

Christopher T. Wright Managing Attorney Florida Power & Light Company 700 Universe Blvd (LAW/JB) Juno Beach, FL 33408-0420 Phone: (561) 691-7144 E-mail: Christopher.Wright@fpl.com Florida Authorized House Counsel; Admitted in Pennsylvania

July 18, 2025

VIA ELECTRONIC FILING

Mr. Adam J. Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Docket No. 20250014-EI Florida Power & Light Company Final Revised 2026-2035 Storm Protection Plan

Dear Mr. Teitzman:

Pursuant to Order No. PSC-2025-0218-FOF-EI, enclosed for fling in the above referenced matter, please find the Florida Power & Light Company Final Revised 2026-2035 Storm Protection Plan that reflects the stipulated modifications approved by the Florida Public Service Commission.

A copy of the foregoing is being served as indicated on the attached Certificate of Service. If you or your staff have any question regarding this filing, please contact me at (561) 691-7144.

Respectfully submitted,

/s/ Christopher T. Wright

Christopher T. Wright Fla. Auth. House Counsel No. 1007055

Enclosures

cc: Ken Hoffman (*ken.hoffman@fpl.com*) Certificate of Service

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of the foregoing has been furnished by Electronic Mail to the following parties of record this 18th day of July 2025:

Jacob Imig	Office of Public Counsel
Tim Sparks	c/o The Florida Legislature
Florida Public Service Commission	111 West Madison Street, Room 812
2540 Shumard Oak Boulevard	Tallahassee, FL 32399-1400
Tallahassee, FL 32399	Trierweiler.walt@leg.state.fl.us
jimig@psc.state.fl.us	christensen.patty@leg.state.fl.us
TSparks@psc.state.fl.us	ponce.octavio@leg.state.fl.us
discovery-gcl@psc.state.fl.us	rehwinkel.charles@leg.state.fl.us
For Commission Staff	watrous.austin@leg.state.fl.us
	wessling.mary@leg.state.fl.us
	For Coffice of Public Counsel
J. Jeffrey Wahlen	Dianne M. Triplett
Malcolm M. Means	Deputy General Counsel
Ausley McMullen	Duke Energy Florida, LLC
Post Office Box 391	299 First Avenue North
Tallahassee, Florida 32302	St. Petersburg, FL 33701
jwahlen@ausley.com	Dianne.Triplett@Duke-Energy.com
mmeans@ausley.com	
	Matthew R. Bernier
Ms. Paula K. Brown	Robert L. Pickels
Regulatory Affairs	Stephanie A. Cuello
P. O. Box 111	106 E. College Avenue, Suite 800
Tampa FL 33601-0111	Tallahassee FL 32301
regdept@tecoenergy.com	FLRegulatoryLegal@duke-energy.com
For Tampa Electric Company	matthew.bernier@duke-energy.com
	robert.pickels@duke-energy.com
	stephanie.cuello@duke-energy.com
	For Duke Energy Florida, LLC
Beth Keating	James W. Brew
Gunster, Yoakley & Stewart, P.A.	Laura Wynn Baker
215 South Monroe St., Suite 601	Sarah B. Newman
Tallahassee, FL 32301	Stone Mattheis Xenopoulos & Brew
BKeating@gunster.com	1025 Thomas Jefferson St., NW
	Suit 800 West
Mr. Mike Cassel	Washington DC 20007
Michelle D. Napier	(202) 342-0800
208 Wildlight Ave.	(202) 342-0807
Yulee FL 32097	jbrew@smxblaw.com
(904) 491-4361	lwb@smxblaw.com
mcassel@fpuc.com	For PCS Phosphate – White Springs
mnapier@fpuc.com	
For Florida Public Utilities Company	

<u>s/ Christopher T. Wright</u> Christopher T. Wright Fla. Auth. House Counsel No. 1007055

Attorney for Florida Power & Light Company

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Page 1 of 50

Florida Power & Light Company

Storm Protection Plan 2026-2035

Final Revised Per Order No. PSC-2025-0218-FOF-EI Docket No. 20250014-EI

Filed: July 18, 2025

TABLE OF CONTENTS

Ι.	Executive Summary5						
11.	The 2026 SPP will Strengthen FPL's Infrastructure to Better Withstand Extreme Weather Conditions and will Reduce Restoration Costs and Outage Times7						
111.	Descr	iption o	of Service Area and T&D Facilities	9			
IV.	2026	SPP P	rograms1	0			
	A.	Distril	oution Inspection Program1	0			
		1.	Description of the Program and Benefits1	0			
		2.	Actual/Estimated Start and Completion Dates1	3			
		3.	Cost Estimates	4			
		4.	Comparison of Costs and Benefits1	4			
		5.	Criteria used to Select and Prioritize the Program1	5			
	В.	Trans	mission Inspection Program1	5			
		1.	Description of the Program and Benefits1	5			
		2.	Actual/Estimated Start and Completion Dates1	7			
		3.	Cost Estimates 1	8			
		4.	Comparison of Costs and Benefits1	8			
		5.	Criteria used to Select and Prioritize the Program1	8			
	C.	Distri	oution Feeder Hardening Program1	9			
		1.	Description of the Program and Benefits1	9			
		2.	Actual/Estimated Start and Completion Dates2	23			
		3.	Cost Estimates2	23			
		4.	Comparison of Costs and Benefits2	24			
		5.	Criteria used to Select and Prioritize the Program2	24			

D.	Distribution Lateral Hardening Program			
	1.	Description of the Program and Benefits	. 24	
	2.	Actual/Estimated Start and Completion Dates	. 29	
	3.	Cost Estimates	. 29	
	4.	Comparison of Costs and Benefits	. 30	
	5.	Criteria used to Select and Prioritize the Program	. 30	
E.	Trans	mission Hardening Program	. 32	
	1.	Description of the Program and Benefits	. 32	
	2.	Actual/Estimated Start and Completion Dates	. 33	
	3.	Cost Estimates	. 34	
	4.	Comparison of Costs and Benefits	. 34	
	5.	Criteria used to Select and Prioritize the Program	. 34	
F.	Distrik	oution Vegetation Management Program	. 35	
	1.	Description of the Program and Benefits	. 35	
	2.	Actual/Estimated Start and Completion Dates	. 37	
	3.	Cost Estimates	. 37	
	4.	Comparison of Costs and Benefits	. 38	
	5.	Criteria Used to Select and Prioritize the Program	. 38	
G.	Trans	mission Vegetation Management Program	. 39	
	1.	Description of the Program and Benefits	. 39	
	2.	Actual/Estimated Start and Completion Dates	. 42	
	3.	Cost Estimates	. 42	
	4.	Comparison of Costs and Benefits	. 43	
	5.	Criteria used to Select and Prioritize the Programs	. 43	
Н.	Subst	ation Storm Surge/Flood Mitigation Program	. 43	

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Page 4 of 50

		1.	Description of the Program and Benefits	43
		2.	Actual/Estimated Start and Completion Dates	45
		3.	Cost Estimates	46
		4.	Comparison of Costs and Benefits	47
		5.	Criteria used to Select and Prioritize the Programs	47
V.			rmation on the First Three Years of the SPP (2026-	47
	A.		ed Description for the First Year of the SPP (2026)	
	В.		ed Description of the Second and Third Years of the SPP (2027-2028)	48
	C.		ed Description of the Vegetation Management ies for the First Three Years of the 2026 SPP (2026-	
				48
VI.			Annual Jurisdictional Revenue Requirements for the	48
VII.			ate Impacts for First Three Years of the 2026 SPP	40
				49
VIII.	Concl	usion		50
Apper	ndices:			
	Apper	ndix A -	 FPL's Third Supplemental Response to Staff's First I Request No. 29 ("Third Supplemental Amended") in Docket 20170215-EU 	
	Apper	ndix B -	 FPL Management Areas and Customers Served and Extr Wind Map 	eme

Appendix C – FPL 2026-2035 SPP Estimated Annual Costs and Number of Projects

Appendix D – Project Level Detail for First Year of the SPP (2026)

Florida Power & Light Company 2026-2035 Storm Protection Plan

I. <u>Executive Summary</u>

Pursuant to Section 366.96, Florida Statutes, and Rule 25-6.030, Florida Administrative Code, Florida Power & Light Company ("FPL") submits its Storm Protection Plan for the ten year period 2026-2035 (hereinafter, the "2026 SPP").

The 2026 SPP is a continuation of the following programs included in the current 2023-2032 Storm Protection Plan (hereinafter, the "2023 SPP") that was previously approved by Florida Public Service Commission ("Commission") Order No. PSC-2022-0389-FOF-EI:¹

- Distribution Inspection Program
- Transmission Inspection Program
- Distribution Feeder Hardening Program
- Distribution Lateral Hardening Program
- Transmission Hardening Program
- Distribution Vegetation Management Program
- Transmission Vegetation Management Program
- Substation Storm Surge/Flood Mitigation Program

The majority of these storm hardening programs have been in place since 2007 and have already demonstrated that they have and will continue to increase transmission and distribution ("T&D") infrastructure resiliency, reduce restoration times, and reduce restoration costs when FPL's system is impacted by extreme weather events.

For purposes of the 2026 SPP, FPL is not proposing any material modifications to the programs previously approved in the 2023 SPP. Rather, FPL has updated the projected

¹ Affirmed by Citizens of the State of Florida, vs. Fay, 396 So.3d 549 (Fla. Nov. 14, 2024).

costs for certain programs to better reflect current data and pricing, reduced the estimated average cost per project under the Distribution Lateral Hardening Program, and identified additional substations that require storm surge and flood mitigation through the Substation Storm Surge/Flood Mitigation Program. Each of these updates is described in Section IV for each applicable SPP program.

Safe and reliable electric service is essential to the life, health, and safety of the public and has become a critical component of modern life. While no electrical system can be made completely resistant to the impacts of hurricanes and other extreme weather conditions,² the continuation of the existing programs approved in the 2023 SPP will collectively provide increased resiliency and faster restoration to the electric infrastructure that FPL's approximately 6 million customer accounts and Florida's economy rely on for their electricity needs.

For the reasons explained below, FPL submits that continuing the existing programs in the 2026 SPP is necessary and appropriate to achieve the legislative directives and State's interest codified in Section 366.96, Florida Statutes, "to strengthen electric utility infrastructure to withstand extreme weather conditions by promoting the overhead hardening of electrical transmission and distribution facilities, the undergrounding of certain electrical distribution lines, and vegetation management" and "for each utility to mitigate restoration costs and outage times to utility customers when developing transmission and distribution plans." *See* Sections 366.96(1)(c)-(e), Fla. Stat.

The projects and programs contained herein reflect FPL's 2026 SPP as modified by the Joint Stipulations and Proposed Resolutions ("Stipulations") approved by Commission Order No. PSC-2025-021 8-FOF-E1 issued on June 19, 2025.

² It is important to note that despite the implementation of the SPP programs, outages will still occur when extreme weather events impact Florida.

II. <u>The 2026 SPP will Strengthen FPL's Infrastructure to Better Withstand</u> <u>Extreme Weather Conditions and will Reduce Restoration Costs and Outage</u> <u>Times</u>

Pursuant to Rule 25-6.030(3)(a), Florida Administrative Code, this section provides an overview of how continuing the existing storm hardening programs included in the 2026 SPP will strengthen FPL's electric utility infrastructure to better withstand extreme weather conditions by promoting the overhead hardening of electrical transmission and distribution facilities, the undergrounding of certain electrical distribution lines, and vegetation management. Consistent with Rule 25-6.030(3)(b), Florida Administrative Code, this section also provides a summary of how the 2026 SPP is expected to further reduce restoration costs and outage times associated with extreme weather conditions.

To date, significant progress has been made toward strengthening FPL's infrastructure, with a majority of the existing SPP programs having been in place since 2007. As part of the 2026 SPP, FPL will continue the existing storm hardening and storm preparedness programs that were included in both the 2020-2029 Storm Protection Plan ("2020 SPP") approved by Commission Order No. PSC-2020-0293-AS-EI and the 2023 SPP approved by Commission Order PSC-2022-0389-FOF-EI. Although FPL has updated the number of projects and associated costs for certain programs, FPL is not proposing any new programs or any substantive changes to the existing SPP programs.

The programs included in the 2026 SPP will continue to strengthen FPL's electric utility infrastructure to better withstand extreme weather conditions. Although there is the significant variability and subjectivity required to forecast estimated benefits of future SPP programs over a ten-year period, the performance of FPL's system during historical extreme weather events demonstrates that continuing the existing SPP programs will reduce restoration costs and customer outage times associated with extreme weather events.

For example, a prior analysis of Hurricanes Matthew and Irma indicated the restoration construction man-hours ("CMH"), days to restore, and storm restoration costs for these

storms would have been significantly higher without FPL's existing storm hardening programs as summarized in the table below:³

	Estimated Impacts to Restoration Without Storm Hardening			40-Year Net Present Value of Savings from Storm Hardening	
Storm	AdditionalAdditionalAdditionalDays toCMHRestoreCost		Additional Restoration Costs (\$MM)	Storm Every Three Years (\$MM)	Storm Every Five Years (\$MM)
Matthew	93,000 (36%)	2 (50%)	\$105 (36%)	\$653	\$406
Irma	483,000 (40%)	4 (40%)	\$496 (40%)	\$3,082	\$1,915

Also illustrative are the results of FPL post-storm forensic analyses of the performance of FPL's system during the 2020-2023 storm seasons as compared to performance during Hurricane Wilma, which occurred in 2005 before FPL began implementing its current SPP programs.

	Hurricane Wilma	Hurricane Irma	Hurricane Ian	Hurricane Nicole	Hurricane Idalia
Storm Season	2005	2017	2022	2022	2023
Saffir-Simpson Scale	Category 3	Category 4	Category 4	Category 1	Category 3
Landfall Max Sustained Winds	120 mph	130 mph	150 mph	75 mph	125 mph
Customers Affected	3.2 million	4.4 million	2.2 million	0.5 million	0.2 million
FPL Counties Impacted	21	35	32	30	37
AFS Interruptions Avoided	Not Available	546,000	404,000	152,000	69,000
Substations Flooded	0	2	6	0	0
Substations De-energized	241	92	27	2	7
Trans Structures Failed	100	5 ^(a)	0	0	0
Trans Line Sections Impacted	345	215	70	15	13
Distribution Poles Replaced	12,400	4,700	3,200	30	171
Lateral Performance (UG vs OH)	Not Available	6.6x	5.6x	15.5x	13.6x
50% of customers restored	5 days	1 day	1 day	1 day	1 day
100% of customers restored	18 days	10 days	8 days	1 day	2 days
Average customer outage	5.4 days	2.1 days	1.5 days	0.2 days	0.13 days

^(a) All five of the transmission structures that failed were wooden poles.

³ The full analysis was provided in FPL's Third Supplemental Response to Staff's First Data Request No. 29 ("Third Supplemental Amended") in Docket No. 20170215-EU, which is included as Appendix A.

Given that FPL's storm hardened assets are expected to have service lives ranging from 40 to 70 years, the SPP programs will continue to provide significant benefits to the customers and the communities served by FPL both now and for many years to come, including years with multiple extreme weather events, such as the 2022 and 2024 hurricane seasons.

Although FPL's storm preparedness and hardening programs to date have produced a more storm resilient and reliable T&D electrical grid, the need to continue these previously approved SPP programs in the 2026 SPP remains every bit as important and crucial to achieving the objectives of the Florida Legislature in Section 366.96, Florida Statutes. Indeed, Florida remains the most hurricane-prone state in the nation and, with the significant coast-line exposure of FPL's system and the fact that the vast majority of FPL's customers live within 20 miles of the coast, a robust storm protection plan is critical to maintaining and improving grid resiliency and storm restoration.

III. <u>Description of Service Area and T&D Facilities</u>

FPL's current service area includes both the peninsular and panhandle regions of Florida, serving 6 million customer accounts, or approximately 12 million Floridians in 43 counties. As of year-end 2023, FPL operates a T&D electric grid that contains approximately 89,900 miles of electrical lines, including:

- Approximately 80,400 miles of distribution lines;
- Approximately 9,500 miles of high-voltage transmission lines;
- Approximately 1.4 million distribution poles; and
- Approximately 83,000 transmission structures.

FPL's service area is divided into nineteen (19) distribution management areas. A map depicting FPL's service area and distribution management areas (with the number of customers served within each management area) is provided in Appendix B.

At this time, FPL has not identified any portions of its service area where continuing its existing SPP programs would not be feasible, reasonable, or practical. While all of FPL's

SPP programs are currently system-wide initiatives, annual activities are prioritized based on certain applicable factors, such as the last inspection date, last vegetation maintenance date, reliability performance, impacts of recent extreme weather events, and efficient resource utilization.

IV. 2026 SPP Programs⁴

A. Distribution Inspection Program

1. Description of the Program and Benefits

The Distribution Inspection Program included in the 2026 SPP is a continuation of the existing Distribution Pole Inspection Program. FPL's Distribution Inspection Program has been in place since 2006 and was approved as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period and updating the estimated costs based on more current data but is not otherwise proposing any material modifications to the program. Below is an overview of the Distribution Inspection Program and its associated benefits.

a. <u>Overview of the Distribution Inspection Program</u>

The existing Distribution Inspection Program is an eight-year pole inspection cycle for all distribution poles on its system. Annually, FPL performs pole inspections of approximately 1/8 of the distribution poles throughout its service area (the actual number of poles inspected can vary somewhat from year to year), as well as any remediation necessary as a result of such inspections.

FPL's strength and loading calculations for its distribution poles and pole inspections are based on the National Electrical Safety Code's ("NESC") Grade B construction standard, as provided in Table 261-1 of the NESC. The loading calculation, span lengths, attachment heights, and wire sizes are utilized to determine whether the remaining pole

⁴ Note, the 2026-2035 program costs shown in this section are projected costs estimated as of the time of this filing. Subsequent projected and actual costs could vary by as much as 10% to 15%. The annual projected costs, actual/estimated costs, actuals costs, and true-up of actual costs to be included in FPL's Storm Protection Plan Cost Recovery Clause ("SPPCRC) will all be addressed in separate annual SPPCRC filings pursuant to Rule 25-6.031, Florida Administrative Code.

strength capacity meets or exceeds NESC requirements. This data is then transferred to FPL's Geographic Information System ("GIS"). Pole locations inspected by Osmose Utilities, Inc., an industry-leading pole inspection contractor, and are randomly audited by FPL to verify that inspections are complete and meet inspection standards.

Inspections include a visual inspection of all distribution poles from the ground-line to the top of the pole to identify visual defects (*e.g.*, woodpecker holes, split tops, decayed tops, cracks, etc.). If, due to the severity of the defects, any poles identified as not suitable for continued service are designated for replacement.

Wood poles that pass the above-ground visual inspection are then excavated to a depth of 18 inches (where applicable) and are sounded and bored to determine the internal condition of the pole. Poles encased in concrete or asphalt are not excavated but are sounded and bored to determine their internal condition using a standard industryaccepted inspection process called "Shell Boring." All suitable wood poles receive external and/or internal preservative treatment or, if not suitable, are replaced. Strength calculations are also performed on wood poles to determine compliance with NESC requirements. The poles that are not suitable for continued service are designated for replacement or remediation.

Any pole that had less than 80% of full load at the prior eight-year inspection cycle is exempt from the loading assessment during the next eight-year inspection cycle, and Chromium Copper Arsenate ("CCA") poles are excavated only if they are older than 28 years.⁵ To ensure that these exceptions to the standard eight-year inspection cycle do not compromise existing safety and storm hardening programs, FPL conducts annual testing on 1% of the exempted poles.

b. <u>Benefits of the Distribution Inspection Program</u>

The Commission has previously found that "efforts to maintain system components can reduce the impact of hurricanes and tropical storms upon utilities' transmission and

⁵ See Order No. PSC-14-0594-PAA-E.

distribution systems," and noted that an "obvious key component in electric infrastructure is the transmission and distribution poles."⁶ The Commission has also previously identified multiple benefits of and reasons for justifying pole inspections cycles for electric utilities, including, but not limited to: continued hurricane impacts to the state of Florida; the high probability for equipment damage if a pole fails during a storm; the likelihood that failure of one pole often causes other poles to fail; the fact that deteriorated poles are more prone to fail when exposed to high winds; the fact that Florida electric utilities replaced nearly 32,000 poles during the 2004 storm restoration efforts; and the fact that restoration times increase significantly when a large number of poles fail, which limits the electric utilities' ability to respond quickly to widespread outages.⁷

In addition to the benefits discussed above that underlie the Commission's mandated pole inspection requirements, recent storm events indicate that FPL's Distribution Inspection Program has contributed to the overall improvement in distribution pole performance during storms, resulting in reductions in storm damage to poles, days to restore, and storm restoration costs. For example, the table below compares distribution pole performance for Hurricane Wilma, which occurred in 2005 before FPL began implementing its current distribution pole inspection program in 2006,⁸ and Hurricanes Irma, Ian, and Idalia, which occurred after FPL implemented its current Distribution Inspection Program:

⁶ See Order No. PSC-06-0144-PAA-E.

