ATTACHMENT C

BellSouth Telecommunications, Inc.
FPSC Docket No. 990649-TP
Request for Confidential Classification
Page 1 of 1
9/15/00

REQUEST FOR CONFIDENTIAL CLASSIFICATION OF BELLSOUTH'S SUPPLEMENTAL RESPONSE TO THE COALITION'S $1^{\text {ST }}$ SET OF INTERROGATORIES (ITEM NO. 2) AND $1^{\text {ST }}$ REQUEST FOR PRODUCTION OF DOCUMENTS (POD NOS. 5 AND 7), FILED SEPTEMBER 13, 2000 IN FLORIDA DOCKET NO. 990649-TP

One Highlighted Copy

This confidentiality request was filed by or for a "telco" for DN $11628-00$. No ruling is required unless the material is subject to a request per $119.07, \mathrm{FS}$, or is admitted in the record per Rule 25-22.006(8)(b), FAC.

BellSouth Telecommunications, Inc. FPSC Dkt No 990649-TP
The Coalition's $1^{\text {st }}$ Set of Interrogatories
August 16, 2000
Supplemental Item No. 2 (9/13/00)
Page 1 of 1
REQUEST: Please provide (i) the percentage of loops within each BellSouth wire center in Florida that exceed 17,500 feet in length and (ii) the percentage of the loops used to provision xDSL service to BellSouth's retail customers within each BellSouth wire center in Florida that exceed 17,500 feet in length.

RESPONSE: BellSouth objects to this Interrogatory to the extent it seeks information concerning the cost of BellSouth's retail services, which is not relevant to any issue in this proceeding nor reasonably calculated to lead to the discovery of admissible evidence.

However, subject to this objection, and without waiving this objection, BellSouth provides the following:
(i) BellSouth does not maintain the requested percentage of loops exceeding 17,500 , but is providing the percentage of loops that exceeds 18,000 . This information if proprietary and is being provided subject to the terms of the protective agreement executed by the parties.

RESPONSE PROVIDED BY: Robert McKnight
Director
3535 Colonnade Pkwy
Birmingham, AL 35243

> DECLASSIFIED

All Lenghts
< 18kft

Sum of ServiceCount		Sum of ServiceCount			
CLLI	Total	CLLI	Total	Col B - Col D	\% > 18kft
ARCHFLMARS0	3162	ARCHFLMARS0	1140	2022	63.95\%
BCRTFLBTDS0	37427	BCRTFLBTDS0	23024	14403	38.48\%
BCRTFLMADS1	81553	BCRTFLMADS1	17756	63797	78.23\%
BCRTFLSADS0	70358	BCRTFLSADS0	15426	54932	78.07\%
BGPIFLMARS0	5889	BGPIFLMARS0	2630	3259	55.34\%
BKVLFLJFDSO	23605	BKVLFLJFDS0	8432	15173	64.28\%
BLDWFLMARS0	2436	BLDWFLMARSO	1427	1009	41.42\%
BLGLFLMADS0	10661	BLGLFLMADSO	8021	2640	24.76\%
BNNLFLMARSO	7147	BNNLFLMARSO	2285	4862	68.03\%
BRSNFLMARSO	3471	BRSNFLMARSO	1209	2262	65.17\%
BYBHFLMADSO	73259	BYBHFLMADSO	6991	66268	90.46\%
CCBHFLMADSO	24942	CCBHFLMADSO	13028	11914	47.77\%
CDKYFLMARSO	1294	CDKYFLMARSO	895	399	30.83\%
CFLDFLMARSO	5058	CFLDFLMARS0	1788	3270	64.65\%
CHPLFLJADS0	6342	CHPLFLJADS0	3626	2716	42.83\%
CNTMFLLEDS1	8898	CNTMFLLEDS1	2485	6413	72.07\%
COCOFLMADSO	48550	COCOFLMADSO	7668	40882	84.21\%
COCOFLMEDS0	27307	COCOFLMEDSO	10301	17006	62.28\%
CSCYFLBARSO	3790	CSCYFLBARSO	1704	2086	55.04\%
DBRYFLDLDSO	14960	DBRYFLDLDSO	5591	9369	62.63\%
DBRYFLMARS1	7693	DBRYFLMARS1	5378	2315	30.09\%
DELDFLMADSO	29828	DELDFLMADS0	11129	18699	62.69\%
DLBHFLKPDSO	43485	DLBHFLKPDSO	7755	35730	82.17\%
DLBHFLMADSO	46281	DLBHFLMADSO	24583	21698	46.88\%
DLSPFLMARSO	2582	DLSPFLMARSO	1903	679	26.30\%
DNLNFLWMRSO	13410	DNLNFLWMRSO	2435	10975	81.84\%
DRBHFLMADS0	67657	DRBHFLMADSO	21449	46208	68.30\%
DYBHFLFNRSO	2693	DYBHFLFNRSO	2693	0	0.00\%
DYBHFLMADS0	48824	DYBHFLMADSO	22075	26749	54.79\%
DYBHFLOBDSO	35209	DYBHFLOBDS0	9713	25496	72.41\%
DYBHFLOSDSO	8212	DYBHFLOSDS0	4286	3926	47.81\%
DYBHFLPODSO	55066	DYBHFLPODS0	13185	41881	76.06\%
EGLLFLBGDS0	46907	EGLLFLBGDS0	11099	35808	76.34\%
EGLLFLIHDS0	21478	EGLLFLIHDS0	12381	9097	42.35\%
EORNFLMARS0	5708	EORNFLMARS0	1040	4668	81.78\%
FLBHFLMARS0	4999	FLBHFLMARSO	3633	1366	27.33\%
FRBHFLFPDS0	18783	FRBHFLFPDS0	7505	11278	60.04\%
FTGRFLMARS0	620	FTGRFLMARS0	235	385	62.10\%
FTLDFLAPRS0	2147	FTLDFLAPRS0	936	1211	56.40\%
FTLDFLCRDS0	52044	FTLDFLCRDS0	27464	24580	47.23\%
FTLDFLCYDSO	47897	FTLDFLCYDSO	20674	27223	56.84\%
FTLDFLJADSO	73312	FTLDFLJADS0	8066	65246	89.00\%
FTLDFLMRDSO	78375	FTLDFLMRDS0	34289	44086	56.25\%
FTLDFLOADS0	67706	FTLDFLOADS0	42778	24928	36.82\%
FTLDFLPLDS0	64545	FTLDFLPLDSO	11791	52754	81.73\%
FTLDFLSGDS0	7106	FTLDFLSGDS0	4968	2138	30.09\%

All Lenghts

Sum of ServiceCount		Sum of ServiceCount			
CLLI	Total	CLLI	Total	Col B - Col D	\% > 18kft
FTLDFLSUDS0	50674	FTLDFLSUDSO	23311	27363	54.00\%
FTLDFLWNDS0	29811	FTLDFLWNDS0	3091	26720	89.63\%
FTPRFLMADS0	55056	FTPRFLMADSO	14208	40848	74.19\%
GCSPFLCNDSO	9316	GCSPFLCNDS0	3780	5536	59.42\%
GCVLFLMARSO	3579	GCVLFLMARSO	2132	1447	40.43\%
GENVFLMARS0	2729	GENVFLMARS0	1171	1558	57.09\%
GLBRFLMCDS0	18366	GLBRFLMCDSO	4900	13466	73.32\%
GSVLFLMADS0	96034	GSVLFLMADSO	19641	76393	79.55\%
GSVLFLNW33E	14038	GSVLFLNW33E	9606	4432	31.57\%
HAVNFLMADS0	5289	HAVNFLMADSO	2519	2770	52.37\%
HBSDFLMADS0	11398	HBSDFLMADS0	6767	4631	40.63\%
HLNVFLMADS1	11422	HLNVFLMADS 1	2627	8795	77.00\%
HLWDFLHADS0	32710	HLWDFLHADSO	30846	1864	5.70\%
HLWDFLMADS0	54967	HLWDFLMADSO	12017	42950	78.14\%
HLWDFLPEDS0	112907	HLWDFLPEDS0	13537	99370	88.01\%
HLWDFLWHDSO	93178	HLWDFLWHDSO	14881	78297	84.03\%
HMSTFLAFRSO	7726	HMSTFLAFRSO	2936	4790	62.00\%
HMSTFLEARSO	1153	HMSTFLEARSO	267	886	76.84\%
HMSTFLHMDSO	33838	HMSTFLHMDSO	13902	19936	58.92\%
HTISFLMADSO	19474	HTISFLMADSO	6354	13120	67.37\%
HWTHFLMARSO	3891	HWTHFLMARSO	1674	2217	56.98\%
ISLMFLMARSO	5310	ISLMFLMARSO	2567	2743	51.66\%
JAY-FLMARSO	2782	JAY-FLMARS0	904	1878	67.51\%
JCBHFLABRSO	13656	JCBHFLABRSO	7654	6002	43.95\%
JCBHFLMADS0	34941	JCBHFLMADS0	12209	22732	65.06\%
JCBHFLSPRSO	13039	JCBHFLSPRSO	10906	2133	16.36\%
JCVLFLARDS0	32094	JCVLFLARDS0	10511	21583	67.25\%
JCVLFLBWDS0	39305	JCVLFLBWDSO	12176	27129	69.02\%
JCVLFLCLDS0	41263	JCVLFLCLDS0	13877	27386	66.37\%
JCVLFLFCDSO	21837	JCVLFLFCDSo	7769	14068	64.42\%
JCVLFLIARSO	1526	JCVLFLIARSO	1406	120	7.86\%
JCVLFLJTRSO	6339	JCVLFLJTRSO	6339	0	0.00\%
JCVLFLLFDS0	33883	JCVLFLLFDSO	5661	28222	83.29\%
JCVLFLNODS0	33286	JCVLFLNODS0	7002	26284	78.96\%
JCVLFLOWDS0	18740	JCVLFLOWDSO	5919	12821	68.42\%
JCVLFLRVDS0	33234	JCVLFLRVDSO	13765	19469	58.58\%
JCVLFLSJ73E	44636	JCVLFLSJ73E	15483	29153	65.31\%
JCVLFLSMDSO	22271	JCVLFLSMDSO	16763	5508	24.73\%
JCVLFLWCDSO	41154	JCVLFLWCDSO	12578	28576	69.44\%
JPTRFLMADSO	54719	JPTRFLMADS0	15420	39299	71.82\%
KYHGFLMARSO	6679	KYHGFLMARSO	3108	3571	53.47\%
KYLRFLLSRSO	8962	KYLRFLLSRS0	4982	3980	44.41\%
KYLRFLMARSO	9945	KYLRFLMARSO	3705	6240	62.75\%
KYWSFLMADSO	29557	KYWSFLMADS0	15764	13793	46.67\%
LKCYFLMADSO	26836	LKCYFLMADS0	12008	14828	55.25\%
LKMRFLMADS0	9814	LKMRFLMADS0	474	9340	95.17\%

All Lenghts $<18 \mathrm{kft}$

Sum of ServiceCount		Sum of ServiceCount			
CLLI	Total	CLLI	Total	Col B - Col D	\% > 18kft
LYHNFLOHDSO	12553	LYHNFLOHDSO	5653	6900	54.97\%
MCNPFLMARSO	1771	MCNPFLMARSO	647	1124	63.47\%
MDBGFLPMDS0	13943	MDBGFLPMDS0	2617	11326	81.23\%
MIAMFLAEDS0	67872	MIAMFLAEDSO	39197	28675	42.25\%
MIAMFLALDS0	32083	MIAMFLALDSO	15214	16869	52.58\%
MIAMFLAPDSO	10390	MIAMFLAPDSO	7923	2467	23.74\%
MIAMFLBADS0	35733	MIAMFLBADS0	35451	282	0.79\%
MIAMFLBCDSO	15136	MIAMFLBCDSO	13417	1719	11.36\%
MIAMFLBRDSO	54090	MIAMFLBRDS0	46321	7769	14.36\%
MIAMFLCADSO	104257	MIAMFLCADS0	17129	87128	83.57\%
MIAMFLDBRS1	2322	MIAMFLDBRS1	2322	0	0.00\%
MIAMFLFLDS0	32960	MIAMFLFLDS0	20570	12390	37.59\%
MIAMFLGRDS0	32272	MIAMFLGRDS0	32272	0	0.00\%
MIAMFLHLDS0	119620	MIAMFLHLDS0	18131	101489	84.84\%
MIAMFLICDS0	43281	MIAMFLICDSO	30813	12468	28.81\%
MIAMFLKEDSO	11102	MIAMFLKEDSO	10831	271	2.44\%
MIAMFLMEDSO	17129	MIAMFLMEDSO	11174	5955	34.77\%
MIAMFLNMDS0	28920	MIAMFLNMDSO	12385	16535	57.17\%
MIAMFLNSDSO	33696	MIAMFLNSDS0	11780	21916	65.04\%
MIAMFLOLDSO	35047	MIAMFLOLDS0	12498	22549	64.34\%
MIAMFLPBDS0	47092	MIAMFLPBDS0	22950	24142	51.27\%
MIAMFLPLDS0	65285	MIAMFLPLDSO	10417	54868	84.04\%
MIAMFLRRDSO	59174	MIAMFLRRDSO	23619	35555	60.09\%
MIAMFLSHDS0	40557	MIAMFLSHDSO	17383	23174	57.14\%
MIAMFLSODS0	66149	MIAMFLSODS0	35989	30160	45.59\%
MIAMFLWDDS0	60409	MIAMFLWDDSO	14761	45648	75.56\%
MIAMFLWMDS0	46609	MIAMFLWMDSO	22816	23793	51.05\%
MICCFLBBRS0	6584	MICCFLBBRS0	4234	2350	35.69\%
MLBRFLMADS0	91737	MLBRFLMADS0	14222	77515	84.50\%
MLTNFLRADSO	20123	MLTNFLRADS0	6234	13889	69.02\%
MNDRFLAVDS0	7385	MNDRFLAVDS0	5988	1397	18.92\%
MNDRFLLODS0	40749	MNDRFLLODS0	11441	29308	71.92\%
MNDRFLLWRS0	7601	MNDRFLLWRSO	3777	3824	50.31\%
MNSNFLMARS0	619	MNSNFLMARSO	148	471	76.09\%
MRTHFLVERSO	12447	MRTHFLVERSO	3281	9166	73.64\%
MXVLFLMARS0	1423	MXVLFLMARSO	433	990	69.57\%
NDADFLACDS0	46660	NDADFLACDSO	30696	15964	34.21\%
NDADFLBRDS0	48778	NDADFLBRDSO	7158	41620	85.33\%
NDADFLGGDS0	36141	NDADFLGGDS0	17544	18597	51.46\%
NDADFLOLDSO	46895	NDADFLOLDSO	27521	19374	41.31\%
NKLRFLMARS0	3222	NKLRFLMARS0	3098	124	3.85\%
NSBHFLMADS0	36693	NSBHFLMADS0	13190	23503	64.05\%
NWBYFLMARS0	4453	NWBYFLMARSO	1302	3151	70.76\%
OKHLFLMARSO	2305	OKHLFLMARSO	1075	1230	53.36\%
OLTWFLLNRS0	4180	OLTWFLLNRS0	338	3842	91.91\%
ORLDFLAPDS0	98933	ORLDFLAPDSO	5365	93568	94.58\%

All Lenghts
< 18kft

Sum of ServiceCo
CLLI
ORLDFLCLDS0
ORLDFLMADS1
ORLDFLPCDS0
ORLDFLPHDS0
ORLDFLSADS0
ORPKFLMADS0

	Sum of ServiceCount			
Total	CLLI	Total	Col B-Col D	\% > 18kft
36538	ORLDFLCLDS0	15373	21165	57.93\%
59001	ORLDFLMADS1	22928	36073	61.14\%
76653	ORLDFLPCDSO	9617	67036	87.45\%
102526	ORLDFLPHDSO	14934	87592	85.43\%
34804	ORLDFLSADSO	5968	28836	82.85\%
26889	ORPKFLMADS0	9835	17054	63.42\%
17397	ORPKFLRWDSO	9236	8161	46.91\%
32186	OVIDFLCADS0	10616	21570	67.02\%
12085	PACEFLPV99E	4791	7294	60.36\%
3511	PAHKFLMARSO	2963	548	15.61\%
29114	PCBHFLNTDSO	3833	25281	86.83\%
19156	PLCSFLMADSO	4298	14858	77.56\%
19943	PLTKFLMADSO	6892	13051	65.44\%
80603	PMBHFLCSDS0	6034	74569	92.51\%
79107	PMBHFLFEDSO	19096	60011	75.86\%
85621	PMBHFLMADS0	21195	64426	75.25\%
41099	PMBHFLTADSO	16065	25034	60.91\%
3187	PMPKFLMARS0	891	2296	72.04\%
8332	PNCYFLCA87E	5045	3287	39.45\%
43959	PNCYFLMADSO	11452	32507	73.95\%
44172	PNSCFLBLDSO	10876	33296	75.38\%
55324	PNSCFLFPDS0	4691	50633	91.52\%
10282	PNSCFLHCDSO	3950	6332	61.58\%
7643	PNSCFLPBDSO	4777	2866	37.50\%
34456	PNSCFLWADS0	4664	29792	86.46\%
22069	PNVDFLMADS0	12772	9297	42.13\%
108302	PRRNFLMADSO	4778	103524	95.59\%
2856	PRSNFLFDRS0	1105	1751	61.31\%
40875	PTSLFLMADS0	6499	34376	84.10\%
17024	PTSLFLSOCGO	5889	11135	65.41\%
1538	SBSTFLFERS0	1375	163	10.60\%
15921	SBSTFLMADSO	4625	11296	70.95\%
4454	SGKYFLMARS0	1019	3435	77.12\%
56829	SNFRFLMADSO	6614	50215	88.36\%
13056	STAGFLBSRS0	4006	9050	69.32\%
24990	STAGFLMADSO	10058	14932	59.75\%
10863	STAGFLSHRSO	5586	5277	48.58\%
1328	STAGFLWGRS0	301	1027	77.33\%
64349	STRTFLMADS0	13070	51279	79.69\%
1749	SYHSFLCCRSO	30	1719	98.28\%
4137	TRENFLMARSO	1403	2734	66.09\%
36120	TTVLFLMADS0	9738	26382	73.04\%
2076	VERNFLMARSO	729	1347	64.88\%
15033	VRBHFLBERSO	8233	6800	45.23\%
50702	VRBHFLMADS0	14259	36443	71.88\%
2613	WELKFLMARSO	796	1817	69.54\%

All Lenghts
$<18 \mathrm{kft}$

Sum of ServiceCount		Sum of ServiceCount			
CLLI	Total	CLLI	Total	Col B - Col D	\% > 18kft
WPBHFLANDS0	41045	WPBHFLANDSO	26570	14475	35.27\%
WPbHFLGADS0	99653	WPBHFLGADS0	27696	71957	72.21\%
WPBHFLGRDS0	62470	WPBHFLGRDS0	14326	48144	77.07\%
WPBHFLHHDSO	74975	WPBHFLHHDSO	20621	54354	72.50\%
WPBHFLLEDS0	47517	WPBHFLLEDSO	24801	22716	47.81\%
WPBHFLRBDSO	49411	WPBHFLRBDSO	17986	31425	63.60\%
WPBHFLRPDS0	53687	WPBHFLRPDSO	10283	43404	80.85\%
WWSPFLHIDS0	16290	WWSPFLHIDSO	2758	13532	83.07\%
WWSPFLSHDSO	36300	WWSPFLSHDS0	4520	31780	87.55\%
YNFNFLMARSO	3515	YNFNFLMARSO	455	3060	87.06\%
YNTWFLMARSO	2549	YNTWFLMARSO	1811	738	28.95\%
YULEFLMARS0	4222	YULEFLMARSO	1488	2734	64.76\%
Grand Total	6124526	Grand Total	2005532	4118994	

BSTLM
RService: A.6.1. (2-WIRE ASYMMETRICAL DIGITAL SUBSCRIDER LINE (ADSL) COMPATIBLE LOOP)
Geographical Unit: FL - all available
Quantity: 6124526
Services Reported: a b
Services Returned: a

Scenario: Copper Only-FI-Ref
Options: Local loop only CU fed only
CLLI
ARCHFLMARSO
ARCHFLMARSO
ARCHFLMARSO
ARCHFLMARSO
BCRTFLBTDS0
BCRTFLBTDSO
BCRTFLBTDSO
BCRTFLBTDSO
BCRTFLBTDSO
BCRTFLBTDSO
BCRTFLBTDSO
BCRTFLMADS
BCRTFLMADS1
BCRTFLMADS1
BCRTFLMADS 1
BCRTFLMADS 1
BCRTFLMADS1
BCRTFLSADSO
BCRTFLSADSO
BCRTFLSADSO
BCRTFLSADSO
BCRTFLSADSO
BCRTFLSADSO
BGPIFLMARS0
BGPIFLMARSO
BGPIFLMARS0
BGPIFLMARS0
BGPIFLMARS0
BKVLFLJFDSO
BKVLFLJFDSO
BKVLFLJFDS0
BKVLFLJFDSO
BKVLFLJFDSO
BKVLFLJFDS0
BLDWFLMARSO
BLDWFLMARSO
BLDWFLMARSO
BLDWFLMARSO
BLDWFLMARSO

	c
b	
b	
CU fed only	
	All Lenghts
ServiceCode	ServiceCount
a-LOCAL POTS	3145
b-PBX	4
d-COIN SMART	1
e-COIN REGUL	12
a-LOCAL POTS	34772
A-2WG UV	8
b-PBX	1395
c-CENTREX	804
d-COIN SMART	3
e-COIN REGUL	286
j-SLV ANALOG	159
a-LOCAL POTS	76654
b-PBX	1196
c-CENTREX	2087
d-COIN SMART	2
e-COIN REGUL	579
j-SLV ANALOG	1035
a-LOCAL POTS	69108
b-PBX	329
c-CENTREX	373
d-COIN SMART	142
e-COIN REGUL	232
j-SLV ANALOG	174
a-LOCAL POTS	5773
b-PBX	13
d-COIN SMART	7
e-COIN REGUL	72
j-SLV ANALOG	24
a-LOCAL POTS	22626
b-PBX	294
c-CENTREX	116
d-COIN SMART	50
e-COIN REGUL	234
j-SLV ANALOG	285
a-LOCAL POTS	2323
A-2WG UV	2
b-PBX	70
d-COIN SMART	7
e-COIN REGUL	70

BLDWFLMARS0	j-SLV ANALOG	5
BLGLFLMADS0	a-LOCAL POTS	9350
BLGLFLMADS0	b-PBX	312
BLGLFLMADS0	c-CENTREX	512
BLGLFLMADS0	d-COIN SMART	2
BLGLFLMADS0	e-COIN REGUL	322
BLGLFLMADS0	j-SLV ANALOG	163
BNNLFLMARS0	a-LOCAL POTS	6422
BNNLFLMARS0	b-PBX	168
BNNLFLMARSO	c-CENTREX	444
BNNLFLMARSO	d-COIN SMART	1
BNNLFLMARS0	e-COIN REGUL	75
BNNLFLMARS0	j-SLV ANALOG	37
BRSNFLMARSO	a-LOCAL POTS	3057
BRSNFLMARS0	c-CENTREX	370
BRSNFLMARS0	d-COIN SMART	3
BRSNFLMARS0	e-COIN REGUL	35
BRSNFLMARS0	j-SLV ANALOG	6
BYBHFLMADS0	a-LOCAL POTS	71363
BYBHFLMADS0	b-PBX	357
BYBHFLMADS0	c-CENTREX	819
BYBHFLMADS0	e-COIN REGUL	513
BYBHFLMADS0	j-SLV ANALOG	207
CCBHFLMADS0	a-LOCAL POTS	23262
CCBHFLMADSO	b-PBX	624
CCBHFLMADSO	c-CENTREX	401
CCBHFLMADSO	d-COIN SMART	23
CCBHFLMADSO	e-COIN REGUL	443
CCBHFLMADS0	j-SLV ANALOG	189
CDKYFLMARSO	a-LOCAL POTS	1258
CDKYFLMARS0	b-PBX	10
CDKYFLMARS0	d-COIN SMART	7
CDKYFLMARSO	e-COIN REGUL	12
CDKYFLMARS0	j-SLV ANALOG	7
CFLDFLMARSO	a-LOCAL POTS	4793
CFLDFLMARSO	b-PBX	41
CFLDFLMARSO	c-CENTREX	151
CFLDFLMARS0	d-COIN SMART	4
CFLDFLMARS0	e-COIN REGUL	61
CFLDFLMARS0	j-SLV ANALOG	8
CHPLFLJADS0	a-LOCAL POTS	5741
CHPLFLJADS0	b-PBX	100
CHPLFLJADS0	c-CENTREX	383
CHPLFLJADS0	e-COIN REGUL	77
CHPLFLJADS0	j-SLV ANALOG	41
CNTMFLLEDS1	a-LOCAL POTS	8670
CNTMFLLEDS1	b-PBX	144
CNTMFLLEDS1	e-COIN REGUL	54
CNTMFLLEDS1	j-SLV ANALOG	30

COCOFLMADS0 a-LOCAL POTS 46340
COCOFLMADS0 b-PBX 306
COCOFLMADSO c-CENTREX 970COCOFLMADSOCOCOFLMADSOCOCOFLMADSOCOCOFLMEDSOCOCOFLMEDS0
COCOFLMEDSO
COCOFLMEDS0
COCOFLMEDSO
COCOFLMEDSO
CSCYFLBARSOCSCYFLBARSOCSCYFLBARSOCSCYFLBARSO
CSCYFLBARSOCSCYFLBARSO
DBRYFLDLDS0
DBRYFLDLDSO
DBRYFLDLDSO
DBRYFLDLDS0
DBRYFLDLDSO
DBRYFLMARS1
DBRYFLMARS1
DBRYFLMARS1DBRYFLMARS1
DBRYFLMARS 1
DBRYFLMARS1
DELDFLMADSO
DELDFLMADSO
DELDFLMADSO
DELDFLMADSO
DELDFLMADSO
DLBHFLKPDSO
DLBHFLKPDSO
DLBHFLKPDSO
DLBHFLKPDSO
DLBHFLKPDSO
DLBHFLKPDSO
DLBHFLMADSO
DLBHFLMADSO
DLBHFLMADSO
DLBHFLMADSO
DLBHFLMADSO
DLBHFLMADS0
DLSPFLMARSO
DLSPFLMARSO
DLSPFLMARS0
d-COIN SMART 48
e-COIN REGUL 620
j-SLV ANALOG 266
a-LOCAL POTS 26144
b-PBX 374
c-CENTREX 440
d-COIN SMART 28
e-COIN REGUL 265
j-SLV ANALOG 56
a-LOCAL POTS 3461
b-PBX 11
c-CENTREX 235
d-COIN SMART 7
e-COIN REGUL 61
j-SLV ANALOG 15
a-LOCAL POTS 14535
b-PBX 24
c-CENTREX 346
e-COIN REGUL 52
j-SLV ANALOG 3
a-LOCAL POTS 7532
b-PBX 13
c-CENTREX 87
d-COIN SMART 12
e-COIN REGUL 42
j-SLV ANALOG 7
a-LOCAL POTS 28569
b-PBX 284
c-CENTREX 400
e-COIN REGUL 361
j-SLV ANALOG 214
a-LOCAL POTS 42609
b-PBX 254
c-CENTREX 314
d-COIN SMART 1
e-COIN REGUL 223
j-SLV ANALOG 84
a-LOCAL POTS 44152
b-PBX 778
c-CENTREX 537
d-COIN SMART 1
e-COIN REGUL 396
j-SLV ANALOG 417
a-LOCAL POTS 2459
b-PBX 15
c-CENTREX 47

DLSPFLMARS0	d-COIN SMART	1
DLSPFLMARS0	e-COIN REGUL	28
DLSPFLMARS0	j-SLV ANALOG	32
DNLNFLWMRS0	a-LOCAL POTS	13296
DNLNFLWMRS0	b-PBX	16
DNLNFLWMRS0	d-COIN SMART	11
DNLNFLWMRSO	e-COIN REGUL	66
DNLNFLWMRSO	j-SLV ANALOG	21
DRBHFLMADS0	a-LOCAL POTS	64658
DRBHFLMADS0	b-PBX	996
DRBHFLMADS0	c-CENTREX	1121
DRBHFLMADS0	d-COIN SMART	90
DRBHFLMADS0	e-COIN REGUL	451
DRBHFLMADS0	j-SLV ANALOG	341
DYBHFLFNRS0	a-LOCAL POTS	2210
DYBHFLFNRS0	b-PBX	103
DYBHFLFNRSO	c-CENTREX	350
DYBHFLFNRS0	e-COIN REGUL	25
DYBHFLFNRSO	j-SLV ANALOG	5
DYBHFLMADS0	a-LOCAL POTS	43946
DYBHFLMADS0	A-2WG UV	39
DYBHFLMADS0	b-PBX	1986
DYBHFLMADS0	c-CENTREX	563
DYBHFLMADS0	e-COIN REGUL	1390
DYBHFLMADS0	j-SLV ANALOG	900
DYBHFLOBDSO	a-LOCAL POTS	34056
DYBHFLOBDS0	A-2WG UV	2
DYBHFLOBDSO	b-PBX	581
DYBHFLOBDS0	c-CENTREX	125
DYBHFLOBDSO	e-COIN REGUL	362
DYBHFLOBDS0	j-SLV ANALOG	83
DYBHFLOSDS0	a-LOCAL POTS	8157
DYBHFLOSDS0	b-PBX	15
DYBHFLOSDS0	e-COIN REGUL	28
DYBHFLOSDS0	j-SLV ANALOG	12
DYBHFLPODS0	a-LOCAL POTS	53900
DYBHFLPODS0	A-2WG UV	30
DYBHFLPODS0	$b-P B X$	374
DYBHFLPODS0	c-CENTREX	269
DYBHFLPODS0	e-COIN REGUL	411
DYBHFLPODS0	j-SLV ANALOG	82
EGLLFLBGDS0	a-LOCAL POTS	45360
EGLLFLBGDS0	A-2WG UV	2
EGLLFLBGDS0	b-PBX	534
EGLLFLBGDS0	c-CENTREX	659
EGLLFLBGDS0	d-COIN SMART	40
EGLLFLBGDS0	e-COIN REGUL	275
EGLLFLBGDS0	j-SLV ANALOG	37
EGLLFLIHDS0	a-LOCAL POTS	21041

EGLLFLIHDS0 b-PBX 129
EGLLFLIHDS0 c-CENTREX 111
EGLLFLIHDS0 d-COIN SMART 14
EGLLFLIHDS0 e-COIN REGUL 143
EGLLFLIHDS0 j-SLV ANALOG 40
EORNFLMARS0
EORNFLMARSOEORNFLMARS0
EORNFLMARS0
EORNFLMARSO
FLBHFLMARSO
FLBHFLMARSO
FLBHFLMARSO
FLBHFLMARSO
FLBHFLMARSO
FRBHFLFPDSO
FRBHFLFPDSO
FRBHFLFPDSO
FRBHFLFPDSO
FRBHFLFPDSO
FRBHFLFPDSO
FTGRFLMARSO
FTGRFLMARSO
FTGRFLMARSO
FTGRFLMARSO
FTLDFLAPRS0
FTLDFLAPRS0
FTLDFLAPRS0
FTLDFLAPRSO
FTLDFLAPRSO
FTLDFLAPRS0
FTLDFLCRDS0
FTLDFLCRDSO
FTLDFLCRDSO
FTLDFLCRDSO
FTLDFLCRDSO
FTLDFLCRDSO
FTLDFLCRDSO
FTLDFLCYDSO
FTLDFLCYDSO
FTLDFLCYDSO
FTLDFLCYDS0
FTLDFLCYDSO
FTLDFLCYDS0
FTLDFLCYDS0
FTLDFLJADS0FTLDFLJADS0FTLDFLJADS0
FTLDFLJADS0
a-LOCAL POTS 5661
b-PBX 1
d-COIN SMART 1
e-COIN REGUL 44
j-SLV ANALOG 1
a-LOCAL POTS 4768
b-PBX 18
c-CENTREX 125
e-COIN REGUL 79
j-SLV ANALOG 9
a-LOCAL POTS 18118
A-2WG UV 6
b-PBX 245
c-CENTREX 148
e-COIN REGUL 197
j-SLV ANALOG 69
a-LOCAL POTS 577
b-PBX 9
c-CENTREX 17
e-COIN REGUL 17
a-LOCAL POTS 1376
b-PBX 126
c-CENTREX 363
d-COIN SMART 27
e-COIN REGUL 207
j-SLV ANALOG 48
a-LOCAL POTS 49393
A-2WG UV 43
b-PBX 1086
c-CENTREX 739
d-COIN SMART 2
e-COIN REGUL 609
j-SLV ANALOG 172
a-LOCAL POTS 43206
A-2WG UV 255
b-PBX 1820
c-CENTREX 1784
d-COIN SMART 45
e-COIN REGUL 582
j-SLV ANALOG 205
a-LOCAL POTS 70511
b-PBX 1006
c-CENTREX 947
d-COIN SMART 61

FTLDFLJADSO
FTLDFLJADSO
FTLDFLMRDSO
FTLDFLMRDSO
FTLDFLMRDSO
FTLDFLMRDSO
FTLDFLMRDSO
FTLDFLMRDSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLOADSO
FTLDFLPLDSO
FTLDFLPLDSO
FTLDFLPLDSO
FTLDFLPLDS0
FTLDFLPLDS0
FTLDFLPLDSO
FTLDFLPLDSO
FTLDFLSGDS0
FTLDFLSGDS0
FTLDFLSGDSO
FTLDFLSGDSO
FTLDFLSGDSO
FTLDFLSUDSO
FTLDFLSUDSO
FTLDFLSUDSO
FTLDFLSUDSO
FTLDFLSUDSO
FTLDFLSUDSO
FTLDFLWNDSO
FTLDFLWNDSO
FTLDFLWNDSO
FTLDFLWNDSO
FTLDFLWNDSO
FTLDFLWNDSO
FTPRFLMADSO
FTPRFLMADS0
FTPRFLMADSO
FTPRFLMADSO
FTPRFLMADSO
FTPRFLMADSO GCSPFLCNDSO GCSPFLCNDSO GCSPFLCNDSO GCSPFLCNDSO
e-COIN REGUL 604
j-SLV ANALOG 183
a-LOCAL POTS 70676
A-2WG UV 242
b-PBX 1970
c-CENTREX 1809
e-COIN REGUL 1761
j-SLV ANALOG 1917
a-LOCAL POTS 65070
A-2WG UV 27
b-PBX 700
c-CENTREX 1154
d-COIN SMART 89
e-COIN REGUL 517
j-SLV ANALOG 149
a-LOCAL POTS 61682
A-2WG UV 41
b-PBX 664
c-CENTREX 1038
d-COIN SMART 3
e-COIN REGUL 901
j-SLV ANALOG 216
a-LOCAL POTS 6357
b-PBX 359
c-CENTREX 243
e-COIN REGUL 121
j-SLV ANALOG 26
a-LOCAL POTS 49020
b-PBX 241
c-CENTREX 932
d-COIN SMART 1
e-COIN REGUL 378
j-SLV ANALOG 102
a-LOCAL POTS 28683
b-PBX 526
c-CENTREX 426
d-COIN SMART 35
e-COIN REGUL 137
j-SLV ANALOG 4
a-LOCAL POTS 52219
b-PBX 719
c-CENTREX 462
d-COIN SMART 1
e-COIN REGUL 1064
j-SLV ANALOG 591
a-LOCAL POTS 8551
b-PBX 31
c-CENTREX 407
d-COIN SMART 2

GCSPFLCNDSO
GCSPFLCNDSO
GCVLFLMARSO
GCVLFLMARSO
GCVLFLMARSO
GCVLFLMARSO
GENVFLMARSO
GENVFLMARSO
GENVFLMARSO
GENVFLMARSO
GENVFLMARSO
GLBRFLMCDSO
GLBRFLMCDSO
GLBRFLMCDSO
GLBRFLMCDSO
GLBRFLMCDSO
GSVLFLMADSO
GSVLFLMADSO
GSVLFLMADSO
GSVLFLMADSO
GSVLFLMADSO
GSVLFLMADSO
GSVLFLNW33E
GSVLFLNW33E
GSVLFLNW33E
GSVLFLNW33E
GSVLFLNW33E GSVLFLNW33E HAVNFLMADSO HAVNFLMADSO HAVNFLMADSO HAVNFLMADSO HBSDFLMADSO HBSDFLMADSO HBSDFLMADS0 HBSDFLMADSO HBSDFLMADSO HBSDFLMADS0 HLNVFLMADS1 HLNVFLMADS1 HLNVFLMADS1 HLNVFLMADS 1 HLWDFLHADSO HLWDFLHADSO HLWDFLHADSO HLWDFLHADSO HLWDFLHADSO HLWDFLHADSO HLWDFLMADSO
e-COIN REGUL138
j-SLV ANALOG 187
a-LOCAL POTS 3476
b-PBX 42
e-COIN REGUL 42
j-SLV ANALOG 19
a-LOCAL POTS 2712
b-PBX 4
d-COIN SMART 2
e-COIN REGUL 7
j-SLV ANALOG 4
a-LOCAL POTS 17647
b-PBX 194
c-CENTREX 331
e-COIN REGUL 173
j-SLV ANALOG 21
a-LOCAL POTS 91913
b-PBX 1504
c-CENTREX 1135
d-COIN SMART 100
e-COIN REGUL 1006
j-SLV ANALOG 376
a-LOCAL POTS 13196
b-PBX 272
c-CENTREX 411
d-COIN SMART 11
e-COIN REGUL 146
j-SLV ANALOG 2
a-LOCAL POTS 5213
b-PBX 24
e-COIN REGUL 43
j-SLV ANALOG 9
a-LOCAL POTS 11107
b-PBX 88
c-CENTREX 79
d-COIN SMART 27
e-COIN REGUL 52
j-SLV ANALOG 45
a-LOCAL POTS 11286
b-PBX 53
e-COIN REGUL 72
j-SLV ANALOG 11
a-LOCAL POTS 31392
b-PBX 322
c-CENTREX 567
d-COIN SMART 1
e-COIN REGUL 368
j-SLV ANALOG 60
a-LOCAL POTS 51586

HLWDFLMADSO
HLWDFLMADSO
HLWDFLMADSO
HLWDFLMADS0
HLWDFLMADSO
HLWDFLMADS0
HLWDFLPEDSO
HLWDFLPEDSO
HLWDFLPEDSO
HLWDFLPEDSO
HLWDFLPEDSO
HLWDFLPEDSO
HLWDFLWHDSO
HLWDFLWHDSO
HLWDFLWHDSO
HLWDFLWHDSO
HLWDFLWHDSO
HLWDFLWHDSO
HLWDFLWHDSO
HMSTFLAFRSO
HMSTFLAFRSO
HMSTFLAFRSO
HMSTFLAFRSO
HMSTFLAFRSO
HMSTFLAFRSO
HMSTFLEARSO
HMSTFLEARSO
HMSTFLEARSO
HMSTFLEARSO
HMSTFLHMDSO
HMSTFLHMDSO
HMSTFLHMDSO
HMSTFLHMDSO
HMSTFLHMDSO
HMSTFLHMDSO
HTISFLMADSO
HTISFLMADSO
HTISFLMADSO
HTISFLMADSO
HTISFLMADSO
HTISFLMADSO
HWTHFLMARS0
HWTHFLMARSO
HWTHFLMARSO
HWTHFLMARSO
HWTHFLMARSO
HWTHFLMARSO
ISLMFLMARSO
ISLMFLMARSO

A-2WG UV	78
b-PBX	1005
c-CENTREX	628
d-COIN SMART	64
e-COIN REGUL	896
j-SLV ANALOG	710
a-LOCAL POTS	109724
b-PBX	684
c-CENTREX	1666
d-COIN SMART	51
e-COIN REGUL	655
j-SLV ANALOG	127
a-LOCAL POTS	89643
A-2WG UV	14
b-PBX	636
c-CENTREX	1611
d-COIN SMART	84
e-COIN REGUL	972
j-SLV ANALOG	218
a-LOCAL POTS	7342
b-PBX	20
c-CENTREX	268
d-COIN SMART	6
e-COIN REGUL	82
j-SLV ANALOG	8
a-LOCAL POTS	1122
b-PBX	5
d-COIN SMART	18
e-COIN REGUL	8
a-LOCAL POTS	31960
b-PBX	373
c-CENTREX	868
d-COIN SMART	35
e-COIN REGUL	465
j-SLV ANALOG	137
a-LOCAL POTS	19097
b-PBX	145
c-CENTREX	10
d-COIN SMART	1
e-COIN REGUL	138
j-SLV ANALOG	83
a-LOCAL POTS	3804
b-PBX	9
c-CENTREX	25
d-COIN SMART	5
e-COIN REGUL	34
j-SLV ANALOG	
a-LOCAL POTS	4935
b-PBX	

ISLMFLMARSO ISLMFLMARSO ISLMFLMARSO ISLMFLMARSO JAY-FLMARSO JAY-FLMARSO JAY-FLMARSO JAY-FLMARSO JCBHFLABRSO JCBHFLABRSO JCBHFLABRSO JCBHFLABRSO JCBHFLABRSO JCBHFLMADSO JCBHFLMADSO JCBHFLMADSO JCBHFLMADSO JCBHFLMADSO JCBHFLMADSO JCBHFLSPRSO JCBHFLSPRSO JCBHFLSPRSO JCBHFLSPRSO JCBHFLSPRSO JCBHFLSPRS0 JCBHFLSPRS0 JCVLFLARDS0 JCVLFLARDSO JCVLFLARDSO JCVLFLARDSO JCVLFLARDSO JCVLFLARDSO JCVLFLARDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLBWDSO JCVLFLCLDS0 JCVLFLCLDSO JCVLFLCLDSO JCVLFLCLDSO JCVLFLCLDSO JCVLFLCLDSO JCVLFLCLDSO JCVLFLFCDSO JCVLFLFCDSO
c-CENTREX 60
d-COIN SMART 3
e-COIN REGUL 124
j-SLV ANALOG 20
a-LOCAL POTS 2755
b-PBX 3
e-COIN REGUL 14
j-SLV ANALOG 10
a-LOCAL POTS 13528
A-2WG UV 10
c-CENTREX 77
d-COIN SMART 3
e-COIN REGUL 38
a-LOCAL POTS 33580
A-2WG UV 39
b-PBX 248
c-CENTREX 404
e-COIN REGUL 520
j-SLV ANALOG 150
a-LOCAL POTS 12649
A-2WG UV 22
b-PBX 133
c-CENTREX 172
d-COIN SMART 4
e-COIN REGUL 54
j-SLV ANALOG 5
a-LOCAL POTS 29561
A-2WG UV 18
b-PBX 442
c-CENTREX 1632
d-COIN SMART 11
e-COIN REGUL 304
j-SLV ANALOG 126
a-LOCAL POTS 37764
A-2WG UV 45
b-PBX 460
c-CENTREX 694
d-COIN SMART 16
e-COIN REGUL 295
j-SLV ANALOG 31
a-LOCAL POTS 32993
A-2WG UV 56
b-PBX 935
c-CENTREX 2430
d-COIN SMART 1
e-COIN REGUL 1264
j-SLV ANALOG 3584
a-LOCAL POTS 21378
A-2WG UV 19

JCVLFLFCDSO JCVLFLFCDSO JCVLFLFCDSO JCVLFLFCDSO JCVLFLFCDSO JCVLFLIARSO JCVLFLIARSO JCVLFLIARSO JCVLFLIARSO JCVLFLIARSO JCVLFLJTRSO JCVLFLJTRS0 JCVLFLJTRS0 JCVLFLJTRSO JCVLFLJTRSO JCVLFLJTRSO JCVLFLJTRSO JCVLFLLFDSO JCVLFLLFDSO JCVLFLLFDS0 JCVLFLLFDS0 JCVLFLLFDSO JCVLFLLFDSO JCVLFLNODSO JCVLFLNODSO JCVLFLNODSO JCVLFLNODSO JCVLFLNODSO JCVLFLNODSO JCVLFLNODSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLOWDSO JCVLFLRVDSO JCVLFLRVDS0 JCVLFLRVDSO JCVLFLRVDSO JCVLFLRVDSO JCVLFLRVDSO JCVLFLSJ73E JCVLFLSJ73E JCVLFLSJ73E JCVLFLSJ73E JCVLFLSJ73E JCVLFLSJ73E

b-PBX	28
c-CENTREX	242
d-COIN SMART	1
e-COIN REGUL	156
j-SLV ANALOG	13
a-LOCAL POTS	1196
A-2WG UV	8
b-PBX	246
e-COIN REGUL	73
j-SLV ANALOG	3
a-LOCAL POTS	4825
A-2WG UV	24
b-PBX	858
c-CENTREX	528
d-COIN SMART	19
e-COIN REGUL	62
j-SLV ANALOG	23
a-LOCAL POTS	32196
A-2WG UV	16
b-PBX	203
c-CENTREX	868
e-COIN REGUL	515
j-SLV ANALOG	85
a-LOCAL POTS	30736
A-2WG UV	60
b-PBX	755
c-CENTREX	1151
d-COIN SMART	2
e-COIN REGUL	470
j-SLV ANALOG	112
a-LOCAL POTS	17540
A-2WG UV	17
b-PBX	390
c-CENTREX	495
d-COIN SMART	4
e-COIN REGUL	267
j-SLV ANALOG	27
a-LOCAL POTS	31517
A-2WG UV	52
b-PBX	314
c-CENTREX	777
e-COIN REGUL	328
j-SLV ANALOG	246
a-LOCAL POTS	42066
A-2WG UV	84
b-PBX	1112
c-CENTREX	873
d-COIN SMART	273
e-COIN REGUL	

JCVLFLSJ73E
JCVLFLSMDSO
JCVLFLSMDSO
JCVLFLSMDSO
JCVLFLSMDS0
JCVLFLSMDSO
JCVLFLSMDSO
JCVLFLSMDSO
JCVLFLWCDSO
JCVLFLWCDSO
JCVLFLWCDSO
JCVLFLWCDSO
JCVLFLWCDSO
JCVLFLWCDSO
JCVLFLWCDSO
JPTRFLMADSO
JPTRFLMADSO
JPTRFLMADSO
JPTRFLMADSO
JPTRFLMADSO
KYHGFLMARSO
KYHGFLMARSO
KYHGFLMARSO
KYHGFLMARSO
KYHGFLMARSO
KYHGFLMARSO
KYLRFLLSRSO
KYLRFLLSRSO
KYLRFLLSRSO
KYLRFLLSRSO
KYLRFLLSRSO
KYLRFLLSRSO
KYLRFLMARSO
KYLRFLMARSO
KYLRFLMARSO
KYLRFLMARSO
KYLRFLMARSO
KYLRFLMARSO
KYWSFLMADSO
KYWSFLMADSO
KYWSFLMADSO
KYWSFLMADSO
KYWSFLMADSO
KYWSFLMADSO
LKCYFLMADSO
LKCYFLMADSO
LKCYFLMADSO
LKCYFLMADSO
LKCYFLMADSO
j-SLV ANALOG 126
a-LOCAL POTS 20118
A-2WG UV 75
b-PBX 677
c-CENTREX 828
d-COIN SMART 3
e-COIN REGUL 269
j-SLV ANALOG 301
a-LOCAL POTS 39068
A-2WG UV 48
b-PBX 536
c-CENTREX 806
d-COIN SMART 13
e-COIN REGUL 597
j-SLV ANALOG 86
a-LOCAL POTS 53159
b-PBX 369
c-CENTREX 627
e-COIN REGUL 311
j-SLV ANALOG 253
a-LOCAL POTS 6517
b-PBX 88
c-CENTREX 17
d-COIN SMART 9
e-COIN REGUL 38
j-SLV ANALOG 10
a-LOCAL POTS 8506
b-PBX 93
c-CENTREX 134
d-COIN SMART 9
e-COIN REGUL 163
j-SLV ANALOG 57
a-LOCAL POTS 9482
b-PBX 146
c-CENTREX 178
d-COIN SMART 10
e-COIN REGUL 89
j-SLV ANALOG 40
a-LOCAL POTS 26574
b-PBX 798
c-CENTREX 800
d-COIN SMART 44
e-COIN REGUL 704
j-SLV ANALOG 637
a-LOCAL POTS 24497
b-PBX 579
c-CENTREX 939
d-COIN SMART 2
e-COIN REGUL 482

LKCYFLMADSO LKMRFLMADSO LKMRFLMADSO LKMRFLMADSO LKMRFLMADSO LKMRFLMADSO LKMRFLMADSO LYHNFLOHDSO LYHNFLOHDSO LYHNFLOHDSO LYHNFLOHDSO LYHNFLOHDS0 MCNPFLMARSO MCNPFLMARSO MCNPFLMARSO MCNPFLMARSO MCNPFLMARSO MDBGFLPMDSO MDBGFLPMDSO MDBGFLPMDSO MDBGFLPMDSO MDBGFLPMDSO MDBGFLPMDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLAEDSO MIAMFLALDSO MIAMFLALDSO MIAMFLALDSO MIAMFLALDSO MIAMFLALDS0 MIAMFLALDSO MIAMFLAPDSO MIAMFLAPDSO MIAMFLAPDSO MIAMFLAPDSO MIAMFLAPDSO MIAMFLBADSO MIAMFLBADSO MIAMFLBADSO MIAMFLBADSO MIAMFLBADSO MIAMFLBADSO MIAMFLBADSO MIAMFLBCDSO
j-SLV ANALOG 337
a-LOCAL POTS 8854
A-2WG UV 155
b-PBX 456
c-CENTREX 213
e-COIN REGUL 89
j-SLV ANALOG 47
a-LOCAL POTS 12325
b-PBX 91
c-CENTREX 60
e-COIN REGUL 71
j-SLV ANALOG 6
a-LOCAL POTS 1744
b-PBX 6
d-COIN SMART 2
e-COIN REGUL 18
j-SLV ANALOG 1
a-LOCAL POTS 13728
A-2WG UV 3
b-PBX 16
c-CENTREX 135
e-COIN REGUL 56
j-SLV ANALOG 5
a-LOCAL POTS 63340
A-2WG UV 98
b-PBX 1280
c-CENTREX 1934
d-COIN SMART 28
e-COIN REGUL 760
j-SLV ANALOG 432
a-LOCAL POTS 29914
b-PBX 637
c-CENTREX 689
d-COIN SMART 2
e-COIN REGUL 719
j-SLV ANALOG 122
a-LOCAL POTS 6577
b-PBX 641
c-CENTREX 1062
e-COIN REGUL 1864
j-SLV ANALOG 246
a-LOCAL POTS 34337
A-2WG UV 1
b-PBX 358
c-CENTREX 603
d-COIN SMART 1
e-COIN REGUL 352
j-SLV ANALOG 81
a-LOCAL POTS 13978

MIAMFLBCDSO
MIAMFLBCDSO
MIAMFLBCDSO
MIAMFLBCDSO
MIAMFLBRDSO MIAMFLBRDSO MIAMFLBRDSO MIAMFLBRDSO MIAMFLBRDSO MIAMFLBRDSO MIAMFLBRDSO MIAMFLCADSO MIAMFLCADSO MIAMFLCADSO MIAMFLCADSO MIAMFLCADSO MIAMFLCADSO MIAMFLDBRS1 MIAMFLDBRS \uparrow MIAMFLDBRS1 MIAMFLDBRS 1 MIAMFLDBRS1 MIAMiFLFLDSO MIAMFLFLDS0 MIAMFLFLDS0 MIAMFLFLDS0 MIAMFLFLDS0 MIAMFLFLDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLGRDSO MIAMFLHLDSO MIAMFLHLDSO MIAMFLHLDSO MIAMFLHLDSO MIAMFLHLDSO MIAMFLHLDSO MIAMFLICDSO MIAMFLICDSO MIAMFLICDSO MIAMFLICDSO MIAMFLICDSO MIAMFLKEDSO MIAMFLKEDSO MIAMFLKEDSO
b-PBX 198
c-CENTREX 569
e-COIN REGUL 260
j-SLV ANALOG 131
a-LOCAL POTS 50174
A-2WG UV 12
b-PBX 1476
c-CENTREX 1015
d-COIN SMART 49
e-COIN REGUL 1240
j-SLV ANALOG 124
a-LOCAL POTS 101779
b-PBX 408
c-CENTREX 1092
d-COIN SMART 1
e-COIN REGUL 804
j-SLV ANALOG 173
a-LOCAL POTS 1755
b-PBX 161
c-CENTREX 358
e-COIN REGUL 40
j-SLV ANALOG 8
a-LOCAL POTS 31109
b-PBX 254
c-CENTREX 833
d-COIN SMART 19
e-COIN REGUL 655
j-SLV ANALOG 90
a-LOCAL POTS 22543
A-2WG UV 110
b-PBX 1289
c-CENTREX 1317
d-COIN SMART 33
e-COIN REGUL 1037
j-SLV ANALOG 5943
a-LOCAL POTS 114609
b-PBX 1446
c-CENTREX 2154
d-COIN SMART 71
e-COIN REGUL 1071
j-SLV ANALOG 269
a-LOCAL POTS 41616
b-PBX 561
c-CENTREX 563
e-COIN REGUL 381
j-SLV ANALOG 160
a-LOCAL POTS 10319
b-PBX 346
c-CENTREX 244

