction	Textiles and
Homes				Leather
	Healthcare	Retail	Electrical and	Transportation
			Electronic	Equipment
			Equipment	
	Hospitals	Schools K-12	Lumber/Furniture/	Water and
			Pulp/Paper	Wastewater
	Institutional	Warehouse	Metal Products	Other
			and Machinery	
	Lodging/		Miscellaneous	
	Hospitality		Manufacturing	

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Space heating ³	Space heating ³	Process heating
Space cooling ³	Space cooling ³	Process cooling
Domestic hot water	Domestic hot water	Compressed air
Ventilation and circulation	Ventilation and circulation	Motors/pumps

³ Includes the contribution of building envelope measures and efficiencies.

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Lighting	Interior lighting	Fan, blower motors
Cooking	Exterior lighting	Process-specific
Appliances	Cooking	Industrial lighting
Electronics	Refrigeration	Exterior lighting
Miscellaneous	Office equipment	HVAC ³
	Miscellaneous	Other

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from FPL. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented FPL's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by FPL, primarily their 2023 Ten-Year Site Plan, which was the most recent plan available at the time the studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized FPL's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with FPL's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on FPL's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o FPL rate class load share is based on average per customer.
 - o Resource Innovations made conversions to usage estimates generated by applying EIA RECS data, residential end-use study data received from other FEECA utilities, and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

- The disaggregation was based on FPL's rate class load shares, intensities, and EIA CBECS data.
- Segment data from EIA and FPL.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:

o Rate class load share based on EIA CBECS and end-use forecasts from FPL.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data.
- Segment data from EIA and FPL.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA MECS and end-use forecasts from FPL.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. FPL provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

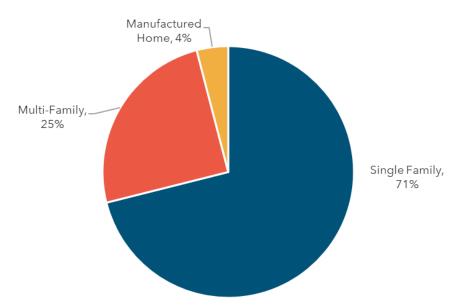


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3 and Figure 4.

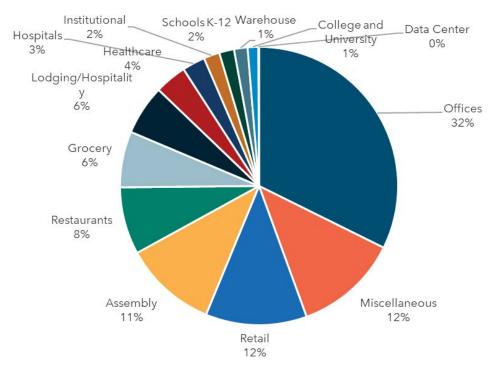
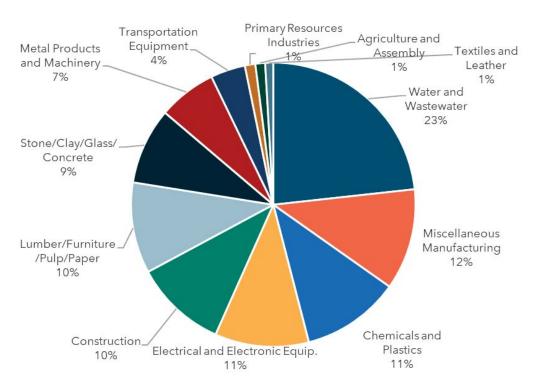



Figure 3. Commercial Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by FPL.

Table 6 shows the account breakout between small C&I and large C&I.

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	360,182
	15,001-25,000 kWh	81,685
Small C&I	25,001-50,000 kWh	78,842
	50,001 kWh +	36,567
	Total	557,276
	0-50 kW	64,699
	51-300 kW	49,692
Large C&I	301-500 kW	5,141
	501 kW +	4,332
	Total	123,864

Table 6. Summary of Customer Classes for DR Analysis

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on FPL's load forecast for the year 2025 from their 2023 Ten Year Site Plan, which is illustrated in Figure 5.

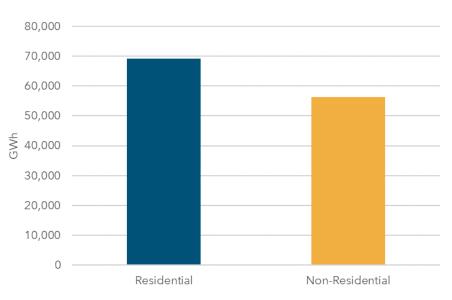


Figure 5. 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for FPL. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The utility summer and winter peaks were then identified within the utility-defined peaking conditions. For FPL the summer peaking conditions were defined as August from 4:00-5:00 PM and the winter peaking conditions were defined as January from 7:00-8:00 AM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 6, Figure 7, and Figure 8.

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

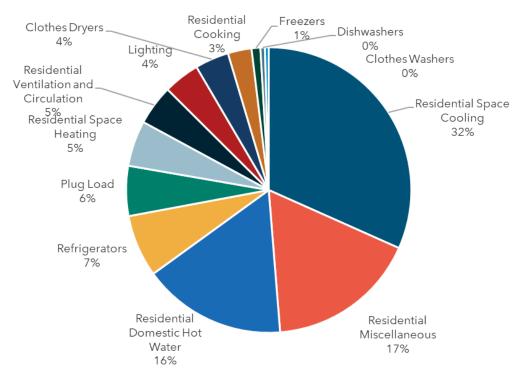
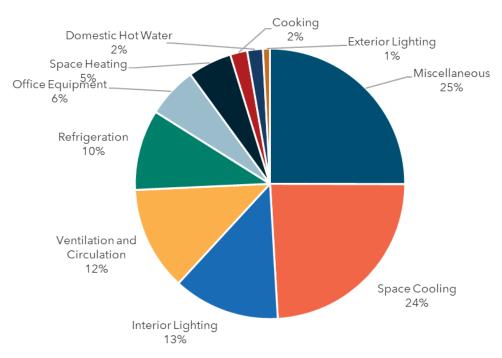



Figure 6. Residential Baseline (2025) Energy Sales by End-Use

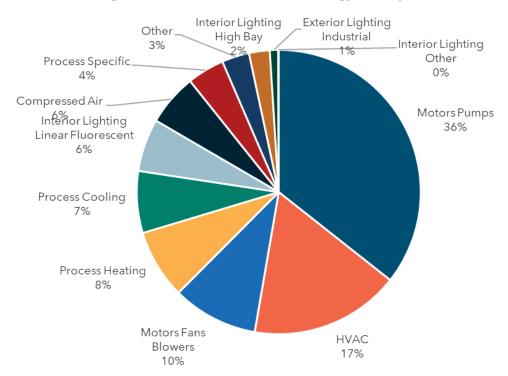


Figure 8. Industrial Baseline (2025) Energy Sales by End-Use

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures
 that are not applicable due to climate or customer characteristics were excluded, as
 were "emerging" technologies that are not currently commercially available to FEECA
 utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts, and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through
 engineering algorithms or building simulation modeling, taking climate data and
 customer segments into consideration as appropriate. Reference sources used for
 developing residential, commercial, and industrial measure savings included a variety
 of Florida-specific, as well as regional and national sources, such as utility-specific
 measurement & verification (M&V) data, technical reference manuals (TRM) from
 other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer
 specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as FPL's program tracking data. These factors are described in Table 7.

Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	Utility RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	Utility customer data, Various secondary sources and engineering experience.

As shown in Table 8, the measure list includes 400 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,683 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1221,209Commercial1665,910Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** Utility control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based on time of day. Includes CPP when the rate is substantially higher for a limited number of hours or days per year (customers receive advance notification of CPP event) coupled with technology that enables customer to lower their usage in a specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. Utility dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

20

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 28 of 85

DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (*i.e.*, it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- **Total Stock Square Footage by Segment** = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (*i.e.*, it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with FPL's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 33 of 85

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. For FPL, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using a sample of customer interval data provided by FPL. This sample included a customer breakout based on housing type for residential customers and size for small C&I customers. Resource Innovations then used the interval data from these customers to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 9 (a similar methodology was used to predict heating loads).

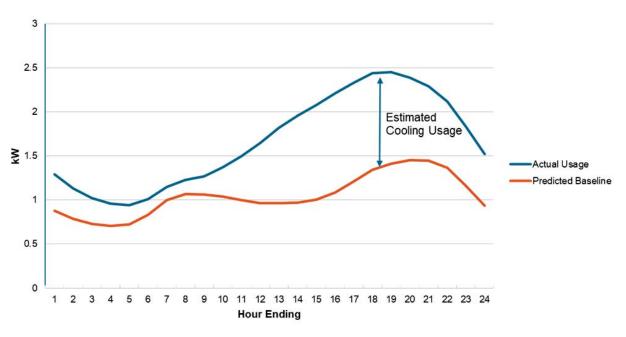


Figure 9: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the seven different customer segments within the residential and small C&I sectors.

Profiles for residential water heater and pool pump loads were estimated by utilizing enduse load data from NREL's residential end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 4:00-5:00 PM for summer, and January from 7:00-8:00 AM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial, and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - o For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

29

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

After determination of minimum kWh thresholds by segment, Resource Innovations used the utility-provided customer data with NAICS or SIC codes as well as annual consumption data. Non-residential customers were then categorized by segment and size. Customers with annual loads below the kWh thresholds are not expected to have the consistent electric and thermal loads necessary to support CHP and were eliminated from consideration.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each segment, CHP technologies were assigned to utility customers in a top-down fashion (*i.e.*, starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 10.

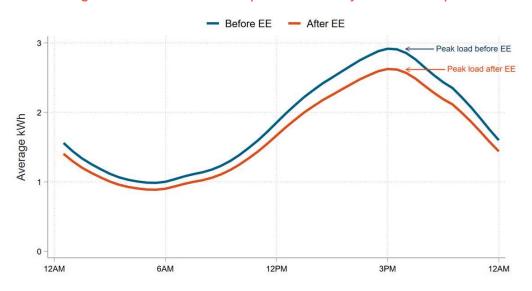


Figure 10: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

• The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - o For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Table 9. EE Technical Potential

		Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)		
Residential	5,257	3,983	22,839		
Non-Residential ⁶	2,831	2,493	15,299		
Total	8,088	6,476	38,138		

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 11, Figure 12, and Figure 13 summarize the residential sector EE technical potential by end-use.

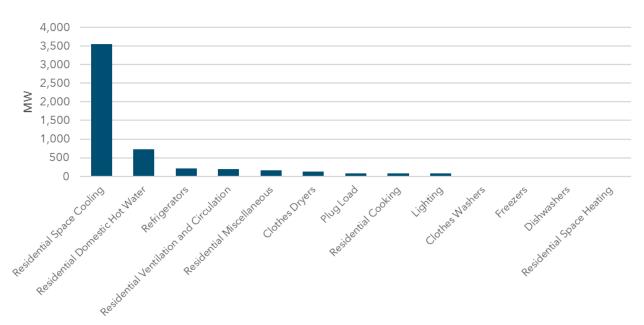


Figure 11: Residential EE Technical Potential by End-Use (Summer Peak Savings)

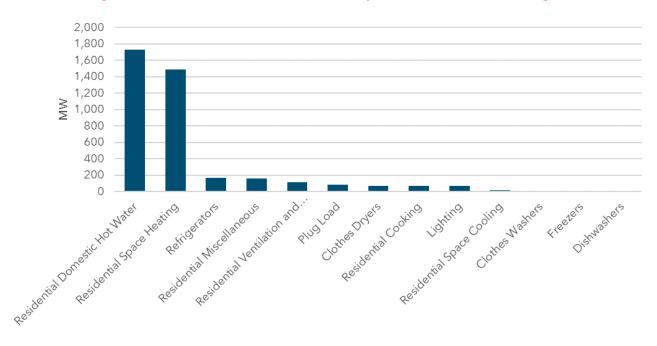
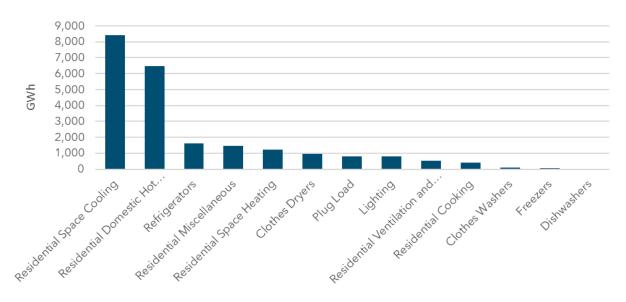



Figure 12: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Commercial Segments

Figure 14, Figure 15, and Figure 16 summarize the commercial sector EE technical potential by end-use.

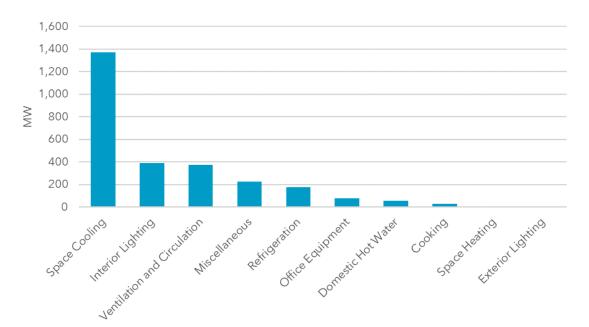


Figure 14: Commercial EE Technical Potential by End-Use (Summer Peak Savings)

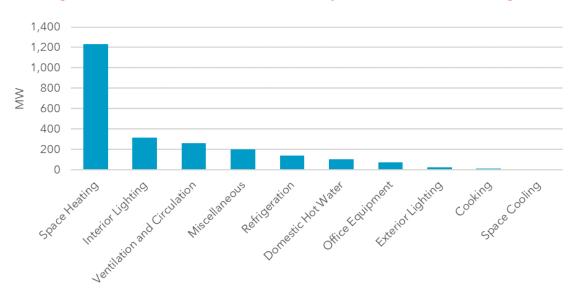
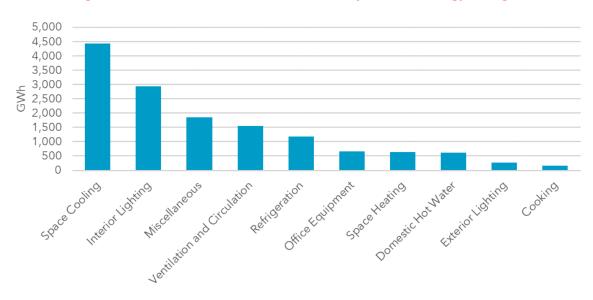



Figure 15: Commercial EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3.2 Industrial Segments

Figure 17, Figure 18, and Figure 19 summarize the industrial sector EE technical potential by end-use.

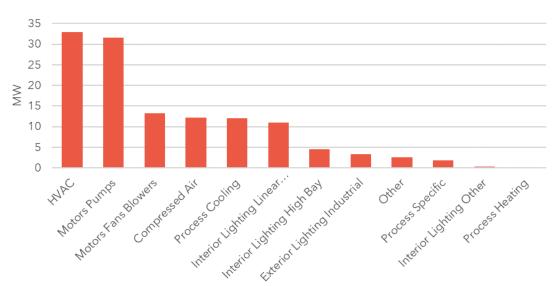
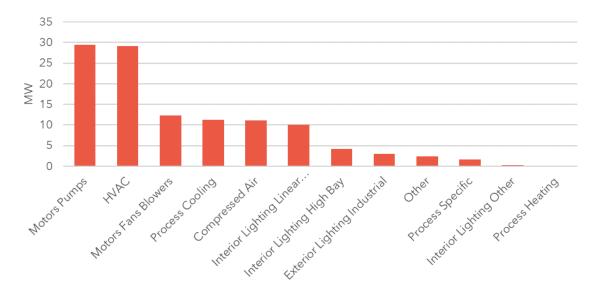



Figure 17: Industrial EE Technical Potential by End-Use (Summer Peak Savings)

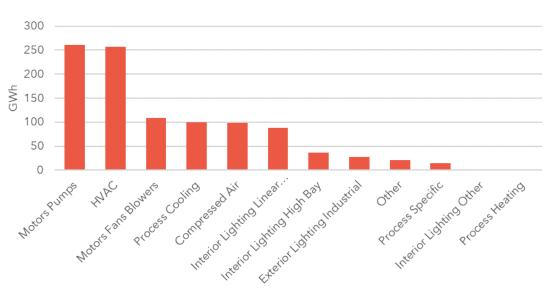


Figure 19: Industrial EE Technical Potential by End-Use (Energy Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in FPL's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e., direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (*i.e.*, that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

Table 10. DR Technical Potential

	Savings Potential		
	Summer Peak Winter Pe Demand (MW) Demand (I		
Residential	14,527	7,650	
Non-Residential	8,741	8,460	
Total	23,268	16,110	

5.3.1 Residential

Residential technical potential is summarized in Figure 20.

EV Charging
Pool Pump
Water Heater
Space Cooling
Space Heating

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Technical Potential (MW)

Figure 20: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 21.

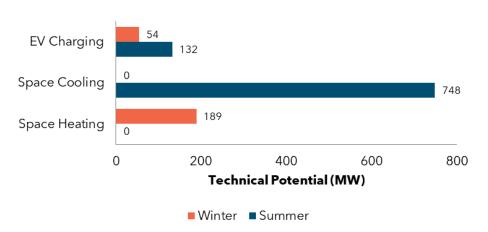


Figure 21: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 22 provides the technical potential for large C&I customers, broken down by customer size.

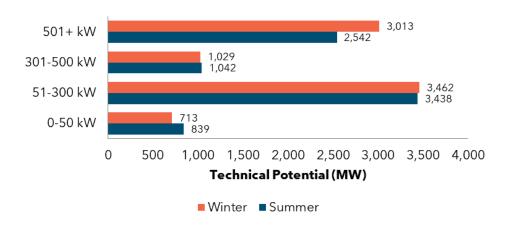


Figure 22: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential				
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)		
PV Systems					
Residential	9,142	1,438	71,354		
Non-Residential	2,699	196	18,926		
Total	11,841	1,634	90,280		
Battery Storage charge	ed from PV Systems				
Residential	1,456	4,811	0		
Non-Residential	379	1,013	0		
Total	1,835	5,824	0		
CHP Systems					
Total	1,857	979	8,171		

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling,	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 50 of 85

Measure	End-Use	Description	Baseline
(from elec resistance)	Residential Space Heating		
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R- 15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling,	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 51 of 85

Measure	End-Use	Description	Baseline
	Residential Space Heating		
Ceiling Insulation (R2 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 52 of 85

Measure	End-Use	Description	Baseline
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu- Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 53 of 85

Measure	End-Use	Description	Baseline
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 54 of 85

Measure	End-Use	Description	Baseline
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy-Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat	Single zone HVAC system
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 55 of 85

Measure	End-Use	Description	Baseline
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 56 of 85

Measure	End-Use	Description	Baseline
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semi- conditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation (Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves

Measure	End-Use	Description	Baseline
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 58 of 85

Measure	End-Use	Description	Baseline
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti-Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti- Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R30)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R30)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 59 of 85

Measure	End-Use	Description	Baseline
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One-Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One-Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 60 of 85

Measure	End-Use	Description	Baseline
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 61 of 85

Measure	End-Use	Description	Baseline
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self-Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self- Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4-Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 62 of 85

Measure	End-Use	Description	Baseline
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 63 of 85

Measure	End-Use	Description	Baseline
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key-Card	Guest Room HVAC Unit, Manually Controlled by Guest

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 64 of 85

Measure	End-Use	Description	Baseline
		Activated Energy Control System	
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 65 of 85

Measure	End-Use	Description	Baseline
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop computers and monitors plugged into a n	One computer and monitor, manually controlled
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach-In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach- In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk-In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach-In Case with equivalent size Q- Sync Evaporator Fan Motor	Medium Temperature Reach- In Case with 20W Permanent Split Capacitor Fan Motor

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 66 of 85

Measure	End-Use	Description	Baseline
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro- Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches	Walk-in cooler without strip curtains

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 67 of 85

Measure	End-Use	Description	Baseline
		thick covering the entire area of the doorway	
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above-Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP

Measure	End-Use	Description	Baseline
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto- Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 69 of 85

Measure	End-Use	Description	Baseline
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 70 of 85

Measure	End-Use	Description	Baseline
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U- Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plugin timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 71 of 85

Measure	End-Use	Description	Baseline
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 72 of 85

Measure	End-Use	Description	Baseline
Sensors, Ceiling Mounted			
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 73 of 85

Measure	End-Use	Description	Baseline
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 74 of 85

Measure	End-Use	Description	Baseline
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro- Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning	
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control

EE Measure List

Measure	End-Use	Description	Baseline
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump 7.5 HP HVAC Pump Motor, Control	
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study 8 :

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 76 of 85

Sector	Measure	End-Use	Reason for Removal
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 79 of 85

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 81 of 85

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves - both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures – and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossilgas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

External Measure Suggestions

Docket Nos. 20240012-EG to 20240017-EG TPS For Florida Power & Light Exhibit JH-2, Page 85 of 85

Technical Potential Study of Demand Side Management

Duke Energy Florida

Date: 03.07.2024

Table of Contents

Ta	ble of Con	tents	i
Ex	ecutive Su	mmary	iii
	1.1 Meth	odology	iii
	1.1.1	EE Potential	iii
	1.1.2	DR Potential	iv
	1.1.3	DSRE Potential	iv
	1.2 Savin	gs Potential	iv
	1.2.1	EE Potential	iv
	1.2.2	DR Potential	V
	1.2.3	DSRE Potential	vi
2	Introduct	tion	1
	2.1 Tech	nical Potential Study Approach	1
	2.2 EE Po	otential Overview	3
	2.3 DR P	otential Overview	3
	2.4 DSRE	Potential Overview	4
3	Baseline	Forecast Development	5
	3.1 Mark	et Characterization	5
	3.1.1	Customer Segmentation	5
	3.1.2	Forecast Disaggregation	7
	3.2 Analy	sis of Customer Segmentation	
	3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9
	3.2.2 Analysi	Non-Residential (Commercial and Industrial) Customers (EE and DSRE s)	10
	3.2.3	Commercial and Industrial Accounts (DR Analysis)	12
	3.3 Analy	ysis of System Load	12
	3.3.1	System Energy Sales	12
	3.3.2	System Demand	13
	3.3.3	Load Disaggregation	13

4	DSM Mea	asure Development	16
	4.1 Meth	odology	16
	4.2 EE M	easures	16
	4.3 DR M	leasures	19
	4.4 DSRE	Measures	20
5	Technical	l Potential	22
	5.1 Meth	odology	22
	5.1.1	EE Technical Potential	22
	5.1.2	DR Technical Potential	25
	5.1.3	DSRE Technical Potential	27
	5.1.4	Interaction of Technical Potential Impacts	31
	5.2 EE Te	echnical Potential	32
	5.2.1	Summary	32
	5.2.2	Residential	33
	5.2.3	Non-Residential	35
	5.3 DR Te	echnical Potential	38
	5.3.1	Residential	39
	5.3.2	Non-Residential	39
	5.4 DSRE	Technical Potential	41
App	endix A	EE Measure List	A-1
App	endix B	DR Measure List	B-1
App	endix C	DSRE Measure List	C-1
Apr	endix D	External Measure Suggestions	D-1

Executive Summary

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of Duke Energy Florida's (DEF) service territory.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for DEF.

1.1.2 DR Potential

The assessment of DR potential in DEF's service territory was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for DEF when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	2,217	2,423	7,599
Non-Residential ¹	669	450	3,591
Total	2,886	2,873	11,190

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	
Residential	3,147	3,218	
Non-Residential	2,631	2,391	
Total	5,778	5,609	

¹ Non-Residential results include all commercial and industrial customer segments.

V

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of DEF's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)	
PV Systems				
Residential	1,761	152	17,637	
Non-Residential	444	15	4,164	
Total	2,205	167	21,801	
Battery Storage charged from PV Systems				
Residential	2,016	2,176	0	
Non-Residential	240	315	0	
Total	2,256	2,491	0	
CHP Systems				
Total	773	811	3,553	

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

• Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of DEF's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with DEF's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's official electric energy forecast to create a baseline electric energy forecast. This forecast does not include any utility-specific assumptions around DSM performance. Resource Innovations applied customer segmentation and consumption data from each utility and data from secondary sources to describe baseline customer-class and end-use components. Additional details on the forecast disaggregation are included in Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to DEF's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to DEF's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for DEF, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

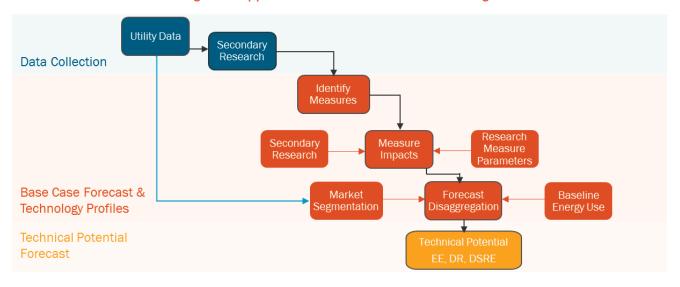


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with DEF. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at account-level interval data for a sample of customers within each segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak.

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3 Baseline Forecast Development

3.1 Market Characterization

The DEF base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of DEF's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Baseline Forecast Development

Table 4. Customer Segmentation

Residential	Commercial		Industrial	
Single Family	Assembly	Miscellaneous	Agriculture and	Primary
			Assembly	Resources
				Industries
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/
	University		Plastics	Clay/Concrete
Manufactured	Grocery	Restaurant	Construction	Textiles and
Homes				Leather
	Healthcare	Retail	Electrical and	Transportation
			Electronic	Equipment
			Equipment	
	Hospitals	Schools K-12	Lumber/Furniture/	Water and
			Pulp/Paper	Wastewater
	Institutional	Warehouse	Metal Products	Other
			and Machinery	
	Lodging/		Miscellaneous	
	Hospitality		Manufacturing	

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Space heating ³	Space heating ³	Process heating
Space cooling ³	Space cooling ³	Process cooling
Domestic hot water	Domestic hot water	Compressed air
Ventilation and circulation	Ventilation and circulation	Motors/pumps

³ Includes the contribution of building envelope measures and efficiencies.

Baseline Forecast Development

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Lighting	Interior lighting	Fan, blower motors
Cooking	Exterior lighting	Process-specific
Appliances	Cooking	Industrial lighting
Electronics	Refrigeration	Exterior lighting
Miscellaneous	Office equipment	HVAC ³
	Miscellaneous	Other

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from DEF. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented DEF's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by DEF, primarily their 2023 Ten-Year Site Plan, which was the most recent plan available at the time the studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized DEF's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with DEF's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on DEF's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o DEF rate class load share is based on average per customer.
 - o Resource Innovations made conversions to usage estimates generated by applying Duke Energy's 2022 Residential End-Use Appliance Study, EIA RECS data, and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

- The disaggregation was based on DEF's rate class load shares, intensities, and EIA CBECS data.
- Segment data from EIA and DEF.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:

o Rate class load share based on EIA CBECS and end-use forecasts from DEF.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data.
- Segment data from EIA and DEF.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA MECS and end-use forecasts from DEF.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. DEF provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

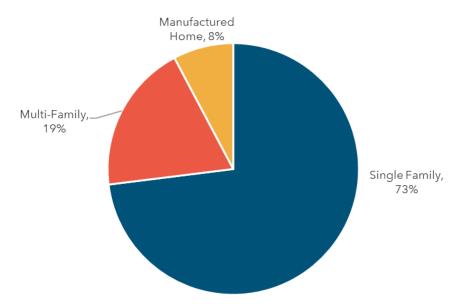


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3 and Figure 4.

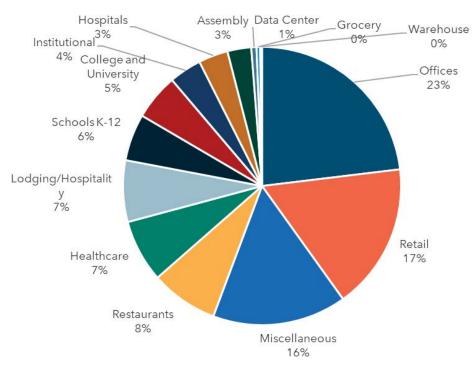
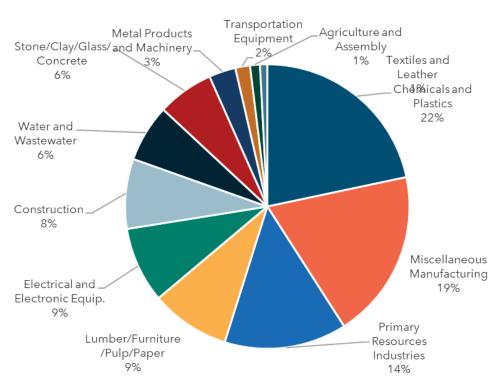



Figure 3. Commercial Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by DEF.

Table 6 shows the account breakout between small C&I and large C&I.

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	113,449
	15,001-25,000 kWh	15,600
Small C&I	25,001-50,000 kWh	10,446
	50,001 kWh +	7,403
	Total	146,898
	0-50 kW	35,795
	51-300 kW	8,700
Large C&I	301-500 kW	850
	501 kW +	924
	Total	46,269

Table 6. Summary of Customer Classes for DR Analysis

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on DEF's load forecast for the year 2025 from their 2023 Ten Year Site Plan, which is illustrated in Figure 5.

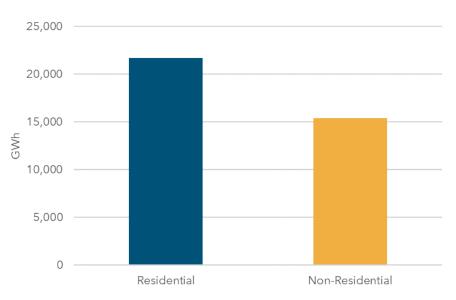


Figure 5. 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for DEF. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The utility summer and winter peaks were then identified within the utility-defined peaking conditions. For DEF the summer peaking conditions were defined as August from 4:00-5:00 PM and the winter peaking conditions were defined as January from 7:00-8:00 AM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 6, Figure 7, and Figure 8.

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

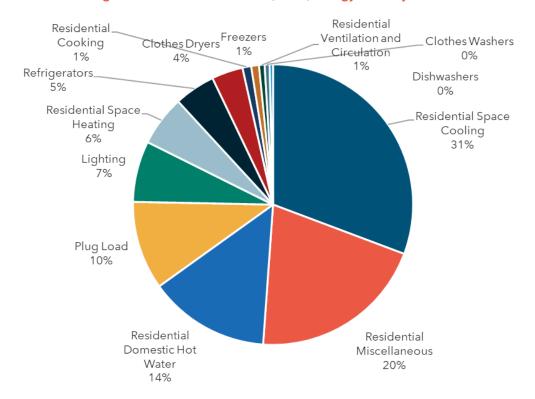


Figure 6. Residential Baseline (2025) Energy Sales by End-Use

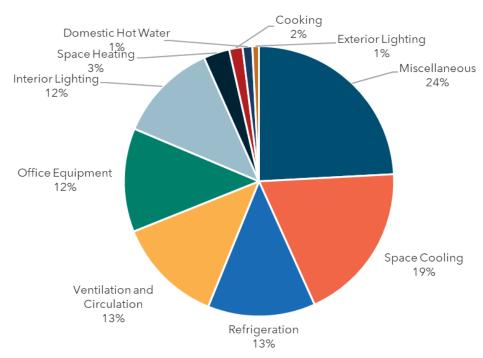
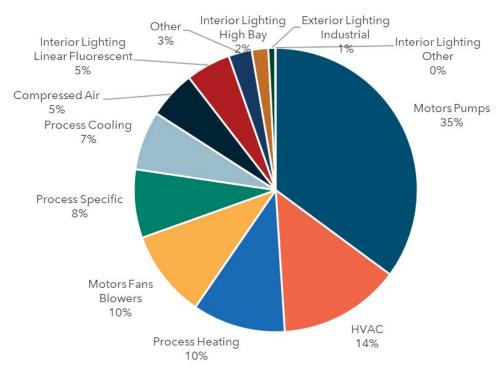



Figure 7. Commercial Baseline (2025) Energy Sales by End-Use

4 DSM Measure Development

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures that are not applicable due to climate or customer characteristics were excluded, as were "emerging" technologies that are not currently commercially available to FEECA utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through
 engineering algorithms or building simulation modeling, taking climate data and
 customer segments into consideration as appropriate. Reference sources used for
 developing residential, commercial, and industrial measure savings included a variety
 of Florida-specific, as well as regional and national sources, such as utility-specific
 measurement & verification (M&V) data, technical reference manuals (TRM) from
 other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer
 specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as DEF's program tracking data. These factors are described in Table 7.

Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	Utility RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	Utility customer data, Various secondary sources and engineering experience.

As shown in Table 8, the measure list includes 395 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,535 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1191,173Commercial1645,798Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** Utility control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based on time of day. Includes CPP when the rate is substantially higher for a limited number of hours or days per year (customers receive advance notification of CPP event) coupled with technology that enables customer to lower their usage in a specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. Utility dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

20

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 28 of 84

DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (*i.e.*, it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- **Total Stock Square Footage by Segment** = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (*i.e.*, it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with DEF's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 33 of 84

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. For DEF, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using a sample of customer interval data provided by DEF. This sample included a customer breakout based on housing type for residential customers and size for small C&I customers. Resource Innovations then used the interval data from these customers to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 9 (a similar methodology was used to predict heating loads).

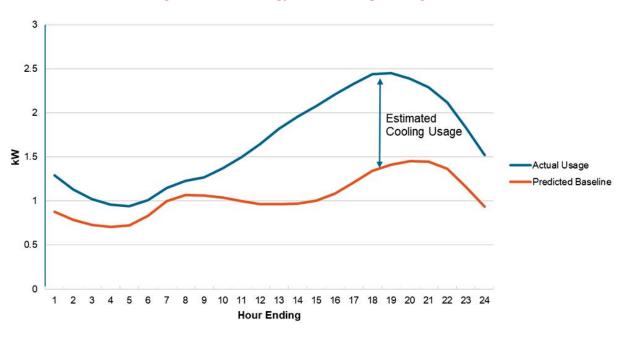


Figure 9: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the seven different customer segments within the residential and small C&I sectors.

Profiles for residential pool pump loads were estimated by utilizing utility-specific end-use load data provided by DEF. Profiles for residential water heater loads were estimated by using NREL's end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 4:00-5:00 PM for summer, and January from 7:00-8:00 AM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial, and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - o For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

29

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

After determination of minimum kWh thresholds by segment, Resource Innovations used the utility-provided customer data with NAICS or SIC codes as well as annual consumption data. Non-residential customers were then categorized by segment and size. Customers with annual loads below the kWh thresholds are not expected to have the consistent electric and thermal loads necessary to support CHP and were eliminated from consideration.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each segment, CHP technologies were assigned to utility customers in a top-down fashion (*i.e.*, starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 10.

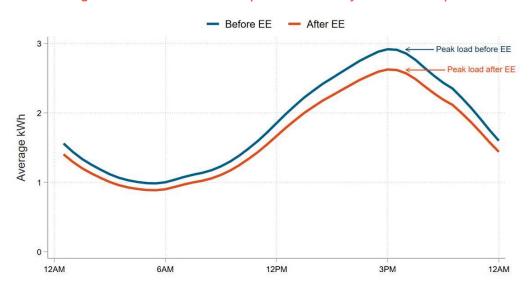


Figure 10: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

• The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - o For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Table 9. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	2,217	2,423	7,599
Non-Residential ⁶	669	450	3,591
Total	2,886	2,873	11,190

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 11, Figure 12, and Figure 13 summarize the residential sector EE technical potential by end-use.

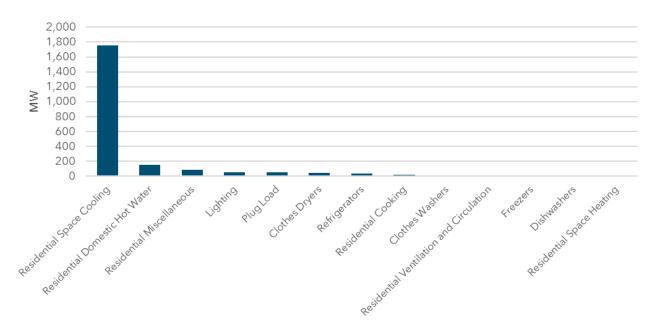


Figure 11: Residential EE Technical Potential by End-Use (Summer Peak Savings)

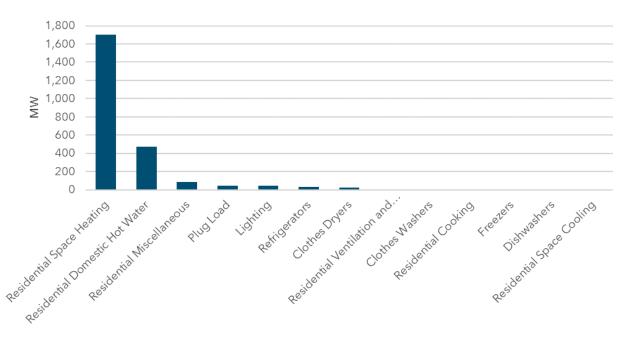
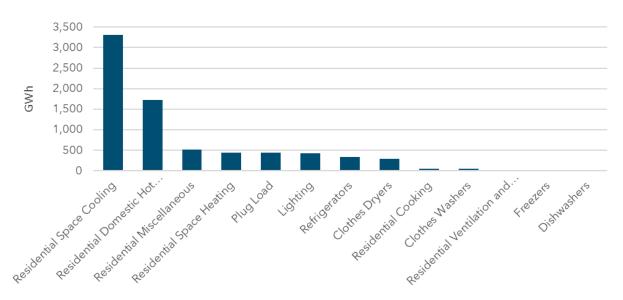



Figure 12: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Commercial Segments

Figure 14, Figure 15, and Figure 16 summarize the commercial sector EE technical potential by end-use.

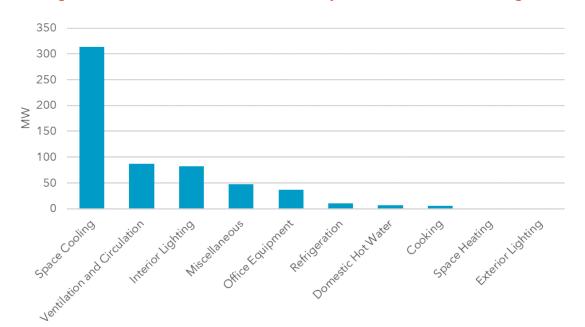


Figure 14: Commercial EE Technical Potential by End-Use (Summer Peak Savings)

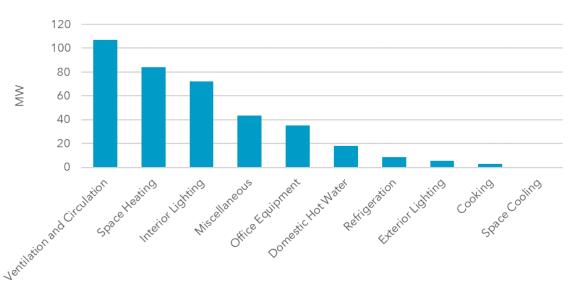
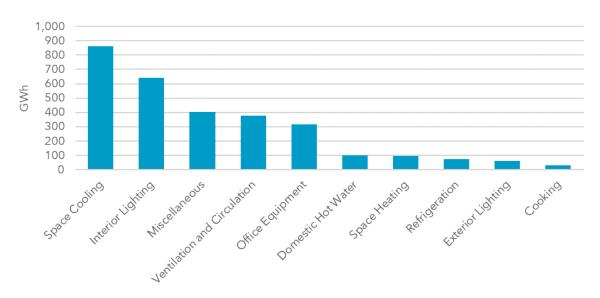



Figure 15: Commercial EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3.2 Industrial Segments

Figure 17, Figure 18, and Figure 19 summarize the industrial sector EE technical potential by end-use.

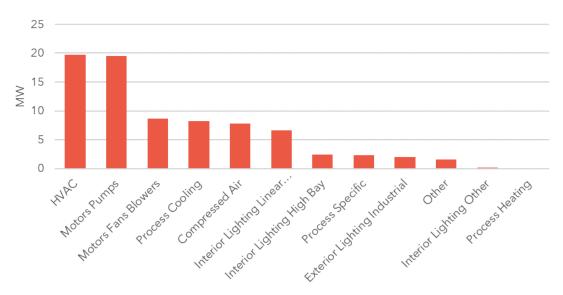
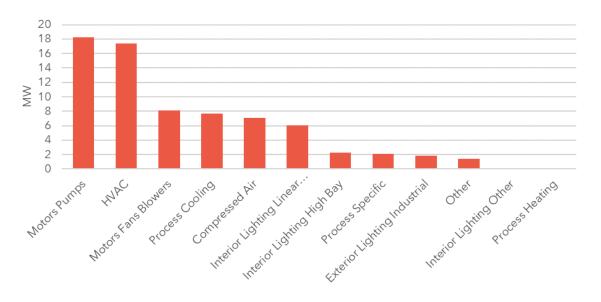



Figure 17: Industrial EE Technical Potential by End-Use (Summer Peak Savings)

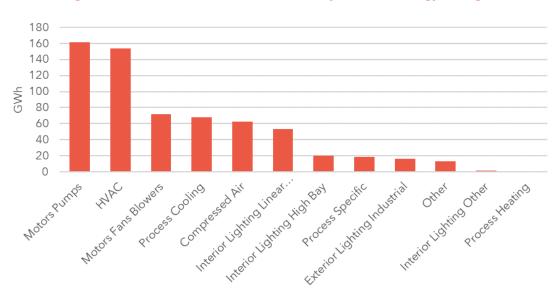


Figure 19: Industrial EE Technical Potential by End-Use (Energy Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in DEF's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e., direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (*i.e.*, that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

5,609

5,778

Table 10. DR Technical Potential

5.3.1 Residential

Total

Residential technical potential is summarized in Figure 20.

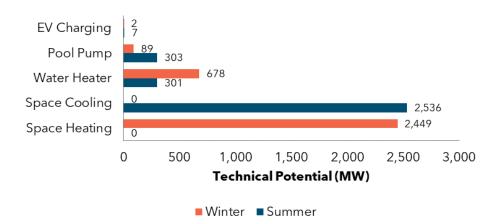


Figure 20: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 21.

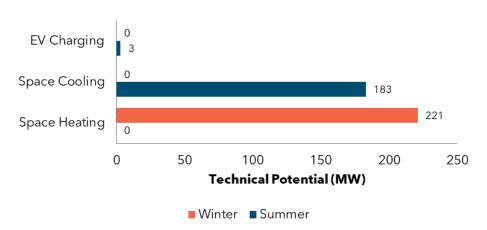


Figure 21: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 22 provides the technical potential for large C&I customers, broken down by customer size.

