BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 130140-EI

A SOUTHERN COMPANY

TESTIMONY AND EXHIBIT
 OF

MICHAEL T. O'SHEASY

GULF POWER COMPANY

 Before the Florida Public Service CommissionPrepared Direct Testimony of Michael T. O'Sheasy
Docket No. 130140-EI In Support of Rate Relief
Date of Filing: July 12, 2013
Q. Please state your name, business address and occupation.
A. My name is Mike O'Sheasy. My business address is 5001 Kingswood Drive, Roswell, Georgia 30075. I am a Vice President with Christensen Associates, Inc.
Q. State briefly your education background and experience.
A. I received a Bachelor's of Industrial Engineering from The Georgia Institute of Technology in 1970. In 1974, I eamed a Master's in Business Administration from Georgia State University. From 1971 to 1975, I was employed by the John W. Eshelman Company-Division of the Camation Company-as a plant superintendent in their Chamblee, Georgia operation. From 1975 to 1980, I worked for the John Harland Corporation, initially as an assistant plant manager and then as a plant manager in their Jacksonville, Florida plant, and finally as their plant manager in Miami, Florida. I joined Southem Company Services in 1980 as an engineering cost analyst and progressed through various positions to the position of supervisor, during which time I began serving as an expert witness in costing. I testified as Gulf Power Company's (Gulf or the Company) cost-ofservice witness and provided other support to Gulf in matters before the Florida Public Service Commission (FPSC or the Commission).

In 1990, I became Manager of Product Design for Georgia Power Company and have testified before the Georgia Public Service Commission as an expert witness on rate design and pricing. I retired from Georgia Power Company on May 1, 2001 and became a consultant with Christensen Associates.
Q. Please identify the specific dockets in which you have previously testified before the FPSC.
A. I testified before the FPSC on behalf of Gulf as their cost-of-service witness in their last rate case filing, Docket No. 110138-EI, and in prior rate cases in Docket Nos. 010949-EI, 891345-El and 881167-El. I was extensively involved in the preparation of exhibits and Minimum Filing Requirements (MFRs) in those cases. Also, I was the back-up cost-of-service witness for Gulf in its 1984 rate case, Docket No. 840086-EI, where I helped prepare the related analyses. I also testified in Docket No. 850673-EU regarding standby back-up electric service.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to support the development and results of the cost-of-service study for Gulf.
Q. Do you have any exhibits that contain information to which you will refer in your testimony?
A. Yes. My Exhibit MTO-1 (consisting of Schedules 1 through 3) and Exhibit MTO-2 (containing Schedules 1 through 6) were prepared under my
supervision and direction by the Costing and Energy Analysis Team of SCS, which is the service company in the Southern electric system (SES), and the Costing and Load Research Engineer at Gulf. SCS provides engineering and other technical support for Gulf and the other SES operating companies. I have thoroughly reviewed the schedules in my exhibits and agree with their content.
Q. Are you the sponsor of certain MFRs?
A. Yes. The MFRs which I am sponsoring, in part or in whole, are listed on Schedule 1 of Exhibit MTO-1. To the best of my knowledge, the information contained in these MFRs is true and correct.
Q. Please describe the contents of your Exhibit MTO-2.
A. My Exhibit MTO-2 consists of a number of schedules that set forth the analyses and results of the cost-of-service study used as a basis for this case. Page 1 of MTO-2 provides an index to the Schedules contained in my exhibit. Each schedule was prepared in the manner approved by the Commission In its final order for Gulf's last retail rate case, Docket No. 110138-EI. That approved study utilized the Minimum Distribution System methodology, which is designed to properly account for customer-related costs.

I. COST-OF-SERVICE METHODOLOGY

Q. What is a cost-of-service study?
A. A cost-of-service study is a tool used to separate a utility's total electric investments, revenues and expenses first among the regulatory jurisdictions which an electric utility serves (jurisdictional separation) and then among the rate classes within each jurisdiction.
Q. Why is a cost-of-service study necessary?
A. Gulf is regulated by the FPSC for retail sales and by the Federal Energy Regulatory Commission (FERC) for wholesale sales. Costs and revenues must be divided between the two jurisdictions using assignments and allocations so that each respective commission can evaluate the rates over which it has authority. In order for each regulatory commission to review the utility's eamings and to evaluate the contribution made by rate classes within its jurisdiction, it is also necessary to analyze the costs to serve the respective rate classes.

Gulf, like other electric utilities, maintains its books and records in accordance with the Uniform System of Accounts as directed by the FERC and this Commission. Although this system of accounting reveals company-wide information, it does not separate the Company's investments, revenues and expenses by Jurisdiction or by rate classes within jurisdictions. The cost-of-service study that has been performed for Gulf accomplishes this objective.
Q. What is the goal of a cost-of-service study?
A. The goal of a cost-of-service study is to identify what costs are incurred to provide service to certain groups of customers. If it is performed well, it can be a useful (and often times the primary) tool for determining the adequacy of current rates. For those rate classes which the cost-of-service study reveals have inadequate retums at current rate levels, the cost-of-service study is an appropriate tool for helping determine what rate changes should be made. On the other hand, if a cost-of-service study is not performed well, erroneous conclusions can be drawn with resulting negative consequences if it influences subsequent rate design. Although there are other ways to allocate costs, the Company's proposed methodology is objective, consistent with the methodology used in numerous prior cases, and provides the most accurate information.
Q. How was the cost-of-service study used by Gulf in this retail rate filing?
A. The jurisdictional separations of rate base and net operating income resulting from the study were used by Gulf Witness Ritenour to determine the proposed jurisdictional revenue increase needed in order to achieve the requested rate of return. These jurisdictional separation factors were calculated according to accepted cost-of-service principles and followed the methodology accepted by the Commission in Gulfs previous filing, Docket No. 110138-EI, and prior Gulf filings. The retail jurisdiction was further divided into the respective rate classes using sound cost-causative methodologies. The resultant rate class information from the cost-of-service
study was then considered by Gulf Witness Thompson as a basis for the design of proposed rates in this docket.
Q. In preparing a cost-of-service study, is there some overall guiding principle or concept that should be followed?
A. Yes. The overall objective of a cost-of-senvice study is to assign or allocate costs fairly and equitably to all customers. This objective is accomplished when the resulting cost-of-service study reflects "cost causation," i.e., those customers who caused a particular cost to be incurred by the Company in providing them service should be responsible for that cost.

When certain costs are readily identified with a particular customer group (rate class), the assignment of those costs to that group clearly reflects cost causation and is fair and equitable to all customers. However, most parts of an electric system are planned, designed, constructed, operated and maintained to serve all customers. Most of Gulf's costs have been incurred to serve all customers. These costs are referred to as joint or common costs. Joint or common costs must be allocated to customer groups based on the nature (i.e., drivers) of the costs incurred and the aggregate requirements and service characteristics of the customers that caused the costs to be incurred. By adhering to this fundamental and essential principle of cost causation, the results of the cost-of-service study will be fair and equitable to all customers.
Q. How is a cost-of-service analysis performed?
A. In order to determine the costs to serve each group of customers in a fair and equitable manner, the utility company's records are analyzed to determine how each group of customers influenced the actual incurrence of costs by the utility. This review discloses certain direct costs that should be assigned to the specific rate class for which these costs were directly incurred. This review also discloses costs which are incurred to perform a function within the electric system for multiple customer rate classes, referred to as common costs. These common costs are then allocated among those rate classes using an allocator that appropriately reflects the underlying cost causative relationship(s).
Q. Please elaborate on the distinctions between various types of direct and allocated costs.
A. Certain costs are directly associated with one particular group of customers and are, therefore, directly assigned to that group. An example is FERC Account 373 - Street Lighting. All costs associated with this account will be assigned to the outdoor service rate class OS.

The majority of costs, however, are incurred jointly to serve numerous customer rate classes. An example of common costs is FERC Account 312 - Boiler Plant Equipment, which serves all rate classes. In order to allocate the various common costs like Account 312 to the rate classes, consideration must be given to the type and classes of customers, their load
characteristics, their number, and various other expense and investment relationships in order to find the cost causative link.

Research of cost causative relationships reveals that costs normally possess one or more of three attributes that identify the driving linkage between customer and company. This cost categorization or componentization can be viewed as: (1) customer-related, which are costs that vary with the number of customers or the fact that customers must be able to receive service; (2) energy-related, which pertain to costs that vary with energy consumption (kWh); and (3) demand-related, which are costs that are incurred to serve peak needs for electricity (kW). Each of these three "drivers" has its own separate and appropriate allocators to spread its respective costs to the associated rate class and jurisdiction.

Once the various common accounts have been analyzed to identify their appropriate cost component(s), the corresponding allocator(s) can be applied to apportion common costs to the area of responsibility. By summing the allocated common costs and the assigned direct costs by jurisdiction and rate class, the rate of return for each group can be detemined. If conducted upon a sound basis of cost causation, the cost-ofservice study can be the benchmark to detemine the adequacy of current rates and how well rate groups are covering their costs.
Q. Please expand on the importance of accurate cost allocation.
A. The goal of a cost-of-service study is to identify what costs are incurred to
provide service to certain groups of customers. It is based upon the principle of cost causation. As stated in the National Association of Regulatory Utility Commissioners (NARUC) Electric Utility Cost Allocation Manual, "The total revenue requirement of the utility is attributed to the various classes of customers in a fashion that reflects the cost of providing utility services to each class" (pg. 13).
Q. Please give an example of the consequences of proper and improper allocations in a cost-of-service study.
A. In general, a meter is necessary to measure the amount of electricity provided to a customer, but the meter can operate adequately regardless of the maximum demand or the overall quantity of electricity consumed. The cost of the meter incurred by the utility to serve the customer does not vary with the quantity of electricity consumed by the customer; it is driven by the fact that each customer needs a meter. As a result, utilities will usually consider meters to be customer-related, and allocate meter costs to the various rate classes using an allocator which reflects the number of customers in each rate class.

If meters were misclassified as $\mathbf{k W h}$ related, then the corresponding $\mathbf{k W h}$ allocator would spread more meter costs to large customers and less meter costs to small customers despite the fact that the large customers and the small customers both required the same meter and imposed the same costs on the utility. The large customers' overall cost responsibility would
ultimately be overstated and that of the smaller customers would be understated.

II. GULFS COST-OF-SERVICE STUDY

Q. Please explain Schedule 1 of your Exhibit MTO-2.
A. Schedule 1.00, pages 2-3, of Exhibit MTO-2 is the result of the cost-ofservice study in summary form for the test year utilizing the Company's present rates. It shows the Company's total rate base, revenues, expenses, and net operating income, along with the corresponding responsibilities of the retail jurisdiction, as well as the rate classes within the retail jurisdiction. The column denoted "Wholesale" represents full requirements wholesale, which is under the jurisdiction of the FERC. Unit Power Sales (UPS) is a wholesale contract in which Gulf-owned pieces of Plant Scherer are sold to other electric utilities.

Schedule 1.01, pages 4-5, is similar to Schedule 1.00 except that it shows revenues by rate class that would produce equal rates of retum by rate class at the present retail rate of return. Schedule 1.10, pages 6-7, is similar to Schedule 1.00 except that it is based upon the Company's proposed revenues and related expenses by rate class. Schedule 1.11, pages 8-9, states what would be the revenues and related expenses that enable each rate class to achieve the same rate of retum as will the retail
jurisdiction under the Company's total retail proposed revenues and related expenses.
Q. What are the rate classes in the retail jurisdictional cost-of-service study for Gulf?
A. The rate classes in Gulf's retail jurisdictional cost-of-service study are:

- Rate Class Residential
- Rate Class GS (Small Business)
- Rate Class GSD/GSDT (Medium Business)
- Rate Class LP/LPT (Large Business)
- Rate Class Major Accounts (Very Large Business)
- Rate Class Outdoor Service (OS)
Q. What is the purpose of Schedule 2 of Exhibit MTO-2?
A. Schedule 2 of Exhibit MTO-2 analyzes investment related accounts and either assigns or allocates them to the appropriate jurisdiction and then to rate class within the retail jurisdiction. It includes Gross Plant Schedule 2.10, pages 10-14, Accumulated Depreciation Reserve Schedule 2.20, pages 15-17, Materials and Supplies Schedule 2.30, pages 18-19, Other Working Capital Schedule 2.40, pages 20-23, and Other Rate Base Items Schedule 2.50, pages 24-26. Together these schedules flow to the summary Schedule 1 to provide rate base by jurisdiction and rate class.
Q. What is shown on the remaining schedules of Exhibit MTO-2?
A. Schedule 3.00, pages 27-28, provides the Analysis of Revenues.

Schedule 4 displays the Analysis of Expenses. Schedule 4.10, pages 29-40, details the allocation of Operations and Maintenance (O\&M) expenses to jurisdiction and rate classes. Schedule 4.20, pages 41-43, describes the Depreciation expense allocation, and Schedule 4.30, pages 44-46, presents the Analysis of Taxes Other Than Income Taxes. Schedule 5.0, pages 47-49, contains the Table of Line Allocators and Percentages. The results of these various schedules are summarized in Schedule 1. Schedule 6 shows the development of the Minimum Distribution System.
Q. Please identify the steps that were undertaken in preparing the cost-ofservice study shown in your Exhibit MTO-2.
A. The development began with the collection and analysis of load research data. This research provided the number of customers and their respective demand and energy sales by voltage level of service which were then used to produce the allocators.

The load research data for the test year was supplied by Mr. Thompson. He also provided total territorial supply and losses for annual energy and demand. In addition, Mr. Thompson provided annual energy sales, monthly coincident peak (MCP) demands, annual non-coincident peak (NCP) demands, and the average number of customers for the test year by rate class and voltage level. These inputs were then used to calculate the "12MCP," "NCP", " "energy," and "number of customers" allocators.
Q. Please describe the 12-MCP and NCP concepts and why they are used.
A. The 12-MCP demand is the sum of the highest kilowatt load predicted to occur in each month of the test year divided by twelve. This 12-MCP concept recognizes the fact that Gulf's system is planned and operated for the purpose of meeting these demands for electricity every month of the year. It also reflects consideration of scheduled maintenance, firm sales and purchase commitments, and reliance on interconnections. In addition, 12-MCP has traditionally been the FERC's preferred allocation technique for determining the wholesale jurisdictional obligation. The 12-MCP demand allocator has been used to help make the split between retail and wholesale. Within the retail jurisdiction it is used to allocate generation level demand-related costs and costs for transmission step-up substations, transmission lines, and substations linking transmission with distribution.

The NCP demand for each retail rate class is the highest demand occurring for that rate class during the test year. The NCP demand allocator was used to allocate distribution demand costs at Level 4 (primary distribution) and Level 5 (secondary distribution) and was similarly applied in Gulf's last rate case.
Q. Please explain the steps that were used in developing the demand and energy allocators.
A. Balanced system load flows for demand and energy were first developed through a load flow program, which spreads total system losses to each voltage level. These levels, which are defined in more detail in MFR E-10,
are used to describe the flow of electrictity from generation, through the various transformations, across the various transmission and distribution lines, to the eventual delivery to the customer.

The load flow process begins by taking the total energy sales at Level 5 , the secondary distribution level, multiplying these sales by the loss percentage at Level 5, and then combining these calculated losses and sales. This amount is then added to the sales at Level 4, and this new total is, in turn, multiplied by the loss percentage at Level 4. This procedure is continued up through Level 1, the generation level. The program adjusts the loss percentages at each level and then iterates the above process until the sum of the losses at each level matches the total system losses and a balanced flow is produced. These total system loss percentages are then applied to the rate classes by voltage level, thus computing energy allocators for each respective voltage level. A similar process is used to calculate the 12-MCP demand allocators. The NCP demand allocators for Levels 4 and 5 are developed similarly and use the loss percentages calculated by the 12-MCP demand flow, since there is no territorial input for NCP with which to balance.
Q. What other types of allocators were used besides demand and energy?
A. Customer-related allocators were also used in order to allocate customerrelated costs.
Q. What was the next step in the development of Gulf's cost-of-service study?
A. Ms. Ritenour provided the financial information for the projected test year. These investment, revenue, and expense items were then assigned to jurisdiction and rate class if a direct cost causative relationship was known, or allocated to jurisdiction and rate class using the previously developed allocators.
Q. How were the allocations made between the wholesale and retail jurisdictions?
A. Where costs were identified as serving only the retail or wholesale jurisdictions, they were assigned to that respective jurisdiction. Where costs were common and served both jurisdictions, they were allocated. The jurisdictional separation for demand costs was based upon the 12-MCP allocation. A KWh allocator was employed for the allocation of energyrelated costs. Again, this methodology is consistent with the one approved in Gulf's last rate case. The methodology also conforms to MFR E-1.
Q. Please describe the analysis within the retail jurisdiction.
A. Where known to serve a particular rate class, revenues and costs were directly assigned. For example, residential revenues were assigned to the residential rate class and outdoor lighting fixture costs were assigned to the outdoor service rate class. The majority of costs were common and therefore allocated. Generation level costs were allocated on the basis of 12-MCP \& $1 / 13 \mathrm{kWh}$ (energy). Energy-related accounts were allocated upon the KWh allocator. Transmission, subtransmission and substations
were allocated upon the12-MCP concept. Primary and secondary distribution demand-related costs were apportioned on the corresponding NCP allocators, and customer-related costs were allocated upon the respective customer allocator.

