

FILED 11/12/2025 DOCUMENT NO. 15043-2025 FPSC - COMMISSION CLERK

2548 BLAIRSTONE PINES DRIVE TALLAHASSEE, FLORIDA 32301

PHONE (850) 877-6555

www.sfflaw.com

November 12, 2025

Mr. Adam Teitzman, Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

Re: NC Real Estate Projects, LLC dba Grenelefe Utility

Request for Staff Assisted Rate Increase – Staff's Fifth Data Request

Docket No. 20250023-WS

Dear Mr. Teitzman,

Attached is the utility response to Staff Data Request #5 with attachments.

Should you or any members of the Commission staff have any questions in this regard, please let us know.

Sincerely,

SUNDSTROM & MINDLIN, LLP

/s/ F. Marshall Deterding

F. Marshall Deterding Of Counsel

FMD/brf

cc: Ja

Jacob Imig

Jennifer Augspurger

Ailynee Ramirez-Abundez

Gary Smith, II

Laura King

Marissa Ramos

Matthew Sibley

Sonica Bruce

Garret Kelley

Jared Folkman

Joshua Cohn

Jason Cox

Gary Morse

NC Real Estate Projects, LLC Docket # 20250023-WS

Response to Staff 5th Data Request November 12, 2025

1. It is staffs understanding that in order for Grenelefe to secure a loan to finance its pro forma projects, the Utility requires approval of its service availability charges. Please state whether the Utility has secured a loan following the Commission's approval of the Utility's service availability charges at the September 4, 2025 Agenda Conference.

In order for a bank to consider such a large loan, a permanent source of repayment must be in place. The Commission has, thus far, only provided interim fully refundable rates and service availability charges. While the establishment of interim rates increases in those rates and charges does get the banks to at least listen to the utility's proposal for a \$17-\$20 million loan, those lenders will not commit to permanent financing until final, non-refundable rates and charges are in place.

2. If the response to Data Request No. 1 is in the affirmative, please respond to the below questions:

N/A

- a. Please provide the name of the bank or financial institution from which the loan was secured.
- b. Please provide the amount of the loan.
- c. Please provide the interest rate of the loan.
- d. Please provide the terms of the loan.
- e. Please provide any supporting documentation from the financial institution related to the issuance of the loan.

Capital

- 3. If the response to Data Request No. 1 is in the negative, please respond to the below questions:
 - a. Please explain what steps have been taken, if any, to secure the loan.

Controller has spoken with 2 banks who do private utility loans and both want to consider the loan but Controller is unable to fully engage without a final permanent repayment solution in place. The loan being discussed is 75% Loan to Cost of the project, leaving the company with 25% to fund from it's capital. Controller is attempting to mirror the PSC guideline of 75% recapture of the cost.

b. Please identify when the Utility expects the loan to be secured.

Controller believes the loan can be secured within 30-60 days after the securing of final rates and Connection Fees.

c. Please state whether any expectations regarding the loan or its interest rate have changed as a result of the Commission's approval of service availability charges or due to any other factors. If so, identify and describe each such change in detail.

This loan is a business loan to a private entity whereas it is considered under ratios considered by banks for providing funding with ability to service the debt and mechanisms in place to repay the principal borrowed amount. As a private business, the borrowing amount, rate and duration are determined based upon the underwriting guidelines of the financial institution. The Banks have not disclosed those terms to the utility yet, pending the setting of the final rates and charges.

In order to complete our analysis, staff needs the following documentation related to non-potable water services for the test year:

4. Please provide an allocation for each of the following expenses: salaries and wages; payroll taxes; associated taxes other than income; purchased power; contractual services; and any other expenses related to non-potable water.

Utility does not now, and has never segregated expenses between Potable and Non Potable. Utility has provided the total of all of these costs in it's application for rate case.

5. Please identify specific National Association of Regulatory Utility Commissioners account number(s) of any plant items related to non-potable water and, if applicable, its allocation between potable and non-potable. Please specify if plant items are shared between potable and non-potables.

Potable water is associated with Well #6 and Well #10, exclusively. There are no shared equipment between the Potable and Non Potable. The utility anticipates that in the future all irrigation services provide by the utility will be through the potable water system.

6. Please provide the revenue amounts associated with both potable and non-potable water.

Utility does not track Potable versus Non-Potable revenues as the only water rate per the current tariff is the Potable rate which is used across both types of water services provided.

7. Please provide the number of gallons sold split between potable and non-potable water.

Utility does not track Potable versus Non-Potable gallons. The Non-Potable gallons sold are a negligible amount compared to the Potable gallons.

8. Pursuant to Rule 25-30. 565(2)(h), Florida Administrative Code (F.A.C.), please provide a detailed statement defining the capacity of the treatment facilities in terms of equivalent residential connections (ERCs) as used in developing the proposed service availability charges for both water and wastewater.

Please see the utility's letter of October 13, 2025 where this issue is discussed in detail.

9. Pursuant to Rule 25-30. 565(2)(j), F.A.C., please provide a list of outstanding developer agreements.

The Utility has no outstanding Developer Agreements in place.

10. Pursuant to Rule 25-30. 565(2)(k), F.A.C., for each developer agreement, please state whether the agreement is designed to result in contributed property, an estimated value of the contributed property to be added to the Utility's books, and a description of the property.

The Utility has no outstanding Developer Agreements in place.

11. In response to Staffs Fourth Data Request, the Utility indicated that the home sites in the Smokey Groves Development by Lennar Homes have been prepared into finished lots with the distribution and collection systems fully constructed. Please elaborate on the Utility's statement that Lennar Homes is presenting its items for acceptance by NC Real Estate Projects, LLC.