MIAMFLKEDSO MIAMFLKEDSO MIAMFLKEDSO MIAMFLMEDSO MIAMFLMEDSO MIAMFLMEDSO MIAMFLMEDSO MIAMFLMEDSO MIAMFLMEDSO MIAMFLNMDSO MIAMFLNMDSO MIAMFLNMDSO MIAMFLNMDSO MIAMFLNMDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLNSDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLOLDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPBDSO MIAMFLPLDSO MIAMFLPLDS0 MIAMFLPLDS0 MIAMFLPLDS0 MIAMFLPLDSO MIAMFLPLDS0 MIAMFLPLDSO MIAMFLRRDSO MIAMFLRRDSO MIAMFLRRDSO MIAMFLRRDSO MIAMFLRRDSO MIAMFLRRDSO MIAMFLSHDSO
d-COIN SMART 10
e-COIN REGUL 126
j-SLV ANALOG 57
a-LOCAL POTS 14909
b-PBX 475
c-CENTREX 593
d-COIN SMART 3
e-COIN REGUL 997
j-SLV ANALOG 152
a-LOCAL POTS 28083
b-PBX 176
c-CENTREX 206
e-COIN REGUL 401
j-SLV ANALOG 54
a-LOCAL POTS 31619
A-2WG UV 6
b-PBX 219
c-CENTREX 1101
d-COIN SMART 45
e-COIN REGUL 639
j-SLV ANALOG 67
a-LOCAL POTS 32696
A-2WG UV 1
b-PBX 335
c-CENTREX 1226
d-COIN SMART 1
e-COIN REGUL 690
j-SLV ANALOG 98
a-LOCAL POTS 43923
A-2WG UV 1
b-PBX 960
c-CENTREX 1232
d-COIN SMART 2
e-COIN REGUL 750
j-SLV ANALOG 224
a-LOCAL POTS 58747
A-2WG UV 181
b-PBX 3304
c-CENTREX 1571
d-COIN SMART 84
e-COIN REGUL 1106
j-SLV ANALOG 292
a-LOCAL POTS 56732
b-PBX 593
c-CENTREX 1039
d-COIN SMART 32
e-COIN REGUL 555
j-SLV ANALOG 223
a-LOCAL POTS 38131
MIAMFLSHDSO b-PBX 218
MIAMFLSHDS0MIAMFLSHDS0MIAMFLSHDSO
MIAMFLSHDSO
MIAMFLSODSO
MIAMFLSODSO
MIAMFLSODSO
MIAMFLSODSO
MIAMFLSODSO
MIAMFLWDDSO
MIAMFLWDDSO
MIAMFLWDDSO
MIAMFLWDDSO
MIAMFLWDDSO
MIAMFLWMDS0MIAMFLWMDSOMIAMFLWMDSOMIAMFLWMDSO
MIAMFLWMDS0
MIAMFLWMDSO
MIAMFLWMDS0
MICCFLBBRSO
MICCFLBBRSO
MICCFLBBRSO
MiCCFLBBRSO
MICCFLBBRSO
MLBRFLMADSO
MLBRFLMADSOMLBRFLMADSO
MLBRFLMADSO
MLBRFLMADSO
MLBRFLMADSO
MLBRFLMADSO
MLTNFLRADSOMLTNFLRADSOMLTNFLRADSOMLTNFLRADSOMLTNFLRADSOMNDRFLAVDSO
MNDRFLAVDSO
MNDRFLAVDSO
MNDRFLAVDSO
MNDRFLAVDSO
MNDRFLLODSO
MNDRFLLODSOMNDRFLLODSOMNDRFLLODSO
MNDRFLLODSO
c-CENTREX 1321
d-COIN SMART 2
e-COIN REGUL 794
j-SLV ANALOG 91
a-LOCAL POTS 63818
b-PBX 402
c-CENTREX 1355
e-COIN REGUL 489
j-SLV ANALOG 85
a-LOCAL POTS 59651
b-PBX 94
c-CENTREX 356
e-COIN REGUL 285
j-SLV ANALOG 23
a-LOCAL POTS 44134
A-2WG UV 2
b-PBX 641
c-CENTREX 1104
d-COIN SMART 3
e-COIN REGUL 551
j-SLV ANALOG 174
a-LOCAL POTS 6554
c-CENTREX 1
d-COIN SMART 3
e-COIN REGUL 18
j-SLV ANALOG 8
a-LOCAL POTS 87818
A-2WG UV 8
b-PBX 1101
c-CENTREX 1333
d-COIN SMART 75
e-COIN REGUL 718
j-SLV ANALOG 684
a-LOCAL POTS 19476
b-PBX 261
c-CENTREX 32
e-COIN REGUL 273
j-SLV ANALOG 81
a-LOCAL POTS 6564
b-PBX 475
c-CENTREX 258
e-COIN REGUL 42
j-SLV ANALOG 46
a-LOCAL POTS 39686
b-PBX 270
c-CENTREX 484
d-COIN SMART 16
e-COIN REGUL 245

MNDRFLLODS0
MNDRFLLWRSO MNDRFLLWRSO MNDRFLLWRSO MNDRFLLWRSO MNDRFLLWRS0 MNSNFLMARSO MNSNFLMARSO MRTHFLVERSO MRTHFLVERSO MRTHFLVERSO MRTHFLVERSO MRTHFLVERSO MRTHFLVERSO MXVLFLMARSO MXVLFLMARSO MXVLFLMARSO NDADFLACDSO NDADFLACDSO NDADFLACDSO NDADFLACDSO NDADFLACDS0 NDADFLBRDSO NDADFLBRDSO NDADFLBRDSO NDADFLBRDSO NDADFLBRDSO NDADFLGGDSO NDADFLGGDSO NDADFLGGDSO NDADFLGGDSO NDADFLGGDSO NDADFLGGDSO

NDADFLOLDSO
NDADFLOLDSO
NDADFLOLDSO
NDADFLOLDSO
NDADFLOLDSO
NDADFLOLDSO NKLRFLMARSO NKLRFLMARSO NKLRFLMARSO NKLRFLMARSO NSBHFLMADSO NSBHFLMADSO NSBHFLMADSO NSBHFLMADSO NSBHFLMADSO NSBHFLMADS0
j-SLV ANALOG 48
a-LOCAL POTS 7532
b-PBX 43
d-COIN SMART 5
e-COIN REGUL 16
j-SLV ANALOG 5
a-LOCAL POTS 613
e-COIN REGUL 6
a-LOCAL POTS 11388
b-PBX 229
c-CENTREX 442
d-COIN SMART 21
e-COIN REGUL 196
j-SLV ANALOG 171
a-LOCAL POTS 1412
e-COIN REGUL 10
j-SLV ANALOG 1
a-LOCAL POTS 44336
b-PBX 662
c-CENTREX 925
e-COIN REGUL 613
j-SLV ANALOG 124
a-LOCAL POTS 46140
b-PBX 594
c-CENTREX 1371
e-COIN REGUL 572
j-SLV ANALOG 101
a-LOCAL POTS 34528
A-2WG UV 4
b-PBX 303
c-CENTREX 867
e-COINREGUL 374
j-SLV ANALOG 65
a-LOCAL POTS 45266
b-PBX 571
c-CENTREX 540
d-COIN SMART 1
e-COIN REGUL 381
j-SLV ANALOG 136
a-LOCAL POTS 2863
b-PBX 96
e-COINREGUL 24
j-SLV ANALOG 239
a-LOCAL POTS 35631
b-PBX 151
c-CENTREX 424
d-COIN SMART 3
e-COIN REGUL 294
j-SLV ANALOG 190

NWBYFLMARSO
NWBYFLMARSO
NWBYFLMARSO
NWBYFLMARSO
NWBYFLMARSO
OKHLFLMARSO
OKHLFLMARSO
OKHLFLMARSO
OKHLFLMARSO
OLTWFLLNRSO
OLTWFLLNRSO
OLTWFLLNRSO
OLTWFLLNRSO
OLTWFLLNRS0
ORLDFLAPDS0
ORLDFLAPDSO
ORLDFLAPDSO
ORLDFLAPDSO
ORLDFLAPDSO
ORLDFLAPDSO
ORLDFLAPDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLCLDSO
ORLDFLMADS1
ORLDFLMADS1
ORLDFLMADS1
ORLDFLMADS1
ORLDFLMADS1
ORLDFLMADS1
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPCDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLPHDSO
ORLDFLSADSO
a-LOCAL POTS 4394
c-CENTREX 36
d-COIN SMART 4
e-COIN REGUL 16
j-SLV ANALOG 3
a-LOCAL POTS 2255
c-CENTREX 26
e-COIN REGUL 22
j-SLV ANALOG 2
a-LOCAL POTS 4116
b-PBX 33
d-COIN SMART 2
e-COIN REGUL 24
j-SLV ANALOG 5
a-LOCAL POTS 96688
A-2WG UV 533
b-PBX 586
c-CENTREX 321
d-COIN SMART 6
e-COIN REGUL $\quad 749$
j-SLV ANALOG 50
a-LOCAL POTS 34438
A-2WG UV 340
b-PBX 610
c-CENTREX 455
d-COIN SMART 5
e-COIN REGUL 530
j-SLV ANALOG 160
a-LOCAL POTS 52608
A-2WG UV 759
b-PBX 1792
c-CENTREX 730
e-COIN REGUL 1349
j-SLV ANALOG 1763
a-LOCAL POTS 72224
A-2WG UV 112
b-PBX 2183
c-CENTREX 685
d-COIN SMART 25
e-COIN REGUL 1021
j-SLV ANALOG 403
a-LOCAL POTS 99632
A-2WG UV 41
b-PBX 1020
c-CENTREX 355
d-COIN SMART 8
e-COIN REGUL 937
j-SLV ANALOG 533
a-LOCAL POTS 30902

ORLDFLSADSO

ORLDFLSADSO
ORLDFLSADSO
ORLDFLSADS0
ORLDFLSADS0
ORLDFLSADS0
ORPKFLMADSO
ORPKFLMADSO
ORPKFLMADSO
ORPKFLMADSO
ORPKFLMADSO
ORPKFLMADSO
ORPKFLMADSO
ORPKFLRWDS0
ORPKFLRWDSO
ORPKFLRWDSO
ORPKFLRWDSO
ORPKFLRWDSO
ORPKFLRWDSO
OVIDFLCADSO
OVIDFLCADSO
OVIDFLCADSO
OVIDFLCADSO
OVIDFLCADSO
OVIDFLCADS0
PACEFLPV99E
PACEFLPV99E
PACEFLPV99E
PACEFLPV99E
PACEFLPV99E
PAHKFLMARSO
PAHKFLMARSO
PAHKFLMARSO
PAHKFLMARSO
PAHKFLMARSO
PAHKFLMARSO
PCBHFLNTDS0
PCBHFLNTDS0
PCBHFLNTDS0
PCBHFLNTDSO
PCBHFLNTDSO
PLCSFLMADSO
PLCSFLMADSO
PLCSFLMADSO
PLCSFLMADS0
PLCSFLMADSO
PLTKFLMADSO
PLTKFLMADS0
PLTKFLMADS0
A-2WG UV 392
b-PBX 1722
c-CENTREX 480
d-COIN SMART 5
e-COIN REGUL 1099
j-SLV ANALOG 204
a-LOCAL POTS 25967
A-2WG UV 76
b-PBX 221
c-CENTREX 422
d-COIN SMART 1
e-COIN REGUL 178
j-SLV ANALOG 24
a-LOCAL POTS 16900
A-2WG UV 27
b-PBX 78
c-CENTREX 126
e-COIN REGUL 168
j-SLV ANALOG 98
a-LOCAL POTS 31553
b-PBX 124
c-CENTREX 319
d-COIN SMART 13
e-COIN REGUL 158
j-SLV ANALOG 19
a-LOCAL POTS 11848
b-PBX 70
c-CENTREX 98
e-COIN REGUL 59
j-SLV ANALOG 10
a-LOCAL POTS 3250
b-PBX 39
c-CENTREX 24
d-COIN SMART 1
e-COIN REGUL 121
j-SLV ANALOG 76
a-LOCAL POTS 27047
b-PBX 997
c-CENTREX 325
e-COIN REGUL 662
j-SLV ANALOG 83
a-LOCAL POTS 18099
b-PBX 236
c-CENTREX 691
e-COIN REGUL 106
j-SLV ANALOG 24
a-LOCAL POTS 18891
b-PBX 183
c-CENTREX 381

PLTKFLMADS0	d-COIN SMART	31
PLTKFLMADSO	e-COIN REGUL	224
PLTKFLMADSO	j-SLV ANALOG	233
PMBHFLCSDSO	a-LOCAL POTS	78611
PMBHFLCSDSO	b-PBX	442
PMBHFLCSDS0	c-CENTREX	940
PMBHFLCSDS0	d-COIN SMART	38
PMBHFLCSDSO	e-COIN REGUL	415
PMBHFLCSDS0	j-SLV ANALOG	157
PMBHFLFEDS0	a-LOCAL POTS	75325
PMBHFLFEDSO	A-2WG UV	61
PMBHFLFEDSO	b-PBX	891
PMBHFLFEDSO	c-CENTREX	1290
PMBHFLFEDS0	d-COIN SMART	4
PMBHFLFEDSO	e-COIN REGUL	828
PMBHFLFEDSO	j-SLV ANALOG	708
PMBHFLMADSO	a-LOCAL POTS	82473
PMBHFLMADSO	A-2WG UV	32
PMBHFLMADSO	b-PBX	968
PMBHFLMADS0	c-CENTREX	964
PMBHFLMADSO	d-COIN SMART	150
PMBHFLMADSO	e-COIN REGUL	839
PMBHFLMADSO	j-SLV ANALOG	195
PMBHFLTADSO	a-LOCAL POTS	40260
PMBHFLTADSO	A-2WG UV	6
PMBHFLTADSO	b-PBX	152
PMBHFLTADSO	c-CENTREX	345
PMBHFLTADSO	d-COIN SMART	78
PMBHFLTADS0	e-COIN REGUL	216
PMBHFLTADS0	j-SLV ANALOG	42
PMPKFLMARSO	a-LOCAL POTS	3130
PMPKFLMARSO	c-CENTREX	43
PMPKFLMARS0	d-COIN SMART	3
PMPKFLMARS0	e-COIN REGUL	10
PMPKFLMARS0	j-SLV ANALOG	1
PNCYFLCA87E	a-LOCAL POTS	8261
PNCYFLCA87E	b-PBX	19
PNCYFLCA87E	e-COIN REGUL	42
PNCYFLCA87E	j-SLV ANALOG	10
PNCYFLMADS0	a-LOCAL POTS	41396
PNCYFLMADSO	b-PBX	835
PNCYFLMADSO	c-CENTREX	636
PNCYFLMADSO	e-COIN REGUL	733
PNCYFLMADSO	j-SLV ANALOG	359
PNSCFLBLDSO	a-LOCAL POTS	41360
PNSCFLBLDS0	A-2WG UV	1
PNSCFLBLDS0	b-PBX	967
PNSCFLBLDS0	c-CENTREX	865
PNSCFLBLDSO	d-COIN SMART	1

PNSCFLBLDSO
PNSCFLBLDS0
PNSCFLFPDSO
PNSCFLFPDSO
PNSCFLFPDSO
PNSCFLFPDSO
PNSCFLFPDSO
PNSCFLHCDSO
PNSCFLHCDSO
PNSCFLHCDSO
PNSCFLHCDSO
PNSCFLPBDSO
PNSCFLPBDSO
PNSCFLPBDSO
PNSCFLPBDSO
PNSCFLWADSO
PNSCFLWADSO
PNSCFLWADSO
PNSCFLWADSO
PNSCFLWADSO
PNVDFLMADSO
PNVDFLMADSO
PNVDFLMADSO
PNVDFLMADSO
PNVDFLMADSO
PNVDFLMADSO
PNVDFLMADSO
PRRNFLMADSO
PRRNFLMADSO
PRRNFLMADSO
PRRNFLMADSO
PRRNFLMADSO
PRSNFLFDRS0
PRSNFLFDRSO
PRSNFLFDRSO
PRSNFLFDRSO
PRSNFLFDRSO
PTSLFLMADSO
PTSLFLMADSO
PTSLFLMADSO
PTSLFLMADSO
PTSLFLMADSO
PTSLFLMADSO
PTSLFLSOCG0
PTSLFLSOCG0
PTSLFLSOCGO
PTSLFLSOCG0
PTSLFLSOCGO
PTSLFLSOCGO
e-COIN REGUL 631
j-SLV ANALOG 347
a-LOCAL POTS 52787
b-PBX 1334
c-CENTREX 506
e-COIN REGUL 617
j-SLV ANALOG 80
a-LOCAL POTS 10142
b-PBX 37
e-COIN REGUL 96
j-SLV ANALOG 7
a-LOCAL POTS 7580
b-PBX 12
e-COIN REGUL 47
j-SLV ANALOG 4
a-LOCAL POTS 33384
b-PBX 303
c-CENTREX 259
e-COIN REGUL 459
j-SLV ANALOG 51
a-LOCAL POTS 21402
A-2WG UV 15
b-PBX 301
c-CENTREX 207
d-COIN SMART 13
e-COIN REGUL 80
j-SLV ANALOG 51
a-LOCAL POTS 105057
b-PBX 795
c-CENTREX 1423
e-COIN REGUL 840
j-SLV ANALOG 187
a-LOCAL POTS 2688
b-PBX 25
c-CENTREX 95
e-COIN REGUL 31
j-SLV ANALOG 17
a-LOCAL POTS 40016
b-PBX 126
c-CENTREX 417
d-COIN SMART 32
e-COIN REGUL 166
j-SLV ANALOG 118
a-LOCAL POTS 16169
b-PBX 154
c-CENTREX 518
d-COIN SMART 18
e-COIN REGUL 136
j-SLV ANALOG 29

SBSTFLFERS0	a-LOCAL POTS	1443
SBSTFLFERS0	c-CENTREX	67
SBSTFLFERS0	d-COIN SMART	10
SBSTFLFERS0	e-COIN REGUL	17
SBSTFLFERSO	j-SLV ANALOG	1
SBSTFLMADS0	a-LOCAL POTS	15564
SBSTFLMADSO	b-PBX	129
SBSTFLMADSO	c-CENTREX	10
SBSTFLMADS0	e-COIN REGUL	140
SBSTFLMADS0	j-SLV ANALOG	78
SGKYFLMARS0	a-LOCAL POTS	4401
SGKYFLMARSO	b-PBX	18
SGKYFLMARSO	d-COIN SMART	1
SGKYFLMARSO	e-COIN REGUL	28
SGKYFLMARSO	j-SLV ANALOG	6
SNFRFLMADSO	a-LOCAL POTS	55025
SNFRFLMADSO	b-PBX	543
SNFRFLMADSO	c-CENTREX	174
SNFRFLMADS0	d-COIN SMART	65
SNFRFLMADS0	e-COIN REGUL	678
SNFRFLMADS0	j-SLV ANALOG	344
STAGFLBSRS0	a-LOCAL POTS	12712
STAGFLBSRS0	b-PBX	107
STAGFLBSRS0	c-CENTREX	107
STAGFLBSRS0	d-COIN SMART	8
STAGFLBSRS0	e-COIN REGUL	102
STAGFLBSRS0	j-SLV ANALOG	20
STAGFLMADSO	a-LOCAL POTS	23098
STAGFLMADSO	A-2WG UV	4
STAGFLMADS0	b-PBX	621
STAGFLMADS0	c-CENTREX	424
STAGFLMADS0	d-COIN SMART	53
STAGFLMADSO	e-COIN REGUL	518
STAGFLMADS0	j-SLV ANALOG	272
STAGFLSHRS0	a-LOCAL POTS	10690
STAGFLSHRS0	b-PBX	72
STAGFLSHRSO	d-COIN SMART	9
STAGFLSHRS0	e-COIN REGUL	86
STAGFLSHRS0	j-SLV ANALOG	6
STAGFLWGRSO	a-LOCAL POTS	1268
STAGFLWGRSO	b-PBX	22
STAGFLWGRS0	e-COIN REGUL	38
STRTFLMADS0	a-LOCAL POTS	62107
STRTFLMADS0	b-PBX	532
STRTFLMADS0	c-CENTREX	618
STRTFLMADS0	d-COIN SMART	108
STRTFLMADS0	e-COIN REGUL	505
STRTFLMADS0	j-SLV ANALOG	479
SYHSFLCCRS0	a-LOCAL POTS	1592

SYHSFLCCRSO SYHSFLCCRSO SYHSFLCCRSO TRENFLMARSO TRENFLMARSO TRENFLMARSO TRENFLMARSO TRENFLMARSO
TTVLFLMADSO
TTVLFLMADSO
TTVLFLMADSO
TTVLFLMADSO
TTVLFLMADSO
TTVLFLMADSO
VERNFLMARSO
VERNFLMARSO
VERNFLMARSO
VERNFLMARSO
VERNFLMARSO
VRBHFLBERSO
VRBHFLBERSO
VRBHFLBERSO
VRBHFLBERSO
VRBHFLMADSO
VRBHFLMADSO
VRBHFLMADSO
VRBHFLMADSO
VRBHFLMADSO
VRBHFLMADSO
WELKFLMARSO
WELKFLMARSO
WELKFLMARSO
WELKFLMARSO
WPBHFLANDSO
WPBHFLANDSO
WPBHFLANDSO
WPBHFLANDSO
WPBHFLANDSO
WPBHFLANDSO
WPBHFLGADSO
WPBHFLGADSO
WPBHFLGADSO
WPBHFLGADSO
WPBHFLGADSO
WPBHFLGADS0
WPBHFLGRDSO
WPBHFLGRDSO
WPBHFLGRDSO
WPBHFLGRDSO
c-CENTREX 149
e-COIN REGUL 6
j-SLVANALOG 2
a-LOCAL POTS 4040
b-PBX 8
d-COIN SMART 14
e-COIN REGUL 57
j-SLV ANALOG 18
a-LOCAL POTS 34881
b-PBX 266
c-CENTREX 448
d-COIN SMART 37
e-COIN REGUL 334
j-SLV ANALOG 154
a-LOCAL POTS 2044
b-PBX 8
d-COIN SMART 1
e-COIN REGUL 21
j-SLV ANALOG 2
a-LOCAL POTS 14570
b-PBX 268
e-COIN REGUL 63
j-SLV ANALOG 132
a-LOCAL POTS 47786
b-PBX 762
c-CENTREX 970
d-COIN SMART 87
e-COIN REGUL 549
j-SLV ANALOG 548
a-LOCAL POTS 2588
d-COIN SMART 5
e-COIN REGUL 16
j-SLV ANALOG 4
a-LOCAL POTS 35329
A-2WG UV 34
b-PBX 1188
c-CENTREX 1516
e-COIN REGUL 553
j-SLV ANALOG 2425
a-LOCAL POTS 97154
b-PBX 357
c-CENTREX 1268
d-COIN SMART 113
e-COIN REGUL 630
j-SLV ANALOG 131
a-LOCAL POTS 59919
b-PBX 852
c-CENTREX 1004
e-COIN REGUL 477

WPBHFLGRDS0	j-SLV ANALOG	218
WPBHFLHHDSO	a-LOCAL POTS	70214
WPBHFLHHDSO	b-PBX	1255
WPBHFLHHDSO	c-CENTREX	1997
WPBHFLHHDS0	d-COIN SMART	104
WPBHFLHHDSO	e-COIN REGUL	1104
WPBHFLHHDS0	j-SLV ANALOG	301
WPBHFLLEDS0	a-LOCAL POTS	45730
WPBHFLLEDS0	b-PBX	410
WPBHFLLEDSO	c-CENTREX	773
WPBHFLLEDSO	d-COIN SMART	1
WPBHFLLEDSO	e-COIN REGUL	471
WPBHFLLEDSO	j-SLV ANALOG	132
WPBHFLRBDS0	a-LOCAL POTS	46615
WPBHFLRBDS0	b-PBX	954
WPBHFLRBDSO	c-CENTREX	833
WPBHFLRBDSO	d-COIN SMART	3
WPBHFLRBDS0	e-COIN REGUL	637
WPBHFLRBDS0	j-SLV ANALOG	369
WPBHFLRPDS0	a-LOCAL POTS	52145
WPBHFLRPDS0	b-PBX	296
WPBHFLRPDS0	c-CENTREX	647
WPBHFLRPDSO	e-COIN REGUL	472
WPBHFLRPDS0	j-SLV ANALOG	127
WWSPFLHIDS0	a-LOCAL POTS	15909
WWSPFLHIDSO	b-PBX	163
WWSPFLHIDSO	c-CENTREX	75
WWSPFLHIDS0	d-COIN SMART	15
WWSPFLHIDS0	e-COIN REGUL	100
WWSPFLHIDSO	j-SLV ANALOG	28
WWSPFLSHDS0	a-LOCAL POTS	35531
WWSPFLSHDS0	b-PBX	321
WWSPFLSHDS0	c-CENTREX	278
WWSPFLSHDS0	d-COIN SMART	16
WWSPFLSHDS0	e-COIN REGUL	126
WWSPFLSHDS0	j-SLV ANALOG	28
YNFNFLMARSO	a-LOCAL POTS	3489
YNFNFLMARSO	e-COIN REGUL	21
YNFNFLMARSO	j-SLV ANALOG	5
YNTWFLMARS0	a-LOCAL POTS	2499
YNTWFLMARS0	b-PBX	4
YNTWFLMARSO	d-COIN SMART	4
YNTWFLMARS0	e-COIN REGUL	24
YNTWFLMARSO	j-SLV ANALOG	18
YULEFLMARSO	a-LOCAL POTS	4093
YULEFLMARSO	b-PBX	31
YULEFLMARS0	c-CENTREX	15
YULEFLMARSO	e-COIN REGUL	78
YULEFLMARSO	j-SLV ANALOG	5

Proprietary and Confidential
Date: 09/08/2000

PROPRIETARY

Report No. TX00-02SP

Clash of the Broadband Titans: Cable vs. DSL

February 2000

Analyst: Shannon Pleasant
Advanced Carrier Strategies
spleasant@cahnersinstat.com
version of this report 480.483.4460

Analyst: Mike Paxton mpaxton@cahnersinstat.com
480.483.4462

Table of Contents

- Executive Summary
- Methodology
- Delivery of Broadband Data Services
- How it Works: The Cable Data Network
- How the Cable Network Delivers Data
- Delivering Data to the Cable Modem Subscriber
- How it Works: The DSL Network
- Broadband Market Drivers and Hurdles
- Applications Driving

Broadband Deployment Today

- Applications Driving Broadband Deployment Tomorrow
- Cable Market Drivers and Hurdles

List of Figures

- Figure 1 Worldwide Cable vs. DSL Market Forecast
- Figure 2 Typical Configuration of a Cable Network
- Figure 3 Typical configuration of a DSL system
- Figure 4 Worldwide Cable vs. DSL Market Share Forecast
- Figure 5 North American Cable vs. DSL Forecast
- Figure 6 North American Residential Broadband Services Market Share Forecast

List of Tables

- Table 1 Characteristics of Broadband Data Services
- Table 2 Current Number of 6 Mhz Channels Allocated for Cable Modem Services
- Table 3 Anticipated Number of 6 Mhz Channels Available for Cable Modem Services in 24 Months
- Table 4 Worldwide Installed Base of Broadband Access Subscribers

Executive Summary

The installed base of Broadband subscribers is expected to reach almost 9 million woridwide by the end of 2000, and almost 49 million by the end of 2003. This phenomenal growth is a direct result of increasing reliance on the Internet as an information, communications, business and entertainment tool. At the same time, new bandwidth intensive applications are being introduced that make the argument for broadband services very compelling.

In many of the early markets where broadband services are being deployed, cable and DSL are competing head to head for the same customers. Although In-Stat believes that there will be plenty of customers to go around for both types of broadband access, our research demonstrates that DSL will become the most prominent broadband access technology worldwide during the forecast period.

Figure 1 Worldwide Cable vs. DSL Market Forecast

Source: Cahners In-Stat Group

Both services are facing hurdles to deployment, many of them are technical issues. However, the deep pockets of the telco's and the comparatively lower infrastructure investment required to deliver DSL services, will play a prominent role in who wins the battle for the broadband
subscriber. In addition, our comparison includes residential and business subscribers, and copper penetration to the business enables DSL to approach a broader total available market.

Regulatory environments within both industries are relaxing, allowing for greater competition. Recent FCC rulings in the telecom industry open up the opportunity for competitive carriers to rapidly offer DSL services, dramatically increasing the momentum behind these services.

In-Stat expects that the installed base of worldwide DSL subscribers will surpass cable subscribers in 2001. In the North American residential market, where the competition will be the fiercest, cable modems will remain the dominant access technology through 2002, being surpassed by DSL subscribers in 2002.

Methodology

Primary and secondary sources of information were used in the development of this report. An InStat survey of businesses was used to determine the buying and implementation behavior of IT managers. A separate survey was conducted of consumers to determine service provider preference, internet adoption trends, and price sensitivity. In-Stat surveys are based on a statistically valid sample of a cross section of end users.

Also incorporated in the assumptions are the results of a survey of cable MSOs about the availability and their future plans for cable modem services. Additional research was conducted through direct interviews with hardware vendors and service providers in both the cable and DSL markets.

In-Stat's subscriber installed base forecasts are also based on information collected from proprietary In-Stat databases that are part of the Multimedia and WAN research practices.

The following major trends were evaluated in developing the forecast:

- Silicon integration, availability, and pricing trends
- Hardware reliability, availability, and pricing trends
- Service Provider deployment plans, business models, marketing strategies, and pricing trends
- Geographic economic conditions, Internet penetration rates, and the installed base of coax and copper networks
- End user demographics including basic psychographics

The data in this report is calculated at a higher level of precision than shown, as a result, not all numbers add due to rounding.

Delivery of Broadband Data Services

Residential Internet and online usage has grown tremendously despite the glacial speeds available through existing dial-up telephone modem connections, typically limited to 33.6 Kbps or less. Touted as an interactive extravaganza, surfing the World Wide Web more typically offers
narrowband users a click-and-wait experience. The growing frustration of existing online users is driving demand for higher-speed connections.

Table 1 Characteristics of Broadband Data Services

Service Type	Man Downstream Data Rate	Max Upstream Data Rate	Number of Wire Pairs
Smimetrical			
HDSIEUS		1.544 Mbps	two
	2048 Mbps	2.048 Mbps	three
	15Mbps	1.5 Mbps	one
IDSL	144 kbps	144 kbps	one
			5esester
Asymmetrical			
ADSE		640 kbps	one
ADSL IIte	1 Mbps	128 kbps	one
	1-12 Mbps	128k-1Mbps	one
ybsL	$55.2 \mathrm{Mbps}$	6 Mbps	one
Cable			
Cable data	10 Mbps	144kbps	coax

Source: Cahners In-Stat Group

How it Works: The Cable Data Network

Cable modems provide two-way, high-speed access between The Internet and a consumer or business user who is connected to a local Cable TV system. To deliver on this high speed data the traffic is routed through this TV network. One television channel (in the $50-750 \mathrm{MHz}$ range) is typically allocated for downstream traffic to homes, and another channel (in the $5-42 \mathrm{MHz}$ band) is used to carry upstream signals.

Abstract

A headend cable modem termination system (CMTS) communicates through these channels with cable modems located in subscriber homes to create a virtual local area network (LAN) connection. A single downstream 6 MHz television channel may support up to 27 Mbps of downstream data throughput from the cable headend using 64 QAM (quadrature amplitude modulation) transmission technology. Speeds can be boosted to 36 Mbps using 256 QAM. Upstream channels may deliver 500 Kbps to 10 Mbps from homes using 16QAM or QPSK (quadrature phase shift key) modulation techniques, depending on the amount of spectrum allocated for service.

This upstream and downstream bandwidth is shared by the active data subscribers connected to a given cable network segment. An individual cable modem subscriber may experience access speeds from 500 Kbps to 1.5 Mbps or more -- depending on the network architecture and traffic load. Performance can be affected by Internet backbone congestion.

The cable modem access network operates at the physical layer, Layer 1 and the logical link layer, Layer 2 of the Open System Interconnect (OSI) Reference Model. This enables Layer 3 network protocols, such as IP traffic, to be seamlessly delivered over the cable modem platform to end users.

How the Cable Network Delivers Data

It all starts at the Cable TV headend. The headend is a building that contains all the specialized equipment and power management systems to operate an entire Cable TV system. Within the Headend building are multiple, standard 19 -inch sized racks, loaded with the electronics gear that de-modulates the incoming signals,
assigns these signals to the appropriate channel for distribution, and modulators that send both video and data signals out into the rest of the Cable TV system's wired infrastructure. It is at the headend that the CMTS is located, routing data to the appropriate network node and ultimately the end user.

A telecommunications satellite delivers high speed video and data to the Headend, to a receiver dish that downloads the data to the headend signal router. At this point the CMTS is the final link to the HFC and Coaxial network.

Typically, the Fiber Optic cable extends from the Headend out to a Neighborhood Data Hub, which segments the data streams coming in from the Headend for delivery into the last part of the connection, which is provided by a coaxial cable.

The passive local cable wiring delivers all the signals within a very small area. Typically, each branch connects to no more that 512 end-users of cable modem service. Note that one

Neighborhood Data Hub can support up to four branches, so one Neighborhood Data Hub can control up to 2,048 cable Modem end users.

Figure 2 Typical Configuration of a Cable Network

Source: Cahners In-Stat Group

Delivering Data to the Cable Modem Subscriber

In the case of the residential subscriber, coaxial cable comes out of the Neighborhood Data Hub, and is connected to the local distribution wiring. One line from a branch is run into the yard and physically connected to a junction box that provides Ingress and Egress to the customer's premises. Once the data has been delivered to the residence through a splitter, it is distributed by running several RG-58 coaxial wires through the walls or ceilings to the appropriate locations that contain TV sets or personal computers.

In the case of a business subscriber, the data is delivered to a cable router, equipped with a $10 / 100 \mathrm{Mbps}$ interface that links to a hub or switch within the business. The hub or switch enables multiple PCs to access the cable network, and distributes the data to the appropriate end user.

Cable TV system operators do not want to troubleshoot hundreds of different types and configurations of personal computers, so they are leveraging Ethernet technology to connect to LANs and personal computers. An inexpensive and virtually ubiquitous technology, Ethernet is an ideal topology for delivering the data over the final link.

How it Works: The DSL Network

Digital subscriber line (DSL) provides a transmission link typically at the edge of an ATM, Frame Relay or IP network. DSL signifies a modem pair, which when applied to an existing single pair of twisted copper wire, creates a digital subscriber line. DSL and the associated DSL equipment is deployed in the local access network. The access network consists of the local loops and associated equipment that connect the service user location to the telephone company's central office (CO). This network typically consists of cable bundles carrying thousands of twisted wire pairs to Feeder Distribution Interfaces (FDIs). FDls are points where dedicated cable is extended out to the individual service users.

An estimated 725 million copper wire access lines connect homes and business customers to the Public Switched Telephone Network (PSTN) worldwide. Approximately 95 percent of the local access loops consist of a single twisted pair wire, supporting plain old telephone service (POTS). POTS is designed to carry a voice conversation, which requires the lines to handle frequencies from 0 Hertz up to about 3,400 Hertz (1 Hertz $=1$ cycle per second). POTS has historically supported only voice calls or analog modem transmissions at speeds commonly ranging from 9.6 to 33.6 kbps . The highest achievable information rate using the 3,400 Hertz frequency spectrum is less than 56 kbps .

The copper wire between a user's site and a carrier's central office can support transmissions over frequencies up to about 1 MHz for wire lengths of between about 12,000 and 18,000 feet, or about 2.2 to 3.4 miles. The way DSL is able to take advantage of the available frequency and achieve considerably higher data rates over the same POTS line is that DSL, much like traditional T1 or E1, is by using a much broader range of frequencies than the voice channel. This type of implementation requires transmission of information over a wide range of frequencies from one DSL modem at the end of the copper wire loop to another complementary device which receives the wide frequency signal at the far end of the copper loop.

A typical DSL configuration includes a customer premise modem, a CO telco modem and a concentrator, which aggregates traffic from multiple modems for delivery to a data network while routing voice traffic to a voice switch. In the case of asymmetric DSL, voice and high-speed data can be transmitted through the same line at the same time without interference. First, the highspeed data is transmitted through the Customer Premise Equipment (CPE). DSL CPE modems usually come in one of two forms, internal PC cards or external bridge/routers. The connection is typically 10Base-T, V.35, ATM-25 or T1/E1. The POTS channel is split off from the digital modem by filters, guaranteeing uninterrupted POTS, even if DSL fails. Please see Figure 3.

Figure 3 Typical configuration of a DSL system

Source: Cahners In-Stat Group
DSL modems divide the available bandwidth of a telephone line through Frequency Division Multiplexing (FDM) or Echo Cancellation. FDM assigns one band for upstream data and another band for downstream data. The downstream path is divided by time division multiplexing into one
broadband network combined with the system's "always on" characteristic is ideal for delivering emergency information.

Telemedicine will be an emerging opportunity. The medical industry has urgent requirements
for the use of broadband technology in sharing patient information, research, and leveraging physicians' expertise across geographies. A broadband service supports quick transfer of very large files aiding in treatment, diagnosis and education.

Cable Market Drivers and Hurdles

More than 95 million homes in North America are passed by broadband coaxial cable plant and more than 67 million homes currently subscribe to cable TV services. With near-ubiquitous coverage, coaxial cable connections provide a potentially powerful platform for providing residences and small business with high-speed data access. This represents a very large target market for data services.

IP Telephony. Delivering telephony over the cable network completely changes the value proposition for the cable operator, and has been a major goal among MSO's for years. However, the standards, infrastructure and business models are developing very slowly. Comcast recently announced that it deployed Lucent's CableConnect System (which uses Motorola's CMTS) to test a PacketCable based VoIP service in Union, NJ, among 25 participants. The service supports local and long distance calls, both on and off network calls and standard and CLASS phone features. Other VoIP cable trials are being conducted in Canada by Videotron and in Texas by Chambers, both have Cisco as the primary vendor.

Shared Network Platform Performance. Cable modem systems rely on a shared access platform. Unlike circuit-switched telephone networks where a caller is allocated a dedicated connection, cable modem users do not occupy a fixed amount of bandwidth during their online session. Instead, they share the network with other active users and use the network's resources only when they actually send or receive data in quick bursts. As a result, shared access can result in a deterioration of performance as more users access the network.

To avoid this type of congestion, a cable operator can subdivide the physical cable network by running fiber-optic lines deeper into neighborhoods, which reduces the number of homes on a shared link. However, this can be a significant investment. The other alternative is to allocate an additional 6 MHz video channel for high-speed data, doubling the downstream bandwidth available to users.

Security. Cable modem services present security challenges because of two primary problems. First, since cable modems are connected full time, they use the same IP address. This provides (in theory, at least) a constant and inviting target to hackers. In contrast, a PC connecting through a dial-up Internet service provider is assigned a different IP address every time it connects to the Internet.

The second problem for cable modem subscribers is that users share bandwidth on a single cable. In theory, this presents a more inviting target to hackers trying to inset a "Trojan Horse" type of program (Back Orifice and Net Bus are the most common) onto a PC that uses a cable modem. The simplest solution to this problem is to turn off the file and print sharing options on your PC, and leave them off. In fact, almost all cable broadband ISPs strongly recommend this preventative measure. The one drawback to this solution is that once you turn off these options, you can no longer network multiple machines in the home.

Service providers are currently in the process of developing firewalls and other security upgrades to alleviate this problem. Although most cable modems sold to date don't have security, the new standards-based breed of cable modems supports security capabilities.

Standards. DOCSIS (Data Over Cable Systems Interface Specifications) is a standard interface for cable modems. DOCSIS certified cable modems are identifiable by a "CableLabs " seal. This seal will inform consumers and cable operators that a Certified modem complies with the CableLabs' DOCSIS cable modem specification. It also assures the modem will communicate (interoperate) with qualified cable system headends.

DOCSIS 1.0 was ratified by the International Telecommunication Union (ITU) in March of 1998. Initial cable modem certifications were awarded in early 1999, with the most recent certifications awarded on December 9, 1999 to Best Data and Com21.

DOCSIS 1.1 adds key enhancements to the original standard, such as improved quality of service (QoS) and hardware-based packet- fragmentation capabilities, to support IP telephony and other constant-bit-rate services. In short, DOCSIS 1.1 provides the bandwidth and latency guarantees required to offer toll-quality voice and business-class data services. As a result, cable operators are eager to deploy the technology. CableLabs does not plan to begin certifying cable modems for DOCSIS 1.1 compliance until April 2000. However, vendors are trying to create a smooth migration path by obtaining 1.0 certification for their 1.1 -capable modems. The expectation is that these modems could be upgraded to the 1.1 standard via software once formal certification begins, helping cable operators and consumers preserve their hardware investments.

The "Open Access" Debate. Perhaps the hottest issue facing cable modem service today is the "Open Access/Forced Access" debate. The point of contention centers on the fact that cable broadband customers have no choice of Internet service providers. Currently, AT\&T cable data subscribers are automatically signed up for Excite@Home's Internet service. Other Internet service providers have protested this practice. And with AT\&T's proposed purchase of MediaOne, the issue has exploded into an interesting fight between the cable industry and the dial-up ISPs.

On one side are the cable companies trying to build, upgrade, and operate proprietary networks with lines accessible only to their own or partner ISPs. On the other side are ISPs, some consumer groups, and the phone companies, all of which want broadband cable lines open to any provider willing to pay line usage fees, just like the phone company/dial-up ISP model.

Identification of the opposing sides is relatively easy: just pay attention to the buzzwords. The dial-up ISPs (America Online, Mindspring, US West, etc.) are members of the "OpenNet Coalition." They refer to the issue as "Open Access." On the cable side of the argument, the issue is termed "Forced Access."

In early December 1999, AT\&T formally agreed to eventually allow rival Internet services to use its cable lines to provide high-speed computer connections. AT\&T struck an agreement in principle with MindSpring, the nation's second-largest Internet service provider (and a key member of the OpenNet coalition) formally committing itself to a new "open access" policy.

The key word in the agreement is "eventually." The announcement stated that AT\&T would allow subscribers to use the ISP of their choice "once technical issues are addressed and after AT\&T's current exclusivity contract with mailto:Excite@Home

Excite@Home expires in mid-2002." The open access debate will be a two year battle in the cable industry, ultimately presenting a hurdle to the markets progress.

Since the January 2000 merger announcement of America Online and Time Warner, AOL has toned down its rhetoric about Open Access and is "further examining" the issue. While AOL publicly claimed it still supported the OpenNet Coalition and its stance on Open Access, the fact it
may soon have 13 million cable subscribers has made it imperative that it mend some fences with the cable industry and find some common ground about the issue.

MSO infrastructure and data access availability. An In-Stat survey of cable MSO's in the US revealed that the status of their digital cable services deployments and investments are not progressing as rapidly as initially expected.

In effect, the survey results pointed out two trends about cable broadband service in the United States that we had previously only suspected.

The first trend is that cable modem services are still not widely available. Since most Cahners InStat Group employees live in major metropolitan areas and cannot get cable broadband service, we already knew this from anecdotal evidence. However, we were still a little surprised that twothirds of the MSOs did not offer cable modem services in their area of operation.

The second trend is that future rollouts of cable broadband data service in the U.S. will be relatively slow. By mid-year 2001, only half of the MSOs polled were planning to offer cable modem service.

Table 2 Current Number of 6 Mhz Channels Allocated for Cable Modem Services

Source: Cahners In-Stat Group
Table 3 Anticipated Number of 6 Mhz Channels Available for Cable Modem Services in 24 Months

-suб!̣edues би!ןәулеш рәңәблең

 $0<\$$ moд səo!nas 7 SQ to бu!
 e sem 'səכ!^ләs ןe!

 qns e ' \ddagger б!! 'ద К К

dnoıs jels-ul sıəuyej:əomos

Standard twisted pair wiring rapidly attenuates frequencies much higher than 1 MHz . (Attenuation is a function of distance, shorter the distance - less the attenuation - higher the speed). Over 24 gauge wire and within 18,000 feet ADSL can transmit downstream at 1.5 Mbps or greater. Within shorter distances the downstream throughput can reach as high as 8 Mbps .

These limitations of the copper pair created the demand for DSL lite (maximum speed of 1.5 Mbps) which offered the flexibility of higher speeds than analog modems and ISDN without limiting the customer base to those next door to the central office. It is estimated that only about $1 / 3$ of the installed lines in the US are 12,000 feet or less from the CO, while internationally, the number is even more uncertain.

Beyond the distance issue, two other line characteristics affect ADSL: the bridge tap and the loading coil. Telco's are not certain which lines are impacted by either, and loading coils and bridge taps have the ability to render an ADSL connection impossible. Several vendors have introduced sophisticated testing equipment over the last year to make the process of customer line qualification much simpler.

Technical Issues: Spectral Compatibility Various types of DSL in the same bundle can cause interference with each other, and almost always degrade the performance of other services within the same bundle. The culprit is cross talk, which becomes an issue when the power level of the cross talk signal becomes comparable to the power level of the primary signal. Higher frequency transmissions are generally more susceptible. Cross talk from existing services will generally reduce the performance of other services that occupy the same frequency spectrum.

Cross talk results in reducing the loop reach and/or speed of DSL, specifically full rate DSL. However, sub rate DSLs are virtually unimpaired by T1 services in the same bundle. Additional challenges in the residential environment are cross talk from 2B1Q based ISDN, HDSL and DAML.

Technical Issues: The DLC. DLCs move the termination points for local loop subscribers into the neighborhood. These pedestals reduce the length of the local loop. As many as one third of US loops are estimated to be served by DLCs.

The two problems ADSL systems encounter with DLCs are:

1) the fact that ADSL termination equipment is required in these space limited pedestals. DSL services cannot pass through DLCs passively, DSL line cards must be integrated to terminate and convert the transmission to standard services for back haul with voice. Vendors are now offering specialized solutions for DLCs including line cards that integrate with existing DLC equipment.
2) Existing DLCs were not designed to support power intensive technologies like ADSL. For example, a DLC can support about 1W per line card while full rate ADSL requires 3-4 Watts or more in many cases. Sub rate DSL will reduce power slightly, but not enough for most DLCs. Next generation DLCs are expected to support higher power, and next generation ADSL products are expected to decrease power consumption, but this is still a limiting factor in initial DSL market growth in the near term.

Voice over DSL. While there are still technical hurdles to DSL deployment, there is no lull in technology innovation to enable the delivery of DSL and services that take advantage of the fat pipe.

VoDSL has tremendous untapped potential, especially among competitive local exchange carriers (CLECs), because the technology permits them to provision multi-line telephone service to small businesses at a price point that is significantly less than what incumbent local exchange carriers (ILECs) are charging for the same type of service. This does not mean, however, that

VoDSL is not of ILEC interest. On the contrary, ILECs that choose to deploy VoDSL will find they have a new and powerful way to avoid the massive costs of provisioning new copper.

Cahners In-Stat Group believes that voice over DSL (VoDSL) will emerge as the first "killer" application to propel the widespread usage of DSL. Small businesses will be the primary target market for VoDSL services.

Broadband Market Forecast

Worldwide Broadband Access Forecast

The following dynamics are driving the demand for broadband access services:

- Increasing Internet Penetration
- Increase in small businesses' reliance on the Internet
- Increase in telecommuting, driving demand for corporate subsidized high speed access
- Increased Awareness of Broadband Access Alternatives
- Increased Availability of Broadband Access Alternatives
- Declining Costs of Broadband Access Alternatives
- Growing number of bandwidth hungry applications

Table 4 Worldwide Installed Base of Broadband Access Subscribers

(18)	1998	1999	2000	2001	2002	2003	$\begin{gathered} \text { CAGR } \\ 99.43 \end{gathered}$
BB sulus cribers	945	3,657	8,916	16,977	29,934	48,808	91.1\%
\% change		287\%	144%	90\%	76\%	63\%	

Source: Cahners In-Stat Group

These drivers will result in growth of both DSL and cable subscribers through the forecast period. However, competition is heating up. Telco's have been more rapidly rolling out DSL services in areas served by cable modem services. As a result, the technologies are beginning to compete head to head in many cities for the same customer. In any battle, there is usually only one winner. In-Stat believes both cable and DSL access services will find plenty of customers during the forecast period, essentially making both services winners, however, In -Stat forecasts DSL to reach the highest penetration rates beginning in 2001 through 2003. Please see Table 5.

Table 5 Worldwide Installed Base of Cable vs. DSL subscribers

(14)	1998	1999	2000	2001	2002	2003	$\begin{gathered} \text { CAGR } \\ 98.03 \end{gathered}$
Cable subs	600	2,210	4.530	6.814	9,515	12,696	54.8\%
\% change		268\%	105\%	50\%	40\%	33\%	
OSL subs	345	1,447	4,386	10,163	20,419	36,112	123.5\%
\% change		319\%	203\%	132\%	101\%	77\%	
Total sulus	945	3,557	8,916	16,977	29,934	48,808	91.1\%
\% change		287\%	144\%	90\%	76\%	63\%	

Source: Cahners In-Stat Group

Figure 4 Worldwide Cable vs. DSL Market Share Forecast

Source: Cahners In-Stat Group
Factors impacting the growth of worldwide cable modem subscribers include:

- Upgrades to existing cable infrastructure: The continuing upgrade of most cable plants to bi-directional, 750 Mhz hybrid fiber/coaxial (HFC) systems is expensive and timeconsuming.
- Continued standardization to ensure the interoperability of cable data equipment.
- Relatively slow worldwide growth rate of cable TV subscriptions. The worldwide growth rate will be 7% per year through the year 2002, and the bulk of this growth will be limited to one country: China.
- In several countries, like Italy and Portugal, most of the cable infrastructure is owned by the incumbent telephone company, which just happens to be a state monopoly. For the most part, these telcos are pushing broadband services like DSL.
- Fragmentation of the local cable market. In many countries, especially in Asia and Latin America, cable service is divided between many "mom-and-pop" cable operators. This fragmentation denies many areas the economies of scale needed to introduce broadband cable data services.
- Factors impacting the growth of worldwide DSL subscribers include:
- Declining prices for DSL services
- The Emergence of PC OEMs as a channe|
- Real pressure on ILECs from competing technologies/services from Cable Companies and Wireless Internet Service Providers
- Aggressive Roll outs by CLECs of inexpensive business data services as a foot in the door of business customers
- Increased investment by carriers in DSL infrastructure. In 1999 alone, carriers invested in enough infrastructure to support almost 3 million DSL lines.
- Voice over DSL will fundamentally change the value proposition for carriers deploying DSL

North American Broadband Access Market

The most significant opportunity for broadband services over the next five years, North America will experience a stronger penetration rate of DSL services during the forecast period.

Table 6 North American Cable vs. DSL Subscriber Installed Base

IW							CAGR

Source: Cahners In-Stat Group

Figure 5 North American Cable vs. DSL Forecast

[^0]Factors impacting the growth of North American cable modem subscribers and revenues include:

- The outcome of the "open access" debate
- The rate of MSO infrastructure investment for cable data services
- The availability of DOCSIS 1.1 products and then voice enabled services, changing the revenue model for the MSO.
- Increasing competition from other broadband data services. These include the rapid growth of DSL services and moderate growth in satellite and fixed wireless broadband data services.

Factors impacting the growth of North American DSL subscribers include:

- Although it is generally agreed that US residential demand for entertainment and other services will provide a mass market for DSL based service deployments, small businesses also represent a tremendous growth opportunity.
- A survey of small businesses in the US indicated that over half expect to be connected by a DSL pipe by 2001.
- The presence and penetration of competitive carriers continues to increase as the regulatory environment improves.
- Voice over DSL will fundamentally change the value proposition for CLECs and ILECs deploying DSL.
- Government rulings on line sharing considerably improve CLEC's business model for delivering ADSL services.

The Real Battleground: Residential Broadband Access

Because of the low penetration rates and adoption rates expected for cable modems in the enterprise, the residential market will be the real battleground between the broadband access alternatives. While cable penetration has outpaced DSL in the early stages, the renewed efforts of the telecom carriers to market to, and provide services for residential users has stepped up availability considerably.

Price drops have also fostered customers as cable and DSL access begin to experience more pricing parity. In many areas, end users are more comfortable relying on their telco than their cable providers. All of these factors, as well as the drivers discussed above result in a higher penetration of DSL in the North American residential market by 2002.

Table 7 North American Residential Broadband Access Forecast

 dnoı 1els－ul sıeuyej ：әomos

$\%<78$	\％Sc	\％69	\％28	$\%$ \％	\％918		－6．4eप9\％
	00才 52	むだ91	9996	10E＇S	C812	t25	stins 10201
	\％+8	\％¢ ！	\％81	\％こ62	\％19\％		a6upup \％
$\% 9851$	250＇91	018゙6	cog	298＇1		t8	squrs 750
	$\%$ てし	\％62	\％9\％	\％ZOL	\％882		26иеपว \％
$\% 0$	EヵE \angle	$\angle \varepsilon S^{\prime} 9$	190 c	－St＇	602＇1	Ott	syns plqey
co 65 y9Yo	conz	z00z	1008	gnoz	6654	9661	al

wop smepossesyredibsopes
wos safepossesyredmun
CCIFO6t 266 olumsod cll-06t Z26 oluydopa

cosconce 2 sexal 'selfed z9t xog ypo cezetuns pooy IIfH 1sondeHoles

000 YJiDN (2)
səıe!oossy syred $К q$ paчs! $!q n_{d}$
IT un!8uoH : :оұınv

S甘SW Jno」 U!
sıəs \cap pueqpeoıg to Kəл.ıns :əسoH © ssəoכ* pueqpeodg

Attribution

Authored by Hongjun Li
Edited by Brian Canny
Produced by Hongjun Li
Published by Parks Associates
© April 2000 Parks Associates

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America

Disclaimer

Parks Associates has made every reasonable effort to ensure that all information in this report is correct. We assume no responsibility for any inadvertent errors.