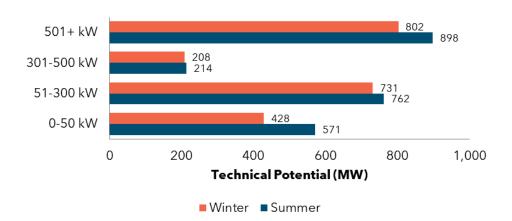


Figure 22: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential		
	Summer Peak Demand (MW) Demand (MW)		Energy (GWh)
PV Systems			
Residential	1,761	152	17,637
Non-Residential	444	15	4,164
Total	2,205	167	21,801
Battery Storage charged from PV Systems			
Residential	2,016	2,176	0
Non-Residential	240	315	0
Total	2,256	2,491	0
CHP Systems			
Total	773	811	3,553

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 50 of 84

EE Measure List

Measure	End-Use	Description	Baseline
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R- 15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 51 of 84

Measure	End-Use	Description	Baseline
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/ CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu-Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 52 of 84

Measure	End-Use	Description	Baseline
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 53 of 84

Measure	End-Use	Description	Baseline
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy- Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 54 of 84

Measure	End-Use	Description	Baseline
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat	Single zone HVAC system
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 55 of 84

Measure	End-Use	Description	Baseline
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semiconditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation (Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation (Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 57 of 84

Measure	End-Use	Description	Baseline
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti- Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti- Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 58 of 84

Measure	End-Use	Description	Baseline
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non- functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 59 of 84

Measure	End-Use	Description	Baseline
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy- Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy- Grade Full-Size Convection Oven
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 60 of 84

Measure	End-Use	Description	Baseline
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy- Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self- Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self- Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy- Grade 4-Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 61 of 84

Measure	End-Use	Description	Baseline
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 62 of 84

Measure	End-Use	Description	Baseline
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key- Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 63 of 84

Measure	End-Use	Description	Baseline
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 64 of 84

Measure	End-Use	Description	Baseline
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop computers and monitors plugged into a n	One computer and monitor, manually controlled
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach-In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach- In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk- In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 65 of 84

Measure	End-Use	Description	Baseline
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach-In Case with equivalent size Q-Sync Evaporator Fan Motor	Medium Temperature Reach- In Case with 20W Permanent Split Capacitor Fan Motor
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro-Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Retro-Commissioning (Existing Construction)_VT	Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 66 of 84

Measure	End-Use	Description	Baseline
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in cooler without strip curtains
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above- Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from	No heat recovery

Measure	End-Use	Description	Baseline
		refrigeration system to space heating or hot water	
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 68 of 84

Measure	End-Use	Description	Baseline
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 69 of 84

Measure	End-Use	Description	Baseline
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plugin timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 70 of 84

Measure	End-Use	Description	Baseline
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 71 of 84

Measure	End-Use	Description	Baseline
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 72 of 84

Measure	End-Use	Description	Baseline
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 73 of 84

Measure	End-Use	Description	Baseline
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro- Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning	
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled

EE Measure List

Measure	End-Use	Description	Baseline
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study⁸:

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 75 of 84

Sector	Measure	End-Use	Reason for Removal
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard
Commercial	High Efficiency HID Lighting	Exterior Lighting	Market standard
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 78 of 84

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

B-3

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 80 of 84

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves - both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures - and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossilgas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

Docket Nos. 20240012-EG to 20240017-EG TPS for Duke Energy Florida Exhibit JH-3, Page 84 of 84

Technical Potential Study of Demand Side Management

Tampa Electric Company

Date: 03.07.2024

Table of Contents

Tal	ble of Con	tents	i
Ex	ecutive Su	mmary	iii
	1.1 Meth	odology	iii
	1.1.1	EE Potential	iii
	1.1.2	DR Potential	iv
	1.1.3	DSRE Potential	iv
	1.2 Savir	ngs Potential	iv
	1.2.1	EE Potential	iv
	1.2.2	DR Potential	v
	1.2.3	DSRE Potential	vi
2	Introduc	tion	1
	2.1 Tech	nical Potential Study Approach	1
	2.2 EE P	otential Overview	3
	2.3 DR P	otential Overview	3
	2.4 DSRE	Potential Overview	4
3	Baseline	Forecast Development	5
	3.1 Mark	Market Characterization5	
	3.1.1	Customer Segmentation	5
	3.1.2	Forecast Disaggregation	7
	3.2 Anal	ysis of Customer Segmentation	9
	3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9
	3.2.2 Analysi	Non-Residential (Commercial and Industrial) Customers (EE and DSRE s)	10
	3.2.3	Commercial and Industrial Accounts (DR Analysis)	12
	3.3 Anal	ysis of System Load	12
	3.3.1	System Energy Sales	12
	3.3.2	System Demand	13
	3.3.3	Load Disaggregation	13

4	DSM Mea	asure Development	16
	4.1 Meth	odology	16
	4.2 EE M	easures	16
	4.3 DR M	easures	19
	4.4 DSRE	Measures	20
5	Technical	Potential	22
	5.1 Meth	odology	22
	5.1.1	EE Technical Potential	22
	5.1.2	DR Technical Potential	25
	5.1.3	DSRE Technical Potential	27
	5.1.4	Interaction of Technical Potential Impacts	31
	5.2 EE Te	echnical Potential	32
	5.2.1	Summary	32
	5.2.2	Residential	33
	5.2.3	Non-Residential	35
	5.3 DR Te	echnical Potential	38
	5.3.1	Residential	39
	5.3.2	Non-Residential	39
	5.4 DSRE	Technical Potential	40
Аp	pendix A	EE Measure List	A-1
Аp	pendix B	DR Measure List	B-1
Аp	pendix C	DSRE Measure List	C-1
Аp	pendix D	External Measure Suggestions	D-1

Executive Summary

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of Tampa Electric Company's (TECO) service territory.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for TECO.

1.1.2 DR Potential

The assessment of DR potential in TECO's service territory was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for TECO when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

	Savings Potential		
	Summer Peak Winter Peak Ener Demand (MW) Demand (MW) (GW		
Residential	992	445	3,197
Non-Residential ¹	398	334	2,272
Total	1,390	779	5,469

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential		
	Summer Peak Demand (MW) Demand (MW		
Residential	1,541	1,439	
Non-Residential	1,571	1,691	
Total	3,112	3,130	

¹ Non-Residential results include all commercial and industrial customer segments.

v

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of TECO's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential		
	Summer Peak Demand (MW)		
PV Systems			
Residential	484	51	8,000
Non-Residential	165	6	2,236
Total	649	57	10,236
Battery Storage charged from PV Systems			
Residential	598	876	0
Non-Residential	120	205	0
Total	718	1081	0
CHP Systems			
Total	358	286	1,768

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

2 Introduction

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

• Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of TECO's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with TECO's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

Introduction

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's official electric energy forecast to create a baseline electric energy forecast. This forecast does not include any utility-specific assumptions around DSM performance. Resource Innovations applied customer segmentation and consumption data from each utility and data from secondary sources to describe baseline customer-class and end-use components. Additional details on the forecast disaggregation are included in Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to TECO's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to TECO's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for TECO, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

Introduction

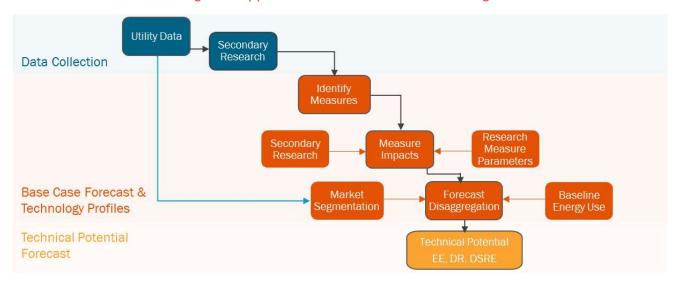


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with TECO. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at account-level interval data for a sample of customers within each segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak.

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 11 of 84

Introduction

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3.1 Market Characterization

The TECO base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of TECO's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Table 4. Customer Segmentation

Residential	Commercial		Industrial	
Single Family	Assembly Miscellaneous		Agriculture and	Primary
			Assembly	Resources
				Industries
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/
	University		Plastics	Clay/Concrete
Manufactured	Grocery	Restaurant	Construction	Textiles and
Homes				Leather
	Healthcare	Retail	Electrical and	Transportation
			Electronic	Equipment
			Equipment	
	Hospitals	Schools K-12	Lumber/Furniture/	Water and
			Pulp/Paper	Wastewater
	Institutional	Warehouse	Metal Products	Other
			and Machinery	
	Lodging/		Miscellaneous	
	Hospitality		Manufacturing	

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Space heating ³	Space heating ³	Process heating
Space cooling ³	Space cooling ³	Process cooling
Domestic hot water	Domestic hot water	Compressed air
Ventilation and circulation	Ventilation and circulation	Motors/pumps

³ Includes the contribution of building envelope measures and efficiencies.

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Lighting	Interior lighting	Fan, blower motors
Cooking	Exterior lighting	Process-specific
Appliances	Cooking	Industrial lighting
Electronics	Refrigeration	Exterior lighting
Miscellaneous	Office equipment	HVAC ³
	Miscellaneous	Other

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from TECO. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented TECO's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by TECO, primarily their 2023 Ten-Year Site Plan, which was the most recent plan available at the time the studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized TECO's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with TECO's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on TECO's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o TECO rate class load share is based on average per customer.
 - Resource Innovations made conversions to usage estimates generated by applying TECO's customer audit & saturation survey, EIA RECS data, residential end-use study data received from other FEECA utilities, and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

- The disaggregation was based on TECO's rate class load shares, intensities, and EIA CBECS data.
- Segment data from EIA and TECO.

- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA CBECS and end-use forecasts from TECO.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data.
- Segment data from EIA and TECO.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA MECS and end-use forecasts from TECO.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. TECO provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

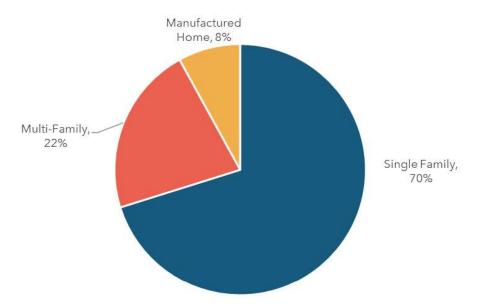


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3 and Figure 4.

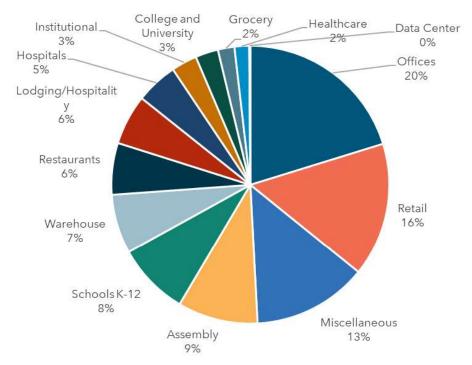
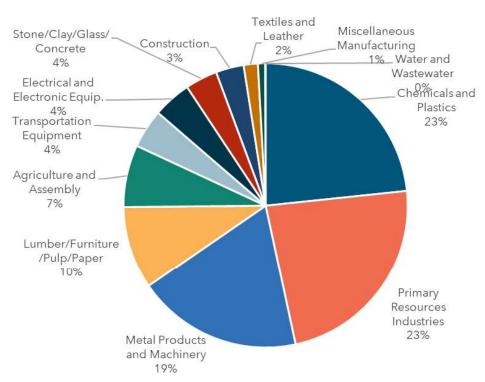



Figure 3. Commercial Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by TECO.

Table 6 shows the account breakout between small C&I and large C&I.

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	43,294
	15,001-25,000 kWh	9,444
Small C&I	25,001-50,000 kWh	9,104
	50,001 kWh +	3,304
	Total	65,146
	0-50 kW	8,716
	51-300 kW	6,487
Large C&I	301-500 kW	738
	501 kW +	738
	Total	16,679

Table 6. Summary of Customer Classes for DR Analysis

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on TECO's load forecast for the year 2025 from their 2023 Ten Year Site Plan, which is illustrated in Figure 5.

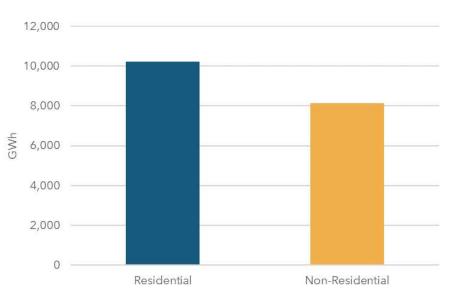


Figure 5. 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for TECO. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The utility summer and winter peaks were then identified within the utility-defined peaking conditions. For TECO the summer peaking conditions were defined as August from 5:00-6:00 PM and the winter peaking conditions were defined as January from 7:00-8:00 AM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 6, Figure 7, and Figure 8.

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

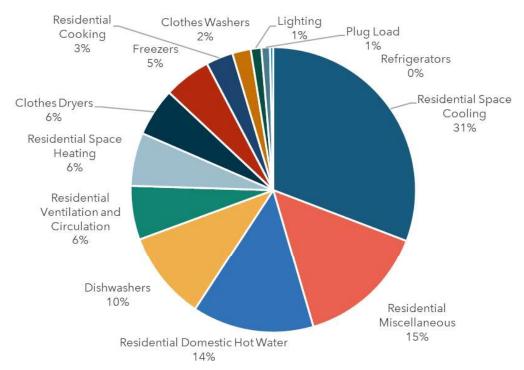
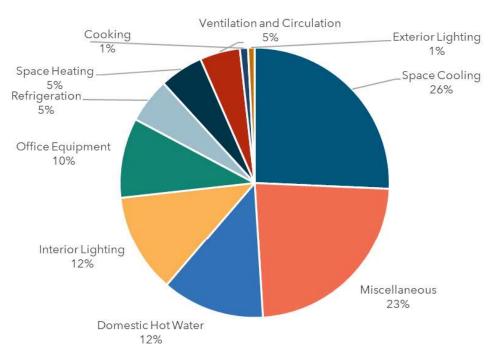



Figure 6. Residential Baseline (2025) Energy Sales by End-Use

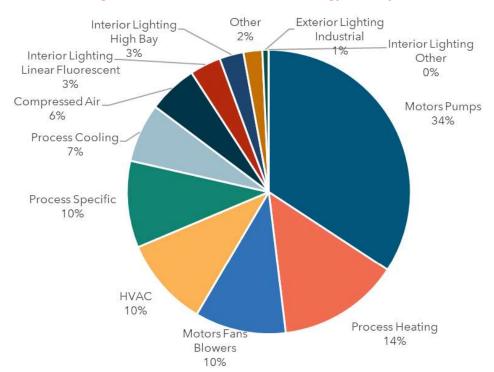


Figure 8. Industrial Baseline (2025) Energy Sales by End-Use

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures that are not applicable due to climate or customer characteristics were excluded, as were "emerging" technologies that are not currently commercially available to FEECA utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts, and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through engineering algorithms or building simulation modeling, taking climate data and customer segments into consideration as appropriate. Reference sources used for developing residential, commercial, and industrial measure savings included a variety of Florida-specific, as well as regional and national sources, such as utility-specific measurement & verification (M&V) data, technical reference manuals (TRM) from other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as TECO's program tracking data. These factors are described in Table 7.

 Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	Utility RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	Utility customer data, Various secondary sources and engineering experience.

As shown in Table 8, the measure list includes 395 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,535 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (i.e., a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1191,173Commercial1645,798Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** Utility control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based on time of day. Includes CPP when the rate is substantially higher for a limited number of hours or days per year (customers receive advance notification of CPP event) coupled with technology that enables customer to lower their usage in a specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. Utility dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

20

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 28 of 84

DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (i.e., it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- **Total Stock Square Footage by Segment** = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (i.e., it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with TECO's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 33 of 84

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. For TECO, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using a sample of customers' interval data provided by TECO. This sample included a customer breakout based on housing type for residential customers and size for small C&I customers. Resource Innovations then used the interval data from these customers to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 9 (a similar methodology was used to predict heating loads).

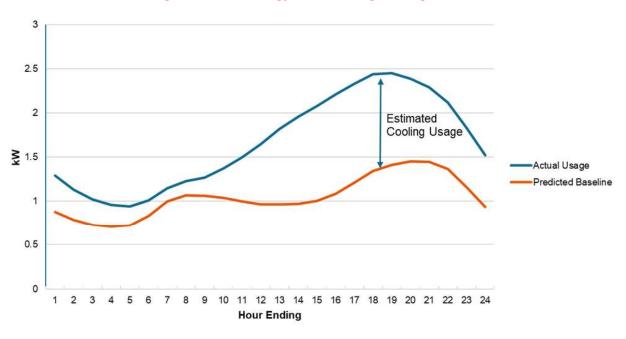


Figure 9: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the seven different customer segments within the residential and small C&I sectors.

Profiles for residential water heater and pool pump loads were estimated by utilizing enduse load data from NREL's residential end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 5:00-6:00 PM for summer, and January from 7:00-8:00 AM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial, and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - o For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

29

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

Resource Innovations worked with the utility-provided customer data, focusing on annual consumption due to the absence of NAICS or SIC codes for this utility data. Non-residential customers were subsequently classified based on annual consumption and size. Since NAICS or SIC codes were unavailable, no formal segmentation occurred. Instead, the analysis focused exclusively on annual utility usage. Facilities with annual loads below the kWh thresholds were deemed unlikely to possess the consistent electric and thermal loads necessary to support CHP and were consequently excluded from consideration. Conversely, those meeting the size criteria were aligned with the corresponding CHP technology.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each

segment, CHP technologies were assigned to utility customers in a top-down fashion (i.e., starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 10.

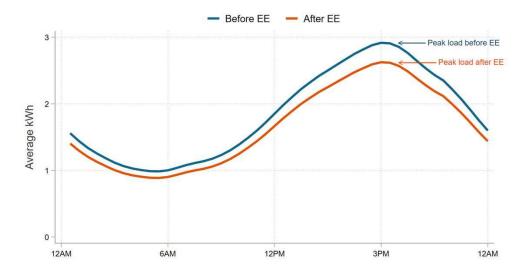


Figure 10: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

 The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Table 9. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Energy (GWh)	
Residential	992	445	3,197
Non-Residential ⁶	398	334	2,272
Total	1,390	779	5,469

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 11, Figure 12, and Figure 13 summarize the residential sector EE technical potential by end-use.

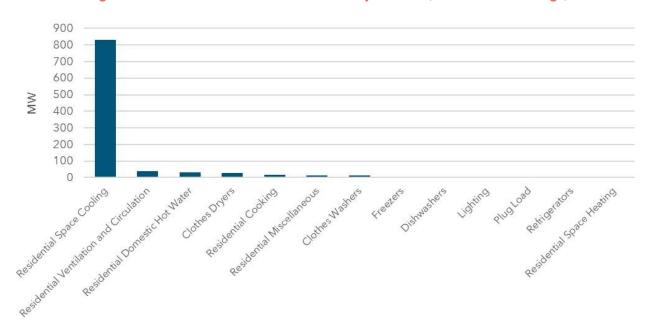


Figure 11: Residential EE Technical Potential by End-Use (Summer Peak Savings)

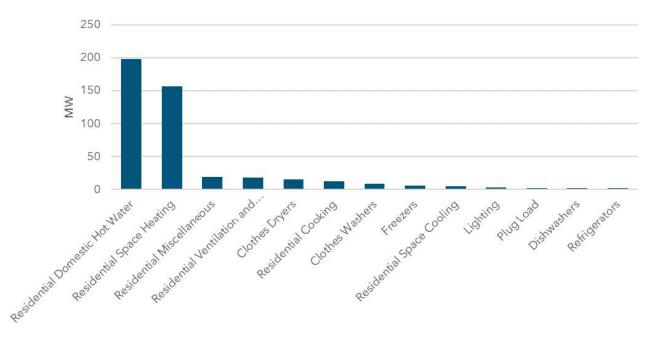
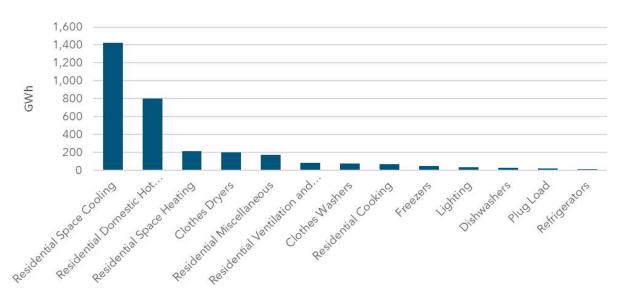



Figure 12: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Commercial Segments

Figure 14, Figure 15, and Figure 16 summarize the commercial sector EE technical potential by end-use.

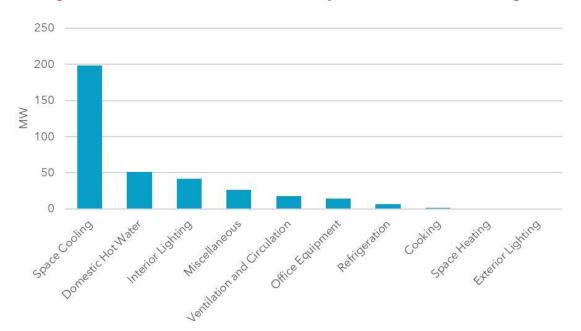


Figure 14: Commercial EE Technical Potential by End-Use (Summer Peak Savings)

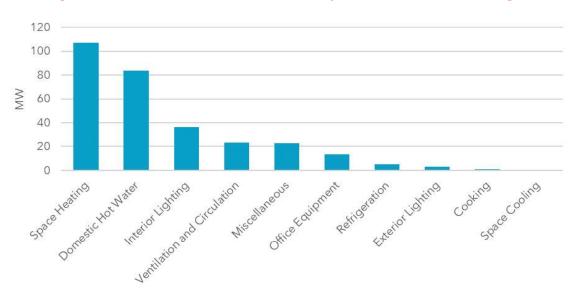
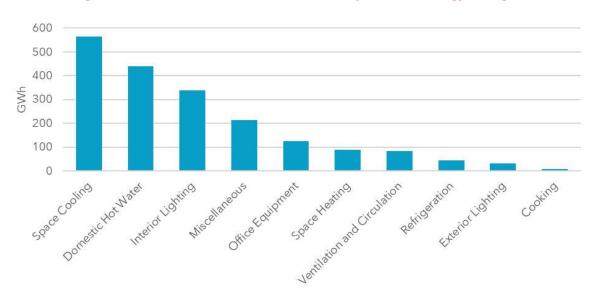



Figure 15: Commercial EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3.2 Industrial Segments

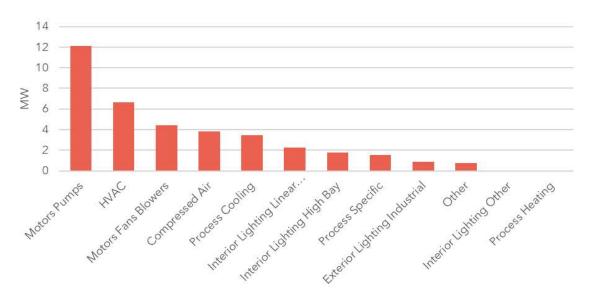

Figure 17, Figure 18, and Figure 19 summarize the industrial sector EE technical potential by end-use.

Figure 17: Industrial EE Technical Potential by End-Use (Summer Peak Savings)

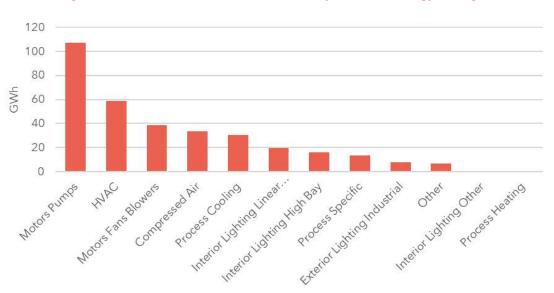


Figure 19: Industrial EE Technical Potential by End-Use (Energy Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in TECO's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e., direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (i.e., that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

Table 10. DR Technical Potential

	Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)
Residential	1,541	1,439
Non-Residential	1,571	1,691
Total	3,112	3,130

5.3.1 Residential

Residential technical potential is summarized in Figure 20.

Pool Pump
Water Heater
Space Cooling
Space Heating

0

1,343

1,343

Technical Potential (MW)

Figure 20: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 21.

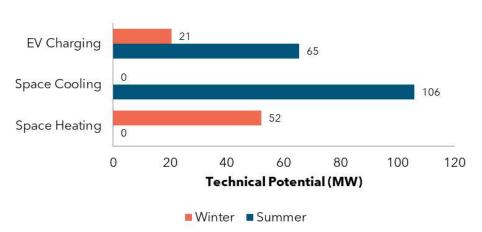


Figure 21: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 22 provides the technical potential for large C&I customers, broken down by customer size.

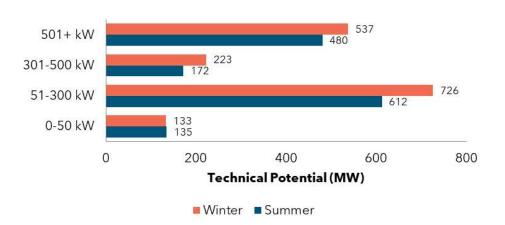


Figure 22: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential			
	Summer Peak Winter Peak Demand (MW) Demand (MW)		Energy (GWh)	
PV Systems				
Residential	484	51	8,000	
Non-Residential	165	6	2,236	
Total	649	57	10,236	
Battery Storage charge	ed from PV Systems			
Residential	598	876	0	
Non-Residential	120	205	0	
Total	718	1081	0	
CHP Systems				
Total	358	286	1,768	

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 50 of 84

Measure	End-Use	Description	Baseline
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R- 15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 51 of 84

Measure	End-Use	Description	Baseline
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu-Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 52 of 84

Measure	End-Use	Description	Baseline
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 53 of 84

Measure	End-Use	Description	Baseline
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy- Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 54 of 84

Measure	End-Use	Description	Baseline
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat	Single zone HVAC system
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 55 of 84

Measure	End-Use	Description	Baseline
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semiconditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation(Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation(Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 57 of 84

Measure	End-Use	Description	Baseline
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti- Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti- Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation(R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation(R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation(R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation(R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 58 of 84

Measure	End-Use	Description	Baseline
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer

Measure	End-Use	Description	Baseline
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 60 of 84

Measure	End-Use	Description	Baseline
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self- Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self-Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4-Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting	One Standard Storage Type Hot/Cold Water Cooler Unit

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 61 of 84

Measure	End-Use	Description	Baseline
		ENERGY STAR Version 3.0 Standards	
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 62 of 84

Measure	End-Use	Description	Baseline
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 63 of 84

Measure	End-Use	Description	Baseline
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key- Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 64 of 84

Measure	End-Use	Description	Baseline
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop computers and monitors plugged into a n	One computer and monitor, manually controlled
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach- In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach-In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk- In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor

Measure	End-Use	Description	Baseline
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach- In Case with equivalent size Q-Sync Evaporator Fan Motor	Medium Temperature Reach-In Case with 20W Permanent Split Capacitor Fan Motor
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro- Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 66 of 84

Measure	End-Use	Description	Baseline
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in cooler without strip curtains
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above- Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP

Measure	End-Use	Description	Baseline
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk- In Refrigerator Door without Auto-Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 68 of 84

Measure	End-Use	Description	Baseline
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled 500 Watts of Lighting, No I Setting	
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle

Measure	End-Use	Description	Baseline	
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code New Construction with Lighti Power Density meeting Code Minimum		
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator	
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood	
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)	
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER	
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp	
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC	
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)	
Engine Block Timer	Other	An engine block heater operated by an outdoor plugin timer	An engine block heater that is manually plugged in	
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning	
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled	
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat	
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve	
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls	
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons	
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER	

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 70 of 84

Measure	End-Use	Description	Baseline
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 71 of 84

Measure	End-Use	Description	Baseline
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 72 of 84

Measure	End-Use	Description	Baseline	
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting	
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction	
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies	
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System	
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater	
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal	
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed	
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code	
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled	
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled		
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled	
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled	
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER	
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling	
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat	
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof	

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 73 of 84

Measure	End-Use	Description	Baseline	
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System	
Retro- Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning		
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof	
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat	
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management	
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans	
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans	
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans	
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller	
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled	
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System	
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor	
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control	
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control	
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control	
VFD on process	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed	
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System	

EE Measure List

Measure	End-Use	Description	Baseline
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study⁸:

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 75 of 84

EE Measure List

Sector	Measure	End-Use	Reason for Removal
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 78 of 84

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

B-3

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 80 of 84

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves – both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Suggestion	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures - and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossilgas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

External Measure Suggestions

Docket Nos. 20240012-EG to 20240017-EG TPS for Tampa Electric Company Exhibit JH-4, Page 84 of 84

Technical Potential Study of Demand Side Management

Florida Public Utilities Company

Date: 03.07.2024

Table of Contents

Tal	ble of Con	tents	i		
Ex	ecutive Su	mmary	iii		
	1.1 Meth	odology	iii		
	1.1.1	EE Potential	iii		
	1.1.2	DR Potential	iv		
	1.1.3	DSRE Potential	iv		
	1.2 Savir	ngs Potential	iv		
	1.2.1	EE Potential	iv		
	1.2.2	DR Potential	v		
	1.2.3	DSRE Potential	vi		
2	Introduc	tion	1		
	2.1 Tech	nical Potential Study Approach	1		
	2.2 EE P	otential Overview	3		
	2.3 DR P	otential Overview	3		
	2.4 DSRE	E Potential Overview	4		
3	Baseline	Forecast Development	5		
	3.1 Mark	3.1 Market Characterization			
	3.1.1	Customer Segmentation	5		
	3.1.2	Forecast Disaggregation	7		
	3.2 Anal	ysis of Customer Segmentation			
	3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9		
	3.2.2 Analysi	Non-Residential (Commercial and Industrial) Customers (EE and DSRE s)	10		
	3.2.3	Commercial and Industrial Accounts (DR Analysis)	12		
	3.3 Anal	ysis of System Load	13		
	3.3.1	System Energy Sales	13		
	3.3.2	System Demand	13		
	3.3.3	Load Disaggregation	14		

4	DSM Mea	asure Development	16
	4.1 Meth	odology	16
	4.2 EE M	easures	16
	4.3 DR M	easures	19
	4.4 DSRE	Measures	20
5	Technical	Potential	22
	5.1 Meth	odology	22
	5.1.1	EE Technical Potential	22
	5.1.2	DR Technical Potential	25
	5.1.3	DSRE Technical Potential	27
	5.1.4	Interaction of Technical Potential Impacts	31
	5.2 EE Te	echnical Potential	32
	5.2.1	Summary	32
	5.2.2	Residential	33
	5.2.3	Non-Residential	35
	5.3 DR Te	echnical Potential	38
	5.3.1	Residential	39
	5.3.2	Non-Residential	39
	5.4 DSRE	Technical Potential	40
Аp	pendix A	EE Measure List	A-1
Аp	pendix B	DR Measure List	B-1
Аp	pendix C	DSRE Measure List	
Аp	pendix D	External Measure Suggestions	D-1

Executive Summary

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of Florida Public Utilities Company's (FPUC) service territory.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for FPUC.

1.1.2 DR Potential

The assessment of DR potential in FPUC's service territory was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for FPUC when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	26	15	97
Non-Residential ¹	14	12	71
Total	40	27	168

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential Summer Peak Winter Peak Demand (MW) Demand (MW)	
Residential	41	65
Non-Residential	27	24
Total	68	89

¹ Non-Residential results include all commercial and industrial customer segments.

v

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of FPUC's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
PV Systems			
Residential	17	10	152
Non-Residential	9	3	70
Total	26	13	222
Battery Storage charged from PV Systems			
Residential	5	2	0
Non-Residential	0	1	0
Total	5	3	0
CHP Systems			
Total	23	13	108

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

2 Introduction

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

 Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of FPUC's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with FPUC's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

Introduction

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's official electric energy forecast to create a baseline electric energy forecast. This forecast does not include any utility-specific assumptions around DSM performance. Resource Innovations applied customer segmentation and consumption data from each utility and data from secondary sources to describe baseline customer-class and end-use components. Additional details on the forecast disaggregation are included in Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to FPUC's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to FPUC's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for FPUC, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

Introduction

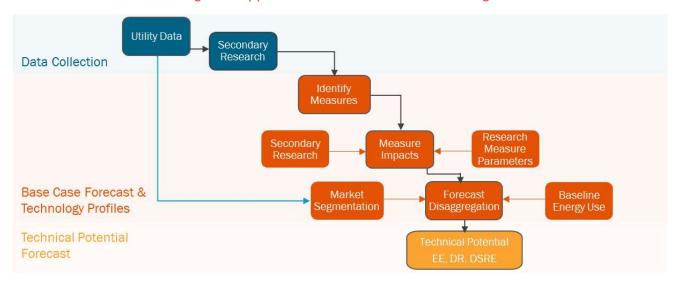


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with FPUC. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at account-level interval data for each customer segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak. FPUC customer interval

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 11 of 84

Introduction

data was unavailable and therefore, a sample of FPL customers' load data was used as proxy to estimate peak load profiles and demand response potential.

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3.1 Market Characterization

The FPUC base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of FPUC's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Table 4. Customer Segmentation

Residential	Commercial		Commercial Industrial		trial
Single Family	Assembly	Miscellaneous	Agriculture and	Primary	
			Assembly	Resources	
				Industries	
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/	
	University		Plastics	Clay/Concrete	
Manufactured	Grocery	Restaurant	Construction	Textiles and	
Homes				Leather	
	Healthcare	Retail	Electrical and	Transportation	
			Electronic	Equipment	
			Equipment		
	Hospitals	Schools K-12	Lumber/Furniture/	Water and	
			Pulp/Paper	Wastewater	
	Institutional	Warehouse	Metal Products	Other	
			and Machinery		
	Lodging/		Miscellaneous		
	Hospitality		Manufacturing		

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Space heating ³	Space heating ³	Process heating
Space cooling ³	Space cooling ³	Process cooling
Domestic hot water	Domestic hot water	Compressed air
Ventilation and circulation	Ventilation and circulation	Motors/pumps

³ Includes the contribution of building envelope measures and efficiencies.

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Lighting	Interior lighting	Fan, blower motors
Cooking	Exterior lighting	Process-specific
Appliances	Cooking	Industrial lighting
Electronics	Refrigeration	Exterior lighting
Miscellaneous	Office equipment	HVAC ³
	Miscellaneous	Other

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from FPUC. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented FPUC's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by FPUC, primarily their 2022 Long-Term Projections of Electricity Energy and Demand, which was the most recent plan available at the time the

studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized FPUC's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with FPUC's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on FPUC's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o FPUC rate class load share is based on average per customer.
 - Resource Innovations made conversions to usage estimates generated by applying EIA RECS data, residential end-use study data from other FEECA utilities and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

 The disaggregation was based on FPUC's rate class load shares, intensities, and EIA CBECS data.

- Segment data from EIA and FPUC.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA CBECS and end-use forecasts from FPUC.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data.
- Segment data from EIA and FPUC.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - Rate class load share based on EIA MECS and end-use forecasts from FPUC.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. FPUC provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

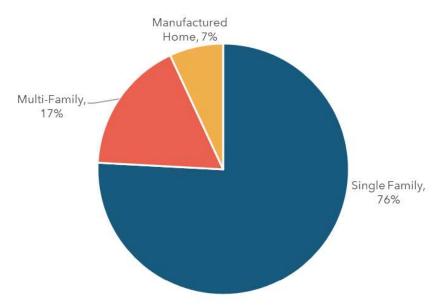


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3 and Figure 4.

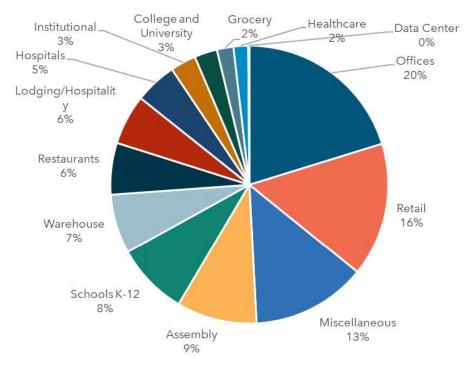
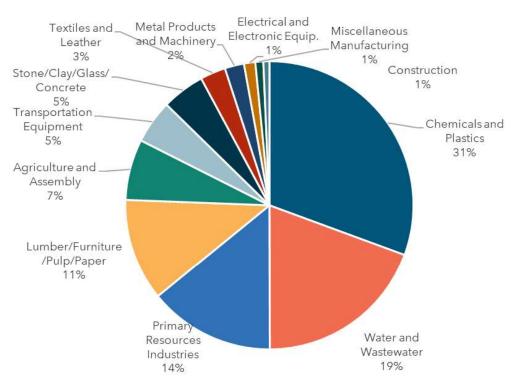



Figure 3. Commercial Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by FPUC.

Table 6 shows the account breakout between small C&I and large C&I.

Table 6. Summary of Customer Classes for DR Analysis

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	2,559
	15,001-25,000 kWh	566
Small C&I	25,001-50,000 kWh	457
	50,001 kWh +	246
	Total	3,828
	0-50 kW	269
	51-300 kW	327
Large C&I	301-500 kW	14
	501 kW +	8
	Total	618

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on FPUC's load forecast for the year 2025 from their 2022 Long-Term Projections of Electricity Energy and Demand, which is illustrated in Figure 5.

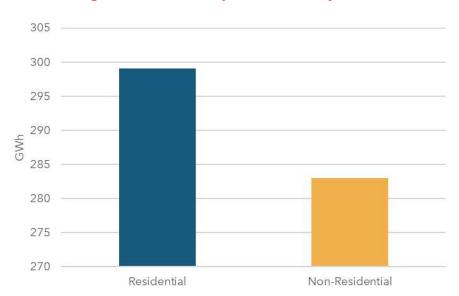


Figure 5. 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for FPUC. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The utility summer and winter peaks were then identified within the utility-defined peaking conditions. For FPUC the summer peaking conditions were defined as August from 4:00-5:00 PM and the winter peaking conditions were defined as January from 7:00-8:00 AM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 6, Figure 7, and Figure 8.

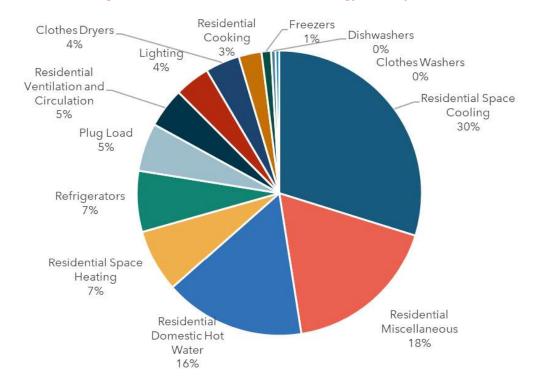


Figure 6. Residential Baseline (2025) Energy Sales by End-Use

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

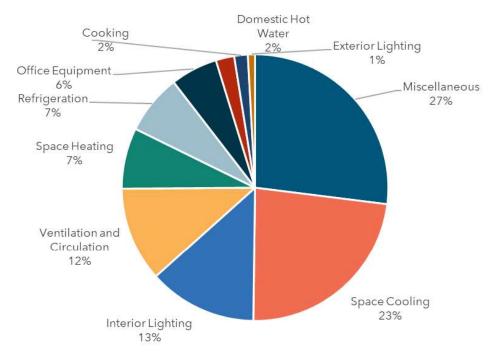
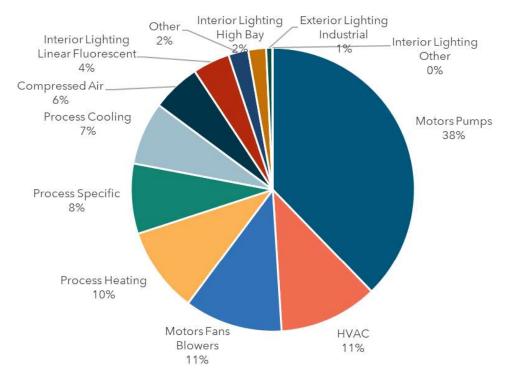



Figure 7. Commercial Baseline (2025) Energy Sales by End-Use

4 DSM Measure Development

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures that are not applicable due to climate or customer characteristics were excluded, as were "emerging" technologies that are not currently commercially available to FEECA utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts, and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through engineering algorithms or building simulation modeling, taking climate data and customer segments into consideration as appropriate. Reference sources used for developing residential, commercial, and industrial measure savings included a variety of Florida-specific, as well as regional and national sources, such as utility-specific measurement & verification (M&V) data, technical reference manuals (TRM) from other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as FPUC's program tracking data. These factors are described in Table 7.

Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	Utility RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	Utility customer data, Various secondary sources and engineering experience.

As shown in Table 8, the measure list includes 395 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,535 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (i.e., a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1191,173Commercial1645,798Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** Utility control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based
 on time of day. Includes CPP when the rate is substantially higher for a limited
 number of hours or days per year (customers receive advance notification of CPP
 event) coupled with technology that enables customer to lower their usage in a
 specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. Utility dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

DSM Measure Development

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

20

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 28 of 84

DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (i.e., it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- **Total Stock Square Footage by Segment** = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (i.e., it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with FPUC's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 33 of 84

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. Because customer-level load data was not available for FPUC, this process relied on interval load data from FPL's load research samples for each customer segment as best proxy. Using FPL's load data, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using a sample customer interval data provided by FPL. This sample included a customer breakout based on housing type for residential customers and size for small C&I customers. Resource Innovations then used the interval data from these customers to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 9 (a similar methodology was used to predict heating loads).

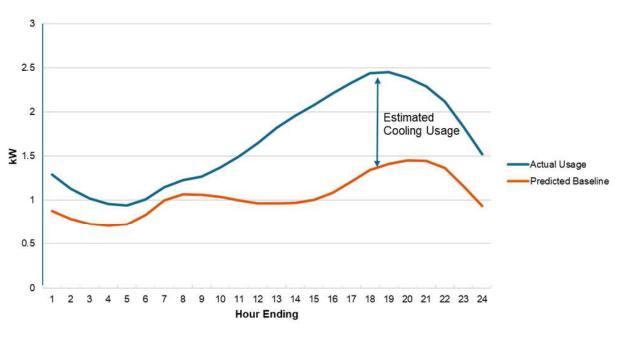


Figure 9: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the seven different customer segments within the residential and small C&I sectors.

Profiles for residential water heater and pool pump loads were estimated by utilizing enduse load data from NREL's residential end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 4:00-5:00 PM for summer, and January from 7:00-8:00 AM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial, and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - o For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

29

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

Resource Innovations worked with the utility-provided customer data, focusing on annual consumption due to the absence of NAICS or SIC codes for this utility data. Non-residential customers were subsequently classified based on annual consumption and size. Since NAICS or SIC codes were unavailable, no formal segmentation occurred. Instead, the analysis focused exclusively on annual utility usage. Facilities with annual loads below the kWh thresholds were deemed unlikely to possess the consistent electric and thermal loads necessary to support CHP and were consequently excluded from consideration. Conversely, those meeting the size criteria were aligned with the corresponding CHP technology.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each

segment, CHP technologies were assigned to utility customers in a top-down fashion (i.e., starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 10.

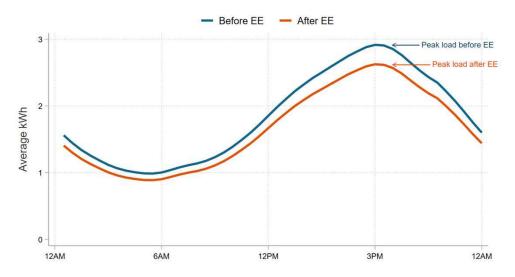


Figure 10: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

 The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Savings Potential Summer Peak Winter Peak Energy Demand (MW) Demand (MW) (GWh) Residential 15 97 26 Non-Residential⁶ 14 12 71 Total 40 27 168

Table 9. EE Technical Potential

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 11, Figure 12, and Figure 13 summarize the residential sector EE technical potential by end-use.

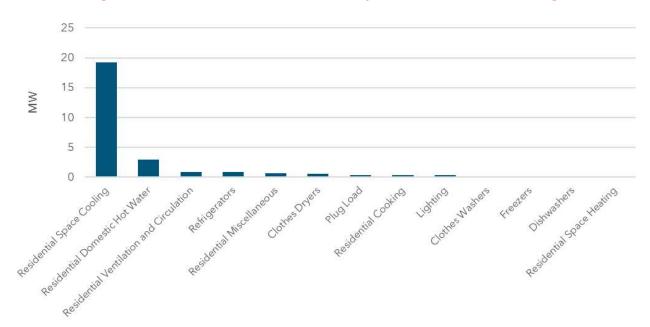


Figure 11: Residential EE Technical Potential by End-Use (Summer Peak Savings)

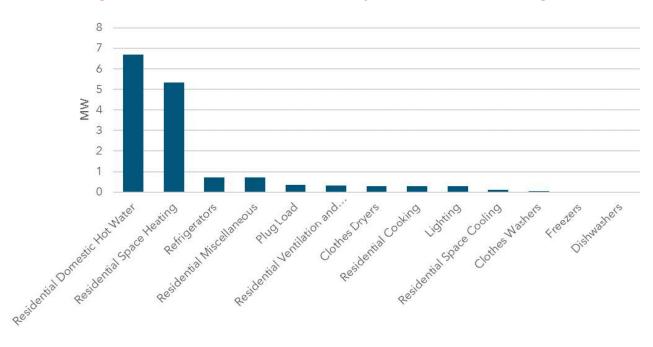
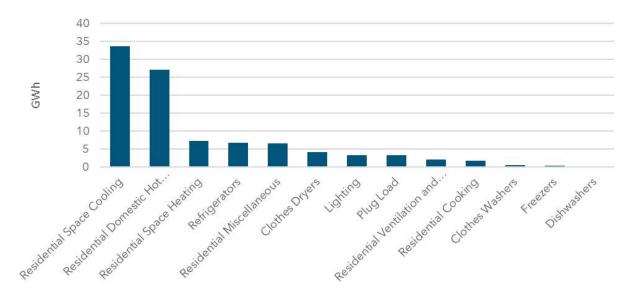



Figure 12: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Commercial Segments

Figure 14, Figure 15, and Figure 16 summarize the commercial sector EE technical potential by end-use.