III. COST-OF-SERVICE METHODOLOGY COMPARED TO LAST GULF FLING

Q. How does the cost-of-service methodology proposed by Gulf in this case compare to the methodology approved in Gulf's last retail base rate proceeding?
A. It is the same methodology filed and approved by stipulation in the Company's last rate proceeding. The study methodology uses 12-MCP \& 1/13 kWh for allocation of generation capital cost, 12-MCP for allocation of transmission cost, non-coincident peak demand for allocation of distribution cost, and the Minimum Distribution System for separating distribution cost into demand and customer components.

Although the Company does not agree that the use of 12-MCP \& 1/13 kWh is a better allocator of generation level costs than a pure 12-MCP allocator would be, Gulf nevertheless prepared its study in this case using the Commission-approved methodology. Gulf continues to believe that a pure 12 MCP factor for generation results in a more accurate cost allocation. However, using the Commission's preferred method does not result in major
variances in cost allocation from the pure 12-MCP approach and does not significantly impair Gulf in designing efficient rates.
Q. Please describe the Minimum Distribution System methodology and why Gulf believes it is important.
A. As I discuss in more detail later, some inherent, intrinsic costs of the distribution system besides the customer meter and service drop do not vary with customers' use of electricity. These costs are necessary simply for a customer to be "hooked-up" and able to receive service. The Minimum Distribution System (MDS) methodology is necessary to accurately determine and subsequently allocate these customer-related distribution costs.
Q. Where are customer-related costs found?
A. Basically, they can be found in Customer Assistance, Customer Service and the FERC mass distribution accounts. They relate to the costs of being capable of providing electric service. In other words, regardless of the quantity of electricity demanded, the mere fact that the utility must be prepared to provide service at any time causes those costs to be incurred. These customer-related costs are driven by the simple fact that each customer must have the ability to receive service.

This cost category which Gulf designates as "customer-related" includes those distribution costs which do not vary with demand use. Some may vary directly with the number of customers to be served while others are a
fixed requirement necessary for a distribution system regardess of quantity of usage. An example would be protective devices (found in FERC Account 368), which operate in the same manner with or without load on the system in order to keep the lines available to as many customers as possible.
Q. Which FERC accounts require cost classification scrutiny to identify their customer-related component?
A. Accounts 364-370 usually require an analysis to properly apportion their overall costs into those which are customer-related and those which are demand-related.
Q. What harm can occur if these accounts are not classified properly into demand and energy using MDS?
A. The misclassificatlon of costs that results from not using the MDS methodology sends inaccurate price signals to customers. This misclassification also results in different customer rate classes bearing more or less cost than their cost-causative share of distribution costs. It is therefore important to examine these customer-related costs and classify them appropriately, which the MDS methodology enables us to do.
Q. Does NARUC advocate accurate cost classification and the allocation of these accounts?
A. Yes. Its official guidebook, the Electric Utility Cost Allocation Manual, offers clear instructions. The following is an excerpt from page 90 of its January 1992 edition:

Distribution plant Accounts 364 through 370 involve demand and customer costs. The customer component of distribution facilities is that portion of costs which varies with the number of customers. Thus, the number of poles, conductors, transformers, services, and meters are directly related to the number of customers on the utility's system. As shown in table 6-1, each primary plant account can be separately classified into a demand and customer component. Two methods are used to determine the demand and customer components of distribution facilities. They are, the minimum-size-of-facilities method, and the minimum-intercept cost (zero-intercept or positive-intercept costs, as applicable) of facilities.
Q. Does the NARUC manual require that the cost-of-service study be done in a certain manner?
A. No, the NARUC manual is a guide that offers reasonable and logical methodologies for cost allocation. The manual only discusses the major costing methodologies and acknowledges those that are acceptable.
Q. Can you expand on the logic of a customer-related component for distribution accounts?
A. Yes. Schedule 2 of Exhibit MTO-1 depicts a simple distribution network. Now, imagine three different usage scenarios of this network:

Scenario I: Imagine that houses A-E all have about the same load usage. Now imagine that houses A and B become unoccupied due to impacts of a downturn in the economy or a rental or vacation home now experiencing high vacancy rates. The result is that load on the system goes down, yet the cost of the distribution network remains the same.

Scenario II: Now imagine that all 5 houses are occupied with like load usage. Next, houses C \& D employ energy efficiency improvements. Load on the system diminishes, yet the cost of the distribution network remains the same.

Scenario III: Next imagine that all 5 houses are occupied with like load usage. Now imagine that houses C, D, \& E add energy efficiency improvements, but a new house F is added to the network with a load equal to what the energy efficiency improvements were for houses C, D, \& E. The result is that the total load on the system remains the same, yet the cost of the distribution network must be expanded for new poles and lines.

In each scenario, one can see that the cost of the distribution network is influenced by the number of customers served, not by any changes in total demand or energy usage. Therefore allocating these customer-related costs on a basis other than a customer allocator would result in an inaccurate cost classification and allocation. Assuming that an underage in properly defining customer cost is absorbed in demand cost, this inaccurate classification could lead to a demand or energy charge that is larger than its
true cost. The customer receives a resultant price signal that is larger than it should be.

Even if rate designs do not exactly follow cost of service, it is crucial to have a cost-causative cost-of-service study. It is important that both rate designers and policy makers have an accurate cost benchmark so rate excursions from true costs can be observed and considered. Otherwise, rate decisions will be based on inaccurate information about true cost responsibility and impacts.

IV. HOW THE MINIMUM DISTRIBUTION SYSTEM METHODOLOGY IS PERFORMED

Q. How do you determine the customer-related costs of distribution?
A. The process of identifying customer-related costs uses the concept mentioned in the NARUC manual called the Minimum Distribution System. (MDS). This concept is based on the fact that in order to simply connect a customer to the power system, a minimum amount of facilities and equipment are necessary. The minimum distribution facilities, along with meters and service drops, make up the plant investment portion of customer-related costs. The distribution facilities in excess of the minimum are classified as demand-related costs because they relate to capacity.
Q. How does one determine this minimum amount of facilities and equipment?
A. There are two common ways to do so: (1) minimum size (MS) and (2) zerointercept (ZI). The philosophy of MS is that in order to simply connect a customer to the system, a minimum size of equipment is necessary. The cost of this minimum size equipment is then categorized as a customerrelated cost. For example, suppose that a 15 kVA line transformer represents the smallest size transformer normally used. In this case the unit installed costs of a 15 kVA transformer would be employed as the basis for the customer cost of transformers, with the residual transformer costs treated as demand-related. This methodology, although logical, has a weakness because even the smallest standard size equipment such as the 15 kVA transformer is capable of carrying load, i.e., it has capacity. This capacity is demand-related and should therefore be embedded within another price component. The second method, Zero-Intercept (ZI) is an improved technique for determining customer-related costs that, by definition, removes any ability of carrying load.

Mr. Lawrence J. Vogt in his published treatise, Electricity Pricing: Engineering Principles and Methodologles (2009) identified the zerointercept and minimum system analysis. Mr. Vogt writes as follows:

The concept of a minimum distribution system recognizes that the primary and secondary distribution system has both customer-related and demand-related attributes. As discussed previously, the customer cost component is
associated with no- load conditions, whereas the demand cost component is associated with load conditions

When a single device has both customer-related and demand-related attributes, its total cost must be allocated.

The minimum intercept or zero-intercept methodology provides a rational basis for separating the cost of a device between its customer and demand components. (Id. at pp. 498-500.)
Q. How does the Zero-Intercept method work?
A. The ZI method is based on a regression analysis of equipment costs. The y-axis is based upon equipment unit cost and the x-axis is based upon sizes of equipment. This analysis creates a regression equation with acceptable confidence intervals that provides cost projections for equipment having load capacities outside the range of existing equipment. This allows a cost analyst to extrapolate back to a level of zero (i.e., no-load) capacity referred to as the y-intercept. The equation thereby identifies a value of unit cost for equipment with zero load capacity. This avoids any double counting of load with MDS. This can be observed in Schedules 6.1 and 6.2 of Exhibit MTO-2.
Q. When using different sizes of equipment, did you employ all sizes in use by Gulf?
A. No, we used the equipment which Gulf now purchases and anticipates
continuing to purchase and avoided use of antiquated equipment sizes. For example, to use 7.5 kVA or 10 kVA transformers in the analysis would produce misleading results since Gulf has no plans to continue use of small transformers like these.
Q. If the unit cost is based upon a concept of equipment with no-load capability, do you consider the MDS to be an unrealistic or fictional concept as has sometimes been claimed?
A. No. MDS is no more of a fictional concept than is a deposit requirement for a vacation rental on Pensacola Beach or a simple retainer fee. A deposit is required to preserve the ability to occupy the rental space for future use. Likewise, the retainer fee is required to secure the right of future service regardess of the magnitude of additional services to be rendered. Similarly, the MDS is the cost required to ensure the availability of service to a customer premise whether or not any electricity is ever actually consumed.
Q. Is any equipment built to zero load specifications?
A. No, there is none to my knowledge. Likewise, there is no generating plant that is built with exactly $1 / 13$ of its capital cost to minimize fuel cost as required by one of the MFRs for allocation of production costs. This does not mean, though, that Zl is an illogical concept and therefore not to be used. Even though no equipment is built to serve zero load, the ZI concept is still a valid method of identifying cusiomer-related cost because ZI recognizes the Intrinsic cost of providing service - the necessary elements to merely enable service to be provided.
Q. How does one account for inflation when developing the ZI regression equation?
A. Equipment is regressed and analyzed using current replacement costs. This is necessary since some equipment in service for Gulf has a more current vintage than others. Once the ZI unit costs for the customer-related piece are computed, these costs are multiplied by the number of units in service to develop the aggregate amount. The remainder of "current replacement cost" is the demand-related costs. This resultant split of replacement cost into a customer piece and a demand piece is then used to allocate the embedded vintage cost for the equipment into appropriate customer and demand component costs. This is done for all the various types of equipment which possess both customer-related and demandrelated characteristics within their inherent make-up. Any equipment which has either a strictly demand-only make-up (for example, substation equipment) or a strictly customer-only make-up (for example meters) is directly assigned to the respective component. An appropriate customer allocator then allocates customer-related costs to rate classes in the cost-of-service study. Demand-related costs are similarly allocated to rate classes using a demand-related allocator.
Q. What FERC mass distribution accounts are split and classified in this manner?
A. Distribution Accounts 365, 366, 367, and 368 use this ZI methodology. For FERC Account 364, we used the average of the smallest, most frequently used poles since the unit cost of different sized poles did not lend
itself to regression analysis. Accounts 369 and 370 are considered as all customer-related. Any related expense accounts (for example depreciation expense) then utilize the corresponding 364-368 accounts to appropriately split expenses into customer and demand-related costs. The computation of the splits for Accounts 364-370 are shown in Schedules 6.3 to 6.9 of Exhibit MTO-2, pages 52-60.
Q. Are Account 369 (Service Drops) and Account 370 (Meters) usually classified as 100 percent customer-related?
A. Yes, this has been the traditional treatment for most utilities. Service Drops are the lines that provide the service connection between the secondary level distribution transformer and the customer's meter and enable the customer to receive service. The meter, as previously mentioned, measures the amount of electricity that the customer consumes and is used for billing.
Q. What are the resultant customer/demand splits that Gulf is proposing?
A. The customer-related analysis performed for Gulf results in the customer/demand splits shown on Schedule 3 of Exhibit MTO-1. These are the splits which Gulf is proposing.
Q. Do any other electric utilities use MDS to determine the customer-related costs?
A. Yes. In fact, two other operating companies in the Southem electric system, Georgia Power Company and Mississippi Power Company, use

MDS to determine the customer-related costs. Some other utilities that employ MDS include Kentucky Utilities, LG\&E, Tennessee Valley Authority (TVA), Wisconsin Public Service, and Virginia Electric Power.
Q. Other than approving the stipulation to use MDS in Gulf's last base rate proceeding, has this Commission ever approved MDS?
A. Yes, it was approved for Choctawhatchee Electric Cooperative Inc. (CHELCO) in Docket No. 020537-EC. The Commission stated four basic reasons for accepting MDS for CHELCO: (1) customer density, (2) rural customer make-up of much of CHELCO, (3) number of accounts versus number of customers, and (4) financial hardship.
Q. How do these conditions apply to Gulf?
A. In some cases these conditions are similar and in some cases they vary.
(1) Density is considered in terms of the number of customers served within the distribution network and does influence cost per customer but is not a primary driver of cost. CHELCO was requesting a customer charge for customer related distribution cost recovery of $\$ 24 /$ customer/month. The distribution unit cost for Gulf in the last case was $\$ 20 /$ customer/month which is not significantly different from CHELCO's request. In fact Gulf's requested customer charge equivalent, base charge, in their last case was actually only $\$ 15 /$ customer/month which was about the customer-related unit cost that would occur for Gulf without the use of MDS. However, density is not the primary driver that causes cost to be incurred. As
previously noted, the primary drivers that cause cost to be incurred are number of customers, amount of demand, and the amount of energy required. Finally whether unit costs are \$24/customer or some other number, a cost-of-service study should allocate cost based upon cost causation regardless of the unit cost value that results.
(2) CHELCO has a more rural characteristic than Gulf although Gulf too has many rural customers. An emphasis upon rural versus urban customer base may be appropriate to acknowledge that rural customers' load and electricity bills are likely to be more variable and volatile than those of urban customers. However, the issue of moderating revenue volatility for the utility is a rate design issue - not a cost-of-service issue. Cost of service should be based upon cost causation. The rate designer and the regulators have the flexibility to vary from pure unit cost for many reasons, but it is important for them to know how far they are departing from pure unit cost in rate design and the overall revenue target. Only a cost-of-service study based upon cost causation can tell them that.
(3) Apparently CHELCO has more accounts than customers. This may be due to rural customers having one account for their house and additional accounts for other activities. These "other accounts" require cost to be incurred by the utility that would not be required if there were only one account. A large base charge might discourage a customer from requesting multiple accounts thereby avoiding unnecessary cost for the utility. Once again, this is a rate design issue and not a cost-of-service issue. If the utility
and regulator wish to discourage multiple accounts for the same customer, they can do so in the rate design process, but this should not direct the cost-of-service analyst into mlsallocating cost in the cost-of-service study.
(4) CHELCO was incurring serious financial hardship and in fact had a negative rate of return. Although Gulf's rate of return is not negative, Gulf is eaming below the bottom of its authorized rate of retum. In any event, the financial condition of the utility does not affect the need to use cost causation principles to allocate cost properly when conducting a cost-ofservice study. Whether a utility is financial healthy or suffering, cost should be allocated based on cost causation.