Table of Contents

Attribution i
Disclaimer i
1.0 Executive Summary 1
1.1 Sampling 1
1.2 Hardware, Installation, and Service Plans 2
1.3 Online Usage 5
1.4 Decision-Making 6
1.5 Satisfaction 7
1.6 Consideration of Alternative Services 8
1.7 Additional Phone Lines 10
1.8 Home Networking 11
1.9 Demographics 12
2.0 Methodology 13
2.1 Selection of Target Markets for the Survey 13
2.2 Major Topics Covered 14
2.3 Sampling and Reporting 14
3.0 Service Providers 17
3.1 Representation of Service Providers 17
3.2 Providers of Local Telephone and Cable TV Services 18
3.3 DSL and Cable Modem Providers 19
3.4 ISPs Used Before Adopting Broadband 20
3.5 Current Usage of Dial-up Accounts and Free Web-Based E-mail Accounts 20
4.0 Hardware, Installation, and Service Plans 30
4.1 Importance of Hardware Brands 30
4.2 Downstream Speed of Broadband Services 30
4.3 Service Installation 31
4.4 Broadband Modems Leased vs. Purchased. 32
4.5 Term Contract of Broadband Services 32
4.6 Pricing of Broadband Services 33
5.0 Online Usage Before and After Adoption of Broadband 47
5.1 Years Online 47
5.2 Hours Online and Computer Usage 47
5.3 Online Activities 48
5.4 Who Else Uses the Internet at Home 48
6.0 Decision Making, Broadband Experience, and Preferences 56
6.1 Awareness of Service Availability and Influence of Different Marketing Efforts 56
6.2 Length of Decision Making 57
6.3 Which Benefit of Broadband Services Is the Most Important? 57
6.4 Importance of Family Member Requests and Business-Related Use 58
6.5 Importance of Service Provider's Reputation to Subscription of Broadband services 58
Broadband Access @ Home: Survey of Broadband Users in Four MSAs
6.6 Satisfaction 59
6.7 What Broadband Users Dislike 59
6.8 Awareness of Competing Services During the Decision-Making Process 60
6.9 Why Not Subscribe to an Alternative Service? 60
6.10 Possible Churn and Preferred Providers of Bundled Services 61
6.11 Tradeoffs 62
6.12 Interest in Non-PC Internet Access Devices 63
7.0 Additional Phone Lines 85
7.1 Usage of Additional Phone Lines Before and After Adopting Broadband 85
7.2 Will VoDSL or IP-Based Cable Telephony Take Off? 85
8.0 Computers and Home Networking 92
8.1 PC Ownership 92
8.2 Characteristics of the PC Directly Connected to the Internet 92
8.3 Broadband Users with a Computer Network 92
8.4 Broadband Users Without a Computer Network 93
8.5 Interest in Certain Entertainment-Oriented Networking Applications 94
8.6 Number of Phone Jacks and Cable TV Outlets 94
9.0 Demographics 114
10.0 Survey of Dial-up Users in the Four MSAs 126
11.0 Conclusions 141
11.1.1 What Drives the Adoption of Broadband? 141
11.1.2 What Are the Inhibitors to the Adoption of Broadband? 143
11.1.3 Cable Modem vs. DSL: Who Will Win? 144
Index 147

1.0 Executive Summary

This report analyzes the results from a survey of 599 broadband users in four MSAs (metropolitan statistical areas). It is part of a multiclient study entitled Broadband Access @ Home. Chapter 10 also includes results from a short survey of over 6,000 dial-up users in the same four markets.

1.1 Sampling

Parks Associates selected the four MSAs listed in Figure 1-1 for sampling. These four MSAs represent the four RBOCs and the two dominant cable ISPs (Excite@Home and Road Runner). Both cable modem service and DSL were available in these MSAs when the survey was conducted. As head-on competition between DSL and cable modem service is becoming intense, surveying broadband users in markets where both services are available would provide strategic insight into various implications of competition in the broadband marketplace.

Survey of Broadband Users: the Sample				
MSA	Total Mail-out	Qualified Cable Modem Users	Qualified DSL Users	Total Qualified Respondents
Atlanta:	27,807	105	51	156
San Jose:	23,546	51	102	153
New York:	53,841	50	42	92
Phoenix:	25,334	147	51	198
Total	130,528	353	246	599^{\star}

* After removing 21 unqualified respondents.

Figure 1-1

The survey was conducted online in January 2000. A total of 9,063 online users responded to the survey. Among them, 599 are qualified respondents (broadband users AND household decision-makers).

In addition to the four RBOCs, Excite@Home, Road Runner, and a few other broadband service providers are represented in the survey, as illustrated in Figures 1-2 and 1-3. This survey is not intended to represent all broadband users and all broadband service providers. Findings from the survey apply only to the four MSAs. Nonetheless, Parks Associates feels confident that this survey can be used to make inferences about the broadband marketplace in general.

1.2 Hardware, Installation, and Service Plans

The brands of hardware do not appear to be an important issue, at least to the current broadband users. First of all, 32% of cable modem users and 14% of DSL users do not even know the brand of the high-speed modems that they have been using. Secondly, 90% of the broadband users were not even given choices about brands of hardware when they signed up for broadband services.

Thirty-two percent of the respondents reported leasing their high-speed modems. Virtually all of such respondents are cable modem users. Only 3% of DSL users reported leasing a modem, compared with 53% of cable modem users, mainly because few DSL providers have given their customers a lease option.

Only a small number of broadband users (14% of cable modem users and 4% of DSL users) reported a typical downstream speed of 1.5 Mbps or more). Many (44% of cable modem users and 18% of DSL users) do not even know the typical downstream speed they get. These findings suggest that majority of broadband users only get sub-Mbps speed downstream.

Most of the cable modem users (84%) do not have a term contract for service, compared with 54% of DSL users without a term contract. This is because more DSL providers than cable

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 1-2

Figure 1-3

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates
modem ISPs require subscribers to make a choice between a month-to-month rate plan or a termcontract rate plan (with a lower monthly charge). So it appears that a term contract with a lower monthly fee is more attractive than the opposite. Among those who have a term contract, most (87%) are obliged to keep their service for one year.

There is no significant difference between DSL and cable modem service in terms of the time needed for service installation. The average number of hours spent on installation is 3 hours and 26 minutes. More DSL users (34\%) than cable modem users (14\%) reported self-installation.

Figure 1-4

The average monthly charge reported by cable modem users is $\$ 36$, compared with $\$ 60$ reported by DSL users (including ISP charge). On average, DSL users paid $\$ 199$ on hardware, installation, and service activation. Cable modem subscribers, on the other hand, paid \$171.

Although cable modem service has had a price advantage over DSL, Parks Associates expects the price difference to diminish soon.

1.3 Online Usage

On average, the respondents used the Internet at home for four years before adopting broadband. When the survey was conducted, cable modem users had been using broadband for an average of 12 months, while DSL subscribers had been using the service for an average of six months.

Figure 1-5

Both DSL and cable modem users spend almost six hours more online per week because of the usage of broadband connections. Their whole households have increased online usage by about 9 hours per week. Overall, broadband users now spend more than 20 hours online a week, while their whole households spend at least 30 hours online per week.

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

 © April 2000 Parks AssociatesOther than e-mail, the most frequent activities online include using search engines/directories, checking/trading stocks, and banking online. The least frequent online activities include making Internet phone calls, accessing business computer network, and creating/updating personal Web pages.

1.4 Decision-Making

Most of the broadband users became aware of the availability of broadband services through their own research, direct mail, and media advertising. On average, it took most broadband users (79%) two months or less to decide to adopt broadband services.

Benefits related to speed are perceived as the most important to the purchase decision. High downstream speed and constant/instant connections to the Internet (related to speed) are perceived to be more important than freeing up phone lines, saving the cost of using a separate line for voice, or broadband content. Of course, all of these benefits are important, as they are all mentioned by at least 50% of the broadband users as being important to the purchase decision. There are no significant differences between DSL users and cable modem subscribers in terms of the perceived importance of the key benefits of using broadband services.

Two other significant factors in the decision-making process are family members requesting broadband services and business related use. Twenty-nine percent of the broadband users said that requests from family members played an "extremely important" or "somewhat important" role in the decision to adopt broadband services. As to business-related use, 38% rated it as either "extremely important" or "somewhat important."

Figure 1-6

1.5 Satisfaction

Seventy percent of the respondents are satisfied with their broadband services (rating of 5 or 4 on a 5 -point scale, with 5 meaning "very satisfied"). There is no difference between DSL users' satisfaction and cable modem subscribers' satisfaction. Close to 10% are NOT satisfied (rating of 1 or 2 on a 5 -point scale, with 1 meaning "very dissatisfied").

Broadband users are more intolerant of service outages than the high monthly fees they have to pay. Fifty-four percent of the broadband users selected service outages as their number-one complaint, while a smaller number of respondents (42%) reported a high monthly fee as what they dislike most. Other things they dislike include variance of speed, troubleshooting after installation, speed slower than expected, having to schedule professional installation, worries about hacking/security, having to change their ISP and email address, and paying for professional installation.

Figure 1-7

1.6 Consideration of Alternative Services

In total, 40% of all the DSL users surveyed were aware of the availability of cable modem service when they signed up for DSL. As to cable modem users surveyed, 26% knew of DSL's availability. So why did they pick one over the other? The number one reason for DSL users is that they don't like their cable company, while the number one reason for cable modem users is their perception that cable modems are faster.

Awareness of the availability of DirecPC and broadband fixes wireless is low at 31.6% and 17.7%, respectively. The most important reason why the broadband users surveyed did not sign up for DirecPC or broadband fixed wireless services is that they do not like the idea of having to use a dish/antenna for downstream data and a phone modem for upstream data.

Why Didn't DSL Subscribers Choose Cable Modem Service?

(Among DSL Users Aware of Cable Modem Availability When Signing up for DSL)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 1-8

Figure 1-9

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

 © April 2000 Parks Associates
1.7 Additional Phone Lines

More than half (53\%) of the broadband subscribers currently have additional phone lines at home. However, 59% used to have a separate phone line dedicated for Internet access. This indicates that the adoption of broadband services has somewhat decreased the usage of additional phone lines. Among those who used to have a separate line for dial-up Internet access, 42% have already stopped using that line. However, more than half are still using that line today. The top-three reasons for keeping that line are faxing, dial-up access to the Internet in case of broadband service outage, and usage by someone else in the household.

Figure 1-10

Nearly half (46%) indicated that they do not need any additional lines, and the average monthly fee that broadband users (excluding those who responded with a zero) are willing to pay is only $\$ 9.90$ per additional line. This suggests that Voice-over-DSL (VoDSL) and multi-line IP-based cable telephony may not meet with very strong consumer demand.

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

1.8 Home Networking

Sixty-six percent of the broadband users have two or more PCs. Among them, 55% have a computer network. The applications used most frequently are shared Internet access (88%), file sharing/transfer (86%), and printer sharing (80%). Ethernet accounts for 89% of all the computer networks installed. Among the broadband users without a computer network, 35% feel a need for one.

Figure 1-11

1.9 Demographics

Comparison Between Broadband Users and the Average Consumer

	Broadband Users	National Average
Medium household income	$\$ 75,000-\$ 99,999$	$\$ 38,885^{1}$
Attained college degree or more	63%	$24.4 \%^{2}$
Have at least one work-at-homer in household	77%	$42 \%^{3}$
Own a home theater	32%	$21 \%^{4}$
Own a fax machine	41%	$11 \%^{5}$
Subscribe to a premium channel	45%	$35 \%{ }^{6}$
Use a mobile phone	81%	$51 \% \%^{7}$
Use a pager	45%	$37 \%^{8}$
Have a DVD player	24%	$5 \%^{9}$
Use a PDA	32%	$5 \%^{10}$

Figure 1-12

The broadband users clearly represent the most attractive consumer segment to service providers. They generally have attained a high level of education, earn a high household income, subscribe to numerous services, and are the early adopters of various emerging technology-based products.

Figure $1-12$ is a comparison between broadband users and the average consumer.

[^1]
2.0 Methodology

This chapter discusses how Parks Associates designed and executed the survey of broadband users. Topics include the selection of target markets for the survey, major topics covered, sampling, and survey reporting.

2.1 Selection of Target Markets for the Survey

Although the availability of broadband Internet services is still limited, Parks Associates estimates that there were at least 20 major markets where both DSL and cable modem service were available at the end of 1999. Head-on competition between the two major platforms for broadband Internet services is becoming intense. Thus, surveying broadband users in markets where both services are available provides early insight into what will be a fierce battle in the broadband marketplace. Thus, Parks Associates selected four MSAs, or metropolitan statistical areas (Figure 2-1), that represent the four RBOCs and the two dominant cable ISPs (Excite@Home and Road Runner); both cable modem service and DSL were available in the four MSAs when Parks Associates conducted the survey.

MSAs Selected for the Survey of Broadband Users

MSA	RBOCs Represented	Major Cable ISPs Represented
Atlanta:	BellSouth	@Home, Road Runner
San Jose:	PacBell (SBC)	@Home
New York:	Bell Atlantic	Road Runner
Phoenix:	U S West	@Home

Figure 2-1

2.2 Major Topics Covered

The survey covers the following major topics:

- The benefits of broadband services and the importance of each to respondents' purchase decision-making process.
- Influence of different marketing approaches on decision-making.
- Other factors that influence decision-making.
- Level of satisfaction with high-speed Internet service.
- What is liked best.
- What is liked least.
- Changes in computer and online usage.
- Awareness and consideration of alternative high-speed services.
- Likelihood of switching to an alternative service.
- Conditions that may make broadband users switch to alternative services.
- Impact of broadband adoption on usage of additional phone lines.
- Usage of home networking.
- Demographic profiles.

2.3 Sampling and Reporting

In December 1999, Parks Associates contracted Harris Interactive, which has a panel of several million online users, to conduct the survey online. The questionnaire was e-mailed to a total of 130,528 online users in the four MSAs selected for the survey. A total of 9,063 online users (7%) responded to the survey. Among them, 7,445 completed the whole survey $(82 \%$ completion rate). The respondents who completed survey fall under three categories:

- 620 online users who identified themselves as both broadband subscribers and decisionmakers.
- 149 online users who identified themselves as broadband subscribers but NOT decisionmakers (unqualified).
- 6,676 online users who identified themselves as dial-up Internet subscribers (unqualified). Among them, however, 31 reported using a cable modem in the middle of the survey. Parks Associates removed them from the data file while conducting analysis.

Due to a very low market penetration rate of satellite-based DirecPC service (less than 100,000 users in the US at the end of 1999), Parks Associates only surveyed cable modem and DSL users. The survey was fielded on January 7, 2000, and completed on February 14, 2000.

After scanning the responses from the 620 respondents who identified themselves as broadband subscribers, Parks Associates identified 21 respondents who either provided extremely abnormal/conflicting responses to multiple questions or mistakenly identified themselves as cable modem users at the beginning of the survey and indicated later that they were not. These respondents have been removed from the SPSS file used for the creation of the data tab and analysis in this report. Thus, a total of 599 respondents are considered qualified for the survey.

Survey of Broadband Users: the Sample				
MSA	Total Mail-out	Qualified Cable Modem Users	Qualified DSL Users	Total Qualified Respondents
Atlanta:	27,807	105	51	156
San Jose:	23,546	51	102	153
New York:	53,841	50	42	92
Phoenix:	25,334	147	51	198
Total	130,528	353	246	599^{\star}

* After removing 21 unqualified respondents.

Figure 2-2
Parks Associates initially set a quota of 50 DSL users and 50 cable modem users per MSA, with a total sample size of 400 broadband users. Due to the nature of an online survey and the actual
status of broadband deployment in these four MSAs, Parks Associates has obtained a larger sample size. From the New York MSA, however, only 42 DSL users responded. Parks Associates and the fielding company were unable to solicit more DSL respondents prior to the closing of the survey. In fact, Parks Associates extended the closing of the survey for three weeks in an attempt to get more DSL respondents from New York. Parks Associates believes that primarily because Bell Atlantic did not start deploying DSL in New York City until the summer of 1999, not many panelists of the fielding company are DSL subscribers living in New York.

The detailed results of the survey are available in the data tab, which includes multiple categories for cross-tabulations. This report will not follow a question-by-question format or restate the numbers in the data tab. Instead, it will focus on a few key subject areas and integrate multiple questions together while analyzing survey results. Each chapter consists of text-based analysis and numerous charts that illustrate the major findings from the survey.

The unqualified dial-up users who participated in the survey filled out a much shorter questionnaire that mainly consists of the screening and demographic questions. However, Parks Associates did ask them to answer four questions related to their awareness of broadband services and intentions of modem/service upgrades. Responses to these questions will be discussed in the last chapter of this report.

3.0 Service Providers

3.1 Representation of Service Providers

Because the survey was conducted in four MSAs rather than throughout the nation, it does not represent all providers of DSL and cable modem services are represented in the study. In addition, the survey is not meant to reveal the actual market share of each service provider that operates in the four MSAs selected. For example, Figure 3-4 is not a representation of the service providers' nationwide market share. Rather, it summarizes the percentage of each service provider's DSL customers that participated in the survey.

However, the survey does reflect the competitive strengths of the broadband service providers. For example, SBC and U S West are the two largest providers of DSL in the US, and they are indeed represented in the survey as the two largest DSL players (Figure 3-4). In fact, SBC's estimated market share of DSL services nationwide is exactly the same as the percentage of respondents using DSL who reported Pacific Bell (a subsidiary of SBC) as the provider of DSL lines: $31 \%{ }^{11}$. Similarly, @Home and Road Runner are represented as the two major cable modem ISPs in the survey (Figure 3-3).

Finally, the survey provides a good representation of broadband service providers in the sense that it allows the reader to compare different sub-groups of broadband subscribers on the basis of the service providers they use. For example, the reader can compare Pacific Bell's DSL users in San Jose with U S West's DSL users in Phoenix or @Home users in San Jose. The reader can also compare DSL users as a group with cable modem users as a group.

[^2]
3.2 Providers of Local Telephone and Cable TV Services

Figures 3-1 and 3-2 indicate that broadband subscribers in each MSA may use different providers for local telephone and cable TV services. For example, some cable modem users get telephone, cable TV, and high-speed Internet services all from the same cable company (e.g., Cox Communications in Phoenix and MediaOne in Atlanta). Similarly, there are some DSL subscribers that get both telephone and subscription TV services from BellSouth (in Atlanta) or U S West (in Phoenix).

However, the variation in service providers is not as significant as Figures 3-1 and 3-2 may suggest on the surface. Two factors have caused the big variations in the service-provider figures. First, except in New York, the number of DSL users surveyed is very different from the number of cable modem users surveyed. In San Jose, for example, there are two respondents using DSL for each respondent using a cable modem. Secondly, within each category of broadband subscribers (DSL vs. cable modem), the number of respondents from each MSA varies. For example, 102 DSL users from San Jose that participated in the survey, whereas in each of the other three MSAs, the number of DSL users ranges from 42 to 51 .

The impact of these two factors is most obviously reflected in the big difference between the percentage of cable modem users reporting Pacific Bell as their local telephone provider and the percentage of DSL users who also use Pacific Bell's local telephone service (Figure 3-1). Cable modem users in San Jose only account for 14% of all the cable modem users that participated in the survey. Seventy-nine percent of them (the cable modem users in San Jose) reported Pacific Bell as their local telephone company ${ }^{12}$, and they only account for 11% of all the cable modem users in the sample. DSL users in San Jose, on the other hand, account for 41% of all DSL users surveyed. Thus, 41% of DSL users reported Pacific Bell as their local telephone company.

[^3]
3.3 DSL and Cable Modem Providers

Most of the DSL subscribers get DSL lines from the four RBOCs. Among them, the majority also subscribe to ISP service from the same providers (Figures 3-4 and 3-5). The survey provides a good illustration of the dominance of the RBOCs in the DSL arena. The main competitive local exchange carriers (CLECs) represented in the survey are Covad Communications Group Inc. and NorthPoint Communications Group Inc.

Although Excite@Home and RoadRunner are the two dominant players of cable modem service in the US, there are a few independent cable modem ISPs (Figure 3-3), including RCN Corp., the ISP Channel, High-speed Access Corp. (HSA), Charter Pipeline, and Adelphia Communications (not represented in the survey). CableVision's local franchise in Atlanta uses its own ISP service (Total-Web), even though CableVision is an affiliate of the @Home service. Thus, Total-Web is also reported as an independent cable modem ISP in the survey.

It is noteworthy that a traditional dial-up ISP may also serve as a cable modem ISP, although there are few of them. The companies that work with cable companies as cable modem ISPs in the four MSAs include Prodigy Inc., EarthLink Network Inc., Planetsoft Inc., Erols Internet (via RCN), etc. America Online (AOL) members can keep their AOL account but use a cable company for access. ${ }^{13}$ This is perhaps why 12 respondents who identified themselves as cable modem users reported AOL as their cable modem ISP. Although Parks Associates cannot rule out the possibility that some of these respondents may have mistakenly identified themselves as cable modem users, Parks Associates did not remove them from the sample.

A small percent of cable modem users (6% of @Home users and 4% of Road Runner users surveyed) do not seem to recognize the cable modem ISP they are using. While answering the question on cable Internet service used, these respondents did not choose Excite@Home or Road

[^4]Runner. Instead, they checked "Other" and then specified "Other" as, say, Cox@Home or MediaOne. While compiling the data, however, Parks Associates put these respondents into the category of @Home or Road Runner users. So the number of @Home and Road Runner subscribers in Figure 3-3 already include these respondents.

It is noteworthy that Speed Choice is a wireless cable modem service that uses multichannel multipoint distribution service (MMDS). Although Parks Associates did not intend to cover MMDS in this study, six Speed Choice subscribers in Phoenix participated in the survey. Parks Associates has chosen to keep them in the sample.

3.4 ISPs Used Before Adopting Broadband

Because broadband users adopted broadband services at different times and because the survey targeted just four MSAs, Figure 3-6 should not be read as a chart that reflects dial-up ISPs' market share. However, the chart does indicate who the major players are. A larger percent of cable modem subscribers used to use AOL's service, compared with DSL subscribers (25.8% vs. 14.6%). Parks Associates believes that this is partially the RBOCs have been targetting their existing dial-up ISP customers for DSL services. Indeed, the survey indicates that more DSL users subscribed to the RBOCs' dial-up services than cable modem users (13% vs. 7.9%).

Almost 9% of the respondents did not specify a dial-up ISP. However, this does not necessarily mean that they did not use dial-up service before adopting broadband services. A separate question on online usage before adopting broadband services indicates that only 2.7 percent of the respondents did not use the Internet at home before adopting broadband (Figure 5-1).

3.5 Current Usage of Dial-up Accounts and Free WebBased E-mail Accounts

Nearly half of the cable modem users do not have a dial-up account, compared with 37.5% of DSL subscribers. This is partially because many DSL customers can get a free dial-up account if

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates
they subscribe to both a DSL line and ISP service from the same provider. ${ }^{14}$ Cable companies, on the other hand, mostly do not provide dial-up Internet service. However, things are changing rapidly. Excite@Home has already started offering a free dial-up Internet service. Cable modem subscribers can also get free dial-up Internet from various independent ISPs, such as NetZero, 1stup.com, freeweb.com, Bluelight.com, etc. As to free Web-based e-mail services, such as Hotmail and Yahoo!mail, more than 71% of the respondents use at least one of these services (Figure 3-8). There is no significant difference between DSL and cable modem users in terms of subscription to free e-mail services.

[^5]

Figure 3-1
Broadband Access @ Home: Survey of Broadband Users in Four MSAs
@) April 2000 Parks Associates

Figure 3-2

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Figure 3-8

4.0 Hardware, Installation, and Service Plans

4.1 Importance of Hardware Brands

Hardware/modem brands do not appear to be an important issue to the respondents. First of all, 32% of cable modem users and 14% of DSL users do not even know the brand of the high-speed modems they have been using (Figure 4-1). Secondly, 90% of the broadband users were not even given a choice about hardware when they signed up for broadband services (Figure 4-2).

When interoperable high-speed modems become widely available at retail, consumers will be able to make their choices. When that happens, the importance of hardware brands will become more obvious. Such increase of importance, however, may be limited if high-speed modems are sold not as external stand-alone devices but as internal components of new PCs (the same way as virtually all dial-up modems are sold today). Preliminary results from a survey of 600 dial-up users indicate that 43% of the dial-up users do not even know the brand of the modem they use.

4.2 Downstream Speed of Broadband Services

Although the theoretical downstream speed of DSL or cable modems is very high (typically a few megabits per second or more), the actual speed is typically slower. Various factors affect the actual downstream speed. Examples include the distance between the DSL user and the telcos' central office and the number of cable modem users sharing the same cable node.

Parks Associates' survey indicates that DSL users have a better idea of the actual speed they can get. Forty-four percent of the cable modem users cannot tell the typical downstream speed they get from their modems, compared with just 18% of DSL users (Figure 4-3). Parks Associates believes that this is partially because DSL provides a dedicated connection, which generally does not cause speed to fluctuate. Cable modem service, on the other hand, provides shared access, and end users can experience big variations of access speed. Another reason is that many DSL
providers offer a tiered service plan, charging different prices for different access speeds. Thus, DSL subscribers must select a particular service that is based on access speed, making it easier for them to recall the downstream speed they can actually get.

Cable modem service, however, does seem to enjoy an advantage in access speed. Fourteen percent of the cable modem users reported a typical speed of 1.5 Mbps or more, compared with just 4% of DSL users. Parks Associates believes that because DSL services offering 1.5 Mbps or more typically cost more than $\$ 60$ a month, most DSL subscribers have chosen a lower-priced (and hence lower-speed) service. Another viable reason is that DSL's current distance limit makes it impossible for many subscribers to get more than 1.5 Mbps .

4.3 Service Installation

The survey indicates that modem installation and network configuration usually takes less than four hours. The average time spent on installation is 3 hours and 26 minutes (Figure 4-4). Overall, there is no significant difference between DSL and cable modem service in terms of installation time.

More DSL users reported self-installation than cable modem users (34% vs. 14%). Most of the DSL users who self-installed services are in Phoenix (76.5\%) and New York (40.5\%). According to Parks Associates' research, about 90\% of U S West's DSL customers have chosen a self-installation option; of those, 86% could complete the installation without requiring professional assistance. ${ }^{15}$ This explains why 76.5% of the DSL respondents in Phoenix reported self-installation. As to New York, the relatively high-percentage of self-installed DSL service is attributed to Bell Atlantic's introduction of a self-installation version of its DSL service in New York in June. Most of the other DSL providers have yet to make self-installable services widely available. Among the respondents whose broadband services were professionally installed,

[^6]more than half (52%) would be interested in a self-installation option if they were to subscribe to their broadband services today (Figure 4-6).

4.4 Broadband Modems Leased vs. Purchased

Thirty-six percent of the respondents were given the option of leasing their high-speed modems (Figure 4-2), and of those, 89% (or 32% of all the respondents) said that they lease their highspeed modems (Figure 4-7). Virtually all of them are cable modem users. Because few DSL providers have given their customers a lease option, only 2.9% of the DSL users reported leasing a modem, compared with 53% of cable modem users.

Forty-three percent of the respondents did not indicate whether their high-speed modems were leased or purchased. Parks Associates believes that these respondents either failed to check the word "purchased" while filling out the survey online or got their modem free of charge. While answering the question on upfront costs of high-speed services, 31% of the respondents entered the number "zero" for modem (Q.351) ${ }^{16}$.

4.5 Term Contract of Broadband Services

Most of the cable modem users (84%) do not have a term contract for service, which contrasts with 54% of DSL users without a term contract (Figure 4-8). More DSL providers than cable modem ISPs require subscribers to make a choice between a month-to-month rate plan or a termcontract rate plan (with a lower monthly charge). Among those who have a term contract, most (87%) are obliged to keep their service for one year.

[^7]
Broadband Access @ Home: Survey of Broadband Users in Four MSAs

 © April 2000 Parks Associates
4.6 Pricing of Broadband Services

Cable modem subscribers generally enjoy a lower monthly charge than DSL users (Figure 4-9).
Two factors have contributed to a higher average price of DSL service. First, DSL users not only need to pay a monthly fee for a DSL line but also an ISP charge, which is often separate. Cable modem service involves just a single fee for both line access and ISP charge. Second, most DSL providers have a tiered service plan, charging different fees for different downstream speeds. For example, the RBOCs (except BellSouth, which has a single rate plan) charge $\$ 100$ or more for services that deliver downstream speeds in the megabit range. Cable companies, on the hand, generally do not offer tiered service plans with different rates. However, Parks Associates expects the gap to diminish. The RBOCs are lowering DSL service charges, and U S West even offers a dial-up version of its DSL service that costs only $\$ 19.95$ per month (excluding ISP charge).

DSL users also appear to pay more on up-front expenses than cable modem subscribers (Figure 4-10). On average, DSL users paid an average of $\$ 199$ on hardware, installation, and service activation. Cable modem subscribers, on the other hand, paid \$171. However, Parks Associates believes that the difference will also diminish soon. DSL providers are lowering upfront charges with discounts and other types of promotions. In the end, the only upfront cost for DSL and cable modem services will perhaps be the cost of a high-speed modem that is sold at retail or comes with a new PC. Parks Associates expects to see comparable price tags for cable modems and DSL modems.

It is noteworthy that in the data tab, zeros are included in the calculation of all the averages (Figure 4-11). Figure 4-10 only includes respondents who reported an expense greater than zero for a particular item.

More DSL users (13.4%) than cable modem subscribers (5.6\%) have their employers pay for their broadband services either completely or partially (Figure 4-12). Parks Associates believes that this difference is due to two factors. One is that DSL is probably the preferred choice for

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

 © April 2000 Parks Associatescorporate telecommuters and/or spillovers. One example is a deal between SBC
Communications and IBM Corp. (announced in October 1999): SBC will provide 15,000 IBM telecommuters with remote access to IBM's corporate network via DSL throughout SBC's region. The second factor is that among the DSL users who reported complete employer coverage of DSL service charges, 57% are in San Jose, which accounts for 41% of all the respondents using DSL.

Figure 4-1

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Figure 4-2

What Downstream Speed Do Broadband Users Typically Get?

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 4-3

Figure 4-4
Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 4-5

Figure 4-6

Figure 4-7

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 4-8

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Monthly Charge for Broadband Services, Including ISP Charge

($\mathrm{n}=564$)

Note: respondents who reported less than $\$ 19$ per month are excluded.
Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs (C) 2000 Parks Associates

Figure 4-9

Figure 4-10

Upfront Expenses for Broadband Services

(Among all respondents, including those who did not report an expense)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 4-11

Figure 4-12

5.0 Online Usage Before and After Adoption of Broadband

5.1 Years Online

On average, the respondents had used the Internet at home for four years before adopting broadband (Figure 5-1). DSL users appear to have a longer history of using the Internet at home than cable modem users (four years and six months versus three years and 11 months). Only 2.7% of the broadband users said that they did not use the Internet at home before subscribing to broadband services. However, it does not mean that they did not use the Internet somewhere else (at work, at school, etc.). It is Parks Associates' belief that these early adopters all had substantial online experience before starting to use broadband services at home.

On average, the respondents have been using broadband services at home for 10 months (Figure 5-2). However, that number for cable modem users is 12 months, while DSL users have been using the service for an average of six months. This is due to the fact that in general, cable modem service has been available longer than DSL.

5.2 Hours Online and Computer Usage

Broadband services do get users hooked to the Internet for longer hours. Both DSL and cable modem users spend almost six hours more online per week because of the usage of broadband services. Their whole households have increased online usage by about 9 hours per week (Figure 5-3). Overall, broadband users now spend more than 20 hours online per week, while their whole households spend 30 hours or more online per week.

Broadband services provide instant-on/constant-on connections to the Internet. So how long do broadband users leave their computers on per day? Almost half (48%) leave on their computer (or the one directly connected to the Internet) 24 hours a day. Only 27% leave their computers on only when they are being used (Figure 5-4). Parks Associates believes that if a computer is always on with a constant Internet connection, it will enable various new services to the home, such as remote home control and remote access to data stored at a home computer. Broadband services will prompt more consumers to leave their computers on all day long and will become a driver to the deployment of new services for the home.

5.3 Online Activities

Other than e-mailing, the most frequent activities online include using search engines/directories, checking/trading stocks, and banking online. The least frequent online activities are making Internet phone calls, accessing business computer network, and creating/updating personal Web pages (Figure 5-5). Bandwidth-intensive activities, such as downloading/watching Internet video, are not quite frequent yet. However, Parks Associates believes that as more and better content becomes available, broadband users will spend more time on Internet-based entertainment activities.

5.4 Who Else Uses the Internet at Home

Close to half (45.2%) of the respondents reported spouses using the Internet at home (Figure 56). If we only look at those who have a spouse, the percentage becomes much higher at 81% (Figure 5-7). About two-thirds (66%) of the respondents with at least one child said that their children also use the Internet at home.

The high percentage of spouses/children using the Internet at home indicates that family members can play an important role in the decision-making process on acquiring broadband services. Indeed, 29% of the respondents considered family members' requests for broadband services important to the decision to adopt broadband services (see Chapter Six).

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 5-1

Figure 5-2

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 5-3

How Long Are Broadband Users' Computers On? ($\mathrm{n}=599$)

On only when the computer is used 27\%

On continuously during waking hours 25\%

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs
© 2000 Parks Associates

Figure 5-5
Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 5-7

6.0 Decision Making, Broadband Experience, and Preferences

6.1 Awareness of Service Availability and Influence of Different Marketing Efforts

DSL and cable modem providers have used many different approaches to create awareness of their broadband services. These techniques include direct mail, media advertising, referral, demos, and so on. However, these approaches have different levels of effectiveness.

When compared with DSL users, a much larger percent of cable modem users learned about service availability through direct mail (41.6% vs. 33.4%), TV advertising (29.5% vs. 11%), and live demos (9.4% vs. 1.6%) (Figure 6-1). This indicates that cable companies have been more aggressive in their marketing efforts than the telcos.

Forty percent of the DSL users learned about DSL availability through their own research. In fact, "own research" is reported as the number-one contributor to DSL users' awareness of service availability, beating out such marketing campaigns as direct mail and media advertising. "Own research" is also the number-two contributor to cable modem subscribers' awareness of service availability. This shows that the early adopters of broadband services take the initiative and have generally kept themselves abreast of high-tech products/services.

When it comes to what is "very influential" to the respondents' purchase decision, the top-three items to DSL users are their own research, referral, and direct mail. To cable modem users, the top three are the same, but the order is slightly different: own research, direct mail, and referral (Figure 6-2). The fourth most influential contributor to cable modem users is TV advertising (10.5\%).

The least influential marketing techniques to DSL users include live demo, email advertising, and magazine advertising. To cable modem users, however, the least influential are magazine advertising, radio advertising, and Web site advertising (Figure 6-2).

6.2 Length of Decision Making

It took most broadband users (79\%) two months or less to decide to adopt broadband after they first learned about service availability (Figure 6-3). This indicates that the decision-making process is relatively fast. As to why it took some broadband users three months or more to make a purchase decision, the most important reason is a perceived high price (60%). Most of the other reasons are related to the need to learn more about the broadband services. Only 4.7\% reported security concerns as a reason (Figure 6-4). This indicates that few consumers are aware of a potential security problem: a constant Internet connection makes their computers and personal information vulnerable to hackers.

6.3 Which Benefit of Broadband Services Is the Most Important?

Not surprisingly, benefits related to speed are the most important to the purchase decision. High downstream speed and constant/instant connections to the Internet (related to speed) are more important than such benefits as freeing up phone lines, saving the cost of using a separate line for voice, or broadband content (Figure 6-5). Of course, all these benefits are important, as they are all mentioned by at least 50% of the broadband users as being important to the purchase decision. There are no significant differences between DSL users and cable modem subscribers in terms of the perceived importance of the benefits of using broadband services.

6.4 Importance of Family Member Requests and BusinessRelated Use to Purchase Decision

As Figure 6-6 indicates, family members requesting broadband services do play a role in the household adoption of broadband services. Twenty-nine percent of the broadband users said that requests from family members played an "extremely important" or "somewhat important" role in the decision to adopt broadband services. There is no significant difference between DSL and cable modem users regarding the importance of family member requests.

Business-related use is considered even more important than family member requests, as 42% of the DSL users and 34% of cable modem users reported business-related use as an important factor (Figure 6-7). The difference between the two groups of users confirms Parks Associates' previous statement that more DSL users use a broadband connection for work-related purposes than cable modem users.

6.5 Importance of Service Provider's Reputation to Subscription of Broadband services

It is no surprise that the reputation of service providers is considered very important to the subscribers of broadband services. Only 24% of the respondents consider it neutral or unimportant (Figure 6-8). However, the significance of the response to this question perhaps should not be overstated. The major providers of cable modem service (e.g., Excite@Home and Road Runner) and some data CLECs (e.g., Covad, NorthPoint, and Rhythms) are newly created organizations that have not been in business long enough to establish a strong reputation. Still, they have been able to sell their services to consumers. Parks Associates believes that the importance of service providers' reputations will become more obvious when two or more competing broadband services are available in all major markets nationwide. Everything else being equal, a company with a better reputation has a better chance to win over customers.

6.6 Satisfaction

More than two-thirds of the respondents are satisfied with the broadband services to which they subscribe (rating 4 or 5 on a 5 -point scale, with 5 meaning "very satisfied"). There is no meaningful difference between DSL users' satisfaction and cable modem subscribers' satisfaction (Figure 6-9). It is noteworthy that close to 10% are NOT satisfied (rating 1 or 2 on a 5 -point scale, with 1 meaning "very dissatisfied"). Perhaps because of this, 9.4% of cable modem subscribers and 2.9% of DSL users said that they would switch to a dial-up account using a 56 K modem if that account is free (Figure 6-12). Parks Associates believes that these respondents indicated their intention to switch as a means to express their dissatisfaction. We don't believe that there will be many broadband users who will switch back to a dial-up account once they have experienced the benefits of using broadband.

6.7 What Broadband Users Dislike

The things broadband users dislike include a high monthly fee, service outages, variance of speed, troubleshooting after installation, speed slower than expected, scheduling of professional installation, worries about hacking/security, changing ISP and email address, and paying for professional installation (Figure 6-10).

Compared with DSL users, significantly more cable modem users dislike service outage (49.3\% vs. 42.3%), variance of speed (43.9% vs. 34.6%), and speed slower than expected (29.5% vs. 22%). Parks Associates believes that these numbers reflect differences in perceived performances of DSL and cable modem services.

Broadband users are more intolerant of service outages than the high monthly fee that they have to pay (Figure 6-11). Fifty-four percent of the broadband users selected service outages as their top complaint, while a smaller number of respondents (42%) reported a high monthly fee as what they dislike the most. This shows the importance of service reliability to broadband users. As
illustrated in Chapter 3, more than a third of the broadband users surveyed do not have a separate dial-up account. Thus, service outage would deny them access to the Internet.

6.8 Awareness of Competing Services During the DecisionMaking Process

In the four MSAs Parks Associates selected for the survey, both DSL and cable modem services had been available for at least a few months at the time the survey was conducted. So were the respondents aware of alternative high-speed services when they signed up for the service they chose? It is no surprise that the number of DSL users aware of cable modem service is significantly higher (87%) than the number of cable modem users aware of DSL (62.3%) (Figure 6-13). Cable modem service was commercially launched earlier than DSL, hence more market awareness.

Forty-three percent of the DSL users aware of cable modem service reported its AVAILABILITY in their area when they signed for DSL. Among cable modem users aware of DSL, 32% said that DSL was actually AVAILABLE in their area when they signed up for cable modem service. Again, these numbers make sense because of cable modem's lead in terms of commercial rollout.

Although ISDN has been around for over a decade, more than 20% of the broadband users were not aware of it (Figure 6-14). This is perhaps because the telcos have not been aggressively marketing the service. As to two other major contenders for high-speed Internet services (DirecPC and broadband fixed wireless), market awareness is very low.

6.9 Why Not Subscribe to an Alternative Service?

In total, 40% of all the DSL users surveyed were aware of the availability of cable modem service when they signed up for DSL. As to cable modem users surveyed, 26% knew of DSL's
availability. So why did they NOT subscribe to the alternative broadband service? The number one reason for DSL users is that they don't like their cable company, while the number one reason for cable modem users is their perception that cable modems are faster (Figures 6-15 and 6-16). Indeed, cable companies have generally lagged behind telcos in terms of reputation, and cable modems have been touted as "lightning fast" and part of a "cable Internet revolution," hence creating the perception that cable modems are faster than other broadband platforms. When we look at the elements in Figures 6-15 and 6-16, it seems that DSL is perceived to be more desirable than cable modem service. This signals a strong warning to cable companies despite cable modem's current lead over DSL.

The two most obvious disadvantages of the current DirecPC service and most fixed wireless Internet services are the need to have a dish or antenna for downstream data reception and the use of a phone modem for upstream signal transmission. Indeed, these two disadvantages are the two most important reasons why DSL or cable modem users did not sign up for DirecPC or broadband fixed wireless services (Figure 6-17). However, things are expected to change rapidly, as Hughes Network Systems (provider of DirecPC) is launching a two-way broadband satellite system that is scheduled to go into operation in 2002 , and broadband fixed wireless players are deploying two-way digital systems. Thus, satellite-based and terrestrial broadband wireless systems will soon gain a stronger competitive edge.

6.10 Possible Churn and Preferred Providers of Bundled Services

Because of all the hassle of setting up a broadband Internet service, industry players and market analysts generally believe that once consumers have signed up for DSL or cable modem service, they will not switch to an alternative platform. However, Parks Associates' survey suggests that such a belief may be too simplistic. Figure 6-18 indicates that if the broadband users are given a good discount or offered more benefits for the same price, many of them may switch. Cable modem users expressed slightly stronger intentions to switch than DSL. Parks Associates
believes that with the availability of plug-and-play high-speed modems sold at retail, switching a broadband service provider may become almost as easy as switching a dial-up ISP. Therefore, broadband service providers need to consider how to prevent churn.

The survey respondents suggested a strong intention to switch to a provider of bundled services (voice, video, and data) that can save $\$ 15$ or more per month. All the major providers of communications services are attempting to become providers of bundled services. Who will likely be able to win over customers? Figure 6-20 indicates that DSL users are more interested in getting bundled services from a local telephone company (56.5% giving a rating of 4 or 5 , with 5 meaning "extremely interested"). Only 19.5% of the DSL users showed interest in a cable company. Cable modem users, on the other hand, prefer a cable company (51.9% giving a rating of 4 or 5). However, 41.9% also showed interest in a local telco. Both groups expressed almost the same level of interest in AT\&T (slightly more than 40\%). Parks Associates believes that consumers' current preference is just one indicator of who may win over customers as a provider of bundled services. There are some other factors that are also important, including the timing of service rollout, marketing strategies, reliability of service, etc.

6.11 Tradeoffs

Overall, broadband users prefer service plans charging a lower monthly fee, even if it means a higher upfront cost, a term contract, and slower downstream speed (Figure 6-19). However, the survey respondents expressed willingness to pay for guaranteed speed, giving a much higher rating to "guaranteed speed at $\$ 10$ more per month" than "no guaranteed speed at $\$ 10$ less per month" (3.1 versus 1.83 average rating on a 5 -point scale, with 5 meaning "very attractive").

Parks Associates would like to caution the reader that the difference between the average rating of "lower upfront charge and higher monthly fee" (1.68) and that of "higher upfront charge and lower monthly fee" (2.07) is not very significant, compared with the respondents' preferences on the other tradeoffs. This indicates that the attractiveness of either option is very similar overall.

6.12 Interest in Non-PC Internet Access Devices

More and more companies are developing/introducing Web pads, which serve as portable devices dedicated to Internet access at home. Not surprisingly, a Web pad is the number one non-PC device that broadband users want to use for Internet access. Thirty-seven percent of the respondents expressed interest in using a Web pad (Figure 6-21). Smart kitchen appliances and screen phones did not fare very well. Only 17% and 10%, respectively, of the respondents showed some interest in these two types of non-PC Internet devices.

It is interesting to note that a Web surfing device in a car is the number two non-PC device in which the respondents are interested (36.3%). These results indicate the appeal of a product/service that provides mobile access to the Internet and help explain why more broadband users are interested in using a mobile phone (28.5%) than a TV (22%) to access the Internet.

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Importance of Family Members' Request on Decision to Adopt Broadband

(Among Those Who Have at Least One Other Person Living in the Household) ($\mathrm{n}=490$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs (C) 2000 Parks Associates

Figure 6-6

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Importance of Business-Related Use to Broadband Purchase Decision

Percent rating 4 or 5 on a 5 -point scale, with 5 meaning "extremely important"

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 6-7

Importance of Service Provider's Reputation to Subscription of Broadband Services ($\mathrm{n}=599$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 6-8

Figure 6-9

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Figure 6-10

Broadband Users Saying They Would Switch to a 56K Dial-up Account If That Account Is Free

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 6-13

Broadband Access @ Home: Sunvey of Broadband Users in Four MSAs

Figure 6-14

Figure 6-15

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 6-16

Figure 6-17

Figure 6-18

Figure 6-19

Figure 6-20

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 6-21

7.0 Additional Phone Lines

7.1 Usage of Additional Phone Lines Before and After Adopting Broadband

More than half (53%) of the broadband subscribers currently have additional phone lines at home (Figure 7-1). However, 59% used to have a separate phone line dedicated for Internet access (Figure 7-2). This indicates that the adoption of broadband services has somewhat decreased the usage of additional phone lines. Among those who used to have a separate line for dial-up Internet access, 42% have already stopped using that line (Figure 7-3), leaving more than half who are still using that line today. The top-three reasons for keeping that line are faxing, dial-up access to the Internet in case of broadband service outage, and usage by someone else in the household.

7.2 Will VoDSL or IP-Based Cable Telephony Take Off?

Voice-over-DSL (VoDSL) and packet-switched cable telephony promise multiple virtual phone lines over a single access network. But do consumers really need extra lines? Are they willing to pay the regular price for each additional line? Findings from the survey suggest that VoDSL players and cable telephony providers should not be overly optimistic about selling additional lines to consumers:

- Nearly half (46%) indicated that they do not need any additional lines.
- The average monthly fee the broadband users (excluding those who responded with a zero) are willing to pay is only $\$ 9.90$ per additional line.

Another factor that may negatively impact consumer demand for additional phone lines at home is increased use of mobile phones. A small percent of mobile phone users have already stopped using their wireline phones at home. Parks Associates expects this number to increase steadily
due to continuously falling prices of mobile phone handsets and monthly usage fees. Thus, VoDSL may be a killer app in the business market, but there is no strong evidence to suggest that it will be a killer app in the consumer market as well.

Figure 7-2

Figure 7-3

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 7-4

How Much Are Broadband Users Willing to Pay for Each Additional Phone Line?

(Among those who responded with a number other than zero)

Source: Broadband Access @ Home Survey of 599 broadband users in four MSAs (C) 2000 Parks Associates

Figure 7-5

8.0 Computers and Home Networking

8.1 PC Ownership

Parks Associates estimates that at the end of 1999, about 18% of ALL households had two or more computers at home. The percentage of broadband users with multiple PCs is much higher at 65.6%. Among them, 59% have three or more PCs at home (Figure 8-2).

Most of the broadband uses have fairly new computers. Thirty-eight percent of the single-PC users acquired their computers in 1999 or at the beginning of 2000. As to the multi-PC users, 52% bought their newest computer in 1999-2000 (Figure 8-2). Overall, 47% of the broadband users purchased a new computer in the 1999-2000 time frame.

8.2 Characteristics of the PC Directly Connected to the Internet

Forty-eight percent of the computers directly connected to the Internet have a powerful processor: Pentium II or III (Figure 8-5). Over two-thirds of them have a USB port (Figure 8-6). However, only 28% have a DVD drive. Most of them (73.5\%) are located either in a formal/informal home office or in a bedroom (Figure 8-4).

8.3 Broadband Users with a Computer Network

A survey Parks Associates conducted in April 1999 suggests that almost 30% of the multi-PC households have a computer network. Naturally, a much higher percent (55%) of the broadband users reported having a computer network at home (Figure 8-7).

The applications used most frequently are shared Internet access (88%), file sharing/transfer (86%), and printer sharing (80%) (Figure 8-8). Although file sharing is used more often than printer sharing, the latter is considered more important than file transfer/sharing (Figure 8-9).

Despite all the attention given to "no-new-wires" home networking solutions (HomePNA, HomeRF, ect.), the traditional Ethernet is still the dominant computer network installed in residences (Figure 8-10). However, Parks Associates does expect "no-new-wires" networking products to gain a larger share.

Although a computer network is generally perceived to be hard to install, two-thirds (77%) of the broadband users with a computer network said that they installed the network themselves (Figure 8-11). This is largely because the early adopters of broadband services are generally very technology-savvy. Will the percent of self-installed computer networks decrease in the future as more average consumers adopt the concept of home networking? Parks Associates does not think so, and the main reason for this is the anticipated wide availability of the "no new wires" networking products that are much easier to install than the traditional Ethernet.

Although more than half (60%) of the broadband users already had a computer network installed when they signed up for broadband services, 11% said that they obtained broadband and computer networking at the same time. This indicates that subscription to broadband services can be a good opportunity for the marketing of home networking products, as some venders/service providers are already doing.

8.4 Broadband Users Without a Computer Network

Among the broadband users with multiple PCs but not a computer network, 35% feel a need for a network (Figure 8-13). DSL users appear to be more receptive to home networking, as 44% of them indicated a need for a computer network, compared with 31% of cable modem users.

To those who feel a need for a computer network, shared Internet access is the number one application (Figures 8-14 and 8-15). Nearly one-fourth (23\%) of them are interested in ordering computer networking services from their broadband service provider. Again, this is another indication that broadband services and home networking can be marketed together.

8.5 Interest in Certain Entertainment-Oriented Networking Applications

About half of the respondents are interested in the capability of sending DVD signals, Internet video, or music from a PC to a TV or a stereo system (Figure 8-17). As the percent of home PCs equipped with a DVD drive is expected to increase and because broadband services will turn the Internet into a medium for multimedia entertainment, products that can network PCs with traditional entertainment devices would have a strong appeal. The challenge, of course, is to make such networking products easy to install and cost-effective.

8.6 Number of Phone Jacks and Cable TV Outlets

Phone jacks and cable TV outlets are significant to home networking because there are home networking solutions that require the use of existing telephone or cable TV wires in the home (e.g., HomePNA and Peracom Networks' Avcast (\odot)). The broadband users' homes have more telephone jacks/outlets than the national average: $5.1 \mathrm{vs} .3 .4^{17}$. As to cable TV outlets, the average for broadband users is 3 . (The national average is not available, but Parks Associates estimates that it is smaller than 3).

The number of telephone and cable TV outlets is typically related to the number of rooms in a residence. It is obvious that in virtually all residences, not every room has a phone or cable TV outlet. This puts a limitation to the networking solutions using existing telephone or cable TV

[^8]Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 8-1

Figure 8-2

Figure 8-4

Figure 8-6

Figure 8-7

Figure 8-8

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Computer Network Applications

Ranked as Most Important

(Among those with a computer network)
($\mathrm{n}=215$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 8-9

Figure 8-10

Figure 8-11

Figure 8-12

Figure 8-13

Figure 8-14

Interest in Ordering Computer Networking Service from Broadband Service Providers

(Among those without a computer network)
($\mathrm{n}=178$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 8-16

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Figure 8-17

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 8-18

9.0 Demographics

Most of the broadband users are male and in the age group 30-49. More than half are married, but less than a third (32%) have children living with them. Close to two-thirds (63%) have at least a four-year college degree, and 32% earn an annual household income of $\$ 100,000$ or more.

Two-thirds (67.6\%) of the broadband users perform some work-related tasks at home (Figure 97). If all household members are included, as many as 77% of the broadband households have at least one household member who performs some work-related tasks at home. This high percentage of work-at-home households partially explains why many of the survey respondents have adopted broadband services: a fast connection to the Internet can improve their efficiency while working at home. Indeed, 38% of the broadband users said that business-related use was important in their decision to get broadband services (Figure 6-7).

It is noteworthy that a respondent may fit two or more work-at-home types. Thus, there is an overlap among the five work-at-home segments. The category "any work-at-home type" includes the overlap and is not the arithmetic sum of the numbers for the five work-at-home categories.

Figure 9-1 illustrates some key differences in demographics and technology adoption between broadband users and the average consumer.

Comparison Between Broadband Users and the Average Consumer

	Broadband Users	National Average
Medium household income	$\$ 75,000-\$ 99,999$	$\$ 38,885^{19}$
Attained college degree or more	63%	$24.4 \%^{20}$
Have at least one work-at-homer in household	77%	$42 \%^{21}$
Own a home theater	32%	$21 \%^{22}$
Own a fax machine	41%	$11 \%^{23}$
Subscribe to a premium channel	45%	$35 \%^{24}$
Use a mobile phone	81%	$51 \%^{25}$
Use a pager	45%	$37 \%^{26}$
Have a DVD player	24%	$5 \%^{27}$
Use a PDA	32%	$5 \%^{28}$

[^9]

Figure 9-2

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Figure 9-3

Marital Status of Broadband Users ($\mathrm{n}=599$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs © 2000 Parks Associates

Figure 9-4

Figure 9-5

Figure 9-6

Work-at-Home Status: Broadband Users Themselves ($\mathrm{n}=599$)

Source: Broadband Access @ Home: Survey of 599 broadband users in four MSAs
© 2000 Parks Associates

Figure 9-7

Figure 9-8
Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 9-10
Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 9-11

10.0 Survey of Dial-up Users in the Four MSAs

As mentioned in Chapter 3, the unqualified dial-up users who participated in the survey filled out a much shorter questionnaire that contains several questions related to awareness of broadband services and intentions of modem/service upgrades. ${ }^{29}$

Sixty-nine percent of these dial-up subscribers use a 56 K modem (Figure 10-1), indicating that most of the Internet users bought a computer in the 1997-2000 time frame, as 56 K modems did not become widely available until 1997. Although a 56 K modem is the fastest among the analog dial-up modems, 37% of the 56 K modem users intend to upgrade to a faster modem (compared with 38% of ALL dial-up users, as shown in Figure 10-2).

Despite broadband service providers' advertising and telemarketing efforts, more than a quarter (28%) have never heard of cable modem, DSL, or DirecPC (Figure 10). Perhaps due to cable modem service's current lead, more dial-up users are aware of cable modem than DSL (58% versus 50%). Only 37% are aware of both.

Even though cable modem service enjoys better market awareness, the dial-up users intending to upgrade their modem seem to like DSL better. As indicated in Figure $10-4,34 \%$ picked DSL, compared with 25% that chose cable modem service. If we only look at the dial-up users aware of both DSL and cable modem, then consumers' preference becomes even more obvious: 42% of such dial-up users prefer DSL, compared with just 26% favoring cable modem service (Figure 10-9). Parks Associates believes that cable operators' past record for poor customer service is still hurting them. As discussed in Chapter 6,41\% of DSL users who were aware of cable modem availability while signing up for DSL said that they did not choose cable modem service because they don't like their cable company (Figure 6-15). It appears that cable operators need

[^10]
Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

to make extra marketing efforts in order to win over broadband subscribers when they face direct competition from DSL.

There are some interesting differences among the four MSAs selected for the survey. For example, a much higher percentage of dial-up users in San Jose prefer DSL in comparison with the respondents from the other three MSAs. In addition, respondents in New York and Phoenix appear to have no clear preference between the two competing services (Figures 10-8 and 1010).

There are some demographic differences between those who prefer DSL and the respondents favoring cable modem service. Younger dial-up users (ages 18-39) appear to be slightly more receptive to cable modem service than DSL in comparison with older consumers. As Figure 1011 indicates, 55.7% of the respondents intending to subscribe to cable modem service are between 18 and 39 years old, whereas 49.5% of the respondents favoring DSL belong to the same age group. However, those who prefer DSL tend to be better educated and earn a higher household income. Figure 10-12 indicates that 63.3\% of the respondents favoring DSL have a college degree or a higher level of education, compared with 55.6% of those favoring cable modem service. Similarly, 39.6% of the respondents favoring DSL earn $\$ 100 \mathrm{~K}$ or more per year, compared with 30.9% of those favoring cable modem service that belong to the same income category. The demographic characteristics of the broadband users (Figures 9-5 and 9-6) demonstrate the same pattern. This suggests that DSL's potential customer base is slightly more attractive.