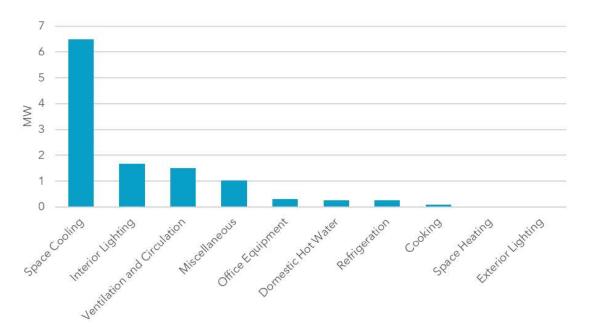


Figure 14: Commercial EE Technical Potential by End-Use (Summer Peak Savings)

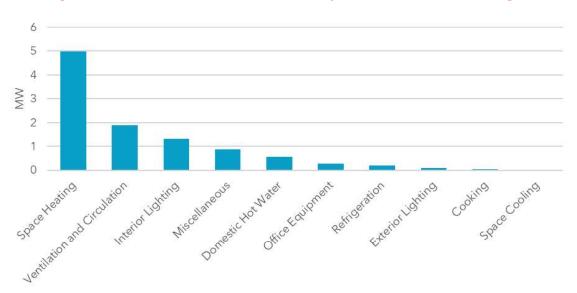
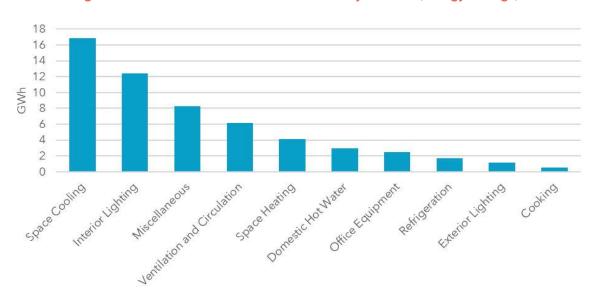



Figure 15: Commercial EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3.2 Industrial Segments

Figure 17, Figure 18, and Figure 19 summarize the industrial sector EE technical potential by end-use.

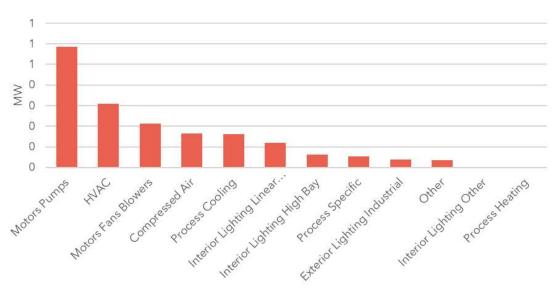
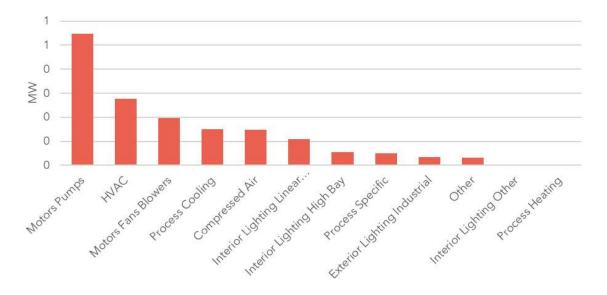



Figure 17: Industrial EE Technical Potential by End-Use (Summer Peak Savings)

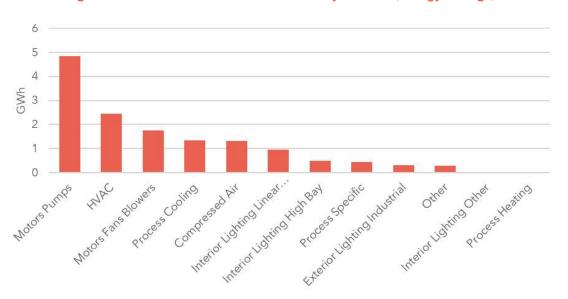


Figure 19: Industrial EE Technical Potential by End-Use (Energy Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in FPUC's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e., direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (i.e., that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

Table 10. DR Technical Potential

	Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)
Residential	41	65
Non-Residential	27	24
Total	68	89

5.3.1 Residential

Residential technical potential is summarized in Figure 20.

EV Charging
Pool Pump

0.1
0.4
0.3
Water Heater
Space Cooling
Space Heating

0
10
20
30
40
50
60
Technical Potential (MW)

Figure 20: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 21.

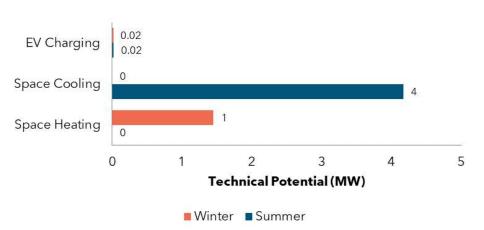


Figure 21: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 22 provides the technical potential for large C&I customers, broken down by customer size.

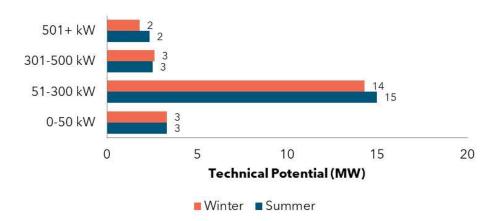


Figure 22: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)	
PV Systems				
Residential	17	10	152	
Non-Residential	9	3	70	
Total	26	13	222	
Battery Storage charge	ed from PV Systems			
Residential	5	2	0	
Non-Residential	0	1	0	
Total	5	3	0	
CHP Systems				
Total	23	13	108	

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 50 of 84

Measure	End-Use	Description	Baseline
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R- 15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 51 of 84

Measure	End-Use	Description	Baseline
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu-Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 52 of 84

Measure	End-Use	Description	Baseline
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 53 of 84

Measure	End-Use	Description	Baseline
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R- 30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune- up
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy- Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple	Single zone HVAC system

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 54 of 84

Measure	End-Use	Description	Baseline
		zones, each controlled by its own thermostat	
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 55 of 84

Measure	End-Use	Description	Baseline
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semiconditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation(Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation(Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet	20 HP Inlet Modulation Fixed- Speed Compressor

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 57 of 84

Measure	End-Use	Description	Baseline
		Modulation Fixed-Speed Compressor	
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti-Sweat Heater Controls	One Medium Temperature Reach- In Case without Anti-Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk- In Refrigerator Door without Auto- Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 58 of 84

Measure	End-Use	Description	Baseline
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 59 of 84

Measure	End-Use	Description	Baseline
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 60 of 84

Measure	End-Use	Description	Baseline
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self- Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self-Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4- Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 61 of 84

Measure	End-Use	Description	Baseline
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R- 19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 62 of 84

Measure	End-Use	Description	Baseline
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key-Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 63 of 84

Measure	End-Use	Description	Baseline
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL	Interior	LED (assume 14W) replacing	100W equivalent CFL
Baseline	Lighting	CFL	
LED - 9W	Exterior	LED (assume 9W) replacing	14W CFL
Flood_CFL Baseline	Lighting	CFL	
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display	Exterior	One Letter of LED Signage, <	One Letter of Neon or Argon-
Lighting (Exterior)	Lighting	2ft in Height	mercury Signage, < 2ft in Height
LED Display	Interior	One Letter of LED Signage, <	One Letter of Neon or Argon-
Lighting (Interior)	Lighting	2ft in Height	mercury Signage, < 2ft in Height
LED Exit Sign	Interior	One 5W Single-Sided LED Exit	One 9W Single-Sided CFL Exit
	Lighting	Sign	Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID	Interior	One 140W High Bay LED	Lumen-Equivalent HID High Bay
Baseline	Lighting	Fixture	Fixture
LED High Bay_LF	Interior	One 140W High Bay LED	Lumen-Equivalent Linear
Baseline	Lighting	Fixture	Fluorescent High Bay Fixture
LED Linear - Fixture	Interior	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8
Replacement	Lighting		Lamp
LED Linear - Lamp	Interior	Linear LED (16W)	Lumen-Equivalent 32-Watt T8
Replacement	Lighting		Lamp
LED Parking	Exterior	One 160W LED Area Light	Average Lumen Equivalent
Lighting	Lighting		Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse	Domestic Hot	Low-Flow Pre-Rinse Sprayer	Pre-Rinse Sprayer with Federal
Sprayers	Water	with Flow Rate of 1.6 gpm	Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop	One computer and monitor, manually controlled

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 64 of 84

Measure	End-Use	Description	Baseline
		computers and monitors plugged into a n	
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach- In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach-In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk-In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach- In Case with equivalent size Q- Sync Evaporator Fan Motor	Medium Temperature Reach-In Case with 20W Permanent Split Capacitor Fan Motor
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 65 of 84

Measure	End-Use	Description	Baseline
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro- Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in cooler without strip curtains
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 66 of 84

Measure	End-Use	Description	Baseline
		Pressure Balance Shower Valves	
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above- Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto- Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 68 of 84

Measure	End-Use	Description	Baseline
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 69 of 84

Measure	End-Use	Description	Baseline
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U- Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plugin timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 70 of 84

Measure	End-Use	Description	Baseline
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 71 of 84

Measure	End-Use	Description	Baseline
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 72 of 84

Measure	End-Use	Description	Baseline
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro- Commissioning	HVAC	Perform Facility Retro- commissioning	

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 73 of 84

Measure	End-Use	Description	Baseline
(Existing Construction)			
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer

EE Measure List

Measure	End-Use	Description	Baseline
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study⁸:

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

A-26

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 75 of 84

Sector	Measure	End-Use	Reason for Removal
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 78 of 84

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description		
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections		
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation		
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen		
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator		
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator		
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion		
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator		

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 80 of 84

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves – both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures - and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossilgas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

External Measure Suggestions

Docket Nos. 20240012-EG to 20240017-EG TPS for Florida Public Utilities Company Exhibit JH-5, Page 84 of 84

Technical Potential Study of Demand Side Management

JEA

Date: 03.07.2024

Table of Contents

Tal	ble of Con	tents	i
Ex	ecutive Su	mmary	iii
	1.1 Meth	odology	iii
	1.1.1	EE Potential	iii
	1.1.2	DR Potential	iv
	1.1.3	DSRE Potential	iv
	1.2 Savir	gs Potential	iv
	1.2.1	EE Potential	iv
	1.2.2	DR Potential	V
	1.2.3	DSRE Potential	vi
2	Introduc	tion	1
	2.1 Tech	nical Potential Study Approach	1
	2.2 EE P	otential Overview	3
	2.3 DR P	otential Overview	3
	2.4 DSRE	Potential Overview	4
3	Baseline	Forecast Development	5
	3.1 Mark	et Characterization	5
	3.1.1	Customer Segmentation	5
	3.1.2	Forecast Disaggregation	7
	3.2 Analy	ysis of Customer Segmentation	9
	3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9
	3.2.2 Analysi	Non-Residential (Commercial and Industrial) Customers (EE and DSRE s)	10
	3.2.3	Commercial and Industrial Accounts (DR Analysis)	12
	3.3 Analy	ysis of System Load	13
	3.3.1	System Energy Sales	13
	3.3.2	System Demand	13
	3.3.3	Load Disaggregation	14

4	DSM Mea	asure Development	16
	4.1 Meth	odology	16
	4.2 EE M	easures	16
	4.3 DR M	leasures	19
	4.4 DSRE	Measures	20
5	Technical	l Potential	22
	5.1 Meth	odology	22
	5.1.1	EE Technical Potential	22
	5.1.2	DR Technical Potential	25
	5.1.3	DSRE Technical Potential	27
	5.1.4	Interaction of Technical Potential Impacts	31
	5.2 EETe	echnical Potential	32
	5.2.1	Summary	32
	5.2.2	Residential	33
	5.2.3	Non-Residential	35
	5.3 DR Te	echnical Potential	38
	5.3.1	Residential	39
	5.3.2	Non-Residential	39
	5.4 DSRE	Technical Potential	40
Аp	pendix A	EE Measure List	A-1
Аp	pendix B	DR Measure List	B-1
Аp	pendix C	DSRE Measure List	
Αp	pendix D	External Measure Suggestions	D-1

Executive Summary

In October 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of JEA's service territory.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for JEA.

1.1.2 DR Potential

The assessment of DR potential in JEA's service territory was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for JEA when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

		Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	517	297	1,887
Non-Residential ¹	280	251	1,690
Total	797	548	3,577

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	
Residential	443	1,451	
Non-Residential	673	578	
Total	1,116	2,029	

¹ Non-Residential results include all commercial and industrial customer segments.

v

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of JEA's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)	
PV Systems				
Residential	493	19	4,146	
Non-Residential	214	3	1,617	
Total	707	22	5,763	
Battery Storage charged from PV Systems				
Residential	304	557	0	
Non-Residential	0	158	0	
Total	304	715	0	
CHP Systems				
Total	397	359	1,811	

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

2 Introduction

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

• Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of JEA's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with JEA's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 9 of 84

Introduction

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's official electric energy forecast to create a baseline electric energy forecast. This forecast does not include any utility-specific assumptions around DSM performance. Resource Innovations applied customer segmentation and consumption data from each utility and data from secondary sources to describe baseline customer-class and end-use components. Additional details on the forecast disaggregation are included in Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to JEA's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to JEA's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for JEA, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

Introduction

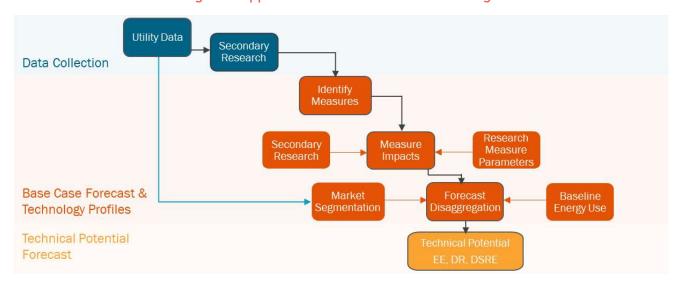


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with JEA. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at segment-level interval data for each customer segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak.

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 11 of 84

Introduction

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3 Baseline Forecast Development

3.1 Market Characterization

The JEA base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of JEA's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Baseline Forecast Development

Table 4. Customer Segmentation

Residential	Commercial		Industrial	
Single Family	Single Family Assembly Miscellaneous		Agriculture and	Primary
			Assembly	Resources
				Industries
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/
	University		Plastics	Clay/Concrete
Manufactured	Grocery	Restaurant	Construction	Textiles and
Homes				Leather
	Healthcare	Retail	Electrical and	Transportation
			Electronic	Equipment
			Equipment	
	Hospitals	Schools K-12	Lumber/Furniture/	Water and
			Pulp/Paper	Wastewater
	Institutional	Warehouse	Metal Products	Other
			and Machinery	
	Lodging/		Miscellaneous	
	Hospitality		Manufacturing	

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Space heating ³	Space heating ³	Process heating
Space cooling ³	Space cooling ³	Process cooling
Domestic hot water	Domestic hot water	Compressed air
Ventilation and circulation	Ventilation and circulation	Motors/pumps

³ Includes the contribution of building envelope measures and efficiencies.

Baseline Forecast Development

Residential End-Uses	Commercial End-Uses	Industrial End-Uses
Lighting	Interior lighting	Fan, blower motors
Cooking	Exterior lighting	Process-specific
Appliances	Cooking	Industrial lighting
Electronics	Refrigeration	Exterior lighting
Miscellaneous	Office equipment	HVAC ³
	Miscellaneous	Other

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from JEA. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented JEA's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by JEA, primarily their 2023 Ten-Year Site Plan, which was the most recent plan available at the time the studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized JEA's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with JEA's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on JEA's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - JEA rate class load share is based on average per customer.
 - Resource Innovations made conversions to usage estimates generated by applying JEA's 2020 Appliance Saturation Study (APSS) report, EIA RECS data, residential end-use study data from other FEECA utilities, and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

- The disaggregation was based on JEA's rate class load shares, intensities, and EIA CBECS data.
- Segment data from EIA and JEA.

- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - Rate class load share based on EIA CBECS and end-use forecasts from JEA.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data.
- Segment data from EIA and JEA.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA MECS and end-use forecasts from JEA.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. JEA provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

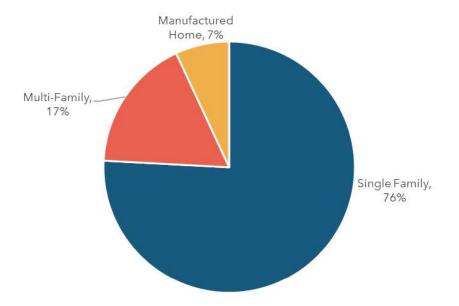


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3 and Figure 4.

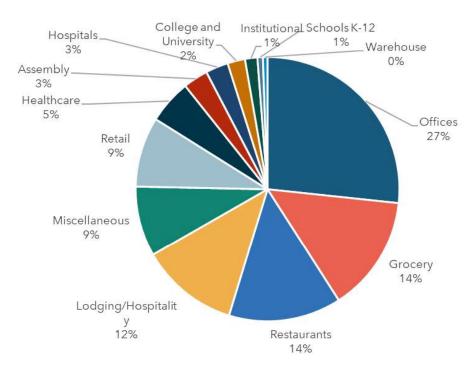
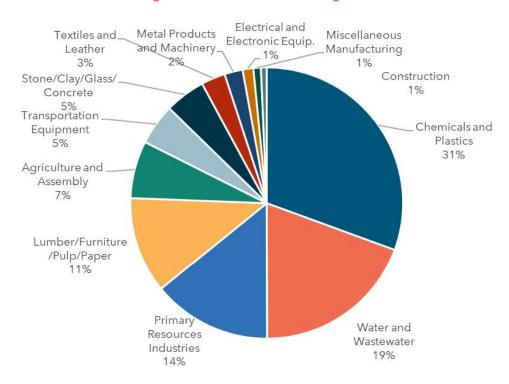



Figure 3. Commercial Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by JEA.

Table 6 shows the account breakout between small C&I and large C&I.

Table 6. Summary of Customer Classes for DR Analysis

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	32,188
	15,001-25,000 kWh	6,347
Small C&I	25,001-50,000 kWh	1,131
	50,001 kWh +	13,802
	Total	53,468
Large C&I	0-50 kW	331
	51-300 kW	3,842
	301-500 kW	8
	501 kW +	153
	Total	4,334

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on JEA's load forecast for the year 2025 from their 2023 Ten Year Site Plan, which is illustrated in Figure 5.

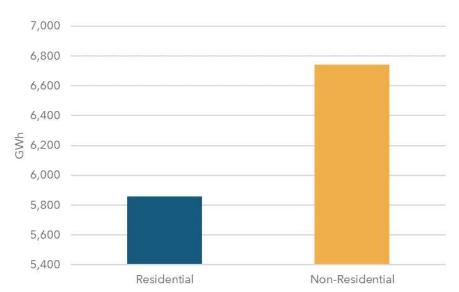


Figure 5. 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for JEA. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The utility summer and winter peaks were then identified within the utility-defined peaking conditions. For JEA the summer peaking conditions were defined as August from 4:00-5:00 PM and the winter peaking conditions were defined as January from 7:00-8:00 AM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 6, Figure 7, and Figure 8.

Figure 6. Residential Baseline (2025) Energy Sales by End-Use

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

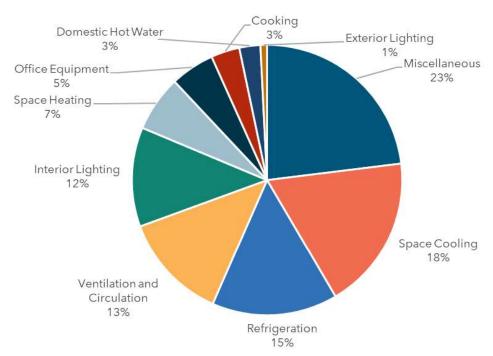
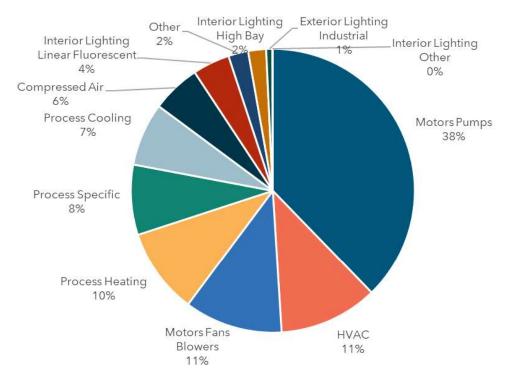



Figure 7. Commercial Baseline (2025) Energy Sales by End-Use

4 DSM Measure Development

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures that are not applicable due to climate or customer characteristics were excluded, as were "emerging" technologies that are not currently commercially available to FEECA utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts, and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through engineering algorithms or building simulation modeling, taking climate data and customer segments into consideration as appropriate. Reference sources used for developing residential, commercial, and industrial measure savings included a variety of Florida-specific, as well as regional and national sources, such as utility-specific measurement & verification (M&V) data, technical reference manuals (TRM) from other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as JEA's program tracking data. These factors are described in Table 7.

Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources	
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.	
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	Utility RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.	
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	Utility customer data, Various secondary sources and engineering experience.	

As shown in Table 8, the measure list includes 395 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,535 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (i.e., a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1191,173Commercial1645,798Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** Utility control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based on time of day. Includes CPP when the rate is substantially higher for a limited number of hours or days per year (customers receive advance notification of CPP event) coupled with technology that enables customer to lower their usage in a specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. Utility dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 28 of 84 DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (i.e., it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- Total Stock Square Footage by Segment = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (i.e., it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with JEA's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 33 of 84

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. For JEA, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using a segment-level interval data provided by JEA. Resource Innovations then used the interval data to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 9 (a similar methodology was used to predict heating loads).

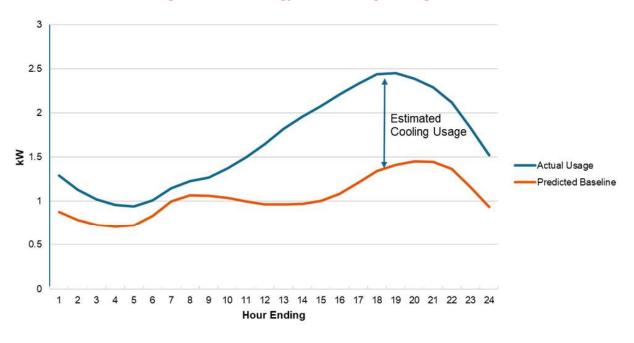


Figure 9: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the different customer segments within the residential and small C&I sectors.

Profiles for residential water heater and pool pump loads were estimated by utilizing enduse load data from NREL's residential end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 4:00-5:00 PM for summer, and January from 7:00-8:00 AM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

29

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 37 of 84

Technical Potential

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

Resource Innovations worked with the utility-provided customer data, focusing on annual consumption due to the absence of NAICS or SIC codes for this utility data. Non-residential customers were subsequently classified based on annual consumption and size. Since NAICS or SIC codes were unavailable, no formal segmentation occurred. Instead, the analysis focused exclusively on annual utility usage. Facilities with annual loads below the kWh thresholds were deemed unlikely to possess the consistent electric and thermal loads necessary to support CHP and were consequently excluded from consideration. Conversely, those meeting the size criteria were aligned with the corresponding CHP technology.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each

segment, CHP technologies were assigned to utility customers in a top-down fashion (i.e., starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 10.

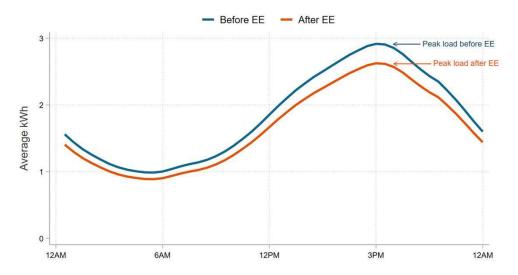


Figure 10: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

• The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Table 9. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	517	297	1,887
Non-Residential ⁶	280	251	1,690
Total	797	548	3,577

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 11, Figure 12, and Figure 13 summarize the residential sector EE technical potential by end-use.

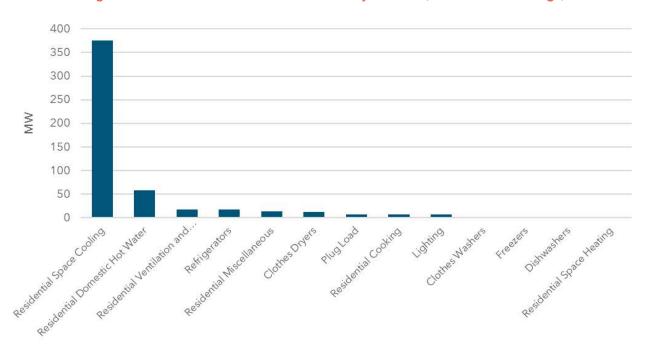


Figure 11: Residential EE Technical Potential by End-Use (Summer Peak Savings)

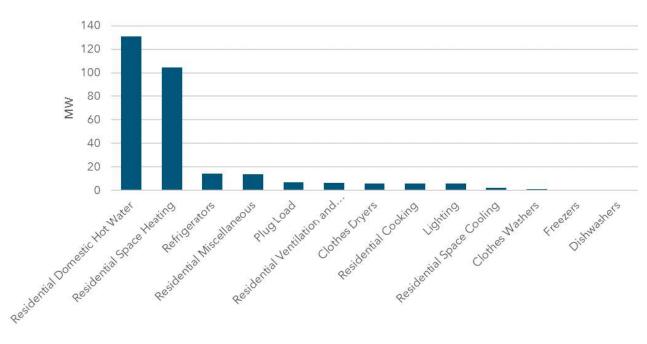
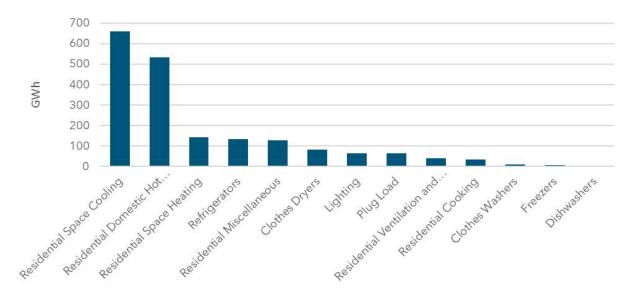



Figure 12: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Commercial Segments

Figure 14, Figure 15, and Figure 16 summarize the commercial sector EE technical potential by end-use.

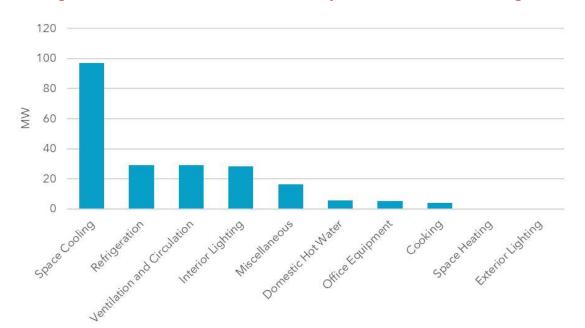


Figure 14: Commercial EE Technical Potential by End-Use (Summer Peak Savings)

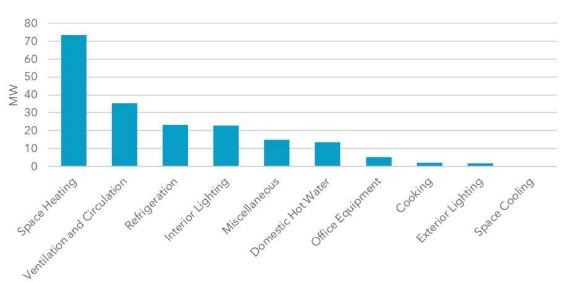
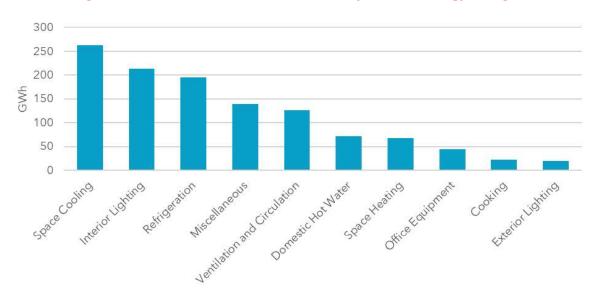



Figure 15: Commercial EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3.2 Industrial Segments

Figure 17, Figure 18, and Figure 19 summarize the industrial sector EE technical potential by end-use.

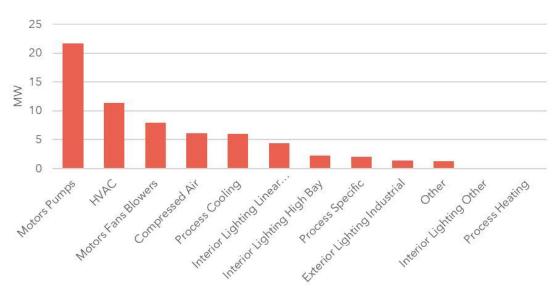
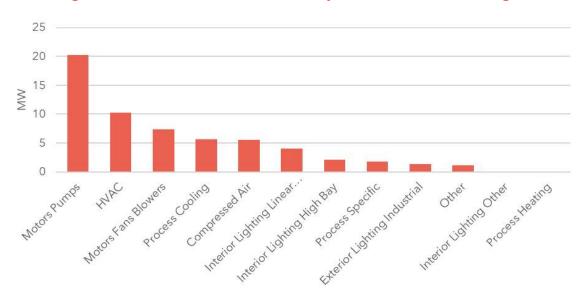



Figure 17: Industrial EE Technical Potential by End-Use (Summer Peak Savings)

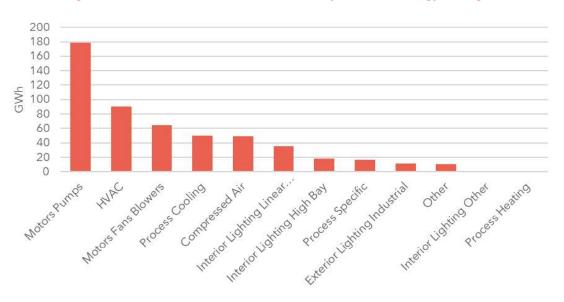


Figure 19: Industrial EE Technical Potential by End-Use (Energy Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in JEA's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e., direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (i.e., that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

Table 10. DR Technical Potential

	Savings Potential	
	Summer Peak Demand (MW)	Winter Peak Demand (MW)
Residential	443	1,451
Non-Residential	673	578
Total	1,116	2,029

5.3.1 Residential

Residential technical potential is summarized in Figure 20.

Figure 20: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 21.

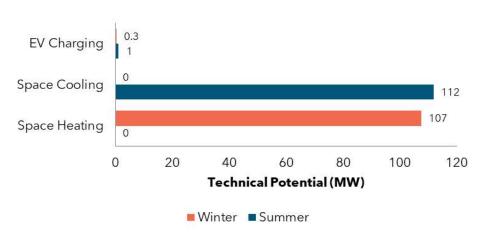


Figure 21: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 22 provides the technical potential for large C&I customers, broken down by customer size.

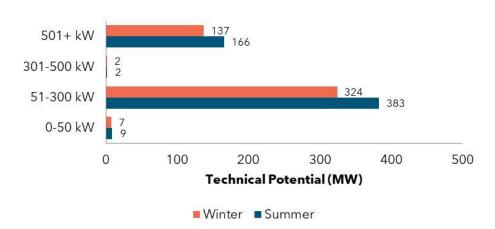


Figure 22: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential			
	Summer Peak Winter Peak Demand (MW) Demand (MW)		Energy (GWh)	
PV Systems	PV Systems			
Residential	493	19	4,146	
Non-Residential	214	3	1,617	
Total	707	22	5,763	
Battery Storage charged from PV Systems				
Residential	304	557	0	
Non-Residential	0	158	0	
Total	304	715	0	
CHP Systems				
Total	397	359	1,811	

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

EE Measure List

Measure	End-Use	Description	Baseline
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R-15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu- Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard

Measure	End-Use	Description	Baseline
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation

Measure	End-Use	Description	Baseline
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy-Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple	Single zone HVAC system

Measure	End-Use	Description	Baseline
		zones, each controlled by its own thermostat	
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized

Measure	End-Use	Description	Baseline
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semi- conditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation(Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation(Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation(Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
Advanced Rooftop	Ventilation and	Advanced Rooftop	Without Advanced Rooftop
Controller	Circulation	Controller	Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet	20 HP Inlet Modulation Fixed- Speed Compressor

Measure	End-Use	Description	Baseline
		Modulation Fixed-Speed Compressor	
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti- Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti- Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	

Measure	End-Use	Description	Baseline
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER

Measure	End-Use	Description	Baseline
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven

Measure	End-Use	Description	Baseline
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self- Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self-Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4-Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0	100ft2 of Window meeting Energy Star Version 5.0

Measure	End-Use	Description	Baseline
		Requirements (U-Value: 0.27, SHGC: 0.21)	Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER

Measure	End-Use	Description	Baseline
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation

Measure	End-Use	Description	Baseline
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key- Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies

Measure	End-Use	Description	Baseline
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop computers and monitors plugged into a n	One computer and monitor, manually controlled
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach-In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach-In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk- In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach-In Case with	Medium Temperature Reach-In Case with 20W Permanent Split Capacitor Fan Motor

Measure	End-Use	Description	Baseline
		equivalent size Q-Sync Evaporator Fan Motor	
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro- Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches	Walk-in cooler without strip curtains

Measure	End-Use	Description	Baseline
		thick covering the entire area of the doorway	
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above- Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer

Measure	End-Use	Description	Baseline
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk- In Refrigerator Door without Auto-Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting

Measure	End-Use	Description	Baseline
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle

Measure	End-Use	Description	Baseline
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plugin timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER

Measure	End-Use	Description	Baseline
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor

Measure	End-Use	Description	Baseline
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture

Measure	End-Use	Description	Baseline
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof

Measure	End-Use	Description	Baseline
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro- Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning	
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with Refrigeration System with	

Measure	End-Use	Description	Baseline
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study⁸:

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 75 of 84

Sector	Measure	End-Use	Reason for Removal
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 78 of 84

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description	
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections	
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation	
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen	
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator	
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator	
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion	
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator	

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA Exhibit JH-6, Page 80 of 84

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves - both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures - and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossilgas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

External Measure Suggestions

Docket Nos. 20240012-EG to 20240017-EG TPS for JEA
Exhibit JH-6, Page 84 of 84

Technical Potential Study of Demand Side Management

Orlando Utilities Commission

Date: 03.07.2024

Table of Contents

Tal	ble of Con	tents	i
Ex	ecutive Su	mmary	iii
	1.1 Meth	odology	iii
	1.1.1	EE Potential	iii
	1.1.2	DR Potential	iv
	1.1.3	DSRE Potential	iv
	1.2 Savings Potential		iv
	1.2.1	EE Potential	iv
	1.2.2	DR Potential	v
	1.2.3	DSRE Potential	vi
2	Introduc	tion	1
	2.1 Tech	nical Potential Study Approach	1
	2.2 EE P	otential Overview	3
	2.3 DR P	otential Overview	3
	2.4 DSRE	E Potential Overview	4
3	Baseline	Forecast Development	5
	3.1 Market Characterization		5
	3.1.1	Customer Segmentation	5
	3.1.2	Forecast Disaggregation	7
	3.2 Anal	3.2 Analysis of Customer Segmentation	
	3.2.1	Residential Customers (EE, DR, and DSRE Analysis)	9
	3.2.2 Analysi	Non-Residential (Commercial and Industrial) Customers (EE and DSRE s)	10
	3.2.3	Commercial and Industrial Accounts (DR Analysis)	11
	3.3 Anal	ysis of System Load	12
	3.3.1	System Energy Sales	12
	3.3.2	System Demand	13
	3.3.3	Load Disaggregation	13

4	DSM Mea	sure Development	15
	4.1 Metho	odology	15
	4.2 EE Me	easures	15
	4.3 DR M	easures	18
	4.4 DSRE	Measures	19
5	Technical	Potential	21
	5.1 Metho	odology	21
	5.1.1	EE Technical Potential	21
	5.1.2	DR Technical Potential	24
	5.1.3	DSRE Technical Potential	26
	5.1.4	Interaction of Technical Potential Impacts	30
	5.2 EE Te	chnical Potential	31
	5.2.1	Summary	31
	5.2.2	Residential	32
	5.2.3	Non-Residential	34
	5.3 DR Te	echnical Potential	35
	5.3.1	Residential	36
	5.3.2	Non-Residential	37
	5.4 DSRE	Technical Potential	38
App	endix A	EE Measure List	A-1
App	endix B	DR Measure List	B-1
App	endix C	DSRE Measure List	C-1
App	endix D	External Measure Suggestions	D-1

Executive Summary

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems.

The main objective of the study was to assess the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of Orlando Utilities Commission's (OUC) service territory.

1.1 Methodology

Resource Innovations estimates DSM savings potential by applying an analytical framework that aligns baseline market conditions for energy consumption and demand with DSM opportunities. After describing the baseline condition, Resource Innovations applies estimated measure savings to disaggregated consumption and demand data. The approach varies slightly according to the type of DSM resources and available data; the specific approaches used for each type of DSM are described below.

1.1.1 EE Potential

This study utilized Resource Innovations' proprietary EE modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual program savings. The methodology for the EE potential assessment was based on a hybrid "top-down/bottom-up" approach, which started with the current utility load forecast, then disaggregated it into its constituent customer-class and end-use components. Our assessment examined the effect of the range of EE measures and practices on each end-use, taking into account current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the end-use, customer class, and system levels for OUC.

1.1.2 DR Potential

The assessment of DR potential in OUC's service territory was an analysis of mass market direct load control programs for residential and small commercial and industrial (C&I) customers, and an analysis of DR programs for large C&I customers. The direct load control program assessment focused on the potential for demand reduction through heating, ventilation, and air conditioning (HVAC), water heater, managed electric vehicle charging, and pool pump load control. These end-uses were of particular interest because of their large contribution to peak period system load. For this analysis, a range of direct load control measures were examined for each customer segment to highlight the range of potential. The assessment further accounted for existing DR programs for OUC when calculating the total DR potential.

1.1.3 DSRE Potential

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from customers' PV systems, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

1.2 Savings Potential

Technical potential for EE, DR, and DSRE are as follows:

1.2.1 EE Potential

EE technical potential describes the savings potential when all technically feasible EE measures are fully implemented, ignoring all non-technical constraints on electricity savings, such as cost-effectiveness and customer willingness to adopt EE.

The estimated EE technical potential results are summarized in Table 1.

Table 1. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	249	98	935
Non-Residential ¹	201	99	1,044
Total	450	197	1,979

1.2.2 DR Potential

DR technical potential describes the magnitude of loads that can be managed during conditions when grid operators need peak capacity. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale such as heating, cooling, water heaters, managed electric vehicle charging, and pool pumps. For large C&I customers, this included their entire electric demand during a utility's system peak, as many of these types of customers will forego virtually all electric demand temporarily if the financial incentive is large enough.

The estimated DR technical potential results are summarized in Table 2.

Table 2. DR Technical Potential

	Savings Potential Summer Peak Winter Peak Demand (MW) Demand (MW)		
Residential	235	223	
Non-Residential	582	563	
Total	817	786	

¹ Non-Residential results include all commercial and industrial customer segments.

v

1.2.3 DSRE Potential

DSRE technical potential estimates quantify all technically feasible distributed generation opportunities from PV systems, battery storage systems charged from PV, and CHP technologies based on the customer characteristics of OUC's customer base.

The estimated DSRE technical potential results are summarized in Table 3.

Table 3. DSRE Technical Potential²

	Savings Potential			
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)	
PV Systems				
Residential	339	0	2,731	
Non-Residential	162	0	1,169	
Total	501	0	3,900	
Battery Storage charged from PV Systems				
Residential	171	166	0	
Non-Residential	14	70	0	
Total	185	236	0	
CHP Systems				
Total	354	292	1,591	

² PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

2 Introduction

In October, 2022, the six electric utilities subject to the Florida Energy Efficiency and Conservation Act (FEECA Utilities) retained Resource Innovations, Inc. for the purpose of identifying and characterizing the market for demand-side management (DSM) opportunities, including energy efficiency (EE) improvement and building retrofits, peak load reductions from demand response (DR), and demand-side renewable energy (DSRE) systems. The main objective of the study was:

• Assessing the technical potential of demand-side resources for reducing customer electric energy consumption and seasonal peak capacity demands.

This report provides the detailed methodology and results for the technical potential analysis of OUC's service territory.

The following deliverables were developed by Resource Innovations as part of the project and are addressed in this report:

- DSM measure list and detailed assumption workbooks
- Disaggregated baseline demand and energy use by year, sector, and end-use
- Baseline technology saturations, energy consumption, and demand
- Technical potential demand and energy savings
- Supporting calculation spreadsheets

2.1 Technical Potential Study Approach

Resource Innovations estimates technical potential according to the industry standard categorization, as follows:

Technical Potential is the theoretical maximum amount of energy and capacity that could be displaced by DSM, regardless of cost and other barriers that may prevent the installation or adoption of a DSM measure.

For this study, technical potential included full application of commercially available DSM technologies to all residential, commercial, and industrial customers in the utility's service territory.

Quantifying DSM technical potential is the result of an analytical process that refines DSM opportunities that align with OUC's customers' electric consumption patterns. Resource Innovations' general methodology for estimating technical potential is a hybrid "top-

Introduction

down/bottom-up" approach, which is described in detail in Sections 3 through 5 of this report and includes the following steps:

- Develop a baseline forecast: the study began with a disaggregation of the utility's official electric energy forecast to create a baseline electric energy forecast. This forecast does not include any utility-specific assumptions around DSM performance. Resource Innovations applied customer segmentation and consumption data from each utility and data from secondary sources to describe baseline customer-class and end-use components. Additional details on the forecast disaggregation are included in Section 3.
- Identify DSM opportunities: A comprehensive set of DSM opportunities applicable to OUC's climate and customers were analyzed to best depict DSM technical potential. Effects for a range of DSM technologies for each end-use could then be examined while accounting for current market saturations, technical feasibility, and impacts.
- Collect cost and impact data for measures: For those measures applicable to OUC's customers, Resource Innovations conducted primary and secondary research and estimated costs, energy savings, measure life, and demand savings. We differentiated between the type of cost (capital, installation labor, maintenance, etc.) to separately evaluate different implementation modes: retrofit (capital plus installation labor plus incremental maintenance); new construction (incremental capital and incremental maintenance costs for replacement of appliances and equipment that has reached the end of its useful life). Additional details on measure development are included in Section 4.

Figure 1 provides an illustration of the technical potential modeling process conducted for OUC, with the assessment starting with the current utility load forecast, disaggregated into its constituent customer-class and end-use components, and calibrated to ensure consistency with the overall forecast. Resource Innovations considered the range of DSM measures and practices application to each end-use, accounting for current market saturations, and technical feasibility. These unique impacts were aggregated to produce estimates of potential at the technology, end-use, customer class, and system levels.