⁷ See id.

⁸ See Order Nos. PSC-06-0144-PAA-EI, PSC-06-0778-PAA-EU, and PSC-07-0078-PAA-EU.

	Hurricane Wilma	Hurricane Irma	Hurricane Ian	Hurricane Idalia
Year	2005	2017	2022	2023
Hurricane Strength (Category)	3	4	4	3
Customer Affected (Millions)	3.2	4.4	2.2	0.2
Distribution Poles Replaced	12,400	4,700	3,200	171
Total Days to Restore	18	10	8	2
Average Days to Restore	5.4	2.1	1.5	0.13

The Commission-approved Distribution Inspection Program has facilitated the replacement and/or strengthening of the distribution system and has directly improved and will continue to improve the overall health and storm resiliency of its distribution pole population.

c. <u>Modifications to Program</u>

FPL is not proposing any material modifications to the program previously approved in the 2023 SPP. Other than projecting three additional years for the 2026-2035 plan period, FPL is forecasting an increase in the projected capital costs for the Distribution Inspection Programs to better reflect current material and labor costs associated with the program, as well as the need to address the volume of pole replacements, remediations, or removals, including poles to be removed as a result of hardening projects.

2. <u>Actual/Estimated Start and Completion Dates</u>

The 2026 SPP will continue FPL's existing Distribution Inspection Program described above. FPL initiated its inspection program in 2006 following the devastating impacts of the 2004-2005 storm seasons. With approximately 1.4 million distribution poles as of year-end 2023, FPL plans to inspect an average of approximately 161,500 poles annually as part of the current 8-year inspection cycle in the 2026-2035 SPP period.

3. <u>Cost Estimates</u>

Estimated/actual annual distribution pole inspection costs are a function of the number of inspections estimated or actually completed and the number of poles estimated or actually remediated/replaced as a result of the annual inspections. Although costs to inspect the poles are operating expenses, the vast majority of pole inspection program costs are capital costs resulting from remediation/replacement of poles that fail inspection.

As noted above, FPL is projecting an increase in the capital costs under the program. This increase will be partially offset by a reduction in the estimated average cost per project under the Distribution Lateral Hardening Program over the 2026-2035 plan period.

The table below provides the total estimated distribution pole inspection costs included in the first three years of the 2026 SPP (2026-2028) and the ten-year period of the 2026 SPP (2026-2035):

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$282.3	\$94.1
2026-2035	\$917.1	\$91.7 ⁹

Further details regarding the SPP estimated distribution pole inspection costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section (IV)(A)(3) above, during 2026-2035, the total costs for FPL's Distribution Inspection Program are expected to average approximately \$91.7 million per year. Benefits associated with continuing FPL's existing Distribution Inspection Program, discussed in Sections II and IV(A)(1)(b) above, include a more storm resilient pole

⁹ This is an increase of approximately \$24.8 million per year compared to the estimated annual average program costs included in the 2023 SPP.

population that will result in reductions in pole failures and poles needing to be replaced during storms, fewer storm-related outages, and reductions in storm restoration costs.

5. <u>Criteria used to Select and Prioritize the Program</u>

Poles to be inspected annually are selected/prioritized throughout FPL's service area based on the last cycle's inspection dates, to ensure that poles are compliant with FPL's established eight-year cycle. As such, approximately 1/8 of the distribution poles are inspected annually. At this time, FPL has not identified any areas where the existing Distribution Inspection Program would not be feasible, reasonable, or practical.

B. Transmission Inspection Program

1. Description of the Program and Benefits

The Transmission Inspection Program included in the 2026 SPP is a continuation of the existing Transmission Inspection Program. FPL's Transmission Inspection Program has been in place since 2006 and was approved as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period but is not otherwise proposing any material modifications to the program. Below is an overview of FPL's existing Transmission Inspection Program and the associated benefits.

a. <u>Overview of the Transmission Inspection Program</u>

Under the existing Transmission Inspection Program, FPL inspects its transmission circuits, substations, and other equipment. All of FPL's transmission structures, including substations, are visually inspected each year. FPL performs climbing or bucket truck inspections on all wood transmission structures on a six-year cycle and all steel and concrete structures on a ten-year cycle. Inspections for wood structures include an overall assessment of the condition of the structures, as well as other pole/structure components including the foundation, all attachments, insulators, guys, cross-braces, cross-arms, and bolts. If a wood transmission structure does not pass visual inspection, it is designated for replacement with a concrete or steel transmission structure.

For steel and concrete structures, the visual inspection includes an overall assessment of the structure condition (*e.g.*, cracks, chips, exposed rebar, and rust) as well as other pole/structure components including the foundation, all attachments, insulators, guys, cross-braces, cross-arms, and bolts. If a concrete or steel pole/structure fails the inspection, it is designated for repair or replacement.

b. <u>Benefits of the Transmission Inspection Program</u>

As noted in Section IV(A)(1)(b) above, the Commission has found numerous benefits and reasons justifying inspections of electrical utility facilities, including transmission and substation facilities. Importantly, the transmission system is the backbone of the electric grid. While outages associated with distribution facilities (*e.g.*, a transformer, lateral, or feeder) can result in an outage affecting anywhere from a few customers up to several thousands of customers, a transmission-related outage can affect tens of thousands of customers. Additionally, an outage on a transmission facility could cause cascading (a loss of power at one transmission facility, which in turn can trigger the loss of power on another interconnected transmission facility, and so on) and result in the loss of service for hundreds of thousands of customers. As such, it is imperative that transmission facilities be properly inspected using appropriate cycles and standards to help ensure they are prepared for extreme weather events.

In addition to the benefits discussed above that underlie the creation of the Commission's mandated pole inspection requirements, recent storm events indicate that FPL's Transmission Inspection Program has contributed to the overall storm resiliency of the transmission system and provided savings in storm restoration costs. For example, the table below compares the performance of FPL's transmission system for Hurricane Wilma, which occurred in 2005 before FPL began implementing its current Transmission Inspection Program in 2006,¹⁰ and Hurricanes Irma, Ian, and Idalia, which occurred after FPL implemented its current Transmission Inspection Program:

¹⁰ See Order Nos. PSC-06-0144-PAA-EI, PSC-06-0778-PAA-EU, and PSC-07-0078-PAA-EU.

Transmission Facilities	Hurricane Wilma	Hurricane Irma	Hurricane Ian	Hurricane Idalia
Year	2005	2017	2022	2023
Hurricane Strength (Category)	3	4	4	3
Customer Affected (Millions)	3.2	4.4	2.2	0.2
Line Sections Impacted	345	215	70	13
Substations De- energized	241	92	27	7
Structures Failed	100	5 ¹¹	0	0

As shown above, the impacts on FPL's transmission facilities associated with Hurricanes Irma, Ian, and Idalia were significantly reduced from those experienced with Hurricane Wilma.

The Commission-approved Transmission Inspection Program has facilitated the replacement and/or strengthening of the transmission system and has directly improved and will continue to improve the overall health and storm resiliency of the transmission system.

c. <u>Modifications to Program</u>

Other than projecting three additional years for the 2026-2035 plan period, FPL is not proposing any material modifications to the program.

2. <u>Actual/Estimated Start and Completion Dates</u>

The 2026 SPP will continue FPL's existing Transmission Inspection Program described above. FPL initiated its inspection program in 2006 following the devastating impacts of the 2004-2005 storm seasons. FPL plans to inspect an average of approximately 85,550 transmission structures annually during the 2026-2035 SPP period.

¹¹ All five of the transmission structures that failed were wooden poles.

3. <u>Cost Estimates</u>

Estimated/actual annual transmission inspection costs are a function of the number of inspections estimated or actually completed and the transmission facilities estimated or actually remediated/replaced as a result of those annual inspections. Although the inspection costs are operating expenses, the vast majority of the transmission inspection program costs are capital costs resulting from remediation/replacement of facilities that fail inspection.

The table below provides the total estimated transmission inspection costs included in the first three years of the 2026 SPP (2026-2028) and the ten-year period of the 2026 SPP (2026-2035):

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$190.8	\$63.6
2026-2035	\$765.2	\$76.5

Further details regarding the SPP estimated transmission inspection costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(B)(3) above, during 2026-2035, the total costs for FPL's Transmission Inspection Program are expected to average approximately \$76.5 million per year. Benefits associated with the Transmission Inspection Program discussed in Sections II and IV(B)(1)(b) above, include avoiding outages that can affect tens of thousands of customers and, in particular, cascading outages where the loss of service can affect hundreds of thousands of customers.

5. <u>Criteria used to Select and Prioritize the Program</u>

As explained above, FPL visually inspects all transmission structures on an annual basis. For the inspection of transmission circuits and substations and all associated hardware, the facilities are selected/prioritized throughout FPL's service area based on the last cycle's inspection dates to ensure that facilities are inspected in compliance with the established inspection cycle. Similarly, for bucket truck or climbing inspections, structures are selected/prioritized throughout FPL's service area based on the last cycle's inspection dates to ensure that structures are inspected in compliance with the established six-year (wood) and ten-year (steel and concrete) cycles. At this time, FPL has not identified any areas where the Transmission Inspection Program would not be feasible, reasonable, or practical.

C. Distribution Feeder Hardening Program

1. Description of the Program and Benefits

The Distribution Feeder Hardening Program included in the 2026 SPP is a continuation of the existing Distribution Feeder Hardening Program. FPL's Distribution Feeder Hardening Program has been in place since 2006 and was previously approved as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period and updating the estimated costs based on more current data but is not otherwise proposing any material modifications to the program. Below is an overview of FPL's existing Distribution Feeder Hardening Program and the associated benefits.

a. <u>Overview of the Distribution Feeder Hardening Program</u>

The 2026 SPP will continue FPL's previously approved approach to apply criteria that meets or exceeds the NESC extreme wind loading ("EWL") standards to harden existing distribution feeders and certain critical poles. The extreme wind map applied to FPL's system, which is provided in Appendix B, corresponds to the following expected extreme winds of 105, 130, and 145 mph.

By evaluating each of the counties served by FPL, including each county's applicable wind zones, FPL determined that utilizing three extreme wind regions of 105, 130 and 145 mph for its service area was appropriate for the following reasons:

- A smaller number of wind regions generate advantages through the efficiency of work methods, training, engineering, and administrative aspects (*e.g.*, standards development and deployment); and
- Using 105, 130, and 145 mph wind zones is a well-balanced approach that recognizes differences in the EWL requirements in the counties within each region.

To determine how an existing overhead circuit or critical pole will be hardened, a field survey of the circuit facilities is performed. By capturing detailed information at each pole location (such as pole type, class, span distance, attachments, wire size, and framing) a comprehensive wind-loading analysis can be performed to determine the current wind rating of each pole, and ultimately the circuit itself. This data is then used to identify specific pole locations on the circuit that do not meet the desired wind rating. For all poles that do not meet the applicable EWL, FPL develops recommendations to increase the allowable wind rating of the pole.

FPL plans to continue to utilize its "design toolkit" that focuses on evaluating and using cost-effective hardening options for each location, including:

- Storm Guying Installing a guy wire in each direction perpendicular to the line, which is a very cost-effective option but is dependent on proper field conditions;
- Equipment Relocation Moving equipment on a pole to a stronger pole nearby;
- Intermediate Pole Installing an additional single pole within long span lengths, which reduces the span length and increases the wind rating of both adjacent poles;
- Upgrading Pole Class Replacing the existing pole with a higher-class pole to increase the pole's wind rating; and;
- Undergrounding Facilities Evaluated on a case-by-case basis using sitespecific factors and conditions.

These options are not mutually exclusive and, when used in combination with sound engineering practices, provide cost-effective methods to harden a circuit. FPL's design recommendations also take into consideration issues such as hardening, mitigation (minimizing damage), and restoration (improving the efficiency of restoration in the event of failure). Since multiple factors can contribute to losing power after a storm, utilizing this multi-faceted approach to pole design helps to reduce the amount of work required to restore power to a damaged circuit.

As part of the 2026 SPP, the Distribution Feeder Hardening Program will continue the existing Distribution Automation initiative approved as part of the 2023 SPP. This will include, where appropriate, installation of distribution automation devices, automated faulted circuit indicators (FCI), and distribution supervisory control and data acquisition (DSCADA) to certain feeder(s). These devices protect customers by limiting those affected by temporary faults and sustained outages, expediting location of outage causes, and aiding in the isolation of the problem(s).

b. <u>Benefits of the Distribution Feeder Hardening Program</u>

Distribution feeders are the main arteries of the distribution system and are a critical component to providing safe and reliable electric service to FPL's customers. Thus, improving the storm resiliency of distribution feeders logically provides substantial benefits for customers. Therefore, hardening distribution feeders has been and continues to be one of FPL's highest storm hardening priorities.

As of year-end 2023, approximately 76% of the FPL feeders were either hardened or placed underground. FPL has hardened all of its Critical Infrastructure Function ("CIF") feeders (*i.e.*, feeders that serve hospitals, 911 centers, police and fire stations, water treatment facilities, and county emergency operation centers) and Community Project feeders (*i.e.*, feeders that serve other key community needs like gas stations, grocery stores, and pharmacies) in the peninsular region of FPL's service area. Additional feeders were hardened through FPL's Frequency Feeder Initiative, a program that targets feeders experiencing the highest number of interruptions and/or customers interrupted.

As part of the 2026 SPP, FPL will continue hardening CIF and Community Feeders in the panhandle region of FPL's service area.

Hardened feeders perform better than non-hardened feeders during extreme weather events. For example, in Docket No. 20170215-EU, the Commission reviewed the electric utilities' storm hardening and storm preparedness programs and found for Hurricane Irma that: (1) outage rates were nearly 20% less for hardened feeders than non-hardened feeders; (2) CMH to restore hardened feeders were 50% less than non-hardened feeders (primarily due to hardened feeders experiencing less damage than non-hardened hardened feeders); and (3) hardened feeders had significantly less pole failures as compared to non-hardened feeders.¹² Also illustrative is the significantly reduced number of distribution poles that failed and needed replacement during recent extreme weather events as determined through FPL's post-storm forensic analyses:

	Hurricane Wilma	Hurricane Irma	Hurricane Ian	Hurricane Idalia
Year	2005	2017	2022	2023
Hurricane Strength (Category)	3	4	4	3
Distribution Poles Replaced	12,400	4,700	3,200	171

c. <u>Modifications to Program</u>

FPL is not proposing any material modifications to the program. Other than projecting three additional years for the 2026-2035 plan period, FPL is forecasting an increase in the projected capital costs for the Distribution Feeder Hardening Programs to better reflect current material and labor costs associated with the program, as well as a

¹² See Florida Public Service Commission, <u>Review of Florida's Electric Utility Hurricane Preparedness and</u> <u>Restoration Actions 2018</u>, Docket No. 20170215-EU (July 2018), which is available at: <u>https://www.floridapsc.com/pscfiles/library/filings/2018/04847-2018/04847-2018.pdf</u>.

reclassification of approximately 850 miles of feeders in the panhandle region of FPL's service area that were previously categorized as laterals.

2. <u>Actual/Estimated Start and Completion Dates</u>

The 2026 SPP will continue FPL's existing Distribution Feeder Hardening Program described above. FPL initiated its feeder hardening strategy after the devastating impacts of Hurricane Wilma in 2005. As of year-end 2023, there are approximately 1,000 feeders remaining to be hardened or placed underground. Under the 2026 SPP, as modified by the Stipulations, FPL is targeting to complete 275 feeder projects in 2026, 125 feeder projects in 2027 and 50 feeder projects annually during the 2028 through 2034 period, at which point FPL projects all existing feeders will be hardened.¹³

3. <u>Cost Estimates</u>

Estimated distribution feeder hardening costs are determined utilizing the length of each feeder, the average historical feeder hardening cost per mile, and updated cost assumptions (*e.g.*, labor and materials). As noted above, FPL is projecting an increase in the projected capital costs under this program. This increase will be partially offset by a reduction in the estimated average cost per project under the Distribution Lateral Hardening Program over the 2026-2035 plan period.

The table below provides the total estimated distribution feeder hardening costs included in the first three years of the 2026 SPP (2026-2028) and the total estimated program costs to be incurred during 2026-2034 consistent with the annual number of projects as modified by the Stipulations:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$700.5	\$233.5
2026-2034	\$1,949.3	\$216.6

¹³ As modified by the Stipulations approved by Order No. PSC-2025-0218-FOF-EI. The stipulated number of projects will be annual targets and not hard caps, and reasons for any variances will be addressed in annual SPPCRC filings.

Further details regarding the SPP distribution feeder hardening costs as modified by the Stipulations, including estimated annual capital expenditures, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(C)(3) above, during 2026-2034, the total costs for FPL's Distribution Feeder Hardening Program average approximately \$216.6 million per year. Benefits associated with the Distribution Feeder Hardening Program discussed in Sections II and IV(C)(1)(b) above, include improved resiliency from extreme weather events as well as improved day-to-day reliability.

5. Criteria used to Select and Prioritize the Program

As explained above, there are approximately 1,000 feeders remaining to be hardened or placed underground within the FPL service area. FPL attempts to spread its annual projects throughout its service area. In prioritizing the remaining existing feeders to be hardened each year, considerations include the feeder's historical reliability performance, restoration difficulties (*e.g.*, environmentally sensitive areas, islands with no vehicle access, river crossings, and etc.), on-going or upcoming internal/external projects (*e.g.*, FPL maintenance or system expansion projects, municipal overhead/underground conversion projects, or municipal road projects) and geographic location. At this time, FPL has not identified any areas where the Distribution Feeder Hardening Program would not be feasible, reasonable, or practical.

D. Distribution Lateral Hardening Program

1. Description of the Program and Benefits

The Distribution Lateral Hardening Program included in the 2026 SPP is a continuation of the existing Distribution Lateral Hardening Program. FPL's Distribution Lateral Hardening Program was initiated as a pilot in 2018 and was continued and expanded as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period and reducing the average cost

per project but is not otherwise proposing any material modifications to the program as approved in the 2023 SPP. Below is an overview of FPL's existing Distribution Lateral Hardening Program and the associated benefits.

a. <u>Overview of the Distribution Lateral Hardening Program</u>

Consistent with the previously approved program, the Distribution Lateral Hardening Program included in the 2026 SPP targets certain overhead laterals that were impacted by recent storms and have a history of vegetation-related outages and other reliability issues for conversion from overhead to underground or, if appropriate, to be overhead hardened.

As part of the 2026 SPP, FPL will continue the following program improvements approved in the 2023 SPP:

- Designing and constructing at the feeder level significantly improves the efficiency and timing of construction because all of the work takes place in the same location (feeder) on a set of laterals as opposed to being spread out over multiple individual laterals across the entire service area. These examples of efficiency include:
 - Material, equipment, and labor are more centrally located. This allows both material and labor to be more efficiently dispatched and allocated to a specific project area to complete all the laterals on that feeder as opposed to being relocated to a different region or management area after completing an individual lateral project.
 - Enables engineering to utilize a "master plan" approach to an entire area or neighborhood rather than individual laterals, which optimizes the overall design and increases construction efficiencies.
 - Permitting process is further streamlined by utilizing the feeder level approach, lowering the volume of permits needed and reducing the burden on the local permitting agencies.

- Placing underground power lines in public or other existing rights-of-way has reduced the number of easement approvals required by customers, which reduces the complexity of the customer outreach process and reduces construction time.
- Utilizing minimally invasive directional boring as opposed to other construction methods, such as open trenching, results in less impacts to customer property and reduces construction time.
- Utilizing Ground Penetrating Radar (GPR) assists construction crews in identifying underground facilities before directional boring, which eliminates down time, mitigates potential damage to other buried facilities, and increases the overall safety of the project.
- Using a virtual augmented reality application in the field allows FPL to better illustrate to customers where the facilities will be installed, as well as promotes timely responses to customer questions and concerns.
- FPL initiated community meetings (*e.g.*, Homeowner Association or city/village) have been successful and are key to customer understanding, addressing concerns, and explaining the benefits of the project. Overall customer feedback has been positive.
- Where practicable, FPL attempts to relocate existing facilities from the rear of to the front of customers' premises. This helps to improve accessibility to facilities, which reduces the need to enter customer property and further reduces restoration times associated with extreme weather conditions.
- Continue to apply protocols for determining when a lateral may be overhead hardened as opposed to being placed underground, which are further described in Section IV(D)(5) below.