Dial-up Internet Users Intending to Upgrade
 Modem/Internet Service ($\mathrm{n}=6,645$)

Source: Broadband Access @ Home: Survey of 6,645 dial-up users in San Jose, Phoenix, Atlanta, and New York, where both DSL and cable modem services are available
© 2000 Parks Associates

Figure 10-2

Figure 10-3

Dial-up Internet Users' Awareness of High-Speed Services

($\mathrm{n}=6,645$)

Source: Broadband Access @ Home: Survey of 6,645 dial-up users in San Jose, Phoenix, Atlanta, and New York, where both DSL and cable modem services are available
© 2000 Parks Associates

Figure 10-4

Figure 10-5

Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates

Figure 10-6

Broadband Access @ Home: Survey of Broadband Users in Four MSAs

Figure 10-7

Choices for Intended Modem Upgrade (by MSA)

$$
(n=2,532)
$$

Source: Broadband Access @ Home: Survey of 6,645 dial-up users in San Jose, Phoenix, Atlanta, and New York, where both DSL and cable modem services are available
© 2000 Parks Associates

Figure 10-8

Figure 10-9

Figure 10-10

Age of Dial-up Users Intending to Upgrade

$$
(n=2,532)
$$

Source: Broadband Access @ Home: Survey of 6,645 dial-up users in San Jose, Phoenix, Atlanta, and New York, where both DSL and cable modem services are available
© 2000 Parks Associates

Figure 10-11

Figure 10-12

Figure 10-13

11.0 Conclusions

11.1.1 What Drives the Adoption of Broadband?

The current subscribers of broadband services are clearly early adopters. Although early adopters generally have different buying behaviors from the average consumer, the drivers to their adoption of broadband services can nonetheless help understand how and when the mass market will develop.

High Speed

Any purchase decision starts from a perceived need that can be met through the purchase of a product or service. The most important benefit of broadband services that has met the need of current broadband users is high-speed. The need for speed is clearly related to the usage of the Internet. The more the Internet is used, the stronger the need for high speed becomes.
Broadband subscribers have a high reliance on the Internet, as reflected by the following:

- Broadband households spent an average of more than 20 hours online per week before adopting broadband, compared with 15 hours ${ }^{30}$ on average among all online households in the US.
- Seventy-seven percent of the broadband households have at least one household member that performs some work-related tasks at home, compared with 42% for all households in the nation.
- Fifty-one percent access business computer networks at home, versus 31% of the dial-up users ${ }^{31}$.

It is easy to see that the broadband users have much stronger need for high speed compared with the average consumer. However, as the usage of the Internet continues to increase, the

[^11]Broadband Access @ Home: Survey of Broadband Users in Four MSAs © April 2000 Parks Associates
difference between the early adopters of broadband services and the average consumer regarding the need for high speed will gradually diminish.

Other Benefits of Broadband Services

The other benefits of broadband services (e.g., freeing up phone line, saving the cost of using an additional phone line for Internet access, and broadband content), though not as important as high speed, are still cited by more than 50% of the broadband users as being important to the purchase decision. This suggests that at least 50% of the broadband users adopted DSL or cable modem service partially because of these additional benefits. Parks Associates believes that as the average consumer is less likely to have additional phone lines at home and earn a lower income than the current broadband subscribers, the importance of these "other" benefits of broadband services will be more significant during the mass-market adoption of broadband services.

Awareness of Service Availability

Once consumers determine that they have a need that can be met through the purchase of a product/service, they will move to the next step: decide what to buy. Clearly, consumers will not buy a particular product or service of which they are not aware. Thus, creating market awareness of the availability of broadband services is critical.

The current broadband subscribers are very different from the average consumer. Many of them did not become aware of the availability of broadband services through service providers' marketing efforts but through their own research, as discussed in Section 6.1. These early adopters of broadband services are well educated and have generally kept themselves abreast of high-tech products/services. However, service providers should not count on the average consumer's "own research." Instead, more marketing efforts should be made to create awareness of broadband services. The fact that 29% of the dial-up users in the four MSAs selected for the survey are not even aware of the availability of cable modem service or DSL suggests that broadband service providers need to do a better job in marketing.

11.1.2 What Are the Inhibitors to the Adoption of Broadband?

The most important inhibitor, based on what the broadband subscribers dislike about broadband services, is a high monthly fee. The early adopters of broadband services generally earn a high income and are not as price-sensitive as the average consumer. If 42% of the broadband users cite a high monthly fee as what they dislike most, it is easy to image how the average consumer will react when he/she sees a high price tag of broadband services. The problem created by a high monthly fee will become even more serious when more consumers take advantage of free ISP services.

However, the current pricing level of broadband services is perhaps still acceptable to dial-up users that pay a regular monthly fee for dial-up service AND an additional phone line dedicated to Internet access. Parks Associates' survey of 600 dial-up users nationwide (to be discussed in a separate report) indicates that 30% of them pay a monthly fee of more than $\$ 20$ or more AND use a separate phone line for Internet access. The challenge to broadband service providers is to communicate the benefit of "freeing up the phone line" to the target dial-up users.

Two other major inhibitors are the hassle of scheduling professional installation and the cost of paying for professional installation. Parks Associates believes that these two inhibitors will become non-issues when self-installable and interoperable high-speed modems are available at retail.

Figure 11-1

11.1.3 Cable Modem vs. DSL: Who Will Win?

Cable modem service and DSL are the two major contenders in the broadband consumer marketplace. Currently, cable modem service still enjoys a substantial lead over DSL mainly due to the fact that commercial cable modem service was launched much earlier than DSL. However, this lead is in jeopardy because the telcos are aggressively deploying DSL, and consumers appear to prefer telephone companies as service providers when they have a choice. Figure 11-1 summarizes some key findings related to the competition between the two services.

However, the comparisons made in Figure 11-1 do not necessarily mean that DSL will achieve a significantly dominant position in the consumer broadband market. Service providers' actual performance in the marketplace is not just a function of the variables included in Figure 11-1 but also a reflection of many other factors, including aggressiveness of marketing, pricing strategies,
bundling of services, service provider consolidation, etc. In addition, cable companies have been making impressive efforts to address what appears to have been hurting them most: poor reputation. Thus, there is no guarantee that the telcos will enjoy a sustained advantage over cable companies based solely on reputation. Japanese-made products used to suffer a bad reputation for poor quality. But it did not take Japanese manufacturers long to reverse consumers' perception of their products. The cable industry may be able to do the same thing.

Overall, Parks Associates believes that the market for broadband services is big enough for both DSL and cable modem service to co-exist. They are really comparable services, and both will be winners. It will be hard for either one of them to maintain a significantly dominant position.

Cable Modem vs. DSL: A Comparison			
	Winner	Loser	Note
Market Awareness	Cable Modem	DSL	- While signing up for broadband services, 83% of DSL users were aware of cable modem service, but only 62% of cable modem users were aware of DSL. - Among the dial-up users: 58% are aware of cable modem, vs. 50% aware of DSL. - However, cable modem's advantage may soon disappear as DSL service is more widely available.
Satisfaction	Even	Even	- Overall, there is no difference between DSL users and cable modem users regarding their satisfaction with services.
Pricing	Cable Modem	DSL	- Upfront expenses and monthly charge for cable modem service currently are lower than those for DSL. However, DSL providers have been lowering prices, and Parks Associates expects pricing differences to diminish soon.
Perception of Speed	Cable Modem	DSL	- Among the broadband users aware of the availability of both services while signing up for services, 51% of the cable modem users said that they did not pick DSL because cable modem is faster, and only 37% of the DSL users said that DSL is faster. - However, the advantage that cable modem service enjoys may not be very significant because the speed difference is not very big. In addition, slight differences of downstream speed may not play an important role in decision-making.
Reputation	DSL	Cable Modem	- Among the broadband users aware of the availability of both services while signing up for services, 41% of DSL users said that they did not pick cable modem service because they don't like their cable company, but only 24% of the cable modem users said the same thing about their local telephone company.
Potential to Churn	DSL	Cable Modem	- More cable modem users expressed likelihood to switch to an alternative service if certain discounts were offered. For example, 20% of the cable modem users said they would switch if they could get similar speed and save $\$ 10$ a month, compared with just 13% of DSL users who expressed such likelihood to switch.
Customer Base	DSL	Cable Modem	- More DSL users earn a household income of at least $\$ 100 \mathrm{~K}$ and hold college/graduate degrees than cable modem users do. Among the dial-up users surveyed, the same difference exists between those who favor DSL and those who cable modem service.

Figure 11-2

Broadband Access @ Home: Survey of Broadband Users in Four MSAs
© April 2000 Parks Associates

Index

BELLSOUTH TELECOMMUNICATIONS, NNC.

FPSC DKT NO 990649-TP

THE COALITION'S FIRST REQUEST FOR PRODUCTION OF DOCUMENTS

POD NO.

PROPRIETARY

($P+3 \circ \in 3$)
DN $11628-00$ 9-15-00

digital line design and pair selection rules

SUBSCRIBER CARRIER SYSTEMS

CONTENTS PAGE

1. INTRODUCTION 1
2. GENERAL
3. DESIGN PHILOSOPHY 2

ROUTE JUNCTIONS 3
INSERTION LOSS LIMITATIONS 3
4. CROSSTALK CONSIDERATIONS . . . 4

CROSSTALK-PRONE ZONE 5
5. DESIGN PROCEDURES 5

Step 1-Schematic 6
Step 2-Cable Layups 6
Step 3-Digital Line Pair Selection
.
Step 4-Record Selected Pairs . 9
Step 5-Route Data Sheet . . . 9

1. INTRODUCTION

1.01 This section provides repeater spacing design philosophy and digital line pair selection rules for any subscriber loop carrier system* employing digital transmission at the T 1 bit rate (1.544 Mbits per second). The design philosophy, pair selection rules, and step-by-step procedures covered in this section are intended for the engineer of outside plant and provide the base for data input requirements of the Digital Line Engineering Program (DILEP), This computer program is to be used when determining or checking repeater spacing along a digital line. (Refer to Section 902-200-115.)

[^12]1.02 Section $855-351-101$, covering $T 1$, should not be used to design repeater spacing for subscriber carrier systems because of the frequent cable taper points and small size cables in exchange plant. The poorer crosstalk performance of such plant requires that more restrictive rules be used than for interoffice trunk cable.

2. GENERAL

2.01 Digital transmission at the T 1 bit rate

 requires repeaters that regenerate pulses in the bit stream. The spacing of these repeaters is governed by the insertion loss and the interpair crosstalk coupling loss of the cable, which in turn are influenced by the electrical characteristics and temperature of the cable. Consequently, designing digital line carrier systems into exchange routes requires detailed analysis of existing cable plant, including the determination of core layups of all cables, an accurate prediction of the ultimate number of carrier systems to be assigned in the route, and selection of economical powering arrangements.2.02 The determination of the ultimate number of carrier systems and their deployment, guidelines for powering the repeaters, and implementation and administrative procedures are covered in other engineering sections specifically related to each system. For example, system deployment, repeater powering, and implementation procedures for the SLM System are discussed in Sections $902-217-110,-125$, and -130 , respectively.
2.03 This section covers the detailed analysis of existing plant to determine repeater spacing, assuming the ultimate number of systems, the cable path for the digital line, and the location of the remote terminals have been determined previously.
2.04 Subscriber loop carrier systems differ from Tl carrier in two principal respects:
(1) Subscriber carrier systems will generally find application in much more complex exchange
cable plant (involving frequent cable taper points,
gauge changes, and small pair sized cables) than in trunk or toll routes.
(2) It is anticipated that seldom will more than ten subscriber carrier systems be employed in a single route, while the inverse is true with Tl carrier trunk route applications.
2.05 These differences affect the relative importance of interpair crosstalk coupling loss for the two types of carrier systems as well as the relative difficulty of selecting the most suitable cable pairs for digital transmission. Consequently, the technique presented in this section for selecting the most suitable cable pairs always should be used when designing digital lines for subscriber loop carrier systems.
2.06 If subscriber loop carrier systems are proposed in a cable sheath that contains existing T1 carrier systems, the repeaters for the proposed systems must be located at the existing T1 repeater sites to avoid intersystem farend crosstalk (FEXT) interference.
2.07 Any number of analog subscriber carrier systems with an upper frequency below 150 kHz is compatible with up to five digital lines (including spare digital lines) in the same 8 -, 9 -, $11-, 12-, 13-, 16-17$-, 25-, and 50 -pair units of PIC cable or in the same 11-, 16-, and 25 -pair PIC cables. For adjacent or nonadjacent units in PIC cable and all cases in pulp-insulated conductor cable, there are no interference constraints, and standard system engineering rules apply.

3. DESIGN PHILOSOPHY

3.01 There are two basic digital line design philosophies. One philosophy is to locate repeaters at all existing loading coil sites, and if needed supplement with intermediate repeaters in those sections where either excessive loss or excessive crosstalk prevents spanning the length with a single repeater. The other design philosophy is to maximize the length of all repeater sections, In this design method, each repeater section length is based on the maximum insertion loss and crosstalk limitations of the cables included in the repeater section. No attempt is made to position repeater sites at existing loading coil locations.
3.02 Each design philosophy or combination of the two may have merit in specific instances.

Locating repeaters at existing loading coil sites reduces the number of sheath openings if the same opening can be used. Alternatively, when repeate: point costs are relatively high, the additional savings accrued from maximizing all of the repeater section lengths more than balances the higher construction costs.
3.03 Conditions that generally justify locating repeaters at existing loading coil sites are:
(1) When only one or two digital lines will be ultimately required.
(2) When the number of repeaters per digital line is only one or two greater than the number required, using the maximum spacing philosophy.
(3) When no additional monies would be required for powering (only relevant when systems such as SLM, which rely on remote power installations, are anticipated).
3.04 When locating repeaters on the digital line path, the cable insertion loss between repeaters must be low enough to ensure that the far repeaters can discriminate between signals and noise. The following three factors limit the permissible insertion loss of a repeater section:
(1) The repeater can automatically adjust to insertion losses between 9.2 and 35.0 dB at 772 kHz . The $35.0 \cdot \mathrm{~dB}$ upper limit is reduced by 1.5 dB to allow for manufacturing variations in cable loss characteristics, thus limiting it to 33.5 dB . This upper limit may be further reduced by crosstalk influences as discussed in $3.04(2)$ and (3).
(2) Crosstalk coupling loss between the send and receive digital pairs is another influence. The lower the crosstalk coupling loss, the more the digital signal will be influenced by crosstalk.
(3) The number of digital lines in the same sheath is still another influence. More lines produce more crosstalk energy.
3.05 In addition to the preceding transmission considerations, repeaters must be located at sites physically and aesthetically acceptable. They should be located away from interstate highway rights-of-way, areas that flood, or any location that has limited accessibility.
3.06 Repeaters on other systems in the same cable sheath must be located at the same repeater points to minimize crosstalk even if the repeaters are installed in different apparatus cases. Remote terminals ($\boldsymbol{R T s}$) contain digital repeaters and must be considered regular repeater points.

ROUTE JUNGTIONS

3.07 There are two types of route junctions that must be considered in the design of the digital line. One type of route junction is formed when lines from two or more systems enter the same cable sheath. This type of junction can occur when separate subscriber carrier systems are used to serve two branches in a cable network, as illustrated in Fig. 1.

Fig. 1-Route Junction-More Than One System
3.08 The other type of route junction is formed when a single system capable of serving

CO TO FIRST REPEATER SECTION
Minimum Loss Maximum Loss
more than one terminal (such as SLM) is used to serve two or more branches of a feeder route. An example of this type of junction is shown in Fig. 2. NOTE THAT WHEN A DIGITAL LINE IS LOOPED OUT AND BACK ON A FEEDER BRANCH, AS IS REQUIRED WITH THIS TYPE OF JUNCTION, THE FEEDER BRANCH REQLIRES TWICE THE NORMAL NUMBER OF DIGITAL LINE PAIRS AND REPEATERS.

Fig. 2-Raute Junction-Single System
3.09 A repeater site must be engineered at all junctions. If a junction also is to be an RT site and the RT is to be located a short distance away in a branch leg (for physical or aesthetic reasons), the required length of suitable size cable should be installed and the RT padded to ensure meeting the minimum loss requirement of 9.2 dB .

INSERTION LOSS LIMITATIONS

3.10 The cable insertion loss limit for the first repeater section is less than the limit for all other repeater sections because of central office (CO) noise. The following insertion loss limitations in dB at 772 kHz apply to digital line repeater spacing using T1 frequencies:

ALL OTHER REPEATER SECTIONS

Minimum Loss Maximum Loss

$9.2 \mathrm{~dB} \quad 33.5 \mathrm{~dB}$
3.11 Insertion loss factors (at 772 kHz and $55^{\circ} \mathrm{F}$), together with their temperature coefficients in dB per kilofoot for several of the more common pulp-insulated conductor and PIC cables are given in Table A.

TABLE A

CABLE LOSSES AT 772 kHz

CABLE TYPE	MUTUAL CAPAC. nF/MILE AT 900 Hz	ENGR LOSS AT 55° FIN $\mathrm{dB} / \mathrm{Kft}$	TEMP COEFFEC. FOR $10^{\circ} \mathrm{F}$ STEPS IN dB/Kft
17 AHC	83	3.18	0.030
17 ANC	83	3.80	0.028
19 AHB	83	3.18	0.030
$\begin{aligned} & 19 \text { ANB, DNB, } \\ & \text { GNB } \end{aligned}$	66	3.00	0.025
19 BHB	83	3.18	0.030
$\begin{gathered} 19 \mathrm{BNB}, \mathrm{CNB} \\ \text { ENB, FNB } \end{gathered}$	84	3.80	0.028
19 ADB	83	3.80	0.028
19 AJB	83	2.54	0.018
20 AHD	83	4.39	0.043
20 AND	82	5.10	0.047
22 ADA	83	5.10	0.047
22 AHA, BHA	83	4.39	0.043
22 AJA	83	3.67	0.035
$\begin{gathered} 22 \text { BSA, CSA, } \\ \text { DSA, ESA } \end{gathered}$	83	5.10	0.047
22 ASF (24	84	6.80	0.066
EQUIV)			
24 ADM	83	6.80	0.066
24 AKM	83	5.60	0.033
24 ASM, BSM	72	5.90	0.057
24 BKM	83	5.58	0.033
24 CSM, ESM	72	5.85	0.057
24 DSM, FSM	84	6.80	0.066
24 AJM	83	4.65	0.046
26 ADT, DST	83	8.17	0.096
26 AKT	83	7.50	0.041
26 AST	69	6.80	0.066
26 CST	69	6.79	0.081
26 BST	79	7.70	0.093
26 BKT	83	7.48	0.041
26 AJT	83	5.90	0.057
COMPOSITE CABLES			
19 CAB	83	3.80	0.028
22 CAA	83	5.10	0.047
24 CAM	83	6.80	0.066
26 CAT	83	8.17	0.096

3.12 In DILEP these losses are adjusted within the program to reflect the maximum expected temperature and humidity conditions based on the cable environment, ie, aerial or below ground. For example, the losses are adjusted to reflect maximum temperatures for aerial and below-ground cables of 140° and $100^{\circ} \mathrm{F}$, respectively. In addition, aerial and below-ground PIC cable losses are increased an additional 2 and 6 percent, respectively, to allow for some transmission degradation due to moisture. No allowance is included in DILEP for any moisture in pulp-insulated conductor cable, since any significant moisture would cause them to be inoperative.
3.13 Insertion loss factors for less common types of cable can be obtained from the appropriate section in the 626-759 layer of the Bell System Practices. It can be assumed that exchange grade ($83 \mathrm{nF} /$ mile) composite cables have loss characteristics comparable to the single gauge pulp-insulated cables having the same capacitance (CNB, DSA, DSM, and DST). Composite cables are specifically coded CAB, CAA, CAM, and CAT for 19-, 22., 24 -, and 26 -gauge, respectively.
3.14 In nearly all instances, the standard insertion losses at the predetermined temperature and moisture levels specified in 3.12 will satisfy the input requirements of DILEP. However, in some cases, ie, very hot or arid climates, more realistic factors may be warranted. In these situations, the factors may be adjusted using the temperature coefficients in Table A, and by adjusting the percent correction for moisture content. See 5.28 (1) for procedures to use to input resulting maximum expected insertion loss in dB per kilofoot.

4. CROSSTALK CONSIDERATIONS

4.01 Crosstalk is a function of:
(a) The number of subscriber carrier systems in the same sheath
(b) The relative position of the transmit and receive pairs of the systems in a single cable sheath.
4.02 Subscriber carrier should be applied in a single cable sheath of the route only. Even though NEXT may be virtually eliminated and repeater spacings increased in twin (two cables, one apparatus case for both directions of transmission)
cable sheath routes by assigning transmit and receive pairs in separate cable sheaths, this design is discouraged for three reasons.
(1) Cable splicing is complicated at repeater points and at RTs.
(2) Gauge of future cable additions may be unnecessarily dictated by these repeater locations.
(3) Future cable removal options in the fine gauge area may be limited.

Separate repeater apparatus cases for each direction of transmission cannot be used with SLM.
4.03 Nonstaggered twist cable is not suitable for digital line subscriber carrier systems and is not to be used for any part of the digital line. Low capacitance, waterproof, reclaimed, and aluminum cables can be used.
4.04 It is very important to space repeaters initially for the maximum number of systems that will ultimately be applied in the route. Crosstalk problems may result if the number of systems exceeds the number for which the original repeater spacing was designed.

CROSSTALK-PRONE ZONE

4.05 Almost all NEXT occurs within the crosstalk-prone length of cable adjacent to both the send and receive repeaters (see Fig. 3). This length is equivalent to 3 dB (at 772 kHz) of cable insertion loss and is therefore a function of cable gauge as follows:
crosstalk.prone zone ($83 \mathrm{nF} /$ mile Cable)

Fig. 3-Crosstalk-Prone Zone
4.06 A mechanized design program for locating the line repeaters on a subscriber carrier system is essential due to the design complexity resulting from the following factors that affect the maximum repeater spacing:
(a) Insertion loss of the cable employed
(b) Physical pair separation achieved in each of the cable sections employed in the total digital path
(c) Ultimate number of carrier systems contemplated
(d) Crosstalk influences are only relevant within a $3-\mathrm{dB}$ zone on either side of each repeater.
4.07 DILEP provides this mechanized design assistance; therefore, the remainder of this section supplies the procedures for selecting suitable pairs for digital lines, obtaining basic input data, and using DILEP.

5. DESIGN PROCEDURES

5.01 The following step-by-step procedures illustrated by the flowchart (Fig. 4) provide an orderly approach for obtaining the input information necessary for DILEP.

Fig. 4-Flowchart
3.11 Insertion loss factors (at 772 kHz and $55^{\circ} \mathrm{F}$), together with their temperature coefficients in dB per kilofoot for several of the more common pulp-insulated conductor and PIC cables are given in Table A.

TABLEA
CABLE LOSSES AT 772 kHz

CABLE TYPE	mutual CAPAC. nF/MILE AT 900 Hz	ENGR LOSS AT $55^{\circ} \mathrm{F}$ IN dB/Kft	TEMP COEFFEC. FOR $10^{\circ} \mathrm{F}$ STEPS IN $\mathrm{dB} / \mathrm{Kft}$
17 AHC	83	3.18	0.030
17 ANC	83	3.80	0.028
19 AHB	83	3.18	0.030
$\begin{aligned} & 19 \text { ANB, DNB, } \\ & \text { GNB } \end{aligned}$	66	3.00	0.025
19 BHB	83	3.18	0.030
$\begin{aligned} & 19 \text { BNB, CNB, } \\ & \text { ENB, FNB } \end{aligned}$	84	3.80	0.028
19 ADB	83	3.80	0.028
19 AJB	83	2.54	0.018
20 AHD	83	4.39	0.043
20 AND	82	5.10	0.047
22 ADA	83	5.10	0.047
22 AHA, BHA	83	4.39	0.043
22 AJA	83	3.67	0.035
$\begin{gathered} 22 \text { BSA, CSA, } \\ \text { DSA, ESA } \end{gathered}$	83	5.10	0.047
$\begin{gathered} 22 \text { ASF (24 } \\ \text { EQUIV) } \end{gathered}$	84	6.80	0.066
24 ADM	83	6.80	0.066
24 AKM	83	5.60	0.033
24 ASM, BSM	72	5.90	0.057
24 BKM	83	5.58	0.033
24 CSM, ESM	72	5.85	0.057
24 DSM, FSM	84	6.80	0.066
24 AJM	83	4.65	0.046
26 ADT, DST	83	8.17	0.096
26 AKT	83	7.50	0.041
26 AST	69	6.80	0.066
26 CST	69	6.79	0.081
26 BST	79	7.70	0.093
26 BKT	83	7.48	0.041
26 AJT	83	5.90	0.057
COMPOSITE CABLES			
19 CAB	83	3.80	0.028
22 CAA	83	5.10	0.047
24 CAM	83	6.80	0.066
26 CAT	83	8.17	0.096

3.12 In DILEP these losses are adjusted within the program to reflect the maximum expected temperature and humidity conditions based on the cable environment, ie, aerial or below ground. For example, the losses are adjusted to reflect maximum temperatures for aerial and below-ground cables of 140° and $100^{\circ} \mathrm{F}$, respectively. In addition, aerial and below-ground PIC cable losses are increased an additional 2 and 6 percent, respectively, to allow for some transmission degradation due to moisture. No allowance is included in DILEP for any moisture in pulp-insulated conductor cable, since any significant moisture would cause them to be inoperative.
3.13 Insertion loss factors for less common types of cable can be obtained from the appropriate section in the 626-759 layer of the Bell System Practices. It can be assumed that exchange grade ($83 \mathrm{nF} /$ mile) composite cables have loss characteristics comparable to the single gauge pulp-insulated cables having the same capacitance (CNB, DSA, DSM, and DST). Composite cables are specifically coded CAB, CAA, CAM, and CAT for 19.22 , 24-, and 26 -gauge, respectively.
3.14 In nearly all instances, the standard insertion losses at the predetermined temperature and moisture levels specified in 3.12 will satisfy the input requirements of DILEP. However, in some cases, ie, very hot or arid climates, more realistic factors may be warranted. In these situations, the factors may be adjusted using the temperature coefficients in Table A, and by adjusting the percent correction for moisture content. See 5.28 (1) for procedures to use to input resulting maximum expected insertion loss in dB per kilofoot.

4. CROSSTALK CONSIDERATIONS

4.01 Crosstalk is a function of:
(a) The number of subscriber carrier systems in the same sheath
(b) The relative position of the transmit and receive pairs of the systems in a single cable sheath.
4.02 Subscriber carrier should be applied in a single cable sheath of the route only. Even though NEXT may be virtually eliminated and repeater spacings increased in twin (two cables, one apparatus case for both directions of transmission)

Step 1-Schematic

5.02 Prepare a schematic (Fig. 5) of the route showing the following information:
(a) Cable code, eg, BKM. (Show 3- or 4-letter code. The fourth letter (X) is used to identify reclaimed" cable.) Also indicate the pair size for each cable section.
(b) Year of placement for each cable section.
(c) Length of cable section if it exceeds 20 feet. (For sections less than 20 feet, include with adjacent section length.)
(d) Cable pressurization status of each cable section.
(e) Type of construction (aerial, buried, or underground).
(f) Loading coil locations.
(g) Proposed and future RT locations.
(h) The ultimate number of systems in each repeater section. Note that if a multiple RT system is used to serve two or more feeder branches, the effective number of systems is larger than the actual number. (See 3.08.)
(i) Manholes that are potential repeater sites. Show cumulative distance to this location.
'Reclaimed cable has a higher capacitance and thus a higher insertion loss factor than nonreclaimed cable.
5.03 If pulp-insulated aluminum conductors are encountered, use a code representing a pulp-insulated copper conductor cable that is equivalent in electrical characteristics. The standard 3 -letter code for PIC aluminum cable may be used when that type of cable is encountered.
5.04 Post cable section numbers on the schematic, starting with 1\rangle adjacent to the CO and numbering consecutively to the end of the digital line. The CO is designated as cable section 0 .

Step 2-Cable Layups

5.05 Indicate the construction "layup"* of all sections of cable on the schematic (Fig. 5), eg, 12 - 13 -, or 25 -pair units.

- "Layup" is defined as a cross-section view of the number of pairs assembled in a unit and the arrangement of the units as they are combined to form unit-type constructed cable. It aiso may be a view of the number and arrangement of pairs in a layer-type constructed cable.
5.06 Spacing of repeaters on the digital line is governed by both cable "layup" and the relative location of the transmit and receive pairs. The transmit and receive pairs may be assigned within the same unit, adjacent units, or nonadjacent units.
5.07 The following list of Bell System Practices and figures shown in this section is furnished to assist in obtaining knowledge regarding "layups" of various types of cables.

TITLE
SECTION NUMBER

PIC Cable, General
Superseded Exchange Cables (covers pulp and strip paper-insulated conductor cables)

Even-Count PIC Cable (B Series), General
Solid PIC Cables, Description (covers oddcount PIC cable, "A" Series, General) 632-033-151

TITLE

Method of Estimating Cable Code
Electrical Characteristics of Superseded Pulp-Insulated Cable

Layup of DSA-Type Cable
Layup of BH and BK Small PIC Cables, 11- to 50-Pair Units and Multiunits

Layup of 25- to 300-Pair Even-Count BH- and BK-Type PIC Cables

Layup of 400 -, 600-, and 900 -Pair EvenCount BH and BK PIC Cables

Superseded BH. and BK-Type Cables
Superseded 50-Pair BH- and BK-Type Cables and Multiunits

Layup of 11- to 50-Pair AH- or AK-Type (OddCount) PIC Cables

Layup of 76- to 404-Pair AH- or AK-Type (Odd-Count) PIC Cables

Method of Pair Selection to Minimize NEXT in 11- to 25-Pair Even-Count PIC Cables

Layup of 50-Pair Cable and 50-Pair Multiunits in Even-Count PIC Cables

Layup of 900-Pair Layer Cable, 22 Gauge

FIGURE NUMBER IN THIS SECTION

Fig. 6*
Fig. 7*

Fig. 8*
Fig. 9

Fig. 10

Fig. 11

Fig. 12
Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18
*When only pair size, gauge, and year of placement are known, the "layup" can be estimated employing the instructional notes on Fig. 6, 7, and 8.
5.08 In general, 50-pair units are the smallest found in 22-, 24 -, or 26 -gauge non-PIC cables larger than 100 pairs. Most 19 -gauge, non-PIC cables are assembled in 25 -pair units. When layer-type cables are encountered, 25 - and 50 -pair cable sizes are to be considered as 25 - and 50 -pair unit cables since they have the same crosstalk characteristics.
5.09 Most 75-pair layered and some 100 -pair layered cables are constructed as a single unit. These cables should be considered as 50 -pair unit cables. The larger pair size layered cables
are constructed with either 50 - or 100 -pair splicing groups, and these cables should be treated the same as 50 -pair unit type, since both 50 - and 100-pair layers have NEXT coupling losses comparable to 50 -pair unit cable.
5.10 The B series of PIC cable is currently produced in various pair unit sizes (see Fig. 9).
(1) The layup design was changed in 1964 from 25-pair binder groups assembled in 8 -, 8 -, 9 -pair units to 12 -, 13-pair units.
(2) The layup is the basis of 50 -pair "multiunit" constructed PIC cables in some of the 200through 900-pair sizes.

Large quantities of Manufacture Discontinued PIC cable containing 8- and 9-pair units are in service, as well as lesser quantities of $13-17$-, and 50 -pair units. With the redesign in 1964, no change was made in the code (BK or BH) that identifies this type of cable.
5.11 Even though the design of 50 -pair cable and 50-pair "multiunits" was changed in 1964, actual manufacture of 22 -, 24 -, and 26 -gauge types in the $12-, 13$-pair units occurred between Fall of 1964 and Spring of 1965 at various plants. In the 19-gauge type, some 12-, 13 -pair unit cable was produced in late 1964 and some 8-, 8-, 9-pair unit cable was manufactured until late 1967.
5.12 When a particular size of PIC cable has been manufactured in more than one layup, proceed as follows:
(a) If it is not known whether the layup is 8 -, 8 -, 9 -, or 12 -, 13-type (BH or BK 50 -, 200-, 600 -, or 900 -pair), assume that it is 12 -, 13-type unless it is practical to verify the actual layup and the transmit and receive digital pairs must be selected from different binder groups.
(b) If it is not known whether the layup is 12 -, 13-, or 25-pair unit type (BH or BK 300-pair), assume that it is the 25 -pair unit type unless it is practical to verify the actual layup and the transmit and receive digital pairs must be selected from different binder groups.

Fifty-pair odd-count PIC cable should be considered the same as 50 -pair unit constructed cable.
5.13 In multiunit PIC cables, the units spiral as they are combined in the cable manufacturing process. Units that appear to be nonadjacent and are in different rings might become adjacent as the units spiral around the core and inner ring. In the manufacture of cable, units may be slipped a maximum of one unit. For example, in the 400 -pair cable (Fig. 11), the 126-150 binder group may become adjacent to binder group 351-375.
5.14 In multiunit PIC cables, the highest crosstalk coupling loss (most desirable condition) occurs when transmit and receive digital paths are carried
in different units and spaced as widely apart as possible. In an 8-, 8-, 9-type, 50-pair cable, the units are B 1 and $\mathrm{A} 2, \mathrm{Cl}$ and B 2 , and A 2 and C 2 (see Fig. 17).
5.15 In layered cables, when transmit and receive pairs are assigned in nonadjacent splicing groups, treat this cable in the same manner a though the pairs are assigned in nonadjacent units. Similarly, treat a cable that contains transmit and receive pairs in adjacent splicing groups the same as though they are assigned in adjacent units. However, if ten or more subscriber carrier systems are contemplated in the planning period, pair assignments in adjacent splicing groups must be treated as though they are within the same unit.
5.16 In a 900-pair layer cable (Fig. 18), an adjacent group assignment is, for example, counts 1-100 and 101-200 and a nonadjacent group assignment is counts $1-100$ and 201-300. Notice that to be nonadjacent, groups must have no pairs in adjacent layers. For example, counts $301-400$ and $501-600$ do not qualify as nonadjacent and must be considered adjacent.

Step 3-Digital Line Pair Selection

5.17 Careful attention must be given to the specific pair assignments made for the digital lines to ensure that maximum margin or maximum repeater spacing, depending on the design philosophy employed, is achieved (see 3.01). The cable pairs used for the two directions of transmission should be physically separated as much as practicable to achieve high interpair crosstalk coupling loss, thus minimizing the crosstalk influence of other digital lines in the same cable sheath. Consequently, the first choice for the transmit and receive pairs would be in nonadjacent binder groups; the second choice would be in adjacent binder groups; and the last choice would be in the same binder group.
5.18 Achieving maximum send and receive pair separation (nonadjacent binder group) in subscriber carrier system applications is difficult, since these systems prove most economically attractive near the extremities of rural routes where small cable sizes are encountered. Nonadjacent binder group separation can be achieved only in larger pair sized cables (150 -pair and larger, even-count PIC cable, and 300 -pair and larger pulp-insulated conductor unit-type cables).
5.19 Step 3 provides a step-by-step procedure for selecting pairs for the digital lines that will provide the best overall design, ie, the minimum number of repeaters per digital line. This selection is governed by the followng substeps:

- Start at the CO and proceed along the cable route to a point where either the farthest RT is to be located or where a cable smaller than 50 pairs is encountered, whichever comes first.
- At that point, select transmit and receive pairs toward the CO , using the following preferential sequence; most desirable (a), least desirable (d).
(a) Transmit and receive pairs in nonadjacent binder groups
(b) Transmit and receive pairs in adjacent binder groups but in nonadjacent units
(c) Transmit and receive pairs in adjacent binder groups and in adjacent units
(d) Transmit and receive pairs in the same unit.
5.20 In selecting pairs, be careful to ensure as much separation as possible in the smaller size cables (less than 50 pairs) at the extremities of the route. Select pairs in the outer ring and try to achieve a minimum of 2 -pair separation between the send and receive pairs (see Fig. 14 and 16).
5.21 The following rules applicable to even-count PIC cables will result in maximum repeater spacing:
(1) Do not use sheath pairs 1-12 in 50-pair cables.
(2) Do not use sheath pairs $1-25$ if the starting point (5.19) involves a 75 -pair or larger cable.
(3) If the starting point is in a 75 -pair cable, the transmit and receive pairs should be selected from the following units:
$26-37$ and 51.62
$26-37$ and $63-75$
38-50 and 63-75.
(4) If the starting point is in a 100 -pair cable the transmit and receive pairs should be selected from the following units:

26-37 and 76-87
$38-50$ and 76-87
$38-50$ and $88-100$.

Step 4-Record Selected Pairs

5.22 Trace the selected pairs back toward the CO and record on the schematic the separation status of the transmit and receive pairs in each cable section (same, adjacent, or nonadjacent units).
5.23 At the splice point between cables smaller than 50 pairs and cables larger than 50 pairs, it may be necessary to establish a cross-connecting terminal or make a cable throw to achieve the desired pair separation. A third option would be to place a 50 -pair cable from the last repeater to the RT and use the existing small size cable for distribution. This would achieve the desired pair separation while avoiding the added cost and administration problems associated with a cross-connecting terminal or a cable transfer.

Step 5-Route Data Sheet

5.24 A Route Data Sheet (Fig. 19) must be prepared for each route. This Route Data Sheet is the primary input for the computer program DILEP and should be used to design or verify repeater spacing on digital line subscriber carrier systems.
5.25 DILEP is capable of handling up to 100 cable sections, 50 manhole locations, and 10 route junctions for a single route. If any of these limitations need to be exceeded for a particular route analysis, the study route must be divided into two separate route segments, using any RT site or route junction as the separation point for the two route segments.
5.26 DILEP stores data on 46 different cable codes (cable types), as listed in Table A. One of these codes must be used.
5.27 The Route Data Sheet provides the same basic information as the route schematic, but gives the data in tabular format.

oll-00z-zot Nolloas 'I ss

O

HISTORICAL DATA - 22-GAUGE EXCHANGE CABLES								
Cable CODE	NO. OF PAIRS AND INSULATION	APPROX AVG CAP. $\mu \mathrm{F} / \mathrm{MI}$ AT 900 Hz	SHEATH	CORE TYPE	REMARKS	$\begin{aligned} & \text { SPEC NO. } \\ & \text { AND } \\ & \text { DATE } \end{aligned}$	GENERAL LETTERS AND DATE	SUPERSEDED BY
A	$\begin{aligned} & 6-480 \\ & \text { Paper } \end{aligned}$	0.062	Lead	Layer	Like colored pairs Single twist	$\begin{aligned} & \text { A.T. } 2300 \\ & 3.25 .05 \end{aligned}$	-	AA
AA	$\begin{aligned} & 6.500 \\ & \text { Paper } \end{aligned}$	$0.0 ¢ 2$	Lead	Layer	Color Groups Single twist	$\begin{aligned} & \text { A.T. } 3226 \\ & 3-25-10 \end{aligned}$	$\begin{aligned} & \text { GC } 85 \\ & 4.28-10 \end{aligned}$	TA

This representation from 626-759-400 illustrates a method of estimating the "layup" of a cable identified on a cable record merely as $4-22$ (400 or 404 pair-22) placed in 1949. A glance at the "Spec. No. \& Date" column indicates this exchange cable was covered by Spec. M-2553, 8-2-48. It is reasonable to assume, therefore, that a 22 -gauge cable placed in 1949 is type DSA(L). Fig. 7 (an updated copy from 626-759-400) indicates type DSA cable to be covered by 626-759-427, a portion of which is reproduced in Fig. 8. The 404 -pair size is assembled of 50 -and 51 -pair units, as iliustrated.

BSA	$\begin{aligned} & 11.909 \\ & \text { Paper } \end{aligned}$	0.082	Lead	Laye:	Color groups Staggered twist ${ }^{4}$	AT\&T 4610 6.1-26 and M-2519 6-7.26	$\begin{aligned} & \text { GEC } 1910 \\ & 10.27-26 \\ & \text { GEC } 1910 \\ & 10.27-26 \end{aligned}$	CSA
CSA	$\begin{aligned} & 11-909 \\ & \text { Pulp } \end{aligned}$	0.082	Lead	Unit	Uniform color units Staggered twist ${ }^{5}$	$\begin{aligned} & \mathrm{M}-2536 \\ & 12-10 \cdot 35 \end{aligned}$	$\begin{array}{\|l} \text { PEL } 2187 \\ 2-6-36 \end{array}$	DSA
DSAL	$\begin{aligned} & 11.909 \\ & \text { Pulp } \end{aligned}$	0.082	Lead	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & \text { M-2553 } \\ & 8-2-48 \end{aligned}$	-	$A D A^{7}$
DSAC	$\begin{aligned} & 26-909 \\ & \text { Pulp } \end{aligned}$	0.082	Stalpeth	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & \mathrm{M} \cdot 2561 \\ & 1 \cdot 15-50 \end{aligned}$	-	ADA^{7}
DSAA	$\begin{aligned} & 16-909 \\ & \text { Pulp } \end{aligned}$	0.082	Alpeth	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & \text { M-2582 } \\ & 2 \cdot 2-51 \end{aligned}$	-	ADA ${ }^{7}$
DSAH	$\begin{aligned} & 11-909 \\ & \text { Pulp } \end{aligned}$	0.082	PASP	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & \text { M-57041 } \\ & 11.22 .55 \end{aligned}$	-	$A D A{ }^{7}$
ESAL	$\begin{aligned} & 11.909 \\ & \text { Paper } \end{aligned}$	0.082	Lead	Layer	Color groups Staggered twist ${ }^{4}$	$\begin{aligned} & \mathrm{M} \cdot 57021 \\ & 12 \cdot 5-32 \end{aligned}$	$\begin{aligned} & \text { PEL } 5080 \\ & 9 \cdot 12-52 \end{aligned}$	ADA^{7}
ADAL	$\begin{aligned} & 300-1100^{2} \\ & \text { Pulp } \end{aligned}$	0.083	Lead	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & A \cdot 312376 \\ & 10 \cdot 1-62 \end{aligned}$	$\begin{aligned} & \text { PEL } 7121 \\ & 1-25-63 \end{aligned}$	-
ADAH	$\begin{aligned} & 300-900^{2} \\ & \text { Pulp } \end{aligned}$	0.083	PASP	Unit	-Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & A \cdot 312376 \\ & 10 \cdot 1 \cdot 62 \end{aligned}$	$\begin{aligned} & \text { PEL. } 7121 \\ & 1 \cdot 25.63 \end{aligned}$	-
ADAC	$\begin{aligned} & 300-1100^{2} \\ & \text { Pulp } \end{aligned}$	0.083	Stalpeth	Unit	Mixed color units Staggered twist ${ }^{6}$	$\begin{aligned} & \text { A. } 312376 \\ & 10 \cdot 1-62 \end{aligned}$	$\begin{aligned} & \text { PEL } 7121 \\ & 1-25-63 \\ & \hline \end{aligned}$	-

Note 1: Intended for underground use; all other cables are suitable for general use.
Note 2: Not supplied in 455 -pair size.
Note 3: Before April, 1921, single pair twist lengths; after April, 1921, two lengths of pair twist per layer and reversed layers.
Note 4: Three lengths of pair twist and reversed layers.
Note 5: Four lengths of pair twist (two per layer).
Note 6: Nine lengths of pair twist (three per layer).
Note 7: BHA cable is the standard replacement cable for sizes smaller than 300 pairs.

Fig. 6-Mistorical Data

ELECTRICAL CHARACTERISTICS OF SUPERSEDED PAPER OR PULP-INSULATED EXCHANGE CABLE								
gauge AND SERIES ${ }^{1}$		$\begin{aligned} & \text { CAP. } \\ & \mu \mathrm{F} / \mathrm{Mi} \\ & \text { AT } \\ & 900 \mathrm{~Hz} \end{aligned}$	conduc. TANCE LMHOS/MI AT 900 Hz	ATTN ${ }^{2}$ dB/MI AT 1000 Hz	DIELECTING STRENGTH IN EXCESS OF		$\begin{aligned} & \text { BELL } \\ & \text { SYSTEM } \\ & \text { PRACTICE } \end{aligned}$	$\begin{array}{r} \text { PR } \\ \text { STA } \\ \mathbf{C} . \end{array}$
					BETWEEN COND. VOLTS RMS	COND AND SHEATH VOLTS RMS		
16-Ga								
NH	42	0.066	2.0	0.7	700	1000	626-759-405	
19-Ga								
ANB	85	0.066	1.5	1.2	500	1000	626-759-408	،
DNB	86	0.066	1.5	1.2	500	1000	626-759-409	
GNB	85	0.066	1.7	1.1	500	$1000{ }^{5}$	626-759-410	
CNB	85	0.084	2.0	1.3	500	1000	626-759-415	
ENB	86	0.086	2.0	13	500	1000^{5}	626-759.416	
FNB	86	0.084	2.0	1.3	500	$1000{ }^{5}$	626.759-417	
ADB	86	0.083	2.0	1.3	500	$1000{ }^{5}$	626-759-106	
22.Ga								
BSA	171	0.082	2.0	1.8	350	1000	626.759-425	
CSA	171	0.082	2.0	1.8	350	1000	626-759-426	
DSA	171	0.082	2.1	1.8	350	$1000{ }^{5}$	626.759-427*	
ESA	171	0.082	2.0	1.8	350	1000	626-759-428	
ADA	173	0.083	2.0	1.8	350	$1000{ }^{5}$	626-759-107	
							e Fig. 6.	
24.Ga								
ASM	274	0.072	2.0	2.1	350	1000	626.759-440	
BSM	274	0.072	2.0	2.1	350	1000	626.759-441	
CSM	274	0.072	2.0	2.1	350	1000	626-759-442	
DSM	274	0.084	2.0	2.3	350	$1000{ }^{5}$	626-759-443	
ESM	274	0.072	2.0	2.1	350	1000	626.759-444	
FSM	274	0.084	2.0	2.3	350	$1000{ }^{5}$	626-759-445	
ADM	274	0.083	2.0	2.3	350	$1000{ }^{5}$	626-759-108	

This reprint, from 626-759-400 illustrates a method of estimating the "layup" of a cable identifit records merely as a $4-22$ (400 - or 404- pair -22) placed in 1949. Referring to Fig. 6, it is estimated the cable is type DSA(L). A check above indicates type DSA cable to be covered by 626-75 which is illustrated in Fig. 8.

Note 4: See referenced practice for replacement cables.
Note 5: The dielectric strength between each conductor and sheath of this series of cable with PASP sheath is of 20,000 volts dc. The dielectric strength between each conductor and stalvyn sheath of ADM and ADT c: excess of 1400 volts rms.

Fig. 7-Superseded Pulp Cable

See Fig. 6 and 7, from which it has been estimated a 4.22 (404-pair, 22 gauge) cable placed in 1949 would most likely be coded. Thus, the core makeup is in 50 - and 51 -pair units.

note: numbers denote total pairs in a color group or unit INCLUDING ONE TRACER PAIR WHERE INJICATED. THE COLORS OF INSULATION INDICATED ABOVE ARE THOSE OF THE PAIRS IN THE
OUTER LAYER OF THE UNIT. THE COLORS OF THE PAIRS IN THE OUTER LAYER OF THE UNIT. THE COLORS OF THE PAIRS IN TME
OTHER LAYERS ANO GENTERS ARE SHOWN GELOW:

NO. OF PAIRS in unit	outside LAYER	THIRO LAYER	$\begin{aligned} & \text { SECOND } \\ & \text { LAYER } \end{aligned}$	$\begin{aligned} & \text { FIRST } \\ & \text { LAYER } \end{aligned}$	CENTER
25 OR 26	W-6			$W-R$	W-BL
	W-R			W-BL	W-G
	W-EL			W-G	W-R
50 OR $\$ 1$	W-G	W-R	W-BL	$w-6$	W-R
	W-R	W-8L	w-8	W-R	W-8L
	$w-B L$	W-6	W-R	- -	W-6

Fig. 8-DSA Cable Layup

Fig. 9-Layup of BH and BK 5mall PIC Cables-11- to 50-Pair Units and Multiunits

Fig. 10-Layup of 25- to 300-Pair Even-Count BH- and BK-Type PIC Cables

Fig. 11-Layup of 400-, 600-, and 900-Pair Even-Count BH and BK PIC Cables
in 1965, SLIGHTLY DIFFERENT SNIT SUPRRSEDCO CASLES

 ALTERMATE LAYUPS UERE AOOPTED TO PROVIDE A MORE COMPACT, SMOOTEA CORE ANO TO INPROV

 Ti CARR IER.

SLPERSEOED 200-and 600 palR alternate core layups

THESE JRAWIMGS ILLUSTRATE THE LAYUP Of GERTAIM SUPErSEDED CAEES.

Fig. 12-Layup of BH- and BK-Type PIC Cables

SUPERSEOED 5O-PAIR CABLE CORE LAYUP

buperseded multiunit layup

NOTE:
50-PAIR CABLES AND CABLES EMPLOYING 50-PAIR
MULTIUNITS MANUFACTURED PRIOR TO I964. SEE
FIGURES :I AND IT

Fig. 13-Layup of 50-Pair and BH- and BK-Type PIC Cables and Multiunits

ISS 1, SECTION 902-200-110

Fig. 14-Leyup of 11- to 50-Pair AH- or AK-Type Odd-Count PIC Cables

Fig. 15-Layup of 76- to 404-Pair AH- or AK-Type Odd-Count PIC Cables

I PAA|R CABLE
(ALL GAUGES)

THERE SHOULO bE a minimum of two pairs separation in the outer ring in all gauges.

THERE SHOULD GE A MINIWUM OF TwO PaIRS SEPARATION IN THE INNER RING AND ONE pair separation in the outer ring.

Fig. 16-Method of Pair Selection

Fig. 18-Configuration of 900-Pair Layer- 22 Gauge

file mam

cone to eight charactersi

m- manhole

- in - oem
tit - remote terminal
* for heclatmed cable. ado
** use only-lf necessary to overhide dilep

(1) cable section number	(2) previous cable section number	NUMEER of CARRIEA SYSTEMS	(4) cable SECTION LENGTH IN FT	$\begin{aligned} & \text { TYPE OF } \\ & \text { CONSTRUCTION } \\ & \text { A, B, U } \end{aligned}$	$\begin{aligned} & \text { (6) } \\ & \text { PRESSURE } \\ & \text { CODE } \\ & \text { P. N } \end{aligned}$	(1 cable COOE	(B) pair unit sepahation S.A.N	(9) unit size 8. 12. 16. 25 OR 50	(10) $* *$ insertion loss factor D日/KFt AT 772 kHz
16	15	5	4654	\boldsymbol{B}	N	$\theta+9$	A	25	
17	16	5	7065	B	N	BNA	A	25	
AT									
18	17	3	1500	B	N	B4A	н	25	
19	18	3	1574	θ	N	bna	A	25	
20	19	3	4926	a	N	8 m	A	25	
Pr									---
21	20	2	1211	s	N	ars	8	25	
22	21	2	1388	B	N	and	A	25	
29	22	2	+800	B	N	SNA	A	12	
RT									
24	23	,	1900	s	N	(WH	A	12	
ar									
25	24	1	3500	θ	N	BNB	A	12	
26	25	1	2000	B	N	AMB	5	25	
R 1									
27	24	1	1571	A	N	ANB	s	25	
28	27	1	961	s	N	${ }_{B H} H_{B}$	5	25	
17									
							--		

[^13]* for reclaimed cable, ado "x*
** use only if necessary to overrioe dilep

Fig. 21-Route Data Sheel-Example (Sheet 2 of 2)

digital une design and pair seiection rules SUBSCRIBER CARRIER SYSTEMS

1. GENERAL
1.001 This addendum supplements Section 902-200-110, Issue 1.
1.002 This addendum is issued for the following reasons:
(a) To add waterproof cables and make minor corrections to air core cable loss factors and temperature coefficients in Table A.
(b) To correct paragraph 5.26.
(c) To change copyright notice.

2. CHANGES TO SECTION

2.001 On the bottom of Page 1, delete the copyright notice and add the following: Not for use or disclosure outside the Bell System except under written agreement.
2.002 On Page 4, Table A, Cable Losses at 772 kHz replace information in table with new Table A.
2.003 On Page 9, change paragraph 5.26 to read: DILEP stores date on 52 different cable codes (cable types), as listed in Table A.

Outside Plant Engineering

Digital Line Engineering Program (DILEP)

Digital Line Engineering Program (DILEP)
Contents
1 INTRODUCTION 1-1
2 GENERAL 2.1
3 DESCRIPTION OF DILEP 3-1
3.1 Run Types 3-1
3.2 Inputs 3-1
3.3 Program Functions 3-5
3.4 Outputs 3-6
3.5 Backward and Forward Margins 3-8
3.6 Maximum Number of Tl Lines 3.8
3.7 Manhole Locations 3.9
3.8 Sample Problem 3.9
4 EVALUATION OF THE PRINTOUT 4-1
5 PROBLEM EXAMPLES 5-1
5.1 Automatic Run 5-1
5.2 Constrained Run 5-2
5.3 Two or More Systems 5-3
5.4 Additional System 5-3
6 IMPLEMENTATION 6-1
6.1 Establishing a Computer Connection 6-1
6.2 System Cues 6-1
6.3 Entering Input 6-1
6.4 Paper Tape Input/Output 6-2
7 DIAGNOSTICS $7-1$
7.1 Line Diagnostics 7 -1
7.2 Cable Section Diagnostics $7-1$
7.3 System Diagnostics 7.2
ROUTE DATA SHEET (BLANK REPRODUCIBLE)

1 INTRODUCTION

This section describes the use of the Digital Line Engineering Program (DILEP), a time-shared Engineering Planning and Analysis Systems (eplans) program. DILEP is designed to assist the outside-plant engineer in setting the spacing between repeaters for subscriber loop carrier systems (such as the SLC ${ }^{\text {TM }}-96$) that employ digital line transmission at the Tl bit rate (1.544 Mbits per second).

This section is being reissued primarily to incorporate information on new features that have been added to DILEP. These new features are:

- The output now includes the length (in feet) of each repeater section (ie, each series of cable sections between two repeaters).
- Users may specify the loss limit globally for all repeater sections.
- Users may specify a loss-limit reduction for selected repeater sections.
- Users may specify surge-protected repeaters.

