DIMP State-Federal Implementation Team Pilot Inspection Findings

National Association of Pipeline Safety Representatives Office of Pipeline Safety
Need for Distribution Integrity Management Programs

- Distribution incidents continue to occur, resulting in significant consequences
Why Did PHMSA Pursue DIMP?

• To achieve a significant reduction in pipeline accidents, deaths, and injuries we must address distribution systems.

• To improve pipeline safety, we needed a different approach to addressing risk.

• Integrity management principles that underlie DIMP will lead operators to focus on risks that are important to their systems.
What Principles Underlie DIMP?

• Requirements are high-level, performance-based
• DIMP requires operators to...

 Know Your System

 Identify Threats

 Rank and Mitigate Risks

• DIMP does not stipulate specific assessment or mitigation actions
• Allows the regulator to evaluate internal operator risk management practices
DIMP Website

Distribution Integrity Management

The Pipeline and Hazardous Materials Safety Administration (PHMSA) published the final rule establishing integrity management requirements for gas distribution pipeline systems on December 4, 2009 (74 FR 63908). The effective date of the rule is February 12, 2010. Operators are given until August 2, 2011 to write and implement their program.

PHMSA previously implemented integrity regulations for hazardous liquid and gas transmission pipelines. These regulations aim to assure pipeline integrity and improve the already admirable safety record for the transportation of energy products. Congress and other stakeholders expressed interest in understanding the nature of similarly focused requirements for gas distribution pipelines. Significant differences in system design and local conditions affecting distribution pipeline safety preclude applying the same tools and management practices as were used for transmission pipeline systems. Therefore, PHMSA took a slightly different approach for distribution integrity management, following a joint effort involving PHMSA, the gas distribution industry, representatives of the public, and the National Association of Pipeline Safety Representatives to explore potential approaches.

The regulation requires operators, such as natural gas distribution companies to develop, write, and implement a distribution integrity management program with the following elements:

- Knowledge
- Identify Threats
- Evaluate and Rank Risks
- Identify and Implement Measures to Address Risks
- Measure Performance, Monitor Results, and Evaluate Effectiveness
- Periodically Evaluate and Improve Program
- Report Results

PHMSA has developed and continues to enhance guidance to help the public and the affected industry understand the requirements of the final rule in the form of FAQs.

Topics

- Objective of DIMP Pilot Inspections
- Pilot Operator Profile
- General Observations
- Shortcomings Found in Plans
- Guidance for Operators From Pilot Inspections
- SHRIMP
- DIMP Inspection Form - to be posted to the DIMP website in April, 2011
Objective of DIMP Pilot Inspections

- Test the inspection form:
 - Are the inspection questions clear?
 - How did the operator interpret the question?
 - Did the documentation the operator provided demonstrate compliance with the regulation?
 - What level of detail was provided?
- Identify if additional FAQ’s are needed.
- Develop a consensus for expectations among regulators.
- Collect material for PHMSA T&Q’s inspector training.
Operator Selection Process

- **Type of Plan Development Tool**
 - SHRIMP
 - NGA/SGA Framework
 - MEA Preparation Aid
 - Operator Developed Plan

- **Operator Characteristics**
 - Size from 7,000 to 2 million customers
 - Multi-state and single state systems

- **System Characteristics**
 - Mix of materials (e.g. cast iron, copper, protected and unprotected/bare and coated steel, various vintages of plastic)

- **Geography**
 - Various states and environmental conditions (e.g. hurricanes, gophers, landslides, extreme cold/heat)
Operators Selected

- Columbia Gas of VA – NISource – Richmond, VA
- Mid American – Des Moines, IA
- Clarke-Mobile Counties Gas District – Jackson, AL
- Avista - Spokane, WA
- NICOR - Naperville, IL
- City of Mesa, AZ
General Observations

- Large, serious effort - began 2007 to early 2010
- Few fully dedicated DIMP personnel; many teams
- Many operators are using GPTC and SHRIMP
- Modifying commercial plan development and risk model tools
- Multi-state and State specific plans
- Change from compliance to integrity management culture
 - Forces a structured approach to prioritize work.
 - Provides “compliance leverage” for funding system integrity projects.
General Observations

Operators are taking a deep look at data:

- Modifying data collection procedures
- Improving/implementing computer applications and hardware (office and field)
- Scrubbing data
- Enhancing training on data collection
- Documenting reason for data anomalies
- Requires geographical relationship of data
- Using a minimum of 5-10 yrs, sometimes using much more to develop trend lines.
General Observations