 Continue to implement the Management Region approach to target and prioritize hardening projects in areas that present the highest risk of hurricane impacts, which is further described in Section IV(D)(5) below.

Under the Distribution Lateral Hardening Program, FPL will underground or harden all the laterals on a feeder such that when a hardened feeder that has experienced an outage is restored, all associated laterals would also be restored (unless the lateral was damaged), which will help reduce restoration costs and outage times. Additionally, this feeder approach to the Distribution Lateral Hardening Program will maximize the efficiency of crews by completing the hardening work along a single feeder before moving the crews and equipment to another job site.

As part of the underground conversion process, FPL will continue to install meter base adaptors that allow underground service to be provided to the customer by utilizing the existing meter and meter enclosure. The meter base adaptors minimize the impact on customer-owned equipment and facilities. For example, in certain situations, overhead to underground conversions of electric service can trigger a local electrical code requirement that necessitates a customer upgrade of the home's electric service panel. This can cost the customer thousands of dollars. However, by utilizing a meter base adaptor, overall costs are reduced, and customers can avoid the need and expense to convert their electrical service panels.

b. Benefits of the Distribution Lateral Hardening Program

Laterals make up the majority of FPL's distribution system. There are 1.9 times as many miles of overhead laterals as there are overhead feeders (approximately 27,000 miles vs. 14,000 miles, respectively). Additionally, while feeders are predominately located in the front of customers' premises, many laterals are located "rear of" or behind customers' premises. This is especially the case in older neighborhoods located throughout FPL's service area. Generally, facilities in the rear of customers' premises take longer to restore than facilities in front of customers' premises because rear-located facilities are more

difficult to access and are more likely to be near vegetation. This results in a greater amount of restoration work being devoted to laterals during storm restoration.

During extreme weather events, such as hurricanes, FPL's underground facilities have performed significantly better than overhead facilities that are exposed to damages and outages caused by vegetation and debris. Below is a summary of the performance of FPL's underground facilities as compared to overhead facilities during recent extreme weather events:

Storm and Facility	Laterals Out	Total Laterals	% Out
lan Overhead	11,059	112,771	9.8%
lan Underground	2,025	116,595	1.7%
Idalia Overhead	1,080	113,408	1.0%
Idalia Underground	92	119,218	0.08%

During Hurricanes Ian and Idalia, FPL's underground laterals exhibited strong performance and resiliency during both major hurricanes. In Hurricane Ian, underground laterals performed 5.6 time better than overhead laterals. In Hurricane Idalia, underground laterals performed 13.6 times better than overhead laterals.¹⁴.

c. <u>Modifications to Program</u>

FPL is not proposing any material modifications to the program. Other than projecting three additional years for the 2026-2035 plan period, FPL is forecasting a decrease in the estimated average cost per project under the Distribution Lateral Hardening Program to

¹⁴ Additionally, underground facilities also perform better than overhead facilities on a day-to-day basis. For example, based on the reliability performance metrics for overhead and underground facilities provided to the Commission in FPL's Annual Reliability Report filing, the System Average Interruption Duration Index for underground facilities is significantly better than hybrid facilities (combination of overhead and underground) or overhead facilities. *See* FPL's Annual Reliability Report filed on March 1, 2024, for more details on day-to-day reliability performance of FPL's overhead and underground systems, which is available at:

https://www.floridapsc.com/pscfiles/website-

files/PDF/Utilities/Electricgas/DistributionReliabilityReports/2023/2023%20Florida%20Power%20and%20 Light%20Company%20Distribution%20Reliability%20Report.pdf.

reflect the efficiencies to be realized from the implementation of the program improvements addressed in Section IV(D)(1)(a).

2. <u>Actual/Estimated Start and Completion Dates</u>

The 2026 SPP will continue FPL's existing FPL's Distribution Lateral Hardening Program described above. FPL's strategy to convert overhead laterals was initiated as a limited pilot in 2018. Under the 2026 SPP, as modified by the Stipulations, FPL is targeting to complete 1,100 lateral projects annually during the 2026 through 2028 period and 1,200 lateral projects annually during the 2029 through 2035 period.¹⁵ As of year-end 2023, FPL has hardened, undergrounded, or built to NESC EWL construction standards approximately 3% of all laterals through the completion of more than 2,000 Distribution Lateral Hardening Program projects. FPL estimates that, all things being equal and assuming the same construction pace as proposed in the 2026 SPP, the conversion/hardening of the existing overhead laterals under the Distribution Lateral Hardening Program will need to continue for multiple decades before all laterals on FPL's system have been hardened.

3. Cost Estimates

Estimated lateral undergrounding costs are determined utilizing the length of each lateral, the average historical lateral undergrounding cost per mile, and updated cost assumptions (*e.g.*, labor, materials, inflation, etc.). As noted above, FPL is projecting a reduction in the estimated average cost per project under the Distribution Lateral Hardening Program to reflect the efficiencies realized from the implementation of the program improvements discussed in Section IV(D)(1)(a). This decrease in costs will partially offset the increase in capital costs projected for the Distribution Inspection Program, Distribution Feeder Hardening Program, and Substation Storm Surge/Flood Mitigation Program.

¹⁵ As modified by the Stipulations approved by Order No. PSC-2025-0218-FOF-EI. The stipulated number of projects will be annual targets and not hard caps, and reasons for any variances will be addressed in annual SPPCRC filings.

The table below provides the total estimated distribution lateral hardening program costs included in the first three years of the 2026 SPP (2026-2028) and the ten-year period of the 2026 SPP (2026-2035) consistent with the annual number of projects as modified by the Stipulations:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$2,254.6	\$751.5
2026-2035	\$8,846.7	\$884.7

Further details regarding the SPP estimated distribution lateral hardening program costs as modified by the Stipulations, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(D)(3) above, during 2026-2035, total costs for FPL's Distribution Lateral Hardening Program average approximately \$884.7 million per year. Benefits associated with the Distribution Lateral Hardening Program discussed in Sections II and IV(D)(1)(b) above, include improved resiliency from extreme events as well as improved day-to-day reliability.

5. <u>Criteria used to Select and Prioritize the Program</u>

The selection and prioritization of the laterals to be converted will be based on a methodology that considers: (a) all of the overhead laterals on each feeder; (b) outage experience during the recent hurricanes; (c) the number of vegetation-related outages experienced over the most recent 10 years; and (d) the total number of lateral and transformer outages experienced over the most recent 10 years. All laterals on the feeders will then be hardened according to the ranking of each feeder. Importantly, continuing this approach to ranking each feeder will ensure that the worst-performing circuits are addressed first, before moving crews to the next ranked feeder.

Protocols for evaluating when a lateral may be overhead hardened as opposed to being placed underground include: (a) low or no vegetation-related outages experienced over the most recent 10 years; (b) terrain or conditions observed in the field that make undergrounding technically difficult, such as swamps, wetlands, forests, farms, and areas prone to extreme flooding; (c) no CIF customers served by the lateral; (d) inability to obtain easements/agreements necessary to underground the lateral; (e) space restrictions in areas congested by facilities, structures, or otherwise in use by property owners and/or third parties; and (f) number of customers served by the lateral. These factors and conditions will be applied to each individual lateral on a feeder to determine if, and when, a lateral should be overhead hardened as opposed to being placed underground. If one or more of these factors are present, FPL will determine whether the lateral should be overhead hardened or placed underground based on the conditions at the time.

FPL will also continue the Management Region approach to target and prioritize hardening projects in areas that present the highest risk. Specifically, FPL will prioritize areas with the highest risk of hurricane impacts, the highest concentration of customers, and that would require significant transit for out of state crews during an extreme weather restoration event. This Management Region approach to prioritization will improve efficiency and timing of lateral hardening projects in areas that present the highest risk of hurricane impacts.

The Distribution Lateral Hardening Program selection and prioritization criteria will be applied on a non-discriminatory basis throughout FPL's service area in order to address the worst performing circuits first based on actual historical experience, including under the Management Region approach. At this time, FPL has not identified any regions where the Distribution Lateral Hardening Program would not be feasible, reasonable, or practical.

E. Transmission Hardening Program

1. <u>Description of the Program and Benefits</u>

The Transmission Hardening Program included in the 2026 SPP is a continuation of the existing Transmission Hardening Program. FPL's Transmission Hardening Program has been in place since 2007 and was approved as part of both FPL's 2020 and 2023 SPP. For purposes of the 2026 SPP, FPL is not proposing any material modifications to the program. Below is an overview of FPL's existing Transmission Hardening Program and the associated benefits.

a. Overview of the Transmission Hardening Program

Under this program, FPL will harden transmission structures and associated equipment to ensure a more storm resilient transmission system. As part of the Transmission Hardening Program, FPL will replace all wood transmission structures with steel or concrete structures throughout its service area.

b. Benefits of the Transmission Hardening Program

While an outage associated with distribution facilities (*e.g.*, a transformer, lateral, or feeder) can impact up to several thousands of customers, a transmission-related outage can result in an outage affecting tens of thousands of customers. Additionally, an outage on a transmission facility could cause cascading and result in the loss of service for hundreds of thousands of customers. Thus, the prevention of transmission-related outage outages is essential.

Recent storm events indicate that FPL's Transmission Hardening Program has contributed to the overall storm resiliency of the transmission system and provided savings in storm restoration costs. For example, the table below compares the performance of FPL's transmission system for Hurricane Wilma, which occurred in 2005 before FPL began implementing its current Transmission Hardening Program in 2007, and Hurricanes Irma and Idalia, which both occurred after FPL implemented its current Transmission Hardening Program:

	Percentage of Line Sections Out	Structures Failed
Hurricane Wilma	345	100
Hurricane Irma	215	5
Irma v. Wilma Improvement	38%	95%
Hurricane Ian	70	0
lan v. Wilma Improvement	80%	100%
Hurricane Idalia	13	0
Idalia v. Wilma Improvement	96%	100%

As shown above, the impacts on FPL's transmission facilities associated with Hurricanes Irma and Idalia were significantly reduced from those experienced with Hurricane Wilma.

The Commission-approved Transmission Hardening Program has facilitated the replacement of transmission poles, the strengthening of the transmission system, and has directly improved and will continue to improve the overall health and storm resiliency of the transmission system.

c. <u>Modifications to Program</u>

FPL is not proposing any material modifications to the program.

2. <u>Actual/Estimated Start and Completion Dates</u>

FPL implemented its transmission hardening program in 2007. As of year-end 2023, 96% of the transmission structures in the FPL service area, were steel or concrete, with the remaining projected to be replaced by year-end 2032. Under the 2026 SPP, as modified by the Stipulations, FPL is targeting to complete 350 transmission projects during the period 2026 through 2032 and 325 transmission projects in 2033, at which point FPL projects all existing transmission structures will be hardened.¹⁶.

¹⁶ As modified by the Stipulations approved by Order No. PSC-2025-0218-FOF-EI. The stipulated number of projects will be annual targets and not hard caps, and reasons for any variances will be addressed in annual SPPCRC filings.

3. <u>Cost Estimates</u>

Estimated/actual annual transmission hardening costs are a function of the number of structures/facilities to be replaced, actual historical replacement costs, and updated cost assumptions (*e.g.*, labor and materials). The vast majority of the transmission hardening program costs are capital costs resulting from replacement of the transmission structures/facilities.

The table below provides the total estimated transmission hardening costs included in the first three years of the 2026 SPP (2026-2028) and the total estimated program costs to be incurred during 2026-2033 as modified by the Stipulations:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$102.4	\$34.1
2026-2033	\$309.8	\$38.8

Further details regarding the SPP estimated transmission hardening costs as modified by the Stipulations, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(E)(3) above, during 2026-2033, the total costs for FPL's Transmission Hardening Program average approximately \$38.8 million per year. Benefits associated with the Transmission Hardening Program are discussed in Sections II and IV(E)(1)(b) above and include improved storm resiliency.

5. <u>Criteria used to Select and Prioritize the Program</u>

The annual prioritization/selection criteria for the wood structures to be replaced includes proximity to high wind areas, system importance, customer counts, and coordination with other storm initiatives (*e.g.*, distribution feeder hardening). Other economic efficiencies, such as opportunities to perform work on multiple transmission line sections within the same transmission corridor, are also considered. At this time, FPL has not identified any

areas where the replacement of the remaining wood transmission structures would not be feasible, reasonable, or practical under the Transmission Hardening Program.

F. Distribution Vegetation Management Program

1. <u>Description of the Program and Benefits</u>

The Distribution Vegetation Management Program included in the 2026 SPP is a continuation of the existing Distribution Vegetation Management Program. FPL's Distribution Vegetation Management Program has been in place since 2007 and was approved as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period and updating the estimated costs based on more current data but is not otherwise proposing any material modifications to the program. Below is an overview of FPL's existing Distribution Vegetation Management Program and the associated benefits.

a. <u>Overview of the Distribution Vegetation Management</u> <u>Program</u>

The existing Distribution Vegetation Management Program consists of a system-wide three-year average vegetation maintenance cycle for feeders; mid-cycle targeted vegetation maintenance for certain feeders; six-year average vegetation maintenance cycle for laterals; and continued education of customers through the Right Tree, Right Place initiative.

Tree limbs and branches, especially palm fronds, are among the most common causes of power outages and momentary interruptions during both day-to-day operations and storm events. The primary objective of FPL's Distribution Vegetation Management Program is to clear vegetation in areas where FPL is permitted to trim from the vicinity of distribution facilities and equipment in order to provide safe, reliable, and cost-effective electric service to its customers at the time of trim. FPL's Distribution Vegetation Management Program's practices follow the NESC, the American National Standards Institute ("ANSI") A-300, and all other applicable standards, while considering tree species, growth rates, and the location of trees in proximity to FPL's facilities.

FPL will also continue to use advanced analytics from a variety of sources (such as, but not limited to, satellite imagery, aerial or ground-based LiDAR imaging¹⁷) to develop predictive analytics that may be used to complement FPL's vegetation maintenance cycles on feeders. The use of advanced predictive analytics has the potential benefit of further reducing vegetation-related outages during extreme weather events.

Once maintenance and trimming has been completed, customers are encouraged to maintain their trees to ensure clearances are maintained for the safety and reliability of service. Work should be performed by a qualified line clearing professional. The program is comprised of multiple initiatives designed to reduce the average time customers are without electricity as a result of vegetation-related interruptions. These include preventive maintenance initiatives (planned cycle and mid-cycle maintenance), corrective maintenance (trouble work and service restoration efforts associated with Florida's severe weather, such as summer afternoon thunderstorms), customer trim requests, and support of system improvement and expansion projects, which focus on long-term reliability by addressing vegetation that will impact new or upgraded overhead distribution facilities.

An important component of FPL's vegetation program is providing information to customers to educate them on the company's vegetation management program and practices, safety considerations, and the importance of placing trees in the proper location. FPL's "Right Tree, Right Place" initiative is a public education program based on FPL's core belief that providing reliable electric service and sustaining the natural environment can go hand-in-hand and is a win-win partnership between FPL and its customers.

b. <u>Benefits of the Distribution Vegetation Management Program</u>

In Order No. PSC-07-0468-FOF-EI, the Commission confirmed that FPL should continue to implement three-year and six-year average cycles for its feeders and laterals because the cycles complied with the Commission's storm preparedness objectives to increase

¹⁷ LiDAR, which stands for Light Detection and Ranging, is a remote sensing technology that uses light in the form of a pulsed laser to measure ranges (distances) to a target. For vegetation management purposes, LiDAR is used to measure the distance between vegetation and transmission lines.

the level of vegetation maintenance over historical levels, promote system reliability, and reduce storm restoration costs and improve day to day reliability.¹⁸

Another indication that the current program is providing benefits is that, while forensic analysis indicated vegetation was the overwhelming primary cause for pole and wire failures and a significant cause of outages during Hurricanes lan and Idalia, the vast majority of damage resulted from uprooted trees, broken trunks, and broken limbs that fell into distribution facilities from outside of right-of-way, *i.e.*, beyond where FPL is currently allowed trim without approval from the property owner.

c. Modifications to Program

FPL is not proposing any material modifications to the program previously approved in the 2023 SPP. Other than projecting three additional years for the 2026-2035 plan period, FPL is forecasting an increase in the projected costs for the Distribution Vegetation Management Program to better reflect: current labor and equipment market pricing; and to ensure that FPL is able to maintain the current vegetation maintenance cycles.

2. <u>Actual/Estimated Start and Completion Dates</u>

FPL's Distribution Vegetation Management Program was originally approved in 2007 and remains in place today. Under the 2026 SPP, FPL plans to inspect and maintain, on average, approximately 17,559 miles annually.

3. <u>Cost Estimates</u>

The vast majority of vegetation management costs are associated with cycle and midcycle maintenance, which is performed by several FPL-approved contractors throughout FPL's system. Other vegetation management costs include costs associated with dayto-day restoration activities (*e.g.*, summer afternoon thunderstorms), customer trim requests, removals, debris cleanup, and support (*e.g.*, arborists, supervision, back-office support). Costs associated with vegetation management are generally operating

¹⁸ FPL's proposed three-year and six-year cycles were initially approved in Order No. PSC-06-0781-PAA-EI.

expenses. As noted above, FPL is projecting an increase in the costs for the Distribution Vegetation Management Program as compared to the 2023 SPP.

The table below provides the total estimated distribution vegetation management costs included in the first three years of the 2026 SPP (2026-2028) and the ten-year period of the 2026 SPP (2026-2035):

Total Program Costs (millions)		Annual Average Program Costs (millions)
2026-2028	\$362.0	\$120.7
2026-2035	\$1,234.5	\$123.5 ¹⁹

Further details regarding the SPP estimated distribution vegetation management costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(F)(3) above, during 2026-2035, the total costs for FPL's Distribution Vegetation Management Program average approximately \$123.5 million per year. Benefits associated with the Distribution Vegetation Management Program discussed in Sections II and IV(F)(1)(b) above, include increased storm resiliency.

5. <u>Criteria Used to Select and Prioritize the Program</u>

The primary reason for maintaining feeders on a three-year average cycle, as opposed to a six-year average cycle for laterals, is that a feeder outage can affect, on average, approximately 1,000 customers as compared to an outage on a lateral line that can affect, on average, approximately 40 customers. FPL enhances its approved feeder inspection and vegetation maintenance plan through its mid-cycle vegetation maintenance program, which encompasses patrolling and maintaining feeders between planned maintenance cycles to address tree conditions that may cause an interruption prior to the next planned

¹⁹ This is a modest increase of approximately \$46.9 million per year compared to the estimated annual average program costs included in the 2023 SPP.

cycle. Mid-cycle work units typically have a maintenance age of 12 to 18 months and usually involve certain fast-growing trees (*e.g.*, palm trees) that should be addressed before the next scheduled cycle vegetation maintenance date.

Additionally, customers often contact FPL with requests to trim trees around distribution lines in their neighborhoods and near their homes. As a result of these discussions with customers and/or a follow-up investigation, FPL either performs the necessary vegetation maintenance or determines that the requested maintenance can be addressed more efficiently by completing it through the normal scheduled cycle.

Vegetation management cycle is prioritized annually to ensure compliance with cycle schedules. At this time, FPL has not identified any areas where the Distribution Vegetation Management Program would not be feasible, reasonable, or practical.

G. Transmission Vegetation Management Program

1. <u>Description of the Program and Benefits</u>

The Transmission Vegetation Management Program included in the 2026 SPP is a continuation of the existing Transmission Vegetation Management Program. FPL's Transmission Vegetation Management Program has been in place and updated for decades, and was approved as part of both FPL's 2020 and 2023 SPPs. For purposes of the 2026 SPP, FPL is projecting three additional years to meet the 2026-2035 plan period and updating the estimated costs based on more current data but is not otherwise proposing any material modifications to the program. Below is an overview of FPL's existing Transmission Vegetation Management Program and the associated benefits.

a. <u>Overview of the Transmission Vegetation Management</u> <u>Program</u>

The key elements of FPL's Transmission Vegetation Management Program are to inspect the transmission rights-of-way, document vegetation inspection results and findings, prescribe a work plan, and execute the work plan. The North American Electric Reliability Corporation's (NERC) vegetation management standards/requirements serve as the basis for FPL's Transmission Vegetation Management Program. The reliability objective of these standards/requirements is to prevent vegetation-related outages that could lead to cascading by utilizing effective vegetation maintenance while recognizing that certain outages such as those due to vandalism, human errors, and acts of nature are not preventable.