In summary, there are both similarities and differences between CHELCO's situation and Gulf's. However, regardless of these differences, there are important cost causation principles that justify the use of MDS in this case.
Q. An occasional criticism of MDS is the statement that utilities generally do not know precisely which pieces of equipment serve which rate classes. Is this a valid criticism?
A. No. While it is true that many utility systems are so large that they cannot feasibly track which equipment serves which rate classes, utilities like Gulf are able to determine where the equipment is located by service levels (like secondary service) and which rate classes are served at each one of these respective service levels. This is adequate and reasonable detail to allocate cost and use MDS in a cost-of-service study.
Q. Will the use of MDS allocate a disproportionate share of cost to the residential and small commercial rate classes?
A. No. Using MDS and including the resultant customer component in the distribution accounts will increase the costs allocated to the residential rate class and small commercial rate class, and usually it will decrease the costs allocated to large business classes. However, this is appropriate, since it better reflects the cost to serve these rate classes. It is not "disproportionate" but simply more accurate. For instance, if the majority of secondary customers and load are from a particular rate class, that rate class causes the majority of secondary cost and this is more precisely revealed with the use of MDS.
Q. If MDS results in the base charge increasing, will this have more impact on small customers than large customers?
A. Since the overall revenue target and rate design applies to all customers within the class, a large fixed component will impact small users more than a volume-based component. But, once again, this is a rate design issue not a cost-of-service issue. When determining the cost of providing service to customers, who benefits should not be the deciding factor - cost causation should. In addition to causing intra-class inequity; not recognizing MDS in cost of service also causes inter-class inequity. In the past when this MDS customer component was not recognized in cost of service, large business rates were inappropriately allocated higher costs than appropriate. Even though the MDS methodology causes cost allocation to decrease for large business rates and customers and to increase for smaller rates and
customers, it does so for rational reasons and properly allocates the costs to those customers who caused them to be incurred by the utility.
Q. What effect does including this customer-related component have for seasonal homes and vacation apartments?

A For months in which seasonal homes and vacation apartments are unoccupied yet still in service, cost allocation would be higher in cost-ofservice studies with MDS than if these customer-related costs were misclassified in the demand component and there was no demand from the unoccupied premise. However, this is indeed a proper reflection of costs, since even during months of vacancy Gulf must have its distribution system ready to provide service whenever the renter arrives. The seasonal customer should have the same cost responsibility as the year-round resident for these customer-related costs. Without the use of the MDS methodology, year-round customers would be allocated more than their fair share of these costs.
Q. It appears that you have included a customer-related component only for distribution equipment and not for transmission and subtransmission equipment. Why shouldn't transmission and subtransmission include customer components?
A. One could make the argument that transmission and subtransmission should have customer components. However, transmission and subtransmission equipment is much larger and operates at higher voltage levels than distribution equipment. Consequently, imputing a customer-
related piece would likely result in a very small portion of the transmission and subtransmission being identified as customer-related. As a result, it has been common convention in the electric industry to stop calculating a customer component at the distribution level.
Q. Does the NARUC manual propose a customer component for transmission or does it stop at distribution?
A. The NARUC manual stops at distribution for classifying costs as customerrelated.
Q. Do you recommend continuing to use MDS for Gulf in this case?
A. Yes, I do. I believe that this methodology provides the most appropriate cost assignments to assess rate class returns and to serve as a basis for rate design.
Q. Even though you are recommending the use of a MDS cost-of-service study in this case, is a non-MDS study included in the MFRs which you are sponsoring?
A. Yes, that is included in MFR E-1.
Q. In your opinion, are the results of the recommended cost-of-service study accurate representations of the rates of retum by jurisdiction and rate class?
A. Yes. The results shown on Schedule 1 of the cost-of-service study in Exhibit MTO-2 are indeed fair and accurate statements of cost causation. The rates of retum produced by jurisdiction and by rate class for Gulf's test

5 A. Yes, it does. costs.
year are fair and accurate indications of how the rate classes are covering

AFFIDAVIT

STATE OF GEORGIA) COUNTY OF COBB)

Docket No. 130140-EI

Before me the undersigned authority, personally appeared Michael T. O'Sheasy, who being first duly sworn, deposes, and says that he is a Vice President with Christensen Associates, Inc. and that the foregoing is true and correct to the best of his knowledge, information, and belief.

Sworn to and subscribed before me this \qquad day of \qquad

Notary Public, State of Georgia at Large
Commission No. \qquad
My Commission Expires $1-29-2017$

Personally Known \qquad OR Produced Identification \qquad
Type of Identification Produced $D C \nRightarrow$ 0009 961809

Florida Public Service Commission Docket No. 130140-EI
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-1)
Schedule 1
Page 1 of 1
Responsibility for Minimum Filing Requirements

Schedule	Title
B-6	Jurisdictional Separation Factors - Rate Base
C-4	Jurisdictional Separation Factors - Net Operating Income
E-1	Cost of Service Studies
E-2	Explanation of Variations from Cost of Service Study Approved in Company's Last Rate Case
E-3a	Cost of Service Study Allocation of Rate Base Components to Rate Schedule
E-3b	Cost of Service Study - Allocation of Expense Components to Rate Schedule
E-4a	Cost of Service Study Functionalization and Classification of Rate Base
E-4b	Cost of Service Study Functionalization and Classification of Expenses
E-5	Source and Amount of Revenues - At Present and Proposed Rates
E-6a	Cost of Service Study - Unit Costs, Present Rates
E-6b	Cost of Service Study - Unit Costs, Proposed Rates
E-9	Cost of Service - Load Data
E-10	Cost of Service Study - Development of Allocation Factors
E-11	Development of Coincident and Non-Coincident Demands for Cost Study
E-16	Customers by Voltage Level
E-19a	Demand and Energy Losses
E-19b	Energy Losses
E-19c	Demand Losses

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-1)
Schedule 2
Page 1 of 1

Illustration of Simple Distribution Network

Florida Public Service Commission Docket No. 130140-EI GULF POWER COMPANY Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-1)
Schedule 3
Page 1 of 1

MDS Customer/Demand Percentages by FERC Account

Account	\%Customer	\%Demand
364	65.9%	34.1%
365	16.3%	83.7%
366	3.9%	96.1%
367	4.6%	95.4%
368	25.4%	74.6%
369	100%	0%
370	100%	0%

Florida Public Service Commission Docket No. 130140-EI
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-2)
Page 1 of 60
Page
Index of Michael T. O'Sheasy Exhibit MTO-2
Index 1
Schedule 1 2-9
Schedule 1.00 - Present Rate Summary 2-3
Schedule 1.01 - Equal ROR Summary - Present Rates 4-5
Schedule 1.10 - Proposed Rate Summary 6-7
Schedule 1.11 - Equal ROR Summary - Proposed Rates 8-9
Schedule 2 10-26
Schedule 2.10 - Analysis of Gross Plant 10-14
Schedule 2.20 - Analysis of Accumulated Depreciation Reserve 15-17
Schedule 2.30 - Analysis of Materials and Supplies 18-19
Schedule 2.40 - Analysis of Other Working Capital 20-23
Schedule 2.50 - Analysis of Other Rate Base Items 24-26
Schedule 3 27-28
Schedule 3.00 - Analysis of Revenues 27-28
Schedule 4 29-46
Schedule 4.10-Analysis of Operations and Maintenance Expense 29-40
Schedule 4.20 - Analysis of Depreciation Expense 41-43
Schedule 4.30 - Analysis of Taxes Other Than Income Taxes 44-46
Schedule 5 47-49
Schedule 5.00 - Line Allocators and Percentages 47-49
Schedule 6 50-60
Schedule 6.1 - Account 365 - Overhead Regression 50
Schedule 6.2 - Account 368 - Single Phase Transformer Regression 51
Schedule 6.3 - Account 364 - Poles, Towers and Fixtures Analysis 52
Schedule 6.4 - Account 365 - Ovhd Conductors \& Devices Analysis 53
Schedule 6.5 - Account 366 - Underground Conduit Analysis 54
Schedule 6.6 - Account 367 - Underground Conductors Analysis 55
Schedule 6.7 - Account 368 - Line Transformer Analysis \& Cutouts and Arresters Analysis 56-58
Schedule 6.8 - Account 369 - Services Analysis 59
Schedule 6.9 - Account 370 - Meters Analysis 60

GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014
12/13 DEMAND ALLOCATION - WITH MDS METHODOLOGY
PRESENT RATE SUMMARY

Une No.	$\begin{aligned} & \text { Eint } \\ & \text { Label } \end{aligned}$	Description
1	(A)	From "Analysis of Gross Plant"
2	(B)	From "Analysis of Accumulated Depreciation Reserve"
4	(C)	From "Analysis of Materials and Supplies"
5	(D)	From "Analysis of Other Working Capltal"
6	(E)	From "Analysis of Other Rate Base Items'
7	(E)	
8	(E)	
9	(E)	
10	(E)	
12	(F)	From "Analysis of Revenues"
13	(F)	
14	(F)	
15	(F)	
17	(G)	From "Analysis of Operations and Maintenence Expense"
18	(H)	From "Analysis of Depreciation Expense"
19	(I)	Allocated per Depreciation Expense; UPS directly assigned
20	(J)	Allocated per Total Production Gross Plant excluding UPS
21	(K)	From "Analysis of Taxes Other Than Income Taxes"
22	(K)	
23	(K)	
24	(K)	
25	(K)	
28	(L)	Income Taxes allocated per formula $\mathrm{t}=\mathrm{Rc} \mathbf{- K I}$: where $\mathrm{t}=$ Total Income Taxes, $R=$ Operating Income, $c=$ Combined Effective Tax Rate of 0.38575, I = Total Electric Investment, and K = Income Tax Deduction factor of 0.0105957953 ; UPS directly assigned.
29	(M)	Retail portion allocated per Retail Rate Base; Total All Other and UPS directly assigned.
32	(N)	Rate of Raturn equals Net Operating Income Divided by Total Electric Investment.
33	(O)	Each Rate Class Rate of Return divided by Total Retail Service Rate of Return

GULF POWER COMPANY
12 MONTHS ENDING DECEMBER 31, 2014 1213 DEMAND ALIOCATION -WITH MDS METHODOLOGY SCHEDULE 1.01 - EQUAL RATE OF RETURN SUMMARY - PRESENT RATES (S000'S)

LNE NO. (1)	DESCRIPTION (2)	TOTAL RETAIL SERVICE (3)	RATE CLASS RESIDENTIAL (4)	RATE CLASS GS (5)	RATE CLASS GSD/GSDT (B)	RATE CLASS LP/PT (7)	RATE CLASS MAJOR ACCTS (8)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$
1	EQUAL RATE OF RETURN	4.05\%	4.05\%	4.05\%	4.05\%	4.05\%	4.05\%	4.05\%
2	PRESENT SYSTEM OPERATING INCOME	76,359	44,188	2,584	15,488	6,056	6,060	1,980
3	CURRENT OPERATING INCOME	76,359	43,342	2,883	20,520	4,848	1284	3,502
4	CHANGE IN OPERATING INCOME	(0)	846	(299)	$(5,032)$	1.208	4,799	$(1,522)$
5	CHANGE IN INCOME TAXES	0	531	(188)	$(3,160)$	759	3,014	(956)
6	CURRENT INCOME TAXES	26549	14,832	1,087	8,545	1,346	(905)	1,644
7	CHANGE IN EXPENSES	0	4	(2)	(30)	7	30	(9)
8	CURRENT EXPENSES	425,743	254,594	17,383	77,930	35,024	30,824	9,988
9	REV REQ - EQUAL SYSTEM ROR - PRESENT RATES	528,651	314,149	- 20,884	98,773	43,192	39,026	12,647
10	PRESENT REVENUE REQUREMENTS	528,651	312,768	21,353	106,895	41,218	31,183	15,134
11	REVENUE EXCESS / DEFICIENCY	(0)	1,381	(489)	$(8,202)$	1,974	7,843	$(2,487)$
12	REV REQ INDEX - EQUAL SYSTEM ROR - PRES. PATES	100.00\%	9956\%	10234\%	108.32\%	85.43\%	79.90\%	119.66\%

GULF POWER COMPANY
Page 5 of 60
Schedule 1.01
12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY EQUAL RATE OF RETURN SUMMARY - PRESENT RATES

Llne No.	$\underset{\text { Ent }}{\text { Eabal }}$	Descriotion
1	(A)	From "Present Rate Summan', Total Retall Service Rate of Retum
2	(B)	Line 1 times Total Rate Base - "Present Rate Summary"
3	(C)	From "Present Rate Summay"
4	(D)	Une 2 minus Line 3
5	(E)	Line 4 times the combined effective tax rate divided by 1 minus the combined effective tax rate
6	(C)	
7	(F)	Line 4 plus Line 5 times the Proposed Expense Factor divided by 1 minus the Proposed Expense Factor
8	(C)	
9	(G)	Line 2 plus Lines 5-8.
10	(C)	
11	(H)	Line 9 minus Line 10
12	(I)	Line 10 divided by Line 9

		GIF POWER COMPANY 12 NONIS ENDING DECEEBES 31, 2014 12/13 DEMANO ALLOCATION - WTH NDS NETMCDCICOV SCHEDUE 1.10 - PROPOSED RATE SIMWFY (5000 S)									
$\begin{aligned} & \text { LNE } \\ & \text { MQ } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \text { DESCRIPICN } \\ & \text { (2) } \end{aligned}$	TOTAL EECTRC shbien (3)	patecuass FESIDENTL (4)	$\begin{aligned} & \text { RATE COASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	RATE CLASS GSDGEDT (6)	RATE CLASS LPAPT (7	RATE OASS MORACCTB (8)	$\begin{aligned} & \text { RATE CUASS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$	TOTAL PETAL SERMCE (10)	WHOLESALE (11)	$\begin{aligned} & \text { LNT } \\ & \text { PONER } \\ & \text { SNES } \\ & \text { (12) } \end{aligned}$
1	TOTAL ELECTPIC INESTMENT	2197,837	1,090,168	63762	3e2,112	149,412	149,588	48.881	1,889801	36.868	278,088
revene											
2	PFESENT REVENE	603260	312788	21,353	109.985	41.218	31,163	15,134	629651	16,349	68281
3	Proposid revene	74,390	44,309	2372	13,194	7.104	2570	850	74,303	0	0
4	TOTAL REVENE	677,653	357,071	28.725	120,189	48.302	37,753	15.984	603,04	16,349	68,281
EPEAE											
5	Present oferating expeeses	456.67	254,694	17,383	77,030	35,024	30,624	9,988	425,743	0338	21,468
6	Propasto Expege INCREASE	272	182	9	48	28	24	3	272	0	0
7	TOTAL ETEESES	465789	254,768	17,392	7,978	36.050	30,048	9,991	428,015	6,508	21,468
8	oreratma incoe	221,054	109315	6,333	2.211	13.272	6,805	5,903	177,029	2,00	36,805
income taves											
9	Present mione taxes	41,601	14,832	1.087	2.645	1,346	(800)	1.648	28.549	2805	12.29
10	PFOTOED ING TAX INCFEASE	28,500	17,007	912	5,071	2.730	2.805	327	28.548	0	0
11	TOTAL INCONE TALES	70,189	31,850	1,990	13.618	4.078	1,000	1,971	65.141	2805	12.227
12	net operating incove	151,681	70,458	4,334	28,536	9,196	6.285	4,002	121,888	5. 186	24,678
13	RATE OF FEIURN	680\%	6.47\%	6.00\%	7.48\%	6.15%	363\%	023\%	6.47\%		
14	rate of returin index		89,80\%	106.07\%	115.60\%	95.13\%	64.00\%	12726\%	100.00\%		

\qquad (MTO-2)
Page 7 of 60
Schedule 1.10
GULF POWER COMPANY 12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALOCATION - WITH MDS METHODOLOGY PROPOSED RATE SUMMARY
Line Eat

Labol

Description

(A) From "Present Rate Summary"
(A)
(B) Provided by Pricing, Costing \& Load Research, Gulf Power Company.
(A)
(C) Calculated by multiplying Proposed Revenues times the appropriate Proposed Expense Factor
(D) Operating Income equals Total Revenue minus Total Expenses.
(A)
(E) Proposed Income Tax Increase calculated by multiplying Proposed Revenue minus Proposed Expense Increase times Effective Tax Rate of 0.38575.
(F) Net Operating Income equals Operating Income less Total Income Taxes.
(G) Rate of Retum equals Net Operating Income Divided by Total Electric Investment.
(H) Each Rate Class Rate of Retum divided by Total Retail Service Rate of Retum

GULF POWER COMPANY

12 MONTHS ENDING DECEMBER 31, 2014
213 DEMAND ALOCATION - WITH MDS METHODOLOGY SCHEDULE 1.11 - EQUAL RATE OF RETURN SUMMARY - PROPOSED RATES (5000'S)
LINE
NO.