Introduction

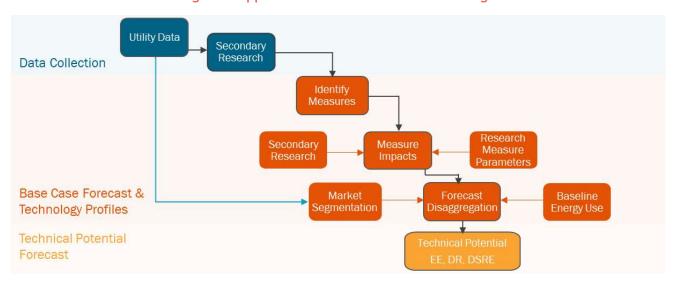


Figure 1. Approach to Technical Potential Modeling

Resource Innovations estimated DSM technical potential based on a combination of market research, utility load forecasts and customer data, and measure impact analysis, all in coordination with OUC. Resource Innovations examined the technical potential for EE, DR, and DSRE opportunities; this report is organized to offer detail on each DSM category, with additional details on technical potential methodology presented in Section 5.

2.2 EE Potential Overview

To estimate EE potential, this study utilized Resource Innovations' modeling tool, TEA-POT (Technical / Economic / Achievable POTential). This modeling tool was built on a platform that provides the ability to create and analyze multiple scenarios and recalculate potential savings based on variable inputs such as sales/load forecasts, electricity prices, discount rates, and actual utility program savings, as described in Section 5.1.1 below. While the analysis estimates the impacts of individual EE measures, the model accounts for interactions and overlap of individual measure impacts within an end-use or equipment type. The model provides transparency into the assumptions and calculations for estimating EE potential.

2.3 DR Potential Overview

To estimate DR market potential, Resource Innovations considered customer demand during utility peaking conditions and projected customer response to DR measures. Customer demand was determined by looking at account-level interval data for all OUC customers within each customer segment. For each segment, Resource Innovations determined the portion of a customer's load that could be curtailed during the system peak.

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 11 of 82

Introduction

2.4 DSRE Potential Overview

The DSRE technologies included in this study are rooftop solar photovoltaic (PV) systems, battery storage systems charged from PV, and combined heat and power (CHP) systems. The study leveraged the customer segmentation and load disaggregation data assembled for the EE and DR analyses, and applied our DSRE model, SPIDER™ (Spatial Penetration and Integration of Distributed Energy Resources), for economic and adoption analysis of solar and battery storage. This model dynamically responds to rapidly changing technologies and accounts for all key time-varying elements such as technology costs, incentives, tax credits, and electric rates. To estimate technical potential for CHP, the study utilized a series of unique distributed generation potential models for each primary market sector (commercial and industrial), calculating the average building consumption, assigning minimum facility size thresholds, and estimating building energy savings share percentage for each CHP technology based on its generation capacity.

3.1 Market Characterization

The OUC base year energy use and sales forecast provided the reference point to determine potential savings. The end-use market characterization of the base year energy use and reference case forecast included customer segmentation and load forecast disaggregation. The characterization is described in this section, while the subsequent section addresses the measures and market potential energy and demand savings scenarios.

3.1.1 Customer Segmentation

In order to estimate EE, DR, and DSRE potential, the sales forecast and peak load forecasts were segmented by customer characteristics. As electricity consumption patterns vary by customer type, Resource Innovations segmented customers into homogenous groups to identify which customer groups are eligible to adopt specific DSM technologies, have similar building characteristics and load profiles, or are able to provide DSM grid services.

Resource Innovations segmented customers according to the following:

- 1) By Sector how much of OUC's energy sales, summer and winter peak demand forecast is attributable to the residential, commercial, and industrial sectors?
- 2) By Customer how much electricity does each customer typically consume annually and during system peaking conditions?
- 3) By End-Use within a home or business, what equipment is using electricity during the system peak? How much energy does this end-use consume over the course of a year?

Table 4 summarizes the segmentation within each sector. In addition to the segmentation described here for the EE and DSRE analyses, the residential customer segments were further segmented by heating type (electric heat, gas heat, or unknown) and by annual consumption bins within each sub-segment for the DR analysis.

Table 4. Customer Segmentation

Residential	Commercial		idential Commercial Industrial		trial
Single Family	Assembly	Miscellaneous	Agriculture and	Primary	
			Assembly	Resources	
				Industries	
Multi-Family	College and	Offices	Chemicals and	Stone/Glass/	
	University		Plastics	Clay/Concrete	
Manufactured	Grocery	Restaurant	Construction	Textiles and	
Homes				Leather	
	Healthcare	Retail	Electrical and	Transportation	
			Electronic	Equipment	
			Equipment		
	Hospitals	Schools K-12	Lumber/Furniture/	Water and	
			Pulp/Paper	Wastewater	
	Institutional	Warehouse	Metal Products	Other	
			and Machinery		
	Lodging/		Miscellaneous		
	Hospitality		Manufacturing		

From an equipment and energy use perspective, each segment has variation within each building type or sub-sector. For example, the energy consuming equipment in a convenience store will vary significantly from the equipment found in a supermarket. To account for this variation, the selected end-uses describe energy consumption patterns that are consistent with those typically studied in national or regional surveys, such as the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS), Commercial Building Energy Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS), among others. The end-uses selected for this study are listed in Table 5.

Table 5. End-Uses

Residential End-Uses	Commercial End-Uses	Industrial End-Uses	
Space heating ³	Space heating ³	Process heating	
Space cooling ³	Space cooling ³	Process cooling	
Domestic hot water	Domestic hot water	Compressed air	
Ventilation and circulation	Ventilation and circulation	Motors/pumps	

³ Includes the contribution of building envelope measures and efficiencies.

Residential End-Uses	Commercial End-Uses	Industrial End-Uses	
Lighting	Interior lighting	Fan, blower motors	
Cooking	Exterior lighting	Process-specific	
Appliances	Cooking	Industrial lighting	
Electronics	Refrigeration	Exterior lighting	
Miscellaneous	Office equipment	HVAC ³	
	Miscellaneous	Other	

For DR, the end-uses targeted were those with controllable load for residential customers (i.e., HVAC, water heaters, pool pumps, and electric vehicles) and small C&I customers (HVAC and electric vehicles). For large C&I customers, all load during peak hours was included assuming these customers would potentially be willing to reduce electricity consumption for a limited time if offered a large enough incentive during temporary system peak demand conditions.

3.1.2 Forecast Disaggregation

A common understanding of the assumptions and granularity in the baseline load forecast was developed with input from OUC. Key discussion topics reviewed included:

- How current DSM offerings are reflected in the energy and demand forecast.
- Assumed weather conditions and hour(s) of the day when the system is projected to peak.
- Are there portions of the load forecast attributable to customers or equipment not eligible for DSM programs?
- How are projections of population increase, changes in appliance efficiency, and evolving distribution of end-use load shares accounted for in the peak demand forecast?

3.1.2.1 Electricity Consumption (kWh) Forecast

Resource Innovations segmented OUC's electricity consumption forecast into electricity consumption load shares by customer class and end-use. The baseline customer segmentation represents the electricity market by describing how electricity was consumed within the service territory. Resource Innovations developed the forecast for the year 2025, and based it on data provided by OUC, primarily their 2023 Ten-Year Site Plan, which was the most recent plan available at the time the studies were initiated. The data addressed current baseline consumption, system load, and sales forecasts.

3.1.2.2 Peak Demand (kW) Forecast

A fundamental component of DR potential was establishing a baseline forecast of what loads or operational requirements would be absent due to existing dispatchable DR or time varying rates. This baseline was necessary to assess how DR can assist in meeting specific planning and operational requirements. We utilized OUC's summer and winter peak demand forecast, which was developed for system planning purposes.

3.1.2.3 Estimating Consumption by End-Use Technology

As part of the forecast disaggregation, Resource Innovations developed a list of electricity end-uses by sector (Table 5). To develop this list, Resource Innovations began with OUC's estimates of average end-use consumption by customer and sector. Resource Innovations combined these data with other information, such as utility residential appliance saturation surveys, as available, to develop estimates of customers' baseline consumption. Resource Innovations calibrated the utility-provided data with data available from public sources, such as the EIA's recurring data-collection efforts that describe energy end-use consumption for the residential, commercial, and manufacturing sectors.

To develop estimates of end-use electricity consumption by customer segment and end-use, Resource Innovations applied estimates of end-use and equipment-type saturation to the average energy consumption for each sector. The following data sources and adjustments were used in developing the base year 2025 sales by end-use:

Residential Sector:

- The disaggregation was based on OUC's rate class load shares and intensities.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o OUC rate class load share is based on average per customer.
 - Resource Innovations made conversions to usage estimates generated by applying EIA RECS data, residential end-use study data from other FEECA utilities, and EIA's Annual Energy Outlook (AEO) 2023.

Commercial Sector:

- The disaggregation was based on OUC's rate class load shares, intensities, and EIA CBECS data.
- Segment data from EIA and OUC.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:

Rate class load share based on EIA CBECS and end-use forecasts from OUC.

Industrial Sector:

- The disaggregation was based on rate class load shares, intensities, and EIA MECS data
- Segment data from EIA and OUC.
- Baseline intensity was calibrated to account for differences in end-use saturation, fuel source, and equipment saturation as follows:
 - o Rate class load share based on EIA MECS and end-use forecasts from OUC.

3.2 Analysis of Customer Segmentation

Customer segmentation is important to ensuring that a MPS examines DSM measure savings potential in a manner that reflects the diversity of energy savings opportunities existing across the utility's customer base. OUC provided Resource Innovations with data concerning the premise type and loads characteristics for all customers for the MPS analysis. Resource Innovations examined the provided data from multiple perspectives to identify customer segments. Resource Innovations' approach to segmentation varied slightly for non-residential and residential accounts, but the overall logic was consistent with the concept of expressing the accounts in terms that were relevant to DSM opportunities.

3.2.1 Residential Customers (EE, DR, and DSRE Analysis)

Segmentation of residential customer accounts enabled Resource Innovations to align DSM opportunities with appropriate DSM measures. Resource Innovations used utility customer data, supplemented with EIA data, to segment the residential sector by customer dwelling type (single family, multi-family, or manufactured home). The resulting distribution of customers according to dwelling unit type is presented in Figure 2.

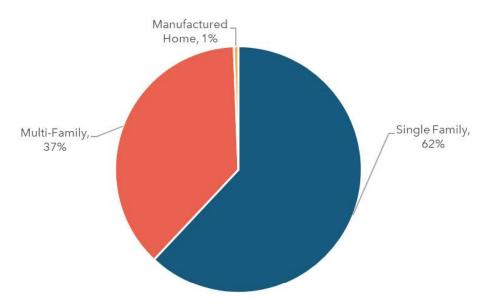


Figure 2. Residential Customer Segmentation

3.2.2 Non-Residential (Commercial and Industrial) Customers (EE and DSRE Analysis)

For the EE and DSRE analysis, Resource Innovations segmented C&I accounts using the utility's North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, supplemented by data produced by the EIA's CBECS and MECS. Resource Innovations classified the customers in this group as either commercial or industrial, on the basis of DSM measure information available and applicable to each. For example, agriculture and forestry DSM measures are commonly considered industrial savings opportunities. Resource Innovations based this classification on the types of DSM measures applicable by segment, rather than on the annual energy consumption or maximum instantaneous demand from the segment as a whole. The estimated energy sales distributions Resource Innovations applied are shown below in Figure 3.

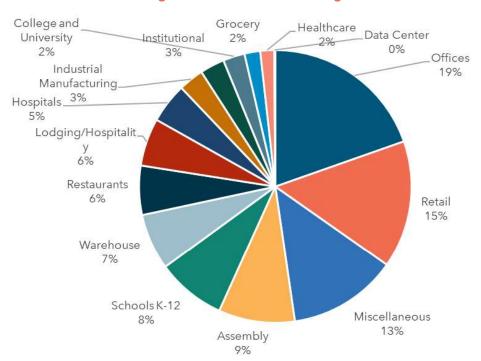


Figure 3. Business Customer Segmentation

3.2.3 Commercial and Industrial Accounts (DR Analysis)

For the DR analysis, Resource Innovations divided the non-residential customers into the two customer classes of small C&I and large C&I using rate class and annual consumption. For the purposes of this analysis, small C&I customers are those on the General Service (GS) tariff. Large C&I customers are all customers on the General Service Demand (GSD) tariff or on the General Service Large Demand (GSLD) tariff. Resource Innovations further segmented these two groups based on customer size. For small C&I, segmentation was determined using annual customer consumption and for large C&I the customer's maximum demand was used. Both customer maximum demand and customer annual consumption were calculated using billing data provided by OUC.

Table 6 shows the account breakout between small C&I and large C&I.

Table 6. Summary of Customer Classes for DR Analysis

Customer Class	Annual kWh	Estimated Number of Accounts
	0-15,000 kWh	15,967
	15,001-25,000 kWh	3,211
Small C&I	25,001-50,000 kWh	3,269
	50,001 kWh +	2,096
	Total	24,543
	0-50 kW	1,764
	51-300 kW	2,114
Large C&I	301-500 kW	267
	501 kW +	373
	Total	4,518

3.3 Analysis of System Load

3.3.1 System Energy Sales

Technical potential is based on OUC's load forecast for the year 2025 from their 2023 Ten Year Site Plan, which is illustrated in **Error! Reference source not found.**.

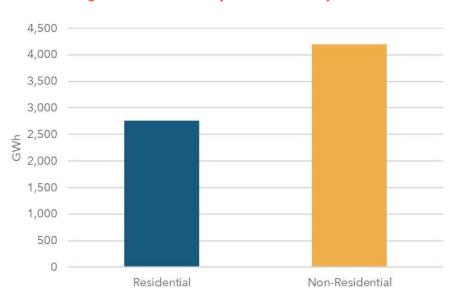


Figure 4: 2025 Electricity Sales Forecast by Sector

3.3.2 System Demand

To determine the technical potential for DR, Resource Innovations first established peaking conditions for each utility by looking at when each utility historically experienced its maximum demand. The primary data source used to determine when maximum DR impact was the historical system load for OUC. The data provided contained the system loads for all 8,760 hours of the most recent five years leading up to the study (2016-2021). The OUV summer and winter peaks were then identified within the utility-defined peaking conditions. For OUC the summer peaking conditions were defined as August from 5:00-6:00 PM and the winter peaking conditions were defined as January from 6:00-7:00 PM. The seasonal peaks were then selected as the maximum demand during utility peaking conditions.

3.3.3 Load Disaggregation

The disaggregated annual electric loads⁴ for the base year 2025 by sector and end-use are summarized in Figure 5 and Figure 6.

⁴ Full disaggregation of system demand by end-use was not conducted, as DR potential for residential and small C&I customers focused on specific end-uses of particular interest because of their large contribution to peak period system load, and was not end-use specific for large C&I customers. A description of the end-use analysis for residential and small C&I customers is included in Section 5.1.2

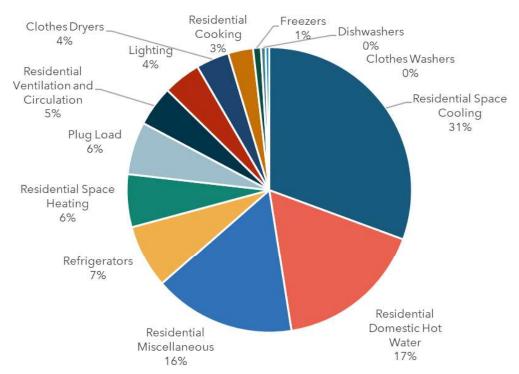
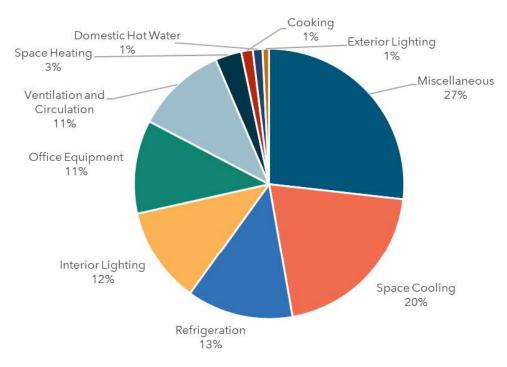



Figure 5: Residential Baseline (2025) Energy Sales by End-Use

4 DSM Measure Development

DSM potential is described by comparing baseline market consumption with opportunities for savings. Describing these individual savings opportunities results in a list of DSM measures to analyze. This section presents the methodology to develop the EE, DR, and DSRE measure lists.

4.1 Methodology

Resource Innovations identified a comprehensive catalog of DSM measures for the study. The measure list is the same for all FEECA Utilities. The iterative vetting process with the utilities to develop the measure list began by initially examining the list of measures included in the 2019 Goals docket. This list was then adjusted based on proposed measure additions and revisions provided by the FEECA Utilities. Resource Innovations further refined the measure list based on reviews of Resource Innovations' DSM measure library, compiled from similar market potential studies conducted in recent years throughout the United States, as well as measures included in other utility programs where Resource Innovations is involved with program design, implementation, or evaluation. The FEECA Utilities also reached out to interested parties and received input with recommendations on measure additions to the 2019 measure list. Their measure suggestions were reviewed and incorporated into the study as appropriate. External measure suggestions and actions are summarized in Appendix D. The extensive, iterative review process involving multiple parties has ensured that the study included a robust and comprehensive set of DSM measures.

See Appendix A for the list of EE measures, Appendix B for the list of DR measures, and Appendix C for the list of DSRE measures analyzed in the study.

4.2 EE Measures

EE measures represent technologies applicable to the residential, commercial, and industrial customers in the FEECA Utilities' service territories. The development of EE measures included consideration of:

- EE technologies that are applicable to Florida and commercially available: Measures
 that are not applicable due to climate or customer characteristics were excluded, as
 were "emerging" technologies that are not currently commercially available to FEECA
 utility customers.
- Current and planned Florida Building Codes and Federal equipment standards (Codes & Standards) for baseline equipment: Measures included from prior studies

- were adjusted to reflect current Codes & Standards as well as updated efficiency tiers, as appropriate.
- Eligibility for utility DSM offerings in Florida: For example, behavioral measures were excluded from consideration, as they historically have not been allowed to count towards utility DSM goals. Behavioral measures are intended to motivate customers to operate in a more energy-efficient manner (e.g., setting an air-conditioner thermostat to a higher temperature) without accompanying: a) physical changes to more efficient end-use equipment or to their building envelope, b) utility-provided products and tools to facilitate the efficiency improvements, or c) permanent operational changes that improve efficiency which are not easily revertible to prior conditions. These types of behavioral measures were excluded because of the variability in forecasting the magnitude and persistence of energy and demand savings from the utility's perspective. Additionally, decoupling behavioral measure savings from the installation of certain EE technologies like smart thermostats can be challenging and could result in overlapping potential with other EE measures included in the study.

Upon development of the final EE measure list, utility-specific measure details were developed. RI maintains a proprietary online database of energy efficiency measures for MPS studies, which was used as a starting point for measure development for this study. Measures are added or updated at the request of project stakeholders or because of changes to the EE marketplace (for example, new codes and standards, or current practice in the market). Measure data are refined as new data or algorithms are developed for estimating measure impacts, and updated for each study to incorporate inputs parameters specific to the service territory being analyzed. The database contains the following information for each of the measures:

- Measure description: measure classification by type, end-use, and subsector, and description of the base-case and the efficient-case scenarios.
- kWh savings: Energy savings associated with each measure were developed through engineering algorithms or building simulation modeling, taking climate data and customer segments into consideration as appropriate. Reference sources used for developing residential, commercial, and industrial measure savings included a variety of Florida-specific, as well as regional and national sources, such as utility-specific measurement & verification (M&V) data, technical reference manuals (TRM) from other jurisdictions, ENERGY STAR calculators, and manufacturer or retailer specifications for particular products.
- Energy savings were applied in RI's TEA-POT model as a percentage of total baseline consumption. Peak demand savings were determined using utility-specific load shapes or coincidence factors.

- Measure Expected Useful Lifetime: Sources included the Database for Energy Efficient Resources (DEER), the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook, TRMs, and other regional and national measure databases and EE program evaluations.
- Measure Costs: Per-unit costs (full or incremental, depending on the application)
 associated with measure installations. Sources included: TRMs, ENERGY STAR
 calculator, online market research, FEECA utility program data, and other secondary
 sources.

The measure details from the online measure library are exported for use in RI's TEA-POT model, accompanied by utility-specific estimates of measure applicability. Measure applicability is a general term encompassing an array of factors, including technical feasibility of installation, and the measure's current saturation as well as factors to allocate savings associated with competing measures. Information used was primarily derived from data in current regional and national databases, as well as OUC's program tracking data. These factors are described in Table 7.

Table 7. Measure Applicability Factors

Measure Impact	Explanation	Sources
Technical Feasibility	The percentage of buildings that can have the measure physically installed. Various factors may affect this, including, but not limited to, whether the building already has the baseline measure (e.g., dishwasher), and limitations on installation (e.g., size of unit and space available to install the unit).	Various secondary sources and engineering experience.
Measure Incomplete Factor	The percentage of buildings without the specific measure currently installed.	OUC RASS; EIA RECS, CBECS; MECS; ENERGY STAR sales figures; and engineering experience.
Measure Share	Used to distribute the percentage of market shares for competing measures (e.g., only blown-in ceiling insulation or spray foam insulation, not both would be installed in an attic).	OUC customer data, Various secondary sources and engineering experience.

As shown in Table 8, the measure list includes 395 unique energy-efficiency measures. Expanding the measures to account for all appropriate installation scenarios resulted in

9,535 measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (i.e., a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed).

SectorUnique MeasuresPermutationsResidential1191,173Commercial1645,798Industrial1122,564

Table 8. EE Measure Counts by Sector

4.3 DR Measures

The DR measures included in the measure list utilize the following DR strategies:

- **Direct Load Control.** OUC control of selected equipment at the customer's home or business, such as HVAC or water heaters.
- Critical Peak Pricing (CPP) with Technology. Electricity rate structures that vary based on time of day. Includes CPP when the rate is substantially higher for a limited number of hours or days per year (customers receive advance notification of CPP event) coupled with technology that enables customer to lower their usage in a specific end-use in response to the event (e.g., HVAC via smart thermostat).
- **Contractual DR.** Customers receive incentive payments or a rate discount for committing to reduce load by a pre-determined amount or to a pre-determined firm service level upon utility request.
- Automated DR. OUC dispatched control of specific end-uses at a customer facility.

DR initiatives that do not rely on the installation of a specific device or technology to implement (such as a voluntary curtailment program or time of use rates) were not included.

A workbook was developed for each measure which included the same measure inputs as previously described for the EE measures. In addition, the DR workbook included expected load reduction from the measure, based on utility technical potential, existing utility DR programs, and other nationwide DR programs if needed.

For technical potential, Resource Innovations did not break out results by specific measure or control technology because all of the developed measures target the end-uses estimated

for technical potential (i.e., potential is reported for space cooling end-use and not allocated to switches, smart thermostats, etc.).

4.4 DSRE Measures

The DSRE measure list includes rooftop PV systems, battery storage systems charged from PV systems, and CHP systems.

PV Systems

PV systems utilize solar panels (a packaged collection of PV cells) to convert sunlight into electricity. A system is constructed with multiple solar panels, a DC/AC inverter, a racking system to hold the panels, and electrical system interconnections. These systems are often roof-mounted systems that face south-west, south, and/or, south-east. The potential associated with roof-mounted systems installed on residential and commercial buildings was analyzed.

Battery Storage Systems Charged from PV Systems

Distributed battery storage systems included in this study consist of behind-the-meter battery systems installed in conjunction with an appropriately-sized PV system at residential and commercial customer facilities. These battery systems typically consist of a DC-charged battery, a DC/AC inverter, and electrical system interconnections to a PV system. On their own battery storage systems do not generate or conserve energy, but can collect and store excess PV generation to provide power during particular time periods, which for DSM purposes would be to offset customer demand during the utility's system peak.

CHP Systems

In most CHP applications, a heat engine creates shaft power that drives an electrical generator (fuel cells can produce electrical power directly from electrochemical reactions). The waste heat from the engine is then recovered to provide other on-site needs. Common prime mover technologies used in CHP applications and explored in this study include:

- Steam turbines
- Gas turbines
- Micro turbines
- Fuel Cells
- Internal combustion engines

19

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 27 of 82

DSM Measure Development

A workbook was developed for each measure which included the inputs previously described for EE measures and prime mover operating parameters.

In the previous sections, the approach for DSM measure development was summarized, and the 2025 base year load shares and reference-case load forecast were described. The outputs from these tasks provided the input for estimating the technical potential scenario, which is discussed in this section.

The technical potential scenario estimates the potential energy and demand savings when all technically feasible and commercially available DSM measures are implemented without regard for cost-effectiveness and customer willingness to adopt the most impactful EE, DR, or DSRE technologies. Since the technical potential does not consider the costs or time required to achieve these savings, the estimates provide a theoretical upper limit on electricity savings potential. Technical potential is only constrained by factors such as technical feasibility and applicability of measures. For this study, technical potential included full application of the commercially available DSM measures to all residential, commercial, and industrial customers in the utility's service territory.

5.1 Methodology

5.1.1 EE Technical Potential

EE technical potential refers to delivering less electricity to the same end-uses. In other words, technical potential might be summarized as "doing the same thing with less energy, regardless of the cost."

DSM measures were applied to the disaggregated utility electricity sales forecasts to estimate technical potential. This involved applying estimated energy savings from equipment and non-equipment measures to all electricity end-uses and customers. Technical potential consists of the total energy and demand that can be saved in the market which Resource Innovations reported as single numerical values for each utility's service territory.

The core equation used in the residential sector EE technical potential analysis for each individual efficiency measure is shown in Equation 1 below, while the core equation used in the nonresidential sector technical potential analysis for each individual efficiency measure is shown in Equation 2.

Equation 1: Core Equation for Residential Sector EE Technical Potential

Where:

- Baseline Equipment Energy Use Intensity = the electricity used per customer per year by each baseline technology in each market segment. In other words, the baseline equipment energy-use intensity is the consumption of the electrical energy using equipment that the efficient technology replaces or affects.
- **Saturation Share** = the fraction of the end-use electrical energy that is applicable for the efficient technology in a given market segment. For example, for residential cooling, the saturation share would be the fraction of all residential electric customers that have central air conditioners in their household.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient. To extend the example above, the fraction of central air conditioners that is not already energy efficient.
- **Feasibility Factor** = the fraction of units that is technically feasible for conversion to the most efficient available technology from an engineering perspective (i.e., it may not be possible to install LEDs in all light sockets in a home because the available styles may not fit in every socket).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

Equation 2: Core Equation for Non-Residential Sector EE Technical Potential

Where:

- **Total Stock Square Footage by Segment** = the forecasted square footage level for a given building type (e.g., square feet of office buildings).
- Baseline Equipment Energy Use Intensity = the electricity used per square foot per year by each baseline equipment type in each market segment.

- **Saturation Shares** = the fraction of total end-use energy consumption associated with the efficient technology in a given market segment. For example, for packaged terminal air-conditioner (PTAC), the saturation share would be the fraction of all space cooling kWh in a given market segment that is associated with PTAC equipment.
- **Percent Incomplete** = the fraction of equipment that is not considered to already be energy efficient.
- **Feasibility Factor** = the fraction of the equipment or practice that is technically feasible for conversion to the efficient technology from an engineering perspective (i.e., it may not be possible to install Variable Frequency Drives (VFD) on all motors in a given market segment).
- **Savings Factor** = the percentage reduction in electricity consumption resulting from the application of the efficient technology.

It is important to note that the technical potential estimate represents electricity savings potential at a specific point in time. In other words, the technical potential estimate is based on data describing status quo customer electricity use and technologies known to exist today. As technology and electricity consumption patterns evolve over time, the baseline electricity consumption will also change accordingly. For this reason, technical potential is a discrete estimate of a dynamic market. Resource Innovations reported the technical potential for 2025, based on currently known DSM measures and observed electricity consumption patterns.

Measure Interaction and Competition (Overlap)

While the technical potential equations listed above focus on the technical potential of a single measure or technology, Resource Innovations' modeling approach does recognize the overlap of individual measure impacts within an end-use or equipment type, and accounts for the following interactive effects:

- Measure interaction: Installing high-efficiency equipment could reduce energy savings in absolute terms (kWh) associated with non-equipment measures that impact the same end-use. For example, installing a high-efficiency heat pump will reduce heating and cooling consumption which will reduce the baseline against which attic insulation would be applied, thus reducing savings associated with installing insulation. To account for this interaction, Resource Innovations' TEA-POT model ranks measures that interact with one another and reduces the baseline consumption for the subsequent measure based on the savings achieved by the preceding measure. For technical potential, interactive measures are ranked based on total end-use energy savings percentage.
- Measure competition (overlap): The "measure share"—as defined above—accounted for competing measures, ensuring savings were not double-counted. This interaction

occurred when two or more measures "competed" for the same end-use. For example, a T-12 lamp could be replaced with a T-8 or linear LED lamp.

Addressing Naturally-Occurring EE

Naturally occurring energy efficiency includes actions taken by customers to improve the efficiency of their homes and businesses in the absence of utility program intervention. For the analysis of technical potential, Resource Innovations verified with OUC's forecasting group that the baseline sales forecasts incorporated two known sources of naturally-occurring efficiency:

- Codes and Standards: The sales forecasts already incorporated the impacts of known Code & standards changes.
- Baseline Measure Adoption: The sales forecast excluded the projected impacts of future DSM efforts but included already implemented DSM penetration.

By properly accounting for these factors, the technical potential analysis estimated the additional EE opportunities beyond what is already included in the utility sales forecast.

5.1.2 DR Technical Potential

The concept of technical potential applies differently to DR than for EE. Technical potential for DR is effectively the magnitude of loads that can be curtailed during conditions when utilities need peak capacity reductions. In evaluating this potential at peak capacity, the following were considered: which customers are consuming electricity at those times? What end-uses are in play? Can those end-use loads be managed? Large C&I accounts generally do not provide the utility with direct control over particular end-uses. Instead, many of these customers will forego electric demand temporarily if the financial incentive is large enough. For residential and small C&I customers where DR generally takes the form of direct utility control, technical potential for DR is limited by the loads that can be controlled remotely at scale.

This framework makes end-use disaggregation an important element for understanding DR potential, particularly in the residential and small C&I sectors. When done properly, end-use disaggregation not only provides insights into which loads are on and off when specific grid services are needed, it also provides insight concerning how key loads and end-uses, such as air conditioning use, vary across customers. Resource Innovations' approach used for load disaggregation is more advanced than what is used for most potential studies. Instead of disaggregating annual consumption or peak demand, Resource Innovations produced end-use load disaggregation for all 8,760 hours. This was needed because the loads available at times when different grid applications are needed can vary substantially. Instead

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 32 of 82

Technical Potential

of producing disaggregated loads for the average customer, the study was produced for several customer segments. For OUC, Resource Innovations examined three residential segments based on customer housing type, four different small C&I segments based on customer size, and four different large C&I segments based on customer size, for a total of 11 different customer segments.

Technical potential, in the context of DR, is defined as the total amount of load available for reduction that is coincident with the period of interest; in this case, the system peak hour for the summer and winter seasons. Thus, two sets of capacity values are estimated: a summer capacity and a winter capacity.

As previously mentioned, for technical potential purposes, all coincident large C&I load is considered dispatchable, while residential and small C&I DR capacity is based on specific end-uses. Summer DR capacity for residential customers was comprised of air-conditioning (AC), pool pumps, water heaters, and managed electric vehicle charging. For small C&I customers, summer capacity was based on AC load. For winter DR capacity, residential was based on electric heating, pool pumps, and water heaters. For small C&I customers, winter capacity was based on electric heating.

AC and heating load profiles were generated for residential and small C&I customers using census-level customer interval data provided by OUC. This data included a customer breakout based on housing type for residential customers and size for small C&I customers. Resource Innovations then used the interval data from these customers to create an average load profile for each customer segment.

The average load profile for each customer segment was combined with historical weather data, and used to estimate hourly load as a function of weather conditions. AC and heating loads were estimated by first calculating the baseline load on days when cooling degree days (CDD) and heating degree days (HDD) were equal to zero, and then subtracting this baseline load. This methodology is illustrated by Figure 7 (a similar methodology was used to predict heating loads).

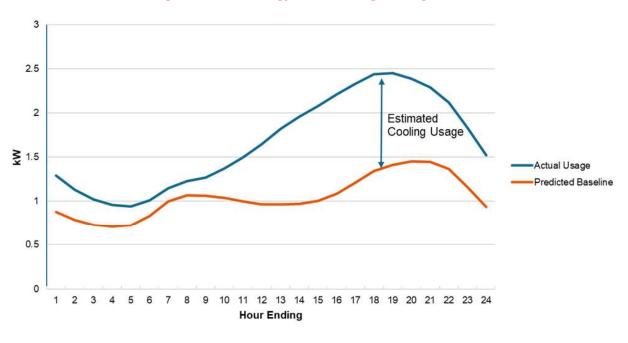


Figure 7: Methodology for Estimating Cooling Loads

This method was able to produce estimates for average AC/heating load profiles for the seven different customer segments within the residential and small C&I sectors.

Profiles for residential water heater and pool pump loads were estimated by utilizing enduse load data from NREL's residential end-use load profile database.

For all eligible loads, the technical potential was defined as the amount that was coincident with system peak hours for each season, which are August from 5:00-6:00 PM for summer, and January from 6:00-7:00 PM for winter. As mentioned in Section 4, for technical potential there was also no measure breakout needed, because all measures will target the end-uses' estimated total loads.

5.1.3 DSRE Technical Potential

5.1.3.1 PV Systems

To determine technical potential for PV systems, RI estimated the percentage of rooftop square footage in Florida that is suitable for hosting PV technology. Our estimate of technical potential for PV systems in this report is based in part on the available roof area and consisted of the following steps:

- Step 1: Outcomes from the forecast disaggregation analysis were used to characterize the existing and new residential, commercial and industrial building stocks.
 - o To calculate the total roof area for residential buildings, the average roof area per household is multiplied by the number of households.
 - For commercial and industrial buildings, RI calculated the total roof area by first dividing the load forecast by the energy usage intensity, which provides an estimate of the total building square footage. This result is then divided by the average number of floors to derive the total roof area.
- Step 2: The total available roof area feasible for installing PV systems was calculated. Relevant parameters included unusable area due to other rooftop equipment and setback requirements, in addition to possible shading from trees and limitations of roof orientation (factored into a "technical suitability" multiplier).
- Step 3: Estimated the expected power density (kW per square foot of roof area).
- Step 4: Estimated the hourly PV generation profile using NREL's PV Watts Calculator
- Step 5: Calculated total energy and coincident peak demand potential by applying RI's Spatial Penetration and Integration of Distributed Energy Resources (SPIDER) Model.

The methodology presented in this report uses the following formula to estimate overall technical potential of PVs:

PV
Technical
Energy
Potential

Suitable Rooftop
PV Area (Sq Ft)
PV Power Density
(kW-DC/Sq Ft)

Generation
Factor
(kWh/kW-DC)

Equation 3: Core Equation for Solar DSRE Technical Energy Potential

Where:

- Suitable Rooftop PV Area for Residential [Square Feet]: Number of Residential Buildings x Average Roof Area Per Building x Technical Suitability Factor
- Suitable Rooftop PV Area for Commercial [Square Feet]: Energy Consumption [kWh] / Energy Intensity [kWh / Square Feet] / Average No. of Stories Per Building x Technical Suitability Factor
- PV Power Density [kW-DC/Square Feet]: Maximum power generated in Watts per square foot of solar panel.
- **Generation Factor:** Annual Energy Generation Factor for PV, from PV Watts (dependent on local solar irradiance)

5.1.3.2 Battery Storage Systems Charged from PV Systems

Battery storage systems on their own do not generate power or create efficiency improvements, but store power for use at different times. Therefore, in analyzing the technical potential for battery storage systems, the source of the stored power and overlap with technical potential identified in other categories was considered.

Battery storage systems that are powered directly from the grid do not produce annual energy savings but may be used to shift or curtail load during particular time periods. As the DR technical potential analyzes curtailment opportunities for the summer and winter peak period, and battery storage systems can be used as a DR technology, the study concluded that no additional technical potential should be claimed for grid-powered battery systems beyond that already attributed to DR.

Battery storage systems that are connected to on-site PV systems also do not produce additional energy savings beyond the energy produced from the PV system⁵. However, PV-connected battery systems do create the opportunity to store energy during period when the PV system is generating more than the home or business is consuming and use that stored power during utility system peak periods.

To determine the additional technical potential peak demand savings for "solar plus storage" systems, our methodology consisted of the following steps:

- Assume that every PV system included in PV Technical Potential is installed with a paired storage system.
- Size the storage system assuming peak storage power is equal to peak PV generation and energy storage duration is three hours.
- Apply RI's hourly dispatch optimization module in SPIDER to create an hourly storage dispatch profile that flattens the individual customer's load profile to the greatest extent possible accounting for a) customer hourly load profile, b) hourly PV generation profile, and c) battery peak demand, energy capacity, and roundtrip charge/discharge efficiency.
- Calculate the effective hourly impact for the utility using the above storage dispatch profile, aligned with the utility's peak hour (calculated separately for summer and winter)
- Report the output storage kW impact on utility coincident peak demand in summer and winter.

⁵ PV-connected battery systems experience some efficiency loss due to storage, charging, and discharging. However, for this study, these losses were not quantified.

28

5.1.3.3 CHP Systems

The CHP analysis created a series of unique distributed generation potential models for each primary market sector (commercial and industrial).

Only non-residential customer segments whose electric and thermal load profiles allow for the application of CHP were considered. The technical potential analysis followed a three-step process. First, minimum facilities size thresholds were determined for each non-residential customer segment. Next, the full population of non-residential customers were segmented and screened based on the size threshold established for that segment. Finally, the facilities that were of sufficient size were matched with the appropriately sized CHP technology.

To determine the minimum threshold for CHP suitability, a thermal factor was applied to potential candidate customer loads to reflect thermal load considerations in CHP sizing. In most cases, on-site thermal energy demand is smaller than electrical demand. Thus, CHP size is usually dictated by the thermal load in order to achieve improved efficiencies.

The study collected electric and thermal intensity data from other recent CHP studies. For industrial customers, Resource Innovations assumed that the thermal load would primarily be used for process operations and was not modified from the secondary data sources for Florida climate conditions. For commercial customers, the thermal load is more commonly made up of water heating, space heating, and space cooling (through the use of an absorption chiller). Therefore, to account for the hot and humid climate in Florida, which traditionally limits weather-dependent internal heating loads, commercial customers' thermal loads were adjusted to incorporate a higher proportion of space cooling to space heating as available opportunities for waste heat recovery.

Resource Innovations worked with the utility-provided customer data, focusing on annual consumption due to the absence of NAICS or SIC codes for this utility data. Non-residential customers were subsequently classified based on annual consumption and size. Since NAICS or SIC codes were unavailable, no formal segmentation occurred. Instead, the analysis focused exclusively on annual utility usage. Facilities with annual loads below the kWh thresholds were deemed unlikely to possess the consistent electric and thermal loads necessary to support CHP and were consequently excluded from consideration. Conversely, those meeting the size criteria were aligned with the corresponding CHP technology.

In general, internal combustion engines are the prime mover for systems under 500kW with gas turbines becoming progressively more popular as system size increases above that. Based on the available load by customer, adjusted by the estimated thermal factor for each

segment, CHP technologies were assigned to utility customers in a top-down fashion (i.e., starting with the largest CHP generators).

Measure Interaction

PV systems and battery storage charged from PV systems were analyzed collectively due to their common power generation source; and therefore, the identified technical potential for these systems is additive. However, CHP systems were independently analyzed for technical potential without consideration of the competition between DSRE technologies or customer preference for a particular DSRE system. Therefore, results for CHP technical potential should not be combined with PV systems or battery storage systems for overall DSRE potential but used as independent estimates.

5.1.4 Interaction of Technical Potential Impacts

As described above, the technical potential was estimated using separate models for EE, DR, and DSRE systems. However, there is interaction between these technologies; for example, a more efficient HVAC system would result in a reduced peak demand available for DR curtailment, as illustrated in Figure 8.

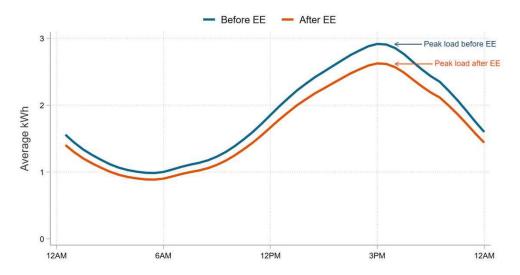


Figure 8: Illustration of EE Impacts on HVAC System Load Shape

Therefore, after development of the independent models, the interaction between EE, DR, and DSRE was incorporated as follows:

 The EE technical potential was assumed to be implemented first, followed by DR technical potential and DSRE technical potential.

- To account for the impact of EE technical potential on DR, the baseline load forecast for the applicable end-uses was adjusted by the EE technical potential, resulting in a reduction in baseline load available for curtailment.
- For DSRE systems, the EE and DR technical potential was incorporated in a similar fashion, adjusting the baseline load used to estimate DSRE potential.
 - For the PV analysis, this did not impact the results as the EE and DR technical potential did not affect the amount of PV that could be installed on available rooftops.
 - o For the battery storage charged from PV systems, the reduced baseline load from EE resulted in additional PV-generated energy being available for the battery systems and for use during peak periods. The impact of DR events during the assumed curtailment hours was incorporated into the modeling of available battery storage and discharge loads.
- For CHP systems, the reduced baseline load from EE resulted in a reduction in the number of facilities that met the annual energy threshold needed for CHP installations. Installed DR capacity was assumed to not impact CHP potential as the CHP system feasibility was determined based on energy and thermal consumption at the facility. It should be noted that CHP systems not connected to the grid could impact the amount of load available for curtailment with utility-sponsored DR. Therefore, CHP technical potential should not be combined with DR potential but used as independent estimates.

5.2 EE Technical Potential

5.2.1 Summary

Table 9 summarizes the EE technical potential by sector:

Table 9. EE Technical Potential

	Savings Potential		
	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)
Residential	249	98	935
Non-Residential ⁶	201	99	1,044
Total	450	197	1,979

⁶ Non-Residential results include all commercial and industrial customer segments.

5.2.2 Residential

Figure 10, Figure 10 and Figure 11 summarize the residential sector EE technical potential by end-use.

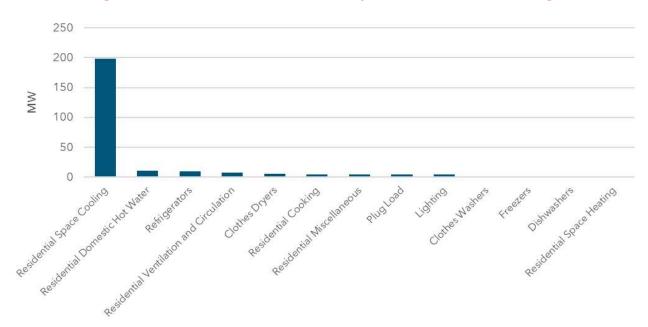


Figure 9: Residential EE Technical Potential by End-Use (Summer Peak Savings)

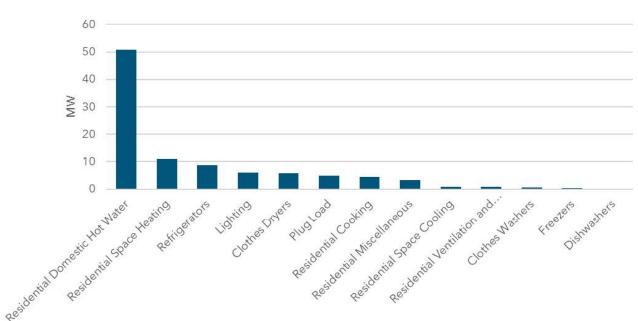
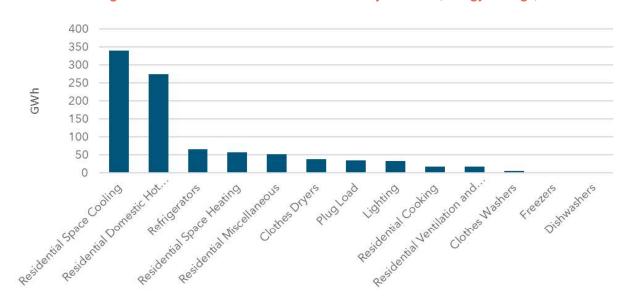



Figure 10: Residential EE Technical Potential by End-Use (Winter Peak Savings)

5.2.3 Non-Residential

5.2.3.1 Business Segments

Figure 13, Figure 13 and Figure 14 summarize the business sector EE technical potential by end-use.