NERC's vegetation management standards/requirements apply to transmission lines operated at or above 200 kV or as otherwise specified by NERC. As of year-end 2023, there are approximately 5,418 miles of transmission lines on FPL's system subject to NERC's vegetation management standards/requirements, and approximately 3,953 miles of non-NERC transmission lines on FPL's system. NERC's vegetation management standards/requirements, executing 100% of a utility's annual vegetation work plan, and to prevent any encroachment into established minimum vegetation clearance distances ("MVCD").

FPL conducts ground inspections of all transmission corridors annually for work planning purposes. During these inspections, FPL identifies vegetation capable of approaching the defined Vegetation Action Threshold ("VAT"). VAT is a calculated distance from the transmission line that factors in MVCD, conductor sag/sway potential, and a buffer. The identified vegetation is given a work prescription and then prioritized and organized into batches of work, which collectively become the annual work plan.

The Transmission Vegetation Management Program includes visual and aerial inspections of NERC and Non-NERC transmission line corridors, including the utilization of LiDAR. Aerial and LiDAR patrols are conducted annually for all NERC transmission corridors. Data collected by these aerial and LiDAR patrols are then used for the development and execution of annual work plans to address identified vegetation conditions and identifying and addressing priority and hazard tree conditions prior to and during hurricane season.

In its 2026 SPP, FPL will continue its current Transmission Vegetation Management Program, which includes visual and aerial inspections of all transmission line corridors, LiDAR inspections of NERC transmission line corridors, developing and executing annual work plans to address identified vegetation conditions, and identifying and addressing priority and hazard tree conditions prior to and during storm season.

b. <u>Benefits of the Transmission Vegetation Management</u> <u>Program</u>

The benefits of the Transmission Vegetation Management Program are self-evident and the consequences of not having a reasonable transmission vegetation management plan can be extreme. As discussed previously, the transmission system is the backbone of the electric grid. While outages associated with distribution facilities (*e.g.*, a transformer, lateral, or feeder) can result in an outage affecting anywhere from a few customers up to several thousands of customers, a transmission related outage can affect tens of thousands of customers. Additionally, an outage on a transmission facility could cause cascading and result in the loss of service for hundreds of thousands of customers. As such, it is imperative that vegetation impacting transmission facilities be properly maintained using reasonable and appropriate cycles and standards to help ensure they are prepared for storms. For these reasons, it is no surprise that NERC has developed prescriptive vegetation management requirements for transmission facilities to help prevent such damage from occurring.

An indication that the current program is providing benefits is that, while forensic analysis indicated vegetation-related damage and transmission line outages occurred during Hurricanes lan and Nicole, the vast majority of damage resulted from uprooted trees, broken trunks, and broken limbs that fell into FPL's facilities from outside of right-of-way, *i.e.*, beyond where FPL is currently allowed trim without approval from the property owner.

c. <u>Modifications to Program</u>

FPL is not proposing any material modifications to the program previously approved in the 2023 SPP. Other than projecting three additional years for the 2026-2035 plan period, FPL is forecasting an increase in the projected costs for the Transmission Vegetation Management Program to better reflect: current labor and equipment market pricing; and an increase in both NERC and non-NERC transmission miles on FPL's system.

2. <u>Actual/Estimated Start and Completion Dates</u>

FPL's Transmission Vegetation Management Program is an ongoing program, initiated decades ago and approved as part of the 2020 SPP and 2023 SPP. Under the 2026 SPP, FPL plans to inspect and maintain, on average, approximately 9,673 miles annually, which includes approximately 5,591 miles for NERC transmission line corridors and 4,082 miles for non-NERC transmission line corridors. As noted above, this is an increase in the number of transmission miles requiring inspection and maintenance.

3. <u>Cost Estimates</u>

The vast majority of vegetation management costs are associated with annual inspections and the execution of planned work to address identified conditions, which is performed by several FPL approved contractors throughout FPL's system. Other vegetation management costs include costs associated with day-to-day restoration activities (*e.g.*, summer afternoon thunderstorms), removals, debris cleanup, and support (*e.g.*, arborists, supervision, back-office support). Costs associated with vegetation management are generally operating expenses. As noted above, FPL is projecting an increase in the costs for the Transmission Vegetation Management Program as compared to the 2023 SPP.

The table below provides the total estimated transmission vegetation management costs included in the first three years of the 2026 SPP (2026-2028) and the ten-year period of the 2026 SPP (2026-2035):

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$51.9	\$17.3
2026-2035	\$185.6	\$18.6 ²⁰

²⁰ This is a modest increase of approximately \$4.2 million per year compared to the estimated annual average program costs included in the 2023 SPP.

Further details regarding the SPP estimated transmission vegetation management costs, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(G)(3) above, during 2026-2035, the total costs for FPL's Transmission Vegetation Management Program average approximately \$18.6 million per year. Benefits associated with the Transmission Vegetation Management Program discussed in Sections II and IV(G)(1)(b) above, include increased storm resiliency. The execution of FPL's Transmission Vegetation Management Program is a significant factor in mitigating damage to transmission facilities and avoiding transmission-related outages.

5. <u>Criteria used to Select and Prioritize the Programs</u>

Priority vegetation conditions and hazard tree conditions are completed annually prior to storm season. Additionally, prior to and during the storm season, FPL conducts aerial inspections of transmission corridors to identify hazard trees and any priority vegetation locations. Priority vegetation conditions and hazard tree conditions identified through aerial inspections are addressed as soon as possible. At this time, FPL has not identified any areas where the Transmission Vegetation Management Program would not be feasible, reasonable, or practical.

H. Substation Storm Surge/Flood Mitigation Program

1. Description of the Program and Benefits

The Substation Storm Surge/Flood Mitigation Program included in the 2026 SPP is a continuation of the existing Storm Surge/Flood Mitigation Program. FPL's Storm Surge/Flood Mitigation Program was initiated in FPL's 2020 SPP and was continued as part of FPL's 2023 SPP. For purposes of the 2026 SPP, FPL will continue the work at the two remaining substations previously included in the 2023 SPP. FPL has also identified five additional substations to be addressed through the Substation Storm Surge/Flood Mitigation Program based on recent extreme weather events. Below is an

overview of FPL's existing Substation Storm Surge/Flood Mitigation Program and associated benefits.

a. <u>Overview of the Substation Storm Surge/Flood Mitigation</u> <u>Program</u>

To prevent/mitigate future substation equipment damage and customer outages due to storm surge and flooding, FPL's Substation Storm Surge/Flood Mitigation Program has identified certain substations located in areas throughout FPL's service area that are susceptible to storm surge or flooding during extreme weather events. Specifically, FPL plans to raise the equipment at certain substation locations above the flood level and construct flood protection walls around other substations or, alternatively, consider whether it is appropriate to relocate the substation based on the experience during recent extreme weather events and the conditions that exist at the time.

b. <u>Benefits of the Substation Storm Surge/Flood Mitigation</u> <u>Program</u>

Historically, several FPL distribution and transmission substations have been impacted by storm surges and/or flooding as a result of extreme weather conditions. For example, as a result of flooding caused by Hurricane Irma, FPL's St. Augustine and South Daytona substations were required to be proactively de-energized (*i.e.*, shut down before water reached levels that would cause significant damage to powered substation equipment). More recent examples include multiple FPL substations that were impacted by flooding or storm surge during Hurricane Ian and required FPL to proactively de-energize five substations to prevent significant damage.²¹

While proactively de-energizing substations impacted by storm surge and/or flooding helps reduce damage to substation equipment, customers served from these substations are without power until it is safe to make repairs to substation facilities and equipment that become flooded as a result of extreme weather conditions. Further, even if a

²¹ Additionally, in order to survey damage at the substations impacted by Hurricane Ian, FPL deployed multiple innovative methods, including widespread use of drones, riding airboats through DeSoto County, and using a kayak to investigate the flooded Port Orange Substation.

substation has been de-energized, FPL is still required to implement both temporary flood mitigation efforts and repairs to substation facilities and equipment that become flooded as a result of extreme weather conditions.

An outage associated with distribution substations can impact up to several thousands of customers, and an outage associated with a transmission substation can result in an outage affecting tens of thousands of customers. Flooding and the need to proactively de-energize substations located in areas susceptible to storm surge and flooding can result in significant customer outages. Therefore, the prevention of outages at transmission and distribution substations due to storm surges or flooding is essential.

c. <u>Modifications to the Substation Storm Surge/Flood Mitigation</u> <u>Program</u>

As part of the 2026 SPP, FPL will continue the work on two substations previously included in the 2023 SPP, the Gracewood and Dumfoundling substations. Additionally, FPL identified the following five substations that were impacted by flooding or storm surge during Hurricane Ian and recent storms: Port Orange, Iona, Estero, Capri, and Naples. All five of these impacted substations experienced 1-2 feet of flooding, with the highest waterline of five feet seen at the Iona substation. This flooding from storm surge and rainfall resulted in FPL needing to proactively de-energizing these substations.

2. Actual/Estimated Start and Completion Dates

FPL initiated the Substation Storm Surge/Flood Mitigation Program as part of its 2020 SPP, and continued work on the identified substations as part of its 2023 SPP. As part of the 2026 SPP, FPL will continue work on two of the remaining substations included in the 2023 SPP and address five additional substation identified during recent extreme weather and storm events as indicated below:

Substation and Location	Estimated Date of Completion
Port Orange Substation in Volusia County ^(a)	2026
Iona Substation in Lee County ^(a)	2028
Gracewood Substation in Indian River County	2029
Dumfoundling Substation in Dade County	2030
Estero Substation in Lee County	2031
Capri Substation in Collier County	2032
Naples Substation in Collier County	2033

^(a) Currently estimated to be a 2-year project.

FPL will also continue to monitor storm surge and flooding at all its substations and, where appropriate and necessary, re-prioritize substation projects or identify additional substations that require storm surge/flood mitigation measures in the future.

3. <u>Cost Estimates</u>

The seven substation projects included in the 2026 SPP result in a projected increase in the capital costs to be incurred under the Substation Storm Surge/Flood Mitigation Program. This increase will be partially offset by a reduction in the average cost per project under the Distribution Lateral Hardening Program over the 2026-2035 plan period.

The table below provides the total estimated costs for the Substation Storm Surge/Flood Mitigation Program included in the first three years of the 2026 SPP (2026-2028) and the total estimated program costs to be incurred during 2026-2033:

	Total Program Costs (millions)	Annual Average Program Costs (millions)
2026-2028	\$25.5	\$8.5
2026-2033	\$68.0	\$8.5

Further details regarding the estimated costs for the Substation Storm Surge/Flood Mitigation Program, including estimated annual capital expenditures and operating expenses, are provided in Appendix C.

4. <u>Comparison of Costs and Benefits</u>

As provided in Section IV(H)(3) above, during 2026-2033, the total costs for FPL's Substation Storm Surge/Flood Mitigation Program average approximately \$8.5 million per year, but can vary since each of these projects must be custom engineered in accordance with the unique conditions specific to that substation. Benefits associated with the Substation Storm Surge/Flood Mitigation Program are discussed in Sections II and IV(I)(1)(b) above, include increased resiliency of the electric infrastructure.

5. <u>Criteria used to Select and Prioritize the Programs</u>

The annual prioritization/selection criteria for the targeted substations is based on FPL's historical storm surge/flood experience, which may include a reprioritization of the substations to be completed based on actual conditions and impacts for recent extreme weather and storm events. At this time, for the targeted substations, FPL has not identified any areas where the upgrades would not be feasible, reasonable, or practical. FPL has installed flood alarms in select substations to monitor the impacts of extreme flooding. If necessary and appropriate, FPL will implement storm surge/flood mitigation measures at select substations based on additional information received from the flood monitors or actual storm surge and/or flooding that occurs during extreme weather events.

V. Detailed Information on the First Three Years of the SPP (2026-2028)

A. Detailed Description for the First Year of the SPP (2026)

The following additional project level detail for the first year of the 2026 SPP (2026) is provided in Appendix D: (1) the actual or estimated construction start and completion dates; (2) a description of the affected existing facilities, including number and type(s) of customers served, historic service reliability performance during extreme weather conditions, and how this data was used to prioritize the storm protection projects; and (3) a cost estimate including capital and operating expenses.²² FPL's distribution and

²² The information and projects provided in Appendix D were based on the most current data available to FPL at the time it prepared its 2026 SPP. This information and data may be different than the 2026 project (*Continued on next page*)

transmission annual inspection and vegetation management programs do not have project components and, instead, are completed on a cycle-basis. As such, these SPP programs do not lend themselves to identification of specific projects and, therefore, project level detail for these programs is not included in Appendix D.

B. Detailed Description of the Second and Third Years of the 2026 SPP (2027-2028)

Additional details required for the second and third years of the 2026 SPP (2027-2028), including the estimated number and costs of projects under every program, is provided in Appendix C.

C. Detailed Description of the Vegetation Management Activities for the First Three Years of the 2026 SPP (2026-2028)

The following additional information for the first three years of the vegetation management activities under the 2026 SPP (2026-2028) is provided in Sections IV(F) and IV(G) above and Appendix C: the projected frequency (trim cycle); the projected miles of affected transmission and distribution overhead facilities; the estimated annual labor and equipment costs for both utility and contractor personnel. A description of how the vegetation management activities will reduce outage times and restoration costs due to extreme weather conditions is provided in Sections IV(F) and IV(G) above.

VI. Estimate of Annual Jurisdictional Revenue Requirements for the 2026 SPP

The estimated annual jurisdictional revenue requirements for ten-year period of the 2026 SPP, as modified by the Stipulations, are provided below.²³

level detail to be filed with FPL's 2026 SPPCRC Projection filing in May of 2025, which filing could be based on data that is more current as of that filing date.

²³ For purposes of estimating the annual revenue requirements, FPL used the 2025 ending balances from the 2025 SPPCRC Projection filing approved by Commission Order No. PSC-2024-0459-FOF-EI. Further, the cumulative revenue requirements shown herein do not reflect the 2020 SPP costs, consistent with the Stipulation and Settlement Agreement approved by Commission Order No. PSC-2020-0293-AS-EI.

Year	(\$MM)
2026	\$976.15
2027	\$1,115.99
2028	\$1,242.08
2029	\$1,370.87
2030	\$1,505.88
2031	\$1,643.72
2032	\$1,780.51
2033	\$1,917.01
2034	\$2,051.23
2035	\$2,166.49

Estimated Annual Revenue Requirements

While FPL has provided estimated costs by each program as of the time of this filing and associated total revenue requirements in its 2026 SPP, consistent with the requirements of Rule 25-6.030, Florida Administrative Code, subsequent projected and actual program costs submitted for cost recovery through the SPPCRC (per Rule 25-6.031, Florida Administrative Code) could vary by as much as 10-15%, which would then also impact the associated estimated revenue requirements and rate impacts. The projected costs, actual/ estimated costs, actuals costs, and true-up of actual costs to be included in FPL's SPPCRC will all be addressed in subsequent filings in separate SPPCRC dockets pursuant to Rule 25-6.031, Florida Administrative Code.

VII. Estimated Rate Impacts for First Three Years of the 2026 SPP (2026-2028)

The table below provides an estimate of rate impacts for each of the first three years of the 2026 SPP, as modified by the Stipulations, for FPL's typical residential, commercial, and industrial customers.

SPP Estimated Rate Impacts (2026-2028)			
Customer Class	2026	2027	2028
Residential (RS-1) (\$/kWh)	\$0.00993	\$0.01121	\$0.01227
Commercial (GSD-1) (\$/kW)	\$1.77	\$2.02	\$2.25
Industrial (GSLDT-3) (\$/kW)	\$0.20	\$0.23	\$0.26

(0000 0000)

These rate impacts are for all programs included in the 2026 SPP and are based on the total estimated costs as of the time of this filing, which could vary by as much as 10% to 15%, and include costs recovered in the SPPCRC and in base rates. The SPPCRC rates, projected costs, actual/estimated costs, actuals costs, and true-up of actual costs to be included in FPL's SPPCRC will all be addressed in subsequent filings in SPPCRC dockets pursuant to Rule 25-6.031, Florida Administrative Code.

Pursuant to Rule 25-6.030(3)(i), Florida Administrative Code, FPL has not identified any reasonable implementation alternatives that could mitigate the resulting rate impact for each of the first three years of the SPP. However, all SPP projects will be based on competitive solicitations and other contractor and supplier negotiations to ensure that FPL selects the best qualified contractors and equipment suppliers at the lowest evaluated costs, which will help to mitigate the associated rate impacts of the SPP programs.

VIII. Conclusion

The Florida Legislature has determined that it is in the State's interest to "strengthen electric utility infrastructure to withstand extreme weather conditions by promoting the overhead hardening of electrical transmission and distribution facilities, the undergrounding of certain electrical distribution lines, and vegetation management," and for each electric utility to "mitigate restoration costs and outage times to utility customers when developing transmission and distribution storm protection plans." Section 366.96(1), Fla. Stat. FPL's 2026 SPP, as modified by the Stipulations approved by Order No. PSC-2025-0218-FOF-EI, is a systematic approach to achieve these legislative objectives.

As part of the 2026 SPP, FPL will continue the existing storm hardening and storm preparedness programs included in the 2020 and 2023 SPPs approved by Commission. As explained above, these existing SPP programs have already demonstrated that they have and will continue to provide increased T&D infrastructure resiliency, reduced restoration time, and reduced restoration costs when FPL's system is impacted by extreme weather events.

Appendix A

FPL's Third Supplemental Response to Staff's First Data Request No. 29 ("Third Supplemental Amended") in Docket No. 20170215-EU

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 1 of 9

QUESTION:

Please complete the table below summarizing hardened facilities that required repair or replacement as a result of Hurricanes Matthew, Hermine, Irma, Maria, and Nate.

RESPONSE:

FPL does not maintain its accounting records at the level of detail required to provide the requested information as they do not differentiate hardened facilities from non-hardened facilities, nor do they track which assets were repaired. However, FPL does track certain assets, at the total system level, that were requested and replaced during each hurricane as reflected in the tables below. Note, FPL did not track storm repairs/replacements for Hurricanes Maria and Nate as Hurricane Maria did not impact FPL's service territory and Nate had limited impact. Also, Hurricanes Matthew and Irma capital details associated with follow-up work are not yet available by plant account as these costs have not yet been unitized from account 106 to account 101 by plant account.

Hurricane Matthew	Number of Facilities Requiring		
	Repair	Replacement	
Transmission			
Structures	N/A	0	
Substations	N/A	0	
Total	N/A	0	
Distribution			
Poles	N/A	656	
Substation	N/A	0	
Feeder OH	N/A	0	
Feeder UG	N/A	0	
Feeder Combined	N/A	0	
Lateral OH	N/A	N/A	
Lateral UG	N/A	N/A	
Lateral Combined	N/A	N/A	
Total	N/A	N/A	
Service			
Service OH	N/A	N/A	
Service UG	N/A	N/A	
Service Combined	N/A	N/A	
Total	N/A	N/A	

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 2 of 9

Hurricane Hermine	Number of Facilities Requiring		
	Repair	Replacement	
Transmission			
Structures	N/A	0	
Substations	N/A	0	
Total	N/A	0	
Distribution			
Poles	N/A	19	
Substation	N/A	0	
Feeder OH	N/A	0	
Feeder UG	N/A	0	
Feeder Combined	N/A	0	
Lateral OH	N/A	N/A	
Lateral UG	N/A	N/A	
Lateral Combined	N/A	N/A	
Total	N/A	N/A	
Service			
Service OH	N/A	N/A	
Service UG	N/A	N/A	
Service Combined	N/A	N/A	
Total	N/A	N/A	

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 3 of 9

Hurricane Irma	Number of Facilities Requiring		
	Repair	Replacement	
Transmission			
Structures	N/A	0	
Substations	N/A	0	
Total	N/A	0	
Distribution			
Poles	N/A	3,562	
Substation	N/A	0	
Feeder OH	N/A	0	
Feeder UG	N/A	0	
Feeder Combined	N/A	0	
Lateral OH	N/A	N/A	
Lateral UG	N/A	N/A	
Lateral Combined	N/A	N/A	
Total	N/A	N/A	
Service			
Service OH	N/A	N/A	
Service UG	N/A	N/A	
Service Combined	N/A	N/A	
Total	N/A	N/A	

Notes:

For Hurricane Matthew, there is a difference of 248 poles between what is provided in this discovery response for total poles replaced (656 poles) and what is provided in FPL's post-storm forensic review report for Hurricane Matthew (provided in FPL's response to Staff's Second Data Request No. 2 in this same docket) for poles that failed and needed to be replaced to restore service (408 poles). The difference is associated with poles replaced during "follow-up" - i.e., poles that were damaged (e.g., a cracked pole) as a result of the storm and needed to be replaced to restore the pole to its pre-storm condition - but did not fail during the storm and, thus, did not need to be replaced to restore service. As mentioned above in FPL's response to this data request, FPL's accounting records do not differentiate hardened facilities from non-hardened facilities and FPL did not track or maintain forensic information on the 248 distribution poles replaced as a result of follow-up work. As a result, FPL does not have a hardened vs. non-hardened breakdown for the 248 distribution poles replaced during follow-up work.