(1) \quad\begin{tabular}{l}
DESCRIPTION

1

1

\quad

EQUAL RATE OF RETURN

2
\end{tabular}\quad PROPOSED OPERATING INCOME

TOTAL RETAIL SERVICE (3)	RATE CLASS RESIDENTIAL (4)	RATE CLASS GS (5)	RATE CLASS GSD/GSDT (6)	RATE CLASS LPAPT (7)	RATE CLASS MAJOR ACCTS (8)	RATE CLASS OS (9)
6.47\%	6.47\%	6.47\%	6.47\%	6.47\%	6.47\%	6.47\%
121,888	70,534	4,125	24,723	9,667	9,679	3,161
78,359	43,342	2,883	20,520	4,848	1,264	3,502
45,530	27,192	1,242	4,203	4,819	8,415	(341)
28,592	17,078	780	2,639	3,026	5,285	(214)
26,549	14,032	1,087	8,545	1,346	(905)	1,644
273	162	7	2	29	51	(2)
425,743	254,594	17,383	77,930	35,024	30,824	9,988
603,045	357,198	23,389	113,861	49,092	44,934	14,577
528,651	312,768	21,353	106,995	41,218	31,183	15,134
74,393	44,430	2,029	6,886	7,874	13,751	(557)
87.60\%	87.56\%	91.32\%	93.97\%	83.96\%	69.40\%	103.82\%

GULF POWER COMPANY

12 MONTHS ENDED DECEMBER 31, 2014 $12 / 13$ DEMAND ALLOCATION - WITH MDS METHODOLOGY EQUAL RATE OF RETURN SUMMARY - PROPOSED RATES

Line No.	$\begin{aligned} & \text { Fint } \\ & \text { Label } \end{aligned}$	Description
1	(A)	From "Proposed Rate Summary", Total Retail Service Rate of Retum
2	(B)	Line 1 times Total Rate Base - "Proposed Rate Summary"
3	(C)	From "Present Rate Summary"
4	(D)	Line 2 minus Line 3
5	(E)	Line 4 times the combined effective tax rate divided by 1 minus the combined effective tax rate
6	(C)	
7	(F)	Line 4 plus Line 5 times the Proposed Expense Factor divided by 1 minus the Proposed Expense Factor
8	(C)	
9	(G)	Line 2 plus Lines 5-8.
10	(C)	
11	(H)	Line 9 minus Line 10
12	(1)	Line 10 divided by Line 9

GUF FOWER COIPANY
2 NONHS ENDING DECENBER 31, 2014
12/13 DEMW ALOCATION - WITH WOS NEMCDCTO
SCREDUE 210 - ANLYSIS OF GROSS PUNT
(sions)

TOTA PRODUCION PUN

2
3
RETAL JUPISDCTICN DEWNO
ENERY

$\begin{aligned} & \text { TOTAL } \\ & \text { EECTRC } \\ & \text { SSTEM } \\ & \text { (3) } \end{aligned}$	RATE CLASS RESIDENTAL (4)	pate cuass GS (G)	PATE ClaSs GSDGSDT (B)	RATE QUSS LPT (7	PATE CUSS MNOA ACCTS ($)^{\circ}$	$\begin{aligned} & \text { PATE COASS } \\ & \text { OS } \\ & \text { (} 8 \text {) } \end{aligned}$	TOTAL PETALL service (10)	WHAESNLE (11)	$\begin{aligned} & \text { UNT } \\ & \text { PONER } \\ & \text { SNES } \\ & \text { (12) } \end{aligned}$
1,571,047	627,458	30,050	262,67	107,009	130,774	6.721	1,166305		360,174
	$\begin{array}{r} 588,178 \\ 42280 \end{array}$	$\begin{array}{r} 22,617 \\ 2,339 \end{array}$	$\begin{array}{r} 230,676 \\ 21,951 \end{array}$	$\begin{gathered} 80.157 \\ 9 . \pi 72 \end{gathered}$	$\begin{array}{r} 119,476 \\ 11290 \end{array}$	$\begin{aligned} & 4,467 \\ & 1,234 \end{aligned}$	$\begin{array}{r} 1.068,491 \\ 88,874 \end{array}$		

TRAEMESSIONPANT

SSO-LAND 8 LAND RGGTS
SLBSTATIONS
LEVE 2 CONON
LEVE 2 conan
LOTAL SUBSTATION LAND
UNES
LEVE 2 COMO
3FITRCTLES
LEVE 2 CLSTINEA SUB
LEVE 2 COMON
Lever 3 cono
TOTAL ACCOUNT 3 SM
LEve 2 COSTOES SLI
LEVE 2 CONON
Leve 3 canon
TOTAL ACCOUNT SET
SGA TONERS AND RXIUFES
3EFPCIES AND FUTVE
LEVE12CONON
3FEOVEREAO CDNCIOS LEVEL2COMON

30 FOMOS AND TRAILS
LEVE 2 COMON
TOTAL TRANS RUNT

1.581	821	40	323	138	167	6	1.496	46	0
691	361	17	138	51	31	3	501	0	0
2.138	1.172	5	461	189	198	9	2.098	46	0
18,183	9,678	472	3,816	1,624	1,977	74	17,641	542	0
20.315	10.850	52	4.27	1,813	2,17	83	19,727	589	0
2	0	0	0	0	2	0	2	0	0
9,650	6.089	240	2004	65	1,038	30	9,285	285	0
1,430	859	42	337	125	7	7	1.430	0	0
10,391	6.938	290	2.341	978	1,115	46	10,708	295	0
140	0	0	0	0	140	0	140	0	0
125.698	69.634	3,098	24.046	10,657	12.971	487	116.730	3.550	6.387
38,170	22.68	1,104	8,931	3,305	1,990	174	38,170	0	0
164,008	88,191	4,200	33.976	13,882	16.110	681	158,100	3.550	6,347
42804	22.88	1.110	Q,892	3,828	4,662	175	41,209	1,276	0
148,976	79,305	3,885	31262	13,302	16,192	600	144,534	4.42	0
85,526	46.529	2.219	17,987	7,67	2295	349	82.876	2.650	0
14,095	7,502	368	2008	1,250	1,532	58	13,6\%	40	0
236	126	6	50	21	25	1	229	7	0
486.949	25978	12,585	101,789	4278	50,083	1.881	487,475	13,127	6,347

Schedule 2.10

Witress: Michael T. O'Sheasy
Exhibit No._ (MTO-2)

GUF POWERCOMPANY
12 NONTS ENDING DECEEER 31, 2014
12/13 DEWND AUCCATON - WITH NDS NENGONTOV
SCHEDLE 210 . AWU YBIS OF CROSS FUNT
(sones)

$\begin{aligned} & \text { UNE } \\ & \text { NO } \\ & \text { (1) } \end{aligned}$	DESRAPION (2)	TOTAL EECTRUC SYSTEM (3)	PATE CASS fESIDENTAL (4)	$\begin{aligned} & \text { RATE GLASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	rate class csp/csot (©)	PATE COASS LPNT (7	RATE CUASS WOORACCTS (${ }^{(1)}$	$\begin{aligned} & \text { RATE OASS } \\ & \text { OB } \\ & \text { (9) } \end{aligned}$		$\begin{aligned} & \text { whatesule } \\ & \text { (11) } \end{aligned}$	
DISTREMTOVPUNT											
360-SLBSTATION LAND											
23	Level 3ast. Sub	74	0	0	0	0	11	0	11	62	0
24	Level 3COMON	4,504	2720	130	1,073	397	240	21	4,504	0	0
25	Lever 4 CONON	12	8	0	3	1	0	0	12	0	0
28	TOTAL ACCONT 360	4,870	2728	133	1,078	398	251	21	4,607	6	0
361-STRCTUES											
27	Level 3 Cust. sus	2007	0	0	0	617	963	0	1,581	426	0
28	lever 3 COMON	21,220	12.508	614	4,965	1,637	1.111	87	21,220	0	0
29	LPVEL 4 CONON	0	0	0	0	0	0	0	0	0	0
30	TOTAL ACCUNT 361	2327	12.588	614	4,985	2454	2,074	87	22.801	438	0
SER-STATION ECMPENT											
31	Leve 3 Cust. Sus	20.433	0	0	0	4,195	12,666	0	15,781	3.672	0
39	Lever 3conol	205,670	122021	6,048	48.100	17,790	10,783	838	206,6\%	0	0
33	Leve 4 CONOV	23	13	1	8	2	1	0	23	0	0
34	TUTAL ACCONT 368	228,088	122,034	6,947	40.108	21,988	28.335	838	232.354	2.672	0
35 364PGES AND FXTURES											
35	Lever 4 CONON	36,454	20,686	1.118	8,647	3,138	1,334	631	36,454	0	0
${ }^{36}$	Level 4 Csitios	68.500	58,649	4,505	2708	43	7	1,509	68.500	0	0
$\boldsymbol{3 7}$	Level 5 coniov	10.160	6,310	341	2821	715	19	162	10,160	0	0
39	Leve 5 Castion	19,687	17,128	1,294	776	11	1	459	19,687	0	0
39	TUTAL ACCONT Se4	138,780	109,773	7,258	14,748	3,807	1,381	274	133780	0	0
366-OVEREAD COOUCTOR											
41	Leve 4 Ostas	17,814	16,337	1,158	695	11	2	410	17,614	0	0
42	Lever 5 COMON	25,183	16,627	64	6.491	1,772	48	401	26,180	0	0
43	Leve 5 Castioner	4,818	4,194	317	190	3	0	112	4,818	0	0
4	TUTAL ACCONT 385	137,811	87,888	6,167	29.307	9,763	3.457	2271	137,611	0	0
SiFhnormano Conour											
45	Lever 4 coner	604	387	21	162	59	25	10	664	0	0
46	Level 4 Costas	33	29	2	1	0	0	1	33	0	0
47	Lever 5 COMON	450	278	15	118	32	1	7	450	0	0
49	Leve 5 Clstoer	14	12	1	1	0	0	0	14	0	0
49	TUTAL ACCUNT 3 S	1,161	70	39	280	91	26	18	1,161	0	0
51	leve 4 Castorer	4,045	4,216	319	191	3	1	113	4,045	0	0
52	Lever 5 CONOV	40,669	26.235	1,364	10,483	2,861	78	648	40,669	0	0
53	Leve 5CASTOER	1,808	1,669	125	7	1	0	44	1,909	0	0
54	TUTAL ACCONT 387	140.818	8,107	4,902	34,990	11,664	3.819	2294	146818	0	0

GUF RONER COPANY
1213 DEMUD 12 NONTH ENDING DECENBER 31, 2014

SOHEDLE 210 - AWL YSIS OF GFOSS PLNT
(smers)

LIE	DESCRPTON
NO	
(1)	(2)

 LEVEL 4 asto
 LEVEL 6 conan
 LVVEL 5 aSTOM
 sensemmas
 HOLEE POWER BOLES
 OTHER SERMCES TOTAL ACOONT 368
 3TO-NETERS
 64 דRSTHEET पOMTG

65 TOTAL DIST. PLANT Dewn
CSTOMER
general plant

${ }^{68}$	ELECTRIC
69	Dewn
π	Cstosf
71	Evergy
72	TOTAL CEEERL RLANT
7	TOTAL ELEC. GPOSS PLANT
74	DEMMO
75	astors
78	Eentir

TOTAL EIECTRIC SVSIEM (3)	RATE CLASS RESIDENTL (4)	$\begin{aligned} & \text { RATE QASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	RATE CUASS GSDGSDT (B)	RATE CLSS IPNPT (7	RATE CLASS MORACCTS (${ }^{(1)}$	fate CuASS OS (9)	TOTAL PETALL service (10)	$\begin{aligned} & \text { WHOESNE } \\ & \text { (11) } \end{aligned}$	LONT SALES (12)
36271	20,679	1.112	8.603	3,122	1,327	528	35.271	0	0
4,314	3.75	234	170	3	0	100	4,314	0	0
154,028	83.575	6,165	39,703	10,835	294	2.454	154,028	0	0
60.139	82376	3,956	2.370	$3{ }^{3}$	4	1,399	60.139	0	0
269750	172287	10.517	50,0w	13,904	1,626	4,481	259750	0	0
0	0	0	0	0	0	0	0	0	0
99,675	88.87	6.712	4,021	\square	8	0	99,676	0	0
99,675	88.87	6.712	4,021	6	8	0	98.675	0	0
64098	48878	6.457	8,789	404	286	138	64,891	116	0
86,351	0	0	0	0	0	65,351	86,351	0	0
1.157.174	728.659	47,76	187, 127	64,009	3518	78,351	1,162,608	4.278	0
746290	432534	22.646	17,167	64.148	36,914	8.638	741,041	4,181	0
411,972	298.119	2.110	19,980	650	289	69.719	411,877	115	0
17.908	108.818	8,67	29,168	10,228	10.817	3,000	168,430	2.818	4,658
108.101	56,114	2,737	21,961	Q298	2,487	681	88.814	2629	4,658
69.609	48.650	6.686	6,736	62	687	2,940	69,60	180	0
6.988	2,854	15	1,481	658	763	69	6.606	0	0
176.808	108.818	8,678	29,168	10228	10,617	3,000	168,430	2.818	4,658
3,391,078	1,720985	98.78	58.715	225,780	227,899	89.073	2,944,168	65,729	391,179
2,020,424	1,331,059	68,485	531,687	214,026	214,972	15.697	2,373,891	5 K 20	391,179
475.781	34,799	30,795	25.686	1,302	956	72.069	475.47	304	0
98.670	46.134	2,498	28.432	10,480	12,081	1,317	94870	0	0

GULF POWER COMPANY 12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF GROSS PLANT

$\begin{aligned} & \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$	$\frac{\text { Ent }}{\text { Etabol }}$	Description
1	(A)	Retail jurisdiction sum of Lines 2 and 3; Wholesale allocated per Level 1 Demand Allocator; UPS directly assigned.
2	(B)	Allocated per corresponding Level 1 Demand Allocator.
3	(C)	Allocated per corresponding Level 1 Energy Allocator.
4	(D)	Allocated per Level 2 Demand Allocator; UPS directy assigned.
5	(E)	Allocated per Level 3 Demand Allocator.
7	(D)	
9	(F)	Specific Assignment
10	(D)	
11	(E)	
13	(F)	
14	(D)	
15	(E)	
17	(D)	
18	(D)	
19	(D)	
20	(D)	
21	(D)	
23	(F)	
24	(E)	
25	(G)	Allocated per Level 4 NCP Demand Allocator
27	(F)	
28	(E)	
29	(G)	
31	(F)	
32	(E)	
33	(G)	
35	(G)	
38	(H)	Allocated per Average Number of Customers at Level 4 and Level 5.
37	(I)	Allocated per Level 5 NCP Demand Allocator
38	(J)	Allocated per Average Number of Customers at Level 5.