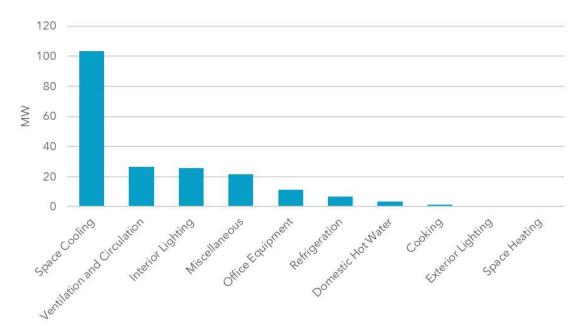


Figure 12: Business EE Technical Potential by End-Use (Summer Peak Savings)

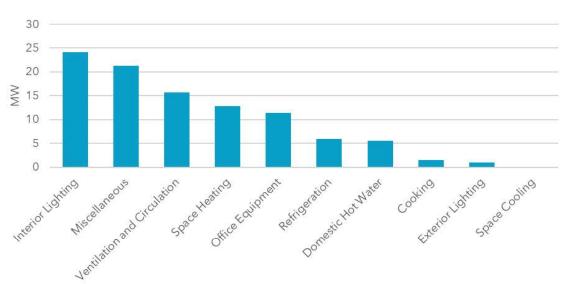
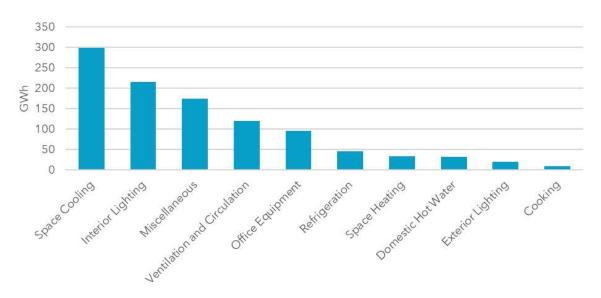



Figure 13: Business EE Technical Potential by End-Use (Winter Peak Savings)

5.3 DR Technical Potential

Technical potential for DR is defined for each class of customers as follows:

- Residential & Small C&I customers Technical potential is equal to the aggregate load for all end-uses that can participate in OUC's current programs plus DR measures not currently offered in which the utility uses specialized devices to control loads (i.e. direct load control programs). This includes cooling and heating loads for residential and small C&I customers and water heater and pool pump loads for residential customers. Not all demand reductions are delivered via direct load control of end-uses. The magnitude of demand reductions from non-direct load control such as time varying pricing, peak time rebates and targeted notifications is linked to cooling and heating loads.
- Large C&I customers Technical potential is equal to the total amount of load for each customer segment (i.e., that customers reduce their total load to zero when called upon).

Table 10 summarizes the seasonal DR technical potential by sector:

 Savings Potential

 Summer Peak Demand (MW)
 Winter Peak Demand (MW)

 Residential
 235
 223

 Non-Residential
 582
 563

 Total
 817
 786

Table 10. DR Technical Potential

5.3.1 Residential

Residential technical potential is summarized in Figure 15.

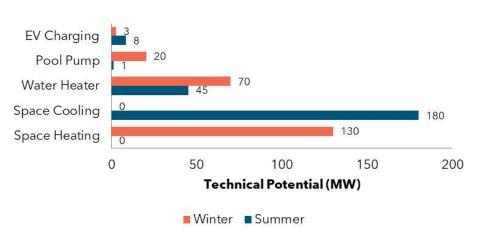


Figure 15: Residential DR Technical Potential by End-Use

5.3.2 Non-Residential

5.3.2.1 Small C&I Customers

For small C&I technical potential, Resource Innovations looked at cooling and heating loads only. Small C&I technical potential is provided in Figure 16.

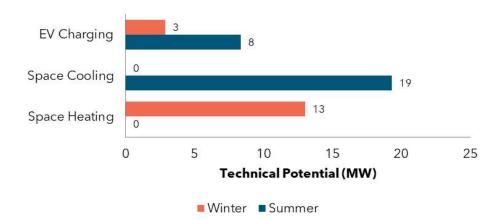


Figure 16: Small C&I DR Technical Potential by End-Use

5.3.2.2 Large C&I Customers

Figure 17 provides the technical potential for large C&I customers, broken down by customer size.

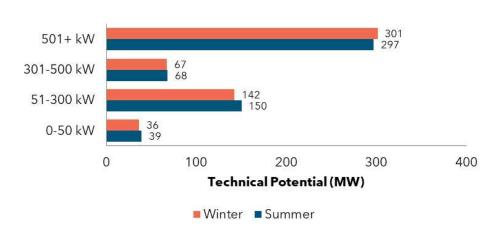


Figure 17: Large C&I DR Technical Potential by Segment

5.4 DSRE Technical Potential

Table 11 provides the results of the DSRE technical potential for each customer segment:

Table 11. DSRE Technical Potential⁷

	Savings Potential				
	Summer Peak Winter Peak Demand (MW) Demand (MW)		Energy (GWh)		
PV Systems					
Residential	339	0	2,731		
Non-Residential	162	0	1,169		
Total	501	0	3,900		
Battery Storage charge	ed from PV Systems				
Residential	171	166	0		
Non-Residential	14	70	0		
Total	185	236	0		
CHP Systems					
Total	354	292	1,591		

⁷ PV systems and CHP systems were independently analyzed for technical potential without consideration of the competition between technologies or customer preference for DSRE system.

Appendix A EE Measure List

For information on how Resource Innovations developed this list, please see Section 4.

Table 12: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 48 of 82

Measure	End-Use	Description	Baseline
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R-15)	Code-Compliant Exterior Below-Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 49 of 82

Measure	End-Use	Description	Baseline
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986- 2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu-Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 50 of 82

Measure	End-Use	Description	Baseline
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set- Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 51 of 82

Measure	End-Use	Description	Baseline
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above- Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up
Heat Pump Water Heater 50 Gallons- CEE Advaned Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy- Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting Plug Load Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 52 of 82

Measure	End-Use	Description	Baseline
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat	Single zone HVAC system
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA-2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow Showerhead	Residential Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.60 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 53 of 82

Measure	End-Use	Description	Baseline
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semiconditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation(Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation (Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982- 1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986- 2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 13: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 55 of 82

Measure	End-Use	Description	Baseline
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach-In Case with Anti- Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti- Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope,

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 56 of 82

Measure	End-Use	Description	Baseline
			residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One- Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 57 of 82

Measure	End-Use	Description	Baseline
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 58 of 82

Measure	End-Use	Description	Baseline
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self- Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self-Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4-Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 59 of 82

Measure	End-Use	Description	Baseline
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 60 of 82

Measure	End-Use	Description	Baseline
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discu s	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 61 of 82

Measure	End-Use	Description	Baseline
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key- Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 62 of 82

Measure	End-Use	Description	Baseline
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy management system that controls when desktop computers and monitors plugged into a n	One computer and monitor, manually controlled
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach-In Case with equivalent size Electronically	Medium Temperature Reach-In Case with Permanent Split Capacitor Evaporator Fan Motor

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 63 of 82

Measure	End-Use	Description	Baseline
		Commutated Evaporator Fan Motor	
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk- In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach-In Case with equivalent size Q-Sync Evaporator Fan Motor	Medium Temperature Reach-In Case with 20W Permanent Split Capacitor Fan Motor
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro- Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy- consuming equipment and systems	
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo- fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 64 of 82

Measure	End-Use	Description	Baseline
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in cooler without strip curtains
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above- Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery

Measure	End-Use	Description	Baseline
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 14: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open- Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open- Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open- Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed-Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 66 of 82

Measure	End-Use	Description	Baseline
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk-In Refrigerator Door with Auto-Closer	One Medium Temperature Walk-In Refrigerator Door without Auto-Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No-Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 67 of 82

Measure	End-Use	Description	Baseline
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plug-in timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 68 of 82

Measure	End-Use	Description	Baseline	
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons	
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER	
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER	
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER	
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER	
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER	
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER	
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER	
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons	
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons	
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons	
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons	
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled	

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 69 of 82

Measure	End-Use	Description	Baseline
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 70 of 82

Measure	End-Use	Description	Baseline
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 71 of 82

Measure	End-Use	Description	Baseline
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro- Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning	
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System

EE Measure List

Measure	End-Use	Description	Baseline	
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP	
Waterside economizer	HVAC	Waterside Economizer	No economizer	
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC	

The following EE measures from the 2019 Technical Potential Study were eliminated from the current study⁸:

Table 15: 2019 EE Measures Eliminated from Current Study

Sector	Measure	End-Use	Reason for Removal
Residential	CFL - 15W Flood	Lighting	Better technology (LED) available
Residential	CFL - 15W Flood (Exterior)	Lighting	Better technology (LED) available
Residential	CFL - 13W	Lighting	Better technology (LED) available
Residential	CFL - 23W	Lighting	Better technology (LED) available
Residential	Low Wattage T8 Fixture	Lighting	Better technology (LED) available
Residential	15 SEER Central AC	Space Cooling	Updated Federal Standard
Residential	15 SEER Air Source Heat Pump	Space Cooling, Space Heating	Updated Federal Standard
Residential	14 SEER ASHP from base electric resistance heating	Space Cooling, Space Heating	Updated Federal Standard
Residential	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Residential	Storm Door	Space Cooling, Space Heating	Minimal/uncertain energy savings
Commercial	CFL - 15W Flood	Exterior Lighting	Better technology (LED) available
Commercial	High Efficiency HID Lighting	Exterior Lighting	Better technology (LED) available

⁸ Additional measures from the 2019 study were updated to reflect current vintage/technology for the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 73 of 82

Sector	Measure	End-Use	Reason for Removal
Commercial	LED Street Lights	Exterior Lighting	Market standard
Commercial	LED Traffic and Crosswalk Lighting	Exterior Lighting	Market standard
Commercial	CFL-23W	Interior Lighting	Better technology (LED) available
Commercial	High Bay Fluorescent (T5)	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Fixture Replacement	Interior Lighting	Better technology (LED) available
Commercial	Premium T8 - Lamp Replacement	Interior Lighting	Better technology (LED) available
Commercial	Two Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Variable Speed Pool Pump	Miscellaneous	Updated Florida Energy Code
Commercial	Tank Wrap on Water Heater	Domestic Hot Water	Limited applicability
Commercial	Ceiling Insulation (R12 to R38)	Space Cooling, Space Heating	Consolidated measure baseline assumptions
Commercial	Ceiling Insulation (R30 to R38)	Miscellaneous	Consolidated measure baseline assumptions

Appendix B DR Measure List

Table 16: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

DR Measure List

Table 17: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats - BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging - switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging - telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 18: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 76 of 82

DR Measure List

Measure	Туре	Season	Description
			CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility- controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes optout of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

No DR measures from the 2019 Technical Potential Study were eliminated from the current study.

B-3

Appendix C DSRE Measure List

Table 19: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 20: Non-Residential DSRE Measures

Measure	Description		
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections		
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation		
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen		
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator		
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator		
CHP - Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion		
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator		

No DSRE measures from the 2019 Technical Potential Study were eliminated from the current study.

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 78 of 82

Appendix D External Measure Suggestions

Table 21: External Measure Suggestions and Actions

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Efficient Electrification Measures	All measures that can produce substantial site energy savings by converting from natural gas or other fossil fuels should be included in the Florida electric utilities' next efficiency potential study. Key examples include efficient heat pumps to displace gas furnaces and efficient heat pump water heaters to displace gas water heaters. It is important to note that these electrification measures provide not only heating energy savings and water heating energy savings, but can also potentially provide cooling efficiency benefits as well. In the case of heat pumps, that can occur because efficient heat pumps can operate in cooling mode more efficiently than standard central air conditioners. In the case of heat pump water heaters, cooling and dehumidification benefits can occur when/if the water heater is in conditioned space because they transfer heat (particularly latent heat) from the air around them to the water they are heating. A growing number of jurisdictions - including Illinois, Minnesota and some northeastern states - have begun to include efficient electrification measures in their efficiency programs portfolios.	Fuel-switching and electrification are outside the scope of this study
Networked Lighting Controls	LED lighting technology has become increasingly accepted and installed in commercial buildings. The next big efficiency opportunity in commercial lighting efficiency is in sophisticated controls integrated into the light fixtures themselves - both luminaire level lighting controls and networked lighting controls. For example, a 2017 report for both the Northwest Energy Efficiency Alliance and the Design Lights Consortium, a non-profit that works with utilities and manufacturers of lighting products (and which many utilities across the country reference for determination of eligibility of lighting products for efficiency program rebates), found that networked lighting controls can provide on the order of 50% additional savings after LED conversion. Other studies have also found the national savings potential from such products to be enormous. Moreover, these products can be designed to provide not only lighting energy savings but also a number of other non-energy benefits (e.g., asset tracking, such as the ability of hospitals to know the location of all wheel chairs). Numerous utilities across the country now actively promote this technology through their efficiency programs. For example, Commonwealth Edison, the utility serving Chicago and other parts of northern Illinois, is currently getting a significant portion of its commercial lighting savings from promotion of networked lighting controls	Added to measure list for 2024 study

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Ductless mini-split heat pumps to displace inefficient electric baseboard heating	While most Florida residential buildings with electric heat provide that heat with heat pumps, at least some (perhaps most likely being older multi-family rental buildings) still use inefficient electric resistance heat. Ductless mini- split heat pump retrofits can very efficiently displace such inefficient electric heat and should be added to the residential measure list.	Added to measure list for 2024 study
Air Source Heat Pump baseline assumptions	There are seven air source heat pump (ASHP) measures included in the residential measure list. Two of them - one at SEER 14 and a second at SEER 21 - are listed as relative to an electric resistance baseline. Five of them - SEER 15, SEER 16, SEER 17, SEER 18 and SEER 21 - appear to be relative to a baseline of a standard new ASHP. Are we interpreting this correctly? If so, we have a couple of comments/questions/suggestions: • The efficiency standards assessed need to be modified to be consistent with new federal standards, including new testing procedures. • For cases where the baseline is "electric resistance", why only assessing two efficiency tiers (i.e., fewer than for standard ASHP baselines)? The same number of efficiency tiers should be assessed for both baselines.	Incorporated suggestions into 2024 study, including updated baseline standard and assessing same efficiency tiers for both baselines
Heat Pump Water Heater Efficiency	The Res EE tab of the utilities draft measure list suggests that the efficiency of a heat pump water heater is an EF of 2.50. That is unrealistically low. In fact, of the 222 products listed on the Energy Star website, none had UEFs less than 2.80 and only 29 (13%) had UEFs that were less than 3.4; the average was 3.57. Indeed, the first product listed on a search of heat pump water heaters on Home Depot's website is a 50 gallon, Rheem (Pro Terra) product with a UEF of 3.75 and a cost of \$1699.	Incorporated suggestion into 2024 study
New Construction Measure Packages	The measures lists did not appear to include packages of measures for building new residential and/or new commercial buildings to levels of efficiency beyond those required by code. Utilities in many jurisdictions run new construction efficiency programs supporting such measure packages. In the residential sector, many base their programs on the long-standing Federal Energy Star standard. However, increasingly utility programs are promoting additional efficiency tiers - often as part of all-electric new construction program offerings - that go well beyond the Energy Star standard. For example, Consumers Energy (Michigan) offers \$1000 rebates to builders who construct Energy Star single family homes	Incorporated suggestion into 2024 study with 2 tiers of residential new construction whole-home improvement measures.

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
	with a Home Energy Rating (HERS) score of 57 or less, but offer higher rebates for more efficient buildings - up to \$4000 for all electric homes with a HERS score of 40 or less. The Florida utilities potential study should assess savings potential for both the Energy Star level and a tier or two of additional efficiency beyond that level. Similar assessments of new commercial building savings potential should also be assessed.	
Custom Industrial Measures	The utilities' list of industrial efficiency measures addresses common industrial efficiency opportunities. However, it does not address efficiency opportunities that may be unique to individual industries or even to individual industrial facilities. That can include such things as changes in types of materials used in manufacturing, reductions in waste streams, improved use of water delivered by agricultural irrigation systems, and/or other things that are not directly related to energy using equipment or controls of such equipment. It is obviously not possible to list all such measures. However, a potential study will understate savings potential if it does not include a way of capturing such potential in its estimates. One potential way to get a sense of such potential is to review results of comprehensive industrial efficiency programs run by other utilities to identify the portion of actual program savings from such unique custom measures - and then assume that portion of custom savings could be added to the savings estimated in the study for named measures.	Added to measure list for 2024 study
Electric Vehicle measures	Some EV chargers are more efficient than others. The Federal Energy Star program has a standard for them. Savings potential may not be huge, but should be considered in the study. With a growing number of EV sales, the study should also consider the potential savings from promoting the most efficient EVs within different size/style categories	Added to measure list for 2024 study
Removing screw- based LEDs	The screw-based LEDs on both the Residential and Commercial measure lists should now be considered baseline due to federal efficiency standards adopted earlier this year. Utility load forecasts for IRPs should reflect resulting improvements in end use efficiency.	Screw-based LEDs were included in the study but with limited applicability to reflect current market
Removing Commercial fluorescent lighting	LED technology - for both fixtures and lamps - has advanced significantly in recent years, to the point where it should be the only technology considered for commercial lighting. Measures such as high performance T-8 fluorescent fixtures and high bay T-5 fluorescent fixtures should be replaced with LED alternatives in the study.	Updated measure list for 2024 study to only include LED-based lamps for linear fluorescent replacements

Measure Suggestion	Stakeholder Comments	Action taken for FEECA Study
Removing fossil- gas fueled CHP	Fossil-fuel fired CHP systems should not be considered "renewable" and have questionable benefits if electric generation is expected to get increasingly more renewable and clean. Biogas-fueled CHP - such as systems installed in wastewater treatment facilities that use methane byproducts of processing waste - should be included in the study.	2024 study will continue to assess all CHP options
Adding livestock methane power generation to renewables list	For example, see the "cow power" program currently being run by Green Mountain Power, Vermont's largest electric utility	2024 study will continue to assess DSRE options consistent with prior study, including customer-sited solar, solar plus storage, and CHP
Adding EV managed charging to DR list	With national market shares for EVs growing, it is important that utilities consider programs for managing when charging occurs. Numerous utilities are currently running managed charging programs. This does not currently appear to be on the measure list and should be added to the Florida utilities' potential study.	Added to measure list for 2024 study
Residential "smart thermostat" measure can provide both efficiency savings and demand response potential	This is recognized in the inclusion of smart thermostats in both the Res EE and DR tabs of the measure list spreadsheet. We simply want to flag that it is important when assessing cost-effectiveness of this measure that these two potential benefits are considered together. In other words, the cost should be considered compared to the combined efficiency and DR potential rather than separately considered relative to just EE savings and then separately again compared to just DR potential	2024 study will include interactive impacts of EE and DR opportunities
Emerging Technologies	The efficiency potential study measure list appears to be somewhat outdated. It does not include a number of new and emerging technologies. The potential list of such technologies is long. We suggest reviewing the attached list of emerging technologies developed almost two years ago by Consumers Energy (Michigan) and including them in the study.	Consumers Energy study was reviewed and commercially available measures were added to measure list for 2024 study, including heat pump water heaters - CEE advanced tier, heat pump clothes dryers, ozone laundry systems, and 21+ SEER HVAC units

External Measure Suggestions

Docket Nos. 20240012-EG to 20240017-EG TPS for Orlando Utilities Commission Exhibit JH-7, Page 82 of 82

Exhibit JH-8 2024 Measure Lists

EE Measure Lists

Table 1: Residential EE Measures

Measure	End-Use	Description	Baseline
120v Heat Pump Water Heater 50 Gallons	Residential Domestic Hot Water	120v Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Air Sealing- Infiltration Control	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Improved Infiltration Control	Standard Heating and Cooling System with Standard Infiltration Control
Air-to-Water Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star Air-to-Water Heat Pump, 25 SEER, 13 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - 15 SEER/14.3 SEER2 from base electric resistance	Residential Space Cooling, Residential Space Heating	ASHP 15 SEER from base electric resistance	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2 (from elec resistance)	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - 24 SEER/22.9 SEER2, 10.5 HSPF	Residential Space Cooling, Residential Space Heating	ASHP: 24/22.9 SEER/SEER2, 10.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Advanced Tier ASHP:17.8/17 SEER/SEER2; 10.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)	Residential Space Cooling, Residential Space Heating	CEE Tier 2 ASHP: 16.8/16 SEER/SEER2; 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Base AC, 15 SEER, Electric resistance heating

Measure	End-Use	Description	Baseline
(from elect resistance)			
ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF	Residential Space Cooling, Residential Space Heating	ENERGY STAR/CEE Tier 1 ASHP: 16/15.2 SEER/SEER2, 9.0 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF (updated)
Basement or Crawlspace Wall Insulation R-15	Residential Space Cooling, Residential Space Heating	Increased Basement or Crawlspace Wall Insulation (R-15)	Code-Compliant Exterior Below- Grade Wall Insulation (R-10)
Bathroom Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
CEE Advanced Tier Clothes Dryer	Clothes Dryers	CEE Advanced Tier Clothes Dryer	One Clothes Dryer meeting Federal Standard
CEE Advanced Tier Clothes Washer	Clothes Washers	Tier 3 CEE Clothes washer	One Clothes Washer meeting Federal Standard
CEE Tier 3 Refrigerator	Refrigerators	Residential Tier 3 Refrigerator	One Refrigerator meeting Federal Standard
Ceiling Insulation (R11 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R11 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-1985) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R19 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1982-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R30)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes, bring to current code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R2 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, older (pre-1982) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R38)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R30 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction
Ceiling Insulation (R38 to R49)	Residential Space Cooling, Residential Space Heating	Blown-in insulation in ceiling cavity/attic, existing (1986-2020) homes - Beyond Code	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Residential Space Cooling	Central AC - CEE Tier 2: 16.8 SEER/16 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - 24 SEER/22.9 SEER2	Residential Space Cooling	Central AC - 24 SEER/22.9 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Residential Space Cooling	Central AC - CEE Advanced Tier: 17.8 SEER/17 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Residential Space Cooling	Central AC - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2	Code-Compliant Central AC, 15 SEER (updated)
Central AC Tune Up	Residential Space Cooling	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Existing Typical Central AC without Regular Maintenance/tune-up
Dehumidifier Recycling	Plug Load	No dehumidifier	One Dehumidifier meeting Federal Standard
Drain Water Heat Recovery	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Duct Insulation	Residential Space Cooling, Residential Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork	Standard Electric Heating and Central AC with Uninsulated Ductwork
Duct Repair	Residential Space Cooling, Residential Space Heating	Duct Repair to eliminate/minimize leaks, includes testing and sealing	Standard Electric Heating and Central AC with typical duct leakage
ECM Circulator Pump	Residential Miscellaneous	Install ECM Circulator Pump	Install Standard Circulator Pump
Energy Star Air Purifier	Plug Load	One Air Purifier meeting ENERGY STAR 2.0 Standards	One Standard Conventional Air Purifier
Energy Star Audio- Video Equipment	Plug Load	One DVD/Blu-Ray Player meeting current ENERGY STAR Standards	One Market Average DVD/Blu- Ray Player
Energy Star Bathroom Ventilating Fan	Residential Ventilation and Circulation	Bathroom Exhaust Fan meeting current ENERGY STAR Standards	Bathroom Exhaust Fan meeting Federal Standard
Energy Star Ceiling Fan	Residential Miscellaneous	60" Ceiling Fan Meeting ENERGY STAR 3.1 Standards	Standard 60" Ceiling Fan
Energy Star Clothes Dryer	Clothes Dryers	One Electric Resistance Clothes Dryer meeting ENERGY STAR 1.1 Standards	One Clothes Dryer meeting Federal Standard
Energy Star Clothes Washer	Clothes Washers	One Clothes Washer meeting ENERGY STAR 8.1 Standards	One Clothes Washer meeting Federal Standard
Energy Star Dehumidifier	Plug Load	One Dehumidifier meeting ENERGY STAR 5.0 Standards	One Dehumidifier meeting Federal Standard
Energy Star Dishwasher	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements (effective on July 19, 2023), electric water heating	One Dishwasher meeting Federal Standard
Energy Star Dishwasher (Gas Water Heating)	Dishwashers	One Dishwasher meeting ENERGY STAR 7.0 Requirements, gas water heating	One Dishwasher meeting Federal Standard; gas water heating
Energy Star Door	Residential Space Cooling, Residential Space Heating	100ft2 of Opaque Door meeting Energy Star Version 6.0 Requirements (U-Value: 0.17)	100ft2 of Opaque Door meeting current FL Code Requirements

Measure	End-Use	Description	Baseline
ENERGY STAR EV supply equipment (level 2 charger)	Residential Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Freezer	Freezers	One Freezer meeting current ENERGY STAR 5.1 Standards	One Freezer meeting Federal Standard
Energy Star Ground Source Heat Pump	Residential Space Cooling, Residential Space Heating	Energy Star GSHP, 17.1 SEER, 12 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Energy Star Imaging Equipment	Plug Load	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star Monitor	Plug Load	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star Personal Computer	Plug Load	One Personal Computer meeting ENERGY STAR 8.0 Standards	One Personal Computer meeting ENERGY STAR® 3.0 Standards
Energy Star Refrigerator	Refrigerators	One Refrigerator/Freezer meeting ENERGY STAR 5.1 Standards	One Refrigerator/Freezer meeting Federal Standard
Energy Star Room AC	Residential Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star Set-Top Receiver	Plug Load	One Set-top Box meeting ENERGY STAR 4.1 Standards	One Market Average Set-top Box
Energy Star TV	Plug Load	One Television meeting ENERGY STAR 9.0 Standards	One non-ENERGY STAR Television
Energy Star Windows	Residential Space Cooling, Residential Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window current FL energy code requirements
Exterior Wall Insulation	Residential Space Cooling, Residential Space Heating	Increased Exterior Above-Grade Wall Insulation (R-13)	Market Average Existing Exterior Above-Grade Wall Insulation
Filter Whistle	Residential Ventilation and Circulation	Install the Furnace Filter Alarm	No Furnace Filter Alarm on a Central Forced-Air Furnace
Floor Insulation	Residential Space Heating	Increased Floor Insulation (R-30)	Code-Compliant Floor Insulation
Freezer Recycling	Freezers	No Freezer	Current Market Freezer
Green Roof	Residential Space Cooling	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof
Heat Pump Clothes Dryer	Clothes Dryers	One Heat Pump Clothes Dryer	One Clothes Dryer meeting Federal Standard
Heat Pump Pool Heater	Residential Miscellaneous	Heat Pump Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Heat Pump Tune Up	Residential Space Cooling, Residential Space Heating	System tune-up, including coil cleaning, refrigerant charging, and other diagnostics	Standard Heating and Cooling System without Regular Maintenance/tune-up
Heat Pump Water Heater 50 Gallons- CEE Advanced Tier	Residential Domestic Hot Water	CEE Advanced Tier Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater
Heat Pump Water Heater 50 Gallons- ENERGY STAR	Residential Domestic Hot Water	Heat Pump Water Heater 50 Gallons	Code-Compliant 50 Gallon Electric Resistance Water Heater

Measure	End-Use	Description	Baseline
Heat Pump Water Heater 80 Gallons- ENERGY STAR	Residential Domestic Hot Water	Energy Star Heat Pump Water Heater 80 Gallons	Code-Compliant 80 Gallon Electric Resistance Water Heater
Heat Trap	Residential Domestic Hot Water	Heat Trap	Existing Water Heater without heat trap
High Efficiency Convection Oven	Residential Cooking	One Full-Size Convection Oven meeting ENERGY STAR 3.0 Standards	One Standard Economy-Grade Full-Size Oven
High Efficiency Induction Cooktop	Residential Cooking	One residential induction cooktop	One standard residential electric cooktop
Home Energy Management System	Lighting, Plug Load, Residential Space Cooling, Residential Space Heating	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Hot Water Pipe Insulation	Residential Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-5	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
HVAC ECM Motor	Residential Ventilation and Circulation	A brushless permanent magnet (ECM) blower motor for electric furnace	Permanent Split Capacitor Motor for Electric Furnace
HVAC Economizer	Residential Space Cooling	Install residential economizer	No economizer
HVAC Zoning System	Residential Space Cooling, Residential Space Heating	Install dampers in the ducts, dividing home into multiple zones, each controlled by its own thermostat	Single zone HVAC system
Indoor Daylight Sensor	Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Range	Residential Cooking	Residential induction range	Electric range
Instantaneous Hot Water System	Residential Domestic Hot Water	Instantaneous Hot Water System	Standard Efficiency Storage Tank Water Heater
Kitchen Faucet Aerators	Residential Domestic Hot Water	Low-Flow Faucet Aerator with Flow Rate of 1.5 gpm	Faucet Aerator with Federal Standard Flow Rate of 2.2 gpm
LED - 9W_CFL Baseline	Lighting	LED (assume 9W) replacing CFL baseline lamp	14W CFL (60W equivalent)
LED - 9W_Halogen Baseline	Lighting	LED (assume 9W) replacing EISA- 2020 compliant baseline lamp	EISA-2020 compliant baseline lamp (60W equivalent)
LED Specialty Lamps-5W Chandelier	Lighting	5 W Chandelier LED	Standard incandescent chandelier lamp
Linear LED	Lighting	Linear LED Lamps in Linear Fluorescent Fixture	Standard (32w) T8 lamps in Linear Fluorescent Fixture
Low Flow	Residential	Low-Flow Handheld Showerhead,	Standard Handheld Showerhead,
Showerhead	Domestic Hot Water	Flow Rate: 1.60 gpm	Flow Rate: 2.50 gpm
New Construction - Whole Home Improvements - Tier 1	Whole Home	Performance-based improvements in new homes - 20% savings	Residential New Construction (Baseline Efficiency)
New Construction - Whole Home Improvements - Tier 2	Whole Home	Performance-based improvements in new homes - 35% savings	Residential New Construction (Baseline Efficiency)

Measure	End-Use	Description	Baseline
Occupancy Sensors Switch Mounted	Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Timer	Lighting	Timer on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Outdoor Motion Sensor	Lighting	Motion Sensor on Outdoor Lighting, Controlling 120 Watts	120 Watts of Lighting, Manually Controlled
Ozone Laundry	Clothes Washers	Add a New, Single-Unit Ozone Laundry System to the Clothes Washer	One Clothes Washer meeting Federal Standard
Programmable Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Properly Sized CAC	Residential Space Cooling	Properly Sized Central Air Conditioning	Standard Central Air Conditioning, Oversized
Radiant Barrier	Residential Space Cooling	Radiant Barrier	No radiant barrier
Reflective Roof	Residential Space Cooling	Reflective Roof Treatment	Standard dark shingle
Refrigerator Coil Cleaning	Refrigerators	Refrigerator Coil Cleaning	
Refrigerator Recycling	Refrigerators	No Refrigerator	Current Market Average Refrigerator
Residential Whole House Fan	Residential Space Cooling	Standard Central Air Conditioning with Whole House Fan	Standard Central Air Conditioning, No Whole House Fan
Sealed crawlspace	Residential Space Cooling, Residential Space Heating	Encapsulated and semi- conditioned crawlspace	Naturally vented, unconditioned crawlspace
Smart Breaker	Whole Home	Smart Breaker	standard electric breakers
Smart Panel	Whole Home	Multi-channel device that attaches to customer's circuit breaker to enable monitoring and control of major end-use appliances by customer	standard electric panel
Smart Power Strip	Plug Load	Smart plug strips for entertainment centers and home office	Standard entertainment center or home office usage, no smart strip controls
Smart Thermostat	Residential Space Cooling, Residential Space Heating	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Solar Attic Fan	Residential Space Cooling	Standard Central Air Conditioning with Solar Attic Fan	Standard Central Air Conditioning, No Solar Attic Fan
Solar Pool Heater	Residential Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pumps	Residential Miscellaneous	Solar Powered Pool Pump	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System	Residential Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Spray Foam Insulation (Base R11)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction

Measure	End-Use	Description	Baseline
Spray Foam Insulation (Base R19)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1982-1985) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R2)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in older (pre-1982) homes	Existing ceiling insulation based on building code at time of construction
Spray Foam Insulation (Base R30)	Residential Space Cooling, Residential Space Heating	Open cell spray foam along roofline in existing (1986-2020) homes	Existing ceiling insulation based on building code at time of construction
Thermostatic Shower Restriction Valve	Residential Domestic Hot Water	50 Gallon Electric Resistance Heater and Thermostatic Shower Valves	50 Gallon Electric Resistance Heater and Standard Shower Valves
Variable Refrigerant Flow (VRF) HVAC Systems	Residential Space Cooling, Residential Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
Water Heater Blanket	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Insulated Tank Wrap	Code-Compliant 50 Gallon Electric Resistance Water Heater, No Tank Wrap
Water Heater Thermostat Setback	Residential Domestic Hot Water	50 Gallon Electric Resistance Water Heater with Temperature Setpoint of 119°F	Code-Compliant 50 Gallon Electric Resistance Water Heater (Temp. Setpoint = 130°F)
Water Heater Timeclock	Residential Domestic Hot Water	Water Heater Timeclock	Existing Water Heater without time clock
Weather stripping	Residential Space Cooling, Residential Space Heating	Specific quantity of weather stripping to seal	
Window Caulking	Residential Space Cooling, Residential Space Heating	Window caulking	
Window Sun Protection	Residential Space Cooling	Window Film Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

Table 2: Commercial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 1.5 HP Open-Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 10 HP Open-Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Ventilation and Circulation	High Efficiency 20 HP Open-Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
Advanced Rooftop Controller	Ventilation and Circulation	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Miscellaneous	Performing Routine Maintenance on 20HP Inlet Modulation Fixed- Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor

Measure	End-Use	Description	Baseline
Air Curtains	Space Cooling, Space Heating	Air Curtain across door opening	Door opening with no air curtain
Airside Economizer	Space Cooling	Airside Economizer	No economizer
Anti-Sweat Controls	Refrigeration	One Medium Temperature Reach- In Case with Anti-Sweat Heater Controls	One Medium Temperature Reach-In Case without Anti-Sweat Heater Controls
Auto Off Time Switch	Interior Lighting	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Automatic Door Closer for Walk-in Coolers and Freezers	Refrigeration	One Medium Temperature Walk- In Refrigerator Door with Auto- Closer	One Medium Temperature Walk- In Refrigerator Door without Auto- Closer
Beverage Vending Machine Controls	Refrigeration	One non-ENERGY STAR beverage vending machine equipped with infrared occupancy sensing controls	One non-ENERGY STAR beverage vending machine, no controls
Bi-Level Lighting Control (Exterior)	Exterior Lighting	Bi-Level Controls on Exterior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Interior)	Interior Lighting	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ceiling Insulation (R19 to R30)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R19 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R30)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R38)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Ceiling Insulation (R2 to R49)	Space Cooling, Space Heating	Blown-in insulation in ceiling cavity/attic - Beyond Code	Market Average Existing Ceiling Insulation in older steep slope, residential style commercial building
Chilled Water Reset	Space Cooling	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Chiller maintenance	Space Cooling	O&M improvements to restore chiller performance	
CO Sensors for Parking Garage Exhaust	Miscellaneous	Enclosed Parking Garage Exhaust with CO Control	Constant Volume Enclosed Parking Garage Exhaust

Measure	End-Use	Description	Baseline
Commercial Duct Sealing	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Commercial Strategic Energy Management	Whole Building	Commercial Strategic Energy Management	No active energy management
Custom measure - Non-lighting	Space Cooling, Space Heating	Custom Improvement to Facility's Operations	Baseline Technology/Process
Data Center Hot Cold Aisle	Office Equipment	Equipment configuration that saves HVAC	No hot, cold aisle containment
Dedicated Outside Air System (DOAS)	Space Cooling, Space Heating	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Circulating Systems	Domestic Hot Water	Recirculation Pump with Demand Control Mechanism	Uncontrolled Recirculation Pump
Demand Controlled Ventilation	Ventilation and Circulation	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Refrigeration	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer-Controlled Electric Defrost Cycle
Destratification Fans	Space Heating	Destratification Fans improve temperature distribution by circulating warmer air from the ceiling back down to the floor level	No destratification fan
Door Gasket (Cooler)	Refrigeration	New Door Gasket on One-Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Door Gasket (Freezer)	Refrigeration	New Door Gasket on One-Door Medium Temperature Reach-In Case	Worn or Damaged Door Gasket on One-Door Medium Temperature Reach-In Case
Drain water heat recovery	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Drain Water Heat Exchanger	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater, No Drain Water Heat Recovery
Dual Enthalpy Economizer	Ventilation and Circulation	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
Duct Insulation	Space Cooling, Space Heating	Standard Electric Heating and Central AC with Insulated Ductwork (R-8)	Standard Electric Heating and Central AC with Uninsulated Ductwork (R-4)
Ductless Mini-Split AC	Space Cooling	Ductless Mini-Split AC, 4 Ton, 16 SEER	Code-Compliant AC Unit, 4 Ton, 15 SEER
Ductless Mini-Split HP	Space Cooling, Space Heating	Ductless Mini-Split HP, 17 SEER, 9.5 HSPF	Code-Compliant ASHP, 15 SEER, 8.8 HSPF
DX Coil Cleaning	Space Cooling	DX Coil Cleaning	DX Coil Not Cleaned
ECM Motors on Furnaces	Space Heating	Variable Speed Electronically Commutated Motor for an Electric Furnace	Permanent Split Capacitor Motor for Electric Furnace
Efficient Battery Charger	Miscellaneous	Efficient Battery Charger	FR or SCR charging stations with power conversion efficiency < 89% or > 10 W

Measure	End-Use	Description	Baseline
Efficient Exhaust Hood	Cooking	Kitchen ventilation with automatically adjusting fan controls	Kitchen ventilation with constant speed ventilation motor
Efficient Motor Belts	Miscellaneous	Synchronous belt, 98% efficiency	Standard V-belt drive
Efficient New Construction Lighting	Interior Lighting	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Energy Recovery Ventilation System (ERV)	Space Cooling	Unitary Cooling Equipment that Incorporates Energy Recovery	Current Market Packaged or Split DX Unit
Energy Star Combination Oven	Cooking	Energy Star Combination Oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade 10-Pan Combination Oven
Energy Star Commercial Clothes Washer	Miscellaneous	One Commercial Clothes Washer meeting current ENERGY STAR Version 8.1 Standards	One Commercial Clothes Washer meeting Federal Standard
Energy Star Commercial Dishwasher	Domestic Hot Water	One Commercial Dishwasher meeting ENERGY STAR Version 3.0 Standards	One Dishwasher meeting Federal Standard
Energy Star Commercial Glass Door Freezer	Refrigeration	One Glass Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Glass Door Freezer meeting Federal Standards
Energy Star Commercial Glass Door Refrigerator	Refrigeration	One Glass Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Glass Door Refrigerator meeting Federal Standards
Energy Star Commercial Solid Door Freezer	Refrigeration	One Solid Door Freezer meeting ENERGY STAR Version 5.0 Standards	One Solid Door Freezer meeting Federal Standards
Energy Star Commercial Solid Door Refrigerator	Refrigeration	One Solid Door Refrigerator meeting ENERGY STAR Version 5.0 Standards	One Solid Door Refrigerator meeting Federal Standards
Energy Star convection oven	Cooking	Energy Star convection oven meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Full-Size Convection Oven
Energy Star EV Chargers	Miscellaneous	Level 2 Electric Vehicle Supply Equipment (EVSE)	Level 1 Electric Vehicle Supply Equipment (EVSE)
Energy Star Fryer	Cooking	One Standard Vat Electric Fryer meeting ENERGY STAR Version 3.0 Standards	One Standard Economy-Grade Standard Vat Electric Fryer
Energy Star Griddle	Cooking	One Griddle meeting current ENERGY STAR Version 1.2 Standards	One Conventional Griddle
Energy Star Hot Food Holding Cabinet	Cooking	One Hot Food Holding Cabinet meeting current ENERGY STAR Version 2.0 Standards	One Standard Hot Food Holding Cabinet
Energy Star Ice Maker	Refrigeration	One Continuous Self-Contained Ice Maker meeting ENERGY STAR Version 3.0 Standards	One Continuous Self-Contained Ice Maker meeting Federal Standard
ENERGY STAR Imaging Equipment	Office Equipment	One imaging device meeting current ENERGY STAR Standards	One non-ENERGY STAR imaging device
Energy Star LED Directional Lamp	Interior Lighting	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp

Measure	End-Use	Description	Baseline
Energy Star Monitors	Office Equipment	One Monitor meeting ENERGY STAR 8.0 Standards	One Standard Monitor
Energy Star PCs	Office Equipment	One Personal Computer (desktop or laptop) meeting current ENERGY STAR® Standards	One non-ENERGY STAR® Personal Computer
Energy Star room AC	Space Cooling	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC, 1 Ton, 10.9 CEER
Energy Star Servers	Office Equipment	One Server meeting ENERGY STAR 2.0 Standards	One Standard Server
Energy Star Steamer	Cooking	One 4-Pan Electric Steamer meeting ENERGY STAR® 2.0 Standards	One Standard Economy-Grade 4- Pan Steamer
Energy Star Uninterruptable Power Supply	Office Equipment	Standard Desktop Plugged into Energy Star Uninterruptable Power Supply at 25% Load	Standard Desktop Plugged into Average Rotary Uninterruptable Power Supply at 25% Load
Energy Star Vending Machine	Refrigeration	One Refrigerated Vending Machine meeting ENERGY STAR Version 4.0 Standards	One Refrigerated Vending Machine meeting ENERGY STAR® 1.0 Standards
ENERGY STAR Water Cooler	Miscellaneous	One Storage Type Hot/Cold Water Cooler Unit meeting ENERGY STAR Version 3.0 Standards	One Standard Storage Type Hot/Cold Water Cooler Unit
Energy Star windows	Space Cooling, Space Heating	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U-Value: 0.3, SHGC: 0.3)
Engine Block Timer	Miscellaneous	Plug-in timer that activates engine block timer to reduce unnecessary run time	Engine block heater (typically used for backup generators) running continuously
Escalator Motor Efficiency Controller	Miscellaneous	Install Escalator Motor Efficiency Controller	Escalator without Motor Efficiency Controller
Facility Commissioning	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility commissioning to optimize building operations in new facilities	Standard new construction facility with no commissioning
Facility Energy Management System	Space Cooling, Space Heating, Ventilation and Circulation	Typical HVAC by Building Type Controlled by Energy Management System	Standard/manual facility equipment controls
Faucet Aerator	Domestic Hot Water	Low-flow lavatory faucet aerator, flow rate: 1.0 gpm	Federal lavatory flow rate standard, 1994, flow rate: 2.2 gpm
Floating Head Pressure Controls	Refrigeration	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Floor Insulation	Space Cooling, Space Heating	Increased Floor Insulation (R-19)	Market Average Existing Floor Insulation
Geothermal Heat Pump	Space Cooling, Space Heating	Geothermal Heat Pump	Code-Compliant Air Source Heat Pump
Green roof	Space Cooling, Space Heating	Vegetated Roof Surface on top of Standard Roof	Standard Black Roof