Lennar Homes is preparing 425 homesites as finished lots to erect homes upon. Their contractor doing the horizontal development (water & sewer lines, streets and other utilities) is finishing the infrastructure for presentation to the Utility to accept but the improvements have not been completed yet for presentation. Lennar Homes has erected 2 model homes on site and had water meters installed and it hooked up to the wastewater system put in place by the contractor, but the infrastructure installed has not been presented or accepted by the NC Real Estate Projects, LLC d/b/a Grenelefe Utility.

12. Please explain in detail whether the requested pro forma items increase the design capacity (not permitted capacity) of the water and wastewater treatment facilities.

Please see the utility's letter of October 13, 2025 where this issue is discussed in detail.

13. Please provide a service availability policy.

Builder shall apply for connection to the Utility for Water and Wastewater Services prior to constructing any structure. This application can be either for a single ERC or a conglomerate of a total number of ERCs for a builder to construct numerous properties. Prior to requesting meters be set at the property, the Service Accessibility Fee must be paid. Any ERC granted is for 2 services into the structure, Potable and Irrigation; thus each structure will receive 2 water meters and will be charged for the placement of 2 meters \$1,200 (2*\$600). The water line feeding the structure with have a U branch for the installation of both meters so the Utility can visit the site and install the meters in a single visit.

14. In the Utility's application for extension of territory, the Utility indicated it had 984

connections remaining in its existing territory and 1,080 connections in the new service area for a total of 2,064 connections. Based on the Utility's methodology of using only new connections in determining its service availability charge, please explain in detail why the Utility is only using 1,200 connections in its calculation of its connection charge.

Please see the utility's letter of October 13, 2025 where this issue is discussed in detail.

15. Provide the design capacity (not permitted capacity) for the water treatment plant according to the Florida Department of Environmental Protection (DEP). As part of this response, provide all supporting documentation.

Please see the utility's letter of October 13, 2025 where this issue is discussed in detail.

16. Provide the design capacity (not permitted capacity) for the wastewater treatment plant according to the DEP. As part of this response, provide all supporting documentation.

Please see the utility's letter of October 13, 2025 where this issue is discussed in detail.

17. Explain what steps Grenelefe is currently taking, or is planning to take, to address the 46 percent EUW contained in the Staff Report.

The Utility is currently utilizing outdated manual read meters that are beyond their useful lives, many have crossed the 1,000,000 mark and have started over. Thus, the utility believes they are not properly reporting the water used which causes our water usage billed to be lower than the actual amount used. These meters being beyond their useful life are also visually read by human beings which also injects the problem of human error. We acknowledge that there is a high loss of prepared water to billed water usage but it is caused in significant part by the over their useful life water meters and the impact of human error in reading of the meters. Thus, as you see from the spreadsheet comparison updating to digital water meters (estimated \$1,095,000 investment for current customer replacement of water meters) will improve accuracy, availability of meter reads from the cellular service because the water meters will function properly providing accurate meter counts the customers will be billed the proper amount of usage and spillage will be eliminated.

Our staff believes 90-95% of the customers' current manual water meters have recorded over 1 million gallons through the meters and they are not reliable and are a large contributing factor to the discrepance between prepared water gallons and usage billed gallons. This facility is over 50 years old and no owner before us put money into the water meters.

In addition, the repeated line breaks and the inability to isolate such breaks properly (because of non-working valves) leads to additional water loss and required additional flushing. Therefore, the proposed replacement of the outdated and non-functioning valves is also key to resolving the EUW issue.

NC Real Estate Projecs, LLC dba Grenelefe Utility Analysis of Unacounted for Water 10/15/2025

	Po	lk BOH MOR Repor	t		Invoi	ced Gallons	
		Gallons Drawn					
	Well#6	Well #10	Total	Difference	Potable	Irrigation	Total
2023							
October	8,520,867	227,000	8,747,867	99.56%	3,438,180	5,270,922	8,709,102
November	87,120,000	25,000	87.145,000	10.87%	3,643,482	5,830,121	9,473,603
December	8,931,000	47,000	8,978,000	87.16%	436,453	7,388.688	7,825,141
2024							
January	9,663,000	80,000	9,743,000	32.87%	3,202,987		3,202,987
February	9,779,000	5,000	9,784,000	32.74%	3,202,987		3,202,987
March	11,119,200	346,000	11,465,200	32.48%	3,723,590		3,723,590
April	10,134,500	63,700	10,198,200	24.94%	2,152,370	390,660	2,543,030
May	9,384,000	243,000	9,627,000	45.79%	3,723,590	684,532	4,408,122
June	1,600,000	2,430,000	4,030,000	84.37%	2,828,800	571,460	3,400,260
July	5,716,000	5,076,000	10,792,000	44.50%	3,538,290	1,264,028	4,802,318
August	7,477,000	4,606,000	12,083,000	33.38%	3,251,140	782,680	4,033,820
September	6,571,034	573,000	7,144,034	68.68%	3,190,330	1,716,138	4,906,468
October	8,158,000	1,653,000	9,811,000	72.48%	3,687,410	3,423,663	7,111,073
November	9,521,000		9,521,000	64.42%	3,764,130	2,369,388	6,133,518
December	6,801,000	1,056,000	7,857,000	59.29%	3,233,290	1,425,330	4,658,620
2025							
January	8,530,000	279,000	8,809,000	52.32%	3,410,270	1,198,290	4,608,560
February	7,143,000		7,143,000	44.96%	3,211,570		3,211,570
March	6,808,364		6,808,364	47.27%	3,218,410		3,218,410
April	10,161,500	63,700	10,225,200	38.27%	3,913,340		3,913,340
May	7,191,000	70,000	7,261,000	52.74%	3,829,490		3,829,490
June	8,012,000		8,012,000	43.71%	3501930		3,501,930

18. Provide the rates the customers were being charged when Grenelefe was bought on May 22, 2022.

See Tariff Sheet in place May 22, 2022.