\qquad (MTO-2)
Page 14 of 60
Schedule 2.10
GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014
1213 DEMAND ALOCATION - WITH MDS METHODOLOGY ANALYSIS OF GROSS PLANT

Line No.	Fint
40	(G)
41	(H)
42	(I)
43	(J)
45	(G)
48	(H)
47	(I)
48	(J)
50	(G)
51	(H)
52	(I)
53	(J)
55	(G)
56	(H)
57	(I)
58	(J)
60	(F)
61	(K)
63	(L)
64	(F)
68	(M)
69	(M)
70	(M)
71	(M)

GUF RONER COMPANY
12 MONTS ENDING OECEAER 31, 2014
1213 DEMAD ALOCAITON - WTH MDS NETHODONT
SOEDUE 220. AM YSIS OF ACCIMLATED DEPFECATION FESERVE (S000S)

$\begin{aligned} & \text { LNE } \\ & \text { NQ } \\ & \text { (1) } \end{aligned}$	(2)
1	TOTAL PRCOUCITON
3	FETALL MRRSDICION DEMAD ENEROY

TOTAL EFCIRC SYSTEM (3)	RATE CUSS RESIDENTL (4)	$\begin{aligned} & \text { RATE QUSS } \\ & \text { GS } \\ & \text { (G) } \end{aligned}$	RATE CUASS GSIDGSDT (6)	RATE CLASS LPNTT (7	RATE CUSS MAORACCIS (B)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { OS } \\ & \text { (} 9 \text {) } \end{aligned}$	TOTAL fetall SERMCE (10)	$\begin{gathered} \text { Whatesule } \\ \text { (11) } \end{gathered}$	UNT SAIES (12)
759,868	334, 127	16,492	134,628	57.474	60,638	2,046	615240	18,900	126.715
	$\begin{gathered} 311,613 \\ \mathbf{2 , 5 1 4} \end{gathered}$	$\begin{gathered} 15,186 \\ 1,246 \end{gathered}$	$\begin{gathered} 122837 \\ 11,699 \end{gathered}$	$\begin{aligned} & 52.270 \\ & 6204 \end{aligned}$	$\begin{gathered} 63,602 \\ 6,016 \end{gathered}$	$\begin{array}{r} 2,389 \\ 657 \end{array}$	$\begin{array}{r} 667,917 \\ 47,306 \end{array}$		
6,816	3,69	171	1,430	609	740	28	8,613	208	0
3,645	1,999	98	78	324	370	15	3.650	88	0
32,146	16,252	T0	6,408	2630	2849	125	29,05	671	2.418
26.433	19,630	600	5,337	271	2.784	104	24,676	758	0
28,313	14,007	683	5.628	2,349	2880	107	25,528	786	0
28.168	19,960	679	5,401	2,337	2894	107	24.389	780	0
7,687	4,076	190	1,607	689	832	32	7,429	228	0
40	22	1	6	4	4	0	39	1	0
128218	67,008	3,287	28,671	11,211	13,263	518	12227	3,201	2418

3EDSUBSTATONLAND	35	21	1	8	3	2	0	35	0	0
301 SIFHCTFES	7,881	4,282	208	1,680	831	$\pi 3$	33	7.717	144	0
se2-Stationecuplent	61,183	33,040	1,610	13,04	5,955	6.317	253	00,180	894	0
364POES A FXTUEES										
CSTOEA	45,380	30,400	2983	1,781	28	4	1,065	45.380	0	0
TOTAL ACCOINT 364	60.823	5359	3,734	7,688	2,010	700	1,412	60.832	0	0
SiSOVEREAD COD.										
astora	7,961	6,907	1,51	10, 313	5	1.2	185	7,991	0	0
TOTAL ACCANT 365	40,688	30,980	1,820	10,3e9	3,449	1.215	803	40,656	0	0

GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF ACCUMULATED DEPRECIATION RESERVE

$\begin{aligned} & \frac{\mathrm{Line}}{\mathrm{Na}} \end{aligned}$	$\underset{\text { Etnt }}{\text { Label }}$	Descriotion
1	(A)	Retail jurisdiction sum of Lines 2 and 3; Wholesale allocated per Level 1 Demand Allocator; UPS directly assigned.
2	(B)	Allocated per corresponding Level 1 Demand Allocator.
3	(C)	Allocated per corresponding Level 1 Energy Allocator.
4	(D)	Allocated per Transmission Account 350 Gross Plant (Lines portion only); UPS directly assigned.
5	(E)	Allocated per corresponding Transmission Gross Plant; UPS directly assigned.
6	(E)	
7	(E)	
8	(E)	
9	(E)	
10	(E)	
11	(E)	
13	(F)	Allocated per corresponding Distribution Gross Plant.
14	(F)	
15	(F)	
16	(F)	
17	(F)	
19	(F)	
20	(F)	
22	(F)	
23	(F)	
25	(F)	
28	(F)	
28	(F)	
29	(F)	
31	(F)	
32	(F)	
33	(F)	
37	(G)	Allocated per corresponding Gross General Plant; UPS directly assigned.
38	(G)	
39	(G)	

GULF POWER COMPANY 12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF MATERIALS AND SUPPLIES

Line No.	Etnt. Label	Description	

GUF POWER COIPANY
12 NONTS ENDING DECEBER 31, 2014
1213 DENAN ALLOCATION - WITH MDS CEMMODCIOO
SOEDUE 2.40 - ANLYSIS OF OTIER WORKNG CAPTAL (somos)

$\begin{aligned} & \text { LNE } \\ & \text { NO } \\ & \text { (1) } \end{aligned}$	DESCAPION (2)
36	Casto merccants
37	CSTOER ASSSTACE
38	Castoer
39	ENER
40	total otrer imestients
41	Demo
42	CNSTOER
44	ENTEONENTA CLEMMP
45	Dewno
46	Castorer
47	enery
40	REVENE PELATED
49	PROP. INGLQNCE RESERVE
60	Dewo
51	Castorn
52	ENERGY
	OTHER POST REIFENENT BENGFTS
63	PrCDLCTION
54	Demmo
65	ENERGY
56	TRASEMSSION
57	DISTRUPITIOV
50	Dewn
50	CSTOER
60	Casto er accanis
61	CLSTOER ASSISTANCE
6	Custoeer
83	every
${ }_{68} 6$	TOTAL OTEER POST RETFENENT BEEEPTS
65	DRMO
66	astorer
67	Eerar
68	OTHER DEF. CR \& DERTS
69	Dena
70	CSTOER
71	enery
72	REVEME PELATED
	UNANORI. RATE CAEE EXP.
73	REVENE PELATED
74	TOTAL OTHER WOFK CAP.
75	Denato
78	Castorer
7	ENERY
78	REVENE PELATED

TOTAL EECTRC SVSTEM (3)	RATE CLASS PESIDENTAL (4)	$\begin{aligned} & \text { RATE QASS } \\ & \text { GS } \\ & \text { (} 5 \text {) } \end{aligned}$	RATE CLASS GSDGSDT (6)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { LAPT } \\ & \text { (7) } \end{aligned}$	rate class MAIOA ACCTS (8)	$\begin{aligned} & \text { RATE CUSS } \\ & \text { Os } \\ & \text { (} 9 \text {) } \end{aligned}$	TOTAL fetall sermice (10)	whatesale (11)	UNT POWER SQLES (12)
2,660	8.408	635	389	10	17	132	9,592	78	0
10,185	Q,60	1,549	1.713	259	221	0	10,185	0	0
10.185	6,609	1,349	1.713	259	221	0	10.185	0	0
0	0	0	0	0	0	0	0	0	0
73.479	45.743	3,679	12.515	4,389	4,643	1.298	72.264	1.209	0
43,623	23,646	1.174	2.418	3,830	4,071	256	42395	1,128	0
27,37	20.874	2.429	2401	275	244	1.004	27,298	81	0
2573	1,223	67	638	283	329	36	2,673	0	0
58.878	34,878	2.517	9,633	4,813	3.035	1.138	56.414	1.047	1.417
37,709	19,773	904	7,830	3, 198	3,368	216	36,407	685	1,417
18.77	13,669	1.437	1,368	1288	116	889	18.722	56	0
924	410	20	243	109	128	14	924	0	0
1,460	1,038	7	154	42	35	18	1,381	107	0
(19,782)	(8,805)	(523)	(3,088)	(1.168)	(1.154)	(408)	(15,138$)$	(276)	(1,373)
(14,028)	(6,953)	(34)	(2780)	(1.116)	(1,098)	(84)	$(12,378)$	(274)	(1,373)
$\begin{array}{r} (2350) \\ (401) \end{array}$	(1.714) (180)	(164) (11)	(144) (8)	(6)	(51)	(318) (6)	$\begin{array}{r} (2359) \\ (401) \end{array}$	(2)	0
(38276)	(17.534)	(862)	$(7,050)$	$(3,016)$	(3,65)	(158)	(30285)	(991)	0
	(18.365)	(7大)	(8,446)	(2743)	(3,338)	(12)	(29,002)		
	(1.181)	(6)	(613)	(23)	(317)	(34)	(2,483)		
(2911)	$(1,552)$	(75)	(612)	(201)	(314)	(11)	(2808)	(85)	0
(15,682)	(10,659)	(701)	(238)	(706)	(289)	(08)	(15,688)	(14)	0
(8.311)	$(4,927)$	(292)	$(2,034)$	(604)	(ए)	(111)	(8,300)	(11)	0
(727)	(5,619)	(480)	(353)	(11)	(6)	(81)	(7,288)	(3)	0
(0,35)	(8,113)	(615)	(309)	(10)	(16)	(128)	(0,240)	(76)	0
(9,831)	(6.415)	$(1,303)$	(1,654)	(246)	(214)	0	(0,63)	0	0
(0,831)	(8.415)	(1.303)	(1,654)	(24)	(214)	0	(2,831)	0	0
	0	(159					-	(168)	0
(70,809)	(44,150)	(3,563)	(12001)	(4,237)	(4,480)	(1250)	(69750)	(1.168)	0
(42015)	(22,838)	(1.134)	(9,002)	$(3,698)$	(3,829)	(247)	(40,988)	(1,087)	0
(20,427)	(20.147)	(2351)	(2376)	(288)	(230)	(08)	(28,348)	(7)	0
(2,48)	(1.161)	(6)	(613)	(273)	(31)	(34)	$(2,485)$	0.	0
(44.453)	(26,351)	(1.900)	(7,272)	(3,485)	(2746)	(88)	(42.502)	(791)	(1.070)
(28,470)	(14,928)	(743)	(5,949)	$(2,413)$	(2534)	(165)	(26,73)	(668)	(1,070)
$(14,177)$	$(10,311)$	(1,086)	(1,024)	(956)	(88)	(671)	(14,139)	(42)	0
(69)	(309)	(15)	(183)	(83)	(98)	(11)	(607)	0	0
(1.109)	(783)	(5)	(116)	(31)	(2)	(14)	$(1,028)$	(81)	0
0	0	0	0	0	0	0	0	0	0
12.616	7.002	480	2.609	1.122	1.140	249	13,311	316	(1.011)
9,051	5,301	263	2.137	890	1.002	49	9,781	501	(1.011)
2785	2008	203	187	163	16	182	2780	6	0
680	320	17	171	75	89	8	680	0	0
120	83	7	13	4	3	1	111	9	0

GULF POWER COMPANY 12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF OTHER WORKING CAPITAL

Line No.	$\begin{aligned} & \text { Fint } \\ & \text { Label } \end{aligned}$	Descriotion
1	(A)	Allocated per Total Expenses less Production Energy related O \& M, Income taxes, and Non-cash items.
2	(A)	
3	(A)	
4	(A)	
5	(A)	
6	(A)	
7	(A)	
8	(A)	
9	(A)	
10	(A)	
11	(B)	Allocated per corresponding Gross Plant; UPS directly assigned.
12	(C)	Allocated per corresponding Gross Plant.
13	(C)	
14	(B)	
15	(C)	
16	(C)	
17	(C)	
18	(D)	Allocated per corresponding Operations and Maintenance Expense.
19	(D)	
20	(D)	
21	(D)	
28	(E)	Allocated per Production Gross Plant; UPS directly assigned.
27	(F)	Allocated per corresponding Production Gross Plant.
28	(F)	
29	(G)	Allocated per corresponding Salaries and Wages
30	(G)	
31	(G)	
32	(G)	
33	(G)	
34	(G)	
35	(G)	
36	(G)	
37	(G)	
38	(G)	
39	(G)	

Florida Public Service Commission Docket No. 130140-EI
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-2)
Page 23 of 60
Schedule 2.40

GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014
12/13 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF OTHER WORKING CAPITAL

Line No.	$\begin{aligned} & \text { Etnt } \\ & \text { Label } \end{aligned}$	Description
44	(A)	
45	(A)	
46	(A)	
47	(A)	
48	(A)	
49	(H)	Allocated per Total Net Plant; UPS directly assigned.
50	(H)	
51	(I)	Allocated per Total Net Plant.
52	(I)	
53	(G)	
54	(G)	
55	(G)	
50	(G)	
57	(G)	
58	(G)	
59	(G)	
60	(G)	
61	(G)	
62	(G)	
63	(G)	
68	(A)	
69	(A)	
70	(A)	
71	(A)	
72	(A)	
73	(J)	Allocated per Retail Revenue from Sales.

\qquad (MTO-2)
Page 26 of 60
Schedule 2.50
GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014
$12 / 13$ DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF OTHER RATE BASE ITEMS

Line No.	$\begin{aligned} & \text { Eint } \\ & \text { Label } \end{aligned}$	Description
1	(A)	Functional totals provided by Gulf Power Company. Allocated per corresponding Gross Plant excluding UPS; UPS directly assigned.
2	(B)	Functional totals provided by Gulf Power Company. Allocated per corresponding Gross Plant.
3	(B)	
4	(B)	
5	(B)	
6	(B)	
7	(B)	
8	(C)	Allocated per corresponding Operations and Maintenance expense.
9	(C)	
10	(C)	
11	(C)	
16	(A)	
17	(B)	
18	(B)	
19	(B)	
20	(B)	
21	(B)	
22	(B)	
27	(B)	
28	(B)	
29	(B)	
30	(B)	
31	(B)	
33	(B)	
34	(B)	
35	(B)	
41	(D)	Allocated per Total Salaries and Wages, including UPS Production Salaries and Wages of \$2,434.
42	(E)	Allocated per corresponding Salaries and Wages.
43	(E)	
44	(D)	
45	(E)	
48	(E)	
47	(E)	
48	(E)	
49	(E)	
50	(E)	
51	(E)	
56	(A)	
57	(B)	
58	(B)	
59	(A)	
60	(B)	
61	(B)	
62	(B)	
67	(F)	Specific Assignment.

GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014
12/13 DEMAND ALLOCATION - WITH MDS METHODOLOGY
ANALYSIS OF REVENUES

Line No.	Eint	Description
1	(A)	Provided by Gulf Power Company.
2	(B)	Allocated per Retail MWH Sales.
4	(A)	
5	(A)	
6	(A)	
7	(A)	
8	(C)	Allocated per retail revenue from sales.
9	(A)	
10	(A)	
11	(A)	
12	(A)	
13	(A)	
15	(D)	Allocated per Level 5 Demand Allocator
16	(A)	
17	(E)	Allocated per Distribution Gross Plant in Account 364.
18	(F)	Allocated per Total Salaries and Wages.
19	(G)	Allocated per Level 2 Demand Allocator; UPS directly assigned.
20	(F)	
22	(F)	
23	(G)	
24	(H)	Provided by Gulf Power Company and assigned to Rate Class LP/LPT.
25	(I)	Assigned to FPU.
26	(G)	
28	(G)	
29	(J)	Allocated per Level 1 Energy Allocator; UPS directly assigned.
32	(C)	

GIF ROWER COMPANY
12 NONT ENDNG DECEMAER 31, 2014
 (5000)

LNE	
NO	DESCAIPION
(1)	(2)

TOTAL SVSTEM (3)	RATE CUSS fESIOENTAL (4)	$\begin{aligned} & \text { RATE QUSS } \\ & \text { GS } \\ & \text { (G) } \end{aligned}$	$\begin{aligned} & \text { RATE CUSS } \\ & \text { CSDGSDT } \\ & \text { (} \mathbb{C} \end{aligned}$	RATE CuASS IPAPT (7)	RATE CUSS MOOACCTS (8)	$\begin{aligned} & \text { RATE OUSS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$		WHOESNE (11)	LNT SNES (12)
$\begin{aligned} & 3.132 \\ & 0 \end{aligned}$	$\begin{array}{r} 1,529 \\ 0 \end{array}$	75 0	$\begin{array}{r} 609 \\ 0 \end{array}$	28	$\begin{array}{r} 312 \\ 0 \end{array}$	12 0	$\begin{array}{r} 2788 \\ 0 \end{array}$	$\begin{gathered} 86 \\ 0 \end{gathered}$	258 0
3.139	1,599	π	608	28	312	12	2788	88	258
55.907	24,138	1,260	11,084	4,045	5.719	455	47,499	1,441	6.967
101,785	46,002	2366	20.421	8,875	10,548	743	89,015	2700	10,071

1.701	905	44	38	162	186	7	1,650	51	0
58	267	15	139	\ldots	72	8	669	17	0
310,241	143,287	7,928	74,390	33,115	38,291	4,180	301,190	9,040	0
(310,241)	(143,287)	(7,988)	(74,302)	(33.119)	(38291)	$(4,180)$	(301,193)	(9,048)	0
0	0	0	0	0	0	0	0	0	0
628	281	14	111	47	57	2	512	16	0
0	0	0	0	0	0	0	0	0	0
528	281	14	111	47	57	2	512	16	0
848	452	22	178	78	82	3	803	25	0
0	0	0	0	0	0	0	0	0	0
848	452	22	178	78	92	3	803	25	0
28.8	1.905	95	785	337	408	20	3.649	100	0
296	157	8	\ldots	28	33	1	287	9	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