Measure	End-Use	Description	Baseline
HE Air Cooled Chiller - All Compressor Types - 100 Tons	Space Cooling	HE Air Cooled Chiller - Air Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE DX 11.25-20.0 Tons Elec Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	Space Cooling, Space Heating	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	Space Cooling	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	Space Cooling	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	Space Cooling	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
Heat Pump Pool Heater Commercial	Miscellaneous	High Efficiency Pool Heater Eff. >=84%	Standard Efficiency Pool Heater 78% Eff.
Heat Pump Water Heater	Domestic Hot Water	Efficient 50 Gallon Electric Heat Pump Water Heater	Code-Compliant 50 Gallon Electric Heat Pump Water Heater
High Efficiency Air Compressor	Miscellaneous	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Data Center Cooling	Space Cooling	High Efficiency CRAC (computer room air conditioner)	Standard Efficiency CRAC
High Efficiency PTAC	Space Cooling	High Efficiency PTAC	Code-Compliant PTAC
High Efficiency PTHP	Space Cooling, Space Heating	High Efficiency PTHP	Code-Compliant PTHP
High Efficiency Refrigeration Compressor_Discus	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor_Scroll	Refrigeration	High Efficiency Refrigeration Compressors	Standard Compressor
High Speed Fans	Ventilation and Circulation	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter

Measure	End-Use	Description	Baseline
Hot water pipe insulation	Domestic Hot Water	1' of Insulated Pipe in Unconditioned Spaces, Insulation of R-4	1' of Pipe in Unconditioned Spaces with Code Minimum of 1"of Insulation
Hotel Card Energy Control Systems	Space Cooling, Space Heating	Guest Room HVAC Unit Controlled by Hotel-Key-Card Activated Energy Control System	Guest Room HVAC Unit, Manually Controlled by Guest
Indoor daylight sensor	Interior Lighting	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Induction Cooktops	Cooking	Efficient Induction Cooktop	One Standard Electric Cooktop
Infiltration Reduction - Air Sealing	Space Cooling, Space Heating	Reduced leakage through caulking, weather-stripping	Standard Heating and Cooling System with Moderate Infiltration
Instantaneous Hot Water System Commercial	Domestic Hot Water	Instantaneous Hot Water System	Code-Compliant Electric Storage Water Heater
LED - 14W_CFL Baseline	Interior Lighting	LED (assume 14W) replacing CFL	100W equivalent CFL
LED - 9W Flood_CFL Baseline	Exterior Lighting	LED (assume 9W) replacing CFL	14W CFL
LED Canopy Lighting (Exterior)	Exterior Lighting	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Exit Sign	Interior Lighting	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture
LED High Bay_LF Baseline	Interior Lighting	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting	2x4 LED Troffer	Lumen-Equivalent 32-Watt T8 Lamp
LED Linear - Lamp Replacement	Interior Lighting	Linear LED (16W)	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	Space Cooling, Space Heating	LEED New Construction Whole Building	Comparable facility, code- compliance construction
Light Tube	Interior Lighting	One 14" Light Tube, Delivering light to 250 S.F. of Commercial Space	250 S.F. of Commercial Space Lit by Typical Lighting Strategies
Low Flow Shower Head	Domestic Hot Water	Low-Flow Handheld Showerhead, Flow Rate: 1.50 gpm	Standard Handheld Showerhead, Flow Rate: 2.50 gpm
Low-Flow Pre-Rinse Sprayers	Domestic Hot Water	Low-Flow Pre-Rinse Sprayer with Flow Rate of 1.6 gpm	Pre-Rinse Sprayer with Federal Standard Flow Rate of 2.25 gpm
Network PC Power Management	Office Equipment	One computer and monitor attached to centralized energy	One computer and monitor, manually controlled

Measure	End-Use	Description	Baseline
		management system that controls when desktop computers and monitors plugged into a n	
Networked Lighting Controls	Interior Lighting	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Night Covers for Display Cases	Refrigeration	One Open Vertical Case with Night Covers	One Existing Open Vertical Case, No Night Covers
Occupancy Sensors, Ceiling Mounted	Interior Lighting	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy Sensors, Switch Mounted	Interior Lighting	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Ozone Laundry Commercial	Miscellaneous	Add a new ozone laundry system onto a commercial clothes washer	One commercial clothes washer without ozone laundry system
Programmable thermostat	Space Cooling, Space Heating	Pre-set programmable thermostat that replaces manual thermostat	Standard Heating and Cooling System with Manual Thermostat
PSC to ECM Evaporator Fan Motor (Reach-In)	Refrigeration	Medium Temperature Reach-In Case with equivalent size Electronically Commutated Evaporator Fan Motor	Medium Temperature Reach-In Case with Permanent Split Capacitor Evaporator Fan Motor
PSC to ECM Evaporator Fan Motor (Walk-In, Refrigerator)	Refrigeration	Medium Temperature Walk-In Case with Electronically Commutated Evaporator Fan Motor	Medium Temperature Walk-In Case with Permanent Split Capacitor Evaporator Fan Motor
Q-Sync Evaporator Fan Motor	Refrigeration	Medium Temperature Reach-In Case with equivalent size Q-Sync Evaporator Fan Motor	Medium Temperature Reach-In Case with 20W Permanent Split Capacitor Fan Motor
Reflective Roof Treatment	Space Cooling	Reflective Roof Treatment	Standard Black Roof
Refrigerated Display Case LED Lighting	Refrigeration	60" Refrigerated Case LED Strip	Lumen-Equivalent 32-Watt T8 Fixture
Refrigerated Display Case Lighting Controls	Refrigeration	Occupancy Sensors for Refrigerated Case Lighting to reduce run time	Market-Share Weighted Existing Linear Fluorescent Fixture
Refrigeration Commissioning	Refrigeration	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Refrigeration Economizer	Refrigeration	Walk-in refrigerator with economizer	Walk-in refrigerator without economizer
Regenerative Drive Elevator Motor	Miscellaneous	Regenerative drive produced energy when motor in overhaul condition	Standard motor
Retro-Commissioning (Existing Construction)	Space Cooling, Space Heating, Ventilation and Circulation	Perform facility retro- commissioning, including assessment, process improvements, and optimization of energy-consuming equipment and systems	

Measure	End-Use	Description	Baseline
Roof Insulation	Space Cooling, Space Heating	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof
Server Virtualization	Office Equipment	2 Virtual Host Server	20 Single Application Servers
Smart Strip Plug Outlet	Office Equipment	One Smart Strip Plug Outlet	One Standard plug strip/outlet
Smart thermostat	Space Cooling, Space Heating	Thermostats that include "smart" features such as occupancy sensors, geo-fencing, multi-zone sensors	Standard Heating and Cooling System with Manual Thermostat
Solar Pool Heater Commercial	Miscellaneous	Solar Swimming Pool Heater	Electric Resistance Swimming Pool Heater
Solar Powered Pool Pump	Miscellaneous	Solar Powered Pool Pump Motor	Variable Speed Pool Pump Motor
Solar Thermal Water Heating System Commercial	Domestic Hot Water	Solar Thermal System with Electric Backup	Code-Compliant 50 Gallon Electric Resistance Water Heater
Strip Curtains - Freezers	Refrigeration	Walk-in freezer with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in freezer without strip curtains
Strip Curtains - Refrigerators	Refrigeration	Walk-in cooler with strip curtains at least 0.06 inches thick covering the entire area of the doorway	Walk-in cooler without strip curtains
Suction Pipe Insulation - Freezers	Refrigeration	Suction Pipe Insulation - Freezers	Uninsulated freezer suction lines
Suction Pipe Insulation - Refrigerators	Refrigeration	Suction Pipe Insulation - Refrigerators	Uninsulated refrigeration suction lines
Thermal Energy Storage	Space Cooling	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Thermostatic Shower Restriction Valve Commercial	Domestic Hot Water	Hot Water Loop with 50 Gallon Electric Resistance Heater and Pressure Balance Shower Valves	Standard Hot Water Loop with 50 Gallon Electric Resistance Heater and Standard Shower Valves
Time Clock Control	Interior Lighting	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Variable Refrigerant Flow (VRF) HVAC Systems	Space Cooling, Space Heating	Variable Refrigerant Flow (VRF) HVAC Systems	Code-Compliant PTHP
VAV System	Ventilation and Circulation	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Cooling Tower Fans	Space Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Pump	Space Cooling, Space Heating	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VSD Controlled Compressor	Refrigeration	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Wall Insulation	Space Cooling, Space Heating	Increased Exterior Above-Grade Wall Insulation	Market Average Existing Exterior Above-Grade Wall Insulation

Measure	End-Use	Description	Baseline
Warehouse Loading Dock Seals	Space Cooling, Space Heating	Seals to reduce infiltration losses at loading dock	Loading dock with no seals
Water Cooled Refrigeration Heat Recovery	Domestic Hot Water	The heat reclaim system transfers waste heat from refrigeration system to space heating or hot water	No heat recovery
Water Heater Setback	Domestic Hot Water	A 50 gallon electric hot water tank with a thermostat setting reduced to no lower than 120 degrees.	A 50 gallon electric hot water tank with a thermostat setting that is higher than 120 degrees, typically hot water tanks with settings of 130 degrees or higher.
Water source heat pump	Space Cooling, Space Heating	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside Economizer	Space Cooling	Waterside Economizer	No economizer
Window shade film	Space Cooling	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC
Zero Energy Doors	Refrigeration	Install zero energy doors for a reach-in refrigerated cooler or freezer	Standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors

Table 3: Industrial EE Measures

Measure	End-Use	Description	Baseline
1.5HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 1.5 HP Open-Drip Proof Motor	1.5HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
10HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 10 HP Open-Drip Proof Motor	10HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
20HP Open Drip- Proof (ODP) Motor	Motors Pumps	High Efficiency 20 HP Open-Drip Proof Motor	20HP Open-Drip Proof Motor with Current Minimum EPACT Efficiency
3-phase High Frequency Battery Charger - 1 shift	Other	3-phase High Frequency Battery Charger	Standard Charger
Advanced Rooftop Controller	HVAC	Advanced Rooftop Controller	Without Advanced Rooftop Controller
Air Compressor Optimization	Compressed Air	Performing Routine Maintenance on 20HP Inlet Modulation Fixed- Speed Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
Air curtains	HVAC	Air Curtain across door opening	Door opening with no air curtain
Airside economizer	HVAC	Airside Economizer	No economizer
Auto Closer on Refrigerator Door	Process Cooling	One Medium Temperature Walk- In Refrigerator Door with Auto- Closer	One Medium Temperature Walk-In Refrigerator Door without Auto- Closer
Auto Off Time Switch	Interior Lighting High Bay	Auto-Off Time Switch on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Bi-Level Lighting Control (Exterior)	Exterior Lighting Industrial	Install Exterior Bi-Level Lighting Control, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting

Measure	End-Use	Description	Baseline
Bi-Level Lighting Control (Interior)	Interior Lighting High Bay	Bi-Level Controls on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, No Dim Setting
Chilled Water Reset	HVAC	One Chiller with Reset of Chilled Water Temperature Setpoint	One Chiller with Fixed Chilled Water Temperature
Cogged Belt on 15hp ODP Motor	Motors Pumps	15HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	15HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Cogged Belt on 40hp ODP Motor	Motors Pumps	40HP ODP Motor with Cogged Belts Installed on Supply and/or Return Air Fans	40HP ODP Motor with Smooth V- Belts Installed on Supply and/or Return Air Fans
Compressed Air Desiccant Dryer	Process Specific	heated regenerative desiccant dryer without dew point demand controls	heatless regenerative desiccant dryer without dew point demand controls
Compressed Air No- Loss Condensate Drains	Process Specific	Install no-loss condensate drains	Install standard condensate drains
Compressed Air Storage Tank	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Receiver Tank	20 HP Inlet Modulation Fixed- Speed Compressor, No Receiver Tank
Custom Measure - Non-Lighting	HVAC	Custom Improvement to Facility's Operations	Baseline Technology/Process
Dairy Refrigeration Heat Recovery	Other	refrigeration equipment with refrigeration heat recovery tank installed	existing dairy farm with refrigeration equipment and a water heater unit without an RHR unit
Dedicated Outside Air System (DOAS)	HVAC	Install Dedicated Outside Air System (DOAS)	Typical HVAC by Building Type
Demand Controlled Ventilation	HVAC	Return Air System with CO2 Sensors	Standard Return Air System, No Sensors
Demand Defrost	Process Cooling	Walk-In Freezer System with Demand-Controlled Electric Defrost Cycle	Walk-In Freezer System with Timer- Controlled Electric Defrost Cycle
Dew Point Sensor Control for Dessicant CA Dryer	Compressed Air	1000 CFM Heated Desicant Air Dryer with Dew Point Controls	1000 CFM Modulating Heated Desicant Air Dryer
Drip Irrigation Nozzles	Other	Flow Control Nozzles	Standard Irrigation Nozzles
Dual Enthalpy Economizer	Process Cooling	Standard HVAC Unit with an economizer and dual enthalpy differential control	HVAC unit with no economizer or with a non-functional disabled economizer
DX Coil Cleaning	HVAC	DX Coil Cleaning	DX Coil Not Cleaned
Efficient Compressed Air Nozzles	Compressed Air	1/4" Engineered Air Nozzle	1/4" Open-End Air Nozzle
Efficient New Construction Lighting	Interior Lighting High Bay	Efficient New Construction Lighting, 15% Better than Code	New Construction with Lighting Power Density meeting Code Minimum
Electric Actuators	Other	Electric Actuator	Pneumatic Actuator
Energy Efficient Laboratory Fume Hood	HVAC	Variable Air Volume High Performance Fume Hood	Constant Volume Conventional Bypass Fume Hood
Energy Efficient Transformers	Other	Energy Efficient Dry Type Transformer (CSL-3)	Standard Transformer (TP-1)

Measure	End-Use	Description	Baseline
Energy Recovery Ventilation System	HVAC	Unitary Cooling Equipment that Incorporates Energy Recovery	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11.2 EER
Energy Star LED Directional Lamp	Interior Lighting Other	Energy Star 7.6W Directional LED lamp	50W Incandescent lamp
Energy Star room ac	HVAC	Room AC meeting current ENERGY STAR standards	Code-Compliant Room AC
Energy Star windows	HVAC	100ft2 of Window meeting Energy Star Version 6.0 Requirements (U-Value: 0.27, SHGC: 0.21)	100ft2 of Window meeting Energy Star Version 5.0 Requirements (U- Value: 0.3, SHGC: 0.3)
Engine Block Timer	Other	An engine block heater operated by an outdoor plug-in timer	An engine block heater that is manually plugged in
Facility Commissioning	HVAC	Perform facility commissioning	Comparable facility, no commissioning
Facility Energy Management System	HVAC	Typical HVAC by Building Type Controlled by Energy Management System	Typical HVAC by Building Type, Manually Controlled
Fan Thermostat Controller	HVAC	Typical HVAC by Building Type with Fan Thermostat Controller Installed	Typical HVAC by Building Type with Programmable Thermostat
Floating Head Pressure Controller	Process Cooling	Medium-Temperature Refrigeration System with 5HP Compressor and Adjustable Condenser Head Pressure Control Valve	Medium-Temperature Refrigeration System with 5 HP Compressor without Adjustable Condenser Head Pressure Control Valve
Grain Bin Aeration Control System	Process Specific	Grain Storage Fan System with Automatic Controls	Grain Storage Fan System with Manual Controls
HE Air Cooled Chiller - All Compressor Types - 100 Tons	HVAC	HE Air Cooled Chiller - All Compressor Types - 100 Tons	Code-Compliant Air Cooled Positive Displacement Chiller, 100 Tons
HE Air Cooled Chiller - All Compressor Types - 300 Tons	HVAC	Air Cooled Positive Displacement Chiller with Integral VFD, 300 Tons, 13.7 EER	Code-Compliant Air Cooled Positive Displacement Chiller, 300 Tons, 12.5 EER
HE DX 11.25-20.0 Tons Elec Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 11.25-20.0 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 15 Tons, 11.5 SEER	Code-Compliant Packaged or Split DX Unit, 15 Tons, 11 SEER
HE DX 5.4-11.25 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX 5.4-11.25 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 7.5 Tons, 12 SEER	Code-Compliant Packaged or Split DX Unit, 7.5 Tons, 11 SEER
HE DX Less than 5.4 Tons Elect Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE DX Less than 5.4 Tons Other Heat	HVAC	High Efficiency Packaged or Split DX Unit, 5 Tons, 14.5 SEER	Code-Compliant Packaged or Split DX Unit, 5 Tons, 13 SEER
HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 200 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 200 Tons
HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons	HVAC	Water Cooled Centrifugal Chiller with Integral VFD, 500 Tons	Code-Compliant Water Cooled Centrifugal Chiller, 500 Tons

Measure	End-Use	Description	Baseline
HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 175 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 175 Tons
HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons	HVAC	Water Cooled Positive Displacement Chiller with Integral VFD, 50 Tons	Code-Compliant Water Cooled Positive Displacement Chiller, 50 Tons
High Bay Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 800 Watts Controlled	800 Watts of Lighting, Manually Controlled
High Efficiency Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
High Efficiency Refrigeration Compressor - Discus	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Refrigeration Compressor - Scroll	Process Cooling	High Efficiency Refrigeration Compressors	Standard Compressor
High Efficiency Welder	Process Specific	High Efficiency Welder	Standard Welding Practices
High Speed Fans	HVAC	High Speed Fan, 24" - 35" Blade Diameter	Standard Speed Fan, 24" - 35" Blade Diameter
High Volume Low Speed Fan (HVLS)	Motors Fans Blowers	20' High Volume Low Speed Fan	Conventional Circulating Fan
Indoor Agriculture - LED Grow Lights	Interior Lighting High Bay	LED grow light	1000W High Pressure Sodium
Indoor daylight sensor	Interior Lighting High Bay	Install Indoor Daylight Sensors, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Industrial Duct Sealing	HVAC	Standard Electric Heating and Central AC with Improved Duct Sealing	Standard Electric Heating and Central AC, Standard Duct Sealing
Injection Mold and Extruder Barrel Wraps	Other	2' Diameter, 20' Long Machine Barrel with 1" Insulation	2' Diameter, 20' Long Machine Barrel with no Insulation
Insulated Pellet Dryer Tanks and Ducts	Process Heating	Insulation for Pellet Tank and Duct	Uninsulated Pellet Tank and Duct
LED - 14W_CFL Baseline	Interior Lighting Other	LED (assume 14W) replacing CFL	100W equivalent CFL
LED Canopy Lighting (Exterior)	Exterior Lighting Industrial	One 67.2W LED Canopy Light	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED Display Lighting (Exterior)	Exterior Lighting Industrial	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED Display Lighting (Interior)	Interior Lighting Other	One Letter of LED Signage, < 2ft in Height	One Letter of Neon or Argon- mercury Signage, < 2ft in Height
LED exit sign	Interior Lighting Other	One 5W Single-Sided LED Exit Sign	One 9W Single-Sided CFL Exit Sign
LED Exterior Wall Packs	Exterior Lighting Industrial	One 35W LED Wall Pack	Average Lumen Equivalent Exterior Incandescent Area Lighting
LED High Bay_HID Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent HID High Bay Fixture

Measure	End-Use	Description	Baseline
LED High Bay_LF Baseline	Interior Lighting High Bay	One 140W High Bay LED Fixture	Lumen-Equivalent Linear Fluorescent High Bay Fixture
LED Linear - Fixture Replacement	Interior Lighting Linear Fluorescent	2x4 LED Troffer Fixture	Lumen-Equivalent 32-Watt T8 Fixture
LED Linear - Lamp Replacement	Interior Lighting Linear Fluorescent	Linear LED	Lumen-Equivalent 32-Watt T8 Lamp
LED Parking Lighting	Exterior Lighting Industrial	One 160W LED Area Light	Average Lumen Equivalent Exterior HID Area Lighting
LEED New Construction Whole Building	HVAC	LEED Qualifying New Construction	Comparable facility, code- compliance construction
Light Tube	Interior Lighting Other	One 14" Light Tube, Delivering light to 250 S.F. of Industrial Space	250 S.F. of Industrial Space Lit by Typical Lighting Strategies
Low Energy Livestock Waterer	Motors Pumps	Install Thermostatically Controlled Livestock Watering System	Standard Livestock Watering System
Low Pressure Sprinkler Nozzles	Motors Pumps	Low Pressure Irrigation Nozzles operate at 35 psi or lower	Standard high pressure irrigation nozzles that operate at 50 psi or greater
Low Pressure-drop Filters	Compressed Air	20 HP Inlet Modulation Fixed- Speed Compressor with Low Pressure Drop Filter	20 HP Inlet Modulation Fixed- Speed Compressor, No Particulate Removal
Milk Pre-Cooler	Other	Installed pre-cooler heat exchanger	no pre-cooler heat exchanger installed
Networked Lighting Controls	Interior Lighting Linear Fluorescent	Install Networked Lighting Controls System on Interior Lighting, 500 Watts Controlled	500 Watts of Lighting, Controlled either Manually or by Sensor as Specified by Code
Occupancy Sensors, Ceiling Mounted	Interior Lighting High Bay	Ceiling Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Occupancy sensors, switch mounted	Interior Lighting Linear Fluorescent	Switch Mounted Occupancy Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor Lighting Controls	Exterior Lighting Industrial	Install Exterior Photocell Dimming Controls, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Outdoor motion sensor	Exterior Lighting Industrial	Install Exterior Motion Sensor, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
Packaged Terminal AC	HVAC	High Efficiency Packaged Terminal AC	Code-Compliant PTAC, 10.9 EER
Process Cooling Ventilation Reduction	Process Cooling	Standard Process Cooling with Reduced Ventilation	Standard Process Cooling
Programmable thermostat	HVAC	Standard Heating and Cooling System with Programmable Thermostat	Standard Heating and Cooling System with Manual Thermostat
Reflective Roof Treatment	HVAC	Reflective Roof Treatment	Standard Black Roof
Refrigeration Commissioning	Process Cooling	Commissioned Refrigeration System	Non-Commissioned Refrigeration System
Retro-Commissioning (Existing Construction)	HVAC	Perform Facility Retro- commissioning	
Roof insulation	HVAC	Roof Insulation (built-up roof applicable to flat/low slope roofs)	Code-Compliant Flat Roof

Measure	End-Use	Description	Baseline
Smart thermostat	HVAC	Standard Heating and Cooling System with Smart Thermostat	Standard Heating and Cooling System with Manual Thermostat
Strategic Energy Management	HVAC	SEM goal setting and tracking	No active energy management
Synchronous Belt on 15hp ODP Motor	Motors Pumps	15 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	15 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 5hp ODP Motor	Motors Pumps	5 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	5 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Synchronous Belt on 75hp ODP Motor	Motors Pumps	75 HP Open-Drip Proof Motor with Synchronous Belts Installed on Supply and/or Return Air Fans	75 HP Open-Drip Proof Motor with Smooth V-Belts Installed on Supply and/or Return Air Fans
Thermal energy storage	HVAC	Deploy thermal energy storage technology (ice harvester, etc.) to shift load	Code compliant chiller
Time Clock Control	Interior Lighting High Bay	Time Clock Controlled Lighting, 500 Watts Controlled	500 Watts of Lighting, Manually Controlled
VAV System	HVAC	Variable Air Volume Distribution System	Constant Air Volume Distribution System
VFD on Air Compressor	Compressed Air	20 HP VFD Air Compressor	20 HP Inlet Modulation Fixed- Speed Compressor
VFD on Cooling Tower Fans	Process Cooling	Cooling Tower Fans with VFD Control	Cooling Tower Fans without VFD Control
VFD on HVAC Fan	Motors Fans Blowers	5 HP HVAC Fan Motor, with VFD Control	5 HP HVAC Fan Motor, no VFD Control
VFD on HVAC Pump	Motors Pumps	VFD on HVAC Pump	7.5 HP HVAC Pump Motor, no VFD Control
VFD on process pump	Motors Pumps	20 HP Process Pump Equipped with VFD Control	20 HP Process Pump, Constant Speed
VSD Controlled Compressor	Process Cooling	Refrigeration System with VSD Control	Refrigeration System with Standard Slide-Valve Control System
Water source heat pump	HVAC	Water Source Heat Pump, 2.5 Tons, 17.4 EER, 4.4 COP	Code-Compliant ASHP
Waterside economizer	HVAC	Waterside Economizer	No economizer
Window shade film	HVAC	Window Film with SHGC of 0.35 Applied to Standard Window	Standard Window with below Code Required Minimum SHGC

DR Measure Lists

Table 4: Residential DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central Heating - Load Shed	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats – BYOT	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Water heater control	Direct load control	Summer and Winter	Load control installed on a water heater (integrated or external switch)
Pool pump switches	Direct load control	Summer and Winter	Load control program with switch installed on pool pump
Room AC	Direct load control	Summer	Load control program that is focused on room AC units rather than central AC
Managed EV Charging – switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging – telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 5: Small C&I DR Measures

Measure	Туре	Season	Description
Central air conditioner - Load Shed	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to shed
Load Siled	Control		AC unit load during peak usage period.

Measure	Туре	Season	Description
Central Heating - Load Shed*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to shed AC unit load during peak usage period.
Central air conditioner - 50% cycling	Direct load control	Summer	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Central Heating - 50% cycling*	Direct load control	Winter	Direct load control program where utility provides day ahead notification that it will send remote signal to cycle AC unit during peak usage period
Smart thermostats - Utility Installation*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
Smart thermostats – BYOT*	Direct load control	Summer and Winter	Similar to AC load control program, but allows customers to participate using a compatible smart thermostat rather than an AC switch
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Managed EV Charging – switch	Direct load control	Summer and Winter	Load control switch that is installed on an EV charger
Managed EV Charging – telematics	Direct load control	Summer and Winter	Direct load control program leveraging EV smart charging software
Battery Storage with PV	Pricing/Direct load control	Summer and Winter	PV charges battery and battery discharges to grid

Table 6: Large C&I DR Measures

Measure	Туре	Season	Description
CPP + Tech	Pricing	Summer and Winter	Electricity rate that varies based on time of day. Can be same rate schedule for every day during a given season (time of use, or TOU) and with critical peak pricing (CPP) days when peak period rates are substantially higher for a limited number of days per year (customers receive advance notification of CPP event). Customers also receive technology that they can pre-program to curtail load when an event is called.
Auto DR	Utility-controlled loads	Summer and Winter	Custom load control of specific end-uses/processes that is triggered by utility signal to building management system; customer can sometimes opt-out of specific events
Firm Service Level	Contractual	Summer and Winter	Customer commits to a maximum usage level during peak periods and, when notified by the utility, agrees to cut usage to that level.
Guaranteed Load Drop	Contractual	Summer and Winter	Customer agrees to reduce usage by an agreed upon amount when notified

Docket Nos. 20240012-EG to 20240017-EG 2024 Measure Lists Exhibit JH-8, Page 24 of 24

DSRE Measure Lists

Table 7: Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation

Table 8: Non-Residential DSRE Measures

Measure	Description
PV System	Roof-mounted system, including multiple panels, AC/DC inverter, racking system, and electrical system interconnections
Battery Storage from PV System	Lithium-ion battery system designed to integrate with an on-site PV system to store and discharge excess energy from PV generation
CHP - Fuel Cell	An electrochemical cell-based generator that reacts hydrogen fuel with oxygen
CHP - Micro Turbine	Small combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP - Gas Turbine	A combustion turbine that burns gaseous or liquid fuel to drive a generator
CHP – Reciprocating Engine	An engine that uses one or more pistons to convert pressure into rotational motion
CHP - Steam Turbine	A turbine that extracts thermal energy from pressured steam to drive a generator

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 1 of 8

Exhibit JH-9 Comparison of 2019 Measure List and 2024 Measure List

EE Measure Lists

EE Measures Added Since 2019 Study

Sector	Measure
Residential	CEE Advanced Tier Clothes Dryer
Residential	CEE Advanced Tier Clothes Washer
Residential	Ozone Laundry
Residential	Energy Star Dishwasher (Gas Water Heating)
Residential	Freezer Recycling
Residential	LED - 9W_Halogen Baseline
Residential	Occupancy Sensors Switch Mounted
Residential	Outdoor Motion Sensor
Residential	Dehumidifier Recycling
Residential	Energy Star Monitor
Residential	Energy Star Set-Top Receiver
Residential	CEE Tier 3 Refrigerator
Residential	Refrigerator Coil Cleaning
Residential	Induction Range
Residential	120v Heat Pump Water Heater 50 Gallons
Residential	Bathroom Faucet Aerators
Residential	Heat Pump Water Heater 50 Gallons-ENERGY STAR
Residential	Heat Pump Water Heater 80 Gallons-ENERGY STAR
Residential	ECM Circulator Pump
Residential	ENERGY STAR EV supply equipment (level 2 charger)
Residential	HVAC Economizer
Residential	Properly Sized CAC
Residential	Residential Whole House Fan
Residential	Air-to-Water Heat Pump
Residential	ASHP - 15 SEER/14.3 SEER2 from base electric resistance
Residential	ASHP - CEE Advanced Tier: 17.8 SEER/17 SEER2; 10.0 HSPF (from elec resistance)
Residential	ASHP - CEE Tier 2: 16.8 SEER/16 SEER2; 9.0 HSPF (from elec resistance)
Residential	ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2 (from elect resistance)

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 2 of 8

Sector	Measure
Residential	ASHP - ENERGY STAR/CEE Tier 1: 16 SEER/15.2 SEER2, 9.0 HSPF
Residential	Ceiling Insulation (R11 to R30)
Residential	Ceiling Insulation (R11 to R49)
Residential	Ceiling Insulation (R19 to R30)
Residential	Ceiling Insulation (R19 to R49)
Residential	Ceiling Insulation (R2 to R30)
Residential	Ceiling Insulation (R2 to R49)
Residential	Ceiling Insulation (R30 to R49)
Residential	Ceiling Insulation (R38 to R49)
Residential	HVAC Zoning System
Residential	Weather stripping
Residential	Window Caulking
Residential	Filter Whistle
Residential	New Construction - Whole Home Improvements - Tier 1
Residential	New Construction - Whole Home Improvements - Tier 2
Residential	Smart Breaker
Residential	Smart Panel
Commercial	Energy Star convection oven
Commercial	Water Heater Setback
Commercial	LED Canopy Lighting (Exterior)
Commercial	Outdoor motion sensor
Commercial	Auto Off Time Switch
Commercial	Efficient New Construction Lighting
Commercial	Energy Star LED Directional Lamp
Commercial	Indoor daylight sensor
Commercial	LED Exit Sign
Commercial	LED High Bay_LF Baseline
Commercial	Light Tube
Commercial	Occupancy Sensors, Ceiling Mounted
Commercial	Occupancy Sensors, Switch Mounted
Commercial	Time Clock Control
Commercial	Air Compressor Optimization
Commercial	Energy Star EV Chargers
Commercial	High Efficiency Air Compressor
Commercial	Ozone Laundry Commercial
Commercial	Regenerative Drive Elevator Motor
Commercial	Data Center Hot Cold Aisle

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 3 of 8

Sector	Measure
Commercial	Energy Star Monitors
Commercial	Beverage Vending Machine Controls
Commercial	Door Gasket (Freezer)
Commercial	High Efficiency Refrigeration Compressor_Scroll
Commercial	Q-Sync Evaporator Fan Motor
Commercial	Refrigeration Commissioning
Commercial	Refrigeration Economizer
Commercial	Strip Curtains - Refrigerators
Commercial	Suction Pipe Insulation - Freezers
Commercial	Suction Pipe Insulation - Refrigerators
Commercial	Ductless Mini-Split AC
Commercial	Energy Star room AC
Commercial	HE DX 5.4-11.25 Tons Other Heat
Commercial	HE DX Less than 5.4 Tons Other Heat
Commercial	HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons
Commercial	HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons
Commercial	Ceiling Insulation (R19 to R30)
Commercial	Ceiling Insulation (R19 to R49)
Commercial	Ceiling Insulation (R2 to R30)
Commercial	Ceiling Insulation (R2 to R49)
Commercial	Custom measure - Non-lighting
Commercial	Ductless Mini-Split HP
Commercial	HE DX 11.25-20.0 Tons Elec Heat
Commercial	HE DX 5.4-11.25 Tons Elect Heat
Commercial	HE DX Less than 5.4 Tons Elect Heat
Commercial	LEED New Construction Whole Building
Commercial	VFD on HVAC Pump
Commercial	Water source heat pump
Commercial	1.5HP Open Drip-Proof (ODP) Motor
Commercial	20HP Open Drip-Proof (ODP) Motor
Commercial	Advanced Rooftop Controller
Commercial	Dual Enthalpy Economizer
Commercial	Commercial Strategic Energy Management
Industrial	Compressed Air Storage Tank
Industrial	Efficient Compressed Air Nozzles
Industrial	Low Pressure-drop Filters
Industrial	VFD on Air Compressor

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 4 of 8

Sector	Measure
Industrial	Bi-Level Lighting Control (Exterior)
Industrial	LED Display Lighting (Exterior)
Industrial	LED Exterior Wall Packs
Industrial	LED Parking Lighting
Industrial	Outdoor motion sensor
Industrial	Air curtains
Industrial	Airside economizer
Industrial	Chilled Water Reset
Industrial	Custom Measure - Non-Lighting
Industrial	Dedicated Outside Air System (DOAS)
Industrial	Demand Controlled Ventilation
Industrial	DX Coil Cleaning
Industrial	Energy Efficient Laboratory Fume Hood
Industrial	Energy Recovery Ventilation System
Industrial	Energy Star room ac
Industrial	Energy Star windows
Industrial	Facility Commissioning
Industrial	Facility Energy Management System
Industrial	Fan Thermostat Controller
Industrial	HE Air Cooled Chiller - All Compressor Types - 300 Tons
Industrial	HE DX 11.25-20.0 Tons Elec Heat
Industrial	HE DX 11.25-20.0 Tons Other Heat
Industrial	HE DX 5.4-11.25 Tons Elect Heat
Industrial	HE DX 5.4-11.25 Tons Other Heat
Industrial	HE DX Less than 5.4 Tons Elect Heat
Industrial	HE DX Less than 5.4 Tons Other Heat
Industrial	HE Water Cooled Chiller - Centrifugal Compressor - 200 Tons
Industrial	HE Water Cooled Chiller - Centrifugal Compressor - 500 Tons
Industrial	HE Water Cooled Chiller - Rotary or Screw Compressor - 175 Tons
Industrial	HE Water Cooled Chiller - Rotary or Screw Compressor - 50 Tons
Industrial	High Speed Fans
Industrial	Industrial Duct Sealing
Industrial	LEED New Construction Whole Building
Industrial	Packaged Terminal AC
Industrial	Programmable thermostat
Industrial	Reflective Roof Treatment
Industrial	Smart thermostat

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 5 of 8

Sector	Measure
Industrial	Thermal energy storage
Industrial	VAV System
Industrial	Water source heat pump
Industrial	Waterside economizer
Industrial	Window shade film
Industrial	Auto Off Time Switch
Industrial	Bi-Level Lighting Control (Interior)
Industrial	Efficient New Construction Lighting
Industrial	High Bay Occupancy Sensors, Ceiling Mounted
Industrial	Indoor Agriculture - LED Grow Lights
Industrial	Indoor daylight sensor
Industrial	LED High Bay_LF Baseline
Industrial	Occupancy Sensors, Ceiling Mounted
Industrial	Time Clock Control
Industrial	LED Linear - Lamp Replacement
Industrial	Occupancy sensors, switch mounted
Industrial	Energy Star LED Directional Lamp
Industrial	LED - 14W_CFL Baseline
Industrial	LED Display Lighting (Interior)
Industrial	LED exit sign
Industrial	Light Tube
Industrial	High Volume Low Speed Fan (HVLS)
Industrial	20HP Open Drip-Proof (ODP) Motor
Industrial	Cogged Belt on 40hp ODP Motor
Industrial	Low Energy Livestock Waterer
Industrial	Low Pressure Sprinkler Nozzles
Industrial	Synchronous Belt on 15hp ODP Motor
Industrial	Synchronous Belt on 5hp ODP Motor
Industrial	Synchronous Belt on 75hp ODP Motor
Industrial	3-phase High Frequency Battery Charger - 1 shift
Industrial	Dairy Refrigeration Heat Recovery
Industrial	Drip Irrigation Nozzles
Industrial	Electric Actuators
Industrial	Energy Efficient Transformers
Industrial	Engine Block Timer
Industrial	Injection Mold and Extruder Barrel Wraps
Industrial	Milk Pre-Cooler

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 6 of 8

Sector	Measure		
Industrial	Auto Closer on Refrigerator Door		
Industrial	Demand Defrost		
Industrial	Dual Enthalpy Economizer		
Industrial	High Efficiency Refrigeration Compressor - Scroll		
Industrial	Process Cooling Ventilation Reduction		
Industrial	VFD on Cooling Tower Fans		
Industrial	VSD Controlled Compressor		
Industrial	Compressed Air Desiccant Dryer		
Industrial	Compressed Air No-Loss Condensate Drains		

EE Measures Eliminated Since 2019 Study

Sector	Measure			
Residential	CFL - 15W Flood			
Residential	CFL - 15W Flood (Exterior)			
Residential	FL - 13W			
Residential	CFL - 23W			
Residential	Low Wattage T8 Fixture			
Residential	15 SEER Central AC			
Residential	15 SEER Air Source Heat Pump			
Residential	14 SEER ASHP from base electric resistance heating			
Residential	Two Speed Pool Pump			
Residential	Variable Speed Pool Pump			
Residential	Storm Door			
Commercial	CFL - 15W Flood			
Commercial	High Efficiency HID Lighting			
Commercial	LED Street Lights			
Commercial	LED Traffic and Crosswalk Lighting			
Commercial	CFL-23W			
Commercial	High Bay Fluorescent (T5)			
Commercial	Premium T8 - Fixture Replacement			
Commercial	Premium T8 - Lamp Replacement			
Commercial	Two Speed Pool Pump			
Commercial	Variable Speed Pool Pump			
Commercial	Tank Wrap on Water Heater			
Commercial	Ceiling Insulation(R12 to R38)			
Commercial	Ceiling Insulation(R30 to R38)			

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 7 of 8

DR Measure Lists

DR Measures Added Since 2019 Study

Sector	Measure		
Residential	anaged EV Charging - switch		
Residential	Managed EV Charging - telematics		
Residential	Battery Storage with PV		
Commercial	lanaged EV Charging - switch		
Commercial	Managed EV Charging - telematics		
Commercial	Battery Storage with PV		

DR Measures Eliminated Since 2019 Study

Sector	Measure
None	

Docket Nos. 20240012-EG to 20240017-EG Comparison of Comprehensive 2019 Measure Lists to the 2024 Comprehensive Measure Lists Exhibit JH-9, Page 8 of 8

DSRE Measure Lists

DSRE Measures Added Since 2019 Study

Sector	Measure
None	

DSRE Measures Eliminated Since 2019 Study

Sector	Measure
None	

Exhibit JH-10 DEF Measure Screening and Economic Sensitivities

Measure Screening

The program development process was initiated with 395 EE measures, 33 DR measures, and 9 DSRE measures contributing to the technical potential, which are detailed in Exhibit JH-8. Table 1 summarizes the number of measures by category and the number of measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed)

Category	Sector	Measures	Permutations
outogo.,	3333		
EE	Residential	119	1,173
EE	Commercial	164	5,798
EE	Industrial	112	2,564
DR	Residential	16	48
DR	Small-Medium Business	13	52
DR	Large Commercial & Industrial	4	16
DSRE	Residential	2	2
DSRE	Non-Residential	7	42

Table 1. TP Measure Counts

The subsequent program development process included the following steps that refined the measure lists for the RIM scenario and TRC scenario. The following tables summarize the count of measures and permutations **excluded** at each step:

Economic Analysis - Cost-effectiveness screening

Measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Individual measures did not include any utility program costs (program administrative or incentive costs), and therefore were

evaluated on the basis of measure cost-effectiveness without any utility intervention. Table 2 summarizes the count of unique measures and measure permutations excluded at this step:

Table 2: Measures Excluded - Economic Analysis, TRC scenario and RIM scenario

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	52	641	84	815
EE	Commercial	53	3,117	121	5,021
EE	Industrial	38	1,034	112	2,564
DR	Residential	3	N/A*	0	N/A*
DR	Small-Medium Business	2	N/A*	0	N/A*
DR	Large Commercial & Industrial	0	N/A*	0	N/A*
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

^{*}Screening for the DR economic analysis was done at the measure level, not by permutation

Measure Adoption Forecast – Cost-effectiveness screening

All technical potential measures were re-screened in the development of the measure adoption forecasts. Associated program costs, including program administrative costs and customer incentives, were included in the economic analysis used for estimating measure adoption forecasts. Because this step occurred prior to each utility developing specific programs aligned with their proposed goals, representative administrative costs were developed using average FEECA Utility program cost data, where available from current programs, and supplemented with other utility program cost data where needed. In order to evenly apply these representative costs to measures with a variety of savings impacts, typical costs were estimated on a variable basis per kWh saved.

Measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Table 3 summarizes the count of unique measures and measure permutations excluded at this step:

Table 3: Measures Excluded - Measure Adoption Forecast, TRC scenario and RIM scenario

		TRC Scenario		RIM So	cenario
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	47	535	80	717
EE	Commercial	53	3,005	117	4,931
EE	Industrial	40	1,089	112	2,564
DR	Residential	4	14	5	17
DR	Small-Medium Business	4	29	6	35
DR	Large Commercial & Industrial	0	0	0	0
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

Measure Adoption Forecast - Free ridership screening

Consistent with prior DSM analyses in Florida, free ridership was addressed by applying a two-year payback criterion, which eliminated measures having a simple payback of less than two years. In addition to the measures and permutations excluded based on the cost-effectiveness screening summarized in Table 3 above, Table 4 summarizes the count of unique measures and measure permutations excluded at this step:

Table 4: Measures Excluded - Measure Adoption Forecast, 2-year payback screening (additional exclusions)

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	22	171	2	47
EE	Commercial	25	1,054	0	89
EE	Industrial	38	881	0	0
DR	Residential	0	0	0	0
DR	Small-Medium Business	0	0	0	0
DR	Large Commercial & Industrial	0	0	0	0
DSRE	Residential	0	0	0	0
DSRE	Non-Residential	0	0	0	0

Economic Sensitivities

As part of the economic analysis, the study included development of sensitivities related to free ridership, future fuel costs, as follows:

Sensitivity #1: Higher Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "high fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 5: Economic Sensitivity #1 - Passing Measures, Higher Fuel Prices

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	68	535	36	360
EE	Commercial	114	2,753	44	893
EE	Industrial	76	1,585	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

Sensitivity #2: Lower Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "low fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 6: Economic Sensitivity #2 - Passing Measures, Lower Fuel Prices

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	66	523	35	358
EE	Commercial	108	2,575	39	611
EE	Industrial	72	1,467	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Sensitivity #3: Shorter free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was reduced to one year or longer:

Table 7: Economic Sensitivity #3 - Passing Measures, Shorter free-ridership exclusion period

		TRC Scenario		TRC Scenario RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	53	436	32	328
EE	Commercial	98	2,061	43	739
EE	Industrial	48	873	0	0

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

Sensitivity #4: Longer free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was increased to three years or longer:

Table 8: Economic Sensitivity #4 - Passing Measures, Longer free-ridership exclusion period

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	41	290	29	234
EE	Commercial	72	1,065	41	550
EE	Industrial	23	396	0	0

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Exhibit JH-11 FPUC Measure Screening and Economic Sensitivities

Measure Screening

The program development process was initiated with 395 EE measures, 29 DR measures, and 9 DSRE measures contributing to the technical potential, which are detailed in Exhibit JH-8. Table 1 summarizes the number of measures by category and the number of measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed)

Permutations Category Sector Measures Residential 119 1,173 EE EE Commercial 164 5,798 EE Industrial 112 2,564 DR Residential 14 14 DR **Small-Medium Business** 11 11 Large Commercial & 4 4 DR Industrial **DSRE** Residential 2 2 7 42 **DSRE** Non-Residential

Table 1. TP Measure Counts

The subsequent program development process included the following steps that refined the measure lists for the RIM scenario and TRC scenario. The following tables summarize the count of measures and permutations **excluded** at each step:

Economic Analysis - Cost-effectiveness screening

Technical potential measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Individual measures did not include any utility program costs (program administrative or incentive costs), and therefore were evaluated on the basis of measure cost-effectiveness without any utility intervention. Table 2 summarizes the count of unique measures and measure permutations excluded at this step:

Table 2: Measures Excluded - Economic Analysis, TRC scenario and RIM scenario

	TRC Scenario RIM Scenario		TRC Scenario		cenario
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	68	771	119	1,173
EE	Commercial	68	3,516	164	5,798
EE	Industrial	40	1,093	112	2,564
DR	Residential	12	N/A*	1	N/A*
DR	Small-Medium Business	9	N/A*	1	N/A*
DR	Large Commercial & Industrial	4	N/A*	0	N/A*
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

^{*}Screening for the DR economic analysis was done at the measure level, not by permutation

Measure Adoption Forecast – Cost-effectiveness screening

All technical potential measures were re-screened in the development of the measure adoption forecasts. Associated program costs, including program administrative costs and customer incentives, were included in the economic analysis used for estimating measure adoption forecasts. Because this step occurred prior to each utility developing specific programs aligned with their proposed goals, representative administrative costs were developed using average FEECA Utility program cost data, where available from current programs, and supplemented with other utility program cost data where needed. In order to evenly apply these representative costs to measures with a variety of savings impacts, typical costs were estimated on a variable basis per kWh saved.

Measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Table 3 summarizes the count of unique measures and measure permutations excluded at this step:

Table 3: Measures Excluded - Measure Adoption Forecast, TRC scenario and RIM scenario

		TRC Scenario		TRC Scenario RIM Scenario		cenario
Category	Sector	Measures	Permutations	Measures	Permutations	
EE	Residential	71	803	119	1,173	
EE	Commercial	70	3,632	164	5,798	
EE	Industrial	42	1,142	112	2,564	
DR	Residential	14	14	14	14	
DR	Small-Medium Business	11	11	11	11	
DR	Large Commercial & Industrial	4	4	4	4	
DSRE	Residential	2	2	2	2	
DSRE	Non-Residential	7	42	7	42	

Measure Adoption Forecast - Free ridership screening

Consistent with prior DSM analyses in Florida, free ridership was addressed by applying a two-year payback criterion, which eliminated measures having a simple payback of less than two years. In addition to the measures and permutations excluded based on the cost-effectiveness screening summarized in Table 3 above, Table 4 summarizes the count of unique measures and measure permutations excluded at this step:

Table 4: Measures Excluded - Measure Adoption Forecast, 2-year payback screening (additional exclusions)

		TRC Scenario		TRC Scenario RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	18	140	0	0
EE	Commercial	38	1,268	0	0
EE	Industrial	39	836	0	0
DR	Residential	0	0	0	0
DR	Small-Medium Business	0	0	0	0
DR	Large Commercial & Industrial	0	0	0	0
DSRE	Residential	0	0	0	0
DSRE	Non-Residential	0	0	0	0

DSM Program Development - Cost-effectiveness screening

As described in Exhibit No. JH-14, RI worked collaboratively with FPUC on the DSM program development process, resulting in a Proposed Goals Scenario, a RIM Scenario, and a TRC Scenario. All technical potential measures were re-analyzed in the DSM program development process.

For the RIM Scenario and TRC Scenario program development, updated non-incentive costs specific to FPUC were developed and applied in the updated cost-effectiveness screening of technical potential measures, which included the following criteria for each scenario:

- RIM-scenario measures that failed the RIM-scenario criteria (RIM test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis
- TRC-scenario measures that failed the TRC-scenario criteria (TRC test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis

Table 5 summarizes the count of unique measures and measure permutations excluded for each scenario at this step:

TRC Scenario RIM Scenario Category Sector Measures **Permutations** Measures **Permutations** ΕE Residential 91 972 119 1,173 ΕE 110 4,910 164 5,798 Commercial ΕE Industrial 81 1,979 112 2,564 14 DR 14 14 14 Residential DR **Small-Medium Business** 11 11 11 11 Large Commercial & 4 4 DR 4 4 Industrial **DSRE** 2 2 Residential 2 2 7 **DSRE** 42 7 42 Non-Residential

Table 5: Measures Excluded - DSM Program Development, TRC Scenario and RIM Scenario

The development of the Proposed Goals Scenario started with assessment of technical potential measures study that passed, or were close to passing, the economic analysis, as well as measures included in current FPUC programs or that may be logical additions to current FPUC programs. Therefore, all individual EE measures were included in the initial analysis. Due to the DSM program development cost-effectiveness screening resulting in no DSRE measures or DR measures passing the RIM or TRC scenarios, these measures were excluded in the Proposed Goals Scenario analysis.

Economic Sensitivities

As part of the economic analysis, the study included development of sensitivities related to future fuel costs and free ridership, as follows:

Sensitivity #1: Higher Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "high fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 6: Economic Sensitivity #1 - Passing Measures, Higher Fuel Prices

		TRC Scenario		RIM So	cenario
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	59	444	9	60
EE	Commercial	107	2,586	0	0
EE	Industrial	77	1,587	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

Sensitivity #2: Lower Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "low fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 7: Economic Sensitivity #2 - Passing Measures, Lower Fuel Prices

		TRC Scenario		RIM So	enario
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	46	349	0	0
EE	Commercial	90	2,112	0	0
EE	Industrial	68	1,372	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Sensitivity #3: Shorter free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was reduced to one year or longer:

Table 8: Economic Sensitivity #3 - Passing Measures, Shorter free-ridership exclusion period

		TRC Scenario		TRC Scenario RIM Scenario		enario
Category*	Sector	Measures	Permutations	Measures	Permutations	
EE	Residential	38	312	0	0	
EE	Commercial	79	1,522	0	0	
EE	Industrial	45	824	0	0	

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

Sensitivity #4: Longer free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was increased to three years or longer:

Table 9: Economic Sensitivity #4 - Passing Measures, Longer free-ridership exclusion period

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	26	153	0	0
EE	Commercial	39	422	0	0
EE	Industrial	22	349	0	0

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Exhibit JH-12 JEA Measure Screening and Economic Sensitivities

Measure Screening

The program development process was initiated with 395 EE measures, 33 DR measures, and 9 DSRE measures contributing to the technical potential, which are detailed in Exhibit JH-8. Table 1 summarizes the number of measures by category and the number of measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed)

Permutations Category Sector Measures Residential 119 1,173 EE EE Commercial 164 5,798 EE Industrial 112 2,564 DR Residential 16 16 DR **Small-Medium Business** 13 52 Large Commercial & 4 DR 16 Industrial **DSRE** Residential 2 2 7 42 **DSRE** Non-Residential

Table 1. TP Measure Counts

The subsequent program development process included the following steps that refined the measure lists for the RIM scenario and TRC scenario. The following tables summarize the count of measures and permutations **excluded** at each step:

Economic Analysis - Cost-effectiveness screening

Technical potential measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Individual measures did not include any utility program costs (program administrative or incentive costs), and

therefore were evaluated on the basis of measure cost-effectiveness without any utility intervention. Table 2 summarizes the count of unique measures and measure permutations excluded at this step:

Table 2: Measures Excluded - Economic Analysis, TRC scenario and RIM scenario

	TRC Scenario RIM Scenario		TRC Scenario		cenario
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	66	755	110	1,109
EE	Commercial	70	3,592	164	5,798
EE	Industrial	42	1,143	112	2,564
DR	Residential	3	N/A*	0	N/A*
DR	Small-Medium Business	2	N/A*	1	N/A*
DR	Large Commercial & Industrial	0	N/A*	0	N/A*
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

^{*}Screening for the DR economic analysis was done at the measure level, not by permutation

Measure Adoption Forecast - Cost-effectiveness screening

All technical potential measures were re-screened in the development of the measure adoption forecasts. Associated program costs, including program administrative costs and customer incentives, were included in the economic analysis used for estimating measure adoption forecasts. Because this step occurred prior to each utility developing specific programs aligned with their proposed goals, representative administrative costs were developed using average FEECA Utility program cost data, where available from current programs, and supplemented with other utility program cost data where needed. In order to evenly apply these representative costs to measures with a variety of savings impacts, typical costs were estimated on a variable basis per kWh saved.

Measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Table 3 summarizes the count of unique measures and measure permutations excluded at this step:

Table 3: Measures Excluded - Measure Adoption Forecast, TRC scenario and RIM scenario

		TRC Scenario		TRC Scenario RIM Scenario		cenario
Category	Sector	Measures	Permutations	Measures	Permutations	
EE	Residential	71	804	114	1,125	
EE	Commercial	79	3,874	164	5,798	
EE	Industrial	48	1,294	112	2,564	
DR	Residential	14	14	14	14	
DR	Small-Medium Business	10	47	10	47	
DR	Large Commercial & Industrial	0	8	0	8	
DSRE	Residential	2	2	2	2	
DSRE	Non-Residential	7	42	7	42	

Measure Adoption Forecast - Free ridership screening

Consistent with prior DSM analyses in Florida, free ridership was addressed by applying a two-year payback criterion, which eliminated measures having a simple payback of less than two years. In addition to the measures and permutations excluded based on the cost-effectiveness screening summarized in Table 3 above, Table 4 summarizes the count of unique measures and measure permutations excluded at this step:

Table 4: Measures Excluded - Measure Adoption Forecast, 2-year payback screening (additional exclusions)

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	18	134	0	0
EE	Commercial	25	842	0	0
EE	Industrial	29	661	0	0
DR	Residential	0	0	0	0
DR	Small-Medium Business	0	0	0	0
DR	Large Commercial & Industrial	0	0	0	0
DSRE	Residential	0	0	0	0
DSRE	Non-Residential	0	0	0	0

DSM Program Development - Cost-effectiveness screening

As described in Exhibit No. JH-15, RI worked collaboratively with JEA on the DSM program development process, resulting in a Proposed Goals Scenario, a RIM Scenario, and a TRC Scenario. All technical potential measures were re-analyzed in the DSM program development process.

For the RIM Scenario and TRC Scenario program development, updated non-incentive costs specific to JEA were developed and applied in the updated cost-effectiveness screening of technical potential measures, which included the following criteria for each scenario:

- RIM Scenario measures that failed the RIM Scenario criteria (RIM test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis
- TRC Scenario measures that failed the TRC Scenario criteria (TRC test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis

Table 5 summarizes the count of unique measures and measure permutations excluded for each scenario at this step:

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	92	956	114	1,125
EE	Commercial	104	4,718	164	5,798
EE	Industrial	77	1,955	112	2,564
DR	Residential	16	16	16	16
DR	Small-Medium Business	13	52	13	52
DR	Large Commercial & Industrial	0	12	0	12
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

Table 5: Measures Excluded – DSM Program Development, TRC Scenario and RIM Scenario

The development of the Proposed Goals Scenario started with assessment of technical potential measures study that passed, or were close to passing, the economic analysis, as well as measures included in current JEA programs or that may be logical additions to current JEA programs. Therefore, all individual EE measures were included in the initial analysis, as well as Large Commercial DR measures. Due to the DSM program development cost-effectiveness screening resulting in no DSRE measures or DR measures for Residential or Small-Medium Businesses passing the RIM or TRC scenarios, these measures were excluded in the Proposed Goals Scenario analysis.

Economic Sensitivities

As part of the economic analysis, the study included development of sensitivities related to future fuel costs and free ridership, as follows:

Sensitivity #1: Higher Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "high fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 6: Economic Sensitivity #1 - Passing Measures, Higher Fuel Prices

		TRC Scenario		RIM So	cenario
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	57	443	20	152
EE	Commercial	99	2,387	0	0
EE	Industrial	72	1,478	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

Sensitivity #2: Lower Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "low fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 7: Economic Sensitivity #2 - Passing Measures, Lower Fuel Prices

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	45	355	2	8
EE	Commercial	81	1,846	0	0
EE	Industrial	63	1,266	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Sensitivity #3: Shorter free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was reduced to one year or longer:

Table 8: Economic Sensitivity #3 - Passing Measures, Shorter free-ridership exclusion period

		TRC Scenario		RIM So	cenario
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	41	334	9	64
EE	Commercial	80	1,646	0	0
EE	Industrial	53	1,014	0	0

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

Sensitivity #4: Longer free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was increased to three years or longer:

Table 9: Economic Sensitivity #4 - Passing Measures, Longer free-ridership exclusion period

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	34	257	9	64
EE	Commercial	56	928	0	0
EE	Industrial	34	643	0	0

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Exhibit JH-13 OUC Measure Screening and Economic Sensitivities

Measure Screening

The program development process was initiated with 395 EE measures, 33 DR measures, and 9 DSRE measures contributing to the technical potential, which are detailed in Exhibit JH-8. Table 1 summarizes the number of measures by category and the number of measure permutations, which are the application of individual measures to various customer segments, construction types, and end-uses (*i.e.*, a single air-source heat pump "measure" can be installed in single family, multi-family, and manufactured homes, as well as new and existing vintages of each home type, and impacts both space cooling and space heating end-uses, resulting in twelve separate measure "permutations" analyzed)

Permutations Category Sector Measures Residential 119 1,173 EE EE Commercial 164 5,798 EE Industrial 112 2,564 DR Residential 16 48 DR **Small-Medium Business** 13 52 Large Commercial & 4 DR 16 Industrial **DSRE** Residential 2 2 7 42 **DSRE** Non-Residential

Table 1. TP Measure Counts

The subsequent program development process included the following steps that refined the measure lists for the RIM scenario and TRC scenario. The following tables summarize the count of measures and permutations **excluded** at each step:

Economic Analysis - Cost-effectiveness screening

Technical potential measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Individual measures did not include any utility program costs (program administrative or incentive costs), and

therefore were evaluated on the basis of measure cost-effectiveness without any utility intervention. Table 2 summarizes the count of unique measures and measure permutations excluded at this step:

Table 2: Measures Excluded - Economic Analysis, TRC scenario and RIM scenario

		TRC Scenario		TRC Scenario RIM Scenario		cenario
Category	Sector	Measures	Permutations	Measures	Permutations	
EE	Residential	76	857	119	1,173	
EE	Commercial	84	4,079	163	5,784	
EE	Industrial	52	1,354	112	2,564	
DR	Residential	4	N/A*	0	N/A*	
DR	Small-Medium Business	2	N/A*	0	N/A*	
DR	Large Commercial & Industrial	0	N/A*	0	N/A*	
DSRE	Residential	2	2	2	2	
DSRE	Non-Residential	7	42	7	42	

^{*}Screening for the DR economic analysis was done at the measure level, not by permutation

Measure Adoption Forecast - Cost-effectiveness screening

All technical potential measures were re-screened in the development of the measure adoption forecasts. Associated program costs, including program administrative costs and customer incentives, were included in the economic analysis used for estimating measure adoption forecasts. Because this step occurred prior to each utility developing specific programs aligned with their proposed goals, representative administrative costs were developed using average FEECA Utility program cost data, where available from current programs, and supplemented with other utility program cost data where needed. In order to evenly apply these representative costs to measures with a variety of savings impacts, typical costs were estimated on a variable basis per kWh saved.

Measures that did not achieve a cost-effectiveness ratio of 1.0 for the TRC test and PCT were excluded from the TRC scenario. Measures that did not achieve a ratio of 1.0 for the RIM test and PCT were excluded from the RIM scenario for the economic analysis. Table 3 summarizes the count of unique measures and measure permutations excluded at this step:

Table 3: Measures Excluded - Measure Adoption Forecast, TRC scenario and RIM scenario

		TRC Scenario		nario RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	76	865	119	1,173
EE	Commercial	95	4,390	163	5,784
EE	Industrial	59	1,509	112	2,564
DR	Residential	16	48	16	48
DR	Small-Medium Business	5	42	6	43
DR	Large Commercial & Industrial	0	7	0	7
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

Measure Adoption Forecast - Free ridership screening

Consistent with prior DSM analyses in Florida, free ridership was addressed by applying a two-year payback criterion, which eliminated measures having a simple payback of less than two years. In addition to the measures and permutations excluded based on the cost-effectiveness screening summarized in Table 3 above, Table 4 summarizes the count of unique measures and measure permutations excluded at this step:

Table 4: Measures Excluded - Measure Adoption Forecast, 2-year payback screening (additional exclusions)

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	18	140	0	0
EE	Commercial	27	860	0	0
EE	Industrial	37	802	0	0
DR	Residential	0	0	0	0
DR	Small-Medium Business	0	0	0	0
DR	Large Commercial & Industrial	0	0	0	0
DSRE	Residential	0	0	0	0
DSRE	Non-Residential	0	0	0	0

DSM Program Development - Cost-effectiveness screening

As described in Exhibit No. JH-16, RI worked collaboratively with OUC on the DSM program development process, resulting in a Proposed Goals Scenario, a RIM Scenario, and a TRC Scenario. All technical potential measures were re-analyzed in the DSM program development process.

For the RIM Scenario and TRC Scenario program development, updated non-incentive costs specific to OUC were developed and applied in the updated cost-effectiveness screening of technical potential measures, which included the following criteria for each scenario:

- RIM Scenario measures that failed the RIM Scenario criteria (RIM test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis
- TRC Scenario measures that failed the TRC Scenario criteria (TRC test, PCT, and payback period of at least 2 years) were excluded from the initial measure bundling analysis

Table 5 summarizes the count of unique measures and measure permutations excluded for each scenario at this step:

		TRC Scenario		RIM Scenario	
Category	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	101	1,061	119	1,173
EE	Commercial	118	5,165	163	5,784
EE	Industrial	93	2,237	112	2,564
DR	Residential	16	48	16	48
DR	Small-Medium Business	13	52	13	52
DR	Large Commercial & Industrial	0	12	0	12
DSRE	Residential	2	2	2	2
DSRE	Non-Residential	7	42	7	42

Table 5: Measures Excluded – DSM Program Development, TRC Scenario and RIM Scenario

The development of the Proposed Goals Scenario started with assessment of technical potential measures study that passed, or were close to passing, the economic analysis, as well as measures included in current OUC programs or that may be logical additions to current OUC programs. Therefore, all individual EE measures were included in the initial analysis, as well as Large Commercial DR measures. Due to the DSM program development cost-effectiveness screening resulting in no DSRE measures or DR measures for Residential or Small-Medium Businesses passing the RIM or TRC scenarios, these measures were excluded in the Proposed Goals Scenario analysis.

Economic Sensitivities

As part of the economic analysis, the study included development of sensitivities related to free ridership, future fuel costs, and carbon cost scenarios, as follows:

Sensitivity #1: Higher Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "high fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 6: Economic Sensitivity #1 - Passing Measures, Higher Fuel Prices

		TRC Scenario		RIM Scenario	
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	46	349	0	0
EE	Commercial	85	2,011	1	14
EE	Industrial	67	1,338	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

Sensitivity #2: Lower Fuel Prices

For this sensitivity, both the RIM and TRC scenarios were screened using electric utility supply costs adjusted to a "low fuel" cost scenario. The following table summarizes the number of unique measures and measure permutations that are cost effective under each scenario:

Table 7: Economic Sensitivity #2 - Passing Measures, Lower Fuel Prices

		TRC Scenario		RIM So	cenario
Category*	Sector	Measures	Permutations	Measures	Permutations
EE	Residential	41	304	0	0
EE	Commercial	69	1,360	1	14
EE	Industrial	53	1,049	0	0

^{*}DR measures were not included in the economic sensitivities as fuel prices do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Sensitivity #3: Shorter free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was reduced to one year or longer:

Table 8: Economic Sensitivity #3 - Passing Measures, Shorter free-ridership exclusion period

		TRC S	cenario	RIM Scenario			
Category*	Sector	Measures	Permutations	Measures	Permutations		
EE	Residential	32	238	0	0		
EE	Commercial	65	1,141	1	14		
EE	Industrial	36	615	0	0		

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

Sensitivity #4: Longer free-ridership exclusion periods

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the simple payback screening criteria was increased to three years or longer:

Table 9: Economic Sensitivity #4 - Passing Measures, Longer free-ridership exclusion period

		TRC S	cenario	RIM Scenario			
Category*	Sector	Measures	Permutations	Measures	Permutations		
EE	Residential	19	85	0	0		
EE	Commercial	33	426	0	0		
EE	Industrial	14	212	0	0		

^{*}DR measures were not included in the economic sensitivities as there is negligible customer incremental cost for DR measures and therefore differences in simple payback do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Sensitivity #5: Carbon dioxide (CO₂) costs

For this sensitivity, both the RIM and TRC scenarios were screened as described above for the Economic Analysis, but the avoided electric utility supply costs forecast was adjusted to include consideration of an additional impact for emissions assuming that there was an economic charge for carbon dioxide.

Table 10: Economic Sensitivity #5 - Passing Measures, Carbon dioxide costs

		TRC S	cenario	RIM Scenario			
Category*	Sector	Measures	Permutations	Measures	Permutations		
EE	Residential	43	316	0	0		
EE	Commercial	82	1,835	1	14		
EE	Industrial	65	1,288	0	0		

^{*}DR measures were not included in the economic sensitivities as the estimated carbon dioxide costs do not affect DR results.

^{*}No DSRE measures passed the economic screening for this sensitivity.

Exhibit JH-14 FPUC Program Development Summary

Overview

RI worked collaboratively with FPUC on the DSM program development process to develop impacts under three scenarios: 1) potential DSM programs that contribute to proposed DSM goals (Proposed Goals Scenario), 2) potential DSM programs that pass the Participant and Rate Impact Measure Tests (RIM Scenario), and 3) potential DSM programs that pass the Participant and Total Resource Cost Tests (TRC Scenario).

Methodology

The development of DSM programs for each scenario included incorporating the measures and measure impacts developed for the Technical Potential (TP) study, reviewing FPUC's current program offerings, collaboration with FPUC on program concepts that are beneficial for their customers, and analysis of economic impacts and market adoption to create potential DSM programs. This process included the following steps:

Program Review and Measure Bundling

The analysis began with the measures from the TP study. This measure list was initially refined for program development for each scenario as follows:

- Proposed Goals scenario measures that passed, or were close to passing, either the TRC or RIM tests were prioritized in the initial measure bundling analysis. Measures included in current FPUC programs were also identified and included in the initial measure bundling.
- 2. RIM Scenario measures that passed the RIM Scenario criteria (RIM test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis
- 3. TRC Scenario measures that passed the TRC Scenario criteria (TRC test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis

Resource Innovations then reviewed current FPUC programs and eligible measures, and mapped individual measures to the appropriate programs for each scenario. Resource Innovations worked collaboratively with FPUC to collect program information (e.g. program manuals, participation records, energy and demand savings, budgets) and review the existing programs to determine which measures should be included in the initial program portfolios. In addition, a gap analysis was conducted to identify measures included in each scenario that are not currently offered by FPUC. These measures were either included in existing programs where there was a logical fit, or included as a new program concept.

Docket Nos. 20240012-EG to 20240017-EG FPUC Program Development Summary Exhibit JH-14, Page 2 of 9

Program Refinement and Modeling

After identifying the preliminary measure bundles and programs, Resource Innovations worked collaboratively with FPUC to develop incentive amounts and non-incentive costs. Non-incentive costs, which include costs to manage, administer, and market the program, were developed based on current FPUC program costs as well as secondary data on similar programs offered by other utilities, and refined as needed based on the proposed program delivery structure. Incentive costs were developed for each scenario as follows:

- Proposed Goals scenario preliminary incentive rates were informed by current incentives
 offered by FPUC as well as typical incentive levels offered by similar programs regionally and
 nationally.
- 2. RIM Scenario incentive rates were developed based on the available net benefits for each measure, based on total RIM benefits minus RIM costs. Next, the incentive amount that would result in a simple payback period of two years for each measure was calculated. The final incentive applied for the measure was based on the lower of these two values.
- 3. TRC Scenario the incentive amount required to result in a simple payback period of two years for each measure was used as the final incentive for the measure.

Measures included in the initial program concepts for each scenario were analyzed in RI's TEA-POT model to update the economic analysis based on the FPUC-specific non-incentive and incentive costs, and to estimate market adoption for each measure. The economic analysis included calculating updated RIM, TRC, and PCT costs and benefits for each measure and re-screening measures for each scenario.

RI's market adoption estimates use a payback acceptance criterion to estimate long-run market shares for measures as a function of measure incremental costs and expected bill savings over the measures' effective useful life (inclusive of utility incentives). Incremental adoption estimates are based on the Bass Diffusion Model, which is a mathematical description of how the rate of new product diffusion changes over time. For this study, adoption curve input parameters were developed for each measure based on specific criteria, including measure maturity in the market, overall measure cost, and whether the measure was currently offered through a utility program. RI's TEA-POT model then calculated demand and energy savings by applying estimated adoption rates to each cost-effective measure.

The TEA-POT modeling results were exported into RI's Program Planner workbook that aggregated the individual measure results into program and portfolio impacts for each scenario. For the TRC Scenario and RIM Scenario no further refinements to the programs were made. For the Proposed Goals scenario, RI continued to work collaboratively with FPUC to identify the measures and program concepts that comprise the proposed DSM goals. These impacts for each scenario are provided below.

Results

Proposed Goals Scenario

The Proposed Goals Scenario is described in more detail in Witness Craig's testimony. The following tables include the program-level details for this scenario.

Table 1. Proposed DSM Goals - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	77	79	80	81	82	84	84	86	87	88
Res Heating & Cooling Upgrade	216	226	237	247	251	248	237	219	199	182
Res Low Income	70	70	70	70	70	70	70	70	70	70
Res Equipment Rebates	1	2	2	3	4	4	5	5	5	5
Residential Total	365	377	390	401	407	406	396	380	361	345
Com Heating & Cooling Upgrade	25	29	32	36	39	42	45	46	47	47
Com Chiller Upgrade	4	4	5	5	6	6	6	7	7	7
Com Lighting	70	96	125	157	188	216	236	247	247	240
Non-Residential Total	100	129	163	198	233	264	287	300	301	294
Portfolio Total	465	507	553	599	641	671	683	679	663	638

Table 2. Proposed DSM Goals - Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Res Heating & Cooling Upgrade	0.03	0.04	0.04	0.05	0.05	0.05	0.05	0.04	0.03	0.03
Res Low Income	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Res Equipment Rebates	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.05	0.05	0.06	0.06	0.07	0.07	0.07	0.06	0.05	0.04
Com Heating & Cooling Upgrade	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Com Chiller Upgrade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Lighting	0.01	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Non-Residential Total	0.02	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.04
Portfolio Total	0.06	0.07	0.09	0.10	0.10	0.11	0.11	0.10	0.10	0.09

Table 3. Proposed DSM Goals – Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03
Res Heating & Cooling Upgrade	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.09
Res Low Income	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Res Equipment Rebates	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.15	0.15	0.16	0.16	0.16	0.15	0.15	0.15	0.14	0.14
Com Heating & Cooling Upgrade	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
Com Chiller Upgrade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Lighting	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03
Non-Residential Total	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.04
Portfolio Total	0.17	0.17	0.18	0.18	0.19	0.19	0.19	0.19	0.18	0.18

Table 4. Proposed DSM Goals – Annual Participation Targets

Annual Participation

(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	110	112	114	115	117	119	120	122	124	125
Res Heating & Cooling Upgrade	159	192	227	259	278	277	255	214	169	130
Res Low Income	100	100	100	100	100	100	100	100	100	100
Res Equipment Rebates	6	8	11	13	15	17	18	20	21	21
Residential Total	375	412	452	487	510	513	493	456	414	376
Com Heating & Cooling Upgrade	47	53	61	68	74	81	86	88	87	86
Com Chiller Upgrade	3	3	3	3	3	3	3	3	3	3
Com Lighting	228	307	398	495	587	671	733	770	782	770
Non-Residential Total	278	363	462	566	664	755	822	861	872	859
Portfolio Total	653	775	914	1,053	1,174	1,268	1,315	1,317	1,286	1,235

Table 5. Proposed DSM Goals - Annual Program Budget Estimates

Budgets (\$ in thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	\$42	\$43	\$44	\$44	\$45	\$46	\$46	\$47	\$47	\$48
Res Heating & Cooling Upgrade	\$343	\$352	\$361	\$368	\$373	\$372	\$365	\$353	\$341	\$329
Res Low Income	\$38	\$38	\$38	\$38	\$38	\$38	\$38	\$38	\$38	\$38
Res Equipment Rebates	\$6	\$9	\$11	\$14	\$17	\$19	\$21	\$23	\$24	\$24
Residential Total	\$430	\$442	\$454	\$465	\$472	\$475	\$470	\$461	\$450	\$440
Com Heating & Cooling Upgrade	\$7	\$8	\$9	\$10	\$11	\$12	\$13	\$13	\$13	\$13
Com Chiller Upgrade	\$5	\$6	\$7	\$7	\$8	\$8	\$8	\$9	\$9	\$10
Com Lighting	\$22	\$30	\$39	\$49	\$59	\$67	\$73	\$77	\$78	\$76
Non-Residential Total	\$35	\$44	\$55	\$66	\$77	\$87	\$94	\$99	\$100	\$99
Portfolio Total	\$465	\$486	\$509	\$531	\$550	\$561	\$564	\$559	\$550	\$539

Table 6. Proposed DSM Goals - Cost-Effectiveness Results

	TR	С	PC	Γ	RIN	1
	Net Benefits	Benefit/	Net Benefits	Benefit/	Net Benefits	Benefit/
Program Cost-Effectiveness	(\$)	Cost Ratio	(\$)	Cost Ratio	(\$)	Cost Ratio
Res Audits/EE Kits	-20,710	1.0	737,550	11.0	-758,260	0.4
Res Heating & Cooling						
Upgrade	244,618	1.1	2,390,828	4.9	-2,146,210	0.4
Res Low Income	-17,581	1.0	626,103	11.0	-643,684	0.4
Res Equipment Rebates	-878	1.0	27,633	2.6	-28,511	0.5
Residential Total	205,449	1.08	3,782,114	5.91	-3,576,665	0.41
Com Heating & Cooling						
Upgrade	38,818	1.2	325,422	2.7	-286,605	0.5
Com Chiller Upgrade	-18,437	0.8	71,567	3.2	-90,003	0.4
Com Lighting	81,939	1.1	1,987,725	3.6	-1,905,787	0.4
Non-Residential Total	102,319	1.07	2,384,714	3.43	-2,282,395	0.40
Portfolio Total	307,769	1.08	6,166,829	4.52	-5,859,060	0.41

RIM Scenario

The RIM Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and RIM test, and measures that had a simple payback of two years or more (without consideration of incentives).

FPUC did not have any measures or programs that passed the cost-effectiveness screening for the RIM Scenario.

TRC Scenario

The TRC Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and TRC test, and measures that had a simple payback of two years or more (without consideration of incentives). Incentive rates were based on the maximum incentive amount that would result in a simple payback period of two years for each measure. The following tables include the program-level details for this scenario.

Table 7. TRC Scenario - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	1	2	3	3	4	5	5	5	5	4
Res Heating & Cooling Upgrade	82	88	93	99	104	109	112	114	115	115
Res New Home	34	46	60	75	89	101	111	118	122	125
Res Low Income	0	0	1	1	1	1	1	1	1	1
Res Building Envelope	16	17	18	20	21	23	24	26	27	29
Res Water Heating	109	137	167	198	228	255	277	295	308	317
Res Equipment Rebates	17	22	29	37	45	52	57	58	54	48
Res HVAC Improvements	14	15	17	19	20	21	22	23	24	25
Residential Total	272	328	389	451	512	566	609	639	657	663
Com Heating & Cooling Upgrade	40	45	50	55	59	63	66	69	70	71
Com Reflective Roof	0	0	0	0	0	0	0	0	0	0
Com Chiller Upgrade	6	7	7	8	8	9	9	10	10	10
Com Small Business	8	11	15	18	22	25	27	29	30	30
Com Custom	171	191	215	243	272	301	324	339	342	332
Com Lighting	68	93	121	152	182	208	228	238	239	231
Com Prescriptive	59	74	91	109	127	143	156	166	171	173
Non-Residential Total	351	420	499	584	670	749	811	850	862	848
Portfolio Total	624	748	888	1,035	1,182	1,314	1,420	1,490	1,519	1,511

Table 8. TRC Scenario – Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Heating & Cooling Upgrade	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Res New Home	0.01	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04
Res Low Income	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Building Envelope	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Res Water Heating	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03
Res Equipment Rebates	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Res HVAC Improvements	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Residential Total	0.05	0.06	0.07	0.08	0.10	0.11	0.11	0.12	0.12	0.13
Com Heating & Cooling Upgrade	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Com Reflective Roof	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Chiller Upgrade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Small Business	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Custom	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05
Com Lighting	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Com Prescriptive	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Non-Residential Total	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.13	0.13
Portfolio Total	0.11	0.13	0.15	0.18	0.20	0.22	0.24	0.25	0.25	0.25

Table 9. TRC Scenario – Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Heating & Cooling Upgrade	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05
Res New Home	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Res Low Income	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Building Envelope	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
Res Water Heating	0.03	0.03	0.04	0.05	0.06	0.06	0.07	0.07	0.08	0.08
Res Equipment Rebates	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00
Res HVAC Improvements	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.15	0.15
Com Heating & Cooling Upgrade	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Com Reflective Roof	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Chiller Upgrade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Small Business	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Custom	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.04
Com Lighting	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.02
Com Prescriptive	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
Non-Residential Total	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.12	0.12	0.12
Portfolio Total	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.27	0.27	0.27

Table 10. TRC Scenario – Annual Participation Targets

Annual Participation

(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	29	40	52	66	81	94	103	103	94	78
Res Heating & Cooling Upgrade	73	82	92	100	109	116	122	126	127	125
Res New Home	8	11	13	16	19	22	24	25	27	27
Res Low Income	8	10	13	17	21	24	26	26	24	20
Res Building Envelope	35	38	41	44	46	50	53	56	60	63
Res Water Heating	113	143	176	209	241	269	290	309	321	328
Res Equipment Rebates	172	229	302	383	467	541	588	591	545	459
Res HVAC Improvements	24	27	30	32	34	36	38	40	41	43
Residential Total	462	580	719	867	1,018	1,152	1,244	1,276	1,239	1,143
Com Heating & Cooling Upgrade	66	74	78	83	88	91	95	97	100	103
Com Reflective Roof	1	1	1	1	1	1	1	1	1	1
Com Chiller Upgrade	4	4	4	4	4	4	4	4	4	4
Com Small Business	40	52	67	82	96	109	119	126	130	134
Com Custom	40	45	52	61	67	77	82	87	90	88
Com Lighting	218	290	376	470	557	636	694	729	739	728
Com Prescriptive	61	71	83	95	107	119	128	134	134	137
Non-Residential Total	430	537	661	796	920	1,037	1,123	1,178	1,198	1,195
Portfolio Total	892	1,117	1,380	1,663	1,938	2,189	2,367	2,454	2,437	2,338

Table 11. TRC Scenario – Annual Program Budget Estimates

Budgets (\$ in thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audits/EE Kits	\$1	\$1	\$1	\$1	\$2	\$2	\$2	\$2	\$2	\$2
Res Heating & Cooling Upgrade	\$89	\$98	\$105	\$113	\$119	\$125	\$129	\$133	\$136	\$138
Res New Home	\$13	\$18	\$23	\$29	\$34	\$39	\$42	\$45	\$47	\$48
Res Low Income	\$0	\$0	\$0	\$0	\$0	\$0	\$1	\$1	\$0	\$0
Res Building Envelope	\$24	\$26	\$28	\$30	\$32	\$34	\$37	\$39	\$42	\$44
Res Water Heating	\$236	\$291	\$351	\$412	\$471	\$525	\$571	\$608	\$638	\$660
Res Equipment Rebates	\$3	\$4	\$5	\$6	\$8	\$9	\$9	\$10	\$9	\$9
Res HVAC Improvements	\$4	\$4	\$5	\$5	\$6	\$6	\$6	\$7	\$7	\$7
Residential Total	\$369	\$442	\$519	\$597	\$672	\$740	\$798	\$845	\$881	\$907
Com Heating & Cooling Upgrade	\$14	\$16	\$18	\$19	\$21	\$22	\$23	\$24	\$25	\$25
Com Reflective Roof	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Com Chiller Upgrade	\$6	\$7	\$8	\$8	\$9	\$10	\$10	\$10	\$11	\$11
Com Small Business	\$3	\$4	\$5	\$6	\$7	\$8	\$9	\$9	\$9	\$10
Com Custom	\$36	\$39	\$43	\$47	\$52	\$56	\$60	\$62	\$62	\$60
Com Lighting	\$21	\$29	\$38	\$48	\$57	\$65	\$71	\$75	\$75	\$74
Com Prescriptive	\$11	\$14	\$18	\$21	\$24	\$27	\$30	\$31	\$32	\$32
Non-Residential Total	\$92	\$109	\$129	\$149	\$170	\$188	\$203	\$212	\$215	\$212
Portfolio Total	\$462	\$551	\$647	\$746	\$842	\$928	\$1,001	\$1,057	\$1,096	\$1,120

Table 12. TRC Scenario - Cost-Effectiveness Results

	TRC		PCT	•	RIM		
Program Cost-	Net Benefits	Benefit/C	Net Benefits	Benefit/C	Net Benefits	Benefit/C	
Effectiveness	(\$)	ost Ratio	(\$)	ost Ratio	(\$)	ost Ratio	
Res Audits/EE Kits	475	1.0	32,626	3.4	-32,151	0.4	
Res Heating & Cooling							
Upgrade	463,150	1.3	2,014,437	3.1	-1,551,287	0.3	
Res New Home	371,130	1.7	982,183	3.8	-611,053	0.6	
Res Low Income	119	1.0	8,156	3.4	-8,038	0.4	
Res Building Envelope	98,763	1.3	461,433	2.4	-362,670	0.4	
Res Water Heating	10,014,754	2.8	15,834,646	3.9	-5,819,893	0.2	
Res Equipment Rebates	30,657	1.2	237,813	2.7	-207,156	0.5	
Res HVAC Improvements	110,285	2.1	179,830	3.1	-69,545	0.7	
Residential Total	11,089,333	2.36	19,751,125	3.71	-8,661,792	0.32	
Com Heating & Cooling							
Upgrade	71,682	1.2	585,797	2.9	-514,115	0.5	
Com Reflective Roof	38	1.7	123	3.4	-85	0.5	
Com Chiller Upgrade	1,693	1.0	116,310	3.3	-114,617	0.4	
Com Small Business	21,509	1.2	250,843	3.5	-229,334	0.4	

Docket Nos. 20240012-EG to 20240017-EG FPUC Program Development Summary Exhibit JH-14, Page 9 of 9

	TRC		PCT	•	RIM		
Program Cost-	Net Benefits	Benefit/C	Net Benefits	Benefit/C	Net Benefits	Benefit/C	
Effectiveness	(\$)	ost Ratio	(\$)	ost Ratio	(\$)	ost Ratio	
Com Custom	715,191	1.6	4,255,057	5.3	-3,539,866	0.3	
Com Lighting	79,182	1.1	1,970,849	3.7	-1,891,668	0.4	
Com Prescriptive	281,726	1.5	1,544,942	4.2	-1,263,216	0.4	
Non-Residential Total	1,171,020	1.35	8,723,921	4.30	-7,552,900	0.37	
Portfolio Total	12,260,353	2.07	28,475,046	3.87	-16,214,692	0.35	

Exhibit JH-15 JEA Program Development Summary

Overview

RI worked collaboratively with JEA on the DSM program development process to develop impacts under three scenarios: 1) potential DSM programs that contribute to proposed DSM goals (Proposed Goals Scenario), 2) potential DSM programs that pass the Participant and Rate Impact Measure Tests (RIM Scenario), and 3) potential DSM programs that pass the Participant and Total Resource Cost Tests (TRC Scenario).

Methodology

The development of DSM programs for each scenario included incorporating the measures and measure impacts developed for the Technical Potential (TP) study, reviewing JEA's current program offerings, collaboration with JEA on program concepts that are beneficial for their customers, and analysis of economic impacts and market adoption to create potential DSM programs. This process included the following steps:

Program Review and Measure Bundling

The analysis began with the measures from the TP study. This measure list was initially refined for program development for each scenario as follows:

- Proposed Goals scenario measures that passed, or were close to passing, either the TRC or RIM tests were prioritized in the initial measure bundling analysis. Measures included in current JEA programs were also identified and included in the initial measure bundling.
- 2. RIM Scenario measures that passed the RIM Scenario criteria (RIM test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis
- 3. TRC Scenario measures that passed the TRC Scenario criteria (TRC test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis

Resource Innovations then reviewed current JEA programs and eligible measures, and mapped individual measures to the appropriate programs for each scenario. Resource Innovations worked collaboratively with JEA to collect program information (e.g. program manuals, participation records, energy and demand savings, budgets) and review the existing programs to determine which measures should be included in the initial program portfolios. In addition, a gap analysis was conducted to identify measures included in each scenario that are not currently offered by JEA. These measures were either included in existing programs where there was a logical fit, or included as a new program concept.

Program Refinement and Modeling

After identifying the preliminary measure bundles and programs, Resource Innovations worked collaboratively with JEA to develop incentive amounts and non-incentive costs. Non-incentive costs, which include costs to manage, administer, and market the program, were developed based on current JEA program costs as well as secondary data on similar programs offered by other utilities, and refined as needed based on the proposed program delivery structure. Incentive costs were developed for each scenario as follows:

- Proposed Goals scenario preliminary incentive rates were informed by current incentives
 offered by JEA as well as typical incentive levels offered by similar programs regionally and
 nationally.
- 2. RIM Scenario incentive rates were developed based on the available net benefits for each measure, based on total RIM benefits minus RIM costs. Next, the incentive amount that would result in a simple payback period of two years for each measure was calculated. The final incentive applied for the measure was based on the lower of these two values.
- 3. TRC Scenario the incentive amount required to result in a simple payback period of two years for each measure was used as the final incentive for the measure.

Measures included in the initial program concepts for each scenario were analyzed in RI's TEA-POT model to update the economic analysis based on the JEA-specific non-incentive and incentive costs, and to estimate market adoption for each measure. The economic analysis included calculating updated RIM, TRC, and PCT costs and benefits for each measure and re-screening measures for each scenario.

RI's market adoption estimates use a payback acceptance criterion to estimate long-run market shares for measures as a function of measure incremental costs and expected bill savings over the measures' effective useful life (inclusive of utility incentives). Incremental adoption estimates are based on the Bass Diffusion Model, which is a mathematical description of how the rate of new product diffusion changes over time. For this study, adoption curve input parameters were developed for each measure based on specific criteria, including measure maturity in the market, overall measure cost, and whether the measure was currently offered through a utility program. RI's TEA-POT model then calculated demand and energy savings by applying estimated adoption rates to each cost-effective measure.

The TEA-POT modeling results were exported into RI's Program Planner workbook that aggregated the individual measure results into program and portfolio impacts for each scenario. For the TRC Scenario and RIM Scenario no further refinements to the programs were made. For the Proposed Goals scenario, RI continued to work collaboratively with JEA to identify the measures and program concepts that comprise the proposed DSM goals. These impacts for each scenario are provided below.

Results

Proposed Goals Scenario

The Proposed Goals Scenario is described in more detail in Witness Pippin's testimony. The following tables include the program-level details for this scenario.