This is a general revision of this section; therefore, arrows ordinarily used to indicate changes have been omitted.

Users do not need extensive knowledge of computers or programming to work with this program; familiarity with general information and instructions for the Remote Data Entry System (RDES) will provide the necessary background (see Section 901-601-110 and PA-599001). Note that only the CHANGE, DELETE, FILE, INSERT, LOCATE, PRINT, QUIT, and REPLACE commands for the edit mode are guaranteed to be supported by DILEP. BSP Section 902-200-110 (Digital Line Design and Pair Selection Rules for Subscriber Carrier Systems) provides the information necessary for adequate understanding of the engineering principles involved in repeater spacing. That section also provides guidelines and instructions for preparing data in the format required by DILEP.

A blank Route Data Sheet which may be copied for use in data preparation is provided on the last page of this BSP.

2 GENERAL

Digital line repeater spacing is based on insertion loss and on limitations imposed by crosstalk. Insertion loss, for a signal transmitted on a communication channel, is the ratio (expressed in dB) of received power to transmitted power. Crosstalk is the undesired power coupled into a communications circuit from other communications circuits. Three types of crosstalk are involved: near-end crosstalk (NEXT), far-end crosstalk (FEXT), and apparatus-case crosstalk (ACXT). Insertion loss and crosstalk are in turn affected by:

- Number of TI lines in the cable
- Length of each cable section
- Type of plant construction
- Cable pressure treatment
- Cable code (cable type)
- Relative separation between transmit and receive pairs
- Pair unit size
- Type of apparatus case (800 or not).

The engineer of outside plant supplies the data for a DILEP analysis on Route Data Sheets. (A reduced-size sample sheet is shown in Figure 2-1; a larger, reproducible sheet is provided at the end of this BSP.) A DILEP user then accesses DILEP by means of an input/output device which is referred to throughout this section as a data terminal. The user enters all data (the input) from the Route Data Sheets into an input data file, using the data terminal keyboard. This information is transmitted via telephone lines to the time-share computer where it is received and stored. The user then requests dilep to process the data file. Before processing the data, DILEP gives the user the opportunity to specify any or all of three options. It then analyzes the route data and causes a potential repeater location plan (the output) to be printed out or otherwise displayed at the terminal.

The engineer of outside plant must analyze the DILEP output to determine if modifications are needed to satisfy other engineering and economic considerations. Examples of such modifications could be the desire to locate repeaters at existing loading-coil sites or to avoid locating repeaters at inaccessible points. The engineer may modify the layout of the system to demand that repeaters be placed at specific locations; DILEP will then analyze the modified layout and insert additional intermediate repeaters when necessary.

Authorization and procedures for using DILEP may be obtained from the local EPLANS coordinator.

DILEP executes on a time-share computer, which may be a vendordependent system. Therefore, periodic updates, changes by a vendor, or a switch in vendors, are likely to occur. All references to DILEP operation on a particular Time-Share System (Tss) are contained in PA-599001 (rdes User's Guide), which is updated as required.

(1) CABLE SECTION NUMEER	(2) previous cable section MMBEEA		(4) cable section LENGTM in Ft	(5) TrPE OF CONSTRUCTON A, B, U		(7) cable CODE	S, A, N			(11)*** Loss Limir azouction (d8)

* for reclaimed cable, ado " x "
for screened cable, ado "s"
m- Manhole
of - demand repeatea
RT- Remote terminal
- boo-type apparatus case? Y orn (circle one)
- all protected afpeaters? Y or n (circle one)
Y ORN (CIRCLE ONE)
if Y. to what? ___dB

Figure 2-1. Route Data Sheet.

3 DESCRIPTION OF DILEP

DILEP is an engineer-oriented tool for performing the mathematical analysis needed to obtain the location of digital line repeater sites for loop carrier systems.

3.1 Run Types

DILEP can be used to provide either an automatic run or a constrained run, as discussed below.

Automatic Run

The automatic run provides outputs specifying the proposed repeater sites, using, as the only input, information about the cable sections and the locations of remote terminals (RTs) and manholes. It provides optimal repeater spacing for the loop carrier system, but ignores any special engineering considerations; consequently, it may place repeaters at impractical locations such as at a busy intersection or in the middle of a river. If one or more repeaters are needed in underground plant, DILEP will place the repeaters at user-specified manhole sites if possible. If the user has not specified manhole sites within underground plant, DILEP will place, at optimal locations, the fewest repeaters required to achieve the transmission objectives. The output from the automatic run provides the outside-plant engineer with a starting-point design which he or she can then adapt to meet specific boundary conditions.

Constrained Run

The constrained run permits the engineer to specify some or all of the repeater locations to meet specific conditions. These specified repeaters are called Demand Repeaters (DRs). The program then uses location data (for demand repeaters, remote terminals, and manholes) and cable-section data to determine any additional repeater sites that are needed to satisfy the digital line transmission requirements.

In general, the user should start by making an automatic run to determine the minimum number of repeaters needed for the route. He or she can then use constrained runs, inserting DRs to meet specific conditions, until a satisfactory design has been developed.

3.2 Inputs

DILEP inputs are of two types: route data contained on an input data file previously prepared from Route Data Sheets, and additional options specified interactively by the user after he or she requests a run. A discussion of each type of input follows.

Route Data Sheet (Data file) Inputs

Before evaluating a route with DILEP, the user should enter the route data on a Route Data Sheet. (A reduced-size sample sheet is shown in Figure 2-1; a larger, reproducible sheet is provided at the end of this BSP.) Background information for preparing this sheet is given in Section 902-200-110. A properly filled-in sheet provides the following basic types of data in tabular form:

- Title information
- Cable section information
- $R T$ and $D R$ requests
- Manhole locations.

Each of these data types will now be discussed in more detail.

Title Information:

Two kinds of title information are provided on the Route Data Sheet:
File name-This identifies any particular data file among all possible data files being stored in the user's storage area. Use of this information is covered in 6.3-"Entering Input."
ROUTE DESCRIPTION - The route description line ("title"), if specified by the user, will appear at the top of the printed listing after the ***DIGITAL line engineering program*** heading. The same description will appear each time the problem is run unless the user subsequently changes it. When the title line is entered into the input data file from a terminal, the format is:

T titlename

where T is typed immediately after the system cue and titlename can consist of up to 70 characters. Any spaces entered will count in the 70 character limit. If a title line is given, it must be the first line of the data file that will be submitted to DILEP.

Cable Section Information:

The required data for each cable section (100 sections maximum for each route or route segment) is given on a line across the first nine columns of the Route Data Sheet. The contents of each column, in order by number as given on the Route Data Sheet, are:
(1) Cable section numbers, numbered consecutively from the Central Office (co), starting with 1
(2) Previous cable section numbers, starting with zero for the first section line on the sheet
(3) Ultimate number of active 71 lines (ie, those to be installed in the cable section during the planning period plus any already existing in the same sheath)
(4) Length of the cable section in feet, if more than 20 feet. (Sections less than 20 feet should be included with an adjacent section length.)
(5) Type of outside plant construction - ie, aerial (A), buried (B), or underground (U)
(6) Pressurization code for each cable section-ie, pressurized (P) or nonpressurized (N)
(7) Cable type code - three letters, plus a fourth letter if the cable is reclaimed or screened (X for reclaimed, S for screened) ${ }^{1}$
(8) Relative pair-unit separation between transmit and receive pairs-ie, same unit (S), adjacent units (A), or nonadjacent units (N)
(9) Pair-unit size (number of pairs per cable unit) - $8,9,11,12,13,16,17$, 25,50 , or 100.
(10) Insertion loss factor in dB per kilofoot. User inserts a value in this column only if a factor other than the normal is wanted.
(11) Loss limit reduction in dB . User inserts a value in this column for only those sections whose loss limit is to be reduced (if any).

When entered into the input data file from a terminal, the data for one section must be typed entirely on one input line and in the same sequence as given on the Route Data Sheet. The data items must be separated by commas.

$R T$ and $D R$ Requests:

On the Route Data Sheet, each RT or DR entry is made in column 1 as the only entry on the next line after the number of the cable section in which the RT or DR appears. To enter the request for a remote terminal into the input data file, the user types an input line containing only the letters RT. To enter the request for a demand repeater, the user types an input line containing only the letters DR.

Manhole Locations:

On the Route Data Sheet, manhole locations (50 maximum for each route or route segment) can be designated as potential repeater sites either by interspersing them on separate data lines among the cable sections with which they are associated or by entering them as a separate group after a number of cable sections. They must, however, be given in order of increasing distance from the co. On the Route Data Sheet, the user designates a manhole by entering in column 1 a letter M and in column 2 the cumulative distance from the CO to the manhole. The user inputs manhole site locations (potential repeater sites) in the format

M, distance

where M is typed immediately after the system cue and distance is the

[^14]cumulative distance of the manhole site from the co. One comma must separate M and distance.

Interactive Inputs

Before processing the data, DILEP prints out each of the following questions in sequence:

800-TYPE APPARATUS CASE? (Y OR N)

ALL PROTECTED REPEATERS TO BE USED? (Y OR N)

CHANGE LOSS LIMIT? (Y OR N)

After each question, DILEP prints a prompt symbol and waits for a response from the user before proceeding. If the user's response to the third question is "Y", DILEP then asks "TO WHAT?", prints a prompt, waits for a valid losslimit entry, then prints a confirming statement.

If the user specifies 800 -series apparatus cases, the impairment caused by apparatus-case crosstalk will be virtually eliminated. If the user specifies surgeprotected repeaters, the loss limit of all repeater sections except the first will be reduced by 1.5 dB (eg, from 33.5 dB to 32.0 dB). The reduction for the first repeater section will be only 1.0 dB (eg, from 23.0 dB to 22.0 dB) because there is no surge-protected repeater at the input end to add the other 0.5 dB . The user may also reduce the loss limit for all repeater sections below the default loss value of 33.5 dB to as low as 20.0 dB .

Input Alternatives and Options

When composite cable is used in the route, DILEP supplies a default value for the insertion loss per kilofoot. If the cable loss is known to differ from the default value, the user may override the default value by entering the desired value in column 10 of the Route Data Sheet. When it is to be entered into the computer, the new value is typed immediately following the last item of required information (ie, the pair-unit size), on the same input line. If the insertion loss per kilofoot is given, it may contain a decimal point. An example of a cable section entry with overriding insertion loss per kilofoot is:

$$
3,2,5,3000, \mathrm{~A}, \mathrm{P}, \mathrm{CAA}, \mathrm{~S}, 50,3.9
$$

If a section of cable is screened, the user must enter, in column 7 of the Route Data Sheet, the letter S as the fourth letter of the cable code. Also, the user must specify the pair unit separation as nonadjacent (letter N in column 8 of the Route Data Sheet, Figure 2-1) so that DILEP will recognize the cable as screened. DILEP assumes a $15-\mathrm{dB}$ NEXT advantage for screened cable; therefore, ACXT and FEXT are the controlling types of interference in this situation.

When reclaimed cable is used in the route, the user must enter the letter X as the fourth letter of the cable code in column 7 of the Route Data Sheet. This will cause a 35 percent increase in the Dilep-provided insertion loss per kilofoot, since reclaimed cable has a higher capacitance than nonreclaimed cable.

In practice, the situation often arises where the user would like to decrease the loss limit of only one, or some, of the sections of the digital line (eg, to compensate for power line induction). To designate this to DILEP, the user enters the desired limit in column 11 of the Route Data Sheet. The computer entry must then have a ", R " at the end of the data line for a section, followed immediately by the dB amount of the reduction as entered on the Route Data Sheet. The reduction amount must be a number between 0.0 dB and 15.0 dB . A decimal point is not required; entries such as ",R3" are perfectly acceptable. This reduction is an option which behaves much like the option of overriding the default cable insertion loss. If the user wishes to do both-to override the default insertion loss and to specify a reduction-the insertion loss must be specified first. The reduction, if used, must always be the last item specified for the cable section. If the user tries to specify a reduction less than 0.0 dB or greater than 15.0 dB , DILEP will still run but the reduction will be set to 0.0 dB . An example of a cable section entry with a 3 dB loss limit reduction is:

$$
3,2,5,3000, A, P, C A A, S, 50, R 3
$$

3.3 Program Functions

DILEP will locate a repeater at each route junction if the user has not already placed an RT or a DR there. (A junction is formed when a single system serves two or more branches of a feeder route, or where lines from two or more systems enter the same feeder route; DILEP can handle up to 10 junctions per route or route segment.) DILEP also will place RTs at the end of each digital line. When a single system serves two or more branches of a feeder route, the cumulative distances of cable sections and repeater sites will be the actual distances from the CO, not the total length of the path (see last paragraph of 5.1 "Automatic Run").

DILEP ensures that the insertion loss for a repeater section will be within the minimum and maximum insertion loss limits given in Table 3-1. Even if a repeater is moved to the full extent of either the backward or forward margin, the final insertion loss will be between the minimum and maximum limits.

TABLE 3-1

REPEATER SPACING AS LIMITED BY CABLE INSERTION LOSS IN dB AT 772 kHz

REPEATER SECTION	MINIMUM LOSS (dB)	MAXIMUM LOSS (dB)
Adjacent to the CO	9.2	23.0
Not adjacent to the CO	9.2	33.5

When an RT or a DR has been requested by the user and the insertion loss limit for the repeater section has not yet been reached, DILEP subtracts the actual section loss from the permissible section loss. It then attempts to equalize the repeater sections-ie, to spread this difference over all repeaters between the previous and the current $D R$ points. Groups of repeaters consisting solely of an RT or a DR cannot be equalized. Because equalization is done on an insertion loss basis rather than on a crosstalk basis, the forward and backward margins for a group of repeaters will be approximately equal, while the maximum
number of Tl lines may differ for repeaters in the group. Equalization may cause the locations of the repeaters to change if one of the repeaters in the group is respecified as a DR and the other repeater sites are left to be calculated by DILEP.

Equalizing the repeater sections by spreading the insertion-loss difference over several repeater sections results in each equalized section having slightly less insertion loss than the maximum loss for that section, rather than the section containing the RT or DR having substantially less insertion loss than the maximum loss. This results in three benefits:

1. It is desirable to have the actual design loss less than the maximum permissible loss. From a transmission point of view, this provides additional transmission margins for factors such as high ambient cable temperatures, moisture accumulation in the cable, and cable manufacturing variations.
2. The smaller insertion loss provides repeater spacings that can accommodate additional Tl lines without the need to add repeater locations if unforecasted growth occurs during the study period.
3. The difference between actual loss and maximum permissible loss makes it possible to provide backward and forward margins for repeater sites, to assist the engineer in tailoring the line design to possible physical constraints.

When actual loss equals maximum loss for all repeaters in a route, the backward and forward margins will always be zero, and the maximum number of Tl lines for each repeater section will be no greater than the number specified by the user.

3.4 Outputs

DILEP analyzes the route problem data the user has previously stored in an input data file and provides two types of output- route description data (based on cable sections) and repeater section data (based on the series of cable sections between repeaters).

Route Description Data:

1. The title of the route problem.
2. For each cable section: the nine items of data entered by the user from the input data file for that cable section, the insertion loss factor being employed (default or specified), the insertion-loss limit imposed on the repeater section by that cable, the simplex loop resistance in ohms, the cumulative simplex loop resistance from the co to the end of the section, and the cumulative distance from the co to the end of that section. (The simplex loop resistance may be used in the design of repeater powering.) The abbreviated headings used for the section data on the printouts are:

- SEC \# (cable section number)
- Prvisec (number of the previous cable section)
- \# TI LINES (number of T 1 lines specified by the user)
- SEC LEN (cable section length)
- TYP PLT (type of outside plant construction)
- P N (pressurized or nonpressurized)
- CA CODE (cable code)
- PR SP (pair unit separation)
- UNIT SIZE (number of pairs in each cable unit)
- DB/KFT loss (loss at 772 KHz , from stored DILEP data file)
- LOSS LIMIT (the maximum loss allowed in a repeater section that includes the type of cable used in this cable section)
- RESIST (simplex loop resistance between repeaters)
- CUM RESIST (cumulative simplex resistance between the CO and the repeater)
- CUM LENGTH (cumulative distance from the Co to the end of that cable section).

3. $R T$ and $D R$ locations in their input sequence among the cable section numbers.
4. A separate list of the manhole locations that were input as potential repeater locations.

Repeater Section Data:

The repeater section data is given in parts. Each part spans a series of cable sections along one of two possible types of path:

- From the co to the end of the first branch of the route, or
- From one junction to the end of any branch of the route other than the first.

For each repeater section, the information is given under the following headings on the printout:

- REPEATER (the number of the section, followed by a code designating a special repeater, if applicable). The codes can designate a remote terminal (RT), demand repeater (DR), manhole (MH), or new manhole (NM).
- DISTANCE FROM C.O. (the distance in feet from the co to the repeater site)
- SECTION LENGTH (repeater section length-distance between repeaters - in feet)
- DESIGN LOSS (DB) (the design insertion loss in dB at 772 kHz)
- MAX TI LINES (the maximum number of T1 lines that can be assigned)
- BKWD MARGIN (the backward margin - ie, the distance that a repeater can be moved back toward the CO)
- FWD MARGIN (the forward margin - ie, the distance that a repeater can be moved forward, away from the CO)

3.5 Backward and Forward Margins

DILEP computes two types of margins that provide a measurement of the flexibility in the route design. First, it computes a backward and a forward margin for each repeater site. The backward margin is the number of feet a repeater site can be moved toward the co without disturbing any other repeater location. The forward margin is the number of feet the repeater site can be moved away from the co without disturbing any other repeater location. Calculation of the backward and forward margins for a particular repeater site is made under the assumption that the repeaters on either side of the site are not moved. If the user wishes to move two adjacent repeaters, he or she must rerun the DILEP program and specify the two new locations as DRS to ensure that no additional repeater is necessary.

Backward and forward margins are not calculated for RTs, because cable data is not available for the cable beyond the RT site when the site is at the end of a digital line branch. RTs at the end of digital line branches can be moved back toward the co as long as the insertion loss for the repeater section is not reduced below 9.2 dB . Backward and forward margins are not calculated for DRS at junctions, since these repeaters must be placed as close to the physical location of the junction as possible. However, backward and forward margins are calculated for all other DRS to indicate how much accuracy can be tolerated in measuring their distance from the co. The user also should be aware that when a normal repeater is changed to a DR, DILEP will adjust the locations of repeaters on both sides of the new DR to achieve optimal repeater spacing between DR and RT locations. This condition may arise even if the new DR is placed at its DILEP-calculated site instead of being moved to a new site. If the user wishes to change one repeater to a DR and to leave all others in their original positions, he must specify as DRs all repeaters between two DRS, between two RTS, or between any combination of these.

3.6 Maximum Number of T1 Lines

The second type of margin calculated by DILEP is the maximum number of TI lines that can be used in each repeater section. Calculation is made under the assumption that the repeaters at either end of a repeater section are not moved from their DILEP-calculated sites. If the user moves one or more repeaters in the route to obtain the final design, the maximum number of Tl lines calculated by DILEP may no longer be valid. The user should request DRs at the final sites for all repeaters and then rerun DILEP to obtain the maximum number of Tl lines that can be handled by each repeater section in the final design plan.

Note. Caution should be exercised when interpreting the maximum number of TI lines calculated by DILEP, considering the following factors:

1. DILEP has no knowledge of cable size: therefore, the calculated maximum number of TI lines could require more cable pairs than the cable contains.
2. DILEP has no knowledge of cable layup (ie, positioning of the pairs); therefore, it may not be possible to maintain the specified pair-unit separation for all Tl lines as the maximum number of Tl lines is approached.

3.7 Manhole Locations

If a repeater must be located in an underground cable section, it will be located at one of the specified manhole sites and marked with the letters $\mathbf{M H}$. However, if a repeater must be located in an underground cable and no manhole sites are specified, or if the number of manhole sites specified is insufficient to allow all required repeaters to be located at existing manhole sites, DILEP will determine the repeater sites and mark them with the letters $\mathbf{N M}$ to indicate that new manholes are needed.

3.8 Sample Problem

A simplified sample DILEP problem to introduce procedures is illustrated in Figures $3-1 \mathrm{~A}$ through $3-1 \mathrm{H}$. Figures 3-1A through 3-1C show the associated route schematic, Route Data Sheet, and route printout, respectively. Figure 3 ID shows a sample run in which all interactive questions are answered in the negative (N) and no loss limit reductions are specified by cable section. Each of the next three figures ($3-1 \mathrm{E}, 3-1 \mathrm{~F}$, and $3-1 \mathrm{G}$) illustrates the effect of a positive answer (Y) to a different one of the interactive questions while the others remain negative so that the effect of each option in isolation can be noted. Another figure ($3-1 \mathrm{H}$) then illustrates how the loss limit of any cable section can be reduced independently of the other cable sections.

The effects of different answers to the interactive questions can be noted by a careful study of the different examples (Figures $3-1 \mathrm{E}$ through $3-1 \mathrm{H}$) in comparison with the reference figure ($3-1 \mathrm{D}$) where no options were requested. Figure 3-1E shows the effect of specifying 800 -type apparatus cases. Here the repeater locations are the same as in Figure 3-1D but the maximum number of Tl lines is increased. When protected repeaters are specified (Figure 3-1F), the repeater locations stay approximately the same but the maximum number of Tl lines decreases. In Figure $3-1 \mathrm{G}$, the loss limit for all repeater sections is reduced globally from 33.5 dB to 30.8 dB ; the repeater locations are identical to those in Figure 3.1D but the maximum number of T 1 lines is decreased. In Figure $3-1 \mathrm{H}$, the loss limit of the first cable section is reduced by 3.0 dB (from 33.5 dB to 30.5 dB); this does not affect the repeater spacing or the maximum number of T1 lines (see Figure 3-1D) because the first repeater section is limited to 23.0 dB anyway.

Figure 3-1A. Sample DILEP Problem, Route Schematic.

						(7) CAREE CODE				
1	0	6	396	A	p	ADA	A	50		
2	1	6	123	A	P	BKM	N	25		
3	2	6	3367	A	p	CAA	A	50	4.1	
4	3	6	5825	A	p	CAA	A	50	4.1	
5	4	6	2025	A	P	caA	A	50	4.1	
6	5	6	1947	A	p	ADA	A	50		
7	6	6	1109	A	p	ADA	\wedge	50		
8	7	6	2658	A	p	ADA	A	50		
RT										

m- manmole
 OR - OEMANO AEPEATEA

mt-memote temminal

- 600-irpe appanatus case? y OR N (CINCLE ONE)
- ALL PROTECTED AEPEATERS? Y ON M (CIACLE ONE)
- reouce loss limit? Y on micincle ome
if r, to mhat?
$\xrightarrow{-} 40$

NEXT?
>CREATE <-.-................ NOTE 1
FILENAME? >SAMPLE NEW FILE:
INPUT:

```
> T SAMPLE DILEP PROBLEM
> 1,0,6,396,A,P,ADA,A,50
>2,1,6,123,A,P,BKM,N,25
>3,2,6,3367,A,P,CAA,A,50,4.1 <-..... NOTE 2
>4,3,6,5825,A,P,CAA,A,50,4.1
> 5,4,6,2025,A,P,CAA,A,50,4.1
>6,5,6,1947,A,P,ADA,A,50
>7,6,6,1109,A,P,ADA,A,50
>8,7,6,2658,A,P,ADA,A,50
>RT
> <---.- NOTE 3
EDIT:
>FILE <----- NOTE 4
```

NEXT?
> DILEP <-..-- NOTE 5

NOTES ON THE ABOVE PRINTOUT:

Note 1: The user enters the input mode to create a new data file.
Note 2: CAA represents a composite cable with the digital lines in 22 gauge. The 4.1 data field is used to override the DILEP-provided default for the insertion loss per kilofoot.

Note 3: The user depresses the RETURN key without data input to enter a null line and transfer to the edit mode.

Note 4: The user saves the data file in his or her storage area.
Note 5: The user requests that the DILEP program be run.

Figure 3-1C. Sample DILEP Problem, Route Printout.


```
EXECUTION:
800-TYPE APPARATUS CASE? (Y OR N)
AYL PROTECTED REPEATERS TO BE USED? (Y OR N)
>N
ALL NON-PROTECTED REPEATERS HILL be USED
CHANGE LOSS LIMIT? (Y OR N)
>N
```

** Digital line engineering program **
*** ISSUE 4 ***

SAMPLE DILEP PROBLEM

Figure 3-IE. Sample DILEP Problem Run, First Option Y.

```
EXECLTICH: &PPARATUS CASE? (Y OR N)
>N
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
CHANGE LOSS LIMIT? (Y OR N)
```

** Digital line engineering procram ***
*** ISSUE 4 ***
SAMPLE DILEP PROBLEM

SEC	PRV	\#T	SEC	TYP	P	CA	PR	UNIT	D8/KFT	Loss		CUM	CUM
"	SEC	LINES	LEN	PLT	N	CODE	SP	SIZE	LOSS	LIMIT	RESIST	RESIST	LENOTH
1	0	6	396	A	p	ADA	A	50	5.49	29.0	7.2	7.2	396
2	,	6	123	A	P	BKM	A	25	6.27	32.0	3.6	10.8	519
3	2	6	3367	A	P	CAA	A	50	4.10	32.0	61.6	72.5	3886
4	3	6	5825	A	p	cas	A	50	4.10	32.0	105.6	179.1	9711
5	4	6	2025	A	P	caa	A	50	4.10	32.0	37.1	216.1	11736
6	5	6	1947	A	P	ADA	A	50	5.49	32.0	35.6	251.7	13583
7	6	6	1109	A	P	ADA	A	50	5.49	32.0	20.3	272.0	14792
8	7	6	2658	A	P	ADA	A	50	5.49	32.0	48.6	320.7	17450

PART 1

$\begin{aligned} & \text { REPEATERS } \\ & \text { REPEATER } \\ & \# \end{aligned}$	FOR CAELE DISTANCE FROM C.O.	SECTIONS SECTION LENGTH	$\begin{gathered} \text { THROUGH } 8 \\ \text { DESIGN } \\ \text { LOSS }(D B) \end{gathered}$	$T 1$	MAX LINES	BKWD MARGIN	$\begin{aligned} & \text { FWD } \\ & \text { MARGIN } \end{aligned}$
1	4705	4705	20.10		158	428	439
2	11967	7262	30.10		20	377	327
3 RT	17450	5483	30.10		25		\%

Figure 3-1F. Sample DILEP Problem Run, Second Option Y.

```
EXECLTION:
800-TYPE APPARATUS CASE? (Y OR N)
>!
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
ON
ALL NON-PROTECTED REPEATERS WILL BE USED
CHANGE LOSS LIMIT? (Y OR N)
>Y
TO WHAT?
>30.8
LOSS LIMIT IS NOW 30.8 DE MAXIMUM
```

 ** DIGITAL LINE ENGINEERING pROGRAN ***
 *** ISSUE 4 ****
 SAMPLE DILEP PROBLEM

SEC	PRV	\#T 1	SEC	TYP	P	CA	PR	UNIT	DB/KFT	LOSS		CUM	CUM
	SEC	LINES	LEN	PLT	N	CODE	SP	SIZE	LOSS	LIMIT	RESIST	RESIS:	LENGTH
1	0	6	395	A	P	ADA	A	50	5.49	27.8	7.2	7.2	396
2	1	6	123	A	P	BKM	N	25	6.27	30.8	3.6	10.8	519
3	2	6	3367	A	P	CAA	A	50	4.10	30.8	61.6	72.5	3885
4	3	6	5825	A	P	CAA	A	50	4.10	30.8	106.6	179.1	9711
5	4	6	2025	A	P	CAA	A	50	4.10	30.8	37.1	216.1	11736
6	5	6	1947	A	P	ADA	A	50	5.49	30.8	35.6	251.7	13683
7	6	6	1100	A	P	ADA	A	50	5.49	30.8	20.3	272.0	14792
8	7	6	2658	A	P	ADA	A	50	5.49	30.8	48.6	320.7	17450

PART 1
RFFEATERS FOR CAELE SECTIONS 1 THROUGH 8

REPEATER	DISTANCE	SECTION	DESIGN		MAX	BKWD	FW'D
\#	FROM C.O.	LENGTH	LOSS(DE)	51	LINES	MARGIN	MAPSI!
1	4624	4624	19.76		129	97	97
2	11937	7313	30.26		13	72	72

Figure 3-IG. Sample DILEP Problem Run, Third Option Y.

> T SAMPLE DILEP PROBLEM $1,0,6,396, A, P, A D A, A, 50, R 3$ $2,1,6,123, A, P, B K M, N, 25$ $3,2,6,3367, A, P, C A A, A, 50,4,1$ $4,3,6,5825, A, P, C A A, A, 50,4.1$ $5,4,6,2025, A, P, C A A, A, 50,4.1$ $6,5,6,1947, A, P, A D A, A, 50$ $7,6,6,1109, A, P, A D A, A, 50$ $8,7,6,2658, A, P, A D A, A, 50$ $R T$

```
EXEこUTIJ:%
3)う-TYPE APPARATUS こASE? (Y OR N)
>M
ALL PROTECTED REPEATERS TO BE USED? (Y OR V)
ALL NON-PROTECTED REPEATERS WILL BE USED
CHANGE LOSS LIMIT? (Y OR N)
```

** DIGITAL LINE ENGINEERING PROGRAM ***
E ISSUE 4 *
SAMPLE DILEP PROBLEM

SEC	PPV	＂T 1	SEC T	TYP	P	CA	PR	UNIT	DB／KFT	Loss		CJM	ごM
\＃	SEC	LINES	LEN？	PLT	N	CODE	SP	SIZE	LJSS	LIMIT	T RESIST	RESIST	LEvjT4
1	0	5	395	A	P	P ADA	A	50	5.49	30.5	57.2	7.2	375
2	1	5	123	A	？	S KM	N	25	6.27	33.5	53.6	13.8	519
3	2	5	3357	A		C CAA	A	50	4.10	33.5	$5 \quad 51.6$	72.5	3335
4	3	6	5325	A	P	P CAA	A	50	4.10	33.5	5126.5	179.1	9711
5	4	5	2025	A	P	P CAA	A	50	4.10	33.5	$5 \quad 37.1$	215.1	11735
5	5	5	1947	A	P	P ADA	A	50	5.49	33.5	$5 \quad 35.6$	251.7	13693
7	5	6	1109	A	P	P ADA	A	50	5.49	33.5	$5 \quad 20.3$	272.0	14792
8	7	6	2653	A	P	P ADA	A	50	5.49	33.5	548.5	323.7	17453
RT													
PART 1													
REPEATERSREPEATER		RS FOR	CABLE		ECT	TIONS	1	THROU	JG4 9				
			Stance			SEこTIO			DESIGN		MAX	BKND	FWD
＊			OM C．O			LENGT			OSS（D3）	$T 11$	INES	MARGIN	YARSI：A
1			4624			452			19.75		200	795	730
	2		11937			731			30.25		25	639	$59 ?$
	3 RT		17450			551			30.25		36	0	0

Figure 3－1H．Sample DILEP Problem Run，Reduced Loss Limit．

4 EVALUATION OF THE PRINTOUT

When the engineer receives the proposed repeater sites from DILEP, he or she must evaluate the design with the following questions in mind:

1. Is there sufficient margin in the design in terms of maximum number of $\mathrm{T} \mid$ lines and forward and backward margin?
2. Are the proposed sites physically suitable? (This can be determined by making a field check of the sites.)

If the proposed design is unsatisfactory, the engineer can use a constrained run, requesting DRs at locations that will create additional margin in the route or at physically acceptable locations such as loading-coil sites, to obtain a new design. This process can be repeated as necessary until a final route design is obtained.

5 PROBLEM EXAMPLES

More detailed examples of problem inputs and their solutions will now be given, with emphasis on the capabilities of DILEP and on basic procedures used to input data and obtain the output solutions.

The user must type certain commands to enter or change problem data and to run the DILEP program. Throughout this section, the following commands are used:

1. The CREATE command, together with the name of a data file not already saved in the user's storage area, is used to enter the input mode to begin entering data for a new data file.
2. The ACCESS command, together with the name of a data file currently saved in the user's storage area, is used to enter the edit mode so the data file can be modified.
3. The fILE command is used to store a data file.
4. The DILEP command, together with the appropriate data file name, is used to run the DILEP program.

Additional commands can be found in RDES PA-599001 (see INTRODUCTION). Throughout that PA, the "greater-than" symbol ($>$) is used as the prompt, or cue, to indicate that the TSS is ready to receive input. This symbol thus precedes all user input.

5.1 Automatic Run

Figure $5-1$ is a route schematic of a proposed Subscriber Loop Multiplex ($\mathrm{SLM}^{\mathrm{TM}}$) carrier route. Each SLM system requires one Tl line. Figure $5-2$ gives the corresponding Route Data Sheets prepared from this schematic. In this example, the user has elected to have DILEP automatically place all repeaters (other than the RTS) that are needed on the route. The proposed route contains one junction at the end of cable section 24 . The junction occurs where a single system serves two branches of the feeder route. Note that cable sections 25 and 26 must be designed for two Tl lines to reflect the digital line loop-back design procedure covered in Section 902-200-110. Only three manhole sites have been specified by the user. One of these sites is located near the center of section 4, and the other two are located at the ends of cable sections 4 and 5 . Note that other manhole sites could have been included if the user had so desired, either at the ends of other underground cable sections or within any underground cable section.

This example is used in Section 902-200-110, and the development of the Route Data Sheet from the route schematic is discussed there. From the Route Data Sheet, the user can create a data file as shown in Figure 5-3. The user can now analyze the route by executing DILEP; the procedure and results are shown in Figure 5-4.

If the user had not requested RTs after cable sections 26 and 28 , DILEP would have automatically placed RTs at these points, since the ends of all digital line branches must ierminate in an RT. Similarly, if the user had not requested a DR at the route junction (the end of section 24), DILEP would have automatically placed a DR at this site, since all route junctions must be repeater sites.

Since the first repeater was not needed until after the start of aerial cable, DILEP did not need to use any of the manhole sites.

The repeater section in the branch of the route has less than the minimum allowable loss; this caused the message "ONE OR MORE SECTIONS HAVE LESS THAN MIN. LOSs" to be printed. To bring this repeater section up to the minimum allowable loss, the user may either place the RT further out along the cable route or place a transmission pad at the RT. In situations where a second digital line is not likely to be extended beyond the RT, it is permissible to place a pad in the RT. Generally, pads in RTS should be avoided since the transmission levels of additional digital lines at these locations must be treated identically and there is no practical method of placing pads in repeater apparatus cases. Notice that the cumulative distances for the second part of the route (cable sections 27 and 28 and repeater 16) are the actual distances from the co, not the total length of the path which would include the distance for looping back on the first branch (cable sections 25 and 26).

5.2 Constrained Run

For a constrained run, the user enters some or all repeaters as DRs. One possibility is to place DRs at all existing loading-coil sites and then have DILEP analyze the route to determine if additional repeaters are necessary.

The route schematic in Figure $5-1$ was drawn so that loading-coil sites always fall between two logical cable sections. Consequently, the data file that was created by the user (Figure 5-3) can be easily modified to provide a constrained run. This is done by inserting a DR request after each line of cable section information in the data file that describes a cable section immediately preceding a loading-coil site. The loading coils after cable sections 17 and 23 have already been defined as RT sites. Therefore, it is not necessary to place DR requests after these cable sections.

The user can modify the data file by first locating the line of cable section information for the cable section preceding the loading-coil site and then inserting a DR request after the cable section line. This is done as shown in Figure 5-5. This modified data file can now be analyzed by DILEP, producing the results shown in Figure 5-6.

Comparison of this constrained run with the automatic run shows that placing DRs indiscriminately at every loading-coil site can be an expensive policy. This particular sample route required 50 percent more repeaters (24 instead of 16). Also, one of the DRS (repeater 20) forced a repeater section with less than minimum allowable loss to be created, and another DR (repeater 13) caused an RT section to have less than the minimum loss.

In general, the user first should make an automatic run to determine the minimum number of repeaters needed for the route, then gradually modify the data file to include a few new DRS on each successive constrained run. If the previous example is run using DRs at the loading-coil sites after cable sections $6,10,13$, and 19 but omitting the DRs at the loading-coil sites after cable sections $4,8,11,14,16$, and 21 , a design is obtained which uses some of the loading-coil sites but requires fewer repeaters than when all loading-coil sites are used. This can be seen from the modified repeater section table as presented in Figure 5-7.

5.3 Two or More Systems

When two or more systems are planned at the same time and are to follow the same feeder route, DILEP can be used to calculate the necessary repeater sites for both systems simultaneously. This is done by using junctions to connect the separate branches of the systems to the feeder route. Figure 5.8 shows three systems which share cable sections 1 through 4 . Systems 2 and 3 also share cable sections 9 through 12 (junctions occur after cable sections 4 and 12). Route Data Sheets that show the cable section data for the route are given in Figure 5-9.

The Route Data Sheet shows that cable sections 2 and 3 contain composite cable, and that for section 3 it is necessary to override the default value for the insertion loss factor that DILEP supplies. Cable section 15 uses reclaimed cable. Note that two manhole sites have been given for cable section 3.

The user can create the data file as shown in Figure $5-10$ and run the problem as shown in Figure 5-11.

This designing of two or more systems simultaneously is recommended over designing each system separately for two reasons:

1. The portion of the route that is shared by all systems needs to be designed only once.
2. The DILEP program is executed only once to design all three systems, rather than once per system.

5.4 Additional System

When an unanticipated system must be added to an existing feeder route, it is necessary to review the design margin for the part of the feeder route that will be shared with the new system. In particular, the maximum number of Tl lines that can be accommodated by this portion of the feeder route must be examined to ensure that the new system can be properly handled. If the feeder route is operating at full capacity-ie, the number of TI lines already installed in the feeder route is equal to the maximum number of T 1 lines that can be handled-it is impossible to add the new system without adding intermediate repeaters in all repeater sections that currently operate with the maximum number of Tl lines. For this reason, it is important that the maximum number of Tl lines that will be installed over the planning period be employed in the initial route analysis.

When a new system is to be installed in an existing carrier route, it is done best by designing the new system so that it branches out from one of the repeater sites on the feeder route. If the new system must branch out between repeater sites, the branch cable will have to be in a sheath separate from the main cable sheath after the last common repeater point. Figure $5-12$ illustrates this arrangement.

DILEP can be used to design the new system. The user must sectionalize the route data so that all existing repeater sites in the feeder route fall on cable section boundaries. The user also must request DRs at all points that correspond to existing repeater sites in the feeder route.

 ONE TO ENGRT CHARACTERS

(1) cable section MUMBE	(2) mevious CaBle SECTION mameen	Mangen or CTIVE T-t LINE 3	cagle SECTHON LENGTH IM FT			$\begin{aligned} & 7 \\ & \text { CABLE } \\ & \text { CODE } \end{aligned}$			(10) man LOSS FACM 18/KFI AT 772 inm	(11) *** Loss LIMIT acouction (14)
1	0	6	81	U	P	DSM	5	50		
2	1	6	1247	U	P	ADA	5	50		
3	2	6	128	U	P	$A D A$	S	50		
4	3	6	1027	U	P	A DA	S	50		
M	2690									
M	3183									
5	4	6	822	U	P	ADA	5	50		
M	4005									
6	5	6	4855	A	p	ADA	5	50		
7	6	6	3936	8	N	BHA	A	12		
8	7	6	2219	8	N	BHA	A	25		
9	8	6	5484	β	N	BHA	A	25		
10	9	6	619	8	N	BHA	A	25		
11	10	6	6227	B	N	BHA	A	25		
12	11	6	981	8	N	BHA	A	25		
13	12	6	5153	8	N	BHA	A	25		
14	13	6	6178	8	N	BHA	A	25		
15	14	6	1550	B	N	BHA	A	25		
RT										
16	15	5	4654	B	N	BHA	A	25		
17	16	5	7065	B	N	BHA	A	25		

m-mamose

OR - DEMAND REPEATER
MT- REMOTE TERMINAL

- s00-trpe appanatus case? Y on w (cincle onel
- All pmotected aepeatens? y On w (CIncle onel
- neduce loss limit? y on n (cmcle one)
if Y, to mbat?
- 10

(1) cage section numben	(2) mevious cable SECTIOM mamert	(3) mumben of active T-I LINES	cable SECTION LEMGTH IN FT	(3) irne of oowstmucrom a.6.		(7 cabre CODE	(B) PAR Unit sepanation S, A. m			(11) ${ }^{*}$ Loss LIMIT REDUCTION (18)
RT										
18	17	3	1500	B	N	BHA	4	25		
19	18	3	4574	B	N	BHA	A	25		
20	19	3	4926	B	N	BHA	A	25		
RT										
21	20	2	1211	B	N	BH8	A	25		
22	21	2	1388	β	N	$B H B$	A	25		
23	22	2	4800	B	N	BHB	A	12		
RT										
24	23	1	4900	B	N	BHB	A	12		
DR										
25	24	2	3500	B	N	BH8	A	12		
26	25	2	2000	B	N	BHB	S	25		
RT										
27	24	1	1571	B	N	$B H B$	S	25		
28	27	1	861	B	N	BHB	5	25		
RT										

M- mannole
on - demano nepeaten
mt - memote temminal

- 000-treE appanatus case 7 r on m (cincle one)
- all motecteo repeaters? r On (cincle one)
- heduce coss cime ? ron (cmele one)

If Y, TO What?
-

Figure 5-2 (Sheet 2). Example Problem, Route Data Sheet.

```
NEXT?
>CREATE
FILENAME? >EILE|
EDIT:
NEA FILE:
INP:JT:
>T SAMPLE ROUTE NO. 1
>1,0,6, 31,U,P,DSS, S,50
>2,1,6,1247,U,P,ADA,S,50
>3,2,6,929,U,P,ADA,S,50
>4,3,6,1027,U,P,ADA,S,50
>M,2590
>4,3133
>5,4,5, 322,U,P,ADA,S,50
>14,4035
>3,5,5,4355, A, P, ADA,S,50
>, 6,6,3936,B,N,BHA,A,12
>9,7,6,2299,B,N,BHA,A,25
>7,3,6,5494,B,N,BHA,A,25
>10,9,5,519,B,N,BHA,А, 25
>11, 10,6,6227,B,N,BHA,A, 25
>12,11,6,991,B,N, BHA,A,25
>13, 12,6,5153,B,N,BHA,A,25
>14,13,6,6179,B,N,BHA,A,25
>15,14,5,155J,B,N,BHA,A,25
>RT
>16,15,5,4554,B,N,BHA,A,25
>17, 16,5,7065,B,N,BHA,A,25
>RT'
>19, 17,3, 150J,B,N,BHA,A, 25
>19,18,3,4574,B,N,BHA,A,25
>23,19,3,4925,B,N,BHA,A,25
>RT
>21, 22, 2, 1211,B,N,BH3,A,25
>22,21,2,1339,B,N,BHB,A,25
>23,22,2,4900,B,N,BHS,A, 12
>RT
>24, 23, 1, 4900, B, N, BHB, A, 12
>DR
>25,24,2,3500, B,N, BHB,A, 12
>26,25,2,2000,B,N,BHB,S,25
>RT
>27,24,1,1571,B,N,BHS,S,25
>29,27,1,851,B,N,BHB,S,25
>RT
>
EDIT:
>FILE
```

Figure 5-3. Creating a Data File.

```
EXEこUTION:
&JJ-TYPE APPARATUS CASE? (Y OR N)
\N ALL PROTECTED KEPEATERS TO SE USED? (Y OR N
ALL PROTECTED KEPEATERS TO BE USED? (Y OR 
ALL NON-PROTECTED REPEATERS WILL BE USED
CHANGE LOSS LIYIT? (Y OR N)
>N
```

** DIGITAL LINE ENGINEERING PROGRAM ***
*** I シSリE 4 ***

SAMPIE ROUTE NO．

S5C	PRV	\＃T 1	SEC T	TYP	p	CA	$P R$	UNIT	DB／KFT	LOSS		civ	くり
\＃	SEC	LINES	LEN P	PLT	N	CODE	SP	SI2E	LOSS	LIMIT	RESIST	RESIST	LE：コT」
1	0	6	81	U	p	DS4	S	50	7.10	25.9	2.2	2.2	91
2	1	6	1247	U	P	ADA	5	52	5.35	25.7	23.9	23.1	1322
3	2	5	823	U	P	ADA	5	52	5.35	25.7	13.9	37.0	2155
4	3	6	1027	U	P	ADA	S	52	5.35	25.7	17.3	54.3	3193
5	4	5	522	U	P	ADA	S	50	5.35	25.7	13.8	63.1	4935
6	5	6	4955	A	P	ADA	S	50	5.49	25.9	93．9	155.9	935？
7	5	6	3936	E	N	EHA	A	$1 ?$	5.09	30.3	65.1	223.1	12795
8	？	5	2219	B	N	EHA	A	25	5.09	31.0	37.3	250.3	150.5
9	5	5	5494	5	N	BHA	A	25	5.03	3：．0	92.1	352.5	23493
10	9	6	619	3	N	BHA	A	25	5.09	31.0	10.4	362．9	21118
11	10	6	6227	B	N	BHA	A	25	5.09	31.0	104． 5	457.5	27345
12	11	6	991	B	N	B HA	A	25	5.09	31.0	16.5	484.0	29326
13	12	6	5153	B	N	BYA	A	25	5.09	31.0	86.5	577.5	33479
14	13	6	5178	B	N	BHA	A	25	5.09	31.2	103.8	674.3	$3955 ?$
15	14	6	1550	B	N	BHA	A	25	5.09	31.0	26.0	703.4	41227
RI													
16	15	5	4654	B	N	B ${ }^{\text {B }}$ A	A	25	5.09	31.8	73.2	779.6	45951
17	15	5	7065	B	N	BHA	A	25	5.09	31.8	113.7	397.2	52326
RT													
18	17	3	1509	B	N	N SHA	A	25	5.09	33.5	25.2	922.4	54425
19	13	3	4574	B	N	－BHA	A	25	5.09	$33 \cdot 5$	75.8	979.3 .982 .0	59203
20	19	3	4926	B	N	－BHA	A	25	5.09	33.5	82.8	1292.0	53920
RT													
21	20	2	1211	B	N	－ BH 5	A	25	3.65	$33 \cdot 5$	10.2	1092.2	55137
22	21	2	1389	E	N	－ 843	A	25	3.65	33.5	i1．7	1173.9	55525
23	22	2	4902	B	N	－BHB	A	12	3.55	33.5	40.3	1144.2	71325
RT 24	23	1	4902	B	N	N BHB	A	12	3.66	33.5	41.2	1135.4	75225
DR													
25	24	2	3503	B	N	－ 5 HS	A	12	3.65	33.5	29.4	1214.8	79725
26	25	2	$? 002$	B	N	－BHS	S	25	3.66	25.9	16.8	1231.5	81725
RT													
27	24	1	1571	B	N	N BHB	S	25	3.66	28.9	13.2	1193.6	77795
29	27	1	961	E	N	－EHS	S	25	3.65	28.9	7.2	1225.3	7955 ？

Figure 5 －4（Part 1）．DILEP Run，Using Daia File．

$\begin{gathered} \text { LJCATIONS } \\ 2590 \end{gathered}$	$\begin{gathered} \text { OF MANHOLES } \\ 3193 \end{gathered}$	$\begin{gathered} \text { FOR PART } \\ 4 \supset O j \end{gathered}$	1				
PART 1							
REPEATERS	FOR CABLE	SESTI2NS 1	THROJJ4 25				
REPEATER	DISTANCE	SEこTION	DESISN		Max	3KND	Fid
\％	FROM C.O.	LENGTH	LOSS（23）	71	LiNES	MARGE	HARうご
1	4020	4023	21.65		15	201	2i
2	8497	4457	24.52		8	218	227
3	13273	4793	24.52		9	242	235
4	19105	5932	29.69		9	235	235
5	24938	5333	29.69		3	235	235
5	30772	5334	29.57		8	235	235
7	35534	5332	29.59		3	1492	235
9 RT	41207	4503	23.43		38	\％	2
${ }^{9} 8$	47365	5359	29.83		9	353	353
13 RT	52925	5359	29.93		9	9	3
11	53425	5520	28.03		12	1257	1345
12 RT	53325	5502	23.03		12	0	，
： 3 RT	71325	7399	27.03		10	0	ว
14 DR	76225	4930	17.93		32	3	3
15 RT	81725	5500	20.13		7	2	3
PART 2							
REPEATERS	FOR CABLE S	SECTIONS 27	THROUSH 28				
REPEATER	distance	SECTION	DESISN		MAX	3KAD	Fid
6	FROM C．O．	LENGT：	Loss（03）	T1	LINES	MARCIN	MARSIN
${ }^{16}$ RT	¢8557	－ 2432	8.99		104	Magon	¢
One or more	SECTIONS H	Have Less T．	MAN MIN．LOSS				

Figure $5-4$（Part 2）．DILEP Run．Using Data File．

```
NEXT?
PACCESS
FILENAME? >FILE
EDIT:
>L ; 1027 ;
4, 3, 6, 1027, U, P, ADA , S, 50
>L ;4855;
6,5,6,4855, A, P, ADA, S, 50
\(>\) I DR
>L ; 2219;
8, \({ }^{\prime}, I_{D R}, 2219, E, N, E H A, A, 25\)
\(>L ; 619 ;\)
\(>L\)
\(10,9,6,619, B, N, B H A, A, 25\)
\(\begin{array}{lll}>I & D R \\ >L & 6227\end{array}\)
\(91,10,6,6227, \mathrm{E}, \mathrm{N}, \mathrm{BHA}, h, 25\)
\(>I\) DR'
>L ; 5153;
13, 12, \(6,5153, \mathrm{E}, \mathrm{N}, \mathrm{BHA}, \mathrm{A}, 25\)
> D
\(>1\);6178;
14, \(13,6,6178, \mathrm{~B}, \mathrm{~N}, \mathrm{BHA}, \mathrm{A}, 25\)
\(>I^{\prime} D R\)
\(>1\);4654;
\(16,95,5,4654, B, N, B H A, A, 25\)
I DR
19, \(18,3,4,4574, B, N, B H A, A, 25\)
\(>I D R\)
\(>L ; 1211 ;\)
\(21,20,2,1211, \mathrm{~B}, \mathrm{~N}, \mathrm{BHB}, \mathrm{A}, 25\)
\(>\) I DR
>FILE
```

Figure 5-5. Modifying a Data File.

```
gZE-YFEMAPFARATUS CASE? (Y OR N)
ALL PRCTECTE& REPEitERS TO BE LSED? (Y OF N)
ALL NCN-PRCTECTEE REPEATERS NILL BE USED
CHANOE LOSE LIMIT? (Y OR N)
```

 ** Dicital line enginesring procram
 **** ISSUE 4 ***
 SAMPLE ROUTE NO. I

SEC	PRV	\＃T 1	SEC	TYP	P	CA	PR	UNIT	DB／KFT	Loss		CuM	C．＂
＂	SEC	LINES	LEN P	PLT	N	COEE	SP	SI2E	LOSS	LIMIT	RESIS：	RESIST	Lミ：！ご！
1	0	6	81	U	P	DSM	S	50	7.10	26.9	2.2	2.2	E
2	1	6	1247	U	P	A A A	S	50	5.35	25.7	20.9	23.1	1328
3	2	6	328	U	P	ADA	S	50	5.35	25.7	13.9	37.0	2156
4	3	6	1027	U	P	ADA	S	50	5.35	25.7	17.3	54.3	3183
DR													
5	4	6	822	U	p	ADA	S	50	5.35	25.7	13.8	68.1	4005
6	5	6	4855	A	P	ALA	S	50	5.49	25.9	88.8	156.9	8850
DR													
7	6	6	3936	B	N	BHA	A	12	5.09	30.3	66.1	223.1	12796
8	7	6	2219	B	N	BHA	A	25	5.09	31.0	37.3	260.3	15015
DR													
9	8	6	5484	B	N	BHA	A	25	5.09	39.0	92.1	352.5	20499
10	9	6	619	B	N	BHA	A	25	5.09	31.0	10.4	362.9	21118
DR													
11	10	6	6227	B	N	BHA	A	25	5.09	31.0	104.6	467.5	27345
DR													
12	11	6	98：	B	N	bHa	A	25	5.09	31.0	16.5	484.0	23325
13	12	6	5153	3	N	BHA	A	25	5.09	31.0	86.6	570.5	33479
DR													
14	13	6	6178	B	N	BHA	A	25	5.09	31.0	103.8	674.3	39657
DR													
15	14	6	1550	B	N	BHA	A	25	5.09	31.0	26.0	700.4	4120 ？
RT													
16	15	5	4654	B	N	BHA	A	25	5.09	31.8	78.2	778.6	45351
DR													
17	16	5	7055	B	N	BHA	A	25	5.09	31.8	118.7	897.2	52926
RT													
18	17	3	1500	B	N	BHA	A	25	5.09	33.5	25.2	922.4	54426
19	18	3	4574	B	N	BHA	A	25	5.09	33.5	76.8	999.3	59000
20	19	3	4926	B	N	BHA	A	25	5.09	33.5	82.8	1082．0	63926
21	20	2	1211	B	N	BHB	A	25	3.66	33.5	10.2	1092.2	65137
DR 3.66													
22	21	2	1388	B	N	N BHB	A	25	3.66	33.5	11.7	1103.9	66525
23	22	2	4800	B	N	B HB	A	12	3.66	33.5	40.3	1144.2	71325
RT													
24	23	1	4900	B	N	1 BHB	A	12	3.66	33.5	41.2	1185.4	76225

Figure 5－6（Part 1）．DILEP Run，Using Modified Data File．

25	24	2	3502	B	N	BHB	A	12	3.65	33.5	29.4	1214.8	79725
25	25	2	2000	B	N	3H8	S	25	3.66	25.9	16.3	1231.6	3172j
RT													
27	24	1	1571	B	N	BHB	S	25	3.66	28.9	13.2	1193.6	77795
28	27	1	861	B	N	BHB	S	25	3.65	29.9	7.2	1205.8	78557

| LOCATIONS OF MANHOLES FOR PART | | |
| :---: | :---: | :---: | :---: |
| 2590 | 3183 | 4005 |

$\begin{aligned} & \text { RT } 2 \\ & \text { EPEATERS } \end{aligned}$	FOR CASLE	cions 27	OUGH 28
REPEATER	distance	SECTION	DESIGN
*	FROM C.O.	LENGTH	LOSS(DS)
24 RT	78557	2432	8.90
NE OR MOR	SECTIONS	LESS	1

Figure 5-6 (Part 2). DILEP Run, Using Modified Data File.