- DIMP should address system integrity issues through data analysis; Newly identified issues may require immediate action
- Substantive effort for apparent cause analysis of mechanical fitting failures (field extraction and lab analysis)
- Not many new risks identified; operators tended to focus on known risks rather than look for other risks
- Variety of risk models; material specific replacement models to models including all threats to system
General Observations

- Operators have found it challenging to develop criteria for when measures to reduce risk is needed
- TIMP Principles transferred to DIMP – management of change, roles and responsibilities
- Operators expressed interest in sharing of threats, risks and actions to address risk between operators
Shortcomings Found in Plans

- Plans failed to include revision log, version, effective date, revision date.
- Procedures lacked:
 - Operator specific practices and system characteristics.
 - Description of who, what, when, where, and how.
 - References to procedures in other manuals (O&M)
- Not considering failures without a release, e.g. overpressurization
- System subdivision was not sufficient to identify problems.
Shortcomings Found in Plans

- Risk ranking did not include all risks to all facilities.
- Measures to reduce risk were too focused on pipe replacement rather than preventative measures designed to reduce risk.
- Each measure to reduce risk (or group of related measures) did not have a performance metric.
- Some plans contained a generic list of measures to reduce risk. The plan needs to include the specific measures the operator selected.
Expectation of an Operator Plan

- Develop and Implement the elements
 - “Implemented”
 - Completed risk evaluation
 - Identified measures to address risk
 - Allocated and scheduled resources
- Multi-state operators must create a risk ranking which
 - Encompasses all of an operator’s facilities
 - Is State specific and reviewable on a state-by-state basis
- Plan can apply to one or more states
Knowledge Guidance

• “Reasonably available” information
 - Digging up pipe not required
 - Has impact on current pipe integrity
 - May be offsite warehouse
 - To demonstrate include a list of information sources used showing the title, date range (why selected), location

• Consider accuracy and completeness of facility location and material data

• Include a list of the data needed to fill gaps due to missing, inaccurate, or incomplete records

• Update recordkeeping procedures to include obtaining or correct missing or questionable data
Knowledge Guidance

- “Environmental factors” refers to the operating environment (e.g. population density, landslide, corrosive soil, valve placement, etc.)
- Roles & responsibilities including titles or positions is useful
- Be sure to include farm taps in your plan
Threat Identification Guidance

• Good practices that operators were performing:
 – Creating threat matrices
 – Summarizing trending of historical leaks and leak repairs
 – Distinguishing future “unknown” leaks eliminated by replacement
 – Trending “mean year of installation” – older pipe replacement.
 – Looking at rolling averages take out yearly anomalies.
 – Correlating system characteristics to failure rate.

• Geographic relationship of data is critical

• Identify failures without a release, e.g. overpressurization
Threat Identification Guidance

- Potential threats are threats where the operator has not experienced a failure but they have conditions conducive to the threat (e.g. atm. corrosion, hurricanes, flooding)
- Examples operators considered:
 - Trenchless technology – unknowingly bored thru sewer or water lines
 - Future utility/road improvement projects
 - Discovery of a material not previously known to be in the system
 - Customers overbuilt on pipelines
 - Inside piping that no longer has adequate separation
- May need a procedure on how to handle a potential threat if it is encountered.
Example Threats

- Pre-1940 oxy-acetylene girth welds of large diameter pipe
- Gas lines cross-bored through sewers
- Gophers eating small diameter plastic pipe
- Small systems exceeding MAOP during periods of low demand- now install secondary relief valve.
- High volume tapping tees failures. Performed root cause analysis and now prepare the surface differently, improved the installation tooling, and provided additional training to minimize human error.
- Flooding – increased stresses and damage to facilities – operator maintains a flood list. They performs flood surveys and shut-off impacted facilities under flood conditions.
Risk Evaluation Guidance

- Understand how your risk model works. Each current and potential threat requires a consequence and likelihood weighting.
- Subdivide facilities by measures to reduce risk; balance enough granularity with too much granularity to identify problems.
- “Reasonable result” – is the ranking logical, justified through quantitative data, in agreement with SME validation?
- Multi-state operators should have a risk ranking for each State (either separately or be able to filter by State).
Measures to Reduce Risk Guidance