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 4 of 9

The distribution pole and transmission structure counts provided above represent the amount of pole/structure replacements FPL has recorded on its books and records associated with Hurricane Irma as of December 31, 2017. These amounts should be considered preliminary at this time as they are subject to change (e.g., the counts do not reflect poles that will be replaced during follow-up work, which has yet to be completed).

N/A – Information is not available at this level of detail in FPL's accounting records.

For substations and feeders, FPL has stated 0 since no entire substation or feeder was replaced. However, these facilities consist of many pieces of equipment (e.g., wire, cable, breakers, transformers, cross arms and arrestors) some of which may have been replaced.

2016/2017 Hurricanes - FPL Restoration/Infrastructure Performance

FPL's infrastructure/restoration performance for Hurricanes Matthew (2016) and Irma (2017) demonstrates that the implementation and execution of its FPSC-approved (1) ten storm preparedness initiatives (which includes vegetation management): (2) pole inspection programs; (3) storm hardening plans; and (4) tariffs to incent municipal overhead to underground conversions have provided great benefits to FPL's customers and to the State of Florida.

During 2016 and 2017, FPL's service territory was threatened with massive Category 4 and 5 storms. The size and scale of these storms impacted FPL's infrastructure throughout its entire service territory (which encompasses 35 counties in the State of Florida). For both Matthew and Irma, FPL's infrastructure storm resiliency and smart grid investments resulted in improved infrastructure resiliency performance and reduced restoration times.

2016/2017 Hurricanes - Restoration Performance

FPL saw significant improvements in overall restoration results. As can be seen in the table below, restoration results for Hurricanes Matthew and Irma show significant improvement vs. Hurricane Wilma. FPL attributes these significant improvements in restoration to the investments made to make its system smarter and more storm-resilient as well as its well-tested restoration processes. This includes FPL's distribution and transmission storm hardening and storm preparedness initiatives, pole inspection programs, smart grid initiatives, vegetation management programs and continuous efforts to improve its restoration processes.

	Wilma 2005	Matthew 2016	Irma 2017
Customer Outages	3.2M	1.2M	4.4M
% Restored / days	50% / 5	99% / 2	50% /1
All restored / days	18	4	10
Avg. to restore / days	5.4	<1	2.1

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 5 of 9

2016/2017 Hurricanes – Infrastructure Performance

To assess the effectiveness of FPL's infrastructure storm hardening investments, the Company utilizes information collected through post-storm forensic data collection and various systems (e.g., FPL's outage management system) to conduct post-storm infrastructure performance analysis. These efforts and analysis allow FPL to quantify and assess its distribution and transmission infrastructure performance including the performance of: hardened and non-hardened facilities; overhead and underground facilities; and smart grid performance. For distribution, this includes reviewing the storm performance of poles, feeders and laterals. For transmission, this includes reviewing the storm performance of poles/structures, line sections and substations. The data demonstrates that hardened infrastructure performed better than non-hardened infrastructure, underground facilities performed better than overhead facilities and smart grid devices prevented a significant number of outages from occurring.

Distribution/Transmission Poles/ Structures Performance

The performance of FPL's approximately 1.2 million distribution and transmission poles/structures during Hurricanes Matthew and Irma was excellent, as hardened poles and structures performed as expected by minimizing outages and reducing restoration times. The total number of distribution/transmission poles that failed (i.e., had to be repaired/replaced in order to restore service) during Hurricanes Matthew and Irma was a mere fraction of 1% of the 1.2 million pole/structure pole population.

Additionally, hardened distribution and transmission pole performance was significantly better than non-hardened pole performance, as hardened pole failures were either non-existent (e.g., Hurricane Matthew) or significantly less than non-hardened pole failures (e.g., during Hurricane Irma, hardened feeder poles had a 0.02% failure rate, while non-hardened feeder poles had a 0.20% failure rate). Also, total poles replaced (i.e., poles that failed + poles that were replaced during follow-up work) were also a mere fraction of 1% of the total pole population and significantly less than the number of poles replaced during Hurricane Wilma.

FPL notes that for Hurricanes Matthew and Irma, while it did track hardened vs. non-hardened pole performance during restoration, it did not track poles replaced (hardened vs. non-hardened) during follow-up work, since these poles had accomplished their intended purpose of not failing during the storms. Therefore, FPL cannot provide the number of hardened poles replaced during follow up work in Hurricanes Matthew and Irma. Based on the performance of hardened poles that failed during these storms (see table below), it is highly unlikely that there would be a significant number of hardened poles, if any, that needed to be replaced during follow-up work. However, going forward, should the Commission want FPL to track replacement of hardened vs. non-hardened poles during follow-up work, FPL will begin to track this information.

FPL attributes this excellent pole performance to its FPSC-approved distribution and transmission storm hardening plan initiatives (e.g., extreme wind load construction standards for distribution poles and replacing wood transmission poles/structures) and its pole inspection programs.

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 6 of 9

Distribution Poles 12/31/17Total Number1,188,202Total Hardened124,518*

* This number is understated as it includes only poles hardened as a result of FPL's approved hardening plan projects, as FPL does not track or maintain the number of hardened poles installed as a result of new construction (e.g., new feeders or laterals) and/or daily work activities (e.g., maintenance, pole line extensions, relocation projects). There are also other existing poles throughout FPL's service territory that would currently meet the NESC's extreme wind loading criteria and therefore qualify as a hardened pole, however, FPL does not currently track or maintain that information.

Distribution Pole Failures*	Hardened	Non- Hardened	Total
Matthew - 2016	0	408	408
Irma - 2017	26	2834	2860

*Broken/Fallen poles that must be repaired/replaced to restore service

Transmission Pole/Structures 12/31/17

Total	66, 685
Concrete	60,694 (91%)
Wood	5,991 (9%)

Transmission Pole Failures*	Hardened	Non- Hardened	Total
Matthew - 2016	0	0	0
Irma - 2017	0	5	5

*Broken/Fallen poles that must be repaired/replaced to restore service

Distribution Feeders/Laterals Performance

As demonstrated below, FPL's hardened feeders performed significantly better than nonhardened feeders and underground feeders/laterals performed significantly better than overhead feeders/laterals. Performance was compared considering feeder and lateral outages that occurred during Hurricanes Matthew and Irma. It is also important to note that during Hurricane Irma, the Construction Man Hours ("CMH") to restore hardened feeders was 50% less than non-hardened feeders, primarily due to hardened feeders experiencing less damage than non-hardened feeders.

It is important to note that the majority of outages for overhead facilities resulted from trees that broke and/or fell into FPL's facilities. Many of these trees were outside of easements or public rights of way where FPL is generally allowed to trim. As a result, no additional amount of

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 7 of 9

traditional tree trimming would help mitigate this issue. Tree damage was particularly impactful on FPL laterals.

The two tables below provide feeder and lateral outage performance statistics for Hurricanes Matthew and Irma.

	Overhead non-Hardened			Overhead Hardened			Underground			Total			
Matthew	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out	
Distribution Feeders	280	2,031	14%	68	721	9%	11	493	2%	359	3,245	13%	
Distribution Laterals	3,473	82,729	4%	N.A.	N.A.	N.A.	238	101,892	0.2%	3,711	184,621	2%	

Pop = Population; Lateral population includes laterals with multi-stage fusing

IRMA- 2017	Overhea	ad Non-Ha	rdened	d Hardened Underground Tot						Total		
IRIWA- 2017	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out
Distribution Feeders	1,609	1,958	82%	592	859	69%	85	470	18%	2,286	3,287	70%
Distribution Laterals	20,341	84,574	24%	N.A.	N.A.	N.A.	3,767	103,384	4%	24,108	187,958	13%

Pop = Population; Lateral population includes laterals with multi-stage fusing

FPL notes that, overall, for Hurricane Irma, many more laterals experienced outages compared to feeders, thus laterals required significantly more time to restore (871,000 CMH) compared to feeders (170,000 CMH). FPL continues to promote its Right Tree Right Place initiative and recommends there be changes to state laws and/or local ordinances to restrict the type and location of trees and provide utilities additional trimming rights to address existing tree conditions.¹

Additionally, FPL notes that day-to-day, hardened feeders perform approximately 40% better than non-hardened feeders.

Transmission Line Sections/Substations Performance

The transmission system's performance was excellent during Hurricanes Matthew and Irma. Equipment and conductor damage was minimal as a result of our investments in transmission hardening and the installation of flood monitoring equipment in those substations located in flood prone areas. Substations that experienced outages were restored in one day. During Hurricanes Matthew and Irma, flood monitoring equipment operated as expected, providing notification which allowed FPL to proactively de-energize three substations (one in Matthew and two in Irma) and prevent potential serious damage from occurring at these substations.

¹ Where municipalities are not actively engaged in ensuring appropriate limitations on planting trees in public rights of way, restoration efforts are impeded and made more costly. In fact,_one particular municipality is actively planting "wrong trees in the wrong place," in spite of FPL's direct communications and efforts to encourage its Right Tree Right Place initiative.

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 8 of 9

The tables below provide substation line section outage performance for Hurricanes Matthew and Irma.

	Overhead Non-Hardened				Overhead Hardened			ndergroun	d	Total			
MATTHEW - 2016	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out	Out	Рор	% Out	
Trans. Line Sections	16	350	5%	23*	846	3%	0	49	0%	39	1,245	3%	

	Overhea	ad Non-Ha	rdened	Overhe	ead Har	dened	U	ndergroun	d		Total	
IRMA - 2017	Out	Рор	% Out	Out	Рор	% Out	Out	% Pop Out		Out	Рор	% Out
Trans. Line Sections	60	306	20%	142**	884	16%	13***	51	25%	215	1241	17%

* 2 sections were out because substation was proactively de-energized due to flooding

** 4 sections were out because substations were proactively de-energized due to flooding

*** No underground section was damaged or failed causing an outage; however, the sections were out due to line termination equipment in substations.

The table below compares substation outage and restoration performance – Irma vs, Wilma.

<u>Substations</u>	<u>Wilma 2005</u>	<u>Irma 2017</u>
De-energized	241	92
Restored (Days)	5	1

Smart Grid Performance

During Hurricane Matthew and Irma, smart grid devices prevented a significant amount of customer outages, assisted with restoration efforts and reduced restoration time and costs. Specifically, automated feeder switches avoided approximately 664,000 outages during Hurricanes Matthew and Irma. Additionally, FPL's restoration crews are able to "ping" smart meters before leaving an area to ensure that power is, in fact, restored. This prevents restoration crews from leaving an area, thinking all power was restored, only to be called back when the customer informs FPL that they are still without service. FPL is also enhancing an application, first utilized during Hurricanes Matthew and Irma, whereby it will be able to "bulk meter ping" smart meters to confirm whether customers have service.

	Avoided Customer
Automated Feeder Switches	Outages
Matthew - 2016	118,000
Irma - 2017	546,000

Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Page 9 of 9

Estimate of Storm Restoration Cost Savings Due to Hardening based on Storm Damage Model Simulation

The attached analysis provides an estimate of transmission and distribution storm restoration savings for Hurricanes Matthew and Irma that resulted from storm hardening completed by FPL prior to the storms' impacts. To calculate these savings, FPL utilized its Storm Damage Model (the same model FPL utilizes to estimate damage when a storm approaches FPL's service territory) to simulate damage that likely would have occurred without hardening and determine the associated required construction man hours (CMH) that would have been required to restore service in the absence of hardening, days to restore in the absence of hardening and associated incremental restoration costs. Additionally, FPL calculated the 40-year net present value of these savings for two scenarios – (1) a similar storm occurs every 3 years; and (2) a similar storm occurs every 5 years.

As indicated on the attached analysis, the 40-year net present values of the savings related to storm hardening are significant. In the absence of hardening the estimated percentage increase in CMHs for Hurricane Matthew and Hurricane Irma restoration would have been significantly higher (36% and 40%, respectively), days to restore would have been increased (50% and 40%, respectively) and restoration costs would have been greater (36% and 40%, respectively).

Florida Power & Light Company Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Attachment No. 1 Tab 1 of 5

Estimate of Storm Restoration Cost Savings Due to Hardening based on Storm Damage Model Simulation

		[1] Co	[2] Instruction M	3 lan-Hours (Cl	[4] MH)	[5]	[6] Days to	[7] Restore	[8]	[9] St	[10] orm Restorat	[11] tion Costs (Mill	[12] ions}	[13] 40 Yr NPV Sa	[14] vings (2017\$)
Storr	n	Actual	Modeled System Without Hardening	Additional CMH without Hardening	% Increase without Hardening	Actual	Modeled System Without Hardening	Additional Days to Restore without Hardening	% Increase without Hardening	Actual	Modeled System Without Hardening	Additional Storm Restoration Costs without Hardening	% Increase without Hardening	40 Yr NPV Savings Every 3 Years (2017\$)	40 Yr NPV Savings Every 5 Years (2017\$)
Matth	ew	257,000	350,000	93,000	36%	4	6	2	50%	\$290	\$395	\$105	36%	\$653	\$406
Irma		1,195,000	1,678,000	483,000	40%	10	14	4	40%	\$1,226	\$1,722	\$496	40%	\$3,082	\$1,915

Notes:

All costs and CMH are Transmission and Distribution only, and exclusive of follow-up work

[1] Calculated based on actual storm restoration requirements

[2] FPL storm damage model simulation results of CMH incurred without hardening

[3] Additional CMH without hardening (Col. 2 - Col. 1)

[4] Percent increase in CMH without hardening (Col. 3/Col. 1)

[5] Actual days to restore service

[6] Storm damage model simulation result of the days to restore service without hardening (assumes same restoration resources as actual)

[7] Additional days to restore without hardening (Col. 6 - Col. 5)

[8] Percent increase in days to restore without hardening (Col. 7/Col. 5)

[9] Actual cost of restoration. Irma costs are preliminary

[10] Storm damage model simulation result of restoration costs without hardening

[11] Additional restoration costs without hardening (Col. 10 - Col. 9)

[12] Percent increase in restoration costs without hardening ((Col. 11/Col. 9)

[13] 40 year net present value savings assuming a similar storm every three years (calculation details attached)

[14] 40 year net present value savings assuming a similar storm every five years (calculation details attached)

Florida Power & Light Company Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Attachment No. 1 Tab 2 of 5

Estimated Storm Restoration Costs Savings due to Hardening (\$MM)

	Matthew	Savings
	Every 3 years	Every 5 years
40-Year NPV (2017\$)	\$653	\$406

Discount Rate = 7.76%

	Matthew	Savings		CPI	
<u>Year</u>	Every 3 years	Every 5 years	<u>CPI</u>	<u>Multiplier</u>	<u>Matthew</u>
1	\$105	\$105	2.1%	1.000	\$105
2	\$0	\$0	2.4%	1.024	\$107
3	\$0	\$0	2.4%	1.049	\$110
4	\$113	\$0	2.6%	1.076	\$113
5	\$0	\$0	2.7%	1.105	\$115
6	\$0	\$118	1.7%	1.124	\$118
7	\$121	\$0	2.5%	1.152	\$121
8	\$0	\$0	2.4%	1.179	\$124
9	\$0	\$0	2.3%	1.206	\$127
10	\$130	\$0	2.2%	1.233	\$130
11	\$0	\$133	2.2%	1.260	\$133
12	\$0	\$0	2.2%	1.288	\$136
13	\$139	\$0	2.2%	1.317	\$139
14	\$0	\$0	2.2%	1.346	\$143
15	\$0	\$0	2.2%	1.375	\$146
16	\$150	\$150	2.1%	1.404	\$150
17	\$0	\$0	2.1%	1.434	\$153
18	\$0	\$0	2.1%	1.464	\$157
19	\$161	\$0	2.1%	1.495	\$161
20	\$0	\$0	2.1%	1.526	\$165
21	\$0	\$169	2.1%	1.558	\$169
22	\$173	\$0	2.1%	1.590	\$173
23	\$0	\$0	2.1%	1.623	\$177
24	\$0	\$0	2.1%	1.656	\$181
25	\$185	\$0	2.1%	1.691	\$185
26	\$0	\$190	2.1%	1.727	\$190
27	\$0	\$0	2.1%	1.763	\$194

40	\$265	\$0	2.1%	2.322	\$265
39	\$0	\$0	2.1%	2.274	\$258
38	\$0	\$0	2.1%	2.226	\$252
37	\$246	\$0	2.1%	2.180	\$246
36	\$0	\$241	2.1%	2.135	\$241
35	\$0	\$0	2.1%	2.090	\$235
34	\$230	\$0	2.1%	2.047	\$230
33	\$0	\$0	2.1%	2.004	\$224
32	\$0	\$0	2.2%	1.962	\$219
31	\$214	\$214	2.1%	1.920	\$214
30	\$0	\$0	2.2%	1.880	\$209
29	\$0	\$0	2.2%	1.840	\$204
28	\$199	\$0	2.1%	1.801	\$199
	29 30 31 32 33 34 35 36 37 38 39	29 \$0 30 \$0 31 \$214 32 \$0 33 \$0 34 \$230 35 \$0 36 \$0 37 \$246 38 \$0 39 \$0	29\$0\$030\$0\$031\$214\$21432\$0\$033\$0\$034\$230\$035\$0\$036\$0\$24137\$246\$038\$0\$039\$0\$0	29\$0\$02.2%30\$0\$02.2%31\$214\$2142.1%32\$0\$02.2%33\$0\$02.1%34\$230\$02.1%35\$0\$02.1%36\$0\$2412.1%37\$246\$02.1%38\$0\$02.1%39\$0\$0\$0	29\$0\$02.2%1.84030\$0\$02.2%1.88031\$214\$2142.1%1.92032\$0\$02.2%1.96233\$0\$02.1%2.00434\$230\$02.1%2.04735\$0\$02.1%2.09036\$0\$2412.1%2.13537\$246\$02.1%2.18038\$0\$0\$02.1%2.22639\$0\$0\$02.1%2.274

Florida Power & Light Company Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Attachment No. 1 Tab 3 of 5

Estimated Storm Restoration Costs Savings due to Hardening (\$MM)

[Irma Sa	vings
	Every 3 years	Every 5 years
40-Year NPV (2017\$)	\$3,082	\$1,915

Discount Rate = 7.76%

	Matthew Savings			CPI	
Year	Every 3 years	Every 5 years	<u>CPI</u>	<u>Multiplier</u>	<u>Irma</u>
1	\$496	\$496	2.1%	1.000	\$496
2	\$0	\$0	2.4%	1.024	\$507
3	\$0	\$0	2.4%	1.049	\$520
4	\$532	\$0	2.6%	1.076	\$532
5	\$0	\$0	2.7%	1.105	\$545
6	\$0	\$558	1.7%	1.124	\$558
7	\$571	\$0	2.5%	1.152	\$571
8	\$0	\$0	2.4%	1.179	\$585
9	\$0	\$0	2.3%	1.206	\$599
10	\$613	\$0	2.2%	1.233	\$613
11	\$0	\$628	2.2%	1.260	\$628
12	\$0	\$0	2.2%	1.288	\$643
13	\$659	\$0	2.2%	1.317	\$659
14	\$0	\$0	2.2%	1.346	\$674
15	\$0	\$0	2.2%	1.375	\$691
16	\$707	\$707	2.1%	1.404	\$707
17	\$0	\$0	2.1%	1.434	\$724
18	\$0	\$0	2.1%	1.464	\$742
19	\$759	\$0	2.1%	1.495	\$759
20	\$0	\$0	2.1%	1.526	\$778
21	\$0	\$796	2.1%	1.558	\$796
22	\$815	\$0	2.1%	1.590	\$815
23	\$0	\$0	2.1%	1.623	\$835
24	\$0	\$0	2.1%	1.656	\$855
25	\$876	\$0	2.1%	1.691	\$876
26	\$0	\$897	2.1%	1.727	\$897
27	\$0	\$0	2.1%	1.763	\$918