Figure 5-7. Repeater Section Table, Modified.

,

(1) cable SECTIOM MUMEEA	(2) mevous Cable SECTION mamben	(3) mumben of active T-1 LINES	(4) Cable SECTION LENGTH IN FT		(6) PAESSUNE CODE P. N	$\begin{aligned} & \text { (7) } \\ & \text { CAOLE } \\ & \text { CODE } \end{aligned}$	($)$ pan unit sepanation S, A, N		(10) manh LOSSMACTOM $40 / K F T$ AT 772 AM	 coss LIMIT aEDUCTION (48)
1	0	3	931	U	\boldsymbol{P}	ADM	5	50		
M	931									
2	1	3	680	U	\boldsymbol{P}	$C A A$	S	50		
M	1611									
3	2	3	1477	U	P	$C A B$	5	50	3.5	
M	2100									
M	3088									
4	3	3	2880	U	P	ADM	5	50		
M	4000									
5	1	1	1622	A	N	BHA	A	12		
6	5	1	2128	A	N	BHA	A	12		
7	6	1	2000	A	N	$B H A$	N	8		
8	7	1	3500	A	N	BHB	N	8		
9	4	2	2200	A	N	BHA	A	25		
10	9	2	5700	A	N	BHA	A	25		
11	10	2	1500	A	N	BHA	N	12		
12	11	2	2167	A	N	BHA	N	12		
13	12	1	1707	B	N	BHA	A	12		
14	13	1	2200	B	N	BHB	A	12		
15	14	1	4306	B	N	BHBX	A	12		
16	12	1	1469	A	N	8H8	S	25		

m- manhole
 OM - OEMANO REPEATEM

ont-memote tenminal

- 200-TYPE APPARATUS CASE? Y OR M (CIRCLE ONE)
- ALL PAOTECTEO REPEATEAS? Y OR W (CIRCLE ONE)

IF Y. 10 what? 0

ROUTE DATA SHEET

 (UP to 40 CHARACTENS)

				(3) cons of consmencon		$\underset{\substack{() \\ \text { cout } \\ \text { coot }}}{ }$				
17	16	1	1721	A	N	BHB	S	25		
18	17	1	2184	A	N	BHB	S	25		
								amed cable,	" ${ }^{\text {¢ }}$	

- Fon neclaimed camle, $100^{*} x$

FON SCPEENED CABLE, ADD "3"
M- manmole
OM - OEMANO REPEATER
ot- eemote tepmamal

- 000-trpe appanatus case? y on m (cincle one)
- all pmotecteo nepeatens; r on n (cincle one
- meouce loss cimit? ron n (cucle one)
if Y, to what p

Figure 5-9 (Sheet 2). Three-System Design, Route Data Shect.

```
NEXT?
>CREATE
FILENAME? >FILE2
EDIT:
NEW FILE:
INPUT:
>T THREE SYSTEM DESIGN
>1,0,3,931,U,P, ADM,S,50
>M,931
>2,1,3,680,U,P,CAA,S,50
>M,1619 (, MO,P,CAA,S,50
>3,2,3,1477,U,P,CAB,S,50,3.5
>M,2100
>M,3088
>4,3,3,2880,U,P,ADM,S,50
>M,4000
>5,4,1,1622,A,N,BHA,A, 12
>6,5,1,2128,A,N,BHA,A, 12
>7,6,1,2000,A,N,BHA,N,8
>8,7,1,3500,A,N,BHB,N,8
>9,4,2,2200,A,N,BHA,A,25
> 10,9,2,5700, A,N,BHA,A,25
>11,10,2,1500,A,N, BHA,N, 12
>12,11,2,2167,A,N,BHA,N,12
>13,12,1,1707,B,N,BHA,A,12
>14,13, 1,2200,B,N,BHB,A,12
>15,14,1,4306,B,N,BHBX,A,12
>16,12, {, 1469,A,N,BHB,S,25
>17,16,1,1721,A,N,BHB,S,25
>18,17,1,2184,A,N,BHB,S,25
>RT
>
EDIT:
>FILE
```

Figure 5-10. Data File for Three Systems.

EXEこUTION:

8JJ-TYPE APPARATUS CASE? (Y OR N)
AL PLOTECTED REPEATERS TO BE USED? (Y OR N)
ALL NON-PROTECTED REPEATERS WILL BE USED
CHANGE LOSS LIMIT? (Y OR N)
$>\mathrm{N}$
** DIGITAL LINE ENGINEERING PROGRAY ***

Figure 5-11 (Part 1). DILEP Run for Three Systems.

Figure 5-11 (Part 2). DILEP Run for Three Systems.

Figure 5-12. Addition of New SLM Systems.

6 IMPLEMENTATION

6.1 Establishing a Computer Connection

When the user has prepared the problem input data, a terminal session can be initiated to enter the data into a data file that can be processed by DILEP. The user must first establish a communications link with the computer. This is done by dialing an appropriate telephone number and then performing the logon procedure. The logon procedure is described in the RDes User's Guide, PA-599001. When the logon procedure is completed, the user can create a data file containing the problem data.

6.2 System Cues

Coordination between the Time Sharing System (TSS) and the user's terminal operations for satisfactory input and output is dependent on cues.

A system cue is an acknowledgment from the TSS that it is ready to accept input data. The cue varies among systems and terminals, but always means the same thing. Throughout this BSP the "greater-than" symbol ($>$) is used to indicate the system cue. The user may input data anywhere on the line after the system cue.

The user signals the conclusion of each data statement to the tss by depressing the RETURN key on the terminal keyboard. The user must then wait for the system cue before typing new data.

6.3 Entering Input

The user must enter the input mode (environment) using the method described in PA-599001 to create a data file. When the system indicates that it is in the input mode, the user can begin entering data, copying line-for-line the information on the Route Data Sheet.

The user starts typing an input line after the system cue. Title and manhole information must begin with the letter T or M typed immediately after the system cue. Cable section information or requests for RTs or DRs may start at any print position after the system cue (spaces are absorbed).

Certain keyboard conventions are normally available to enable characters and lines to be deleted during input. These conventions depend on the particular TSS and data terminal involved, and are discussed in PA-599001.

When all data on the Route Data Sheet has been entered, the user must transfer from the input mode to the edit mode. This is done by depressing the RETURN key after a system cue without entering any data. At this point, the user may use any of the editing commands provided by the TSS to make additional corrections in the data file. It is recommended, however, that the edit commands be restricted to eight (lOCATE, CHANGE, PRINT, QUIT, DELETE, FILE, REPLACE, and INSERT) since these commands are the only ones guaranteed to be supported by DILEP.

When the user has checked the accuracy of the data file, that file should be saved in the user's storage area. The user can now employ DILEP to analyze the
route by performing the following steps:

1. After a "NEXT?" message and cue from the TSS, type the request

$$
>\text { DILEP }
$$

2. After the "FILENAME"? response to the DILEP request, and the cue, type

> > FILENAME
where fILENAME is the name of the data file that contains information about the route that is to be analyzed by DILEP.

Immediately after the interactive session for options, DILEP will analyze the route and return the information on the proposed repeater sites. DILEP always processes problem data in real time-ie, the repeater sites are determined while the user is still at the terminal, and the results are immediately returned to the terminal.

6.4 Paper Tape Input/Output

Paper tape input/output capability is available with the teletypewriter terminal. It is possible for a user to input problem data from a paper tape or to have the data file punched as output onto a paper tape prior to using the TSS computer. Off-line preparation of input data on tape results in an obvious savings in processor time because the system can read the tape faster than a user can type. If the user exercises reasonable care when preparing the tape, additional time will be saved because virtually all input errors can be eliminated.

A paper tape can be punched any time the user wants a personal copy of the DILEP data file. The tape then may be used to rerun the problem at a later time. By maintaining a personal tape, the user has the option of using the problem data any time in an off-line environment. The user can also maintain a personal library of data files as another efficiency step against overloading the assigned disk storage area in the TSS computer.

Tapes with the Xoff feature (ie, where each data line is delimited by an Xoff character) can be used either to input a new file or to edit an existing file. ASCII tapes (tapes prepared without using the XOFF feature) can be used only to create a new file. (Paper-tape terminal procedures are discussed in Section 901-601-110.)

7 DIAGNOSTICS

DILEP provides three types of diagnostics: line, cable section, and system. When the DILEP environment is entered, DILEP will access the user's data file and read the input lines one at a time. If an error is found in a line of data, that line is printed as part of the cable section table and is followed by appropriate diagnostics. DILEP will not calculate repeater sites for a data file that contains errors. The user must make the corrections specified by the diagnostics before rerunning DILEP. The program checks input data for completeness and compatibility, but is unable to determine its accuracy. Therefore, reasonable care should be taken in preparing the input data so that problems will not have to be rerun.

7.1 Line Diagnostics

The line diagnostics apply to all input data statements; they specify that a line of input data is not acceptable for a specified reason. Table $7-1$ lists all line diagnostics and gives an explanation of each. When a line error occurs, DILEP prints the actual line of input exactly as the user entered it into the data file, then prints the diagnostic statement.

TABLE 7-1
LINE DIAGNOSTICS

(Erroneous line appears here.)
MISSING INFORMATION
Explanation: For a cable section line, part of the required cable section
data was not included in the input line. For a manhole line, no
manhole site was given. For a request line, the request was incorrectly
typed. Note that if a blank is accidentally entered, the program will
ignore all data on the input line following the blank.
(Erroneous line appears here.)
(Line containing a question mark appears here.)
INVALID CHARACTER
Explanation: A character other than a blank, comma, letter, digit, or
decimal point appears in the input line. A question mark is printed
immediately below the erroneous character.
(Erroneous line appears here.)
(Line containing a question mark appears here.)
INVALID DECIMAL POINT-POSSIBLE MISSING INFORMATION
Explanation: Either a decimal point was typed in an improper field or
some of the required data was omitted from the input line. A question
mark is printed immediately below the invalid decimal point.

7.2 Cable Section Diagnostics

The cable section diagnostics (Table 7-2) apply only to lines of cable section data. Cable section data is checked for validity only if all required data is provided for the cable section and no line errors have occurred for the section. More than one cable section diagnostic may be given for a cable section. When a cable section error is found, the section data is formatted and printed to correspond to the columns in the cable section table. All appropriate cable section diagnostics are printed after the section data.

TABLE 7.2
CABLE SECTION DIAGNOSTICS

7.3 System Diagnostics

System diagnostics provide general information and reminders to the user. Diagnostics may be printed at any time during the execution of DILEP. All system diagnostics, with appropriate user action for each, are given in Table 7-3.

TABLE 7-3 SYSTEM DIAGNOSTICS

TOO MANY CABLE SECTIONS HAVE BEEN GIVEN-MAX IS 100

Explanation: When this occurs, processing stops and the list of manholes and the list of cable sections having default values are not printed.
User Action: Redefine the loop carrier route so that no more than 100 cable sections are needed.
TOO MANY MANHOLES HAVE BEEN GIVEN-MAX. IS 50
Explanation: When this occurs, all future manholes will be ignored but processing will continue until all lines of the data file are checked and the list of manhole sites and the list of cable sections having default values are printed out.
User Action: Choose fewer manholes with greater distance between them.
INVALID CABLE SECTION DATA - CORRECT AND RERUN
Explanation: Line errors or cable section errors were detected for one or more input lines in the data file. Processing stops after all lines of the data file have been examined and the list of manholes and the list of cable sections having default values are printed out.
User Action: Enter the Edit environment, make the necessary corrections in the data file, then rerun DILEP.
ONE OR MORE REPEATER SECTIONS HAVE LESS THAN MIN LOSS
Explanation: DILEP was forced to place two repeaters too close together. User may have requested remote terminals, demand repeaters, or junctions too close to each other, or DILEP may not have been able to equalize the repeater spacing.
User Action: Modify the route layout. This may involve relocating remote terminals, demand repeaters, or junctions. The problem may also be corrected by placing a pad in the remote terminal if the violating section terminates in a remote terminal.
MUST BE BETWEEN 20.0 AND 33.5-REENTER
Explanation: This diagnostic may occur during the interactive part of the DILEP run if the user attempts to specify a loss limit greater than 33.5 dB or less than 20.0 dB .

User Action: Enter a number between 20.0 and 33.5 inclusive. (Entering 33.5 will have no effect on repeater spacing, because the default loss limit is 33.5.)
file name $\underset{\text { (ONE TO EGGHT CHARACTERS) }}{\square}$

(UP TO 40 CHARACTERS)

	(2) PREvious cable SECTION NUMBER		(4) CABLE section LENGTH IN FT			(7) cable CODE *			(10)** INSERTION LOSS factor dB/KFT AT 772 kHz	$\begin{aligned} & \text { (11) } \# * * \\ & \text { LOSS } \\ & \text { LiMIT } \\ & \text { REDUCIION } \\ & \text { (dB) } \\ & \hline \end{aligned}$

[^15]* FOR RECLAIMED CAble, AdD "x"

FOR SCREENED CABLE, ADD " s "

* * use only if necessary to override dilep
*** 15 dB maximum

Outside Plant Engineering Digital Line Engineering Program II (DILEP II) User Guide

Prepared by:

Information Management Services Division

Written by:
Charles Pefley
Transport Technology Applications District

Project .Number 424516

Copyright © 1987, Bell Communications Research, Inc. All rights reserved.

CONTENTS

1. IMTRODICTION 1.1
1.1 Overitiw - DILEP II System Description and Functions 1-I
1.2 Organization of this Practice 1-1
1.3 Equipment and Material Required 1.2
1.4 Prerequisite Knowledge of Users 1-2
1.5 Source Information 1-2
2. REPEATER SPACING DESIG.․․ PROCEDURES $2 \cdot 1$
2.1 General 2-1
2.2 Design Philosophy 2.2
2.3 Route Junctions 2-2
2.4 Insertion Loss Limitations 2-3
2.5 Pad Placements $2 \cdot 6$
2.6 DILEP II and High Capacity Digital Service $2-6$
2.7 Crosstalk Considerations 2-9
3. GETTING STARTED 3-1
3.1 Design Procedures 3-1
Step 1 - Prepare the Schematic $3 \cdot 1$
Step 2 - Facility Selection and Cable Layups $3 \cdot 1$
Step 3 - Digital Line Pair Selection 3.5
Step 4 - Record Selected Pairs on the Schematic 3.7
3.2 Preparing the Route Data Sheet 3.7
Title Information 3.7
Cable Section Information 3.8
RT Locations 3.10
DR Requests 3.10
Manhole Locations 3.10
Atematives and Options 3-11
4. RLNMING DILEP II 4.1
5. 1 Run Types 4.1
Automatic Run 4.1
Constrained Run 4-1
4.2 Establishing a Computer Connection 4.1
4.3 System Cues 4-2
4.4 Entering Data 4-2
+5 Running the DILEP II Promam 4. +
ミ. INTERPRETING THE DILEP II RESULTS 5.1
5.1 General 5-1
5.2 Route Description Data 5.1
5.3 Repeater Section Data 5.2
5.4 Backward and Forward Margins 5-3
5.5 Maximum Number of Tl Lines 5.3
5.6 Manhole Locations 5.4
5.7 Selected Samples of DILEP II Output 5.4
6. DILEP II EXAMPLES 6.1
6.1 General 6.1
6.2 Example 1 6.1
6.3 Example 2 6.15
7. ERROR MESSAGES 7.1
7.1 Fatal Error Diagnostic Messages 7.1
7.2 Warning Error Diagnostic Messages 7.1
7.3 System Error Diagnostic Messages 7.1
APPENDIX: RELATED DOCL.ME.TS A. 1
GLOSSARY G-1
REPRODCCIBLE ROLTE DATA SHEET

LIST OF FIGLRES

Figure 2-1. Repeaterless Route Junctions in DILEP II 2.4
Figure 3-1. Example Schematic 3.4
Figure 3-2. Sample Route Data Sheet 3-9
Figure 4-1. DILEP II Problem Route Data File Creation 4.7
Figure 5-1. Simplified Route Schematic 5.6
Figure 5.2. Route Data Sheet 5.7
Figure 5-3. Sample DILEP II Route Input Data 5.8
Figure 5-4. Sample DILEP II Run U'sing Non-800-Type Apparatus Case and Nonprotected Repeaters 5.9
Figure 5-5. Sample DILEP II Run U'sing 800-Type Apparatus Cases and Protected Repeaters 5-10
Figure 5-6. Repeaterless Route Junction $5 \cdot 11$
Figure 5.7. Specifying Loss Limit of 29 dB for All Sections 5-12
Figure 5-8. Changing an Existing File to Limit Two Sections to a Max- imum Loss Limit of 22.5 dB 5-13
Figure 5-9. Output with Two Sections Limited to 22.5 dB 5-14
Figure 5-10. Effect of Increasing the Number of T 1 Lines 5-15
Figure 6-1. Digital Line Route Schematic $6 \cdot 3$
Figure 6-2. Route Data Sheet 6.4
Figure 6-3. Input File $6-5$
Figure 6-4. Output for Run 1 6.6
Figure 6-5. Output for Run 2 6.8
Figure 6-6. Edited Input File 6.10
Figure 6-7. Output for Run 3 6-11
Figure 6-8. Output for Run 4 $6-13$
Figure 6-9. Megatec Building Schematic 6-17
Figure 6-10. Route Data Sheet 6-18
Figure 6-11. Output for Run 1 6-19
Figure 6-12. Output for Run 2 6.20
Figure 6-13. Output for Run 3 6.21

LIST OF TABLES

Table 2-1. Repeater Spacing as Limited by Cable Insertion Loss in dB at 772 kHz $2 \cdot 6$
Table 2-2. Cable Losses at 772 kHz $2 \cdot 7$
Table $4-1$. Simplified Data Entry Instructions - Create a New File 4.3
Table 4-2. Simplified Data Entry Instructions - Edit an Existing File 4.4
Table 7-1. Fatal Error Diagnostic Messages. 7.2
Table 7-2. Warning Error Diagnostic Messages 7.5
Table 7.3. System Error Diagnostic Messages 7.6

1. INTRODUCTION

This practice describes the use of the Digital Line Engincering Program II (DILEP II). DILEP II assists the outside plant engineer in setting the spacing between repeaters for Digital Loop Carrier (DLC) systems and services that employ digital transmission at the T 1 bit rate (1.544 megabits per second). The design philosophy, pair selection rules, and step-by-step procedures covered in this practice are intended to provide the basis for data input to DILEP II. DILEP II may also be used to check existing repeater spacing.

This practice is being reissued to incorporate additional information that may be useful to the outside plant engineer. In addition, new examples have been added.

1.1 Overview - DILEP II System Description and Functions

DILEP II primarily performs the mathematical analysis needed to determine the location of digital line repeater sites for DLC and $1.544 \mathrm{Mb} / \mathrm{s}$ services.

At the user's option, the program can be used to place repeaters at all route junctions, or to provide repeaterless route junctions where possible. DILEP II can also perform a pad analysis and select an optimum value from choices input by the engineer.

The program picks a repeater site from among selections input by the engineer, picks a new repeater site, or places a repeater site at a specific location upon request.

DILEP II provides:

- The insertion loss for the particular type of cable input
- The maximum loss for a given repeater section
- The loss at a repeaterless route junction
- The simplex resistance and cumulative simplex resistance. These resistance values are useful in powering calculations.

1.2 Organization of this Practice

This is a general revision of BR 902-200-120, Issue 1, November 1984; therefore, no margin arrows or page markers are indicated. Sections of this document are organized as follows:

- Section 1 - INTRODUCTION - Contains a general description of DILEP II.
- Section 2 - REPEATER SPACING DESIGN PROCEDURES - Provides general information on repeater spacing design procedures. This section is not meant to be all-inclusive, but can be used in conjunction with other practices.
- Section 3-GETTING STARTED - Focuses on the preliminary work of preparing the route schematic and Route Data Sheet before inputting the data.
- Section 4 - RLNXING DILEP II - Explains the process of inputting the data and making a run using the Remote Data Entry System (RDES) editor.
- Section 5-INTERPRETING THE DILEP II RESLLTS - Describes a general process for interpreting the results.
- Section 6 - DILEP II EXA.MPLES - Provides specific examples and explanations.
- Section 7 - ERROR MESSAGES - Describes error and diagnostic messages.

A list of related documents and a elossary are provided at the end of this document.

1.3 Equipment and Material Required

Authorization and procedures for using DILEP II may be obtained from the local Engineering Planning and Analysis Systems (EPLAIS) coordinator, or they may be generally available in your company.

DILEP II executes on a time-share computer, which may be a vendordependent system. Therefore, periodic updates, changes by a vendor, or a switch in vendors, are likely to occur. A DILEP II user accesses the DILEP II program by means of a data terminal. Section 4 gives additional information on access. Currently, DILEP II uses the generic RDES. DILEP II has also been incorporated into the LEIS ${ }^{\text {TM }}$ system; a description of that version of DILEP appears in BR 901-600-130, LEIS Digital Line Engineering Program II (DILEP II) User Guide.

The outside plant engineer organizes the data for a DILEP II analysis on Route Data Sheets. (A reproducible sheet is provided at the end of this Lser Guide.)

1.4 Prerequisite Knowledge of Users

DILEP II users do not need extensive knowledge of computers or program. ming to work with this program. The only required background is knowledge of RDES instructions.

1.5 Source Information

The determination of the ultimate number of digital loop carrier systems and their deployment typically comes from the route plan. Guidelines for powering the repeaters, and implementation and administrative procedures are covered in engi-

[^16]neering practices such as the predivestiture Bell System Practice BSP 916-100.002, Designing Digital Loop Carrier Systems.

2. REPEATER SPACING DESIGN PROCEDURES

2.1 General

This section provides repeater spacing design rules for digital loop carrier systems employing digital transmission at the Tl bit rate (1.544 . Mbits per second).

Digital transmission at the Tl bit rate requires repeaters that regenerate pulses in the bit stream. The spacing of these repeaters is governed by the insertion loss and the interpair crosstalk coupling loss of the cable, which in turn are influenced by the electrical characteristics and temperature of the cable. Consequently, designing digital loop carrier systems into exchange routes requires detailed analysis of the existing cable plant types, including the following:

- Determination of core layups of all cables
- An accurate prediction of the ultimate number of carrier systems to be provisioned in the route
- Selection of economical powering arrangements.

The design required in the local loop plant, as compared to the trunk plant, can be different for the following reasons:

1. The local loop, because of smaller cables, is very often limited in the number of digital lines available. Consequently, the ability to select pairs to meet error rate criteria (as in the trunk plant) is frequently not available in the local loop plant.
2. The quality of cable facilities most likely varies along the route of the local loop.
3. Generally, the cables in the local loop plant are more exposed to outside influences such as induction.
4. The cables in the local loop are generally more susceptible to the intrusion of moisture or other forms of degradation such as water in splices or open sheaths.
5. There are frequent cable taper points.
6. There will probably be other services in the local loop plant cables that can cause impulse noise or crosstalk.
7. The local loop plant may contain mixed gauges and many branches.
8. The binder group integrity may not be verifiable. Thus, unlike trunk plant, you may have to assume that loop plant transmit and receive digital lines are in adjacent pair units.
These differences affect the relative importance of interpair crosstalk coupling loss for the two applications of carrier systems, as well as the relative difficulty in selecting the most suitable cable pairs for digital transmission.

If T 1 carrier lines are proposed in a cable sheath that contains existing T I carrier lines, the repeaters for the proposed systems must be located at the existing T I repeater sites to avoid intersystem farend crosstalk (FIXT) interference.

2.2 Design Philosophy

A mechanized design program for locating the line repeaters on a digital loop carrier system is essential due to the design complexity resulting from the following factors that affect the maximum repeater spacing:

1. Insertion loss of the cable employed
2. Physical pair separation achieved in each of the cable sections employed in the total digital path
3. Lltimate number of carrier systems contemplated
4. Crosstalk influences are only relevant within a 3 dB zone on either side of each repeater.
When locating repeaters on the digital line path, the cable insertion loss between repeaters must be low enough to ensure that the far repeaters can discriminate between signals and noise. The following factors limit the permissible insertion loss of a repeater section:
5. The repeater can automatically adjust to insertion loss between 9.2 and 35.0 dB at 772 kHz . The 35.0 dB upper limit is reduced by 1.5 dB to allow for manufacturing variations in cable loss characteristics, thus limiting it to 33.5 dB . This upper limit may be further reduced by crosstalk influences in items 2 and 3 , below.
6. The lower the crosstalk coupling loss between the send and receive digital pairs, the more the digital signal is influenced by crosstalk.
7. The more digital lines there are in the same sheath, the more crosstalk energy there is.
In addition to the preceding transmission considerations, repeaters must be located at physically and aesthetically acceptable sites. They should be located away from interstate highway rights-of-way, areas that flood, or any location that has limited accessibility.

Repeaters on other systems in the same cable sheath must be located at the same repeater points to minimize crosstalk, even if the repeaters are installed in different apparatus cases. Remote Terminals (RTs) contain digital repeaters and must be considered regular repeater points.

2.3 Route Junctions

A route junction is formed when lines from two or more branches enter the same cable sheath. This type of junction can occur when separate T1 digital lines are used to serve two branches in a cable network.

PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
 See proprietary restrictions on title page.

If a junction is also to be an RT site, and if the RT is to be located a short distance away in a branch leg (for physical or aesthetic reasons), the required length of suitably sized cable should be installed and the RT padded to ensure meeting the minimum loss requirement in DILEP II of 9.2 dB . If the junction is repeaterless, padding the RT will ensure being at or below the maximum level difference requirement of 7.5 dB .

Widespread deployment of digital loop carrier (DLC) and High Capacity Digital Services (HCDS) is causing a significant number of branches and route junctions on many routes. Placing a repeater at each of these junctions is unnecessary from a technical point of view. Subscriber loop T1 digital lines have always had a signal level coordination requirement that typically precluded unrepeatered route junctions. The original level coordination requirements of 1.5 dB maximum level difference limited the effect of far-end crosstalk (FEXT) on the overall T 1 margin to 0.3 dB . However, studies using improved models for crosstalk have shown that the signal level coordination requirement can be relaxed from the present 1.5 dB maximum level to 7.5 dB . This change permits the effect of FEXT on the overall TI margin to be a maximum of 1.1 dB instead of 0.3 dB . The 0.8 dB reduction in margin is insignificant to the performance of the T 1 systems, and is economically justifiable.

While this change in engineering rules does not allow unrepeatered route junctions to be placed arbitrarily, it gives designers enough flexibility to solve the majority of their route junction problems. It should be noted, however, that elimination of a repeater at any given junction will not always ensure reduced cost for local loop designs. There are situations in which elimination of the route junction repeaters could cause the placement of additional repeaters in the branches.

From the transmission engineering point of view, any number of repeaterless junctions can be permitted in a TI line feeder route. Also, any number of repeaterless junctions (meeting the 7.5 dB maximum level difference) can be permitted between two digital regenerators or terminals, and any number of branches can be permitted. DILEP II, however, is able to care for only one repeaterless junction between any two regenerators or RTs on any given "run" of the program. By making more than one run, additional repeaterless junctions within a repeatered section can be handled. (See Figure 2-1.) There is also a constraint on branching such that any single junction cannot have more than three branches of the main feeder route terminating in demand repeaters, RTs , or program-selected repeater locations. This, also, can be addressed by making more than one run.

2.4 Insertion Loss Limitations

DILEP II ensures that the insertion loss for a repeater section is within the minimum and maximum insertion loss limits. Even if a repeater is moved to the full extent of either the backward or forward margin, the final insertion loss is between the minimum and maximum limits.

When the user requests an RT or a demand repeater (DR) and the insertion loss limit for the repeater section has not yet been reached, DILEP II subtracts the actual section loss from the permissible section loss. It then attempts to equalize the repeater sections to spread this difference over all repeaters between the previous

Schematic: two repeaterless route junctions in a repeatered section. ill segment numerical values are in dB .

Run 1 determines losses for junction 1 (RT2 not input)
Run 2 determines losses for junction 2 (RT1 not input)
Subtractions yield losses in dB for each segment
Repeaters 1 and 2 would be input as demand, otherwise the program may change their location yielding different results from run 1 to run 2 .

Level differences:
Junction 1 from RT2 $\ldots \ldots \ldots \ldots \ldots 18 \mathrm{~dB}-17 \mathrm{~dB}=1 \mathrm{~dB}$
Junction 1 from repeater $2 \ldots-\cdots \mathrm{dB}-14 \mathrm{~dB}=3 \mathrm{~dB}$
Junction 2 from repeater $2 \ldots \ldots-13 \mathrm{~dB}-9 \mathrm{~dB}=4 \mathrm{~dB}$

Figure 2-1. Repeaterless Route Junctions in DILEP II
and the current DR points. Groups of repeaters, consisting solely of an RT or a DR, cannot be equalized. Because equalization is done on an insertion loss basis rather than on a crosstalk basis, the forward and backward margins for a group of repeaters will be approximately equal, while the maximum number of T 1 lines may differ for repeaters in the group. Equalization may cause the locations of the repeaters to change if one of the repeaters in the group is respecified as a DR and the other repeater sites are left to be calculated by DILEP II.

Equalizing the repeater sections by spreading the insertion-loss difference over several repeater sections results in each equalized section having slightly less insertion loss than the maximum loss for that section. This results in three benefits:

1. It is desirable to have the actual design loss less than the maximum permissible loss. From a transmission point of view, this provides additional transmission margins for factors such as high ambient cable temperatures, moisture accumulation in the cable, and cable manufacturing variations.
2. The lower insertion loss provides repeater spacings that can accommodate additional T 1 lines without the need to add repeater locations if unforeseen growth occurs during the study period.
3. The difference between actual loss and maximum permissible loss makes it possible to provide backward and forward margins for repeater sites to assist the engineer in tailoring the line design to possible physical constraints.
When actual loss equals maximum loss for all repeaters in a route, the backward and forward margins will always be zero, and the maximum number of Tl lines for each repeater section will be no greater than the number specified by the user.

The cable insertion loss limit for the first repeater section is less than the limit for all other repeater sections because of central office (CO) noise. This CO end section consists of the cabling from the main distributing frame to the first repeater location. For purposes of repeater spacing designs, fiber hubs that terminate metallic T 1 lines on the field side should be considered COs and the first repeater section spaced the same as a CO. The insertion loss limitations (Table 2-1) in dB at 772 kHz apply to digital line repeater spacing using T 1 frequencies.

Insertion loss factors (at 772 kHz and $55^{\circ} \mathrm{F}$), together with their temperature coefficients in dB per kilofoot for most of the common pulp-insulated conductor and PIC cables are given in Table 2-2.

In DILEP II, these losses are adjusted within the program to reflect the maximum expected temperature and humidity conditions based on the cable environment, i.e., aerial or below ground. For example, the losses are adjusted to reflect maximum temperatures for aerial and below-ground cables of 140° and $100^{\circ} \mathrm{F}$, respectively. In addition, aerial and below-ground PIC cable losses are increased to allow for some transmission degradation due to moisture. No allowance is included

Table 2-1. Repeater Spacing as Limited by Cable Insertion Loss in dB at 772 kHz

Repeater Section	Protected Repeater		Non-Protected Repeater	
	Minimum Loss (dB)	Maximum Loss (dB)	Minimum Loss (dB)	Maximum Loss (dB)
Adjacent To The CO Not Adjacent To The CO	9.2	22.0	9.2	23.0

in DILEP II for any moisture in pulp-insulated conductor cable, since any significant moisture would cause it to be inoperative.

Insertion loss factors for less common types of cable can be obtained from the appropriate section in the 626.759 layer of predivestiture Bell System Practices.

In nearly all instances, the standard insertion losses at the predetermined temperature and moisture levels specified above will satisfy the input requirements of DILEP II. However, in some cases, i.e., very hot or arid climates, more realistic factors may be warranted. In these situations, the factors may be adjusted using the temperature coefficients shown in Table 2-2, and by adjusting the percent correction for moisture content. Then these adjusted factors can be entered in the DILEP II file by using the 10 th field (Insertion Loss Factor).

2.5 Pad Placements

Many manufacturers are designing a line build out (LBO) feature into their digital loop carrier systems. Lsually, a number of different settings are available, any one of which can be selected for a given application. Another name for LBO is pad, the name used in DILEP II. Functionally, a pad adds a loss in the Tl section. DILEP II uses pads for two purposes: 1) to ensure the minimum loss in an end section, and 2) to ensure that the signal level mismatch at a repeaterless junction is not over the limit (7.5 dB in this case). The program selects one value of pad out of the permissible values as specified at an RT. If more than one pad value can meet the requirement, the program selects the pad value that results in the minimum loss value or the minimum signal level mismatch at the junction, if the junction is repeaterless. If a pad value is not specified, DILEP II assumes a 0 loss pad. If one pad value is specified, DILEP II uses that value.

2.6 DILEP II and High Capacity Digital Service

The design of the Tl repeatered line is the same for HCDS as it is for Digital Loop Carrier (DLC) except for the parameters of the customer end section. DILEP II is essentially designed for DLC systems with a central office terminal and RTs.

[^17]Table 2-2. Cable Losses at 772 kHz

CABLE TYPE	MUTUAL CAPAC nF/MILE AT 900 Hz	$\begin{gathered} \text { ENGR } \\ \text { LOSS AT } \\ 55^{\circ} \mathrm{F} \text { IN } \\ \text { dB kt } \end{gathered}$	TEMP COEF FOR $10^{\prime} F$ STEPSIN dB kft
17 AHC	83	3.18	0.030
17 ALC	83	3.20	0.034
17ANC	83	3.80	0.028
17 BLC	83	3.20	0.034
17 KLC	83	3.20	0.027
19 AHB	83	3.18	0.030
19 ALB	83	3.20	0.027
19 ANB,DNB,GNB	66	3.00	0.025
19 B ${ }^{\text {¢ }}$	83	3.30	0.034
19 ВЈB	83	2.90	0.020
19 BLB	83	3.20	0.027
$\begin{aligned} & 19 \text { BNB,CNB, } \\ & \text { ENB,FNB } \end{aligned}$	84	3.80	0.028
19 ADB	83	3.90	0.034
19 AJB	83	2.90	0.020
20 AHD	83	4.39	0.043
20 ALD	83	4.40	0.043
20 AND	82	5.10	0.047
20 BLD	83	4.40	0.043
20 KLD	83	4.40	0.043
22 ADA	83	5.20	0.034
22 AHA	83	4.39	0.043
22 AJA	83	4.00	0.035
22 ALA	83	4.40	0.040
22 AFA	83	4.40	0.040
22 BDA	83	5.20	0.044
22 BJA	83	4.00	0.035
22 BLA	83	4.40	0.040
22 BSA	83	5.10	0.047
22 CDA	83	5.20	0.034
22 KDA	83	5.20	0.044
22 KFA	83	4.40	0.040
22 KGA	83	4.00	0.035
22 KHA	83	4.60	0.045
22 KJA	83	4.00	0.035
22 KLA	83	4.40	0.040
22 SDA	83	5.20	0.034
22 BHA	83	4.60	0.045

Table 2-2. Cable losses at 772 kHz (Continued)

CABIE TYPE	$\begin{aligned} & \text { MUTLVI } \\ & \text { CAPAC } \\ & \text { nF VIIE } \\ & \text { IT } 900 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & E \backslash G R \\ & \operatorname{LOSS} A T \\ & \text { S5F } 1 \mathrm{C} \\ & \mathrm{~dB} \mathrm{kft} \end{aligned}$	TEMP COEF FOR 10*F STEPS IN dBk kf
$\begin{array}{r} 22 \mathrm{BSA}, \mathrm{CSA} \\ \text { DSA, ESA } \end{array}$	83	5.10	0.047
22 ASF(24 EQCIV)	84	6.80	0.066
$2+$ ADM	83	6.30	0.047
24 AKM	83	5.60	0.033
24 ALM	83	5.50	0.052
24 ASM, BSM	72	5.90	0.057
24 BKM	83	5.58	0.033
24CSMESM	72	5.85	0.057
24 DSM	84	6.80	0.025
24 FSM	84	6.80	0.066
24 AJM	83	5.60	0.048
24 AFM	83	5.50	0.052
24 CDM	83	6.30	0.047
24 DC.M	83	6.10	0.055
24 MCM	52	3.60	0.044
$24 . \mathrm{MLM}$	60	3.90	0.040
24 PKM	83	5.80	0.055
26 ADT	83	7.80	0.059
26 DST	83	8.17	0.096
26 AKT	83	7.50	0.041
26 ALT	83	6.90	0.067
26 AST	69	6.80	0.066
26 CST	69	6.79	0.081
26 BST	79	7.70	0.093
26 BKT	83	7.48	0.068
26 AJT	83	6.30	0.065
26 AFT	83	6.90	0.067
26 CDT	83	7.80	0.059
26 DCT	83	7.70	0.073
26 PKT	83	7.30	0.068
COMPOSITE CABLES			
19 CAB	83	3.80	0.028
22 CAA	83	5.10	0.047
24 CAM	83	6.80	0.066
26 CAT	83	8.17	0.096

The RTs are usually part of a long-range plan that has been identified well in advance of the detail engineering. However, HCDS is service-order-oriented, and require, that the outside plant engineer build some flexibility into the overall route digital dusign. One way to do this is to allow repeaterless route junctions in a route. It is wry important to identify potential HCDS customers in advance of the detail digital lesign of a route. Of course, this is not always possible, so the engineer may want to consider placing repeaters at all junctions initially to allow flexibility for unforeseen HICDS orders.

The customer end section for HCDS consists of the length of cable from the last line repeater to the network interface, or Nl (separation point between the operating company and the customer), the length of cable from the λ_{I} to the customer's network channel terminating equipment (NCTE), and any line build out (LBO) or loss pads associated with the NCTE. Under widely accepted design rules, the total losses in the three segments can be a maximum of 22.5 dB . These same design rules specify that the minimum loss for the three segments is 15 dB ; the operating company's portion of the loss can be from 0 to 15.0 dB , while the custorecr's portion can be from 7.5 dB to the maximum of 22.5 dB .

An HCDS location is identified in DILEP II by specifying RT in the input. Any pads that are available in the customer premises equipment (CPE) may also be input (e.g., RT, $0,7.5,15.0$). Lp to five values may be input after RT with values between 0 and 22.5 dB . This is the same as for DLC RTs. The engineer must determine what the loss pad values are in the NCTE, and also the cable loss on the customer premises. Because several different customers in the same location can and probably will use different equipment with varying loss pad values, the engineer must ensure that any repeaterless route junctions within a building or industrial area do not exceed a maximum of 7.5 dB mismatch. Special attention must also be given when designing digital lines within the same riser or building tie cable. The desired degree of separation may not always be possible in these cables. Vacant pairs will probably have to be verified in the field.

The default loss for an RT end section is 33.5 dB for unprotected repeaters, and 32 dB for protected repeaters. When designing for HCDS, a reduction must be made in the customer or RT end section if the design rules are to be followed. This can be done by using column 11 on the Route Data Sheet. See the explanation in Section 3.2 under "Cable Section Information," and the example in Figures 5.8 and 5.9.

To reduce this last section, the engineer will first have to make an unconstrained run to determine generally what the repeater spacing will be. Sometimes the location of the last line repeater will be more clearly defined, such as a manhole near the customer, and the engineer can make the appropriate reduction with the first run and demand a repeater at that location.

2.7 Crosstalk Considerations

It is very important to space repeaters initially for the maximum number of systems that will ultimately be applied in the route. Crosstalk problems may result
if the number of systems exceeds the number for which the original repeater spacing was designed.

Crosstalk is a function of:

1. The number of T carrier lines in the same sheath
2. The relative position of the transmit and receive pairs of the systems in a single cable sheath.

Tl carrier transmit and receive pairs should be applied in a single cable sheath of the route only. Even though near-end crosstalk (XEXT) may be virually eliminated and repeater spacings increased in twin (two cables, one apparatus case for both directions of transmission) cable sheath routes by assigning transmit and receive pairs in separate cable sheaths, this design is discouraged for three reasons.

1. Cable splicing is complicated at repeater points and RTs
2. The gauge of future cable additions may be unnecessarily dictated by these repeater locations
3. Future cable removal options in the fine-gauge area may be limited.

3. ETTING STARTED

3.1 .Jesign Procedures

The step-by-step procedures, as outlined below, provide an orderly approach for taining the input information necessary for running the DILEP II program.
"tep 1 - Prepare the Schematic
tep 2 - Facility Selection and Cable Layups
Step 3 - Digital Line Pair Selection
Step 4 - Record Selected Pairs on the Schematic.

Step 1 - Prepare the Schematic

Prepare a schematic (Figure 3-1) of the route showing the following information:

1. Cable code, e.g., BKM or BK.MA. Show 3- or 4-letter code. (If the cable is reclaimed or screened, the fourth letter becomes " X " or " S ", respectively.) Also indicate the pair size for each cable section.
2. Length of cable section, if it exceeds ten feet. (For sections less than ten feet, include with adjacent cable section.)
3. Cable pressurization status of each cable section (pressurized or nonpressurized)
4. Type of construction (aerial, buried, or underground)
5. Proposed and future RT locations
6. Lltimate number of T 1 lines in each repeater section
7. Manholes that are potential repeater sites. Show cumulative distance from CO to manhole location.

Post the cable section numbers on the schematic, starting with the number 1 adjacent to the CO and numbering consecutively to the end of the digital line. The CO is designated as cable section 0 .

Step 2 - Facility Selection and Cable Layups

There are many considerations in selecting the facilities in which to construct the Tl digital line. These can include the following items for each cable sheath:

1. Type (PIC, pulp, waterproof, etc.)
2. Size (total number of pairs, and number of pairs in the splicing units)
3. Core cross-section configuration (layup)
4. Age of the cable
5. Pressurization
6. Compatibility with other services that may be developed in the future
7. Rearrangement and maintenance history
8. Proposed use (exchange-express feeder, feeder, distribution, etc.)
9. Susceptibility to interruptions from various sources.

The cable pairs within the sheath must be conditioned for TI digital service. All bridged taps, load coils, and build out capacitors must be removed. When conditioning the pairs, consideration should be given to selecting enough pairs to fully splice in the apparatus case.

Nonstaggered twist cable is not suitable for T 1 digital lines. Low-capacitance, reclaimed, waterproof, and aluminum conductor cables can be used.

One type of low-capacitance cable that can be used in the loop is ICOT. ${ }^{\text {TM }}$ It is designated MC.M (air core ICOT) and ML.M (waterproof ICOT) in DILEP II. This cable, or its equivalent, is used for obtaining longer repeater spacings than conventional 22 -gauge cable while using less copper (24 -gauge). The area to be served by low-capacitance cable should be clearly defined, since this type cable should be considered a digital carrier facility rather than a general relief cable. The cable sheath should serve a digital facility such as an RT site or customer premises where a prevalent portion of the serving facility is to be digital carrier or services.

There are stringent rules to be followed in the design of low-capacitance cable facilities. It is recommended that the facility extend to the RT. If that is not possible, one interface is permitted between the low-capacitance cable and conventional capacitance cable (83 nF per mile). The interface is made at a repeater point and low-capacitance-type repeaters are used at that point. After the interface, conventional capacitance repeaters are used at repeater points in the 83 nF cable. Maximum length sections may be used on both sides of the interface.

DILEP II will print a system error diagnostic message when low-capacitance cable is used. This is to alert the engineer that this design is nonstandard, and that caution is needed when mixing with standard cables. This message is shown in Section 7, Table 7-3.

In designing digital loop carrier systems that will utilize existing air core PIC cable, attention should be given to the possibility of water in the sheath. Water causes problems due to its effects on corrosion rates and transmission. Water also causes an increase in the mutual capacitance of the cable pairs.

One way these sheaths have been recovered is by the use of reclamation compounds. The capacitance increase is less with reclamation compounds than with

[^18]water, but is still greater than dry cable. Therefore, the insertion loss of the cable will be greater. A reclaimed cable sheath is cared for in DIL.E.P II by the use of an X as the fourth letter in the cable code. A cable code such as AHAX will increase the loss of that section by 35 percent.

Any cable containing water or moisture, and any reclaimed cable, should be considered last for the T1 digital facility.

Table 2-2 shows the cable types that are available in DILEP II as of this issue. The type is shown in column 1; capacitance in column 2 ; loss in dB per kft in column 3 ; and steps of 10 degrecs in dB per kft in column 4 . When using a cable from a manufacturer, or a superceded cable type, with coding not found in Table 2-2, the electrical characteristics can be matched to a sheath type listed in the table and that sheath type entered. For instance, if pulp-insulated aluminum conductors are encountered, use a code representing a pulp-insulated copper conductor cable two gauges smaller that is equivalent in electrical characteristics. The standard 3letter code from Table 2-2 for PIC aluminum cable may be used when that type of cable is encountered.

The temperature steps are useful when higher-than-normal temperatures are expected. Column 10 of the Route Data Sheet can be used in these cases.

Any number of analog multichannel subscriber carrier systems (such as 8 channel carrier) are compatible with up to five active digital pairs (either transmit or receive, and including spare digital pairs) in the same 8-, 9-, 12-, 13-, and 25 -pair units of PIC cable or in $6-111-16-$, and 25 -pair PIC cable. For adjacent and nonadjacent units in PIC, and in all cases for pulp-inisulated cable, there are no interference constraints. As an example, if five T1 digital lines (ten pairs) are to be served through a 25 -pair cable, then no analog subscriber carrier is allowed in that cable.

If subscriber Tl digital lines are to be in the same sheath with trunk T 1 lines, the subscriber apparatus cases must be in the same location as the trunk apparatus cases. It is not recommended that one apparatus case house both subscriber and trunk 11 repeaters.

Indicate the cable layup and the pair unit size on the schematic, e.g., 8, 9, 11, $12,13,16,17,25,50$, or 100 . Layup is defined as a cross-section view of the number of pairs assembled in a unit, and the arrangement of the units as they are combined to form unit-type constructed cable. It may also be a view of the number and arrangement of pairs in a layer-type constructed cable.

Spacing of repeaters on the digital line is governed both by cable layup and by the relative location of the transmit and receive pairs. The transmit and receive pairs may be assigned within the same unit, adjacent units, or nonadjacent units.

Figure 3-1. Example Schematic

```
PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
    See propnetary restnctions on title page.
```


Step 3 - Digital Line Pair Selection

Careful attention must be given to the specific pair assignments made for digital lines to ensure that maximum margin or maximum repeater spacing, depending on the design philosophy employed, is achieved. The cable pairs used for the two directions of transmission should be physically separated as much as practicable to minimize the crosstalk influence of other digital lines in the same cable sheath. Consequently, the first choice for the transmit and receive pairs would be in nonadjacent pair units, the second choice would be in adjacent units, and the last choice would be in the same pair unit.

Achieving maximum send and receive pair separation (nonadjacent pair unit) in digital loop carrier system applications is difficult, since these systems prove most conomically attractive near the extremities or on rural routes where small sized cables are encountered. Nonadjacent pair unit separation can be achieved only in larger pair sized cables (150 -pair and larger, even count PIC cable, and 300-pair and larger pulp-insulated conductor unit-type cables).

When describing the selection of pairs for transmit and receive in a digital span, the terms "layup," "pair unit," and "binder group" will be used in various publications. Layup has been defined as a cross-section view of the number of pairs assembled in a unit and the arrangement of the units as they are combined to form unit-type constructed cable. It also may be a view of the number and arrangement of pairs in a layer-type cable. Binder groups and pair units are terms that have been used interchangeably. They both are bound with a distinctive ribbon and have a fixed number of pairs. For this User Guide, binder group means an entity that maintains the same positioning in the sheath in relation to all other binder groups. In multiunit cables, the units and subunits spiral as they are combined in the cable manufacturing process. Subunits that may appear to be nonadjacent and are in different rings might become adjacent as the units spiral around the core and inner ring. In the manufacture of cable, units may be slipped a maximum of one unit. For example, in a 400 -pair cable, the $126-150$ binder group could become adjacent to binder group 351-375.

It is very important, when choosing binder groups or pair units, to ask yourself, "Does this particular entity keep the same position in the sheath in relation to other entities, and will the desired pair separation be achieved throughout the length of a particular piece of cable?' Also, it is important to pick pair units or binder groups that will allow the maximum number of T 1 lines within the sheath for the type of separation that is initially chosen.

In selecting pairs, be careful to ensure as much separation as possible in the smaller cables (less than 50 pairs) at the extremities of the route. Select pairs in the outer ring and try to achieve a minimum of 2-pair separation between the send and receive pairs.

The following rules, applicable to even-count PIC cables, will result in maximum repeater spacing:

1. Do not use sheath pairs $1-12$ in $50-p a i r$ cables.
2. Do not use sheath pairs 1-25 if the starting point involves a 75 -pair or larger cable.
3. If the starting point is in a 75-pair cable, the transmit and receive pairs should be selected from the following units:
$26-37$ and $51-62$
26.37 and 63.75
$38-50$ and 63-75
4. If the starting point is in a 100 -pair cable, the transmit and receive pairs should be selected from the following units:
26.37 and 76.87
$38-50$ and $76-87$
$38-50$ and $88-100$
In general, 50 -pair units are the smallest found in 22 -, 24 -, or 26 -gauge nonPIC cables larger than 100 pairs. Most 19 -gauge, non-PIC cables are assembled in 25 -pair units. When layer-type cables are encountered, 25 - and 50 -pair cable sizes are to be considered as 25 - and 50 -pair unit cables, since they have the same crosstalk characteristics.

Most 75 -pair layered and some 100-pair layered cables are constructed as a single unit. These cables should be considered as 50 -pair unit cables. The larger size layered cables are constructed with either 50 - or 100 -pair splicing groups, and these cables should be treated the same as 50 -pair unit type, since both 50 - and 100 -pair layers have NEXT coupling losses comparable to 50 -pair unit cable.

In layered cables, when transmit and receive pairs are assigned in nonadjacent splicing groups, treat this cable in the same manner as though the pairs are assigned in nonadjacent units. Similarly, treat a cable that contains transmit and receive pairs in adjacent splicing groups as though they are assigned in adjacent units. However, if ten or more subscriber carrier systems or an equivalent number of DS-1 circuits are contemplated in the planning period, pair assignments in adjacent splicing groups must be treated as though they are within the same unit.

In a 900-pair layered cable, adjacent group assignments are, for example, in counts $1-100$ and $101-200$ and nonadjacent group assignments are in counts $1-100$ and 201-300. Notice that to be nonadjacent, groups must have no pairs in adjacent layers. For example, counts $301-400$ and $501-600$ do not qualify as nonadjacent and must be considered as adjacent.

When only the pair size, gauge, and year of placement are known, the "layup" can be estimated by referring to the predivestiture Bell System Practice BSP 626-759-400, Superseded Exchange Cables.

PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY See proprietary restrictions on title page.

The R series of PIC cable is currently produced in various pair unit sizes.

1. The layup design was changed in 1964 from 25 -pair binder groups assembled in 3-, 8-, and 9-pair units to 12- and 13-pair units.
2. The layup is the basis of 50 -pair "multiunit" constructed PIC cables in some of the 200 -through 900 -pair sizes.
I.arge quantities of manufacture-discontinued PIC cable containing 8- and 9pair units are in service, as well as lesser quantities of 13-, 17-, and 50-pair units. With the redesign in 1964, no change was made in the code (BK or BH) that identifies this type of cable.

Step 4 - Record Selected Pairs on the Schematic

Trace the selected pairs back toward the CO, and record on the schematic the separation status of the transmit and receive pairs in each cable section (same, adjacent, and nonadjacent units). All the information that is needed to prepare the Route Data Sheet is now on the schematic.

3.2 Preparing the Route Data Sheet

A Route Data Sheet (Figure 3-2), which must be prepared for each route, is the primary input for the DILEP II computer program. It should be used to design or verify repeater spacing for TI digital lines.

DILEP II is capable of handling up to 100 cable sections, 50 manhole locations, and 35 route junctions for a single route. If any of these limitations need to be exceeded for a particular route analysis, the study route must be divided into two separate route segments, using any RT site or route junction as the separation point for the two segments.

DILEP II stores data on many different cable codes (cable types). One of these codes (which are listed in Table 2-2) must be used.

The Route Data Sheet provides the same basic information as the route schematic, but in tabular format. A properly filled-in sheet provides the following basic types of data:

- Title information
- Cable section information
- RT and DR requests
- Manhole locations.

Title Information

Two kinds of title information are provided on the Route Data Sheet:

1) FILE NAME - This identifies any particular data file among all possible data files being stored in the user's storage area. Use of this information is covered in Section 4, Running DILEP II.
2) ROLTE DESCRIPTIO.' - The route description line ("title"), if specified by the user, will appear at the top of the printed listing after the ***DIGITAL ILNE ENGI.NEERING PROGRA.M*** heading. The same description will appear each time the problem is run unless the user subsequently changes it.

Cable Section Information

The required data for each cable section (100 sections maximum for each route or route segment) is given on a line across the first nine columns of the Route Data Sheet. Columns 10 and 11 are optional. The contents of each column, in order by number as given on the Route Data Sheet (Figure 3-2), are:
(1) Cable section numbers, numbered consecutively from the central office (CO), starting with one.
(2) Previous cable section numbers, starting with zero for the first section line on the sheet.
(3) Ultimate number of active TI lines (i.e., those to be installed in the cable section during the planning period plus any already in the same sheath).
(4) Length of the cable section in feet, if more than ten feet. (Sections less than ten feet should be included with an adjacent cable section.)
(5) Type of outside plant construction, i.e., aerial (A), buried (B), or underground (U).
(6) Pressurization code for each cable section, i.e., pressurized (P) or nonpressurized (N).
(7) Cable code - three or four letters; if the cable is reclaimed or screened, the fourth letter becomes X for reclaimed, S for screened.
(8) Relative pair-unit separation between transmit and receive pairs, i.e., same unit (S), adjacent units (A), or nonadjacent units (N).
(9) Pair-unit size (number of pairs per cable unit) $-8,9,11,12,13,16,17,25$, 50 , or 100 .
(10) Insertion loss factor in dB per kilofoot. User inserts a value in this column only if he/she wants a factor other than the normal value given in Table 2-2.
(11) Loss limit reduction in dB . The user inputs a value up to a maximum of 24 $d B$ in this column only for those sections (if any) where the loss limit is to be reduced. For instance, if the section were the customer end section of an HCDS T1 line, and all protected repeaters were being used, the loss reduction value entered in column 11 would be 9.5 dB . This would limit that section to 22.5 dB , which is the design limit for $\mathrm{HCDS}(32 \mathrm{~dB}-9.5 \mathrm{~dB}=22.5 \mathrm{~dB}$). If nonprotected repeaters were used, the loss reduction value entered in column 11 would be 11 dB for the same HCDS line $(33.5 \mathrm{~dB}-11 \mathrm{~dB}=22.5$ $\mathrm{dB})$.