19. Provide the rates the customers were being charged when Grenelefe filed its application for a Staff-Assisted Rate Case on January 10, 2025.

See Tariff Sheet in place January 10, 2025 (with index raised rates).

20. Explain whether Grenelefe was aware, prior to the customer meeting, of the issues regarding excessive Boil Water Notices (BWN) expressed by customers at the customer meeting. If so, what actions has Grenelefe taken to reduce or eliminate the causes of the BWNs.

Utility staff are aware of the BWN and are working diligently to improve the facility so that BWN do not occur so often or have protracted length due to issues that must be addressed. Grenelefe Utility is more than 50 years old and is in need of vital improvements to its meters, hydrants, equipment, repairs to its lift stations, replacement of valves to isolate affected areas of issues that cause BWN such as line breaks or malfunctioning valves. Staff gets to issues as they arise and the goal is to only have the BWN in place as long as it must be; thus, if it is a part that requires replacement, it is ordered with expedited urgency so it can get in place as soon as possible.

21. Explain whether Grenelefe was aware, prior to the Customer meeting, of the issues regarding sewage overflows entering customer's homes. If so, what actions has Grenelefe taken to correct the cause of those overflows?

Sewage overflows into customer homes is a rare event and when it occurs, the Homeowner must attempt to clear their line to the Utility first. If their plumber fails to clear the line and the Utility must vacuum or dig to discover if a tree root has grown into the line at which time the Utility will need to determine if the tree is on the customer's property or the Utilities. This is a legal item that must be determined so the Utility is not encroaching on the customer's property. It also determines who is responsible for the expense. The utility has had 2 previous situations. We followed these same steps and resolved the situation appropriately.

22. Did Grenelefe reach out to each customer that commented at the customer meeting? If so, when was contact made, and how were the customer's concerns addressed? If not, please explain why.

Yes. In early October the utility responded to each customer who filed comments. A copy of the utility response was provided to the PSC.

23. Provide any documentation from the DEP that states the DEP is requiring the Utility to increase the permitted capacity of its wastewater treatment plant.

The Utility is not being required directly by the DEP to increase capacity of the wastewater treatment facilities. However, the consulting engineer advised that in order to meet the needs of the system going forward, it would be imprudent of the utility not to combine expansion of capacity to meet the next 5 years expected demand, with the DEP required improvements. It would be substantially more costly and inefficient to construct these facilities separately. The additional capacity included in the proposed improvements is only that which is expected to be needed for the next 5 years increased demand at most.

24. Refer to Grenelefe's response to Staffs First Data Request, No. 9. Explain why June 2024, July 2024, and August 2024 have the same amount of water usage for each day for each month in the Utility's Monthly Operation Reports. If this is incorrect, explain why and if the DEP has been made aware of this.

These are not the same. See attached MORs for the months of June, July and August, 2024

25. Refer to Grenelefe's response to Staff's Fourth Data Request, No. 17. Provide a copy of the entire "ALTERNATIVES ANALYSIS FOR TREATMENT PLANT EXPANSION AND UPGRADE For Grenelefe Resort Wastewater Treatment Plant Polk County, Florida" referenced in this response.

See attached Report. It should be noted that this report is marked as a "Draft" It was never completed because the management in conjunction with the consulting engineer decided to move directly to SBR design with concrete tankage. This report was superceded by the design permitting report sent to FDEP which summarized the assessment of alternatives.

This Report was preliminary in nature when drafted and the cost estimates were not finalized. As such, this draft suggests a lower cost than the ultimate estimate from the design engineer. Major factors which caused the cost estimate to rise were: (1) This report focused on what to do with the treatment plant. It did not include rebuilding the effluent disposal system; (2) The original estimate was looking at glass fused to steel tankage; Based on input from operations personnel, it was determined that the construction should utilize concrete instead; (3) These costs were based on preliminary concept design rather than more developed design as was undertaken in the estimate ultimately provided to the PSC from the design engineer.

26. Provide an estimate of how long Grenelefe's proposed meter replacement program will take. As part of your response, please include an estimated beginning and ending date for the program.

Replacement of Existing Customer's meters with digital meters will take 6-8 weeks once it begins. This cost is expected to be between \$1.35-1.4 Million to replace every meter for the existing customers. Again, a finalized approval of the investment, authorized recovery, and financing for the investment is needed so this can begin.

27. Refer to Grenelefe's response to Staffs Fourth Data Request, No. 24. Provide a copy of the Well #10 hydro tank inspection report delivered to Grenelefe on August 28, 2025. As part of this response, provide who performed the hydro tank inspection.

See Report attached.

28. In response to Staffs Fourth Data Request, No. 6. The Utility indicated its pro forma project to replace water valves would be completed by October 31, 2026. Provide the number of water valves that have been replaced since October 31, 2024.

We have replaced 4 valves thus far as they had frozen and were non operable. Our estimate of replacement of the 100 valves throughout the Utility is to take 10 years to complete all the replacements, doing 10 per year. We will try to do more a year to speed along the replacements because these valves serve to allow for areas of the system to be cut off and not affect the overall Utility system, thus making BWN less prevalent and less severe.