- Risk reduction measures are more than a replacement program.
- Include all risk reduction measures required by the DIMP risk evaluation in your plan.
- Additional risk reduction measures you voluntarily perform may be included in their plan but are not required to be
Example Measures to Reduce Risk

- Measures to reduce risk operators selected:
 - Hurricane Plans to shut in systems
 - Pot Holing every locate
 - Patrol and leak survey more frequently than code
 - Monthly rectifier readings
 - Riser replacement programs
 - Cast iron surveys after earthquakes
 - Pipe replacement program
“Effective” Leak Management Guidance

An *Effective Leak Management Program* includes but is not limited to the following:

- Locate the leaks in the distribution system;
- Evaluate the actual or potential hazards associated with these leaks;
- Act appropriately to mitigate these hazards;
- Keep records; and
- Self-assess to determine if additional actions are necessary to keep people and property safe.
Performance Measures Guidance

- Each measure or group of measures to reduce a risk needs a performance measure
- Establish a baseline for every performance measure
 - May only have one data point as the data will be collected going forward
 - Explain why that performance measure was chosen
 - Describe how the data is or will be collected
Performance Measure Example

Threat:
Other Outside Forces, Damage to above ground facilities by vehicles and vandalism.

Measures to Reduce Risk:
- Idle riser program for monitoring and maintaining idle risers.
- High priority to meters at risk of future vehicular damage identification program. Work Request packets created and work prioritized for meters in vehicular zones.

Performance Measure:
Track and monitor the frequency of failures due to vehicles in vehicular zones.
Periodic Evaluation and Improvement Guidance

- What are possible program review triggers?
 - Completion of a measure to reduce risk
 - Completion of a replacement program
 - Leak rate are not decreasing
- Solely rerunning the risk model or reviewing the performance measure data does not constitute a review
Periodic Evaluation & Improvement Guidance

What constitutes a program review?

- Review frequency of periodic evaluation, < 5 years
- Verify general information
- Incorporate new system information
- Re-evaluation of threats and risk
- Review the frequency of the measures to reduce risk
- Review the effectiveness of the measures to reduce risk
- Modify the measures to reduce risk and refine/improve as needed
- Review performance measures, refine/improve as needed
Report Results Guidance

- Online Filing Required (hardship exceptions)
- Gas Distribution Annual Report for CY 2010
 - DIMP Performance Measures
 - EFVs
- Gas Distribution Mechanical Fitting Failure Form for 2011
 - Start collecting data on Jan. 1, 2011
 - Reporting frequency option:
 - Periodically
 - Annually
 - Prior to March 15, 2012 for CY 2011 failures
Records Guidance

- Maintain records demonstrating compliance for 10 years
 - Includes records used for risk evaluation
 - For example, if 20 years of CP records were reviewed, maintain them for 10 additional years
DIMP Website FAQ

Frequently Asked Questions

These Frequently Asked Questions (FAQs) are intended to clarify, explain, and promote better understanding of the distribution pipeline integrity management rules. These FAQs are not substantive rules and do not create rights, assign duties, or impose new obligations not outlined in the existing integrity management regulations and standards. Requests for informal interpretations regarding the applicability of one or more of the pipeline integrity management rules to a specific situation may be submitted to PHMSA in accordance with 49 C.F.R. § 190.11.

Here you will find a listing of the most frequently asked questions (FAQs) related to the final rule. You may:
- browse the complete listing of FAQs below, or
- download the entire set of FAQs in pdf format

Distribution Integrity Management Frequently Asked Questions
Revision Date: February 9, 2011

A. Excess Flow Valve Requirements

The Integrity Management Program for Gas Distribution Pipelines Final Rule included a revision to 49 CFR Part 192.383 Excess Flow Valve Installation which mandated the installation of excess flow valves (EFVs) in certain new and replaced residential service lines.

http://primis.phmsa.dot.gov/dimp/faqs.htm
SHRIMP FAQ

(Q) Will my plan be in compliance if I use SHRIMP?

(A) The American Public Gas Association (APGA) developed the Simple Handy Risk-Based Integrity Management Plan (SHRIMP) to assist small operators in creating their written DIMP plan. Using SHRIMP does not necessarily mean that an operator will be in compliance with DIMP requirements. SHRIMP contains generic procedures. An operator's plan needs to reflect their own procedures, information sources, and practices.

SIF is identifying areas where a SHRIMP user may need to enhance or modify the plan generated by this application to be in compliance. Refer to www.apgasif.org for the latest information.
Thank You For Your Interest in Pipeline Safety!