[^0]GUF PONER COPPANY
12 WONTS ENDNG DEEENE 31,2014
12Л3 DEWND ALOCATIO－WITH NOS NEMADONO
SOEDLE 4．10－NWLYSIS OF OPEPATIOS AND MNNIENMCE EXPENS （socus）

LNE	
NO	
（1）	
DESCRIPION	
（2）	

	RATECUSS PESIDENTLL （4）	$\begin{aligned} & \text { RATE CUASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	RATE CLASS GSDGSTI （6）	RATE CUSS LPAT （ 7	RATE CUASS MNORACCTS （6）	PATE CUSS OS （9）		WHOESALE （11）	UNT SNES （12）
	$\begin{array}{r} 3,567 \\ 0 \end{array}$	$\begin{gathered} 170 \\ 0 \end{gathered}$	$\begin{array}{r} 1,399 \\ 0 \end{array}$	$\begin{array}{r} 595 \\ 0 \end{array}$	$\begin{array}{r} 725 \\ 0 \end{array}$	27	$\begin{gathered} 6.466 \\ 0 \end{gathered}$	$\begin{array}{r} 199 \\ 0 \end{array}$	0
Q，685	3.547	173	1.390	595	725	27	6.466	199	0
$\begin{gathered} 54 \\ 0 \end{gathered}$	$\begin{array}{r} 278 \\ 0 \end{array}$	14 0	$\begin{array}{r} 110 \\ 0 \end{array}$	47	$\underset{0}{57}$	0	509	16 0	0
524	278	14	110	47	5	2	508	16	0
7，485	3，992	196	1.57	668	815	30	7，261	224	0
11，142	5．887	290	2358	1，005	1，221	50	10，800	330	0
112.837	61，949	2.858	28.77	9，690	11，769	793	99，824	3,002	10，071
68，514	33，602	1，640	13.249	5，639	6，695	258	61，251	1，892	3，381
46.423	18.347	1,016	2.629	4.291	4，904	636	38.57	1，160	6，690

	OTEEPPCDICII
5	66G－PUROHEED PONER
58	dewno
59	ENERGY
60	FUEL FENOVAL
61	NETEERGY
62	NET TOTAL ACCONT 565
	S60－SYSTEM CONTR
83	Dewnd
64	ENEGY
65	TOTAL ACCONT 656
	ST－OTER EXPESES
66	Deman
67	Efergy
68	TOTAL ACCONT 51
69	TOTAL OTHER PROD．EXPESE
70	Demio
71	ENEROY
72	TOTAL PRIDICNOVEXPESES
73	Dema
74	ENERGY

	000	000	000	
808880	808	－0\％	$\stackrel{\circ}{\sim} \overbrace{\square}^{\circ}$	
		${\underset{\sim}{\otimes}}^{\circ}$		$\begin{aligned} & 880 \\ & 88 \\ & 88 \% \end{aligned}$
	Non	$\infty \bigcirc$	ำロ0	$\%^{8}$ N
	\％ \％$^{\circ}$ \％	\％os	$\overline{7} \overline{7}^{\circ}$	
	¢ ¢ ¢ ¢	$\underset{\sim}{80}{ }^{\circ}$	ゆ50．	
	$\overline{5}^{\circ}{ }^{\text {e }}$	$\overline{7}^{\circ}{ }^{5}$	ヘ๊¢0．	
	$6^{\circ} \mathrm{F}$	808	88°	
	\％${ }^{\circ}$ \％	$88^{\circ} 98$	\%్주웅	
		${\underset{N}{8}}^{\circ}$		

		GUF POWER COMPAN 12 MONHS ENDING DECEMEER 31, 2014 1213 DEUNO ALDCATON - WITHMDSNEKRODCOV SOEDUE 4.10 - AKLYSIS OF OPERATONS AND WNNTEWICE EPEESE (s000s)										
$\begin{aligned} & \text { UNE } \\ & \text { NO } \\ & \text { (1) } \end{aligned}$	DESCPIPTION (2)	TOTAL EEETRC SVSTEM (3)	patecinss FESIDENAL (4)	$\begin{gathered} \text { PATE GASS } \\ \text { ©S } \\ \text { (}) \end{gathered}$	RATE CLASS GSOGST (6)	patecanss LPNPT (7	RATE DNSS MOA	$\begin{aligned} & \text { PATE QaSs } \\ & \text { (9) } \end{aligned}$	TUTAL REEAL SERICE (10)	WHOESME (11)	$\begin{aligned} & \text { UNT } \\ & \text { PONER } \\ & \text { SNES } \\ & \text { (12) } \end{aligned}$	
$\begin{aligned} & \mathbf{9 6} \\ & 98 \\ & 97 \end{aligned}$	GE3OVEFEAD UNES DEMAND CLSTOMER TUTAL ACCONT 583	$\begin{aligned} & 2006 \\ & 2573 \\ & 2579 \end{aligned}$	$\begin{aligned} & 1.215 \\ & 1.700 \\ & 1.715 \end{aligned}$	68 38 108	$\begin{aligned} & 500 \\ & 203 \\ & 228 \end{aligned}$	158 0 158	33 0 30	$\begin{aligned} & 31 \\ & 13 \\ & 44 \end{aligned}$	2006 253	0 0 0	0 0 0	
$\begin{aligned} & \mathbf{9 8} \\ & \mathbf{9 9 0} \\ & 100 \end{aligned}$	spa-Lnoercrano unes DENO astocer TOTAL ACCONT SEA	608 131 730	388 115 489	20 $\mathbf{9}$ $\mathbf{2 9}$	154 158	47 0 47	10 0 10	$\begin{array}{r}9 \\ 3 \\ 12 \\ \hline\end{array}$	608 131 730	0 0 0	0 0 0	
101	ses-Streetucring	698	0	0	0	0	0	598	58	0	0	
102	Seb-metrb	1,459	1.080	144	196	11	6	3	1,450	3	0	
108	Sm-otermsc. revs.	1,174	1.116	39	18	0	0	0	1.174	0	0	
104	TUTAL ACOANT 5 Ps	202	2208	182	214	11	6	3	262	,	0	
$\begin{aligned} & 105 \\ & 108 \\ & 107 \end{aligned}$	587 -astars Instal 587 OTHER MSC. REVS. TUTAL ACCOONT 587	$\begin{aligned} & 1,308 \\ & 1.308 \\ & 1.301 \end{aligned}$	1.164 1.18 1.188	80 1 80	53 0 50	1 0 1	0 0 0	0 0 0	1,308 1,351	0 0 0	0 0 0	
$\begin{aligned} & 106 \\ & 109 \\ & 110 \end{aligned}$	SLBTOTA DEMNO astocer	$\begin{aligned} & \begin{array}{l} 2,04 \\ 3820 \\ 52020 \end{array} \\ & \hline 200 \end{aligned}$	0208 2085 4.011	477 120 317	1.230 806 294	339 311 12	$\begin{array}{r}129 \\ 128 \\ \hline 6\end{array}$	600 46 617	2,078 $\substack{3819 \\ 508}$	8 5 5	0 0 0	
111 112 113	680-SLEERVIION DEMO astocs TUTAL ACCONT 680	2099 3,919 , 788	1,700 2909 4.601	89 208 325	207 219	202 981	91 48 8	34 460 404	2045 3.977 a,	4 2 6	0 0 0	
114 115 116	680-MSCELUNEOS DEMO astoer TUTAL ACCONT 68	1,887 $\mathbf{2 5 8}$ 4.353	1,099 $\substack{1.098 \\ 3007}$	58 150 210	449 141 500	149 158	$\begin{array}{r}58 \\ \mathbf{2} \\ \mathbf{2} \\ \hline\end{array}$	228 298 318	1,886 2.85 4.350	2 1 3	0 0 0	
117 118 119	689RENTS DEMNO astocer TOTAL ACCONT 689	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
120	total oferamon	20.215	14,014	972	2738	719	283	1.474	20,198	17	0	
121	mantenance 601-STRUCNFES SPR STATIONECLIRENT	29 802	15 518	1 25	8 205	3 9	$\begin{array}{r} 2 \\ 100 \end{array}$	0	27	16	0	
		$0 ¢ 2$	518	25	205	98	100	4	946	16	0	

GUF PONER COMPAN

12 MONHE ENDING DEGEAESA 31, 2014

SCDEDUE 4.10 - ANLYSIS OF OPEATIOS AND MNNIENANE EPEEE (smos)

$\begin{aligned} & \text { LNE } \\ & \text { NQ } \\ & \text { (1) } \end{aligned}$	DESCFIPION (2)	total EECTRIC SYSTEM (3)	RATE CLASS FESIDENTAL (4)	$\begin{aligned} & \text { RATE QASS } \\ & \text { GS } \\ & \text { (6) } \end{aligned}$	RATE CuSS GgDGSt (6)	RATE CUSS LPNT (7)	RATE CASS WNORACCIS (6)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$		$\begin{aligned} & \text { WHaESAE } \\ & \text { (11) } \end{aligned}$	UNT POWER sales (12)
123	C3-OND LNES - MSC REVS	0	0	0	0	0	0	0	0	0	0
	SHOEREAD LINES										
124	Demand	7.747	4,582	248	1,913	055	231	118	7.747	0	0
125	CSTOEA	5,328	4,081	350	210	3	0	124	5.328	0	0
128	SLETOTAL OVEREAD LINES	13,075	9,223	690	2123	658	231	242	13,075	0	0
127	TOTAL ACCONT 593 604 CNERGRNO LWES	13,075	9,223	598	2123	658	231	242	13,075	0	0
128	Dewn	1,810	1,075	58	449	151	49	29	1,810	0	0
129	CLSTOER	87	78	8	3	0	0	2	87	0	0
130	TOTAL ACCONT 504	1,897	1,151	89	45	151	49	30	1,897	0	0
	606-LINE TREVSTREES										
131	Dewno	747	458	25	191	56	6	12	747	0	0
132	astoen	254	222	16	10	0	0	6	254	0	0
133	TOTAL ACCONT 5	1,001	680	41	201	55	6	18	1.001	0	0
134	ces-Street luartig	687	0	0	0	0	0	697	687	0	0
135	697-meters	160	121	16	21	1	0	0	169	0	0
136	SUSTOTAL	17,719	11,708	745	3,008	989	388	891	17,762	17	0
137	dewno	11,294	6,648	357	2784	950	338	162	11,27	17	0
138	casmen	6,425	5,000	388	24	4	0	729	6,425	0	0
	600-8LPERVISION										
139	Demo	2336	1,378	74	51	189	79	33	2331	4	0
140	CLSTOMER	1,329	1.047	60	50	1	0	161	1,329	0	0
141	TOTAL ACCONT 590	3,684	2423	154	62	180	79	100	3.650	4	0
	690-mscellweas										
142	dewnd	301	17	10	74	28	10	4	301	0	0
143	Custorer	171	138	10	6	0	0	19	171	0	0
14	TOTAL ACCONT 598	472	313	20	60	28	10	23	472	0	0
145	TOTAL MAINIENAMCE	21,865	14,464	919	3.709	1.187	47	1,080	21,834	21	0
146	TOTAL DISTRIBUTIONETFENE	42,070	29,458	1,891	6.485	1,906	760	2572	42.032	38	0
147	TOTAL DEMANO	22,440	13,287	708	5.491	1,674	748	300	22,408	32	0
148	TOTAL OSTOER	19,630	15,171	1,183	854	32	12	2272	19,624	6	0
140	CLSTOER ACCONTS EPPEE	21,988	19,131	1.46	860	22	38	301	21,607	179	0

[^1]Exhibit No.__(MTO-2)
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Docket No. 130140-EI
GULF POWER COMP
Florida Public Service Commission

GUF POWER COMPANY
12 NONTH ENDING DECELEEA 31, 2014
1213 DEMO ALIOCATION - WITH MOS LENCDCOT
SOEDUE 4.10 - ANLYSIS OF OPERATONS AND MNNIEWNEE EPPERE (somos)

$\begin{aligned} & \text { UNE } \\ & \text { NQ } \\ & \text { (1) } \end{aligned}$	DESCPIPION (2)
163	MSC. A\& G- OTMER REVE
164	MSC. A\& G-GUF POWER ENERGY SAVC OH
188	MSSCEL HNEOUS A\& G
188	DEMAND
167	astoen
188	EEEGY
189	TUTAL MSCECLAECOS A \& G
190	Dewno
191	Custoer
182	ENERY
198	TUTAL ADMAN \& GENERAL
194	TUTAL OPER \& MUNTENNCE
195	Dewn
188	ENEFY
197	astoren
198	fevene

	RATE CLASS fESIDENTAL (4)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	PATE CLASS GEDVSOT (6)	pate Class LPNPT (7	PATE CLASS MNOACCTS (8)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { OS } \\ & \text { (} 9 \text {) } \end{aligned}$		whatesale (11)	PONT SNES (12)
2	2	0	0	0	0	0	2	0	0
36	0	0	0	36	0	0	36	0	0
75,002	45.211	3,638	12369	4,337	4,587	1.281	71,423	1.195	2,394
45.401	23,371	1.161	9.300	3,786	4,023	253	41,902	1.115	2,394
27,059	20,639	2411	2430	272	240	998	23,979	80	0
2512	1,208	68	62	278	334	36	2542	0	0
75,040	45.213	3,638	12369	4,373	4.687	1,281	71.461	1.195	2394
45,401	23,371	1.161	2308	3,788	4,023	253	41,902	1.115	2,304
27,097	20,634	2411	2403	308	240	898	27.017	80	0
2,512	1,208	68	62	279	334	36	2542	0	0
98.189	58286	4,482	15.717	5.690	6,696	1,888	91,68	1.969	2,617
308.609	175.187	12540	51,562	24,872	20.427	5.828	290, 190	5,717	12.608
162,405	86,308	4,249	34,018	13,767	14,363	956	152,65	3.751	6,002
49,974	20,033	1.109	10.408	4.631	5.390	588	42.124	1.180	6,600
89,249	64,659	6,828	6,446	6,292	659	4.001	80,98	287	0
6.980	4,869	384	692	182	156	78	6,461	598	0

Florida Public Service Commission Docket No. 130140-EI
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-2)
Page 37 of 60
Schedule 4.10

GULF POWER COMPANY
12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF OPERATIONS AND MAINTENANCE EXPENSE

Line No.	$\begin{aligned} & \text { Etat } \\ & \text { Label } \end{aligned}$	Description
1	(A)	Allocated per Level 1 Demand Allocator; UPS directly assigned.
2	(B)	Allocated per Level 1 Energy Allocator; UPS directly assigned.
3	(B)	
5	(A)	
6	(B)	
8	(A)	
9	(B)	
11	(A)	
12	(B)	
14	(C)	Allocated per Level 2 Demand Allocator, UPS directy assigned.
15	(B)	
17	(A)	
18	(A)	
19	(A)	
20	(B)	
22	(A)	
23	(B)	
25	(A)	
26	(B)	
30	(D)	Allocated per Level 1 Demand Allocator.
31	(E)	Allocated per Level 1 Energy Allocator.
32	(E)	
33	(E)	
35	(D)	
36	(E)	
38	(D)	
39	(E)	
42	(D)	
43	(D)	
44	(E)	
46	(D)	
47	(E)	
49	(D)	
50	(E)	
58	(A)	
59	(B)	
60	(B)	

GULF POWER COMPANY

Line No.	$\begin{aligned} & \text { Eint } \\ & \text { Label } \end{aligned}$	Description
63	(F)	Allocated per sum of Generation Demand Expenses and Purchased Power Demand Expenses.
64	(E)	
68	(D)	
67	(E)	
75	(C)	
76	(G)	Allocated per Transmission Substations Gross Plant; UPS directly assigned.
77	(H)	Allocated per Transmission Lines Gross Plant; UPS directly assigned.
78	(I)	Allocated per Transmission Account 358 Gross Plant.
79	(D)	
81	(J)	Allocated per Subtotal of Transmission Operations O \& M Expense; UPS directly assigned.
82	(J)	
83	(J)	
85	(K)	Allocated per sum of Transmission Accounts 352, 354, and 355 Gross Plant; UPS directly assigned.
86	(L)	Allocated per Transmission Account 353 Gross Plant; UPS directly assigned.
87	(H)	
89	(M)	Allocated per Subtotal of Transmission Maintenance O\& M Expense; UPS directly assigned.
90	(M)	
93	(N)	Allocated per Level 3 Demand Alocator.
94	(0)	Allocated per Distribution Substations Gross Plant.
95	(P)	Allocated per corresponding Distribution Gross Plant Accounts 365 and 368.
96	(P)	
98	(Q)	Allocated per corresponding Distribution Gross Plant Accounts 367 and 368.
99	(Q)	
101	(R)	Allocated per Distribution Account 373 Gross Plant.
102	(S)	Alocated per Distribution Account 370 Gross Plant.
103	(T)	Per analysls of information provided by Gulf Power Company.
105	(U)	Allocated per Distribution Account 369 Gross Plant.
106	(T)	
111	(V)	Allocated per corresponding Subtotal of Distribution Operations O \& M.
112	(V)	
114	(V)	
115	(V)	