29. Provide copies of the latest inspection reports for all 5 lift stations. As part of this response, provide who performed the lift station inspections.

See attached report of Lift Stations.

30. Provide the name and position of the Grenelefe employees that would be assigned to the two requested trucks.

Operator – Aaron Weber Project Manager – Marlon Andrade

31. Provide the name and position of the Grenelefe employees that would be assigned to the three requested golf carts.

Billing Manager – Joyce Roberts Meter Reading Person 1 - Felipe Meter Reading Person 2 – Marlon Andrade

32. Grenelefe was required to file a proposal with the most feasible option to bring Total Nitrogen limit and Total Phosphorus limit into compliance regarding the Wastewater Treatment Plant with DEP prior to September 30, 2025. Please provide a copy of the proposal required to be filed.

See attached BMAP from the engineer.

Response to Staff Data Request #5, ITEM #24

See page 4 for instructions.

I. General Informati	on for the Month/Year of: June 2024											
A. Public Water System	ı (PWS) Information											
PWS Name: Grenelefe	Resort			PWS Identification Nu	mber: 6530692							
PWS Type:	Community Non-Transient Non-Communit	y Transie	nt Non-Community	☐ Consecutive								
Number of Service Co	nnections at End of Month: 1234		Total Population S	Served at End of Month: 2114								
PWS Owner: Scott Ho	use											
Contact Person: Natha				itle: Head of Operations								
	ng Address:10389 Leisure Ln		City: Lakewales	State: Fl	Zip Code: 33898							
	hone Number: (863) 368-0771		Contact Person's F	ax Number: (863) 696-3502								
Contact Person's E-Mail Address: nathaneckstein@bentechllc.net												
B. Water Treatment Plant Information												
Plant Name: WTP-1 Well #6 WTP-2 Well #10 Plant Telephone Number:												
Plant Address: 3200 St			City: Haines City	State: Fl	Zip Code: 33844							
Type of Water Treated		chased Finished V	Water									
	Day Operating Capacity of Plant, gallons per day: 1	080000	T									
	bsection 62-699.310(4), F.A.C.): C			absection 62-699.310(4), F.A.C.): C								
Licensed Operators	Name	License Class	License Number	Day(s)/Shift(s	s) Worked							
Lead/Chief Operator:	Nathan Eckstein	С	18805	7								
Other Operators:	Matt Chandley	С	24587	2								
	Aaron Weber	С	24587	18								
1												
II. Certification by L	ead/Chief Operator			t								
	r treatment plant operator licensed in Florida, am t	he lead/chief one	rator of the water tr	eatment plant identified in Part Lof	this report. I certify that the							
information provided in	this report is true and accurate to the best of my k	nowledge and be	lief. I certify that a	Il drinking water treatment chemica	als used at this plant conform to							
	dard 60 or other applicable standards referenced in											
plant were prepared each	ch day that a licensed operator staffed or visited thi	s plant during the	e month indicated al	pove: (1) records of amounts of che	micals used and chemical feed							
rates; and (2) if applical	tes; and (2) if applicable, appropriate treatment process performance records. Furthermore, I agree to provide these additional operations records to the PWS owner so the PWS											
owner can retain them,	wher can retain them, together with copies of this report, at a convenient location for at least ten years.											
Matthew Chandley 7	7/9/2024 Matth	ew D. Chandley		C - 2458	7							
gnature and Date Printed or Typed Name License Number												

PWS	PWS Identification Number: 6530692 Plant Name: WTP-1 Well #6													
Ш	Daily Da	ta for th	e Month/Ye	ar of: June	2024				·····					
					on/Removal: *	☐ Free	Chlorine		Chlorine	Dioxide	Пс	zone	☐ Combin	ed Chlorine (Chloramines)
		t Radiatio		her (Describ		K					<u></u> ~			(emerumos)
Type	of Disin	fectant R	esidual Mair	ntained in D	istribution Syst	em:	Free Chle	orine	☐ Cor	nbined C	hlorine (Chlorami	nes)	Chlorine Dioxide
				C C	T Calculations, or	UV Dose, to De	monstrate F	our-Log	Virus Inactiv	ation, if Ap	plicable*			
İ	Days				1	CT Calcul				ı	UV	Dose		
	Plant Staffed				Lowest Residual	Disinfectant	Lowest CT Provided	Ì					Lowest	
	or				Disinfectant	Contact Time	Before or						Residual Disinfectant	
i	Visited				Concentration	(T) at C	at First	1		Minimum	Lowest	Minimum	Concentration	
	by		Net Quantity		(C) Before or at	Measurement	Customer	Temp		CT		UV Dose		Emergency or Abnormal Operating
	Operator	Hours	of Finished	5 1 51	First Customer	Point During	During	of	pH of		UV Dose,			Conditions; Repair or Maintenance Work that
the Month	(Place "X")	Plant in	Water Produced, gal	Peak Flow Rate, gpd	During Peak Flow, mg/L	Peak Flow, minutes	Peak Flow, mg-min/L	Water. °C	Water, if	mg- min/L	mW- sec/cm ²	mW-	Distribution	Involves Taking Water System Components
1	X	24	Froduced, gar	Kate, gpu	Flow, mg/L	minutes	mg-mm/L		Applicable	min/L	sec/cm ²	sec/cm ²	System, mg/L	Out of Operation
2	X	24												
3	Х	24												
4	X	24	321000		1.7								2.1	
5	X	24	383000		1.4								1.0	
6	X	24	218000		1.6								1.8	
7	X	24	355000		2.2								2.6	
8	X	24	354000											
9	X X	24 24	428000 358000		2.2								2.5	
11	X	24	313000		2.2								2.6	
12	X	24	359000		2.0								2.3 2.4	
13	X	24	272000		2.1								2.5	
14	X	24	336000		2.4								2.6	
15	Х	24	345000		2.6								2.6	
16	X	24	345000											
17	X	24	325000		2.5								2.8	
18	X	24	0		3.4								2.0	
19	X	24	0											
20 21	X X	24 24	0		3.3			-					2.1	
22	X	24												
23	X	24												
24	X	24	0		2.8								2.0	
25	X	24	27000		2.6								1.9	
26	X	24	239000		2.8								2.1	
27	X	24	284000		2.5								2.7	
28	X	24	156000		1.9								2.3	
29	X	24	447000		2.1								2.4	
30	X	24	447000											
31 Total	1	0	1,600,000					L						
Averag			1,600,000											