NPV (2017\$)	\$3,082	\$1,915			
40	\$1,250	\$0	2.1%	2.322	\$1,250
39	\$0	\$0	2.1%	2.274	\$1,220
38	\$0	\$0	2.1%	2.226	\$1,192
37	\$1,164	\$0	2.1%	2.180	\$1,164
36	\$0	\$1,136	2.1%	2.135	\$1,136
35	\$0	\$0	2.1%	2.090	\$1,110
34	\$1,084	\$0	2.1%	2.047	\$1,084
33	\$0	\$0	2.1%	2.004	\$1,058
32	\$0	\$0	2.2%	1.962	\$1,034
31	\$1,009	\$1,009	2.1%	1.920	\$1,009
30	\$0	\$0	2.2%	1.880	\$986
29	\$0	\$0	2.2%	1.840	\$963
28	\$940	\$0	2.1%	1.801	\$940
	29 30 31 32 33 34 35 36 37 38 39	29 \$0 30 \$0 31 \$1,009 32 \$0 33 \$0 34 \$1,084 35 \$0 36 \$0 37 \$1,164 38 \$0 39 \$0 40 \$1,250	29 \$0 \$0 30 \$0 \$0 31 \$1,009 \$1,009 32 \$0 \$0 33 \$0 \$0 34 \$1,084 \$0 35 \$0 \$0 36 \$0 \$1,136 37 \$1,164 \$0 38 \$0 \$0 39 \$0 \$0 40 \$1,250 \$0	29 \$0 \$0 2.2% 30 \$0 \$0 2.2% 31 \$1,009 \$1,009 2.1% 32 \$0 \$0 2.2% 33 \$0 \$0 2.1% 34 \$1,084 \$0 2.1% 35 \$0 \$0 2.1% 36 \$0 \$1,136 2.1% 37 \$1,164 \$0 2.1% 38 \$0 \$0 2.1% 39 \$0 \$0 2.1% 40 \$1,250 \$0 2.1%	29\$0\$02.2%1.84030\$0\$0\$02.2%1.88031\$1,009\$1,0092.1%1.92032\$0\$0\$02.2%1.96233\$0\$02.1%2.00434\$1,084\$02.1%2.04735\$0\$0\$1,1362.1%2.09036\$0\$1,1362.1%2.13537\$1,164\$02.1%2.18038\$0\$0\$2.1%2.22639\$0\$0\$02.1%2.27440\$1,250\$02.1%2.322

Florida Power & Light Company Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Attachment No. 1 Tab 4 of 5

> FPL WEIGHTED AVERAGE COST OF CAPITAL

STATE INCOME TAX	5.50%
FEDERAL INCOME T	21.00%
COMPOSITE INCOME TAX RAT	25.35%

MODEL DATE:

Debt Cost Based on Blue Chip Corporate Aaa and Bbb Bonds

1-Jan-18

			AF1	TER TAX	PRE TAX
SOURCE V	VEIGHT ⁽¹⁾	COST ⁽²⁾ Л	D COST Л	D COST Л	D COST
DEBT	40.40%	4.88%	1.97%	1.47%	1.97%
COMMON	59.60%	10.55%	6.29%	6.29%	8.42%
TOTAL	100.00%		8.26%	7.76%	10.39%

AFTER-TAX WACC

7.76%

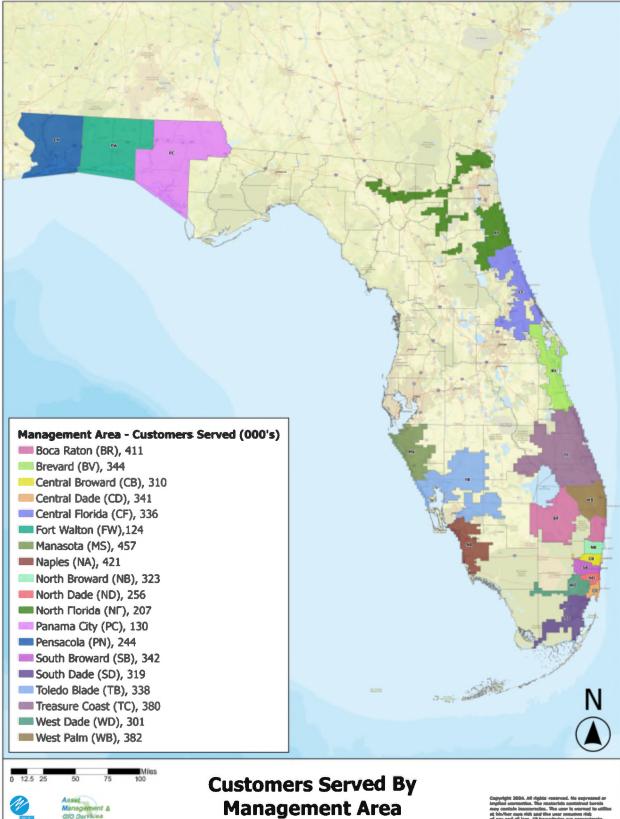
Florida Power & Light Company Docket No. 20170215-EU Staff's First Data Request Request No. 29 - Third Supplemental Amended Attachment No. 1 Tab 5 of 5 Consumer Prices (1982-84=1.000) All-Urban (Forecast adjusted to match budget assumptions) Index % Change 2009 2.1454 2010 2.1806 1.64% 2011 2.2494 3.16% 2012 2.2959 2.07% 2013 2.3296 1.46% 2014 2.3674 1.62% 2015 2.3702 0.12% 2016 2.4001 1.26% 2017 2.4512 2.13% 2018 2.5100 2.40% 2019 2.5703 2.40% 2020 2.6371 2.60% 2021 2.7083 2.70% 2022 2.7553 1.73% 2023 2.8231 2.46% 2024 2.8909 2.40% 2025 2.9569 2.28% 2026 3.0228 2.23% 2027 3.0895 2.21% 2028 3.1573 2.19% 2029 3.2270 2.21% 2030 3.2981 2.20% 2031 3.3693 2.16% 2032 3.4411 2.13% 2033 3.5142 2.12% 2034 3.5887 2.12% 2035 3.6642 2.10% 2036 3.7408 2.09% 2037 3.8187 2.08% 2038 3.8972 2.06% 2039 3.9779 2.07% 2040 4.0603 2.07% 2041 4.1449 2.08% 2042 4.2324 2.11% 2043 4.3226 2.13% 2044 4.4153 2.15% 2045 4.5104 2.15% 2046 4.6077 2.16%

Budget Assumptions 2.40% 2.40% 2.60%

2.70%

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix A Page 17 of 17

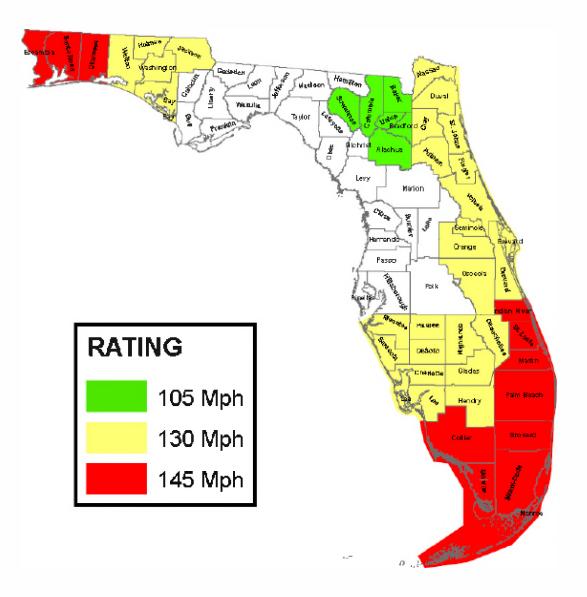
2047	4.7067	2.15%
2048	4.8099	2.19%
2049	4.9122	2.13%
2050	5.0167	2.13%
2051	5.1233	2.13%
2052	5.2323	2.13%
2053	5.3435	2.13%
2054	5.4572	2.13%
2055	5.5732	2.13%
2056	5.6917	2.13%
2057	5.8128	2.13%


Actuals thru 2017 from BLS

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix B

Appendix B

FPL Management Areas and Customers Served and Extreme Wind Map


Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix B Page 1 of 2

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix B Page 2 of 2

FPL Extreme Wind Regions

Distribution Feeder Hardening Program

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix C

Appendix C

FPL 2026-2035 SPP Estimated Annual Costs and Number of Projects

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix C Page 1 of 1

													Tot	tal SPP	An	mual
PL SPP Programs		2026	2027	2028	2029	2030		2032	2033	2034		2035		and the second second	vera	
stribution Inspection Program	-															_
Operating Expenses	\$	4.1	\$ 4.1	\$ 4.1	\$ 4.1	\$ 4.9	\$ 5.0	\$ 5.2	\$ 5.0	\$ 5.1	\$	5.3	\$	46.9	\$	
Capital Expenditures	\$	88.0	\$ 90.0	\$ 92.0	\$ 94.0	\$ 92.4	\$ 95.2	\$ 98.1	\$ 77.8	\$ 70.3	\$	72.4	\$	870.2	\$	8
Total	\$	92.1	\$ 94.1	\$ 96.1	\$ 98.1	\$	100.2	\$ 103.3	\$	\$ 75.4	\$	77.7	\$	917.1	\$	9
# of Pole Inspections		180,000	180,000	180,000	160,000	160,000	160,000	160,000	145,000	145,000	-	145,000				
ransmission Inspection Program																
Operating Expenses	\$	1.4	\$ 1.5	\$ 1.5	\$ 1.6	\$ 1.6	\$ 1.6	\$ 1.7	\$ 1.7	\$ 1.8	\$	1.9	\$	16.3	\$	
Capital Expenditures	\$	60.3	\$ 62.1	\$ 64.0	\$ 65.9	\$ 67.9	\$ 69.9	\$ 72.0	\$ 92.8	\$ 95.5	\$	98.4	\$	749.0	\$	
Total	\$	61.7	\$ 63.6	\$ 65.5	\$ 67.5	\$ 69.5	\$ 71.6	\$ 73.7	\$ 94.5	\$ 97.3	\$	100.3	\$	765.2	\$	7
# of Structure Inspections		84,200	84,500	84,800	85,100	85,400	85,700	86,000	86,300	86,600		86,900				
istribution Feeder Hardening Progra	m															
Operating Expenses	\$	-	\$ -	\$	-	\$	"	\$								
Capital Expenditures	\$	311.8	\$ 207.8	\$ 180.8	\$ 172.8	\$ 200.0	\$ 200.0	\$ 200.0	\$ 238.0	\$ 238.0			\$	1,949.3	\$	2
Total	\$	311.8	\$ 207.8	\$ 180.8	\$ 172.8	\$ 200.0	\$ 200.0	\$ 200.0	\$ 238.0	\$ 238.0	\$	-	\$	1.949.3	\$	21
# of Feeders		275	125	50	50	50	50	50	50	50		0		-		
istribution Lateral Hardening Progra	m															
Operating Expenses	\$	0.2	\$ 0.2	\$ 0.2	\$ 0.2	\$ 0.3	\$ 0.3	\$ 0.3	\$ 0.3	\$ 0.3	\$	0.3	\$	2.4	\$	
Capital Expenditures	\$	743.8	\$ 777.3	\$ 732.9	\$ 860.1	\$ 885.9	\$ 912.4	\$ 939.8	\$ 968.0	\$ 997.1	\$	1,026.9	\$	8,844.3	\$	8
Total	\$	744.0	\$ 777.5	733.1	\$ 860.3	886.1	\$ 912.7	940.1	\$ 968.3	\$ 997.4	\$	1.027.2	\$	8.846.7	\$	88
# of Laterals		1,100	1,100	1,100	1,200	1,200	1,200	1,200	1,200	1,200		1,200				
ransmission Hardening Program																
Operating Expenses	\$	0.6	\$ 0.6	\$ 0.6	\$ 0.7	\$ 0.7	\$ 0.4	\$ 0.2	\$ -	\$ -	\$	-	\$	3.8	\$	
Capital Expenditures	\$	30.9	\$ 36.3	\$ 33.2	\$ 41.2	\$ 42.5	\$ 43.8	\$ 45.1	\$ 33.0	\$ -	\$	-	\$	306.0	\$	
Total	\$	31.5	\$ 37.0	\$ 33.9	\$ 41.9	\$ 43.2	\$ 44.2	\$ 45.3	\$ 33.0	\$ -	\$	-	\$	309.8	\$	3
# of Structures to be Replac	e	350	350	350	350	350	350	350	325	0		0				
stribution Vegetation Management	Prog	ram														
Operating Expenses	\$	116.3	119.1	120.4	123.6	123.6	125.2	124.2	121.5	117.0		111.2		1,202.1		1
Capital Expenditures	\$	2.0	2.0	\$ 2.1	\$ 2.3	\$ 4.0	\$ 4.0	\$ 4.0	4.0	4.0			\$	32.4	\$	
Total	\$	118.3	\$ 121.1	\$ 122.5	\$ 125.9	\$ 127.6	\$ 129.2	\$ 128.2	\$ 125.5	\$ 121.0	\$	115.2	\$	1,234.5	\$	1
# of Miles Maintained		18,055	17,955	17,864	17,755	17,639	17,514	17,389	17,264	17,139		17,014				
ansmission Vegetation Managemen	t Pro	gram														
Operating Expenses	\$	16.8	17.4	17.7	18.0	18.0	18.0	18.8	19.5	20.3		21.1		185.6		
Capital Expenditures	\$	-	\$ -	\$		\$	-	\$								
Total	\$	16.8	\$ 17.4	\$ 17.7	\$ 18.0	\$ 18.0	\$ 18.0	\$ 18.8	\$ 19.5	\$ 20.3	\$	21.1	\$	185.6	\$	
# of Miles Maintained		9,457	9,504	9,552	9,600	9,648	9,696	9,744	9,793	9,842		9,891				
bstation Storm Surge/Flood Mitigat		rogram												_		
Operating Expenses	\$	-	\$ -	\$		\$	- [
Capital Expenditures	<u>\$</u> \$	8.5	\$ 8.5	\$ -	\$	-	\$	68.0	\$							
Total	\$	8.5	\$ 8.5	\$ -	\$	-	\$	68.0	\$							
# of Substations		1	0	1	1	1	1	1	1	0		0				
otal SPP Costs	\$	1,384.7														1,42

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised, Appendix D

Appendix D

Project Level Detail for First Year of the 2026-2035 SPP (2026)

_	_																										_	_													_		_	_																	_			
lan/ Irma / Matthew / Michael Outage					< >			×			×		×						×					×			<>					×					××			>	<>	×		>	<			×		×		×		×				×				×>		
2026 Estimated Costs										\$ 93.634																																																						\$ 50,231
Total Customers																								T			T		T														T		T								T											1359
Commercial Customers	316	427	170	707	84	155	50	305	204	472	115	114	34	216	198	136	447	125	399	579	209	58	06	188	04 100	00/	107	19/	63	76	297	210	242	16	86	64	94	183	1/3	89	03	139	011	137	68	85	78	212	77	191	199	86	141	383	30	237	155	246	181	195	214	157	113	290
Residential Customers	1599	2065	000	1000	1687	7563	1305	С	1418	1291	665	1455	1308	1180	1119	1738	0	956	1201	265	1262	1595	1128	1359	06/1	0	1501	1201		1559	2681	1276	460	1087	664	2146	1276	1507	1072	330	99	1406	1343	123/	1504	1761	1426	1881	852	2066	1114	9991 9991	2001 2001	87.4	1254	361	1706	1605	2266	827	134	118	1	1057
Industrial Customers	22	36	3 c	4	- v		4 C		· c	0	0	-	9	0	0	0	2	e	4	-	3	-			- c	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_ <		- ~		n n	-	0	0	0	2	т.	4	Б с	-		0	4 0	0 0		0	8	4	13	«	0 0	0 6	5 5 c		~	.0	9	7	9	2	2	2	-	12
Current Estimated Completion Year ⁽²⁾	2026	2026	2020	2000	2020	202	2021	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2027	2027	2026	2027	2026	2027	2026	1202	1202	1202	20202	2020	2026	2026	2026	2027	2027	2027	2027	2027	2027	2027	1202	1202	202/	9202	2020	2027	2026	2027	2027	2026	2027	2027	/202	1202	2021	2020	2027	2027	2026	2026	2027	2026	2026	9202	2026
Estimated / Actual Start Year ⁽¹⁾	2024	2024	2022	202	2021	2022	202	2022	2021	2021	2024	2024	2022	2022	2022	2022	2022	2021	2021	2021	2022	2022	2021	1202	2024	0202	2020	2021	2021	2021	2021	2021	2022	2024	2022	2022	2022	2022	2022	7707	7707	7022	2021	7702	2024	2024	2020	2021	2021	2021	2022	2020	2020	2023	2022	2022	2022	2024	2021	2022	2022	2022	2024	2024
Feeder	509861	500863	000000	100200	403231	505783	706363	812164	405331	405336	810834	700838	700843	700836	700840	810433	404242	800448	707532	705637	500634	500636	804833	7001132	102140	803438 007536	704520	1010300	702532	702034	503969	700735	501134	804134	804132	404833	802240	802237	504969	806032	800030	806038	204022	40413/ 807336	807338	807340	503135	705236	808831	802931	804538	804539	401033	800734	703833	404738	404734	701936	408662	708162	404333	404337	804033 040763	510932
Substation	ANGLER	ANGLER				ALBUDN	RASSCREEK	BEACON	BFFLINF	BEELINE	BELL	BEVERLY	BEVERLY	BEVERLY	BEVERLY	BLUE LAGOON	BOCA TEECA	COCONUT GROVE	COLLINS	COPANS	CORTEZ	CORTEZ									ESTERO	FAIRMONT	FT MYERS	GARDEN	GARDEN	GERMANTOWN	GLADEVIEW	GLADEVIEW		GULDEN GLADES	GULDEN GLADES	GULDEN GLADES			GOLIDS	GOULDS	SOLANA	TIMBERLAKE	SNAPPER CREEK	GRAPELAND	GRAHGNY	GRAHGNY				HILLSBORO	HILLSBORO	HOLY CROSS	HOMELAND	HUNTINGTON	IBM	IBM Microsoft		ITALY
Region	West	Wast	Pode	Dade	East	Most	Broward	Dade	Fast	East	Dade	Broward	Broward	Broward	Broward	Dade	East	Dade	Broward	Broward	West	West	Dade	Broward	Broward	Dade	Daue	Dioward	Broward	Broward	West	Broward	West	Dade	Dade	East	Dade	Dade	West	Dade	Lade	Uade Mrt	VVest	Dada	Dade	Dade	West	Broward	Dade	Dade	Dade	Dade	Dade	Dade	Broward	East	East	Broward	East	Broward	East	East	Dade	West