\qquad

Line No.	$\frac{\text { Etot }}{\text { Label }}$	Description
117	(V)	
118	(V)	
121	(W)	Allocated per Distribution Account 361 Gross Plant.
122	(X)	Allocated per Distribution Account 362 Gross Plant.
123	(I)	
124	(Y)	Allocated per Common portion of Distribution Accounts 364 and 385.
125	(Z)	Allocated per Customer portion of Distribution Accounts 364 and 365.
128	(AA)	Allocated per Common portion of Distribution Accounts 368 and 367 Gross Plant.
129	(AB)	Allocated per Customer portion of Distribution Accounts 366 and 367 Gross Plant.
131	(AC)	Allocated per Distribution Account 368 Gross Plant.
132	(AC)	
134	(R)	
135	(S)	
139	(AD)	Allocated per corresponding Subtotal of Distribution Maintenance O\& M.
140	(AD)	
142	(AD)	
143	(AD)	
149	(AE)	Direct assignment to rate provided by Gulf Power Company.
150	(AF)	Prowlded by Gulf Power to Class. Allocated to rate based on analysis of average number of customers within class.
151	(AF)	
152	(AF)	
153	(AF)	
154	(AG)	Provided by Gulf Power and assigned to Rate Class LP/PT.
158	(AF)	
158	(AF)	
159	(AF)	
160	(AF)	
161	(AF)	

GULF POWER COMPANY

12 MONTHS ENDED DECEMBER 31, 2014 1213 DEMAND ALLOCATION - WITH MDS METHODOLOGY ANALYSIS OF OPERATIONS AND MAINTENANCE EXPENSE

| Line
 No. | Emi
 Label | Description |
| :---: | :---: | :---: | :--- |

GIF PONER CONPANY
12 NONTS ENDNG DECENEES 31, 2014
1213 OENWD ALIOCATON - WITH NDS MERADOTOS
SCHEDUE 4.20 -AWLYSIS OF OEPFECIATION EFENS (somes)

$\begin{aligned} & \text { LNE } \\ & \text { NO } \\ & \text { (1) } \end{aligned}$	DESCRITION (2)
	SEOVERENOCONO.
19	DEMAD
20	astass
21	TOTAL ACCONT 3 S
	366-LNOG CONOUT
22	COMON
23	astoss
24	TOTAL ACCONT 368
	387-UNEFGRONO COND. $\&$ DEV.
25	COMON
28	Qstors
27	TOTAL ACCONT 367
	369-LIE TRANSFOTEES
28	CONON
29	CLSTOMER
30	TOTAL ACOONT 369
31	369 SERMCES
32	3T-NEIERS
33	3/3-STFEET UGHTNG
34	TOTAL DISTRUEUTION
35	DEMAD
38	QSTOEs
37	GESERAL PLANT
36	DEMW
39	Castors
40	Eergy
41	TOTAL DEPR DPEESE
42	DEMAND
43	Costoen
4	EERGY

TOTAL ELECIRIC SVSTEM (3)	pate class RESIOENTAL (4)	$\begin{gathered} \text { RATE CUSS } \\ \text { GS } \\ \text { (5) } \end{gathered}$	$\begin{aligned} & \text { RAIE CLASS } \\ & \text { GSDGSDT } \\ & \text { (G) } \end{aligned}$	RATE CUASS LPIPT (7)	RATECUNS MNOR ACCTS (8)	$\begin{aligned} & \text { RATE CUSS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$		WHOLESAE (11)	
3.681	217	118	909	311	110	56	3,681	0	0
717	624	47	28	1	0	17	717	0	0
4,398	2,001	165	957	312	110	73	4,398	0	0
13	9	0	3	1	0	0	13	0	0
1	1	0	0	0	0	0	1	0	0
14	10	0	3	1	0	0	14	0	0
4,305	250	139	1,072	350	118	66	4,305	0	0
208	161	14	6	0	0	5	208	0	0
4,533	2.61	153	1,080	360	118	71	4,533	0	0
7,177	4,405	239	1,831	629	81	113	7.177	0	0
2444	2,128	161	97	2	1	6	2,444	0	0
9,201	8,531	300	1,928	531	62	170	9,セ1	0	0
2,838	2531	191	114	2	0	0	2,838	0	0
4,485	3,367	43	604	34	19	10	4,477	8	0
2871	0	0	0	0	0	2881	2,871	0	0
40,696	28.913	1,841	8,560	1,978	949	3,347	40,586	100	0
22.83	13,477	713	5.548	1.936	829	291	22.891	9	0
17,703	12.450	1,128	1,014	41	20	3,056	17,006	8	0
Q,347	5.146	414	1,407	408	521	146	Q, 128	138	85
4,979	2,660	132	1,088	430	45	29	4,767	127	85
3.079	2347	274	27	31	28	113	3,070	9	0
289	138	8	71	32	38	4	289	0	0
114,400	81,471	3.747	20,152	7,659	7.718	3,781	104,505	1,092	7,975
90,022	44,975	2250	17,973	7.180	7,212	54	60, 142	1.805	7,975
20.789	14,783	1,402	1,291	72	48	3.160	20.785	17	0
3,598	1,713	95	889	398	458	50	3,608	0	0

Line No.	$\frac{\text { Fint }}{\text { Label }}$	Description
1	(A)	Retail jurisdiction sum of Lines 2 and 3; Wholesale allocated per Level 1 Demand Allocator; UPS directly assigned.
2	(B)	Allocated per corresponding Level 1 Demand Allocator.
3	(C)	Allocated per corresponding Level 1 Energy Allocator.
4	(D)	Allocated per Transmission Account 350 Gross Plant (Lines portion only); UPS directly assigned.
5	(E)	Allocated per corresponding Transmission Gross Plant; UPS directly assigned.
6	(E)	
7	(E)	
8	(E)	
9	(E)	
10	(E)	
11	(E)	
13	(F)	Allocated per corresponding Distribution Gross Plant.
14	(F)	
15	(F)	
16	(F)	
17	(F)	
19	(F)	
20	(F)	
22	(F)	
23	(F)	
25	(F)	
28	(F)	
28	(F)	
29	(F)	
31	(F)	
32	(F)	
33	(F)	
37	(G)	Allocated per corresponding Gross General Plant; UPS directly assigned.
38	(G)	
39	(G)	
40	(G)	

12 MONTS ENDING DECENPER 31, 2014
1213 DEMO AUSCATION - WITH MDS NTHODO aO
SCHEDLE 4.30 - ANLYSIS OF TAXES OTHER THW INCO E TAXES
(solvs)

$\begin{aligned} & \text { UNE } \\ & \text { NQ } \\ & \text { (1) } \end{aligned}$	DESCRPTION (2)		RATE Class RESIDENTAL (4)	$\begin{aligned} & \text { RATE CLASS } \\ & \text { GS } \\ & \text { (5) } \end{aligned}$	RATE CLASS GSDCSDT (6)	RATECUSS LPAPT (7)	RATE QUSS MUORACCTS (6)	$\begin{aligned} & \text { RATE QUSS } \\ & \text { OS } \\ & \text { (9) } \end{aligned}$	TOTAL RETAL SERNICE (10) (10)	$\begin{aligned} & \text { WHOESALE } \\ & \text { (11) } \end{aligned}$	UNT POWER SALES (12)
PEVENE TAXES											
36	GROSS RECEIPTS TAX	0	0	0	0	0	0	0	0	0	0
37	PLAREG COM ASSESSIENT	40	230	17	83	27	24	12	408	0	0
38	FUEL \& ECCA REL FEV TAXES	0	0	0	0	0	0	0	0	0	0
39	FPWCASE FEE REV. AD.	0	0	0	0	0	0	0	0	0	0
40	TOTAL REVENE TAXES	40	239	17	83	27	29	12	40	0	0
OTHEP TALES											
41	ness state man tax	307	164	8	64	27	34	1	298	9	0
42	FWCOSE FEE	41,160	20,514	1,608	8,487	2,002	2431	1,230	41,160	0	0
43	MSCELMEOUS TAXES	106	68	5	18	6	6	2	103	2	0
4	Demano	62	36	2	13	6	6	0	60	2	0
45	CUSTOER	30	28	3	4	1	1	2	39	0	0
48	ExPG	4	3	0	1	0	0	0	4	0	0
47	TOTAL OTHER TAXES	41.672	24,744	1,709	2,649	2.836	2471	1,239	41,561	11	0
48	FRACOSE FEE AOUSTIENT	$(41,160)$	$(24,514)$	(1,69)	(8,487)	(2000)	(2431)	$(1,230)$	$(41,160)$	0	0
49	total taxes Otier thavinc.	33,741	18.473	1,118	8.385	2.658	2746	657	31,917	705	1,119
50	Dewno	27,123	14,074	69	6.588	2298	2510	142	25,309	695	1,119
51	CISTOER	5.125	3.78	394	371	73	27	463	6.115	10	0
62	ENERGY	1,001	373	10	343	160	185	20	1,091	0	0
53	REVCUE RELATED	40	239	17	83	27	24	12	402	0	0

Line No.	$\begin{aligned} & \text { Etnt } \\ & \text { Label } \end{aligned}$	Description
1	(A)	Retail jurisdiction sum of Lines 2 and 3; Wholesale allocated per Level 1 Demand Allocator; UPS directly assigned.
2	(B)	Allocated per Level 1 Demand Allocator.
3	(C)	Allocated per Level 1 Energy Allocator.
4	(D)	Allocated per Transmission Gross Plant; UPS directly assigned.
5	(E)	Allocated per corresponding Distribution Gross Plamt.
6	(E)	
7	(E)	
8	(F)	Allocated per corresponding Operations and Maintenance Expense.
9	(F)	
10	(F)	
11	(F)	
16	(G)	Allocated per corresponding Salarles and Wages; UPS directly assigned.
17	(H)	Allocated per corresponding Salaries and Wages.
18	(H)	
19	(G)	
20	(H)	
21	(H)	
22	(H)	
23	(H)	
24	(H)	
25	(H)	
26	(H)	
31	(I)	Provided by Gulf Power to Class. Allocated to rate per average number of customers within class.
36	(J)	Allocated per Retail Revenue from Sales.
37	(J)	
38	(K)	Allocated per Retail MWH Sales.
39	(J)	
41	(B)	
42	(J)	
43	(H)	
44	(H)	
45	(H)	
46	(H)	
48	(J)	

		GULF POWER COMPANY 12 MONTH ENDNO DECEMEES 31, 2014 1213 DEWWD ALIOCATOO - WITH NDS METHODOLOOY SCHEDUE S.O- LNE ALLOCATORS AND PERCENTAGES									
NNE NO. (1)	(2) OEsFintion		RATECUSB RESIDENTLL (4)	$\begin{aligned} & \text { RATE CUSS } \\ & \text { GS } \\ & \text { (B) } \end{aligned}$	PATECUSS GSDGST (8)	PATECUSS LPRT (7	RATECUSB MNOR ACCTS (8)	$\begin{aligned} & \text { RATE CUSS } \\ & \text { O\& } \\ & \text { (0) } \end{aligned}$	TOTAL RETALL 8EPVCE (10)	whotesule (11)	POWIT SNES (12)
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	enerov-level 1 *	12218,812 1.0000000	$\begin{array}{r} 6,843,788 \\ 0.4018630 \end{array}$	$\begin{array}{r} 312,270 \\ 0.0255644 \end{array}$	$\begin{aligned} & 2,830,180 \\ & 02 \times 1808 \end{aligned}$	$\begin{aligned} & 1,304,360 \\ & 0.1087411 \end{aligned}$	$\begin{aligned} & 1,608,184 \\ & 0.1231212 \end{aligned}$	$\begin{array}{r} 184,067 \\ 0.0134740 \end{array}$	$\begin{gathered} 11,883,416 \\ 0.8708346 \end{gathered}$	$\begin{array}{r} 950,377 \\ 0.0291856 \end{array}$	$\begin{array}{r} 0 \\ 0.0000000 \end{array}$
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	MNH SNES	$\begin{array}{r} 11,500,5236 \\ 10000000 \end{array}$	6200,445 0.4578850	$\begin{array}{r} 291283 \\ 0.0253172 \end{array}$	2733.687 02370019	$\begin{aligned} & 1239,654 \\ & 0.10 r 2 e 6 \end{aligned}$	$\begin{aligned} & 1,477,819 \\ & 0.1290291 \end{aligned}$	$\begin{array}{r} 153,600 \\ 0.0133405 \end{array}$	11,154,278 0.989892	$\begin{array}{r} 361,049 \\ 0.0506118 \end{array}$	0.0000000
	CP deand										
$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\text { Leves } 1 \& 2$	$\begin{array}{r} 2,149,333 \\ 1.0000000 \end{array}$	$\begin{aligned} & 1,144,164 \\ & 0.6929244 \end{aligned}$	$\begin{array}{r} 55,768 \\ 0.0550020 \end{array}$	$\begin{aligned} & 461,029 \\ & 0209065 \end{aligned}$	$\begin{array}{r} 191,820 \\ 0.8:>: 79 \end{array}$	$\begin{array}{r} 233,603 \\ 0.1088863 \end{array}$	$\begin{array}{r} 8,774 \\ 0.004082 \end{array}$	$\begin{aligned} & 2,086,247 \\ & 0.0701693 \end{aligned}$	$\begin{array}{r} 64,008 \\ 00090167 \end{array}$	$\begin{array}{r} 0 \\ 00000000 \end{array}$
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\text { LEVe } 3$	$\begin{array}{r} 1,002,428 \\ 1.0000000 \end{array}$	$\begin{aligned} & 1,123,290 \\ & 0.5038714 \end{aligned}$	$\begin{array}{r} 54,741 \\ 0.0289244 \end{array}$	$\begin{array}{r} 42800 \\ 02 \times 8084 \end{array}$	$\begin{array}{r} 163858 \\ 0.0065851 \end{array}$		$\begin{array}{r} 0,614 \\ 0.0046518 \end{array}$	$\begin{aligned} & 1,092,428 \\ & 1.0000000 \end{aligned}$	0.0000000	0.0000000
	NCP Denno										
$\begin{gathered} 9 \\ 10 \end{gathered}$	$\text { Leve } 4$	2,400,404 10000000	$\begin{aligned} & 1,450,646 \\ & 0.593 i 609 \end{aligned}$	$\begin{array}{r} 78,309 \\ 0.0316311 \end{array}$	$\begin{array}{r} 608,49 \\ 024 \times 056 \end{array}$	$\begin{array}{r} 220,097 \\ 0.0886202 \end{array}$	$\begin{array}{r} 03,569 \\ 0.0378328 \end{array}$	$\begin{array}{r} 37240 \\ 0.0149789 \end{array}$	$\begin{array}{r} 2488,404 \\ 1,0000000 \end{array}$	0.0000000	0.0000000
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\text { Level } 6$	$\begin{array}{r} 2280,357 \\ 10000000 \end{array}$	$\begin{aligned} & 1,308,380 \\ & 0 . e 206149 \end{aligned}$	$\begin{array}{r} 76,458 \\ 0.0635918 \end{array}$	$\begin{array}{r} 860,000 \\ 0287 r e e 2 \end{array}$	$\begin{array}{r} 150,305 \\ 0.0703467 \end{array}$	0.0010006	$\begin{array}{r} 36,859 \\ 0.0160321 \end{array}$	$\begin{array}{r} 2,250,367 \\ 1.0000000 \end{array}$	0.0000000	0.0000000
	AVERMAE NO. OF CUSTOMERS										
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	LEVE 4 AND BeOW	$\begin{array}{r} 443,319 \\ 1.0000000 \end{array}$		$\begin{array}{r} 29,156 \\ 0.067676 \end{array}$	$\begin{array}{r} 17,404 \\ 0.08 P 4614 \end{array}$	$\begin{array}{r} 278 \\ 0.0000277 \end{array}$	0.0001003	$\begin{array}{r} 10,312 \\ 0.0282009 \end{array}$	$\begin{array}{r} \text { 443,319 } \\ \mathbf{1} 00000000 \end{array}$	0.0000000	0.0000000
$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\text { Level }_{x}$	$\begin{array}{r} 443240 \\ 1.0000000 \end{array}$	$\begin{gathered} 300,039 \\ 0.6709277 \end{gathered}$	$\begin{array}{r} 29,154 \\ 0.085 / 76 \end{array}$	$\begin{array}{r} 17,4 e 0 \\ 0.0<5046 \end{array}$	$\begin{array}{r} 248 \\ 0.0006308 \end{array}$	0.0006746	$\begin{array}{r} 10,312 \\ 0.0 \times 2 \times 347 \end{array}$	$\begin{array}{r} 449240 \\ 1.0000000 \end{array}$	0.0000000	0.0000000
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	TOTAL	$\begin{array}{r} 443,361 \\ 1.0000000 \end{array}$	$\begin{array}{r} 386,039 \\ 0.8707194 \end{array}$	$\begin{array}{r} 29,150 \\ 0.0657 e 29 \end{array}$	0.0054069	$\begin{array}{r} 284 \\ 0.000040 \end{array}$	$\begin{array}{r} 68 \\ 0.0001634 \end{array}$	$\begin{array}{r} 10,312 \\ 0.0202502 \end{array}$	44,380	0.000000^{1}	$\begin{array}{r} 0 \\ 0000000 \end{array}$