Table 1. Proposed DSM Goals - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	1,039	1,196	1,363	1,535	1,702	1,854	1,983	2,088	2,171	2,237
Res EE Products	1,055	1,389	1,800	2,281	2,797	3,279	3,625	3,730	3,537	3,088
Res Neighborhood	1,078	1,086	1,094	1,101	1,109	1,117	1,125	1,133	1,141	1,149
Residential Total	3,172	3,670	4,257	4,917	5,608	6,250	6,733	6,951	6,850	6,474
Com Lighting	3,346	3,562	3,771	3,975	4,169	4,334	4,444	4,470	4,403	4,257
Non-Residential Total	3,346	3,562	3,771	3,975	4,169	4,334	4,444	4,470	4,403	4,257
Portfolio Total	6,518	7,232	8,028	8,893	9,777	10,584	11,176	11,422	11,252	10,731

Table 2. Proposed DSM Goals - Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	0.13	0.15	0.17	0.19	0.21	0.23	0.25	0.26	0.28	0.29
Res EE Products	0.40	0.54	0.72	0.92	1.14	1.35	1.50	1.55	1.46	1.26
Res Neighborhood	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Residential Total	0.68	0.84	1.03	1.26	1.50	1.73	1.90	1.96	1.89	1.70
Com Lighting	0.44	0.47	0.50	0.53	0.56	0.58	0.60	0.60	0.59	0.57
Non-Residential Total	0.44	0.47	0.50	0.53	0.56	0.58	0.60	0.60	0.59	0.57
Portfolio Total	1.12	1.31	1.53	1.79	2.06	2.31	2.50	2.56	2.48	2.27

Table 3. Proposed DSM Goals - Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	0.45	0.50	0.55	0.61	0.66	0.70	0.74	0.77	0.79	0.81
Res EE Products	0.17	0.23	0.30	0.38	0.47	0.55	0.60	0.61	0.57	0.49
Res Neighborhood	0.26	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.27	0.27
Residential Total	0.88	0.99	1.11	1.25	1.38	1.51	1.60	1.65	1.63	1.57
Com Lighting	0.37	0.39	0.41	0.42	0.44	0.45	0.46	0.46	0.46	0.45
Non-Residential Total	0.37	0.39	0.41	0.42	0.44	0.45	0.46	0.46	0.46	0.45
Portfolio Total	1.24	1.37	1.51	1.67	1.82	1.96	2.07	2.11	2.09	2.02

Table 4. Proposed DSM Goals – Annual Participation Targets

Annual Participation

(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	351	431	519	612	700	783	853	909	950	981
Res EE Products	2,680	3,438	4,353	5,409	6,536	7,587	8,349	8,603	8,229	7,317
Res Neighborhood	1,273	1,281	1,289	1,298	1,307	1,316	1,325	1,335	1,344	1,350
Residential Total	4,304	5,150	6,161	7,319	8,543	9,686	10,527	10,847	10,523	9,648
Com Lighting	11,203	11,898	12,503	13,037	13,500	13,874	14,133	14,244	14,199	14,029
Non-Residential Total	11,203	11,898	12,503	13,037	13,500	13,874	14,133	14,244	14,199	14,029
Portfolio Total	15,507	17,048	18,664	20,356	22,043	23,560	24,660	25,091	24,722	23,677

Table 5. Proposed DSM Goals - Annual Program Budget Estimates

Budgets (\$ in thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency	\$1,112	\$1,340	\$1,588	\$1,845	\$2,096	\$2,325	\$2,520	\$2,680	\$2,805	\$2,904
Upgrade	. ,	. ,	. ,	, ,	. ,	, ,	. ,	, ,	, ,	. ,
Res EE Products	\$280	\$366	\$472	\$595	\$728	\$852	\$941	\$968	\$920	\$806
Res Neighborhood	\$444	\$446	\$448	\$450	\$452	\$454	\$456	\$458	\$460	\$462
Residential Total	\$1,836	\$2,153	\$2,509	\$2,891	\$3,276	\$3,630	\$3,917	\$4,106	\$4,185	\$4,172
Com Lighting	\$900	\$974	\$1,044	\$1,111	\$1,174	\$1,228	\$1,266	\$1,281	\$1,270	\$1,238
Non-Residential Total	\$900	\$974	\$1,044	\$1,111	\$1,174	\$1,228	\$1,266	\$1,281	\$1,270	\$1,238
Portfolio Total	\$2,736	\$3,127	\$3,553	\$4,002	\$4,450	\$4,858	\$5,182	\$5,386	\$5,455	\$5,409

Table 6. Proposed DSM Goals - Cost-Effectiveness Results

	TR	С	PCT	Г	RIM			
Program Cost-	Net Benefits	Benefit/	Net Benefits	Benefit/	Net Benefits	Benefit/		
Effectiveness	(\$)	Cost Ratio	(\$)	Cost Ratio	(\$)	Cost Ratio		
Res Home Efficiency Upgrade	9,026,783	1.6	18,157,755	2.6	-9,130,972	0.6		
Res EE Products	5,361,319	1.4	18,094,140	3.5	-12,732,821	0.6		
Res Neighborhood	975,832	1.2	9,031,701	6.4	-8,055,869	0.4		
Residential Total	15,363,935	1.48	45,283,597	3.22	-29,919,662	0.56		
Com Lighting	3,616,165	1.2	55,998,344	4.5	-52,382,179	0.3		
Non-Residential Total	3,616,165	1.19	55,998,344	4.46	-52,382,179	0.30		
Portfolio Total	18,980,100	1.38	101,281,941	3.77	-82,301,841	0.42		

RIM Scenario

The RIM Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and RIM test, and measures that had a simple payback of two years or more (without consideration of incentives). Incentive rates were calculated from the RIM net benefit available and the incentive amount that would result in a simple payback period of two years for each measure. The maximum incentive was based on the lower of these two values. The following tables include the program-level details for this scenario.

Energy Efficiency Programs

Table 7. RIM Scenario - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	12.39	12.06	11.72	11.36	10.99	10.61	10.23	9.84	9.46	9.08
Residential Total	12.39	12.06	11.72	11.36	10.99	10.61	10.23	9.84	9.46	9.08
Non-Residential Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Portfolio Total	12.39	12.06	11.72	11.36	10.99	10.61	10.23	9.84	9.46	9.08

Table 8. RIM Scenario - Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Residential Total	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Non-Residential Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Portfolio Total	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Table 9. RIM Scenario - Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-Residential Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Portfolio Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 10. RIM Scenario – Annual Participation Targets

Annual Participation

(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	8	8	7	7	7	7	7	7	6	6
Residential Total	8	8	7	7	7	7	7	7	6	6
Non-Residential Total	0	0	0	0	0	0	0	0	0	0
Portfolio Total	8	8	7	7	7	7	7	7	6	6

Table 11. RIM Scenario - Annual Program Budget Estimates

Budgets (\$ in thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Efficiency Upgrade	\$3.03	\$2.95	\$2.86	\$2.78	\$2.69	\$2.59	\$2.50	\$2.40	\$2.31	\$2.22
Residential Total	\$3.03	\$2.95	\$2.86	\$2.78	\$2.69	\$2.59	\$2.50	\$2.40	\$2.31	\$2.22
Non-Residential Total	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Portfolio Total	\$3.03	\$2.95	\$2.86	\$2.78	\$2.69	\$2.59	\$2.50	\$2.40	\$2.31	\$2.22

Table 12. RIM Scenario - Cost-Effectiveness Results

	TR	С	PC [*]	Т	RIM		
Program Cost-	Net Benefits	Benefit/	Net Benefits	Benefit/	Net Benefits	Benefit/	
Effectiveness	(\$)	Cost Ratio	(\$)	Cost Ratio	(\$)	Cost Ratio	
Res Home Efficiency							
Upgrade	124,743	3.0	124,733	3.9	10	1.0	
Residential Total	124,743	2.98	124,733	3.93	10	1.00	
Non-Residential Total	0	0.00	0	0.00	0	0.00	
Portfolio Total	124,743	2.98	124,733	3.93	10	1.00	

Demand Response Programs

The RIM Scenario analysis resulted in four cost-effective demand response measures for the largest commercial and industrial segment, which includes customers over 500 kW. The four DR measures are presented as individual potential program options in the following tables. Each's program's cost and impact estimates were developed independent of the other programs; therefore, because the measures apply to the same target population of large commercial and industrial customers, the savings and participation are not additive.

Table 13. RIM Scenario – Commercial Demand Response - Automated DR Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.4	20.2	27.2	32.6	36.8	40.1	42.6	44.6	46.2	47.4
Winter MW (Cumulative)	8.9	15.8	21.2	25.5	28.8	31.3	33.3	34.9	36.1	37.1
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$3,671	\$1,885	\$2,049	\$2,176	\$2,276	\$2,353	\$2,414	\$2,461	\$2,498	\$2,527
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,48	3,023	1.3	38						
RIM	\$8,48	3,023	1.3	38						

Table 14. RIM Scenario - Commercial Demand Response - Critical Peak Pricing (CPP) Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	15.8	21.2	25.5	28.8	31.3	33.3	34.9	36.1	37.1
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$3,671	\$1,740	\$1,875	\$1,981	\$2,063	\$2,127	\$2,177	\$2,217	\$2,247	\$2,271
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$4,93	5,709	1.2	24						
RIM	\$4,93	5,709	1.2	24						

Table 15. RIM Scenario – Commercial Demand Response – Firm Service Level Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	13.1	17.6	21.1	23.8	25.9	27.6	28.9	29.9	30.7
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$1,721	\$1,674	\$1,759	\$1,825	\$1,876	\$1,916	\$1,947	\$1,972	\$1,991	\$2,006
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,45	4,026	1.5	50						
RIM	\$8,45	4,026	1.!	50						

Table 16. RIM Scenario - Commercial Demand Response - Guaranteed Load Drop Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	13.1	17.6	21.1	23.8	25.9	27.6	28.9	29.9	30.7
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$1,721	\$1,674	\$1,759	\$1,825	\$1,876	\$1,916	\$1,947	\$1,972	\$1,991	\$2,006
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,45	4,026	1.5	50						
RIM	\$8,45	4,026	1.!	50						

Demand-Side Renewable Energy Programs

JEA did not have any DSRE measures or programs that passed the cost-effectiveness screening for the RIM Scenario.

TRC Scenario

The TRC Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and TRC test, and measures that had a simple payback of two years or more (without consideration of incentives). Incentive rates were based on the maximum incentive amount that would result in a simple payback period of two years for each measure. The following tables include the program-level details for this scenario.

Energy Efficiency Programs

Table 17. TRC Scenario – Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audit	0	0	0	0	0	0	0	0	0	0
Res Home Efficiency Upgrade	4,760	5,843	7,045	8,307	9,544	10,667	11,615	12,368	12,939	13,364
Res EE Products	165	186	206	224	241	256	270	283	295	305
Res Marketplace	915	1,258	1,688	2,195	2,743	3,254	3,621	3,731	3,525	3,047
Res New Home	663	922	1,222	1,543	1,859	2,146	2,385	2,572	2,711	2,814
Res Neighborhood	43	58	78	102	127	149	165	168	156	132
Res Solar Water Heating	478	536	589	637	679	716	748	776	800	820
Residential Total	7,023	8,804	10,828	13,007	15,192	17,188	18,804	19,897	20,426	20,483
Com Audit	0	0	0	0	0	0	0	0	0	0
Com Prescriptive	3,683	4,378	5,131	5,927	6,729	7,472	8,070	8,443	8,552	8,424
Com Lighting	2,888	3,029	3,165	3,296	3,419	3,522	3,585	3,590	3,529	3,414
Com Custom	7,874	8,258	8,765	9,356	9,973	10,535	10,952	11,154	11,108	10,833
Com Small Business	869	958	1,057	1,167	1,279	1,377	1,441	1,448	1,389	1,277
Non-Residential Total	15,314	16,623	18,118	19,746	21,400	22,905	24,048	24,636	24,578	23,948
Portfolio Total	22,338	25,427	28,946	32,753	36,592	40,093	42,852	44,533	45,003	44,430

Table 18. TRC Scenario – Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audit	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Home Efficiency Upgrade	0.71	0.85	1.02	1.19	1.36	1.51	1.64	1.75	1.83	1.90
Res EE Products	0.04	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.06	0.06
Res Marketplace	0.38	0.53	0.71	0.92	1.16	1.38	1.54	1.58	1.49	1.28
Res New Home	0.18	0.25	0.33	0.42	0.51	0.60	0.67	0.72	0.77	0.80
Res Neighborhood	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01
Res Solar Water Heating	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.09
Residential Total	1.36	1.74	2.18	2.66	3.17	3.63	4.00	4.22	4.26	4.14
Com Audit	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Prescriptive	0.77	0.90	1.05	1.19	1.34	1.48	1.59	1.67	1.71	1.70
Com Lighting	0.39	0.41	0.43	0.45	0.47	0.49	0.50	0.50	0.49	0.48
Com Custom	1.00	1.06	1.13	1.22	1.32	1.40	1.47	1.51	1.50	1.46
Com Small Business	0.10	0.11	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.14
Non-Residential Total	2.26	2.48	2.73	3.00	3.27	3.52	3.72	3.83	3.85	3.78
Portfolio Total	3.62	4.22	4.91	5.67	6.44	7.15	7.72	8.05	8.11	7.93

Table 19. TRC Scenario – Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audit	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Home Efficiency Upgrade	1.53	1.80	2.11	2.42	2.73	3.00	3.24	3.42	3.56	3.66
Res EE Products	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03
Res Marketplace	0.16	0.22	0.29	0.38	0.47	0.56	0.61	0.63	0.58	0.50
Res New Home	0.08	0.11	0.15	0.18	0.22	0.25	0.28	0.30	0.31	0.32
Res Neighborhood	0.01	0.01	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.03
Res Solar Water Heating	0.12	0.13	0.15	0.16	0.17	0.18	0.18	0.19	0.20	0.20
Residential Total	1.91	2.30	2.73	3.19	3.64	4.05	4.38	4.60	4.72	4.74
Com Audit	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Prescriptive	0.56	0.67	0.79	0.92	1.06	1.19	1.28	1.33	1.32	1.26
Com Lighting	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.36	0.35	0.34
Com Custom	1.01	1.06	1.13	1.21	1.29	1.38	1.44	1.48	1.48	1.44
Com Small Business	0.10	0.11	0.13	0.14	0.16	0.17	0.18	0.18	0.18	0.16
Non-Residential Total	1.97	2.15	2.37	2.61	2.86	3.09	3.27	3.35	3.33	3.21
Portfolio Total	3.88	4.45	5.10	5.80	6.50	7.14	7.64	7.95	8.04	7.95

Table 20. TRC Scenario – Annual Participation Targets

Annual Participation

(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audit	0	0	0	0	0	0	0	0	0	0
Res Home Efficiency Upgrade	3,573	4,430	5,372	6,361	7,328	8,212	8,964	9,569	10,036	10,395
Res EE Products	700	787	867	942	1,009	1,071	1,127	1,178	1,224	1,267
Res Marketplace	4,554	6,352	8,513	10,947	13,476	15,827	17,693	18,809	19,068	18,603
Res New Home	140	193	256	322	388	448	498	536	565	586
Res Neighborhood	612	838	1,122	1,456	1,813	2,142	2,366	2,411	2,239	1,887
Res Solar Water Heating	323	362	398	430	458	483	505	524	540	554
Residential Total	9,902	12,962	16,528	20,458	24,472	28,183	31,153	33,027	33,672	33,292
Com Audit	0	0	0	0	0	0	0	0	0	0
Com Prescriptive	5,470	6,257	7,072	7,892	8,718	9,463	10,062	10,432	10,534	10,414
Com Lighting	8,633	9,080	9,461	9,794	10,076	10,293	10,437	10,488	10,439	10,314
Com Custom	1,147	1,372	1,630	1,908	2,188	2,440	2,649	2,800	2,891	2,941
Com Small Business	3,438	4,007	4,667	5,412	6,181	6,866	7,315	7,377	6,991	6,233
Non-Residential Total	18,688	20,716	22,830	25,006	27,163	29,062	30,463	31,097	30,855	29,902
Portfolio Total	28,590	33,678	39,358	45,464	51,635	57,245	61,616	64,124	64,527	63,194

Table 21. TRC Scenario – Annual Program Budget Estimates

Budgets (\$ in

thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Audit	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Res Home Efficiency Upgrade	\$4,445	\$5,556	\$6,783	\$8,068	\$9,326	\$10,468	\$11,433	\$12,202	\$12,789	\$13,229
Res EE Products	\$50	\$56	\$62	\$67	\$72	\$77	\$81	\$85	\$89	\$92
Res Marketplace	\$385	\$534	\$716	\$924	\$1,143	\$1,347	\$1,504	\$1,581	\$1,566	\$1,471
Res New Home	\$185	\$258	\$342	\$432	\$521	\$601	\$669	\$721	\$760	\$789
Res Neighborhood	\$12	\$16	\$22	\$28	\$35	\$41	\$45	\$46	\$43	\$36
Res Solar Water Heating	\$2,891	\$3,244	\$3,564	\$3,851	\$4,106	\$4,329	\$4,523	\$4,691	\$4,836	\$4,962
Residential Total	\$7,967	\$9,663	\$11,488	\$13,370	\$15,203	\$16,864	\$18,255	\$19,327	\$20,083	\$20,578
Com Audit	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Com Prescriptive	\$856	\$1,028	\$1,218	\$1,425	\$1,636	\$1,831	\$1,984	\$2,068	\$2,068	\$1,994
Com Lighting	\$659	\$700	\$737	\$773	\$806	\$833	\$851	\$857	\$848	\$827
Com Custom	\$1,535	\$1,626	\$1,745	\$1,883	\$2,027	\$2,159	\$2,260	\$2,315	\$2,315	\$2,265
Com Small Business	\$244	\$269	\$296	\$326	\$355	\$382	\$399	\$402	\$388	\$361
Non-Residential Total	\$3,294	\$3,623	\$3,998	\$4,407	\$4,824	\$5,205	\$5,495	\$5,641	\$5,619	\$5,447
Portfolio Total	\$11,261	\$13,286	\$15,485	\$17,777	\$20,027	\$22,069	\$23,750	\$24,968	\$25,701	\$26,025

Table 22. TRC Scenario - Cost-Effectiveness Results

	TR	С	PC1	Γ	RIM			
Program Cost-	Net Benefits	Benefit/	Net Benefits	Benefit/	Net Benefits	Benefit/		
Effectiveness	(\$)	Cost Ratio	(\$)	Cost Ratio	(\$)	Cost Ratio		
Res Audit	0	0.0	0	0.0	0	0.0		
Res Home Efficiency	49 201 422	1.4	172 407 419	2.8	125 015 005	0.4		
Upgrade	48,391,423	1.4	173,407,418	2.0	-125,015,995	0.4		
Res EE Products	249,064	1.2	1,927,784	3.5	-1,678,719	0.5		
Res Marketplace	70,134,223	5.3	86,243,142	8.6	-16,108,920	0.5		
Res New Home	9,542,239	2.2	20,594,117	3.8	-11,051,878	0.6		
Res Neighborhood	254,297	1.5	1,030,818	4.3	-776,521	0.5		
Res Solar Water Heating	153,748,769	4.6	197,514,152	5.8	-43,765,384	0.1		
Residential Total	282,320,014	2.55	480,717,432	4.07	-198,397,417	0.37		
Com Audit	0	0.0	0	0.0	0	0.0		
Com Prescriptive	12,628,405	1.5	88,818,228	4.9	-76,189,823	0.3		
Com Lighting	4,982,096	1.4	50,986,863	5.6	-46,004,767	0.3		
Com Custom	21,485,142	1.6	242,017,859	9.6	-220,532,717	0.2		
Com Small Business	865,840	1.2	16,379,322	5.2	-15,513,482	0.3		
Non-Residential Total	39,961,483	1.51	398,202,272	7.00	-358,240,789	0.25		
Portfolio Total	322,281,498	2.23	878,919,704	4.94	-556,638,206	0.30		

Demand Response Programs

The TRC Scenario analysis resulted in four cost-effective demand response measures for the largest commercial and industrial segment, which includes customers over 500 kW. The four DR measures are presented as individual potential program options in the following tables. Each's program's cost and impact estimates were developed independent of the other programs; therefore, because the measures apply to the same target population of large commercial and industrial customers, the savings and participation are not additive.

Table 23. TRC Scenario - Commercial Demand Response - Automated DR Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.4	20.2	27.2	32.6	36.8	40.1	42.6	44.6	46.2	47.4
Winter MW (Cumulative)	8.9	15.8	21.2	25.5	28.8	31.3	33.3	34.9	36.1	37.1
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$3,671	\$1,885	\$2,049	\$2,176	\$2,276	\$2,353	\$2,414	\$2,461	\$2,498	\$2,527
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,48	3,023	1.3	38						
RIM	\$8,48	3,023	1.3	38						

Table 24. TRC Scenario - Commercial Demand Response - Critical Peak Pricing (CPP) Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	15.8	21.2	25.5	28.8	31.3	33.3	34.9	36.1	37.1
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$3,671	\$1,740	\$1,875	\$1,981	\$2,063	\$2,127	\$2,177	\$2,217	\$2,247	\$2,271
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$4,93	5,709	1.2	24						
RIM	\$4,93	5,709	1.7	24						

Table 25. TRC Scenario - Commercial Demand Response - Firm Service Level Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	13.1	17.6	21.1	23.8	25.9	27.6	28.9	29.9	30.7
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$1,721	\$1,674	\$1,759	\$1,825	\$1,876	\$1,916	\$1,947	\$1,972	\$1,991	\$2,006
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,45	4,026	1.5	50						
RIM	\$8.45	4.026	1.5	50						

Docket Nos. 20240012-EG to 20240017-EG JEA Program Development Summary Exhibit JH-15, Page 13 of 13

Table 26. TRC Scenario - Commercial Demand Response - Guaranteed Load Drop Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	9.4	16.8	22.5	27.0	30.4	33.2	35.3	36.9	38.2	39.2
Winter MW (Cumulative)	7.4	13.1	17.6	21.1	23.8	25.9	27.6	28.9	29.9	30.7
Participation (Cumulative)	8	13	18	22	24	27	28	30	31	32
Program Costs (\$ in Thousands)	\$1,721	\$1,674	\$1,759	\$1,825	\$1,876	\$1,916	\$1,947	\$1,972	\$1,991	\$2,006
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,45	4,026	1.5	50						
RIM	\$8,45	4,026	1.5	50						

<u>Demand-Side Renewable Energy Programs</u>

JEA did not have any DSRE measures or programs that passed the cost-effectiveness screening for the TRC Scenario.

Exhibit JH-16 OUC Program Development Summary

Overview

RI worked collaboratively with OUC on the DSM program development process to develop impacts under three scenarios: 1) potential DSM programs that contribute to proposed DSM goals (Proposed Goals scenario), 2) potential DSM programs that pass the Participant and Rate Impact Measure Tests (RIM Scenario), and 3) potential DSM programs that pass the Participant and Total Resource Cost Tests (TRC Scenario).

Methodology

The development of DSM programs for each scenario included incorporating the measures and measure impacts developed for the Technical Potential (TP) study, reviewing OUC's current program offerings, collaboration with OUC on program concepts that are beneficial for their customers, and analysis of economic impacts and market adoption to create potential DSM programs. This process included the following steps:

Program Review and Measure Bundling

The analysis began with the measures from the TP study. This measure list was initially refined for program development for each scenario as follows:

- Proposed Goals scenario measures that passed, or were close to passing, either the TRC or RIM tests were prioritized in the initial measure bundling analysis. Measures included in current OUC programs were also identified and included in the initial measure bundling.
- 2. RIM Scenario measures that passed the RIM Scenario criteria (RIM test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis
- 3. TRC Scenario measures that passed the TRC Scenario criteria (TRC test, PCT, and payback period of at least 2 years) were included in the initial measure bundling analysis

Resource Innovations then reviewed current OUC programs and eligible measures, and mapped individual measures to the appropriate programs for each scenario. Resource Innovations worked collaboratively with OUC to collect program information (e.g. program manuals, participation records, energy and demand savings, budgets) and review the existing programs to determine which measures should be included in the initial program portfolios. In addition, a gap analysis was conducted to identify measures included in each scenario that are not currently offered by OUC. These measures were either included in existing programs where there was a logical fit, or included as a new program concept.

Program Refinement and Modeling

After identifying the preliminary measure bundles and programs, Resource Innovations worked collaboratively with OUC to develop incentive amounts and non-incentive costs. Non-incentive costs, which include costs to manage, administer, and market the program, were developed based on current OUC program costs as well as secondary data on similar programs offered by other utilities, and refined as needed based on the proposed program delivery structure. Incentive costs were developed for each scenario as follows:

- Proposed Goals scenario preliminary incentive rates were informed by current incentives
 offered by OUC as well as typical incentive levels offered by similar programs regionally and
 nationally.
- 2. RIM Scenario incentive rates were developed based on the available net benefits for each measure, based on total RIM benefits minus RIM costs. Next, the incentive amount that would result in a simple payback of two years for each measure was calculated. The final incentive applied for the measure was based on the lower of these two values.
- 3. TRC Scenario the incentive amount required to result in a simple payback period of two years for each measure was used as the final incentive for the measure.

Measures included in the initial program concepts for each scenario were analyzed in RI's TEA-POT model to update the economic analysis based on the OUC-specific non-incentive and incentive costs, and to estimate market adoption for each measure. The economic analysis included calculating updated RIM, TRC, and PCT costs and benefits for each measure and re-screening measures for each scenario.

RI's market adoption estimates use a payback acceptance criterion to estimate long-run market shares for measures as a function of measure incremental costs and expected bill savings over the measures' effective useful life (inclusive of utility incentives). Incremental adoption estimates are based on the Bass Diffusion Model, which is a mathematical description of how the rate of new product diffusion changes over time. For this study, adoption curve input parameters were developed for each measure based on specific criteria, including measure maturity in the market, overall measure cost, and whether the measure was currently offered through a utility program. RI's TEA-POT model then calculated demand and energy savings by applying these estimated adoption rates to each cost-effective measure.

The TEA-POT modeling results were exported into RI's Program Planner workbook that aggregated the individual measure results into program and portfolio impacts for each scenario. For the TRC Scenario and RIM Scenario no further refinements to the programs were made. For the Proposed Goals scenario, RI continued to work collaboratively with OUC to identify the measures and program concepts that comprise the proposed DSM goals. These impacts for each scenario are provided below.

Results

Proposed Goals Scenario

The Proposed Goals Scenario is described in more detail in Witness Noonan's testimony. The following tables include the program-level details for this scenario.

Table 1. Proposed DSM Goals - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Existing Home	849	895	940	985	1,032	1,076	1,125	1,183	1,248	1,322
Res Efficiency Delivered	74	77	81	85	88	92	96	101	106	112
Res New Home	113	119	126	133	139	146	153	161	171	181
Residential Total	1,035	1,092	1,147	1,203	1,259	1,313	1,374	1,445	1,525	1,616
Com Prescriptive	637	672	698	720	739	753	763	769	772	772
Com Lighting	1,569	1,697	1,796	1,881	1,951	2,004	2,044	2,070	2,086	2,091
Com Custom	1,001	1,139	1,275	1,417	1,558	1,689	1,799	1,876	1,912	1,904
Non-Residential Total	3,207	3,508	3,769	4,019	4,247	4,446	4,605	4,715	4,770	4,767
Portfolio Total	4,242	4,600	4,916	5,221	5,507	5,760	5,979	6,160	6,295	6,382

Table 2. Proposed DSM Goals - Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Existing Home	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.11	0.11
Res Efficiency Delivered	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Res New Home	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Residential Total	0.11	0.11	0.11	0.11	0.11	0.12	0.12	0.12	0.13	0.13
Com Prescriptive	0.08	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10
Com Lighting	0.19	0.21	0.22	0.23	0.24	0.25	0.25	0.25	0.25	0.25
Com Custom	0.21	0.24	0.26	0.30	0.33	0.35	0.38	0.39	0.40	0.40
Non-Residential Total	0.49	0.53	0.58	0.62	0.66	0.70	0.73	0.75	0.76	0.75
Portfolio Total	0.59	0.64	0.69	0.73	0.77	0.81	0.85	0.87	0.88	0.89

Table 3. Proposed DSM Goals – Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Existing Home	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23
Res Efficiency Delivered	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
Res New Home	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03
Residential Total	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.27	0.28
Com Prescriptive	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Com Lighting	0.20	0.22	0.23	0.24	0.25	0.25	0.26	0.26	0.26	0.26
Com Custom	0.09	0.10	0.11	0.12	0.14	0.15	0.16	0.16	0.17	0.16
Non-Residential Total	0.38	0.41	0.44	0.46	0.49	0.50	0.52	0.53	0.53	0.53
Portfolio Total	0.56	0.60	0.63	0.67	0.70	0.73	0.76	0.78	0.80	0.81

Table 4. Proposed DSM Goals – Annual Participation Targets

Annual I	Partic	ipation
----------	--------	---------

/au . a. e.e.pae.o										
(# measures)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Existing Home	517	511	509	505	506	506	511	520	533	548
Res Efficiency Delivered	40	42	42	44	43	42	46	47	48	51
Res New Home	45	46	47	47	48	52	52	55	57	60
Residential Total	602	599	598	596	597	600	609	622	638	659
Com Prescriptive	1,521	1,612	1,675	1,726	1,763	1,790	1,803	1,813	1,814	1,807
Com Lighting	4,329	4,627	4,836	5,005	5,134	5,223	5,277	5,312	5,321	5,306
Com Custom	1,827	1,977	2,099	2,207	2,299	2,374	2,437	2,486	2,519	2,538
Non-Residential Total	7,677	8,216	8,610	8,938	9,196	9,387	9,517	9,611	9,654	9,651
Portfolio Total	8,279	8,815	9,208	9,534	9,793	9,987	10,126	10,233	10,292	10,310

Table 5. Proposed DSM Goals – Annual Program Budget Estimates

Budgets (\$ in thousands)	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Existing Home	\$2,100	\$2,306	\$2,499	\$2,686	\$2,868	\$3,037	\$3,216	\$3,415	\$3,633	\$3,875
Res Efficiency Delivered	\$91	\$98	\$104	\$110	\$116	\$122	\$128	\$134	\$142	\$151
Res New Home	\$137	\$149	\$160	\$171	\$182	\$192	\$202	\$214	\$228	\$242
Residential Total	\$2,328	\$2,552	\$2,763	\$2,967	\$3,166	\$3,350	\$3,547	\$3,763	\$4,003	\$4,268
Com Prescriptive	\$99	\$102	\$104	\$106	\$107	\$107	\$108	\$107	\$107	\$107
Com Lighting	\$201	\$215	\$225	\$233	\$239	\$243	\$246	\$248	\$248	\$248
Com Custom	\$131	\$147	\$163	\$180	\$196	\$211	\$224	\$233	\$237	\$237
Non-Residential Total	\$431	\$465	\$493	\$519	\$542	\$562	\$578	\$588	\$593	\$592
Portfolio Total	\$2,759	\$3,017	\$3,256	\$3,486	\$3,708	\$3,912	\$4,124	\$4,352	\$4,596	\$4,859

Table 6. Proposed DSM Goals - Cost-Effectiveness Results

		RC	F	PCT	RIM		
Program Cost-	Net	Benefit/Cost	Net	Benefit/Cost	Net	Benefit/Cost	
Effectiveness	Benefits (\$)	Ratio	Benefits (\$)	Ratio	Benefits (\$)	Ratio	
Res Existing Home	-1,439,576	0.9	12,998,056	3.4	-14,437,631	0.3	
Res Efficiency							
Delivered	-341,217	0.6	935,030	3.0	-1,276,247	0.3	
Res New Home	-144,686	0.9	1,787,071	3.7	-1,931,757	0.3	
Residential Total	-1,925,478	0.84	15,720,157	3.40	-17,645,636	0.29	
Com Prescriptive	185,353	1.1	5,594,996	3.2	-5,409,642	0.4	
Com Lighting	173,098	1.0	14,591,930	3.1	-14,418,832	0.4	
Com Custom	1,078,887	1.2	12,025,921	3.4	-10,947,034	0.4	
Non-Residential							
Total	1,437,337	1.09	32,212,846	3.20	-30,775,509	0.36	
Portfolio Total	-488,141	0.98	47,933,004	3.26	-48,421,145	0.34	

RIM Scenario

The RIM Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and RIM test, and measures that had a simple payback of two years or more (without consideration of incentives).

Energy Efficiency Programs

OUC did not have any EE measures or programs that passed the cost-effectiveness screening for the RIM Scenario.

Demand Response Programs

The RIM Scenario analysis resulted in four cost-effective demand response measures for the largest commercial and industrial segment, which includes customers over 500 kW. The four DR measures are presented as individual potential program options in the following tables. Each's program's cost and impact estimates were developed independent of the other programs; therefore, because the measures apply to the same target population of large commercial and industrial customers, the savings and participation are not additive.

Table 7. RIM Scenario – Commercial Demand Response - Automated DR Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	13.5	24.0	32.2	38.5	43.5	47.4	50.5	52.8	54.7	56.1
Winter MW (Cumulative)	9.9	17.7	23.7	28.4	32.1	35.0	37.2	38.9	40.3	41.4
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$4,032	\$2,099	\$2,642	\$3,066	\$3,397	\$3,655	\$3,856	\$4,013	\$4,135	\$4,230
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$9,59	9,458	1.3	33						
RIM	\$9,59	9,458	1.3	33						

Table 8. RIM Scenario - Commercial Demand Response - Critical Peak Pricing (CPP) Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$3,970	\$1,916	\$2,366	\$2,717	\$2,991	\$3,204	\$3,371	\$3,501	\$3,602	\$3,681
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$6,01	6,084	1.2	23						
RIM	\$6,01	6,084	1.2	23						

Table 9. RIM Scenario - Commercial Demand Response - Firm Service Level Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$1,942	\$1,851	\$2,310	\$2,668	\$2,947	\$3,165	\$3,334	\$3,467	\$3,570	\$3,651
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,36	0,168	1.3	36						
RIM	\$8,36	0,168	1.3	36						

Table 10. RIM Scenario - Commercial Demand Response - Guaranteed Load Drop Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$1,942	\$1,851	\$2,310	\$2,668	\$2,947	\$3,165	\$3,334	\$3,467	\$3,570	\$3,651
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$8,36	0,168	1.3	36						
RIM	\$8,36	0,168	1.36							

Demand-Side Renewable Energy Programs

OUC did not have any DSRE measures or programs that passed the cost-effectiveness screening for the RIM Scenario.

TRC Scenario

The TRC Scenario is comprised of measures and programs that achieved a cost-effectivess ratio of 1.0 or higher for the PCT and TRC test, and measures that had a simple payback of two years or more (without consideration of incentives). Incentive rates were based on the maximum incentive amount that would result in a simple payback period of two years for each measure. The following tables include the program-level details for this scenario.

Energy Efficiency Programs

Table 11. TRC Scenario - Energy Efficiency - Annual MWh Targets

Annual MWh	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Energy Survey	0	0	0	0	0	0	0	0	0	0
Res Existing Home	1,165	1,277	1,385	1,493	1,598	1,695	1,797	1,907	2,025	2,154
Res Efficiency Delivered	2	2	2	2	2	2	2	2	2	2
Res New Home	428	457	472	484	501	518	541	567	598	632
Res Marketplace	18	15	12	10	9	7	6	5	5	4
Res Products	0	0	0	0	0	0	0	0	0	0
Residential Total	1,614	1,751	1,872	1,990	2,109	2,223	2,346	2,481	2,630	2,792
Com Prescriptive	1,946	2,155	2,359	2,565	2,767	2,955	3,119	3,261	3,376	3,463
Com Lighting	453	502	547	590	630	663	687	698	696	683
Com Custom	285	351	424	507	592	674	742	783	790	763
Com Green Building	1	1	1	1	1	1	1	1	1	1
Com Chiller Maintenance	0	0	0	0	0	0	0	0	0	0
Non-Residential Total	2,684	3,009	3,330	3,663	3,990	4,293	4,549	4,742	4,864	4,911
Portfolio Total	4,298	4,760	5,202	5,653	6,100	6,516	6,896	7,224	7,494	7,703

Table 12. TRC Scenario – Energy Efficiency – Annual summer MW Targets

Annual Summer MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Energy Survey	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Existing Home	0.14	0.16	0.18	0.20	0.22	0.24	0.25	0.27	0.29	0.31
Res Efficiency Delivered	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res New Home	0.11	0.12	0.12	0.12	0.13	0.13	0.14	0.15	0.15	0.16
Res Marketplace	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Products	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.26	0.28	0.31	0.33	0.35	0.37	0.40	0.42	0.45	0.47
Com Prescriptive	0.59	0.66	0.72	0.79	0.85	0.91	0.97	1.01	1.05	1.07
Com Lighting	0.03	0.03	0.03	0.04	0.04	0.05	0.05	0.05	0.05	0.05
Com Custom	0.05	0.06	0.07	0.09	0.10	0.12	0.13	0.14	0.14	0.13
Com Green Building	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Chiller Maintenance	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-Residential Total	0.66	0.75	0.83	0.92	1.00	1.08	1.15	1.20	1.23	1.25
Portfolio Total	0.92	1.03	1.14	1.25	1.35	1.45	1.54	1.62	1.68	1.72

Table 13. TRC Scenario – Energy Efficiency – Annual winter MW Targets

Annual Winter MW	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Energy Survey	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Existing Home	0.19	0.20	0.22	0.23	0.25	0.26	0.28	0.29	0.31	0.33
Res Efficiency Delivered	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res New Home	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05
Res Marketplace	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Res Products	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential Total	0.23	0.25	0.26	0.28	0.29	0.31	0.32	0.34	0.36	0.38
Com Prescriptive	0.11	0.12	0.13	0.14	0.15	0.16	0.16	0.17	0.17	0.17
Com Lighting	0.04	0.04	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.06
Com Custom	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.09	0.09	0.09
Com Green Building	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Com Chiller Maintenance	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Non-Residential Total	0.18	0.20	0.22	0.25	0.28	0.30	0.32	0.33	0.33	0.33
Portfolio Total	0.41	0.45	0.49	0.53	0.57	0.61	0.64	0.67	0.70	0.71

Table 14. TRC Scenario – Energy Efficiency – Annual Participation Targets

Annual Participation	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Energy Survey	0	0	0	0	0	0	0	0	0	0
Res Existing Home	1,025	1,144	1,256	1,368	1,475	1,576	1,678	1,783	1,895	2,015
Res Efficiency Delivered	6	6	5	5	5	5	5	5	5	5
Res New Home	65	69	71	73	76	78	82	85	90	95
Res Marketplace	44	37	31	26	22	18	16	14	12	11
Res Products	0	0	0	0	0	0	0	0	0	0
Residential Total	1,140	1,256	1,363	1,472	1,578	1,677	1,781	1,887	2,002	2,126
Com Prescriptive	3,536	3,917	4,259	4,577	4,873	5,141	5,381	5,611	5,826	6,026
Com Lighting	855	952	1,040	1,128	1,208	1,275	1,323	1,346	1,344	1,321
Com Custom	115	142	172	206	241	274	299	308	301	278
Com Green Building	1	1	1	1	1	1	1	1	1	1
Com Chiller Maintenance	0	0	0	0	0	0	0	0	0	0
Non-Residential Total	4,507	5,012	5,472	5,912	6,323	6,691	7,004	7,266	7,472	7,626
Portfolio Total	5,647	6,268	6,835	7,384	7,901	8,368	8,785	9,153	9,474	9,752

Table 15. TRC Scenario – Energy Efficiency – Annual Program Budget Estimates

Budgets \$ in thousands	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Res Home Energy Survey	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Res Existing Home	\$2,628	\$2,914	\$3,181	\$3,436	\$3,682	\$3,908	\$4,145	\$4,401	\$4,681	\$4,986
Res Efficiency Delivered	\$4	\$4	\$3	\$3	\$3	\$3	\$3	\$3	\$3	\$3
Res New Home	\$164	\$175	\$181	\$185	\$192	\$198	\$207	\$217	\$229	\$242
Res Marketplace	\$3	\$2	\$2	\$2	\$1	\$1	\$1	\$1	\$1	\$1
Res Products	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Residential Total	\$2,799	\$3,095	\$3,367	\$3,627	\$3,878	\$4,111	\$4,356	\$4,622	\$4,913	\$5,231
Com Prescriptive	\$211	\$233	\$255	\$277	\$300	\$321	\$340	\$356	\$368	\$375
Com Lighting	\$88	\$96	\$103	\$110	\$115	\$120	\$123	\$125	\$126	\$125
Com Custom	\$42	\$51	\$61	\$71	\$82	\$92	\$101	\$106	\$106	\$103
Com Green Building	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Com Chiller Maintenance	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Non-Residential Total	\$341	\$381	\$419	\$459	\$498	\$534	\$564	\$586	\$600	\$603
Portfolio Total	\$3,140	\$3,475	\$3,786	\$4,085	\$4,376	\$4,644	\$4,920	\$5,208	\$5,513	\$5,834

Table 16. TRC Scenario - Energy Efficiency - Cost-Effectiveness Results

		RC	F	PCT	RIM		
Program Cost-	Net	Benefit/Cost	Net	Benefit/Cost	Net	Benefit/Cost	
Effectiveness	Benefits (\$)	Ratio	Benefits (\$)	Ratio	Benefits (\$)	Ratio	
Res Home Energy	0	0.0	0	0.0	0	0.0	
Survey	U	0.0	U	0.0	U	0.0	
Res Existing Home	74,117,690	2.8	124,910,898	4.6	-50,793,209	0.2	
Res Efficiency	2,867	1.1	50,929	2.6	-48,062	0.3	
Delivered	2,807	1.1	30,929	2.0	-46,002	0.3	
Res New Home	86,901	1.0	6,609,346	4.9	-6,522,445	0.3	
Res Marketplace	16,122	1.4	73,404	3.5	-57,282	0.5	
Res Products	0	0.0	0	0.0	0	0.0	
Residential Total	74,223,580	2.65	131,644,578	4.66	-57,420,997	0.18	
Com Prescriptive	3,454,640	1.4	18,370,613	3.4	-14,915,973	0.4	
Com Lighting	349,477	1.1	5,157,917	3.4	-4,808,440	0.4	
Com Custom	814,419	1.4	5,316,015	4.0	-4,501,595	0.4	
Com Green Building	1,745	1.4	13,147	4.8	-11,402	0.3	
Com Chiller	0	0.0	0	0.0	0	0.0	
Maintenance	U	0.0	U	0.0	U	0.0	
Non-Residential	4,620,280	1.36	28,857,691	3.51	-24,237,411	0.42	
Total	4,020,280	1.50	20,037,031	5.51	-24,237,411	0.42	
Portfolio Total	78,843,861	2.36	160,502,269	4.38	-81,658,408	0.27	

Demand Response Programs

The TRC Scenario analysis resulted in four cost-effective demand response measures for the largest commercial and industrial segment, which includes customers over 500 kW. The four DR measures are presented as individual potential program options in the following tables. Each's program's cost and impact estimates were developed independent of the other programs; therefore, because the measures apply to the same target population of large commercial and industrial customers, the savings and participation are not additive.

Table 17. TRC Scenario - Commercial Demand Response - Automated DR Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	13.5	24.0	32.2	38.5	43.5	47.4	50.5	52.8	54.7	56.1
Winter MW (Cumulative)	9.9	17.7	23.7	28.4	32.1	35.0	37.2	38.9	40.3	41.4
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$4,032	\$2,099	\$2,642	\$3,066	\$3,397	\$3,655	\$3,856	\$4,013	\$4,135	\$4,230
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$9,59	9,458	1.33							
RIM	\$9,59	9,458	1.33							

Table 18. TRC Scenario – Commercial Demand Response – Critical Peak Pricing (CPP) Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$3,970	\$1,916	\$2,366	\$2,717	\$2,991	\$3,204	\$3,371	\$3,501	\$3,602	\$3,681
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						
TRC	\$6,01	6,084	1.23							
RIM	\$6,01	6,084	1.2	23						

Table 19. TRC Scenario - Commercial Demand Response - Firm Service Level Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$1,942	\$1,851	\$2,310	\$2,668	\$2,947	\$3,165	\$3,334	\$3,467	\$3,570	\$3,651
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	ost Ratio						_
TRC	\$8,36	0,168	1.36							
RIM	\$8,36	0,168	1.3	36						

Table 20. TRC Scenario - Commercial Demand Response - Guaranteed Load Drop Program

Annual Impacts	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Annual MWh	0	0	0	0	0	0	0	0	0	0
Summer MW (Cumulative)	11.1	19.8	26.6	31.9	36.0	39.3	41.8	43.7	45.2	46.4
Winter MW (Cumulative)	8.2	14.6	19.6	23.5	26.6	28.9	30.8	32.2	33.4	34.2
Participation (Cumulative)	19	34	46	55	62	67	72	75	78	80
Program Costs (\$ in Thousands)	\$1,942	\$1,851	\$2,310	\$2,668	\$2,947	\$3,165	\$3,334	\$3,467	\$3,570	\$3,651
COST EFFECTIVENESS	Net Be	enefits	Benefit/C	Cost Ratio						
TRC	\$8,36	0,168	1.3	36						
RIM	\$8,36	0,168	1.:	36						

Demand-Side Renewable Energy Programs

OUC did not have any DSRE measures or programs that passed the cost-effectiveness screening for the TRC Scenario.