447,000

Maximum

^{*} Refer to the instructions for this report to determine which plants must provide this information.

PWS	PWS Identification Number: 6530692 Plant Name: WTP-2 Well #10													
m. r	aily Da	ta for th	e Month/Ye	ar of: June	2024									
Mean	s of Ach		our-Log Viru		on/Removal: *	⊠ Free	Chlorine		Chlorine	Dioxide		zone	Combin	ed Chlorine (Chloramines)
					istribution Syst	em:	Free Chlo	orine	☐ Cor	nbined C	hlorine (Chlorami	nes)	Chlorine Dioxide
					T Calculations, or		monstrate Fo	our-Log						
	Days		į		γ	CT Calcul				T	UV	Dose		
	Plant Staffed or				Lowest Residual Disinfectant	Disinfectant Contact Time	Lowest CT Provided Before or					:	Lowest Residual Disinfectant	
Day of	Visited by Operator	Hours	Net Quantity of Finished		Concentration (C) Before or at First Customer	(T) at C Measurement Point During	at First Customer During	Temp of	pliof	Minimum CT Required	Lowest Operating UV Dose.	UV Dose	Concentration at Remote Point in	Emergency or Abnormal Operating Conditions; Repair or Maintenance Work that
the Month	(Place "X")	Plant in	Water Produced, gal	Peak Flow Rate, gpd	During Peak Flow, mg/L	Peak Flow,	Peak Flow, mg-min/L	Water, °C	Water, if Applicable	mg- min/L	mW- sec/cm ²	mW- sec/cm ²	Distribution System, mg/L	Involves Taking Water System Components Out of Operation
1	X	24	280000											
2	X	24	280000											
3	X	24	393000		1.2								1.0	
4	X	24	114000		1.5								1.2	
5	X	24	114000							ļ				Offline for Leak Repair
6 7	X	24	114000											Offline for Leak Repair
8	X	24 24	114000 114000											Offline for Leak Repair Offline for Leak Repair
9	X	24	114000		1.5								2.5	Offline for Leak Repair
10	X	24			1.0									Offline for Leak Repair
11	X	24												Offline for Leak Repair
12	X	24												Offline for Leak Repair
13	X	24												Offline for Leak Repair
14	X	24	0		1.6								1.4	Offline for Leak Repair
15	X	24	0		1.6								1.8	Offline for Leak Repair
16	X	24	0		1.5								1.7	Offline for Leak Repair
17	X	24	0		1.6								1.8	Offline for Leak Repair
18	X	24	287000		2.0								1.8	
19	X	24	332000		2.2								1.7	
20	X	24	303000		1.9								2.1	
21	X	24	417000		2.0								1.7	
22	X	24	271000		2.1								2.2	
23	X	24	270000											
24	X	24	238000		2.5			-					2.0	
25	X	24	299000		2.1			-					1.9	
26	X X	24	13000					-			-			
27 28	X	24	0		1.9								2.2	Diant Office
28	X	24								-	 			Plant Offline
30	X	24												Plant Offline Plant Offline
31		0												rtant Online
Total	L		2,430,000	······································	.1	1	<u></u>	1	I	1	<u> </u>	1	1	I

Average

Maximum

179,682

417,000

PWS Identification Number: 6530692	Name: WTP-1 Well #6 WTP-2 Well #10
IV. Summary of Use of Polymer Containing Acrylamide, Polymer	Containing Epichlorohydrin, and Iron or Manganese Sequestrant for the Year: * June 2024
A. Is any polymer containing the monomer <u>acrylamide</u> used at the water follows:	r treatment plant? No Yes, and the polymer dose and the acrylamide level in the polymer are as
Polymer Dose, ppm =	Acrylamide Level, % [†] =
B. Is any polymer containing the monomer <u>epichlorohydrin</u> used at the polymer are as follows:	water treatment plant? No Yes, and the polymer dose and the epichlorohydrin level in the
Polymer Dose, ppm =	Epichlorohydrin Level, % [†] =
C. Is any iron or manganese sequestrant used at the water treatment plan	nt? No Yes, and the type of sequestrant, sequestrant dose, etc., are as follows:
Type of Sequestrant (polyphosphate or sodium silicate):	
Sequestrant Dose, mg/L of phosphate as PO ₄ or mg/L of silicate as SiO ₂	2 ==
If sodium silicate is used, the amount of added plus naturally occurring	silicate in mg/L as $SiO_2 =$

Page 4 DEP Form 62-555.900(3)Alternate

^{*} Complete and submit Part IV of this report only with the monthly operation report for December of each year and only for water treatment plants using polymer containing acrylamide, polymer containing epichlorohydrin, and/or an iron and manganese sequestrant.