PROPRIETARY - BELLCORE AND AUTHORIZED CLIENTS ONLY
 See proprietary restrictions on title page.

DILEP II
${ }^{60 \%}$
Route Data Sheet

-.. 24 de Mannmum
Figure 3-2. Sample Routc Data Sheet

RT Locations

Remote terminals (RTs) should be indicated in column one of the Route Data Sheet. (See Figure 3-2.) For an RT entry, the allowable pad values are entered in columns two through six for a maximum of five pad values. If no pad values are entered with an RT, the program will not place any pads at that RT.

DR Requests

Requests for DRs must always be made on a separate line placed between the data for two cable sections. That is, on the Route Data Sheet, each DR entry is made on a separate line following the line containing the number of the cable section in which the DR appears. Consequently, if the user plans to run the route initially without any DRs and later rerun the route with DRs at predesignated sites (c.g., at loading coil sites), he/she should sectionalize the route so that all loading coil sites fall on cable section boundaries. DRs and RTs cannot be placed at the end of the same cable sections.

For a DR entry in column one, the cumulative distance in feet from the CO is entered in column two. (If the DR is at the end of the cable section, no entry is needed in column two). If the DR distance, as entered by the user, falls within a cable section (as opposed to the end of the cable section), the program will create new cable section numbers.

Mantrole Locations

Manhole locations suitable for repeater installation may be given for underground cables, if desired. If a repeater must be placed on an underground cable, the DILEP II program will locate it at one of the specified manhole sites, if at all possible, and mark it with the letters MH on the output. But, if a repeater must be placed on underground cable and no manhole sites or an insufficient number of manhole sites are given to allow all required repeaters to be located at specific manhole sites, DILEP II will determine the repeater sites and mark them as needing new manholes with the letters $\mathbf{N M}$ on the output.

Manholes need not be located at cable section boundaries. For example, it is possible to have several manhole sites within any single cable section. On the Route Data Sheet, manhole sites can either be interspersed with the cable sections with which they are associated, or "bulk" entered following a number of cable sections. They must, however, be given in sequence, starting with the manhole nearest to, and ending with the manhole farthest from, the CO. Furthermore, if a route junction occurs, all manholes for the first branch of the route must be given prior to the start of the cable section information for the second branch of the route. Manhole information for a branch cannot be given prior to the start of cable section information for that branch.

On the Route Data Sheet, the user designates a manhole by entering the letters $\mathbf{M H}$ or \mathbf{M} in column one, and the cumulative distance from the CO to the manhole in column two. A maximum of 50 manholes can be specified for each route or route segment.

Alternatives and Options

If a section of cable is screened, the user must enter, in column 7 of the Route Data Shect, the letter S as the fourth letter of the cable code. Nso, the user must specify the pair unit separation as nonadjacent (letter N in column 8 of the Route Data Sheet, Figure 3-2) so that DILEP II will recognize the cable as screened. DILEP II assumes a 1.5 dB .VEXT advantage for screened cable; therefore, apparatus-case crosstalk (ACXT) and far-end crosstalk (FEXT) are the controlling types of interference in this situation.

When reclaimed cable is used in the route, the user must enter the letter X as the fourth letter of the cable code in column 7 of the Route Data Sheet. This will cause a 35 -percent increase in the DILEP II-provided insertion loss per kilofoot, since reclaimed cable has a higher capacitance than nonreclaimed cable.

When composite cable is used in the route, DILEP II supplies a default value for the insertion loss per kilofoot. If the cable loss is known to differ from the default value, the user may override the default value by entering the desired value in column 10 of the Route Data Sheet. If the insertion loss per kilofoot is given, it may contain a decimal point.

The situation may arise where the user would like to decrease the loss limit of only one, or some, of the sections of the digital line (e.g., to compensate for power line induction, or to limit the customer end section of an HCDS circuit). To do this, the DILEP II user enters the desired limit in column 11 of the Route Data Sheet. The reduction amount must be a number between 0.0 dB and 24.0 dB . If the user does not override the insertion loss per kilofoot in column 10, but enters the loss reduction in column 11, column 10 must appear as ,, (two commas without any space between).

This reduction is an option that behaves much like the option of overriding the default cable insertion loss. If the user wishes to both override the default insertion loss, and specify a reduction, the insertion loss must be specified first. The reduction, if used, must always be the last item specified for the cable section.

4. RUNNING DILEP II

4.1 Run Types

DILEP II can be used to provide either an automatic run or a constrained run, as discussed below.

Automatic Run

The automatic run provides outputs specifying the proposed repeater sites. The information input for this concerns the cable sections and the locations of remote terminals and manholes. It provides optimal repeater spacing for the loop carrier system, but ignores any special enginecring considerations; consequently, it may place repeaters at impractical locations, such as at a busy intersection or in the middle of a river. If one or more repeaters are needed in underground plant, DIIEP II will place them at user-specified manhole sites, if possible. If the user has not specified manhole sites within underground plant, DILEP II will place, at optimal locations, the fewest repeaters required to achieve the transmission objectives.

The automatic run output provides the outside plant engineer with a basic design that can then be adapted to meet specific boundary conditions. Junctions not needing repeaters will be identified whenever the repeaterless junction option is selected. They may not be in the optimum location. For instance, the outside plant engineer may elect to have no repeaterless junctions in the backbone feeder. Further, it should be kept in mind that a repeaterless junction could necessitate the future placement of more repeaters on legs of the junction.

Constrained Run

The constrained run permits the engineer to specify some or all of the repeater locations needed to meet specific conditions. These specified repeaters are called demand repeaters. The program then uses location data (for demand repeaters, remote terminals, and manholes) and cable-section data to determine any additional repeater sites that are needed to satisfy the digital line transmission requirements. Once again, the program may identify junctions without repeaters, if that option is used.

In general, the user should begin by making an automatic run to determine the minimum number of repeaters needed for the route. The user can then use constrained runs, inserting DRs to meet specific conditions, until a satisfactory design is developed. To place repeaters at a junction, identified as a repeaterless junction by the program, the user should make that location a DR.

4.2 Establishing a Computer Connection

Once the engineer has prepared the Route Data Sheet, a terminal session can be initiated to enter the data into a data file that can be processed by DILEP II. The user must first establish a communications link with the computer. This is done by dialing an appropriate telephone number and then performing the logon
procedure. Once logged on, the user can create a file containing the Route Data Sheet information.

4.3 System Cues

A system cue is an acknowledgement from the Time Sharing System (TSS) that it is ready to accept input data. The cue varies among systems and terminals, but always means the same thing. Throughout this User Guide the "greater-than" symbol ($>$) is used to indicate the system cue. The user may input data anywhere on the line after the system cue.

The user signals the TSS at the end of each line of data by depressing the RETLRN key on the terminal keyboard. The user must then wait for the system cue before typing a new line of data.

4.4 Entering Data

Once logged on, the user must enter the input mode by typing the command CREATE after the system cue and depressing the RETLRN key (as described in the RDES User Guide) to create a data file. The system will respond with the word FILENAME? and a system cue. The user will then enter the name of the file where the data is to be stored. The system will respond with the word MPLT: followed by another system cue.

Figure 3.2 is an example of a Route Data Sheet, prepared from the schematic shown in Figure 3-1, and Figure $4-1$ is an example of how the data input session should appear on the terminal. Refer to these two figures for a better understanding of how to enter the information from the Route Data Sheet into the data fle.

When the system indicates that it is in the input mode, the user can begin entering data, copying line-for-line the information on the Route Data Sheet. Each item of information on a line on the Route Data Sheet must be separated by a comma as it is typed and each line of data from the Route Data Sheet must be typed on a separate line.

Title and manhole information must begin with the letter T or M , and cable section information or requests for RTs or DRs may start at any print position after the system cue (spaces are ignored in these cases).

When all data on the Route Data Sheet has been entered, the user must transfer from the input mode to the edit mode. This is done by depressing the RETURN key after a system cue without entering any data. At this point, the user may use any of the editing commands provided by the TSS to make additional corrections in the data file. It is recommended, however, that the edit commands be restricted to the following eight: LOCATE, CHANGE, PRINT, QLIT, DELETE, FILE, REPLACE, and KNSERT. These commands are the only ones guaranteed to be supported by DILEP II.

When the user has checked the accuracy of the data file, that file should be saved in the user's storage area by typing the command FILE after the system cue.

[^19]Table 4.1 provides condensed instructions for creating a new DILEP II data file. Table $4-2$ has condensed instructions for editing an existing DILEP II data file.

Table 41. Simplified Data Entry Instructions - Create a New File

LSER NPLT	SYSTEM RESPONSE	REMARKS
1. logon	$\begin{aligned} & \text { NEXT? } \\ & > \end{aligned}$	Follow local LOGON procedures.
2. > CREATE	FILENA.ME?	RDES is now in input mode.
3. > filename	NEWFILE: EDIT: INPUT: >	Enter the name of the file to be created. RDES is ready to accept DILEP II data recorded on the Route Data Sheet.
4. > T sample		Enter the title of the DILEP II problem. Enter the T as the first item after the system cue (no spaces between > and T).
> data, data		Enter the data, line-by-line from the Route Data Sheet. Type a comma between each itern.
$>$ rt,pad.pad		Enter a maximum of five RT pad values after RT. These must constitute the only entry on the line.
>dr,distance		When entering a DR, it must be the only entry on the line.
> m.distance or mh,distance		When entering a manhole location, it must be the only entry on the line.
> RETURN	EDIT:	Depressing the RETURN key after the system cue is displayed puts RDES in the edit mode. Make changes to the data, if needed, using the DILEP II-supported commands.
> file	NEXT?	Typing "file" causes the file just created to be stored in the user's storage area.

Table 42. Simplified Data Entry Instructions - Edit an Existing File

CSER INPLT	SESTEM RESPONSE	REMARKS
1. logon	$\begin{aligned} & \text { XEXT? } \\ & > \end{aligned}$	Follow local LOGON procedures.
2. > ACCESS	FILENAME?	Enter the name of the flie that was created in a previous session.
3. > filename	EDIT:	RDES is now in the edit mode. Use any DILEP Il-supported editing commands to make changes to the file.
4. > RETURV	EDIT:	User can now continue editing the file, if necessary.
5. >file	$\begin{aligned} & \therefore \text { EXT? } \\ & > \end{aligned}$	Typing "file" causes the edited file to be stored in the user's storage area.

4.5 Running the DILEP II Program

When the user has completed building the problem file, the DILEP II program may be run to analyze the route by performing the following steps:

1. After the NEXT message and system cue from the TSS, type the following request:

$$
>\text { dilep }
$$

2. The program will respond with the question:

DO YOU WANT TO RLN DATA CHECK, STLDY OR QUIT? (ENTER D, S OR Q)

The cue $>$ will be returned so that d, s, or q may be entered. If d (DATACHECK) is entered, the program will ask:

ENTER FILE NAME:

The cue $>$ will again be retumed so that the name of the data file to be checked can be entered. Once the DATACHECK has been completed, the message:

YOLR FILE HAS COMPLETED DATA CHECK

will appear if there are no errors. If there are errors in the data file specified, DATACHECK will return error messages indicating the errors that must be fixed before a study can be done. See Section 7 for detailed descriptions of the error messages.
3. Once an error-free D $\backslash T A C H E C K$ has been performed, you are ready to conduct a study. Once again, type DILEP after the system cue.

$$
>\text { dilep }
$$

4. The system will respond with:

DO YOU WAMT TO RUN DATACHECK, STLDY OR QUIT? (EMTER D, S OR Q)
If you wish to conduct the study, enter an " s " after the system cue.
$>s$
The system will respond by asking for the filename.
ENTER FILE NAME:
Finter the flename after the system cue.

> > filename
5. It this point, DILEP II prompts the user to answer the following questions:

800-TYPE APPARATLS CASE? (Y OR N)

If the user answers Y or YES and specifies an 800 -series apparatus case, the loss caused by apparatus case crosstalk is virtually climinated. When using any other type of apparatus case, an N or NO is entered. Of course, if a particular manufacturer's apparatus case is known to have the same crosstalk elimination characteristics as the 800 series, a YES is entered.

ALL PROTECTED REPEATERS TO BE CSED? (Y OR N)

If surge-protected repeaters are to be used, a Y or YES is entered. The loss limit of all sections except the first will be reduced by 1.5 dB (e.g., from 33.5 to 32.0 dB). The reduction for the first repeater section will only be 1.0 dB (e.g., from 23.0 dB to 22.0 dB) because there is no surge-protected repeater at the input end to add the other 0.5 dB .

REPEATERS AT ALL JUNCTIONS? (Y OR N)

If the user desires repeaters at every junction, a \mathbf{Y} or YES is entered. When an \mathbf{N} or $\mathbf{N O}$ is entered, the program will attempt to maximize the repeater spacing by utilizing repeaterless route junctions whenever possible. The maximum signal mismatch is 7.5 dB at the repeaterless junction. Successive runs can be made, answering Y or N , to determine if less repeaters are specified by the repeaterless route junction option. Usually, this option will give less repeater points; however, because every design is different, this may not always be the case. If a design gives the same number of repeater points with either option, it is usually desirable to place the repeaters at junctions. Unforeseen future Tl lines entering the sheath can then be cared for by using a less complicated design procedure.

CHANGE LOSS LIMIT? (Y OR N)

If an N or NO is entered, the program will calculate the section losses based on the upper default values of 32.0 dB (protected repeaters) and 33.5 dB

```
PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
    See proprietary restrictions on title page.
```

(nonprotected repeaters). If a Y or YES is entered, DILEP II asks:

TO WHAT?

The user then enters a value between 20.0 dB and 33.5 dB for nonprotected repeaters, and a value between 18.5 dB and 32.0 dB for protected repeaters. A statement is then printed:

LOSS LIMIT IS NOW xxxx DB MAXIMLM.

This has the effect of changing the upper loss limit of all sections. If a value less than $20.0 \mathrm{~dB}(18.5)$ or more than $33.5 \mathrm{~dB}(32.0)$ is entered, a system diagnostic message will occur, and the user will have to enter the correct value. Entering 33.5 dB or 32.0 dB will have no effect because these are the default values.

This option is useful if a company's policy is to use repeater section losses less than the default. This option would also be useful if the entire route consisted of cable that was subject to either moisture or induction and additional loss margin was desired.

Immediately after the interactive session for options, DILEP II will analyze the route and return the information on the proposed repeater sites. DILEP II always processes problem data in real time, i.e., the repeater sites are determined while the user is still at the terminal, and the results are immediately returned to the terminal.

```
NEXT?
> create - NOTE I
FILENAME?
> examplel
NEW FILE
EDIT:
INPLT:
> t alpha route !
> 1,0,75,4000,u,p,admc.n,100
>m,2200
>m,4000
>2,1,75,12400,u,p,dsac,n,50
>m,11200
>m,16400
> 3.2,75,4000,b,n,bhag,n,50
>4,3,55,8400,a,n,bhaa,a,25
> r,0,7.5 \leftarrow NOTE 2
> 5,4,15,1250,a,n,bhaa,a,25
>r,0,7.5 \leftarrow NOTE 2
>6,3,20,500,b,n,alaw,n,50
> 7,6,20,14500,a,n,bhaa,n,25
>r,0,7.5,15.0,22.5 \leftarrow YOTE 2
> & NOTE }
EDIT:
 file }\leftarrow\mathrm{ NOTE 4
NEXT?
> DILEP or QLIT -NOTE 5
```

Votes on the above data file:
Note 1: The user enters the input mode to create a new data file.
Note 2: The program will use one of these values, depending on the requirement. Given a choice, the program will select the value which gives the least level of signal difference.

Note 3: The user depresses the RETURN key without data input to enter a null line and transfer to the edit mode. The user may make changes to the data file while in this mode.

Note 4: The user saves the data file in his or her storage area.
Vote 5: The user may either request that the DILEP II program be run, or quit the session at this point.

Figure 41. DILEP II Problem Route Data File Creation

5. INTERPRETING THE DILEP II RESULTS

5.1 General

DILEP II analyzes the route problem data the user has previously stored in an input data file, and provides two types of output - route description data (based on cable sections) and repeater section data (based on the serics of cable sections between repeaters).

5.2 Route Description Data

The following descriptions detail the information found in the Route Description portion of the DILEP II program output:

1. The title of the route problem.
2. For each cable section:

- the nine items of data entered by the user from the input data file for that cable section
- the insertion loss factor being employed (default or specified)
- the insertion loss limit imposed on the repeater section by that cable
- the simplex loop resistance in ohms
- the cumulative simplex loop resistance from the CO to the end of the section
- the cumulative distance from the CO to the end of the section. (The simplex loop resistance may be used in the design of repeater powering.)

The abbreviated headings used for the section data on the printouts are:

- SEC (cable section number)
- PRV SEC (number of the previous cable section)
- T1 LINES (number of T1 lines specified by the user)
- SEC LEN (cable section length)
- TYP PLT (type of outside plant construction)
- P N (pressurized or nonpressurized)
- CA CODE (cable code)
- PR SP (pair unit separation)
- UNIT SIZE (number of pairs in each cable unit)
- DB/KFT LOSS (loss at 772 kHz , from stored DILEP II data file)
- LOSS LIMIT (the maximum loss allowed in a repeater section that includes the type of cable used in this cable section)
- RESIST (simplex loop resistance between repeaters)
- CL.M RESIST (cumulative simplex resistance between the CO and the repeater)
- CLM LENGTII (cumulative distance from the CO to the end of that cable section).

3. RT and DR locations in their input sequence among the cable section numbers.
4. A separate list of the manhole locations that were input as potential repeater locations.

5.3 Repeater Section Data

The repeater section data is given in parts. Each part spans a series of cable sections along one of two possible path types:

- From the CO to the end of the first branch of the route, or
- From one junction to the end of any branch of the route other than the first.

For each repeater section, the information is given under the following headings on the printout:

- REPEATER (the number of the section, followed by a code designating a special repeater, if applicable. The codes can designate a remote terminal [RT], demand repeater [DR], manhole [MN], new manhole [NiM], or repeaterless junction (JCT].)
- DISTANCE FROM CO (the distance in feet from the CO to the repeater site)
- SECTION LENGTH (repeater section length - distance between repeaters - in feet)
- DESIGN LOSS (DB) (the design insertion loss in dB at 772 kHz)
- LEVEL DIFF (DB) (the highest value of the signal level mismatch at a repeaterless junction)
- PAD (DB) (the value of the pad placed at an RT to meet the minimum loss requirement or to meet the maximum level difference requirement at a junction)
- MAX TI LINES (the maximum number of T1 lines that can be assigned)
- BKWD MARGIN (the backward margin, i.e., the distance that a repeater can be moved back toward the CO while keeping all other repeaters fixed)
- FWD MARGIN (the forward margin, i.e., the distance that a repeater can be moved forward, away from the CO, while keeping all other repeaters fixed).

PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
 See proprietary restrictions on title page.

5.4 Backward and Forward Margins

DILEP II computes two types of margins that provide a measurement of flexibility in the route design. First, it computes a backward and a forward margin for each repeater site. The backward margin is the number of feet a repeater site can be moved toward the CO without disturbing any other repeater location. The forward margin is the number of feet the repeater site can be moved away from the CO without disturbing any other repeater location. Calculation of the backward and forward margins for a particular repeater site is made under the assumption that the repeaters on either side of the site are not moved. If the user wishes to move two adjacent repeaters, he or she must rerun the DILEP II program and specify the two new locations as DRs to ensure that no additional repeater is necessary.

Backward and forward margins are not calculated for RTs, because cable data is not available for the cable beyond the RT site when the site is at the end of a digital line branch. Besides, RT sites are fixed by the plan. RTs at the end of digital line branches can be moved back toward the CO as long as the insertion loss for the repeater section is not reduced below 9.2 dB . Backward and forward margins are not calculated for DRs at junctions, since these repeaters must be placed as close to the physical location of the junction as possible. However, backward and forward margins are calculated for all other DRs to indicate how much accuracy can be tolerated in measuring their distance from the CO. The user should also be aware that when a normal repeater is changed to a DR, DILEP II will adjust the locations of repeaters on both sides of the new DR to achieve optimal repeater spacing between DR and RT locations. This condition may arise even if the new DR is placed at its DILEP II-calculated site instead of being moved to a new site. If the user wishes to change one repeater to a DR and to leave all others in their original positions, he or she must specify as DRs all repeaters between two DRs, between two RTs, or between any combination of these.

5.5 Maximum Number of T1 Lines

The second type of margin calculated by DILEP II is the maximum number of Tl lines that can be placed in each repeater section. Calculation is made under the assumption that the repeaters at either end of a repeater section are not moved from their DILEP II-calculated sites. If the user moves one or more repeaters in the route to obtain the final design, the maximum number of T 1 lines calculated by DILEP II may no longer be valid. The user should request DRs at the final sites for all repeaters and then rerun DILEP II to obtain the maximum number of Tl lines that can be handled by each repeater section in the final design plan.

Note. Caution should be exercised when interpreting the maximum number of T1 lines calculated by DILEP II, considering the following factors:

1. DILEP II has no knowledge of cable size; therefore, the calculated maximum number of T 1 lines could require more cable pairs than the cable contains.
2. DILEP II has no knowledge of cable layup (i.e., positioning of the pairs); therefore, it may not be possible to maintain the specified pair-unit separation for all T 1 lines as the maximum number of T 1 lines is approached.

5.6 Manhole Locations

If a repeater must be located in an underground cable section, DILEP II will try to locate the repeater at one of the specified manhole sites and will mark it as WII. However, if a repeater must be located in an underground cable and no manhole sites are specified, or if the number of manhole sites specified is insufficient to allow all required repeaters to be located at existing manhole sites, DILEP II will determine the repeater sites and mark them with the letters MiM to indicate that new manholes are needed.

5.7 Selected Samples of DILEP II Output

The sample data shown in the previous section is used in this section to :llustrate some of the various outputs that DILEP II generates. Many types are possible, depending on the answers to the four interactive questions. These questions must be answered before a study can be made.

The following are explanations of Figures 5-1 through 5-10:
Figure 5-1. This example of a route schematic is used to illustrate the information needed to fill in the Route Data Sheet.

Figure 5-2. The Route Data Sheet is shown filled in with the information needed for input into a data file.

Figure 5-3. The data file has been input and is now ready for the datacheck and DILEP II run.

Figure 5-4. In this run, the questions, "800-Type Apparatus Case?" and "All Protected Repeaters To Be Used?" were answered no. The resulting maximum loss limit is set to 33.5 dB except for those sections that are limited to a lesser value because of factors such as pair unit separation or number of T1 lines. The engineer also asked for repeaters at all junctions.

Figure 5-5. This run has the questions, "800-Type Apparatus Case?" and "All Protected Repeaters To Be Used?" answered yes. The engineer again asked for repeaters at all junctions. The maximum loss limit is now 32 dB , except for the sections that are further limited by other factors.

Figure 5-6. This run illustrates the use of repeaterless route junctions. The question "Repeaters at all junctions?" was answered no. DILEP II placed one repeaterless route junction, but the total number of repeaters is the same as for the previous run, with repeaters at all junctions. The section loss values changed and the backward and forward margins were changed. One of the input manholes was used by the program in this run. Care should be taken in the use of repeaterless route junctions; if their use does not reduce the number of repeater locations, repeaters should probably be used at all junctions. This will give lexibility at a later date if unforeseen Tl requirements occur.

Figure 5-7. In this example, the maximum loss limit for all sections is changed to 29.0 dB . Nonprotected repeaters are specified. The program looks at all sections that have a maximum value of 33.5 dB and changes that loss to 29.0 dB . It

[^20]does this by subtracting 4.5 dB from 33.5 dB . The other sections that are less than 29 dB initially are unaffected. Note that these other sections show a slight increase in loss limit from Figure $5-4$ due to the use of the 800 -type apparatus case in this example.

Figure 5-8. Two sections are to be limited to 22.5 dB . The first section to be limited is a 1250 -foot section of BHAA. Referring to a previous run (Figure 5-5), there is an existing loss limit of 26.2 dB . To get the desired limit of 22.5 dB , a value of 3.7 is entered in column 11 of the data. The next section to be limited is 5756 feet of BHAA. The engineer had previously broken the original section of 14500 feet into two, 8744 feet and 5756 fect. This section has been shown to have a maximum loss of 32 dB when using protected repeaters (Figure $5-6$). To get the desired limit of 22.5 dB , a value of 9.5 is entered in column 11 for this section.

Figure 5-9. The output with the two sections above limited to 22.5 dB is shown in this figure. This option is useful when individual sections are to be limited to a value less than the default. Usually, an initial run will have to be made to determine what the default value is. Examples of the use of this option are High Capacity Digital Service, and when a vendor's digital loop carrier system has end section parameters other than the default.

Figure 5-10. This figure shows the output after the number of T 1 lines was increased in all sections. In three of the sections the engincer changed the pair separation from nonadjacent to adjacent because of the larger number of T1 lines. The combined changes caused the addition of two repeaters in part 2 and lower maximum loss limits in several sections. This illustrates the importance of specifying the ultimate number of T 1 lines in the sheath initially.

Figure 5-1. Simplified Route Schematic

Figure 5-2. Route Data Sheet

```
TOF:
T ALPHA ROUTE 1
1,0,75,4000,U,P, ADMC,N,100
M,2200
M,4000
2,1,75,12400,U,P,DSAC,N,50
M,11200
M,16400
3,2,75,4000,B,N,BHAG,N,50
4,3,55,8400,A,N, BHAA,A, 25
RT,0,7.5
5,4,15,1250,A,N, BHAA,A,25
RT,0,7.5
6,3,20,500,B,N,ALAW,N,50
7,6,20,14500,A,N, BHAA,N,25
RT,0,7.5,15.0,22.5
EOF:
>
EDIT:
>file
NEXT?
```

Figure 5-3. Sample DILEP II Route Input Data

```
800-TYPE APPARATUS CASE? (Y OR N)
AN
>n
ALL NON-PROTECTED REPEATERS WILL BE USED.
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>Y
REPEATERS WILI BE PLACED AT ALL JUNCTIONS.
EHANGE LOSS LIMIT? (Y OR N)
>n
```


LOCATIONS OF MANHOLES FOR PART	1		
2200	4000	11200	16400

PART 1

REPEATERS	FOR CABLE	SECTIONS	1 THRO	JGH 5				
REPEATER	DIStANCE	SECTION	DESIGN	LEVEL	PAD	MAX	BKWD	FWD
*	FROM C.O.	LENGTH	LOSS (DB)	DIFF.(DB)	(DB)	T1 LINES	MARGIN	MARGIN
1 NM	3359	3359	21.88	((>2000	153	153
2 NM	9310	5951	32.38	-	-	498	188	188
3 NM	15406	6095	32.38	-	-	498	1468	188
4 DR	20400	4993	25.64	-	-	>1000	0	0
5	24600	4200	21.34	-	-	63	78	78
6 RT	28800	4199	21.34	-	0.0	63	0	0
7 RT	30050	1250	13.85	-	7.5	366	0	0

PART 2

Figure 5-4. Sample DILEP II Run Using Non-800-Type Apparatus Case and Nonprotected Repeaters

```
ミ00-:YFE APPARAZOS CASE? (Y OR N)
AY: FROEECEED REPEATERS TO BE USED? (I OR N)
>Y
RYEEEAIERS AT ALE JUNCTIONS? (Y OR N)
>Y
REPEATERS WILL BE PLACED AT ALE JUNCTIONS.
```

```
GHANGE LOSS EIMIT? (Y OR N)
```

GHANGE LOSS EIMIT? (Y OR N)
>n

```
** DIGITAL IINE ENGINEERING PROGRAM ***

\section*{ALPHA ROUTE 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & 71 & SEC & TYP & P & CA & PR & UNIT & D8/KFT & Loss & & CUM & CUM \\
\hline * & SEC & LINES & LEN & PLT & N & CODE & SP & SIzE & Loss & LIMTT & RESIST & RESIST & IENGTH \\
\hline 1 & 0 & 75 & 4000 & U & P & ADMC & N & 100 & 6.51 & 32.0 & 107.2 & 107.2 & 4000 \\
\hline 2 & 1 & 75 & 12400 & U & P & DSAC & N & 50 & 5.32 & 32.0 & 208.3 & 315.5 & 16400 \\
\hline 3 & 2 & 75 & 4000 & B & N & bhag & N & 50 & 5.09 & 32.0 & 67.2 & 382.7 & 20400 \\
\hline 4 & 3 & 55 & 8400 & A & N & BHAX & \(\lambda\) & 25 & 5.08 & 20.6 & 153.7 & 536.4 & 28800 \\
\hline \[
\begin{gathered}
\mathrm{RT} \\
5
\end{gathered}
\] & \[
0.0
\]
\[
4
\] & \[
\begin{aligned}
& 7.5 \\
& 15
\end{aligned}
\] & 1250 & A & N & BHAA & A & 25 & 5.08 & 26.2 & 22.9 & 559.3 & 30050 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 6 & 3 & 20 & 500 & B & N & ALAW & N & 50 & 4.58 & 32.0 & 8.4 & 391.1 & 20900 \\
\hline 7 & 6 & 20 & 14500 & \(\lambda\) & N & BHAA & N & 25 & 5.08 & 32.0 & 265.3 & 656.5 & 35400 \\
\hline RT, & 0.0, & 7.5, & 15.0 & 22.5 & & & & & & & & & 35100 \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
LOCATIONS OF MANHOLES FOR PART \\
2200 & 4000 & 11200 & 16400
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{PART 1} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 1 THRO & OH 5 & & & & \\
\hline REPEATER & OISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD & FWD \\
\hline \% & FROM C.O. & LENGTH & LOSS (DB) & DIFF.(DB) & (D8) & T1 IINES & MARGIN & MARGIN \\
\hline 1 MM & 3356 & 3356 & 21.86 & ( & ) & >1000 & 0 & 0 \\
\hline 2 NM & 9208 & 5852 & 31.86 & - & - & 543 & 0 & 0 \\
\hline 3 NM & 15206 & 5997 & 31.86 & - & - & 543 & 979 & 0 \\
\hline 4 DR & 20400 & 5193 & 26.70 & - & - & >1000 & 0 & 0 \\
\hline 5 & 23691 & 3291 & 16.73 & - & - & 134 & 747 & 747 \\
\hline 5 & 26983 & 3291 & 16.73 & - & - & 134 & 1456 & 0 \\
\hline 7 RT & 28800 & 1816 & 9.23 & - & 0.0 & 756 & 0 & 0 \\
\hline 3 RT & 30050 & 1250 & 13.85 & - & 7.5 & 260 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PART 2 REPEATERS & FOR CABLE & SECTIONS & 6 THRO & GH 7 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & EEVEL & PAD & & MAX & BKWD & FWD \\
\hline * & EROM C.O. & LENGTH & LOSS(DB) & DIFF.(DB) & (DB) & \(T 1\) & LINES & MARGIN & margin \\
\hline 9 & 25433 & 5033 & 25.33 & - & - & & 738 & 1298 & 1298 \\
\hline 10 & 30416 & 4983 & 25.33 & - & - & & 738 & 1298 & 1298 \\
\hline 11 RT & 35400 & 4983 & 25.33 & - & 0.0 & & 738 & 0 & 0 \\
\hline
\end{tabular}

Figure 5-5. Sample DILEP II Run Uising 800-Type Apparatus Cases and Protected Repeaters

> PROPRIETARY - BELLCORE AND ACTHORIZED CLIENTS ONLY
> See proprietary restictions on title page.
```

S
ENTER FIEE NAME:
>examplel
RUNNING DIIEP STUDY ISSUE 5 07/01/87 AT 09:08:11
OOO-TYPE APPARATUS CASE? (Y OR N)
AY PROTECTED REPEATERS TO BE USEO? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
CHANGE LOSS LIMIT? (Y OR N)
>n

```
*** DIGITAL LINE ENGINEERING PROGRAM ***
ALPHA ROUTE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & \#T1 & SEC & TYP & P & CA & PR & UNIT & DB/KFT & Loss & & CUM & CUM \\
\hline * & SEC & LINES & LEN & PLT & N & CODE & SP & SIZE & LOSS & LIMIT & RESIST & RESIST & LENGTH \\
\hline 1 & 0 & 75 & 4000 & U & P & ADMC & N & 100 & 6.51 & 32.0 & 107.2 & 107.2 & 4000 \\
\hline 2 & 1 & 75 & 12400 & U & P & DSAC & N & 50 & 5.31 & 32.0 & 208.3 & 315.5 & 16400 \\
\hline 3 & 2 & 75 & 4000 & B & N & bHAG & N & 50 & 5.09 & 32.0 & 67.2 & 382.7 & 20400 \\
\hline 4 & 3 & 55 & 8400 & A & N & BHAA & A & 25 & 5.08 & 20.6 & 153.7 & 536.4 & 28800 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 5 & 4 & 15 & 1250 & A & N & BHAA & A & 25 & 5.08 & 26.2 & 22.9 & 559.3 & 30050 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 6 & 3 & 20 & 500 & B & N & ALAW & N & 50 & 4.58 & 32.0 & 8.4 & 391.1 & 20900 \\
\hline 7 & 6 & 20 & 14500 & A & N & bHAA & N & 25 & 5.08 & 32.0 & 265.3 & 656.5 & 35400 \\
\hline RT, & 0.0, & 7.5, & 15.0, & 22.5 & & & & & & & & & \\
\hline
\end{tabular}
\(\begin{array}{cccc}\text { LOCATIONS OF MANHOLES FOR PART } & 1 \\ 2200 & 4000 & 11200 & 16400\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{PART 1} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 1 THRO & GG 5 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & T1 LINES & MARGIN & MARGIN \\
\hline 1 MH & 2200 & 2200 & 14.33 & - & - & >1000 & 337 & 1167 \\
\hline 2 NM & 7387 & 5187 & 29.71 & - & - & 890 & 414 & 414 \\
\hline 3 NM & 12981 & 5593 & 29.71 & - & - & 890 & 414 & 414 \\
\hline 4 & 18670 & 5688 & 29.71 & - & - & 853 & 0 & 432 \\
\hline JCT & 20400 & 1729 & 8.80 & 7.5 & - & - & - & - \\
\hline 5 & 22272 & 3601 & 18.32 & - & - & 94 & 0 & 432 \\
\hline 6 & 25876 & 3604 & 18.32 & - & - & 94 & 1101 & 432 \\
\hline 7 RT & 28800 & 2923 & 14.86 & - & 0.0 & 206 & 0 & 0 \\
\hline 8 RT & 30050 & 1250 & 13.85 & - & 7.5 & 260 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{PART 2} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 6 THRO & GG 7 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF.(DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 9 & 23797 & 5127 & 25.82 & - & - & & 657 & 432 & 0 \\
\hline 10 & 29643 & 5846 & 29.71 & - & - & & 269 & 511 & 432 \\
\hline 11 RT & 35400 & 5756 & 29.25 & - & 0.0 & & 298 & 0 & 0 \\
\hline
\end{tabular}

Figure 5-6. Repeateriess Route Junction

\section*{PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY \\ See proprietary restrictions on title page.}
```

100-こ\becausePE AF\tilde{FARATUS CASE? (Y OR N)}
\Y: PRCTECEEO PEPEATERS =C BE USED? (Y OR N)
AZL NuN-FRンTECTED REPEATERS wILL BE USED.
REPEAZEFS AL ALL IUNCTIONS? (Y OR N)
-%
CHANGE ENSS LIMET? (Y OR N)
>Y
TO NHAT?
LOSS LIMIT IS NOW 29.0 DB MAXIMLM.

```
*** DIGITAL LINE ENGINEERING PROGRAM ***
    **** ISSUE 5 ****
    ALPHA ROUTE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & 41 & SEC & TYP & \(P\) & CA & PR & UNIT & DB/KFT & Loss & & CLM & COM \\
\hline * & SEC & ifnes & LEN & PLT & N & CODE & SP & SIZE & Loss & EEMIT & PESIST & RESIST & IENGTH \\
\hline 1 & 0 & 75 & 4000 & U & P & ADMC & N & 100 & 6.51 & 29.0 & 107.2 & 107.2 & 4000 \\
\hline 2 & 1 & 75 & 12400 & U & P & DSAC & N & 50 & 5.31 & 29.0 & 208.3 & 315.5 & 25400 \\
\hline 3 & 2 & 75 & 4000 & 3 & N & BHAG & N & 50 & 5.09 & 29.0 & 67.2 & 382.7 & 20400 \\
\hline 4 & 3 & 55 & 8400 & A & N & BHAA & A & 25 & 5.08 & 22.1. & 153.7 & 536.4 & 28800 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 5 & 4 & 15 & 2250 & A & N & BHAA & \(\lambda\) & 25 & 5.08 & 27.7 & 22.9 & 559.3 & 30050 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 5 & 3 & 20 & 500 & B & N & ALAW & N & 50 & 4.58 & 29.0 & 3.4 & 391.1 & 20900 \\
\hline 7 & 6 & 20 & 8744 & A & N & BHAA & \(N\) & 25 & 5.08 & 29.01 & 160.0 & 551.1 & 29644 \\
\hline 8 & 7 & 20 & 5756 & A & N & BHAA & N & 25 & 5.08 & 29.0 & 105.3 & 656.5 & 35400 \\
\hline
\end{tabular}
\(\begin{array}{ccccc}\text { LOCATIONS OF MANHOLES FOR PART } & 1 \\ 2200 & 4000 & 11200 & 16400\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PART : } \\
& \text { REPEAIERS }
\end{aligned}
\] & FOR CABLE & SECTIONS & 1 IHRO & OH 5 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & CEVEL & PAD & MaX & BKHD & Fid \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & 31 EINES & MARGIN & MARGEN \\
\hline 1.15 & 3379 & 3379 & 22.01 & - & - & > 1000 & 122 & 122 \\
\hline 2 SM & 8513 & 5133 & 28.01 & - & - & \(>1000\) & \(\div 50\) & 150 \\
\hline 3 SM & 13786 & 5273 & 28.01 & - & - & > 1000 & 250 & 250 \\
\hline 4 & 19176 & 5389 & 28.01 & - & \(\cdots\) & >1000 & 117 & 157 \\
\hline JCT & 20400 & 2223 & 6.23 & 6.9 & - & - & - & - \\
\hline 5 & 23329 & 4153 & 21.12 & - & - & 70 & 118 & 57 \\
\hline 6 & 27484 & 4155 & 21.12 & - & - & 70 & 2321 & 0 \\
\hline 7 RT & 28800 & 1315 & 14.19 & - & 7.5 & 341 & 0 & 0 \\
\hline 8 RT & 30050 & 1250 & 13.85 & - & 7.5 & 369 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{PART 2} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 6 THRO & GH 8 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & IEVEL & PAD & & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF.(DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 9 & 24734 & 5558 & 28.01 & - & - & & 562 & 157 & 118 \\
\hline 10 & 30246 & 5511 & 28.01 & - & - & & 562 & 521 & 157 \\
\hline 11 RT & 35400 & 5253 & 26.19 & - & 0.0 & & 854 & 0 & 0 \\
\hline
\end{tabular}

Figure 5-7. Specifying Loss Limit of 29 dB for All Sections
```

TOF:
T ALPHA ROUTE 1
1,0,75,4000,U,F,ADMC,N,100
M,2200
M,4000
2,1,75,12400,U,P,DSAC,N,50
M,11200
M,16400
3,2,75,4000,B,N,BHAG,N,50
4,3,55,8400,A,N, BHAA, A, 25
RT,0,7.5
5,4,15,1250,A,N, BHAA,A, 25
RT,0,7.5
6,3,20,500, B,N,ALAW,N,50
7,6,20,8744,A,N,BHAA,N,25
8,7,20,5756,A,N, BHAA,N,25
RT,0,7.5,15.0,22.5
EOF:
>u2
8,7,20,5756,A,N,BHAA,N,25
sreplace
INPUT:
>8,7,20,5756,a,n,bhaa,n,25,,9.5
>
EDIT:
>44
5,4,15,1250, A,N, BHAA, A, 25
>replace
INPUT:
>5,4,15,1250,a,n,bhaa,a,25, 3.7
>
EDIT:
>t
TOF:
>020
TOF:
T ALPHA ROUTE 1
1,0,75,4000,U,P,ADMC,N,100
M,2200
M,4000
2,1,75,12400,U,P,DSAC,N,50
M,11200
M,16400
3,2,75,4000, B,N, BHAG,N,50
4,3,55,8400,A,N, BHAA,A,25
RT,0,7.5
5,4,15,1250,A,N, BHAA,A,25, 3,7
RT,0,7.5
6,3,20,500,B,N,A工AW,N,50
7,6,20,8744,A,N, BHAN,N,25
8,7,20,5756,A,N,BHAA,N,25, 9.5
RT,0,7.5,15.0,22.5
EOF:
>

```

Figure 5-8. Changing an Existing File to Limit Two Sections to a Maximum Loss Limit of 22.5 dB
```

800-TYPE APPARATUS CASE? (Y OR N)
AY PLE PROTECTED REPEATERS TO EE USED? (Y OR N)
>
EPEATERS AT ALL JUNCTIONS? (Y OR N)
n
CHANGE LOSS LIMIT? (Y OR N)
>n

```
*** DIGITAL LINE ENGINEERING PROGRAM
**** ISSUE 5 ****
ALPHA ROUTE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & \#T1 & SEC & TYP & P & CA & PR & UNIT & DB/KFT & Loss & & CUM & CLM \\
\hline * & SEC & LINES & LEN & PLT & N & CODE & SP & SIZE & LOSS & LIMIT & RESIST & RESIST & LENGTH \\
\hline 1 & 0 & 75 & 4000 & U & P & ADMC & N & 100 & 6.51 & 32.0 & 107.2 & 107.2 & 4000 \\
\hline 2 & 1 & 75 & 12400 & U & P & DSAC & N & 50 & 5.31 & 32.0 & 208. 3 & 315.5 & 16400 \\
\hline 3 & 2 & 75 & 4000 & B & N & bhag & N & 50 & 5.09 & 32.0 & 67.2 & 382.7 & 20400 \\
\hline 4 & 3 & 55 & 8400 & A & N & BHAA & A & 25 & 5.08 & 20.6 & 153.7 & 536.4 & 28800 \\
\hline \[
\begin{gathered}
\mathrm{RT}, \\
5
\end{gathered}
\] & \[
0.0
\] & 7.5 & 1250 & A & N & BHAA & A & 25 & 5.08 & 22.5 & 22.9 & 559.3 & 30050 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 6 & 3 & 20 & 500 & B & N & ALAW & N & 50 & 4.58 & 32.0 & 8.4 & 391.1 & 20900 \\
\hline 7 & 6 & 20 & 8744 & A & N & BHAA & N & 25 & 5.08 & 32.0 & 160.0 & 551.1 & 29644 \\
\hline 8 & 7 & 20 & 5756 & A & N & BHAA & N & 25 & 5.08 & 22.5 & 105.3 & 656.5 & 35400 \\
\hline RT, & 0.0, & 7.5, & 15.0, & 22.5 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { LOCATIONS } \\
2200
\end{gathered}
\] & OF MANHOL & \[
\begin{gathered}
\text { ES PAF } \\
11200
\end{gathered}
\] & \[
\text { RT } \quad 1
\] & & & & & \\
\hline \multicolumn{9}{|l|}{PART 1} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 1 THROU & UGH 5 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & Loss (DB) & DIFF.(DB) & (DB) & T1 LINES & MARGIN & MARGIN \\
\hline 1 NM & 3352 & 3352 & 21.83 & ( & - & \(>1000\) & 0 & 0 \\
\hline 2 NM & 9200 & 5847 & 31.83 & - & - & 546 & 0 & 0 \\
\hline 3 NM & 15193 & 5993 & 31.83 & - & - & 546 & 979 & 0 \\
\hline 4 & 20400 & 5206 & 26.77 & - & - & >1000 & 0 & 0 \\
\hline 5 & 24422 & 4022 & 20.44 & - & - & 58 & 0 & 0 \\
\hline 5 & 28444 & 4022 & 20.44 & - & - & 58 & 2203 & 0 \\
\hline 7 RT & 28800 & 355 & 9.31 & - & 7.5 & 743 & 0 & 0 \\
\hline 8 RT & 30050 & 1250 & 13.85 & - & 7.5 & 111 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 2} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 6 THROU & UGH 8 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & FAD & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF.(DB) & (DB) & T1 LINES & MARGIN & MARGIN \\
\hline 9 & 26712 & 6312 & 31.83 & - & ( & 164 & 0 & 0 \\
\hline 10 & 31108 & 4395 & 22.33 & - & - & 164 & 118 & 0 \\
\hline 11 RT & 35400 & 4291 & 21.81 & - & 0.0 & 186 & 0 & \[
0
\] \\
\hline
\end{tabular}

Figure 5-9. Output with Two Sections Limited to 22.5 dB
```

800-TYPE APPARATUS CASE? (Y OR N)
>Y
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>n
CHANGE LOSS LIMIT? (Y OR N)
>n

```
    ** DIGITAL LINE ENGINEERING PROGRAM ***
        ISSUE 5 ****
    ALPHA ROUTE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & \#1 & SEC & TYP & P & CA & PR & UNIT & DB/KFT & Loss & & CUM & CUM \\
\hline \# & SEC & LINES & LEN & PLT & N & CODE & SP & SIZE & Loss & LIMIT & RESIST & RESIST & LENGTH \\
\hline 1 & 0 & 300 & 4000 & U & P & ADMC & N & 100 & 6.51 & 32.0 & 107.2 & 107.2 & 4000 \\
\hline 2 & 1 & 300 & 12400 & U & P & dSAC & N & 50 & 5.31 & 32.0 & 208.3 & 315.5 & 16400 \\
\hline 3 & 2 & 300 & 4000 & B & N & bHag & A & 50 & 5.09 & 20.3 & 57.2 & 382.7 & 20400 \\
\hline 4 & 3 & 150 & 8400 & A & N & BHAA & A & 25 & 5.08 & 16.3 & 153.7 & 536.4 & 28800 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 5 & 4 & 60 & 1250 & A & N & bhan & A & 25 & 5.08 & 20.2 & 22.9 & 559.3 & 30050 \\
\hline RT, & 0.0, & 7.5 & & & & & & & & & & & \\
\hline 6 & 3 & 60 & 500 & B & N & ALAW & N & 50 & 4.58 & 32.0 & 8.4 & 391.1 & 20900 \\
\hline 7 & 6 & 60 & 8744 & A & N & BHAA & A & 25 & 5.08 & 20.2 & 160.0 & 551.1 & 29644 \\
\hline 8 & 7 & 60 & 5756 & A & N & bHAA & A & 25 & 5.08 & 20.2 & 105.3 & 656.5 & 35460 \\
\hline RT, & 0.0, & 7.5, & 15.0, & 22.5 & & & & & & & & & \\
\hline
\end{tabular}
\(\begin{array}{cccc}\text { LOCATIONS OF MANHOLES FOR PART } & 1 \\ 2200 & 4000 & 12200 & 16400\end{array}\)


Figure 5-10. Effect of Increasing the Number of T1 Lines

\section*{6. DILEP II EXAMPLES}

\subsection*{6.1 General}

Two problem examples, and DILEP II digital design solutions to these, are included in this section to introduce basic procedures. These procedures will vary, depending on the route or area under study. DILEP II may be run in a number of different ways. Experienced users will develop their own procedures for performing and evaluating the studies.

In general, the following steps are necessary for an initial design in a route:
1. Assemble all data necessary to run DILEP II. Preparation of a digital line schernatic will be helpful. Preparation of the Route Data Sheet is necessary for efficient data input.
2. Run the DILEP II datacheck. Each time the input file is changed, the datacheck option must be run before a study can be made.
3. Make an initial run of the route under study. This first run can be made with the repeaterless route junction option. The engineer will probably want to make another run with repeaters at all junctions to determine any difference in either the spacing or number of repeater locations.
4. Analyze the results of these first runs. Some objective should be arrived at. For instance, does the engineer want to maximize the use of repeaterless route junctions, or does the route have unknown future requirements that could make flexibility more important? The engineer may decide to place repeaters at all junctions in the main feeder, but use repeaterless route junctions in the branches.

In general, the plan with the fewest new manholes and repeater locations should be the most attractive. But there are occasions when initally placing the maximum number of repeaterless route junctions can, at a later date, necessitate more repeater locations in a branch.
5. This step consists of adding demand repeaters, and of generally refining the design and making successive runs until an acceptable design is obtained.

\subsection*{6.2 Example 1}

In this example, digital lines are to be deployed in a route for the first time. Six remote terminal sites were selected and are shown on the schematic in Figure 6-1. A screened cable is to be utilized for a portion of the route. The engineer input all available loss pads for the type of equipment chosen for a particular RT site. The engineer also selected all suitable manholes and entered them in the data. The data as entered is shown in Figure 6-2, Route Data Sheet, and Figure 6-3, Input File.

All protected repeaters and 800 -type apparatus cases are to be used. No reduction in loss value is to be made for any section.

Run 1 - This is an unconstrained run with repeaters at all junctions specified. Two manholes from the list were chosen by DILEP II, one at 2910 feet and one at

6980 feet from the central office. Eight line repeater locations were specified. Figure \(6-4\) is the output.

Run 2 - The engincer wanted to know if repeaterless route junctions would eliminate any of the line repeaters on the previous run. In this run, the question "Repeaters at all junctions?" was answered no. Again, the program picked the manholes listed in run 1. Three repeaterless route junctions were selected. However, this run still required eight line repeater locations. Figure 6-5 is the output.

The engineer noted that the first manhole that DILEP II picked was smaller than the next manhole at 3270 fect. The forward margin specified is 460 feet, so the repeater can be moved to the manhole at 3270 feet. The engineer also moved the next repeater at 6980 feet to the manhole at 7700 feet (forward margin is 829 feet). The file was edited to eliminate the list of manholes (this is optional and was only done to keep this list from printing on any subsequent run). The engineer then demanded repeaters at the two selected locations. The edited file is shown in Figure 6.6 .

Run 3-The engineer specified repcaters at all junctions in this run. The program still picked eight line repeater locations. It was noted that the demand repeater at 7700 feet could be moved still further to the manhole at 8100 feet (new forward margin is 460 feet), but the engineer felt that the location at 7700 feet was more favorable. The output is shown in Figure 6-7.

Run 4 - The engineer wanted to see if less line repeater locations were possible, so one more run was made, in which repeaterless route junctions were specified In this run, DILEP II still specified eight line repeater locations. The output is shown in Figure 6-8.

Note that when the engineer put in the demand repeaters in the first section, the program automatically re-sectionalized the data, and a message was printed in runs 3 and 4 after the new sectionalized data. The message is only to alert the user that the data is in a different format than when originally input.

The engineer decided to use run 3 and have repeaters at all junctions. This will give added flexibility for repeaterless route junctions, should any unforeseen service needs arise. By using repeaters at all junctions in this example, the RT end sections all remain less than 22.5 dB . While no High Capacity Digital Service needs have been forecast, this may be an advantage in the future. In this case, no economic penalty was incurred to gain this flexibility.

The repeater locations specified in the buried sections must be verified to be sure they are suitable for actual field placement. There is sufficient backward and forward margin in run 3 in case they have to be moved.

The maximum number of \(T 1\) lines permitted is greater than the engineer's estimate in all cases in this example. However, as has been stated, DILEP II has no knowledge of cable size and, if the number of Tl lines is increased over the original estimate, the design might change. In smaller cables, nonadjacent spacing may become adjacent or even same unit, thereby changing the spacing. The estimated maximum number of T 1 lines in a given sheath is critical in the initial design of a digital route.

\section*{PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY \\ See proprietary restrictions on title page.}

Figure 6-1. Digital Line Route Schematic

See propnetary restrictions on title page.

DILEP II
Route Data Sheet
```

TOF:
T ALPHA ROUTE 2
1,0,55,10800,U,P,CDM,N,100
MH,1740
MH,2118
MH,2560
MH,2910
MH,3270
MH,3900
MH,4600
MH,5350
MH,6300
MH,6980
MH,7700
MH,8100
MH,8770
MH,9640
MH,10200
MH,10800
2,1,55,12100,B,N,KFAS,N,25
3,2,15,4200,A,N,BHA,N,25
4,3,5,210,A,N, BHA, A, 25
RT,0,7.5,15.0,22.5
5,3,10,1810,A,N, BHA,A,25
RT,0,7.5,15.0,22.5
6,2,25,8050,B,N,ALA,N,25
7,6,10,890,A,N,BHA, A, 25
RT,0.5,7.5
8,6,10,3250,A,N,BHA,A,25
RT,0,7.5,15.0,22.5
9,6,5,440,B,N,ALA,N,25
RT,0,7.5,15.0,22.5
10,2,10,2200,B,N,AJA,N,25
RT,0,7.5,15.0,22.5
EOF:
>
EDIT:
>Eile

```

Figure 6-3. Input File

\section*{PROPRIETARY - BELLCORE A.ND AUTHORIZED CLIENTS ONLY \\ See proprietary restrictions on title page.}
```

3OO-TYPE APPARATUS CASE? (Y OR N)
AYLL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>Y
REPEATERS WILI BE PIACED AT ALL JUNCTIONS.
CHANGE LOSS IIMIT? (Y OR N)
>n
*** DIGITAL LINE ENGINEERING PROGRAM ***
**** ISSUE 5 ****
ALPHA ROUTE 2

SEC	FRV	* T1	SEC	TYP	P	CA	PR	UNIT	DB/KFT	Loss		CTM	CLM
*	SEC	LINES	LEN	PLT	N	CODE	SP	SIZE	LOSS	LIMIT	RESIST	RESIST	LENGTH
1	0	55	10800	U	P	CDM	N	100	6.51	32.0	289.4	289.4	10800
2	1	55	12100	B	N	KFAS	N	25	4.58	32.0	203.3	492.7	22900
3	2	15	4200	A	N	BHA	N	25	5.08	32.0	76.9	569.6	27100
4	3	5	210	A	N	BHA	A	25	5.08	31.0	3.8	573.4	27310
RT,	0.0,	7.5,	15.0,	22.									
5	3	10	1810	A	N	BHA	A	25	5.08	28.0	33.1	502.7	28910
RT,	0.0,	7.5,	15.0,	22									
6	2	25	8050	B	N	ALA	N	25	4.58	32.0	135.2	628.0	30950
7	6	10	890	A	N	BHA	A	25	5.08	28.0	16.3	544.2	31840
RT,	0.5,	7.5											
8	6	10	3250	A	N	BHA	A	25	5.08	28.0	59.5	687.4	34200
RT,	0.0,	7.5,	15.0,	22									
9	6	5	440	B	N	ALA	N	25	4.58	32.0	7.4	535.4	31390
RT,	0.0,	7.5,	15.0,	22.5									
10	2	10	2200	B	N	AJA	N	25	4.16	32.0	37.0	529.7	25100
RT,	0.0,	7.5,	15.0,	22.5									