GUF POWER COMPANY
12 NONTS ENDNG DECEPER 31, 2014
2113 Dewo nlicanion - with ids letmadan
SCHEDUE 6.0-UNE ALOCAIORS AND PERCENTACES

		TOTAL EIECTRAC	RATECLASS	RATE CLASS	PATECLASS	RATE CLASS	PATE CLASS	PATE CLASS	TOTAL RETALL		$\begin{aligned} & \text { UNT } \\ & \text { POWER } \end{aligned}$
Na	DESCPIPION	SVSTEM	RESIDENK	GS	GSDCAST	CPMP	MUORACCTS	Os	service	WHOESAL	SNES
(1)	(2)	(3)	(4)	(6)	(6)	(7)	(8)	(9)	(10)	(11)	(12)

SALARIES NO WAGES

19	Proouction	37,806	19,91	979	8,000	3,428	4,152	181	36,679	1,127	0
20	12/13 Dewn reated 1/13 EEERGY RELATED		18,57	806	7,303	3,116	3,783	142	33,859		
21			1,362	74	697	310	359	39	2821		
22	\%	1.000000	0.520280	0.0258954	02121366	0.0000005	0.109028	0.0047876	0.9701830	0.0298101	0.0000000
23	IRAGEMSSION	3,307	1,785	85	695	298	356	13	3,210	97	0
24	\%	1.000000	0.5337164	0.065181	02101603	0.0795071	0.1076804	0.0068311	0.9706683	0.0078317	0.0000000
	DISTRAEMTION										
25	Dewn	9,443	5,691	298	2311	789	315	128	9,430	13	0
26	astoen	8,261	8,394	498	401	13	8	956	8,258	3	0
27	TOTAL DISTREMITON	17,704	11.975	798	2,712	602	321	1,082	17,688	18	0
28	\%	1.0000000	0.6784000	0.0448818	0.153185	0.0458005	0.0181315	0.0611181	0.8980892	0.0009083	0.0000000
29	astornaccants	10,595	9,219	697	419	11	18	145	10,609	88	0
30	\%	1.0000000	0.8701274	0.065787	0.0096470	0.0010382	0.0016989	0.0138887	0.9018830	0.0081170	aconoun
	OSTOERASSISTANCE										
31	OSTOER	11,170	7,290	1,480	1,679	278	243	0	11.170	0	0
32	Everor	0	0	0	0	0	0	0	0	0	0
39	TOTAL OSTOER ASST.	11,170	7,230	1,480	1,679	278	243	0	11,170	0	0
34	\%	1.000000	0.6528110	0.13 ¢878	0.1689194	0.0048881	0.0217547	0.0000000	1.0000000	0.0000000	0.0000000
	SLBTUTAL SALAPIES A WACES										
35	Deman	47,735	25,836	1,289	10,29	4,201	4,464	281	46,498	1,237	0
38	CUSTOMER	30,029	22.893	2,675	2809	352	267	1.101	20,997	80	0
37	ENEFOY	2,821	1,362	74	697	310	359	39	2821	0	0
38	SLETUTAL SALAAES A WACES	80,589	50,170	4,037	12725	4,813	5.090	1,421	79,258	1,328	0
39	\%	1.0000000	0.6203956	0.050080	0.1708234	0.0897290	0.0631656	0.017632	0.983544	0.01046\%	0.0000000
40	ADMNSTRATVE A CENERAL	16,913	10,580	897	2,881	1.010	1,069	298	16,635	278	0
41	\%	1.0000000	0.6225880	0.0500788	0.17836	0.0597174	0.0630 .58	0.0178196	0.983569	0.0164571	0.0000000
42	TOTAL SALAPIES \& WACES	$\begin{array}{r} 97,495 \\ 1.0000000 \end{array}$	$\begin{array}{r} 60,700 \\ 0.625900 \end{array}$	$\begin{array}{r} 4,684 \\ 0.050049 \end{array}$	$\begin{array}{r} 16,608 \\ 0.1703277 \end{array}$	5,823	6.159	1,719	95,891	1,604	0
43						0.0097231	0.0631725	0.0178317	0.9885479	0.016462	0.0000000

Line No.	Etnt	Descriotion
1	(A)	Energy at point of generation.
2	(B)	Percent of above lines total.
3	(C)	Total sales of energy at point of delivery.
4	(B)	
5	(D)	Coincident peak demand at Levels 1 \& 2.
6	(B)	
7	(E)	Coincident peak demand at Level 3.
8	(B)	
9	(F)	Non-coincident peak demand at Level 4.
10	(B)	
11	(G)	Non-coincident peak demand at Level 5.
12	(B)	
13	(H)	Average number of customers at Levels 4 \& 5.
14	(B)	
15	(I)	Average number of common customers at Level 5.
16	(B)	
17	(J)	Total average number of customers at all levels.
18	(B)	
19	(K)	Retail Jurisdiction sum of lines 2 \& 3; Wholesale and Total Retail Service Allocated per Level 1 Demand Allocator.
20	(L)	Allocated per corresponding Level 1 Demand Allocator.
21	(M)	Allocated per corresponding Level 1 Energy Allocator.
22	(B)	
23	(N)	Allocated per Total Transmission O \& M Expense excluding UPS.
24	(B)	
25	(0)	Allocated per demand related Distribution O \& M Expense.
28	(P)	Allocated per customer related Distribution O \& M Expense.
28	(B)	
29	(Q)	Allocated per Customer Accounts Expense excluding UPS.
30	(B)	
31	(R)	Allocated per customer related Customer Assistance Expense excluding UPS and Gulf Power Energy Services.
32	(S)	Allocated per energy related Customer Assistance Expense excluding UPS.
34	(B)	
40	(T)	Allocated per Subtotal Salaries and Wages.
41	(B)	

Florida Public Service Commission Docket No. 130140-EI GULF POWER COMPANY Witness: Michael T. O'Sheasy
Exhibit No. (MTO-2)
Page 50 of 60 Schedule 6.1

Minimum Distribution System
Account 365 - Overhead Regression
Schedule 6.1

Account 365 - Overhead Primary Conductors

Size	MCM	\$ / ft
\#2	77.47	0.517
$1 / 0$	123.30	0.590
$4 / 0$	246.90	1.228
477	477.00	1.715
795	795.00	2.438
Zero Intercept $=.3737$		

Florida Public Service Commission Docket No. 130140-EI GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. (MTO-2)
Page 51 of 60
Schedule 6.2
Minimum Distribution System
Account 368 - Single Phase Transformer Regression Schedule 6.2

Account 368 - Singe Phase Overhead Transformers <100 kVA

kVA	\$ / ea
15	1,022
25	1,193
37.5	1,412
50	1,672
75	2,219
100	2,848

Zero Intercept = 643.42


```
NOTES:
    (A) YAXIS INTERCEPT OF REGRESSION EASED OM COST FROM MAXIMO SYSTEM OF SIMGLEPHASE OVERHEAD TRAMSFORMERS 100 KVA AND LESS.
    B) INCLUDES ALL OVERHEAD, PADHOUNTER, AND VAULTIUNDEROROUND DRY TRAMSFORMERS, RESPECTIVELY.
    C) TOTAL AMOUNT FOR ALL TRAMSFORMERS OF EACH RESPECTVE TMPE ADUUSTED FOR VINTAGE USING HANDY=WHITMAN RATIOS. CUTOMER COMPONENT EQUALS
    TOTAL NUREER OF TNHSFOR, (UNE) TMES UNIT COST OF TERONNTERCEPT (LNE 1.. DEMAND CONPONENT IS TOTAL MINUS CUSTOMER COMPONENT.
    FROM AMALYBIS OF ACCOUNT 366, LNE B, PPRMARY LNES.
    (E) ALLOCATED PER TOTAL OVERHEAD TRANSFORMERS ADNUSTED FOR VINTAGE (LNE 3).
    (F) ALLOCATED PER TOTAL PADHT TRAMSFORMERS ADNUSTED FOR VINTAGE (LNE 7).
    (G) ALLOCATED PER TOTAL VAULTIDRY TRAMSFORMERS ADUUSTED FOR VINTAGE (LNE 11).
    (H) ALOCATED PER VAULT AND UNDERGROUNDD DRY TRANSFORMERS (LNE 18),
    (I) ASSIGNED TO LEVEL & DELAND COMPONENT
    f) ALLOCATED PER PFIMARY UNES FRON ACCOUNT 365 (LNE 13)
    (K) FROM ACCOUNT 388-A. ALLOCATED PER OVERHEAD TRAMSFORMERS (UNE 14).
    (L) FROM ACCOUNT Ses-. ALLOCATED PER REGULATORS AND CAPACITORS (LNE 18)
    (M) FROW ACCOUNT 38S-A. ALOCATED PER PRIMARYY LNES FROM ACCOUNT 366 (LNE 13).
    (N) ALOCATED PER PADMOUNTED TRNMSFORMERS (UNE 16).
    (0) ALOCATED PER SUBTOTAL (UNE 2A).
```

```
.
(C) TOTAL AMOUNT FOR ALL RRAMSFORMERS OF EACH RESPECTVE TYPE ADUUSTED FOR VINTAGE USING HANDY-WHITMAN RATIOS. CUTOMER COMPOMENT EQUALS
FROM AMALYSIS OF ACCOUNT 366, UNE S, PRREARY LNES.
(E) ALLOCATED PER TOTAL OVERHEAD TRANSFORMERS ADUUSTED FOR VINTAGE (LNE 3).
(G) ALLOCATED PER TOTAL VAULTIDRY TRANSFORMERS ADUUSTED FOR VINTAGE (UNE 11
(H) ALLOCATED PER VAULT AND UNDERGROUND DRY TRAMSFORMERS (LINE 18).
(I) ASSIGMED TO LEVEL 4 DELAND COMPONENT.
(K) FROM ACCOUNT 3BSA. ALLOCATED PER OVERHEAD TRANSFORMERS (UNE 14).
(N) AROM ACCOUNT 38SA. ALOCATED PER PRIMARY LINES FROM ACCOUNT 366 (LNE 13).
(0) ALOCATED PER SUBTOTAL (UNE 2A).
```


GULF POWER COMPANY

TWELVE MONTHS ENDED 12/31/12
MINAMUM DISTRIBUTION SYSTEM - ZSRO-INTERCEPT METHOD ACCOUNT 368-A - ANALYSIS OF CUTOUTS AND ARRESTERS

SCHEDULE 6.7
QUANTITY PERCENTAGE AMOUNT (\$)

1. TOTAL FOR CUTOUTS
2. PROTECTION FOR OVERHEAD TRANSFORMERS
3. REMANDER FOR LINE PROTECTION
4. TOTAL FOR ARRESTERS
5. PROTECTION FOR OVERHEAD TRANSFORMERS
6. PROTECTION FOR REGULATORS AND AUTO-BOOSTERS
7. PROTECTION FOR CAPACITORS
8. PROTECTION FOR SWITCHES
9. REMANDER FOR LINE PROTECTION

SUMMARY FOR CUTOUTS AND ARRESTERS
10. Transformer-related
11. Regulator/Capacitor-related
12. Line/Switch-related

172,629		$29,938,347$
116,791	68.73%	$20,67,601$
64,039	31.27%	$9,360,746$
211,080		$36,430,679$
118,791	66.28%	$19,939,676$
1,260	0.60%	211,496
16,164	7.66%	$2,713,196$
3,360	1.69%	662,312
71,616	33.68%	$12,004,099$

NOTES:

(A) TOTAL NUMBER AND AMOUNT FOR CUTOUTS
(B) ASSUMED 1 CUTOUT PER SINGLE PHASE TRANSFORMER AND 3 CUTOUTS PER THREE PHASE TRANSFORMER.
(C) DIFFERENCE BETWEEN TOTAL FOR CUTOUTS (LINE 1) AND PROTECTION FOR OVERHEAD TRANSFORMERS (LINE 2).
(D) TOTAL NUMBER AND AMOUNT FOR ARRESTERS.
(E) ASSUMED 1 ARRESTER PER SINGLE PHASE TRANSFORMER AND 3 ARRESTERS PER THREE PHASE TRANSFORMER
(F) SIDE AND SOURCE SIDE). SIDE AND SOURCE SIDE). LOAD SIDE AND SOURCE SIDE).
ASSUMED TWO ARRESTERS PER SINGLE-PHASE SWITCH AND 6 ARRESTERS PER 3-PHASE SWITCH.
DIFFERENCE BETWEEN TOTAL FOR ARRESTERS (LINE 4) AND (PROTECTION FOR OVERHEAD TRANSFORMERS (LINE 6) PLUS PROTECTION FOR REGULATORS (LINE 8) PLUS PROTECTION FOR CAPACITORS (LINE 7) PLUS PROTECTION FOR SWITCHES (LINE 6)].
(J) LINE 2 PLUS LINE 5
(K) LINE 6 PLUS LINE 7.
(L) LINE 3 PLUS LINE 6 PLUS LINE 9.
$\begin{array}{rr}\text { 40,517,177 } & \text { (J) } \\ \text { 2,924,692 } & \text { (K) }\end{array}$
21,927,167

Florida Public Service Commission Docket No. 130140-EI
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. (MTO-2)
Page 59 of 60
Schedule 6.8
Gulf Power Company
Twelve Months Ended 12/31/12
Minimum Distribution System
Account 369 - Services Analysis (Mass Account)
Schedule 6.8

Secondary			
12-31-12	Customer-	Demand----	
Total	Related	Related	Notes
All Costs	Component	Component	

1. All Services $\quad 97,917,728 \quad 97,917,728 \quad$ - \quad (A)
2. Total Account 369 97,917,728 97,917,728 -
3. Percentages 100%

Notes
(A) Assigned to Secondary Level 5 Customer-Related Component.

Florida Public Service Commission Docket No. 130140-El
GULF POWER COMPANY
Witness: Michael T. O'Sheasy
Exhibit No. \qquad (MTO-2)
Page 60 of 60
Schedule 6.9

> Gulf Power Company Twelve Months Ended 12/31/12 Minimum Distribution System Account 370 - Meters Analysis (Mass Account) Schedule 6.9

Secondary			
------------- - Level 5-------			
12-31-12	Customer-	Demand-	
Total	Related	Related	Notes
All Costs	Component	Component	

1. All Meters $\quad 73,759,011 \quad 73,759,011 \quad$ - \quad (A)
2. Total Account 370
73,759,011 73,759,011

100\%
Notes
(A) Assigned to Customer-Related Component.

[^0]: Page 30 of 60
 Schedule 4.10
 Witnesit No. Michael (MTO-2)
 Exhibit
 GULF POWER COMPANY
 Florida Public Service Commission

[^1]: OL \downarrow ə