† Acrylamide and epichlorohydrin levels may be based on the polymer manufacturer's certification or on third-party certification.

MONTHLY OPERATION REPORT FOR SUMMATION OF FINISHED-WATER PRODUCTION BY CWSs THAT HAVE MULTIPLE TREATMENT PLANTS

Daily Finished -Water Production for the Month/Year of: June 2024													
Community Water System (CWS) Name: Grenelefe Resort Public Water System (PWS) Identification Number: 653-0692													
Public Water Sys				·				1		·			
	Plant 1 Name:		Plant 3 Name:	Plant 4 Name:	Plant 5 Name:	Plant 6 Name:	Plant 7 Name:	Plant 8 Name:	Plant 9 Name:	Plant 10 Name:	┧ ᆵ ╽		
	Well #6	Well #10	Down	ittad Mauinana	Doy Oneveting Co	pacity of Each Plan					Total		
	1080000	1080000	rerm	itted Maximum	Day Operating Ca	pacity of Each Plai	nt, ganons per day		1	T			
Day of Month	1080000	1080000		Net Quantity o	f Finished Water F	roduced by Each P	lant, gallons		<u> </u>	<u> </u>	Total		
1		280000		Tito Quantity o	111111111111111111111111111111111111111						280,000		
2		280000									280,000		
3		393000		-				·			393,000		
4	321000	114000									435,000		
5	383000	114000									497,000		
6	218000	114000		1							332,000		
7	355000	114000									469,000		
8	354000	114000		-							468,000		
9	428000			-							428,000		
10	358000										358,000		
11	313000										313,000		
12	359000							-			359,000		
13	272000										272,000		
14	336000	0						<u> </u>			336,000		
15	345000	0		<u> </u>							345,000		
16	345000	0		<u> </u>							345,000		
17	325000	0									325,000		
18	0	287000									287,000		
19	0	332000									332,000		
20	0	303000									303,000		
21		417000						1			417,000		
22		271000									271,000		
23		270000							***************************************		270,000		
24	0	238000									238,000		
25	27000	299000							-	***************************************	326,000		
26	239000	13000									252,000		
27	284000	0									284,000		
28	156000										156,000		
29	447000										447,000		
30	447000										447,000		
31											0		
Total	6,312,000	3,953,000						<u> </u>			10,265,000		
Avg.	263,000	179,682									331,129		
Max.	447,000	417,000									497,000		

See page 4 for instructions.

I. General Informati	on for the Month/Year of: July 2024										
A. Public Water System	n (PWS) Information										
PWS Name: Grenelefe	Resort Utility Inc			PWS Identification Nu	mber: 6530692						
PWS Type:	Community Non-Transient Non-Communi	ty Transie	nt Non-Community	Consecutive							
Number of Service Co	nnections at End of Month: 1234		Total Population S	Served at End of Month: 2114							
PWS Owner: Scott Ho	use										
Contact Person: Natha	n Eckstein		Contact Person's T	itle: Head of Operations							
Contact Person's Maili	ng Address:10389 Leisure Ln		City: Lakewales	State: Fl	Zip Code: 33898						
Contact Person's Telephone Number: (863) 368-0771 Contact Person's Fax Number: (863) 696-3502											
Contact Person's E-Mail Address: nathaneckstein@bentechllc.net											
B. Water Treatment Pla											
	Vell #6 WTP-2 Well #10			Plant Telephone Numb	er:						
Plant Address: 3200 S			City: Haines City	State: Fl	Zip Code: 33844						
Type of Water Treated		chased Finished V	Water								
	Day Operating Capacity of Plant, gallons per day:	1080000									
	bsection 62-699.310(4), F.A.C.): C			ibsection 62-699.310(4), F.A.C.): C							
Licensed Operators	Name	License Class	License Number	Day(s)/Shift(s	s) Worked						
Lead/Chief Operator:	Nathan Eckstein	С	18805	7							
Other Operators:	Matt Chandley	С	24587	2							
1	Aaron Weber	С	24587	18							
1											
I											
II. Certification by I	ead/Chief Operator										
	r treatment plant operator licensed in Florida, am t	he lead/chief one	rator of the water tr	eatment plant identified in Part Lof	this report I certify that the						
information provided in	this report is true and accurate to the best of my k	mowledge and be	lief I certify that a	Il drinking water treatment chemics	als used at this plant conform to						
NSF International Stand	dard 60 or other applicable standards referenced in	subsection 62-55	55.320(3), F.A.C. I	also certify that the following addition	tional operations records for this						
plant were prepared ead	th day that a licensed operator staffed or visited th	is plant during the	month indicated al	pove: (1) records of amounts of che	micals used and chemical feed						
rates; and (2) if applica	ble, appropriate treatment process performance rec	cords. Furthermo	re, I agree to provid	e these additional operations record	ls to the PWS owner so the PWS						
owner can retain them,	ner can retain them, together with copies of this report, at a convenient location for at least ten years.										
Matthew Chandley 8	3/1/2024 Matth	iew D. Chandley		C - 2458'	7						
Printed or Typed Name License Number											