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 1 of 11

lan/ Irma / Matthew / Michael Outage	>	<>	<					<>	<	T		>	< >	<	×				×		×			:	×		×					>	<	< ×	:			×		×	××	×>	<>	<		×			×	,	×)	<			×	×		×	×	×	×	×	>	<	$\left[\right]$
2026 Estimated Costs Mattl	ľ	132,430	312,323	1,442,734	228,823	1,363,073	010001	2,409,309	1112 002,100	1,413,091	1,432,130	130,133	1,131,430	606,215,1 60,626	233.625	306.681	1.431.050	1,753,364	59,880	185,991	243,205	62,214	214,364	83,955	321,770	1,912,147	1/9,504	518,925	1,020,139	148,257	1,0/0,126	311,167	1 608 364	1,030,304	133.528	1,618,750	322,080	1,900,213	70,512	248,759	61,218	1,326,639	332,040 A 735 573	4,133,312	20,102	1,599,465	115,550	159,453	486,709	59,248	320,910	140 0221	110,011	1 373 753	341,381	995,678	200,883	1,491,523	281,554	1,457,029	257,258	1,499,819	382 204	57 109	84,017
Total Customers									T	\$ C412			000 000	- 203 560	861	2753 \$	1816 \$	575 \$	401 \$	1646 \$	1395 \$	1618 \$	1805 \$	1782 \$	1746 \$	1833 \$	2821 \$	1382 \$	675 \$	1853 5	9/.1 9/.1	4003 E	* CUUI	2181 \$	889	2091 \$	2771 \$	2268 \$	869 \$	4091 \$	994 \$	1306 8	9116 0	1710	415 \$	1743 \$	991 \$	2379 \$	608 \$	34 8	169 8	9 00VC	2520 6	914 \$	1279 \$	1564 \$	2306 \$	744 \$			Ť	T	T		1574 \$
Commercial Customers	404	101	11	109	2/0	403	70	100	104	191	17	150	500	503	20	86	193	551	216	426	321	209	175	86	71	80	121	06	188	23/	218	202	1 U	121	53	224	176	342	45	367	136	128	44 50	25	120	139	45	81	78	27	166	1,	18/	199	155	51	148	322	92	354	198	164	82	75	67
Residential Customers	171	21/4	300	1004	6177	CROI	1001	1321	1913	1934	1421	1007	0	07I	831	2655	1623	23	180	1200	1074	1404	1622	1692	1675	1747	2698	1283	487	1612	740	6/C7	320	2055	836	1749	2586	1924	822	3716	856	11/8	2002	1432	295	1603	945	2298	525	s S	1486	1400	2338	715	1124	1507	2155	422	866	121	1006	2060	1117	1843	1506
Industrial Customers	<	-	- <	7		0	, ,	- ‹	7 0	0 4	4 (7 0		- ^	1 ←	. c	0	1	5	20	0	n,	80	4	0	9	2	6	0,	4	13	140	n «	о <i>ч</i> л		118	6	2	2	œ	2	o ,	-	- 4	+ C	, –	-	0	5	2		7 1	0 -	. c	0	9	3	0	-		0 (⊃ ç	<u>5</u>	2 6	4 -
Current Estimated Completion Year ⁽²⁾	3000	0702	0707	2021	2021	1202	0707	1202	2020	1202	1202	2020	1202	2021	2020	2026	2027	2027	2026	2026	2026	2026	2026	2026	2026	2027	2026	2027	2027	7202	2020	9202	2020	2021	2026	2027	2026	2027	2026	2026	2026	/707	20202	2021	2027	2027	2026	2026	2027	2026	2026	1202	2020	2027	2027	2027	2026	2027	2026	2027	2026	/707	2020	2020	2026
Estimated / Actual Start Year ⁽¹⁾	000	2202	7707	202	1202	1202	2024	7707	7707	2702	7707	2024	7202	2021	2021	2022	2018	2020	2021	2024	2021	2021	2021	2021	2022	2022	2022	2021	2022	2020	2022	2024	202	2022	2024	2024	2022	2022	2024	2022	2021	1202	2021	2022	2021	2022	2024	2021	2021	2021	2021	1202	7202	2027	2021	2021	2022	2021	2022	2021	2022	2022	2021	2022	2022
Feeder	0/6737	201000	40/232	403332	810333	401937	20000/C	704405	000004	702238	102234	006626	000000	808164	403036	403033	403035	809232	501231	510931	808936	502935	502931	502933	406531	406538	703634	502534	502836	503031	503032	701624	701632	701636	701237	507166	505167	404437	409635	507764	703433	800539	100034	500131	508633	803638	409435	808437	808832	403631	403634	602433 E02434	704660	407737	809136	809135	509131	803032	803037	707931	806337	806331 EA676E	20/0/2	506034	506033
Substation	N/EC	140	50r					LYONS		MARGALE					MILITARY TRAIL	MILITARY TRAIL	MILITARY TRAIL	MITCHELL	NAPLES	ITALY	OLYMPIA HEIGHTS	ONECO	ONECO	ONECO	OSBORNE	OSBORNE	PALM AIRE	PALMA SOLA	PAYNE		PHILLIPPI				PLAYLAND	POLO	PROCTOR	PURDY LANE	RAINBERRY	RATTLESNAKE			DOCO	SARASOTA	LIME	SEABOARD	SKYPASS	SNAKE CREEK	SNAPPER CREEK	SOUTH BAY	SOUTH BAY			SOUARFLAKF	TAMIAMI	TAMIAMI	TIMUCUAN	TROPICAL	TROPICAL	TWINLAKES				MAI KFR	WALKER
Region	Dodo	Laue		Edst		East W/+	Nest	Broward	DIUWAIU	Broward	DIUWAIU	Dado	Dade	Dade	Fact	Fast	East	Dade	West	West	Dade	West	West	West	East	East	Broward	West	West	West	1SeV	Dround	Broward	Broward	Broward	West	West	East	East	West	Broward	Dade		Mest	West	Dade	East	Dade	Dade	East	East Dode		Broward	Fast	Dade	Dade	West	Dade	Dade	Broward	Dade	Uade Mont	Reimard	Mest	West

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 2 of 11

lan/ Irma / Matthew / Michael Outage	×	×		×			× >					×		< >				×	>		×			×		>		×			×>							< ×				×			×				×				< ×		×				×
2026 Estimated Costs															s 840.102																					\$ 89,596			\$ 273,724	\$ 2,176,087	\$ 1,601,488	5 2,853,058 760 1 013 760	s 5.500.663	\$ 73,485							\$ 2,360,272 \$ 320,404								\$ 215,189
Total Customers														T						T							T				T	T							1579	764	1815	1418	1905	1477		T	T				2333	T	t			T			
Commercial Customers	375	39	300	192	68	93	62 60	107	13/	479	204	189	590	070	299	127	158	508	165	101	101	112	7	49	78	180	408 808	56	189	132	151	687 C07	243	56	49	173	63	106	287	362	227	218	162	75	68	133	1106	153	95	66	145	90	4/ 257	66	24	385	162	330	231
Residential Customers	478	1456	1864	2352	2419	C582	153/ 770	3381	1000	133	429	1817	252	1000	2532	1760	1168	1199	1382	101	1353	737	0	681	981	0		533	2906	2135	2436	324 1056	1930	2040	140	521	990	1170	1292	402	1584	1198	1743	1402	1897	1444	1/05	208	1243	1211	2186	217	280	1142	1165	1512	1337	894	1328
Industrial Customers	0	0	9	11	5	- 1	، م	- 4	5	0	0	0	00	⊃ ŧ	8	29	9	9	0,		- 6	9	0	2	- ,			2	9	0			+ 0	0	1	I	- ¢	2	0	0	4 (.7 0	00	0	0		11.	- 1	0	2	2	o .	- c		0	0	o +	4	. –
Current Estimated Completion Year ⁽²⁾	2027	2027	2027	2027	2026	7202	202/	2020	2026	2026	2026	2026	2027	2021	2027	2026	2027	2027	2026	2027	2021	2026	2026	2026	2026	2027	2020	2027	2026	2027	2027	1202	2026	2026	2026	2026	202/	2026	2026	2027	2027	1202	2027	2026	2026	2026	202/	2026	2027	2027	2027	9707	2026	2027	2027	2026	2020	2026	2026
Estimated / Actual Start Year ⁽¹⁾	2022	2022	2015	2022	2021	7707	2024	2024	2024	2024	2021	2021	2022	2024	2019	2022	2022	2022	2022	2021	2022	2021	2023	2022	2022	2024	2020	2024	2021	2024	2022	2024	2024	2024	2022	2022	2024	2024	2022	2020	2021	2022	2021	2022	2020	2021	1202	2022	2022	2022	2022	2702	2021	2021	2020	2021	2021	2021	2020
Feeder	400131	807831	404035	405261	406767	406/68	408565	503566	303300 814133	812167	405337	703036	402537	000333	502165	505864	405932	408035	504666	800435	800433	705638	420062	802037	802035	805435	805434	807531	405869	804533	806134	707637	808066	808067	801132	801135	805/40 805732	805737	805738	804138	404831	802234	802936	804531	804534	400431	404/35 803237	804631	407231	401831	401834	804331 004222	404235	805331	807633	403932	402030 805135	506665	802732
Substation	WEST PALM BEACH	WESTON VILLAGE	WESTWARD	ACME	ACREAGE	ACREAGE			BAUER	BEACON	BEELINE	ROHAN	BELVEDERE		BONITA SPRINGS	BUCKEYE	BUTTS	CALDWELL			COCONUT GROVE	COPANS	CORBETT	CUTLER	CUTLER	DADE		DADELAND	DELTRAIL	GRATIGNY	DOUGLAS		FLAGAMI	FLAGAMI	FRONTON	FRONTON	GALLOWAY	GALLOWAY	GALLOWAY	GARDEN	GERMANTOWN	GLADEVIEW	GRAPELAND	GRATIGNY	GRATIGNY			INDUSTRIAL	JOG	JUPITER	JUPITER		BOCA TEECA	KEY BISCAYNE	KILLIAN	LAKE PARK	LAWRENCE	LIVINGSTON	MARION
Region	East	Dade	East	East	East	East	East	LdSt Mod	Dade	Dade	East	Broward	East	Laue Fact	West	West	East	East	West	Dade	Dade	Broward	East	Dade	Dade	Dade	Dade	Dade	East	Dade	Dade	Bround	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	East	Dade	Dade	Dade	Dade	East	Dada	Dade	East	East	East	Dade	East	Dade	Dade	East	East Dade	West	Dade

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 3 of 11

lan/ Irma / Matthew / Michael Outage				< >		>				< >																						× >								× >						×							×		×													< >			××	
2026 Estimated Costs																							\$ 380,797																					\$ 394,539																											\$ 199,//3 \$ 415,176	
Total Customers		T	T		T		T	T	T																		Ī			T		T			T		T	T		T				1571																					T			T		T	495	
Commercial Customers	170	510	2 2	20	101	100	201	101	444	111	60	67 E2	3/	80	94	158	274	144	212	94	91	380	591	49	187	1153	145	6	88	577	211	111	200	/8	503	152	51	07C	111	8/	81	36	298	60	167	137	246	187	93	131	137	257	136	75	461	159	184	60	385	213	252	141	391	186	150	500	267	30/	710	- 2	81	1
Residential Customers	R57	700	2001	130	1701	1402	0001	1001	21.0	300 300	000	13/2	988	847	620	1010	181	1058	1416	1004	262	1637	1299	1301	1354	2324	703	188	1001	4077	2017	CR/	1240	180/	1240	2771	82/	1040	700	1198	9CL1	477	1430	1511	2277	731	1013	1991	1500	1374	1304	1303	3577	1331	2605	2341	1128	992	4397	2085	2650	640	2563	1086	2255	1508	1000	1092	7077		414 986	200
Industrial Customers	Ŧ	-	t Ç	<u>n</u> (v c		•	- (v c	v		ъı	<u>م</u>	37	3	80	0	4	0	10	19	12	2	15	19	14	-	- α		5	0		0	7.7	r 8	88 9		4	γ	01		12	2	0	7	0	3	0	0	0	1	0	5	-	35	9	0	3	e	5	4	4	e	2	, c	7 1	- 0	70	0 0		20	٢
Current Estimated Completion Year ⁽²⁾	2002	1202	1202	2021	1202	2020	1202	1202	2020	1202	0707	9202	20202	2027	2027	2027	2026	2026	2026	2026	2027	2026	2026	2026	2026	2026	2026	2020	2026	0707	0707	1202	2021	2020	2020	2026	702	0702	9202	1202	1202	2027	2026	2026	2027	2027	2027	2026	2026	2027	2026	2026	2026	2026	2027	2026	2026	2026	2026	2026	2026	2026	2027	2026	2020	2020	2020	90702	0707	9702	2026	2020
Estimated / Actual Start Year ⁽¹⁾	1004	1202	1202	2021	1000	2024	0202	7202	+202	2024	2024	2024	2022	2020	2021	2021	2021	2021	2022	2022	2020	2022	2024	2022	2021	2022	2002	2027	2022	7202	202	2024	2024	1202	2020	2024	1202	2021	2024	2020	1.202	2024	2022	2022	2022	2021	2021	2022	2022	2022	2022	2021	2021	2023	2021	2025	2021	2025	2021	2023	2025	2021	2021	2020	2020	2020	2020	1202	1202	2021	0202	1202
Feeder	803531	100002	101201	0007000	001 330	001331 B03435	101000	000401	000000	802631	000004	809234	/04136	501240	805234	801035	400333	404533	700443	507363	400832	507565	702431	503037	503034	504365	510363	20000	201101	404430	40/330	806837	800830	/03432	200321	508264	502838	107000	C0107	504368	808431	808837	503432	503437	803933	809134	809133	803033	803038	803031	806340	402133	405862	411735	503568	505265	505563	505768	509063	509133	510362	700435	700633	701637	701831	701020	70/122	704040	104340	/ U0300	804338 700437	104001
Substation	MADKET									MILLER		MILCHELL	MUFFEII	NAPLES	NATOMA	NORMANDY BEACH	NORTHWOOD	NORTON	OAKLAND PARK	ORANGETREE	PAHOKEE	PARRISH	PEMBROKE	PHILLIPPI	PHILLIPPI	PINE RIDGE	PIRATE	PORT				REU ROAD		RESERVATION	OSPRE 7	RYE	PAYNE	SHAUE			SNAKE CREEK	SNAPPER CREEK	SOUTH VENICE	SOUTH VENICE	SUNNY ISLES	TAMIAMI	TAMIAMI	TROPICAL	TROPICAL	TROPICAL	ULETA	TERMINAL	DELTRAIL	INLET	ALLIGATOR	RUBONIA	VAMO	AUBURN	SUMMIT	TIMUCUAN	PIRATE	OAKLAND PARK	VERENA	PLANTATION			MORETT			BASSUREEN	CAKI AND PARK	
Region	Dada	Drauge		Daue	Daue	Dade	Date	Dada	Dade	Dade	Daue	Dade	Broward	West	Dade	Dade	East	East	Broward	West	East	West	Broward	West	West	West		Broward			Edst		Lade	Broward	West	West	West		Broward	Vest	Lade	Dade	West	West	Dade	Dade	Dade	Dade	Dade	Dade	Dade	East	East	East	West	West	West	West	West	West	West	Broward	Broward	Broward	Broward	Drowerd	Broward	Broward	Diowalu	Broward	Dade Broward	DIUWAIN

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 4 of 11

lan/ Irma / Matthew / Michael Outage		×					<	>	<	×	: ×	. ×	×	×		×		××		< >	;				×	×				< >			×	×	×	×		×	{	×				,	× >	<			×		:	×	>	<	×				×		<	
2026 Estimated Costs									5 1,499,407 5 876 995				\$ 2,819,491			\$ 205,747											\$ 193,749										202,902 32,902 4				5 237,699	\$ 234,103	5 221,194	194,382	0 139,552 2 143 208	140.814	139.188	5 123,640														116,354
Total Customers							T	T																						T	T				Ť	T	t	t	t	T	1203 \$	848 \$	1643 \$	563	18/1 3	2368	1550 5	3908 \$					T	T					T		T	993
Commercial Customers	78	213	204	148	1/4	07	202 2	240	210	551	42	143	234	160	23	91	205	11	8	117	118	197	49	171	214	151	118	198	392	199	276	271	144	180	15	99	248	61	189	230	160	97	221	417	130	161	202	241	26	142	104	92	2 10	63	155	238	274	263	182	09 187	352	312
Residential Customers	2130	665	0	1996	1402	1401	0/01			898	987	1124	1431	703	769	1539	1941	1132	1326	1176	2413	1586	2031	3917	2949	1481	1471	726	6/G	248 2015	2013	1834	898	2751	82	6711	3/15	2499	559	1931	1040	751	1418	143	1861 1861	2198	1480	3655	2314	1143	18	1667	1620	1179	1343	1398	1286	2001	1080	R51	3483	681
Industrial Customers	8	0	0	- 11	4 0					. 4	ъ	0	0	2	0	2		4 0	o ,		, c	, 0	-	42	2	-	0	2	.,	- ~	o ←	4	7	15		- 5	98	00	0	5 ¢	3	0	4	en i	01 0	0	0	12	ю	0	۲	4 0	n c	00	4	t.	8	12	4 1	~ F	- ~	, o
Current Estimated Completion Year ⁽²⁾	2027	2026	2027	2026	1202	2020	2020	1202	2027	2026	2026	2027	2027	2026	2027	2026	2027	2026	20202	2021	2026	2026	2026	2026	2028	2028	2028	2028	2028	8202 8202	2020	2028	2026	2026	2026	9702	9202	2027	2026	2026	2026	2026	2026	2026	2026 2026	2026	2026	2026	2026	2026	2026	2026	2020	2026	2026	2026	2026	2026	2026	20202	2020	2026
Estimated / Actual Start Year ⁽¹⁾	2024	2024	2025	2025	9707	0000	2202	9000	2028	2021	2022	2026	2025	2023	2023	2024	2026	2023	2023	2023	2024	2025	2024	2025	2026	2026	2026	2025	2026	9202	2020	2026	2024	2020	2020	2020	2024	2022	2024	2022	2021	2024	2023	2022	2024	2021	2024	2022	2022	2024	2022	2024	#202	2024	2024	2024	2024	2021	2024	2021	2021	2024
Feeder	700934	701232	702135	709362	800433	000004	000000	001404	801131 801134	801140	801736	801936	802133	803632	806531	806731	806733	806932	808331	808732	814134	814431	506966	511161	802236	805236	806137	806433	806/3/	810064 810766	810934	813533	101033	102533	102534	20/261	301405	402933	413932	401031	402534	408965	404138	404040	408562	406761	408665	408668	408265	414333	402031	405039	401434	406334	404036	413832	401932	404135	409961	403334	404765	413538
Substation	HALLANDALE	PLAYLAND	CYPRESS CREEK	ORCHID					FRONTON	FRONTON	62ND AVE	DEAUVILLE	MIRAMAR	SEABOARD	SUNILAND	IVES	IVES	BIRD			BALLER	BANYAN	WOODS	MUSTANG	GLADEVIEW	NATOMA	DOUGLAS	HAINLIN	IVES			JACKSON	НОГГУ НІГГ	MATANZAS	MATANZAS			OSLO OSLO	TULIP	GREENACRES	BELVEDERE	PLUMOSUS	GOLF	WESTWARD		ACREAGE	HOMELAND	HOMELAND	COVE	COBIA	CLEWISTON			ROEBUCK	WESTWARD	CHAMBERS	LINTON	GOLF		BULLO RELIVENERE	CATCHMENT	VIOLET
Region	Broward	Broward	Broward	Broward	Dade	Daue 2 - 1 -	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	West	West	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	North	North	North		North Fact	East	East	East	East	East	East	East r	East	East	East	East	East	East	East	East East	East East	East	East	East	East	East	East	Edst Fact	Fact	East