LOCATIONS OF MANHOLES FOR PART 1

1740	2118	2560	2910	3270	3900

$4600 \quad 5350 \quad 6300 \quad 6980 \quad 7700 \quad 8100$
8770 9640 10200 10800

```

Figure 6-4. Output for Run 1

> PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY See proprietary restrictions on utle page.


Figure 6-4. Output for Run 1 (Continued)

BR 902-200-120
Issue 2, August 1987
```

DO YOU WANT TO RUN DATA CHECK, STUDY OR QUIT? (ENTER D, S OR Q)
>S
ENTER FILE NAME:
>studyl
RUNNING DILEP STUDY ISSUE 5 07/23/87 AT 14:43:43
800-TYPE APPARATUS CASE? (Y OR N)
PY ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>n
CHANGE LOSS LIMIT? (Y OR N)
>n

```
*** DIGITAL LINE ENGINEERING PROGRAM
                                    ISSUE 5
    ALPHA ROUTE 2

\begin{tabular}{cccccc} 
LOCATIONS OF MANHOLES FOR PART & 1 & & & \\
2740 & 2118 & 2560 & 2920 & 3270 & 3900 \\
4600 & 5350 & 6300 & 6980 & 7700 & 8100 \\
8770 & 9640 & 10200 & 10800 & &
\end{tabular}

Figure 6-5. Output for Run 2

\footnotetext{
PROPRIETARY - BELLCORE AND ALTHORILED CLIENTS ONLY
See proprietary restrictions on title page.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline REPEATERS & FOR CABLE & SECTIONS & 1 THRO & GH 4 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD & FWD \\
\hline \# & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & T1 LINES & MARGIN & MARGIN \\
\hline 1 MH & 2910 & 2910 & 18.94 & DIEF-(DB) & (DB) & \(>1000\) & 829 & 460 \\
\hline 2 MH & 6980 & 4069 & 26.50 & - & - & \(>1000\) & 307 & 829 \\
\hline 3 & 11880 & 4900 & 29.82 & - & - & \(>1000\) & 436 & 436 \\
\hline 4 & 18392 & 6511 & 29.82 & - & - & \(>1000\) & 436 & 436 \\
\hline JCT & 22900 & 4507 & 20.64 & 0.0 & - & - & - & - \\
\hline 5 & 24705 & 6312 & 29.82 & - & - & 261 & 1298 & 393 \\
\hline JCT & 27100 & 2394 & 12.17 & 0.6 & - & - & - & - \\
\hline 6 RT & 27310 & 2604 & 20.74 & - & 7.5 & 54 & 0 & 0 \\
\hline
\end{tabular}

\section*{PART 2}
\begin{tabular}{ccccccccc} 
REPEATERS & FOR CABLE SECTIONS & 5 THROUGH & 5 & & & \\
REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD \\
\(\#\) & FROM C.O. & LENGTH & LOSS(DB) & DIFF.(DB) & (DB) & TI LINES MARGIN MARGIN \\
7 RT & 28910 & 4204 & 21.37 & - & 0.0 & 47 & 0 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PART 3 & & & & & & & & & \\
\hline REPEATERS & FOR CABLE & SECTIONS & 6 THRO & GH 7 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & & MAX & BKWD & FWD \\
\hline \# & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 8 & 24904 & 6511 & 29.82 & - & - & & 235 & 0 & 436 \\
\hline JCT & 30950 & 6045 & 27.69 & 1.7 & - & & - & - & - \\
\hline 9 & 31008 & 6104 & 27.99 & - & - & & 10 & 0 & 0 \\
\hline 10 RT & 31840 & 831 & 11.73 & - & 7.5 & & 426 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline REPEATERS & FOR CABLE & SECTIONS & 8 THRO & GH 8 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 11 & 31007 & 6103 & 27.99 & - & - & & 10 & 0 & 0 \\
\hline 12 RT & 34200 & 3192 & 16.23 & - & 0.0 & & 150 & 0 & 0 \\
\hline
\end{tabular}
PART 5
\(\begin{array}{ccccccccc}\text { REPEATERS FOR CABLE SECTIONS } & 9 \text { THROUGH } & 9 & & \\ \text { REPEATER } & \text { DISTANCE } & \text { SECTION } & \text { DESIGN } & \text { LEVEL } & \text { PAD } & \text { MAX } & \text { BKND } \\ \# & \text { FROM C.O. } & \text { LENGTH } & \text { LOSS (DB) } & \text { DIFF. (DB) } & \text { (DB) } & \text { TI LINES MARGIN MARGIN } \\ 13 \mathrm{RT} & 31390 & 6485 & 29.71 & - & 0.0 & 241 & 0 & 0\end{array}\)
PART 6
REPEATERS FOR CABLE SECTIONS 10 THROUGH 10
\begin{tabular}{ccccccccc} 
REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKND & EWD \\
\(\#\) & FROM C.O. & LENGTH & LOSS(DB) & DIFF.(DB) & (DB) & TI LINES MARGIN & MARGIN \\
14 & RT & 25100 & 6707 & 29.79 & - & 0.0 & 215 & 0
\end{tabular}

Figure 6-5. Output for Run 2 (Continued)
```

TOF:
T ALPHA ROUTE 2
1,0,55,10800,U,P,CDM,N,100
DR,3270
DR,7700
2,1,55,12100,B,N,KFAS,N,25
3,2,15,4200,A,N,BHA,N,25
4,3,5,210,A,N,BHA,A,25
RT,0,7.5,15.0,22.5
5,3,10,1810,A,N,BHA,A,25
RT,0,7.5,15.0,22.5
6,2,25,8050,B,N,ALA,N,25
7,6,10,890,A,N,BHA,A,25
RT,0.5,7.5
8,6,10,3250,A,N,BHA,A,25
RT,0,7.5,15.0,22.5
9,6,5,440,B,N,ALA,N,25
RT,0,7.5,15.0,22.5
10,2,10,2200,B,N,AJA,N,25
RT,0,7.5,15.0,22.5
EOF:
*DIT.
EDIT:
>file
NEXT?

```

Figure 6-6. Edited Input File
```

800-TYPE APPARATUS CASE? (Y OR N)
>y
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REFEATERS AT ALL JUNCTIONS? (Y OR N)
>Y
REPEATERS WILL BE PLACED AT ALL JUNCTIONS.
CHANGE LOSS LIMIT? (Y OR N)
>n

```
*** DIGITAL LINE ENGINEERING PROGRAM ***
ISSUE 5
ALPHA ROUTE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & *T1 & SEC & TYP & P & CA & PR & UNIT & D8/KFT & LoSS & & CUM & CUM \\
\hline * & SEC & LINES & LEN & PLT & N & CODE & SP & SIZE & LoSS & LIMIT & RESIST & RESIST & LENGTH \\
\hline 1 & 0 & 55 & 3270 & U & P & CDM & N & 100 & 5.51 & 32.0 & 87.6 & 87.6 & 3270 \\
\hline \multicolumn{14}{|l|}{DR} \\
\hline 2 & 1 & 55 & 4430 & U & P & CDM & \(N\) & 200 & 6.51 & 32.0 & 118.7 & 206.4 & 7700 \\
\hline \multicolumn{14}{|l|}{DR} \\
\hline 3 & 2 & 55 & 3100 & U & P & CDM & N & 100 & 6.51 & 32.0 & 83.1 & 289.4 & 10800 \\
\hline 4 & 3 & 55 & 12100 & B & N & KFAS & N & 25 & 4.58 & 32.0 & 203.3 & 492.7 & 22900 \\
\hline 5 & 4 & 15 & 4200 & A & N & BHA & N & 25 & 5.08 & 32.0 & 76.9 & 569.6 & 27100 \\
\hline 6 & 5 & 5 & 210 & A & N & BHA & A & 25 & 5.08 & 31.0 & 3.8 & 573.4 & 27310 \\
\hline RT, & 0.0, & 7.5, & 5.0 , & 22 & & & & & & & & & \\
\hline 7 & 5 & 10 & 1810 & A & N & BHA & A & 25 & 5.08 & 28.0 & 33.1 & 602.7 & 28910 \\
\hline \multirow[t]{3}{*}{RT,
8
9} & \multirow[t]{3}{*}{0.0
4
8} & \multicolumn{4}{|l|}{7.5,15.0,22.5} & & & & & & & & \\
\hline & & 25 & 8050 & B & N & ALA & N & 25 & 4.58 & 32.0 & 135.2 & 628.0 & 30950 \\
\hline & & 10 & 890 & A & N & BHA & A & 25 & 5.08 & 28.0 & 16.3 & 644.2 & 31840 \\
\hline RT, & 0.5, & 7.5 & & & & & & & & & & & \\
\hline 10 & 8 & 10 & 3250 & A & N & BHA & A & 25 & 5.08 & 28.0 & 59.5 & 687.4 & 34200 \\
\hline RT, & 0.0, & \multicolumn{4}{|l|}{7.5,15.0,22.5} & & & & & & & & \\
\hline 11 & 8 & 5 & 440 & B & N & ALA & N & 25 & 4.58 & 32.0 & 7.4 & 635.4 & 31390 \\
\hline RT, & 0.0, & \multicolumn{4}{|l|}{7.5,15.0,22.5} & & & & & & & & \\
\hline 12 & 4 & 10 & 2200 & B & N & AJA & \(N\) & 25 & 4.16 & 32.0 & 37.0 & 529.7 & 25100 \\
\hline RT, & 0.0, & 7.5, & 15.0, & 22 . & & & & & & & & & \\
\hline
\end{tabular}

SO5 - NEW CABLE SECTIONS WERE CREATED BY THE PROGRAM BECAUSE ONE OR MORE DRS WERE SPECIFIED WITHIN A CABLE SECTION.

Figure 6-7. Output for Run 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{PART 1} \\
\hline REpEATERS & FOR CABLE & SECTIONS & 1 THRO & GH 6 & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & & \\
\hline * & FRCM C.O. & LENGTH & Loss (DB) & DIFF. (DB) & (DB) & Tl LINES & BKWD & FWD \\
\hline 1 DR & 3270 & 3270 & 21.29 & DIF.(DB) & ) & >1 2000 & \(\begin{array}{r}\text { MARGIN } \\ 460 \\ \hline 013\end{array}\) &  \\
\hline 2 DR & 7700 & 4430 & 28.85 & - & - & >1000 & 1013 & 460 \\
\hline 3 & 11894 & 4194 & 25.20 & - & - & >1000 & 1338 & 1441 \\
\hline 4 & 17397 & 5502 & 25.20 & - & - & > 1000 & 1441 & 1441 \\
\hline 5 DR & 22900 & 5502 & 25.20 & - & - & \(>1000\) & 0 & 140 \\
\hline 6 DR & 27100 & 4200 & 21.35 & - & - & \(>1000\) & 0 & 0 \\
\hline 7 RT & 27310 & 210 & 16.07 & - & 15.0 & 157 & 0 & 0 \\
\hline
\end{tabular}

PART 4

PART 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline REPEATERS & FOR CABLE & SECTIONS & 11 THR & , & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & & \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) & DIFF. (DB) & (DB) & T1 LINES & MARGIN &  \\
\hline 13 RT & 31390 & 440 & 9.52 & - & 7.5 & >1000 & 0 & \\
\hline
\end{tabular}
PART 6
\begin{tabular}{ccccccccc} 
REPEATERS FOR CABLE SECTIONS & 12 THROUGH 12 & & & \\
REPEATER & DISTANCE & SECTION & DESIGN & LEVEL & PAD & MAX & BKWD & FWD \\
\# & FROM C.O. & LENGTH & LOSS(DB) & DIFF.(DB) & (DB) & T1 LINES MARGIN MARGIN \\
14 RT & 25100 & 2200 & 16.65 & - & 7.5 & \(>1000\) & 0 & 0
\end{tabular}

Figure 6-7. Output for Run 3 (Continued)
```

800-TYPE APPARATUS CASE? (Y OR N)
>Y
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>n
CHANGE LOSS IIMIT? (Y OR N)
>n

```
*** DIGITAL LINE ENGINEERING PROGRAM
    **** ISSUE 5
    ALPHA ROUTE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEC & PRV & *T1 & SEC & TYP P & CA & PR & UNIT & DB/KFT & LOSS & & CUM & CUM \\
\hline * & SEC & LINES & LEN & PLT N & CODE & SP & SIZE & Loss & LIMIT & RESIST & RESIST & LENGTH \\
\hline 1 & 0 & 55 & 3270 & U P & CDM & N & 100 & 6.51 & 32.0 & 87.6 & 87.6 & 3270 \\
\hline \multicolumn{13}{|l|}{DR} \\
\hline 2 & 1 & 55 & 4430 & U P & CDM & N & 100 & 6.51 & 32.0 & 118.7 & 206.4 & 7700 \\
\hline \multicolumn{13}{|l|}{DR} \\
\hline 3 & 2 & 55 & 3100 & U P & CDM & N & 100 & 6.51 & 32.0 & 83.1 & 289.4 & 10800 \\
\hline 4 & 3 & 55 & 12100 & B N & KFAS & N & 25 & 4.58 & 32.0 & 203.3 & 492.7 & 22900 \\
\hline 5 & 4 & 15 & 4200 & A N & BHA & N & 25 & 5.08 & 32.0 & 76.9 & 569.6 & 27100 \\
\hline 6 & 5 & 5 & 210 & A N & BHA & A & 25 & 5.08 & 31.0 & 3.8 & 573.4 & 27310 \\
\hline RT, & \[
0.0
\] & \[
7.5,1
\] & \[
15.0,2
\] & \[
22.5
\] & & & & & & & & \\
\hline 7 & 5 & 10 & 1810 & A N & BHA & A & 25 & 5.08 & 28.0 & 33.1 & 602.7 & 28910 \\
\hline \multirow[t]{3}{*}{RT,
8
8
9} & 0.0, & 7.5.1 & 15.0,2 & 22.5 & & & & & & & & \\
\hline & 4 & 25 & 8050 & \(\mathrm{B} \quad \mathrm{N}\) & ALA & N & 25 & 4.58 & 32.0 & 135.2 & 628.0 & 30950 \\
\hline & 8 & 10 & 890 & \(\boldsymbol{A} \mathrm{N}\) & BHA & A & 25 & 5.08 & 28.0 & 16.3 & 644.2 & 31840 \\
\hline RT, & 0.5, & 7.5 & & & & & & & & & & \\
\hline 10 & 8 & 10 & 3250 & \[
\boldsymbol{\lambda} \quad \mathbf{N}
\] & BHA & A & 25 & 5.08 & 28.0 & 59.5 & 687.4 & 34200 \\
\hline RT, & \[
0.0
\] & \[
7.5,1
\] & 15.0,2 & \[
22.5
\] & & & & & & & 687.4 & 34200 \\
\hline 11 & 8 & \[
5
\] & 440 & B N & ALA & N & 25 & 4.58 & 32.0 & 7.4 & 635.4 & 31390 \\
\hline RT, & 0.0, & 7.5,1 & 15.0,2 & 22.5 & & & & & & & & \\
\hline 12 & 4 & 10 & 2200 & B N & AJA & N & 25 & 4.26 & 32.0 & 37.0 & 529.7 & 25100 \\
\hline RT, & 0.0, & 7.5.1 & 15.0,2 & 22.5 & & & & & & & 529.7 & 25100 \\
\hline
\end{tabular}
SO5 - NEW CABLE SECTIONS WERE CREATED BY THE PROGRAY BECAUSE
    ONE OR MORE DRS \(\mathcal{H E R E ~ S P E C I F I E D ~ W I T H I N ~ A ~ C A B I E ~ S E C T I O N . ~}\)

Figure 6-8. Output for Run 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{T 1} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 1 THROUGH 5 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN EEVEL & PAD & & MAX & BKWD & FWD \\
\hline \# & FROM C.O. & LENGTH & LOSS (DB) DIFF. (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 1 DR & 3270 & 3270 & 21.29 & - & & 1000 & 460 & 92 \\
\hline 2 DR & 7700 & 4430 & 28.85 & - & & 1000 & 460 & 460 \\
\hline 3 & 12700 & 5000 & 28.90 & - & & 1000 & 655 & 555 \\
\hline 4 & 19009 & 6309 & 28.90 & - & & 1000 & 655 & 655 \\
\hline JCT & 22900 & 3890 & 17.821 .9 & - & & \(\rightarrow\) & - & - \\
\hline 5 & 25078 & 6069 & 28.90 & - & & 324 & 1338 & 393 \\
\hline JCT & 27100 & 2021 & \(10.27 \quad 0.6\) & - & & & - & - \\
\hline 6 RT & 27310 & 2231 & 18.84 & 7.5 & & 83 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 2} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 7 THROUGH 7 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN LEVEL & PAD & & MAX & BKWD & EWD \\
\hline \# & FROM C.O. & LENGTH & LOSS (DB) DIFF.(DB) & (DB) & Tl & LINES & MARGIN & MARGIN \\
\hline 7 RT & 28910 & 3831 & 19.47 & 0.0 & & 72 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 3} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 8 THROUGH 9 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN LEVEL & PAD & & MAX & BKWD & FWD \\
\hline \# & FROM C.O. & LENGTH & LOSS (DB) DIFE. (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 8 & 25318 & 6308 & 28.90 & - & & 292 & 393 & 655 \\
\hline JCT & 30950 & 5631 & 25.79 1.6 & - & & - & - & - \\
\hline 9 & 31024 & 5706 & 26.17 & - & & 16 & 0 & 0 \\
\hline 10 RT & 31840 & 815 & 11.64 & 7.5 & & 434 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 4} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 10 THROUGH 10 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN LEVEI & PAD & & MAX & BKWD & FWD \\
\hline * & EROM C.O. & LENGTH & LOSS(DB) DIFF. (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 11 & 31023 & 5705 & 26.17 & - & & 16 & 0 & 354 \\
\hline 12 RT & 34200 & 3176 & 16.14 & 0.0 & & 153 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 5} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 11 THROUGH 11 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN LEVEL & PAD & & MAX & BKWD & FWD \\
\hline * & FROM C.O. & LENGTH & LOSS (DB) DIFF.(DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 13 RT & 31390 & 6071 & 27.81 - & 0.0 & & 374 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PART 6} \\
\hline REPEATERS & FOR CABLE & SECTIONS & 12 THROUGH 12 & & & & & \\
\hline REPEATER & DISTANCE & SECTION & DESIGN LEVEL & PAD & & MAX & BKND & EWD \\
\hline \# & FROM C.O. & IENGTH & LOSS(DB) DIFF.(DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline 14 RT & 25100 & 6090 & 26.97 - & 0.0 & & 412 & 0 & 0 \\
\hline
\end{tabular}

Figure 6-8. Output for Run 4 (Continued)

\footnotetext{
PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
See proprietary restrictions on title page.
}

\subsection*{6.3 Example 2}

In this example, the engineer has received an order for two High Capacity Digital Service (IICDS) lines in the Megatec building. There is an cxisting HCDS line on the third floor. The new services are to go on the cighth and tenth floors. Refer to Figure 6-9.

The engineer looks at the records and notes that there is an existing apparatus case in the manhole outside the building, and that there are vacant pairs for Tl carrier usage in the case. The case is 2200 feet from the mainframe of the central office. The network channel terminating equipment (NCTE) on the third floor contains a line build out loss of 7.5 dB .

It is generally beneficial to both the customer and the operating company to design the HCDS circuits on the customer side of the network interface without a line repeater, if possible. Since there is only one riser cable, repeaterless route junctions will be formed when the new services are installed. It has been noted that DILEP II will handle only one repeaterless route junction in a repeatered section in a given run, but with successive runs more than one can be designed. See Section 2.3, Route Junctions.

The engineer has noted that, in the Megatec building, the two new services will cause two repeaterless route junctions to be formed, one on the third foor and one on the eighth floor. Using the technique in Figure 2-1, two successive runs will have to be made.

For these runs, the HCDS rules outlined in Section 2.6 will be followed. This means that the customer end section (last line repeater to the NCTE) will be limited to 22.5 dB . In each of the runs, the engineer limited all cable sections following the demand repeater to 22.5 dB by entering a reduction of 9.5 in column 11 of the Route Data Sheet, as shown in Figure 6-10. Because the repeaters are protected, DILEP II subtracts 9.5 dB from 32 dB , yielding 22.5 dB . The engineer also wants repeaterless route junctions in the customer end section and the interactive question, "Repeaters at All Junctions?" will be answered no in all runs.

For run 1 , the engineer inputs the existing cable from the CO , the existing repeater as a demand repeater, and the building cabling. The existing HCDS location is input as an RT with the 7.5 loss pad. (Refer to Figure 6-10). This run will include the new location on the tenth floor, leaving out the eighth floor location. The file input and run results are shown in Figure 6-11.

Run 2 includes the same information as run 1 , but leaves out the tenth floor location and adds the cable information for the eighth floor location. The file input and run results are shown in Figure 6-12.

Both runs show that the repeaterless route junction formed at the third floor is within the 7.5 dB maximum loss limit. For run 1 it is 1.1 dB and for run 2 it is 0.4 dB . To arrive at the level difference at the repeaterless route junction on the eighth floor, the eighth floor section loss in ran \(2,12.29 \mathrm{~dB}\), is subtracted from the tenth floor section loss of 12.92 dB in run 1 , yielding a 0.63 dB loss difference at the junction at the eighth floor.

Another way to get this loss differential for the repeaterless route junction on the cighth floor is to make a third run, leaving out the location on the third floor (IFigure 6-13). The result is the same. In this run, the engineer input the loss pads that DIIEP II selected in the previous runs. When making successive runs for repeaterless route junctions, the engineer must be careful to input like values from run to run. It will probably be faster to make the manual subtraction.


Figure 6-9. Megatec Building Schematic

DILEP II
Route Data Sheet
Fhe Nemie IOne Io Eiunt Craitaciora) Dale
\(E|X| A|M| P|L| E \mid 2\)




-. 24 da Maniomum

Figure 6-10. Route Data Sheet
```

TOF:
T MEGATEC BLDG HCDS RUN 1
1,0,100,2200,U, P, CDTC,N,100
DR
2,1,25,360,U,N,BKTA,N,50, ,9.5
3,2,25,75,U,N, BKTA,A,50,,9.5
4,3,5,105,U,N,BKTA,A,25,,9.5
RT,7.5
5,3,20,120,U,N, BKTA,A,50, ,9.5
6,5,2,32,U,N,BKTA,A,25,,9.5
7,6,2,85,U,N,BKTA,A,25, ,9.5
RT,0,7.5,15.0
EOF:
800-TYPE APPARATUS CASE? (Y OR N)
\Y ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALI JUNCTIONS? (Y OR N)
>
CHANGE LOSS LIMIT? (Y OR N)
>n
*** DIGITAL LINE ENGINEERING PROGRAM
ISSUE 5
MEGATEC BLDG HCDS RUN 1

SEC	PRV	\# 51	SEC	TYP	P	CA	PR	UNIT	DB/KFT	LOSS		CUM	CUM
\#	SEC	LINES	LEN	PLT	N	CODE	SP	SIZE	LOSS	LIMIT	RESIST	RESIST	LENGTH
1	0	100	2200	U	P	CDTC	N	100	8.07	32.0	93.7	93.7	2200
DR													
2	1	25	360	U	N	BKTA	N	50	8.06	22.5	15.3	109.1	2560
3	2	25	75	U	N	BKTA	A	50	8.06	22.5	3.2	112.3	2635
4	3	5	105	U	N	BKTA	A	25	8.06	22.5	4.5	116.7	2740
RT, 7.5													
5	3	20	120	U	N	BKTA	A	50	8.06	22.5	5.1	117.4	2755
6	5	2	32	U	N	BKTA	A	25	8.06	22.5	1.4	118.7	2787
7	6	2	85	U	N	BKTA	A	25	8.06	22.5	3.6	122.3	2872

RT, 0.0, 7.5,15.0
PART 1

REPEATERS	FOR CABIE	SECTIONS	1 THRO	UGH				
REPEATER	DISTANCE	SECTION	DESIGN	LeVEL	PAD	MAX	BKWD	FWD
\#	FROM C.O.	LENGTH	LOSS (DB)	DIFF. (DB)	(DB)	T1 LINES	MARGIN	MARGIN
1 DR	2200	2200	17.74	DIFF.(DB)	(DB)	>1000	1041	0
JCT	2635	435	3.50	1.1	-	-	-	-
2 RT	2740	540	11.85	1.	7.5	74	0	0

PART }
REPEATERS FOR CABLE SECTIONS 5 THROUGH }
REPEATER DISTANCE SECTION DESIGN LEVEL PAD MAX BKWD FWD
\#\# FROM C.O. LENGTH

```

Figure 6-11. Output for Run 1
```

TOF:
I MEGATEC BLDG HCDS RUN 2
1,0,100,2200,U,P,CDTC,N,100
DR
2,1,25,360,U,N, BKTA,N,50,,9.5
3,2,25,75,U,N,BKTA,A,50,,9.5
4,3,5,105,U,N,BKTA,A,25,,9.5
RT,7.5
5,3,20,120,U,N,BKTA,A,50,,9.5
6,5,6,40,U,N,BKTA,A,25,.9.5
RT,0,7.5,15.0
EOF:
800-TYPE APPARATUS CASE? (Y OR N)
>y
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>n
CHANGE LOSS LIMIT? (Y OR N)
>n

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{10}{|l|}{*** DIGITAL LINE ENGINEERING PROGRAM} & \multicolumn{4}{|l|}{***} \\
\hline & & \multicolumn{5}{|c|}{****} & \multicolumn{2}{|l|}{ISSUE 5} & \multicolumn{3}{|l|}{****} & & & & \\
\hline \multicolumn{16}{|l|}{MEGATEC BLDG HCDS RUN 2} \\
\hline SEC & PRV \#T & \# T1 & SEC T & TYP & \(P \mathrm{P}\) & CA & PR & UNIT & DB/KFT & LOS & & & & M Cu & M \\
\hline \# & SEC LI & LINES & IEN P & PLT & T N & CODE & SP S & SIZE & LOSS & LIM & T RES & SIST & RESIS & ST LENG & \\
\hline 1 & 010 & 100 & 2200 & U & P & CDTC & & 100 & 8.07 & 32 & & 93.7 & 93 & . 7220 & \\
\hline \multicolumn{16}{|l|}{DR} \\
\hline 2 & 1 & 25 & 360 & U & N & BKTA & N & 50 & 8.06 & & 5 & 15.3 & 109 & . 125 & \\
\hline 3 & 2 & 25 & 75 & U & N & BKTA & A & 50 & 8.06 & 22 & & 3.2 & 112 & . 263 & 35 \\
\hline 4 & 3 & 5 & 105 & U & N & BKTA & A & 25 & 8.06 & 22 & 5 & 4.5 & 116 & . 727 & \\
\hline \multicolumn{16}{|l|}{RT, 7.5} \\
\hline 5 & 3 & 20 & 120 & U & N & BKTA & A & 50 & 8.06 & 22 & 5 & 5.1 & 117 & . 4275 & 55 \\
\hline 6 & 5 & 6 & 40 & U & N & BKTA & A & 25 & 8.06 & 22 & & 1.7 & 119 & . 27 & \\
\hline \multicolumn{16}{|l|}{RT, 0.0, 7.5,15.0} \\
\hline \multicolumn{16}{|l|}{PART 1} \\
\hline REPE & EATERS & S FOR & CABLE & & SECT & TIONS & & 1 THRO & OUGH & 4 & & & & & \\
\hline REP & EATER & DIST & TANCE & & SECT & TICN & & ESIGN & LEVE & EL & PAD & & MAX & BKWD & FWD \\
\hline & \# & FROM & M C.O. & & LEN & NGTH & LOSS & SS (DB) & DIFF. & (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline & 1 DR & & 2200 & & & 2200 & & 17.74 & & & - & & 000 & 1041 & 0 \\
\hline & JCT & & 2635 & & & 435 & & 3.50 & 0. & & - & & - & - & \\
\hline & 2 RT & & 2740 & & & 540 & & 11.85 & & - & 7.5 & & 74 & 0 & 0 \\
\hline \multicolumn{16}{|l|}{PART 2} \\
\hline REP & EATERS & S FOR & CABLE & E SE & SECT & TIONS & & 5 THRO & OUGH & 6 & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{REPEATER}} & DIST & TANCE & & SECT & IION & & ESIGN & LEVE & EL & PAD & & MAX & BKWD & FWD \\
\hline & & FROM & M C.O. & & LEN & NGTH & Loss & SS (DB) & DIFF. & (DB) & (DB) & T1 & LINES & MARGIN & MARGIN \\
\hline & 3 RT & & 2795 & & & 595 & & 12.29 & & - & 7.5 & & 66 & 0 & 0 \\
\hline
\end{tabular}

Figure 6-12. Output for Run 2

\section*{PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY See proprietary restrictions on title page.}
```

TOF:
T MEGATEC BLDG HCDS RUN 3
1,0,100,2200,U,P,CDTC,N,100
DR
2,1,25,360,U,N,BKTA,N,50,,9.5
3,2,25,75,U,N,BKTA,A,50,,9.5
4,3,20,120,U,N,BKTA,A,50,,9.5
5,4,6,40,U,N,BKTA,A,25,,9.5
RT,7.5
6,4,2,32,U,N, BKTA,A,25,,9.5
7,6,2,85,U,N, BKTA,A,25,,9.5
RT.7.5
EOF:
800-TYPE APPARATUS CASE? (Y OR N)
>Y
ALL PROTECTED REPEATERS TO BE USED? (Y OR N)
>Y
REPEATERS AT ALL JUNCTIONS? (Y OR N)
>n
CHANGE LOSS LIMIT? (Y OR N)
>n
*** OIGITAL LINE ENGINEERING PROGRAM
ISSUE 5
MEGATEC BLDG HCDS RUN 3

SEC	PRV	\# T1	SEC	TYP	P	CA	PR	UNIT	DB/KFT	Loss		CUM	CLM
\#	SEC	LINES	LEN	PLT	N	CODE	SP	SIZE	LOSS	LIMIT	RESIST	RESIST	LENGTH
1	0	100	2200	U	P	CDTC	N	100	8.07	32.0	93.7	93.7	2200
DR													
2	1	25	360	U	N	BKTA	N	50	8.06	22.5	15.3	109.1	2560
3	2	25	75	U	N	BKTA	A	50	8.06	22.5	3.2	112.3	2635
4	3	20	120	U	N	BKIA	A	50	8.06	22.5	5.1	117.4	2755
5	4	6	40	U	N	BKTA	A	25	8.06	22.5	1.7	119.1	2795
RT, 7.5													
6	4	2	32	U	N	BKIA	A	25	8.06	22.5	1.4	118.7	2787
7	6	2	85	U	N	BKTA	A	25	8.06	22.5	3.6	122.3	2872
RT,	7.5												

PART 1							
REPEATERS	FOR CABLE	SECTIONS	1 THROUGH 5				
REPEATER	DISTANCE	SECTION	DESIGN LEVEL	PAD	MAX	BKWD	FWD
\#	FROM C.O.	LENGTH	LOSS (DB) DIFF.(DB)	(DB)	T1 LINES	MARGIN	MARGIN
1 DR	2200	2200	17.74	-	>1000	1041	0
JCT	2755	555	4.470 .6	-	-	-	-
2 RT	2795	595	12.29	7.5	66	0	0
PART 2							
REPEATERS	FOR CABLE	SECTIONS	6 THROUGH 7				
REPEATER	DISTANCE	SECTION	DESIGN LEVEL	PAD	MAX	BKWD	FWD
\#	FROM C.O.	LENGTH	LOSS (DB) DIFE. (DB)	(DB)	T1 IINES	MARGIN	MARGIN
3 RT	2872	672	12.92	7.5	58	0	0

```

Figure 6-13. Output for Run 3

\section*{7. ERROR MESSAGES}

DIIEP II provides thre types of diagnostic error messages: fatal error diag-
 ages. When the DII IEP II ensiromment is entered, the datacheck routine will acces the user's dita file and read the input lines one at a time. If an error is foumd in a line of data, that line is printed on the ecren, along with an appropriate diagnostic message. DII.EP II uses the circumflex ( \(\wedge\) ) character as an error indicator. DII E:P II will not calculate repeater sites for a data file that contains errors. The user must make the corrections specified by the diagnostic message before rerunning DIL EP II. The program checks input data for completeness and compatibility, but is unable to determine its total accuracy. Therefore, reasonable care should be taken in preparing the input data to avoid reruns.

\subsection*{7.1 Fatal Error Diagnostic Messages}

The Fatal Error Diagnostic . Messages apply to all input data statements; they spectify that a line of input data is not acceptable for a specific reason. Table \(7-1\) Lists all Fatal Error Messages and gives an explanation of each. Fatal Eirror Messages are designated with the prefix " F " and a number. When a fatal error occurs, DILEP II prints the actual line of input exactly as the user entered it into the data file, then prints the diagnostic statement. The datacheck routine will print a maximum of tive fatal errors for each record it examines.

\subsection*{7.2 Warning Error Diagnostic Messages}

The Warning Error Diagnostic Messages (Table 7-2) apply to all input data lines. Warning Error .Messages are prefixed with the letter "W," followed by a number. DILEP II will continue to run even though it may encounter warning errors. All appropriate waming diagnostic messages are printed after the input line.

\subsection*{7.3 System Error Diagnostic Messages}

System Error Diagnostic Messages provide general information and reminders to the user. System Error Diagnostic Messages are designated by the prefix "S" and a number. Diagnostic messages may be printed at any time during the execution of the DILEP II Study program. All System Error Diagnostic Messages, with appropriate action for each, are shown in Table 7-3.

Table 7-1. Fatal Error Diagnostic Messages
\begin{tabular}{|c|}
\hline F01 - Character in numeric field Explanation: A character other than a blank, digit, or decimal point appears in a numeric field. \\
\hline F02 - Invalid character in field Explanation: A character other than a blank, comma, letter, digit, or decimal point appears in the input line. \\
\hline F03 - Invalid decimal point - possible missing information Explanation: Fither a decimal point was entered in an improper field or some of the required data was omitted from the input line. \\
\hline \begin{tabular}{l}
F04-Missing information \\
Explanation: Not enough information was given for this type of record. Please refer to Section 4.
\end{tabular} \\
\hline F05 - Field too large - TRLNCATED after eighth character Explanation: Input overflow. Too many characters entered for this field. No more than eight characters permitted. \\
\hline F06 - Too many fields are entered Explanation: Too many fields have been entered for this type of record. For more detail, refer to Section 4. \\
\hline \begin{tabular}{l}
F07-Cable sections out of sequence \\
Explanation: Cable sections must be in consecutive increasing order.
\end{tabular} \\
\hline \begin{tabular}{l}
F08 - Invalid previous section number \\
Explanation: One of the following cases has occurred: 1) The previous cable section number is greater than the current cable section. \\
2) More than one cable section is beginning at the CO. 3) A junction is described incorrectly.
\end{tabular} \\
\hline F09- Invalid number of T 1 lines Explanation: The number of digital lines must be greater than 0 and less than 1000 . \\
\hline F10-Invalid plant type - must be A, B, or U Explanation: The plant type must be A (aerial), B (buried), or U (underground). \\
\hline
\end{tabular}

\footnotetext{
PROPRIETARY - BELLCORE AND AU'THORIZED CLIENTS ONLY
See proprietary restrictions on title page.
}

Table 7-1. Fatal Error Diagnostic Messages (Continued)

F11 - Invalid pressurization code - must be N or \(\mathbf{P}\)
Explanation: Pressurization code must be \(\therefore\) (nonpressurized) or P (pressurized).

F12 - Invalid cable code
Explanation: Three- or four-letter cable codes are permitted only. The first three letters of the cable code must be one of the allowable codes in Table 2-2. If X or S is entered as a fourth letter, the cable is calculated as reclaimed or screened, respectively.

F13 - Invalid pair unit separation - must be \(A, N\), or \(S\) Explanation: The pair unit separation code must be A (adjacent), \(\therefore\) (nonadjacent), or S (same).

F14- Invalid pair unit size
Explanation: The pair unit size must be one of the following values: \(8,9,11,12,13,16,17,25,50\), or 100.

F15 - Invalid cable section length
Explanation: The cable length must be a value between 0 and 99,999,999.

F16-RTs cannot be placed adjacent to each other Explanation: More than one RT cannot be placed at the same location.

F17-DR location not within current cable section Explanation: When the distance of a DR is specified, its distance from the CO must be within the cable section entered before the DR input.

F18 - DRs out of sequence
Explanation: Demand repeaters must be placed in increasing distances from the CO.

F19- DR cannot be placed immediately after RT
Explanation: A DR cannot be placed at the same location as an RT.
F20 - DRs cannot be placed adjacent to each other
Explanation: More than one DR cannot be placed at the same location.

Table 7-1. Fatal Firor Diagnostic Messages (Continued)

F21-MHs out of sequence
Explanation: Manholes must be placed at increasing distance from the CO .

F22 - RT cannot be placed immediately after I)R
Explanation: An RT cannot be placed at the same location as a IDR.
F23 - Invalid pad value
Explanation: Pad value must fall between 0 and 22.5
F24 - Too many manholes entered - MAX 50
Explanation: The maximum number of manholes allowed is 50 .
F25 - Too many cable sections entered - MAX 100
Explanation: The maximum number of cables allowed is 100 .
User Action: Redefine the loop carricr route so that no more than 100 cable sections are needed.

F26 - Too many cable sections created from DR split Explanation: Too many cable sections now exist due to those created by DILEP when a \(D R\) is specified within a cable section.

F27 - DR/RT/MH before first cable section not allowed
Explanation: A DR, RT, or \(M H\) was placed at the CO. The iterns must be located at some point after the first cable section or within it.

F28 - Too many DRs entered - MAX 50
Explanation: Only 50 demand repeaters can be entered in a route lay. out.

F29 - Invalid record type
Explanation: The input line is not a valid record type.
F30-Invalid loss per kilofoot
Explanation: User-specified insertion loss per kilofoot is not within the range of losses valid for that wire gauge.

F31 - Invalid loss limit reduction Explanation: The user-specified loss limit reduction entry must be between 0 dB and 24 dB .

\footnotetext{
PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
See proprietary restrictions on title page.
}

Iable 7-2. Waming Error Diagnostic Messages

> W01 - Decimal number in whole number field - TRLVCATED Explanation: Waming only. A real number was found in an integer field. The value to the right of the decimal point is truncated.
> W02- Pad value is not a multiple of 7.5
> Explanation: Waming only. Standard pad values are \(0,7.5,15.0\), or 22.5. However, any value between 0 and 22.5 dB may be entered after RT up to a maximum of five (e.g., RT, \(0,3.2,6.4,10.1,20.5\) ).

Table 7.3. System Error Diagnostic Messages

S01 - I imit must be between 20.0 and 33.5 - reenter
Explanation: This diagnostic may occur during the interactive part of the DILIEP II run if the user attempts to specify a loss limit greater than 33.5 dB or less than 20.0 dB (greater than 32.0 dB or less than 18.5 dB if protected repeaters are used).

Liser Action: Enter a number between 20.0 and 33.5 (18.5 and 32.01\()\) inclusive. (Entering \(33.5|32|\) will have no effect on repeater spacing, because the default loss limit is 33.5 (32| dB3.)

S02 - The following repeater section(s) have less than the 9.2 minimum loss requirement:
Explanation: DII.EP II was forced to place two repeaters too chose together. The user may have requested remote terminals, demand repeaters, or junctions too close to each other, or DII.EP Il may not have been able to equalize the repeater spacing.
User Action: Modify the route layout. This may involve relocating remote terminals, demand repeaters, or junctions. The problem may also be corrected by placing a pad in the remote terminal if the violating section terminates in a remote terminal.

S03- Default insertion loss factor used for cable section(s) Explanation: Denotes the cable section that contains composite cable as noted in Table 2-2.

S04 - Vonstandard design - mixed low/standard capacitance cable Explanation: It is strongly recommended that low-capacitance cable never be mixed with paper, pulp, or standard PIC cable. Refer to the predivestiture Bell System Practice BSP 855-351-101, Transmission and Outside Plant Design Procedures - T/ Digital Line Carrier Engineering, for detailed information.

S05 - New cable sections were created by the program because one or more DRs were specified within a cable section.
Explanation: The cable section numbers of the input file have been automatically sequenced by DILEP II because demand repeaters were specified within a cable section. The output report will show more cable sections than the route data as a result of this action.

S06-DILEP system overload - ABEXD code is: \(\qquad\) . Route is 100 long or too complex - try shortening or simplifying. Contact system support if necessary.
Explanation: The route layout is too large or complex for DILEP II. The route must be shortened or simplified.

\section*{GLOSSARY}

Apparatus Case - The component of the digi1al line that houses the line repeater.

Apparatus Case Crosstalk (ACXT)- Is a near-end type of disturbance, in that it is a crosstalk from high-level outputs to low-level inputs. The ACXT effect depends on the particular apparatus case used. The 800-type apparatus cases are not as susceptible to ACXT interference as the 475 -type cases.

Binder Group-Binder groups and pair units are terms that have been used interchangeably. Both are bound with a distinctive ribbon and have a fixed number of pairs. For this Liser Guide, binder group means an entity that maintains the same relative positioning in the sheath in relation to all other binder groups.

Bit Rate - The speed at which digital information is transmitted, usually expressed in bits-per-second.

Bridged Tap-An extension of a cable pair beyond the point where it is used, or a branch cable that has bridged pairs. A bridged tap impairs transmission.

Build-Out Capacitor - A capacitor added to a cable pair to correct the pair's electrical length and thus eliminating any impedance irregularity.

Cable Code-A four-letter code used to identify all exchange cables. The first letter shows the standardization sequence of the particular type of cable. The second letter indicates the type of conductor insulation. The third letter shows the conductor material used in the cable, as well as the cable gauge. The fourth letter indicates the type of sheath.

Cable Layup-A cross-section view of the number of pairs in a unit (a group of pairs contained in one binder group) and the number of units. They are combined to form unit-type cable.

Capacitance - The property of an electric system comprised of conductors and associated dielectrics that determines, for a given rate of change of potential difference between the conductors, the displacement currents in the system. Also the property that determines how much electrical charge will be stored in the dielectric for a given potential difference between the conductors.

CO-End Section - The sections of cable from the Digital Cross-Connect Level I (DSX-1) to the Office Repeater Bay (ORB) to the Main Distributing Frame (MDF) to the irst repeater, or from a DLC COT to the MDF to the first repeater.

Crosstalk - This occurs when one transmitted signal crosses over and interferes with other transmitted signals.

Customer Premises Equipment (CPE)-Any single item or assembly of telecommunications devices that is connected to the telephone network but are used by a customer and located in space the customer owns, leases, or rents.

Digital Repeater - An electronic device that restores the original waveshape of digital bits during their transmission over a digital line.

Digital Loop Carrier - An electronic system that reduces the number of pairs required to serve a given number of single-party or multi-party subscribers. Customers are served electronically between the remote terminal and the central office over a fiber pair or a small group of copper pairs.

DILEP - Digital Line Engineering Program, a computer tool for determining the locations of repeaters along a digital line transmitting at the T 1 bit rate of 1.544 megabits per second.

DS1-The level in the digital hierachy of 1.544 megabits per second, the digital signal level 1.

End Section - The length of cable from the last line repeater to the customer's network
interface ( \(N 1\) ) and the length of cable from the II to the network channel teminating equip. ment ( \(X C T F\) ). or the length of cable from the last line repeater :o the remote terminal.

Equalization - The process of reducing attenuation distortion and or phase distortion of a circuit by introduction of networks that add compensating attenuation and or time delay at various frequencies in the transmission band.

Far-End Crosstalk (FEXT) - Crosstalk that occurs between digital signals in the same direction of transmission along the digital line.

Fiber Hub-An outside plant location where fiber cables terminate. The hub contains multiplexers and other equipment that convert optical signals to electrical signals, which are then carried to customer locations over physical or derived pairs.

High Capacity Digital Service (HCDS)HCDS provides two-point private line fullduplex transmission of 1.544 megabits per second between a Central Office and a customer premises or between two customer premises.

Impulse Noise - Noise due to short-duration, high-energy level spikes (voltage), normally caused by switching circuits in the central office on voice-frequency pairs or TTY circuits.

Induction - The process by which a change in current in one circuit causes a corresponding change in an adjacent circuit due to magnetic coupling, or by which a voltage on one conductor causes the opposite voltage to appear on another conductor with which there is electrostatic coupling.

Insertion Loss - The transmission loss caused by insertion of a component or network in a circuit. The ratio of power received at a load before insertion to that received at the load after insertion, expressed in decibels.

Interpair Crosstalk Coupling Loss - The loss in dB from a disturbing circuit to the disturbed circuit.

Kilohertz ( kHz ) - (1) One thousand hertz. (2)
One thousand cycles-per-second.
L.ATIS-A computer tool that collects facility modifications, cable troubles, and assignment changes by Tracking Linit. It also ranks Tracking Units for the Facility Analysis Plan (FAP). A Tracking Cinit is normally a Distribution Area (DA) or a group of DAs within an Allocation Area Carrier Serving Area.

\section*{Layup - See Cable Layup.}

\section*{Line Build Out (LBO) - See Pad.}

Loop Plant - The name of the part of the telecommunications network that supplies service between customer locations and the equipment that switches their calls. Called "loop plant" because it originally consisted of the wire loops that form the electrical circuits between the customers and the switch.

Loss Factor-A measure of the relative amount of heating that will occur in a dielec. tric material that is in an altemating electric field. Heating is directly proportional to frequency and the loss factor.

Main Distributing Frame - The interface between the outside plant and the switch, where customer lines terminate on vertical strips, central office equipment terminates on horizontal strips, and the two are interconnected by jumper wires.

Mask-A representation, drawn on a computer-terminal screen, of a framework on which users can enter data. A mask usually consists of labeled fields; the user can move the cursor among the fields to enter, update, or delete data.

Menu-A list of choices drawn on a computer-terminal screen. A menu usually lists a number of options to be selected from
when a user employs a computer program as a tool in performing work.

Multiunit Cable - Copper or aluminum cable that is made up of more than one group of insulated wire pairs bound, insulated, and color-coded as a unit.

Near-Fnd Crosstalk (NEXT)-Crosstalk that occurs between the two different directions of transmission along the digital line.

Vetwork Interface (NI) - The physical demarcation point between the operating company equipment and plant, and the customerowned equipment and plant.

Vonpressurized Cable - Lengths of cable that are isolated from the air-pressurization system, which forces air through the cable network to prevent entry of water.

Office Repeater Bay (ORB) - Provides powering and equalization of the digital lines. The office repeater regenerates the incoming or receiving signal from the customer or the remote terminal. It does not have a regenerator in the outgoing or send side, but usually has artificial lines or loss pads in both directions.

Pad-Used to add loss in a Ti section, to ensure the minimum loss in an end-section, or to ensure that the signal level mismatch at a repeaterless junction is not over the allowable Limit. Another name for pad is a Line Build Out (LBO).

Pair - Two wires of a single circuit associated together by twisting, binding, or by an overall braid or cover. May be laid spirally or parallel. The furst wire of the pair is designated the "tip" and the second as the "ring;" or sometimes they are designated as the "wire" and the "mate."

\section*{Pair Unit - See Binder Group.}

PLAN - The LEIS system current planning module that performs the planning, analysis, and evaluation features previously found in
such separate computer tools as EFR.\P and PGP.

Power Iine Induction-Induction that. because of its sound or frequency, is identifiable as coming from commercial power lines. It may be noise induction at harmonics of the power frequency, or low-frequency induction at \(60 \mathrm{~Hz}, 120 \mathrm{~Hz}\), or 180 Hz .

Pressurized Cable-Telephone cable that is protected against the entrance of moisture at sheath breaks by filling the interior of the cable with dry air or nitrogen, at a pressure of about 7 psig for aerial cables and 10 psig for underground cables, permitting this pressure to drop to 2 psig at the far end of the cables. Fither a sharp reduction in gas pressure or a sharp increase in the rate of gas flow actuates alarms to call attention to the presence of a leak.

Protected Repeater-Recommended for underground, buried, or aerial installations where protection from lightning and power surges is required.

Remote Data Entry System (RDES) - An editing program used to create and modify such programs as DILEP, EFRAP, EASOP, and LFAS.

Remote Terminal (RT) - The part of a subscriber loop carrier system that is placed at a site distant from the central office and the carrier system's central office terminal. The remote terminal and the central office terminal are usually connected by wire pairs that carry multiplexed digital or analog telephone conversations between the two terminals. The RT, located in a cabinet or hut, contains electronic circuits that demultiplex the carrier signals and maintain both the RT and the digital lines.

Resistance-The property of a conductive material that determines the current that will be produced by a given difference of potential. The practical unit of resistance is the ohm.

Route Junction - A route junction is formed
when TI lines from one or more branches anter the sane cable sheath.

Signal Level Mismatch-A difference in the magnitude or phase of two impedances that causes reffections and prevents maximum power transfer.

Simplex Resistance - Is one-half the cable resistance of the digital line and is found on the DILEP output.

T1 Bit Rate-A rate of \(1.5+4\) megabits-persecond.

TI Digital Facility - Is the facility, which is cither copper or fiber, for transmitting the digital signal between two locations. The T1 line in a copper environment uses a four-wire transmission or two cable pairs, one for transmit and one for receive, with the necessary repeaters or other powering devices intermediately spaced along the line.

Time Sharing - The use of a facility or picce of equipment for more than one purpose or function. or for repetition of the same function within the same overall time period. This is accomplished by interspersing or interleaving the required actions in time.

Route Data Sheet

\section*{File Name (One To Elght Characters) Data}
\(\xrightarrow{\perp} \frac{1}{\text { noute Description (Up To } 78 \text { Characters) }}\)

- Three-Or Four-Letter Code. (II The Cable Is Reclalmed Or Screened, The 4th Letter Becomes " \(X\) " Or " S ". Respectlvely.)
* Use Only II Necessary To Override Dilep II
* * 24 dB Maximum```


[^0]:    Source: Cahners In-Stat Group

[^1]:    ${ }^{1} 1998$ data from US Census Bureau
    ${ }^{2}$ Ibid.
    ${ }^{3}$ Based on several surveys Parks Associates conducted in 1998 and 1999
    ${ }^{4}$ January 2000 data from CEA
    ${ }^{5}$ Based on Parks Associates' own consumer research
    ${ }^{6}$ Based on data from the FCC
    ${ }^{7}$ January 2000 data from CEA
    ${ }^{8}$ Ibid.
    ${ }^{9}$ Ibid.
    ${ }^{10}$ Based on Parks Associates' own consumer research

[^2]:    ${ }^{11}$ SBC reported 155,000 DSL subscribers for the fourth quarter of 1999 , accounting for $31 \%$ of approximately 500,000 DSL subscribers nationwide at the end of 1999, according to DSLprime.com's estimate.

[^3]:    ${ }^{12}$ The rest of the cable modem users in San Jose use an alternative local telephone company.

[^4]:    ${ }^{13}$ Excite@Home affiliates launched a promotion called "You Get. You Keep. We Pay." in 1999 that targeted AOL users. The promotion says that if an AOL user chooses to use a cable company's @Home service to access his/her AOL account, the cable company will pay AOL's Bring-Your-Own-Access monthly charge of $\$ 9.95$ for a certain period of time.

[^5]:    ${ }^{14}$ Based on Parks Associates' interviews with various DSL providers.

[^6]:    ${ }^{15}$ Interview with a U S West executive at the end of 1999.

[^7]:    ${ }^{16}$ Some of the respondents entered the number zero because they leased their modem or were charged a single amount for modem, installation, and service activation combined. For more information, see Section 4.6 on upfront expenses.

[^8]:    ${ }^{17}$ A national survey Parks Associates conducted in early 1999 indicates that the average number of telephone outlets in the US is 3.4.

[^9]:    191998 data from US Census Bureau
    ${ }^{20}$ Ibid.
    ${ }^{21}$ Based on several surveys Parks Associates conducted in 1998 and 1999
    22 January 2000 data from CEA
    ${ }^{23}$ Based on Parks Associates' own consumer research
    ${ }^{24}$ Based on data from the FCC
    ${ }^{25}$ January 2000 data from CEA
    ${ }^{26}$ Ibid.
    ${ }^{27}$ Ibid.
    ${ }^{28}$ Based on Parks Associates' own consumer research

[^10]:    ${ }^{29}$ A separate, nationwide, and in-depth survey of dial-up users will be provided as the second component of Parks Associates' Broadband Access @ Home study.

[^11]:    ${ }^{30}$ Source: cyberatlas.internet.com
    ${ }^{31}$ Based on a nationwide survey of 600 dial-up users that Parks Associates has just completed.

[^12]:    - An example of such a carrier system is the Subscriber Loop Multiplexer (SLM) System that is described in Section 902:217.100.

[^13]:    m- manhole.
    dr - ofmand repeater
    rt - remote terminal

[^14]:    1. For screened cable, the user must also specify the pair separation as nonadjacent (see "Input Alternatives and Options").
[^15]:    M- MANHOLE
    DR- DEMAND REPEATER
    RT-REMOTE TERMINAL

    - 800-TYPE APPARATUS CASE? Y OR N (CIRCLE ONE)
    - all protected repeaters? y or n (circle one)
    - REOUCE LOSS LIMIT ? Y OR N (CIRCLE ONE)

    IF Y, TO WHAT?

[^16]:    LEIS is a trademark of Bell Communications Research, Inc.

[^17]:    PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY See proprietary restrictions on title page.

[^18]:    ICOT is a trademark of AT \&T.

[^19]:    PROPRIETARY - BELLCORE AND ALTHORIZED CLIENTS ONLY
    See proprietary restrictions on title page.

[^20]:    PROPRIETARY - BELLCORE AND AUTHORIZED CLIENTS ONLY
    See proprietary restrictions on title page.