PWS	PWS Identification Number: 6530692 Plant Name: WTP-1 Well #6													
111.5	Daily Da	ta for th	e Month/Ye	ar of: July	2024									
					on/Removal: *	□ Free	Chlorine		Chlorine	Dioxide	Пс)zone	☐ Combin	ed Chlorine (Chloramines)
U	ltraviole	t Radiatio	on 🔲 Ot	her (Describ	e):	_					_		learned.	
Type	of Disin	fectant R	esidual Mair		istribution Syst		Free Chle			nbined C		Chlorami	nes)	Chlorine Dioxide
				C	Γ Calculations, or			our-Log	Virus Inactiv	ation, if Ap				
	Days				T	CT Calcul		1		1	UV	Dose		
	Plant Staffed				Lowest Residual	Disinfectant	Lowest CT Provided						Lowest Residual	
	or				Disinfectant	Contact Time	Before or						Disinfectant	
	Visited				Concentration	(T) at C	at First			Minimum	Lowest	Minimum	Concentration	
	by		Net Quantity		(C) Before or at	Measurement	Customer	Temp.		CT	Operating	UV Dose	at Remote	Emergency or Abnormal Operating
	Operator	Hours	of Finished Water	D1- E1-	First Customer	Point During	During	of	pH of		UV Dose.		Point in	Conditions: Repair or Maintenance Work that
the Month	(Place "X")	Plant in	Produced, gal	Peak Flow Rate, gpd	During Peak Flow, mg/L	Peak Flow, minutes	Peak Flow, mg-min/L	Water, °C	Water if Applicable	mg- min/L	mW- sec/cm ²	mW- sec/cm ²	Distribution System, mg/L	Involves Taking Water System Components Out of Operation
1	X	24	265000	Rate, gpu	2.4	minutes	mg-mm/L		Applicable	IIIIIV	Sec/CIII	SCC/CIII	2.6	Out of Operation
2	X	24	500000		2.3								2.5	
3	X	24	0		2.4								2.4	
4	X	24	0											
5	X	24	0		2.5								2.7	
6	X	24	0											
7	X	24	341000		2.3								2.1	
8	X	24	0		2.1								2.2	
9	X	24	0											
10	X	24	0					ļ						
11	X	24	0 344000											
13	X	24	337000		2.7								2.0	
14	X	24	337000		Z.1								2.0	
15	X	24	273000		2.5			<u> </u>					2.7	
16	X	24	373000		1.5								1.7	
17	X	24	326000		2.1								2.3	
18	X	24	311000		1.8								2.1	
19	X	24	509000		2.3								1.8	
20	X	24	342000		2.2								1.9	
21	X	24	224000		2.0								2.1	
22	X	24	148000		1.4								1.8	
23	X	24	0		2.0					1			2.3	
24	X	24	0		2.0									
26	X	24	357000		3.6			 					2.9	
27	X	24	356000		3.2			 					2.5	
28	X	24	371000		3.0						 		2.6	
29	X	24	0		4.4			1					3.8	
30	X	24	2000		2.9		<u> </u>	1					3.2	
31	Х	24	0		4.0								1.6	
Total			5,716,000				•		•	*		·	•	
Averag	ge		184,387											

509,000

^{*} Refer to the instructions for this report to determine which plants must provide this information.

PWS	PWS Identification Number: 6530692 Plant Name: WTP-2 Well #10													
III. Daily Data for the Month/Year of: July 2024														
					on/Removal: *	□ Free	Chlorine		Chlorine	Dioxide	Пс	zone	Combin	ned Chlorine (Chloramines)
		t Radiatio		her (Describ		_			-					(,
Type	of Disin	fectant R	esidual Mair	tained in D	istribution Syst	em: 🖂	Free Chle	orine	ПСот	nbined C	hlorine (Chlorami	nes)	Chlorine Dioxide
					T Calculations, or	UV Dose, to De	monstrate Fe						j	
	Days					CT Calcul		1			UV	Dose		
	Plant				, , ,	70.1.6	Lowest CT						Lowest	
	Staffed or				Lowest Residual Disinfectant	Disinfectant Contact Time	Provided Before or						Residual Disinfectant	
	Visited				Concentration	(T) at C	at First			Minimum	Lowest	Minimum	Concentration	
!	by		Net Quantity		(C) Before or at	Measurement	Customer	Temp		CT	Operating	UV Dose	at Remote	Emergency or Abnormal Operating
	Operator	Hours	of Finished		First Customer	Point During	During	of	pH of	Required.	UV Dose,	Required,	Point in	Conditions; Repair or Maintenance Work that
the	(Place	Plant in	Water	Peak Flow	During Peak	Peak Flow,	Peak Flow,	Water,	Water, if	mg-	mW-	mW-	Distribution	Involves Taking Water System Components
Month 1			Produced, gal	Rate, gpd	Flow, mg/L	minutes	mg-min/L	°C	Applicable	min/L	sec/cm ²	sec/cm ²	System, mg/L	Out of Operation
2	X	24 24	267000					-						
3	X	24	342000		2.2								2.8	
4	X	24	259000		1.5			†					2.0	
5	X	24	259000		1.4			-					2.2	
6	X	24	259000											
7	X	24	0		2.0								2.2	
8	X	24	255000		1.8								2.3	
9	X	24	296000		2.4								2.6	
10	X	24	372000		2.0								2.2	
11	X	24	215000		3.4								3.5	
12	X	24	20000		1.7								1.9	
13	X	24	20000		1.1								2.0	
14	X	24	20000											
15	X	24	39000		0.7						ļ		1.4	
16 17	X	24 24	0		1.5								1.7	
18	X	24	0		1.5								2.0	
19	X	24	0		1.4								2.4	
20	X	24	0		1.5								1.9	
21	X	24	0		1.2								1.4	
22	X	24	311000		1.1								1.2	
23	X	24	229000		2.1								2.3	
24	X	24	420000		1.7								2.1	
25	X	24	285000		2.0								2.2	
26	X	24	285000		2.5								2.2	
27	X	24	285000											-
28	X	24	0		2.5							ļ	2.5	
29	X	24	284000		2.3						<u> </u>		2.5	
30	X	24 24	354000 0		2.2								2.6	
Total			5,076,000					1		L	l	L		
Averag	ze		163,742											