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 5 of 11

lan/ Irma / Matthew / Michael Outage									×		×	,	< >	<	>	<	×						×	×	:	×		× >	<						×	××	×	×	*	<	×	×		×	×	:	<>	<	×	;	×	×	×	×	×	< >	< ×	×	×				T	
2026 Estimated Costs Ma	64 603								61,791	45,344	33,564	51,521	42,935	091,980	38 785	45 440	39,989	35,572	39,626	33,449	108,414	56,712	106,416	75,223	235,374	154,114	110,378	81,458	101 701	101,701	88 103	65 100 65 100	180.523	119,316	128,748	101,404	145,559	91,844	48 948	78.306	106.701	93,722	78,584	104,290	115,944	2,377,365	46,118	30 179	94.837	33,414	177,325	109,092	161,340	67,103	135,244								3,750,000	
Total Customers		Γ	T				218 \$	1	1614 \$	1891	823	1233 \$	2338	0101	1805	2003	3362 \$	2118 \$	1806 \$	2611 \$	1292 \$	2894 \$	1493 \$	1317	4013	1264	2436	1228	2100	1806	3695	2773	4183 \$	3979 \$	1185 \$	1973	1682	490	2389	1956	1093	780 \$	1664 \$	1298 \$	1193 \$	319	1180	2683 5	1660 5	1501	984 \$	851 \$	1689 \$	148 \$	1883			T					923 5	
Commercial Customers	76	114	117	240	26	205	145	120	40	290	35	218	306	067	152	190	231	52	209	471	124	282	231	453	314	55	ACZ.	13	150	871	040	246	319	193	169	139	281	88	144	251	69	136	154	106	194	114	89	468	26	132	70	134	349	147	230	201	077	119	156	317	95	218	221 320	240
Residential Customers	485	2846	1951	2395	741	2317	71	2018	1567	1593	781	1015	1077	1494 0700	1740	1902	3129	2059	1596	2139	1148	2605	1229	858	3685	1200	2166	1213	0001	1775	2454	2303	3855	3763	1012	1832	1399	399	3903	1703	1019	643	1510	1192	666	204	0601	2215	1634	1368	913	717	1338	0	1653	000	511	592	1202	2018	996	1796	101	1001
Industrial Customers	c	2	. 61	0	0	2	5	11	7	ø	č Ž	0 1	5 G	50	2	7 +	- 2	7	t	1	20	7	ЗЗ	<u>ہ</u>	14	ъ ;	, 11	ç 4	4 5	21	- 1	24	6	23	4	2	2 0		ъ с	2	ر ۲	-	0	0	0	- I	44		òc	, -	1	0	2	-	00		n y	-10 10	2	2	0	0		>
Current Estimated Completion Year ⁽²⁾	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	9702	9702	2020	2020	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2026	2020	2020	2020	2020	2026	2026	2026	2026	2026	2026	2026	2020	2026	2026	2026	2027	2026	2027	2026	2020	2026	2026	2026	2026	2027	2027	2027	2020	2020	2026	2027	2026	2026	2026	2026 2026	7040
Estimated / Actual Start Year ⁽¹⁾	2024	2024	2024	2024	2024	2021	2024	2024	2024	2021	2022	2024	1202	2024	2024	2024	2024	2024	2024	2021	2024	2024	2024	2023	2024	2023	2022	2023	2024	202	2024	2023	2023	2024	2022	2021	2024	2023	2022	2022	2023	2024	2019	2022	2021	2024	2023	2023	2012	2023	2022	2024	2021	2021	2020	2023	2023	2021	2021	2025	2025	2025	2025 2025	2020
Feeder	414335	407867	405466	410533	405033	405036	402763	406764	404732	408161	401938	400232	405035	40002	110763	409863	408663	406863	413532	405266	500436	500632	502463	503138	504661	504964	505562	506035 506662	200002	506963	507467	508462	509062	510663	700733	702437	703538	705233	7 U3034 800832	801136	801735	802031	802739	804131	804139	804441	805033 005036	805136	805835	806141	806431	806532	807164	807232	807234	00/333	808833	808834	810434	905382	905392	908932	909832 a17102	31110
Substation	CORIA	TARTAN	CLINTMOORF	GRAMERCY	SANDALFOOT	SANDALFOOT	PORT MAYACA	ACREAGE	HILLSBORO	ROSS		DALURASI		WABASSO VIOLET			HOMELAND	KIMBERLY	VIOLET	ACME	HYDE PARK	CORTEZ	LABELLE	SOLANA	CASTLE	GOLDEN GALE	VAMO				CORKSCREW	GATEWAY	SUMMIT	KELLY	FAIRMONT	PEMBROKE	DEERFIELD BEACH		CUPAINS RAII MAY	FRONTON	62ND AVE	CUTLER	MARION	GARDEN	GARDEN	VENETIAN		IAWRENCE	CORAL REEF	DOUGLAS	HAINLIN	SUNILAND	PENNSUCO	MERCHANDISE	MERCHANDISE		SNAPPER CREEK	SNAPPER CREEK	BLUE LAGOON	Molino	Molino	Airport	Bonifay Bonifay	DUIIIdV
Region	Fast	East	Fast	East	East	East	East	East	East	East	East	East	East		Fact	Fact	East	East	East	East	West	West	West	West	West	West	West	West	West Noc+	West Most	West	West	West	West	Broward	Broward	Broward	Broward	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Dade	Northwest	Northwest	Northwest	Northwest	INULLINASI

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 6 of 11

Amended Appendix D: FPL 2026 Project Level Detail

Distribution Feeder Hardening Program - Capital Expenditures

Region	Substation	Feeder	Estimated / Actual Start Year ⁽¹⁾	Current Estimated Completion Year ⁽²⁾		Residential Customers	Commercial Customers	Total Customers	2026 Estimated Costs	lan/ Irma / Matthew / Michael Outage
Northwest	Chipley	909212	2025	2026	0	1401	244	1645	\$ 5,625,000	
Northwest	Sunny Hills	909592	2025	2026	0	1172	166	1338	\$ 10,500,000	
Total				265					\$ 310,811,570	

Distribution Automation

Region	Area	Number of Sites	Projected Start Year ⁽¹⁾	Projected Completion Year ⁽²⁾	Industrial Customers	Residential Customers	Commercial Customers	Total Customers	2024 Estimated Costs	
Northwest	Pensacola	10	2026	2026	N/A	N/A	N/A	N/A	\$ 500,000	N/A
Northwest	Ft Walton Beach	4	2026	2026	N/A	N/A	N/A	N/A	\$ 200,000	N/A
Northwest	Panama City	6	2026	2026	N/A	N/A	N/A	N/A	\$ 300,000	N/A
Total				20					\$ 1,000,000	

Combined Total for 2026			\$ 311,811,570	

<u>Notes:</u>

(1) Start date reflects estimated/actual year when initial project costs will begin to accrue

(e.g., preliminary engineering/design, site preparations, or customer outreach, if applicable).

(2) Completion year reflects the estimated/actual date when project will be completed.

																																							a		10	ς v	i e	, v	ų	r	γP	Υ	ςı	IC.	117	` '	י,		¢	ıg	Ċ	Q	, c	л				
/ Matthew / Michael Outage	×	×			:	×	× ×	×	×	: ×	~ ~	~ ~	< >	< >	< >	~ ~	< ×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	× >	< ×	< >	< >	< ×	×	×	×	×	×	×	×	×	<	< ×	< ×	×	×	×	×	×	< ×	×	×	×	× :	×	< ×	< ×	×	×	×	×	××
2026 Estimated Costs an!	\$ 23,743,700	\$ 31,995,714	\$ 23,553,265	\$ 30,344,056	\$ 23,856,706	5 318,804 e 9 304 044	\$ 9.600.231	316,678	\$ 618,275	859.494	\$ 15.415 303	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	416 760	6 001 000 0	02012C1 020	0.463 f80	s 879.757	\$ 939,772	\$ 1,933,649	\$ 51,286	\$ 607,178	\$ 2,045,608	\$ 6,617,097	\$ 378,650	\$ 1,104,582	\$ 414,865	\$ 230,453	\$ 605,993	\$ 12,736,656	\$ 427,244	8,111,48 8,704 6	s 1156 151	\$ 1,100,101 \$ 1040,636	848 006	3 754 292	\$ 41.607	\$ 577,540	\$ 688,584	\$ 10,547,175	\$ 574,265	\$ 430,798	\$ 1,221,742	\$ 1,953,591	\$ 536,244	\$ 204.469	\$ 24.777.491	\$ 452,283	\$ 12,106,232	\$ 13,730,162	\$ 875,778	5 15,697,294 e 782,823	\$ 580,330	\$ 396,304	\$ 13,109,678	\$ 5,196,158	\$ 11,725,362	5 13,100,500 e 0.370,036	s 3,010,000	\$ 28.982,196	39,745,481	\$ 9,429,547	\$ 20,890,313	\$ 17,212,404	\$ 32,512,086 \$ 40,409,911
Total Customers	1460	898	2184	3892	2031	328	548	245	498	545	1338	247	217	414	1407	144	198	831	537	257	590	279	96	270	769	407	151	554	396	275	8 F	1200	021	202	201 201	157	618	693	161	457	464	810	1333	406	307	210	1087	696	978	172	1268	1274	888	813	483	1123	600 600	1267	2319	918	1211	1682	2090	2112 2960
Industrial Custome	27	2	0	0	-	0 0		0	8				0	o -	4 0	4 C		0	0	0	-	0	-	-	2	0	1	3	3	6			0	0		0	0	0	2	4	0	-	0	4 -	4	•	1	4	6	0		o -	0	2	2	0	2	3	ŝ	2	1	0	4	10 24
Commercial Custome	53	313	174	364	301	-18 260		9	35	8	3 =		4	6/	3 2	3 1	40	8	141	20	124	88	16	46	127	10	25	50	156	16	₽ \$	2 <u>4</u>	2	34	F 2	22	115	12	72	101	20	¢	45	/1	× 5	166	51	19	129	- ;	151	107	114	20	12	99 !	4 F	6, 23	s «	244	15	198	26	210
Residential Custome	1380	583	2010	3528	1729	136	537	239	395	811	1324	240	212	930	1947	137	821	798	396	237	465	191	79	223	640	397	125	501	837	250	5 8	1184	1011	680	508	135	503	681	87	352	444	796	1291	6	322	544	1035	673	840	171	1116	1166	879	791	469	1059	119	12/19	2281	672	1195	1484	2060	2047
irrent Estim e. n Year ²¹	2027	2027	2027	2027	2027	2029	2000	2028	2028	8606	2002	2000	1202	1202	2000	ACUC	2000	2029	2027	2028	2029	2026	2027	2027	2028	2029	2027	2028	2027	2028	2002	1202	0202	0000	2002	2028	2029	2028	2026	2027	2029	2028	2028	2002	9000	2026	2027	2027	2027	2026	2027	2027	2027	2026	2026	2026	2027	9000	2022	2027	2027	2026	2027	2026
bmated / Actual vrr Year ¹	2023	2024	2024	2024	2024	2026	2025	2026	2026	2026	2026	20.25	VCUC	4202	SCOC	PC-UC	2026	2026	2025	2025	2026	2024	2025	2026	2026	2026	2026	2026	2025	2026	2025	9000	ache	aciic	2022	2025	2026	2026	2024	2026	2026	2026	2026	9000	8202	2020	2024	2024	2024	2022	2024	2024	2024	2024	2024	2023	2023	8000	2024	2024	2024	2024	2024	2024
2026 Project om lete. Late oun:	31	58	54	54	- 18	0 0	, c	0	0		ο σ	4		₽ \$: c	0		0	3	0	0	5		0	0	0	0	0	26	0	0 0				0 1	0	0	0	13	0	0	0	0	D 8	07	90 08	0	27	28	9	35	0	0	16	10	66	11 \$	47	- 23	67	28	47	20	24
Total Lateral Count	105	80	79	81	125	- 0	, t	00	21	27	: =	2 4		• ;		3 0	, <u>6</u>	. 6	4	6	0	\$	4	15	16	10	5	14	29	0			13	2 0	0 00	~	4	23	13	19	0	14	21	8 <u></u> c	07	30	44	31	38	108	94	56	34	16	10	39	13	27	- 8g	79	58	47	37	34
Feeder	504968	810062	906792	909672	808792	800938	806906	400732	400740	800435	RIMRRA	702138	100.201	10201	101007	196101	750,808	804531	702932	702935	800738	700233	706465	404336	804635	810264	805332	402835	807734	800248	805237	PEC MUR	806841	806831	706862	703436	807033	701732	704763	806534	803038	803034	803035	706366	002001	201639	808931	801735	802437	406764	400934	400431	402831	403231	409533	401033	404133	407934	208163	407167	101932	204262	503435	504965
Substation	GOLDEN GATE	AVOCADO	PINE FOREST GLF	N I		BEACON	BIRD	BOCA RATON	BOCA RATON	COCONUT GROVE	COUNTY LINE	CYPRESS CREEK	DRIFTWOOD	DRIETWOOD	EDGEWATER	FLAMINGO	GOLDEN GLADES	GRATIGNY	HAWKINS	HAWKINS	HIALEAH	HOLLYWOOD	HOLMBERG	IBM	INDUSTRIAL	INTERNATIONAL	KEY BISCAYNE	LANTANA	LEMON CITY	MIANI BEAUH	DSPORNE	PERRINE	RED ROAD	RED ROAD	REMSBURG	RESERVATION	ROSELAWN	STIRLING	STONEBRIDGE	SUNILAND	TROPICAL	TROPICAL	INUFICAL	VALENCIA	VENETIAN	PLANTATION	OLYMPIA HEIGHTS	62ND AVE	SOUTH MIAMI	AUKEAGE BELLE CLADE	LANTANA	HILLCREST	LANTANA	ATLANTIC	LAKE IDA	GREENACRES	OSBORNE	QUANTUM	HIELD	CRANE	EDGEWATER	BABCOCK	SOUTH VENICE	MURDOCK
Reglion	West	Dade	Northwest	Northwest	Daria	Dade	Dade	East	East	Dade	Dade	Broward	Broward	Broward	North	Broward	Dade	Dade	Broward	Broward	Dade	Broward	Broward	East	Dade	Dade	Dade	East	Dade	Dade	East	Dade	Dade	Dade	Broward	Broward	Dade	Broward	Broward	Dade	Dade	Dade	Dade	Broward	Dade	Broward	Dade	Dade	Dade	East	East	East	East	East	East	East	East	East	North	North	North	North	West	West

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 8 of 11

Region	Substation	Feeder	Total Lateral Count	2026 Projected Completed Lateral Count	Estimated / Actual Start Y _{ear⁽¹⁾}	Current Estimated Completion Year ²⁰	Residential Customers	Commercial Customers	Industrial Customers	Total Customers	2026 Estimated Costs	Ian/ Irma / Matthew / Michael Outage
Broward	HOLY CROSS	701939	13	13	2025	2026	1104	35	0	6811	\$ 11,409,365	×
Broward	DRIFTWOOD	702033	3	8	2024	2026	230	5	0	235	\$ 1,903,305	×
Broward	MINDMITT	708061	15	12	2024	2027	667	58	3	095	\$ 18,582,072	×
Broward	RESERVATION	703431	40	4	2023	2026	643	45	1	689	\$ 2.514.671	X
Broward	STONEBRIDGE	704762	1	1	2024	2026	1	81	0	82	\$ 351,573	x
Dade	SPOONBILL	811161	6	9	2025	2027	490	60	-	667	\$ 6,625,991	×
Dade	DADE	805433	25	8	2025	2027	1143	23	1	1167	\$ 7,951,189	x
North	RIVERTON	105761	15	11	2025	2027	476	60	35	193	\$ 13,225,823	X
East	LANTANA	402837	16	12	2024	2027	1392	39	2	1433	\$ 11,576,780	×
East	ALEXANDER	408565	58	29	2024	2027	1300	35	5	1340	\$ 20,508,396	x
Northwest	BRENTWD DIST GLF	906692	37	30	2025	2027	1221	195	0	1416	\$ 18,955,618	x
West	ROTONDA	505661	31	31	2024	2027	1674	149	11	1834	\$ 19,127,218	×
Total				1,096							\$ 717,258,286	

<u>Notes:</u> (1) Start den reflects estimated/actual year when initial project costs will begin to accrue (e.g., priminary engimeering/design, site preparations, or customre outreach, if applicable). (2) Completion year reflects the estimated/actual date when project will be completed.

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 9 of 11

Transmission Line Name	Projected Number of Wooden Structures to be Replaced	Estimated / Actual Start Year ⁽¹⁾	Current Estimated Completion Year ²³	Industrial Customers	Residential Customers	Commercial Customers	Total Customers	2026 Estimated Costs	lan/ Irma / Matthew / Michael Outage
BRENTWOOD-GOULDING 115KV [1515]: BRENTWOOD-HONEYSUCKLE	13	2026	2026	N/A	N/A	N/A	1873	\$ 1,300,000	
BRENTWOOD-GOULDING 115KV [1515]: HONEYSUCKLE-GOULDING	10	2026	2026	N/A	N/A	N/A	1873	1,000,000	
GULF CLEAN ENERGY CENTER-DEATON #1 115kV [4777] : JAY ROAD-DEATON (Phase 1 of 3)	5	2025	2026	N/A	N/A	N/A	15615	\$ 200,000	
HIGHLAND CITY-VERNON RADIAL 115kV [1544] : SUNNY HILLS TAP-SUNNY HILLS (TAP)	5	2023	2026	N/A	N/A	N/A	6036	\$ 500,000	
LAGUNA BEACH-WEST BAY RADIAL 115kV [1555] ; WEST BAY-MILLERS FERRY (Phase 5)	20	2026	2026	N/A	N/A	N/A	1454	\$ 2,000,000	
LAGUNA BEACH-WEST BAY RADIAL 115kV [1555] ; WEST BAY-MILLERS FERRY (Phase 6)	6	2026	2026	N/A	N/A	N/A	1454	\$ 000,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT (Phase 1 of 7)	17	2026	2026	N/A	N/A	N/A	0	\$ 1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT (Phase 2 of 7)	11	2026	2026	N/A	N/A	N/A	0	\$ 1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT (Phase 3 of 7)	21	2026	2026	N/A	N/A	N/A	0	\$ 1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT [Phase 4 of 7]	24	2026	2026	N/A	N/A	N/A	0	1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT (Phase 5 of 7)	21	2026	2026	W/W	N/A	N/A	0	\$ 1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT [Phase 6 of 7]	17	2026	2026	N/A	N/A	N/A	0	\$ 1,530,000	
MILLER BAYOU-WRIGHT 115kV [1549] : MILLER BAYOU-WRIGHT (Phase 7 of 7)	17	2026	2026	N/A	N/A	N/A	0	\$ 1,530,000	
REDWOOD-WEWA ROAD 115kV [1559]: REDWOOD-WEWA ROAD (Phase 1 of 2)	16	2025	2026	N/A	N/A	N/A	0	\$ 1,600,000	
REDWOOD-WEWA ROAD 115kV [1559]: REDWOOD-WEWA ROAD (Phase 2 of 2)	15	2025	2026	V/N	N/A	N/A	0	\$ 1,500,000	
WEWA ROAD-TYNDALL FIELD RADIAL #2 46kV [4650] : EAGLES NEST SOUTH-TYNDALL FIELD #2 (Phase 1 of 4)	13	2025	2026	W/W	N/A	N/A	973	\$ 1,200,000	×
WEWA ROAD-TYNDALL FIELD RADIAL #2 46kV [4660] : EAGLES NEST SOUTH-TYNDALL FIELD #2 (Phase 2 of 4)	13	2025	2026	N/A	N/A	N/A	973	\$ 1,200,000	×
WEWA ROAD-TYNDALL FIELD RADIAL #2 46kV [4660]: EAGLES NEST SOUTH-TYNDALL FIELD #2 (Phase 3 of 4)	13	2025	2026	N/A	N/A	N/A	973	\$ 1,200,000	×
WEWA ROAD-TYNDALL FIELD RADIAL #2 46kV [4660]: EAGLES NEST SOUTH-TYNDALL FIELD #2 {Phase 4 of 4}	13	2025	2026	N/A	N/A	N/A	973	\$ 1,200,000	×
BYRNEVILLE-EXXON 46kV [4610] : CENTURY-EXXON 115 - (Phase 2 of 3)	19	2022	2026	N/A	N/A	N/A	11	\$ 1,520,000	
BYRNEVILLE-EXXON 46kV [4610]: CENTURY-EXXON 115 - (Phase 3 of 3)	15	2022	2026	N/A	N/A	N/A	11	\$ 1,200,000	
SINALRECOVERY (GPC) 115kV [1561]: SINAL-RECOVERY (GPC) 115kV - (Phase 1 of 3)	14	2022	2026	N/A	N/A	N/A	-	\$ 1,080,000	
TBD: DESIGN, ENGINEERING AND PROCUREMENT FOR 2027 PROJECTS	0	2026	2026	N/A	N/A	N/A	0	\$ 2,303,277	
Total	312							\$ 30,913,277	

<u>Notes.</u> Start date reflects estimated/actual year when initial project costs will begin to accrue (e.g., preliminary engineering/design, s(15 pregraations, or customer outreach, if applicable). (2) Completion year reflects the estimated/actual date when project will be completed.

Docket No. 20250014-EI FPL 2026-2035 Storm Protection Plan Final Revised Appendix D, Page 10 of 11

Amended Appendix D: FPL 2026 Project Level Detai Substation Storm Surge / Flood Mitigation Program - Capital Expenditures

County	Substation	Substation Type	Estimated / Actual Start Year ⁽¹⁾	Current Estimated Completion Year ⁽²⁾	Industrial Customers	Residential Customers	Commercial Customers	Total Customers	2026 Estimat Costs	d lan/ Irma / Matthew / Michael Outage
Port Orange	Volusia	Distribution	2025	2026	18	13546	1765	15329	\$ 8,500	000 X
Total				1					\$ 8,500	000

Notes:

(1) Start year reflects the year when initial project costs will begin to accrue (e.g., preliminary engineering/design, site preparations, or customer outreach, if applicable).

(2) Completion year reflects the estimated/actual date when project will be completed.