Maximum

420,000

PWS Identification Number: 6530692 Plant Name	e: WTP-1 Well #6 WTP-2 Well #10
IV. Summary of Use of Polymer Containing Acrylamide, Polymer Con	taining Epichlorohydrin, and Iron or Manganese Sequestrant for the Year: * July 2024
A. Is any polymer containing the monomer <u>acrylamide</u> used at the water treat follows:	tment plant? No Yes, and the polymer dose and the acrylamide level in the polymer are as
Polymer Dose, ppm =	Acrylamide Level, % [†] =
B. Is any polymer containing the monomer <u>epichlorohydrin</u> used at the water polymer are as follows:	r treatment plant? No Yes, and the polymer dose and the epichlorohydrin level in the
Polymer Dose, ppm =	Epichlorohydrin Level, % [†] =
C. Is any iron or manganese sequestrant used at the water treatment plant?	∑ No ☐ Yes, and the type of sequestrant, sequestrant dose, etc., are as follows:
Type of Sequestrant (polyphosphate or sodium silicate):	
Sequestrant Dose, mg/L of phosphate as PO ₄ or mg/L of silicate as SiO ₂ =	
If sodium silicate is used, the amount of added plus naturally occurring silicate	ate, in mg/L as SiO ₂ =

Page 4 DEP Form 62-555.900(3)Alternate

^{*} Complete and submit Part IV of this report only with the monthly operation report for December of each year and only for water treatment plants using polymer containing acrylamide, polymer containing epichlorohydrin, and/or an iron and manganese sequestrant.

† Acrylamide and epichlorohydrin levels may be based on the polymer manufacturer's certification or on third-party certification.

MONTHLY OPERATION REPORT FOR SUMMATION OF FINISHED-WATER PRODUCTION BY CWSs THAT HAVE MULTIPLE TREATMENT PLANTS

Daily Finished -Water Production for the Month/Year of: July 2024 Community Water System (CWS) Name: Grenelefe Resort Public Water System (PWS) Identification Number: 653-0692 Plant 1 Name: | Plant 2 Name: Plant 3 Name: | Plant 4 Name: | Plant 5 Name: Plant 6 Name: Plant 7 Name: Plant 8 Name: Plant 9 Name: Plant 10 Name: Well #6 Well #10 Total Permitted Maximum Day Operating Capacity of Each Plant, gallons per day 1080000 1080000 Net Quantity of Finished Water Produced by Each Plant, gallons Day of Month Total 280,000 280000 2 280,000 280000 3 393000 393,000 4 321000 435,000 114000 5 383000 497,000 114000 6 218000 114000 332,000 7 355000 469,000 114000 8 354000 114000 468,000 9 428000 428,000 10 358000 358,000 11 313000 313,000 12 359000 359,000 13 272000 272,000 14 336000 0 336,000 15 345000 0 345,000 16 345000 345,000 0 17 325000 0 325,000 18 0 287000 287,000 19 0 332,000 332000 20 0 303000 303,000 21 417000 417,000 22 271000 271,000 23 270000 270,000 24 0 238000 238,000 25 27000 299000 326,000 26 239000 13000 252,000 27 284000 284,000 28 156000 156,000 29 447000 447,000 30 447000 447,000 31 0 Total 6,312,000 3,953,000 10,265,000 Avg. 263,000 179,682 331,129 Max. 447,000 417,000 497,000

See page 4 for instructions.

		nth/Year of: August 2024										
A. Public Water System		nation										
PWS Name: Grenelefe					PWS Identification	Number: 6530692						
	Community	Non-Transient Non-Con	mmunity	ent Non-Community	☐ Consecutive							
Number of Service Co		nd of Month: 1234	······································	Total Population S	erved at End of Month: 2114							
PWS Owner: Scott Ho												
Contact Person: Nathan	n Eckstein				itle: Head of Operations							
Contact Person's Maili	ng Address:10	389 Leisure Ln		City: Lakewales	State: Fl	Zip Code: 33898						
Contact Person's Telep	hone Number:	(863) 368-0771		Contact Person's F	ax Number: (863) 696-3502							
Contact Person's E-Mail Address: nathaneckstein@bentechllc.net												
B. Water Treatment Plant Information												
Plant Name: WTP-1 Well #6 WTP-2 Well #10 Plant Telephone Number:												
Plant Address: 3200 State Rd 546 City: Haines City State: Fl Zip Code: 33844												
Type of Water Treated by Plant: Raw Ground Water Purchased Finished Water												
		Capacity of Plant, gallons pe	r day: 1080000	 								
Plant Category (per sul				Plant Class (per su	bsection 62-699.310(4), F.A.C.	.): C						
Licensed Operators		Name	License Clas			ift(s) Worked						
Lead/Chief Operator:	Nathan Eckstein		С	18805	= ""] ("). ==	7						
Other Operators:	Matt Chandley		C	24587		2						
l	Aaron Weber		C	24587		18						
<u> </u>												
II. Certification by L												
I, the undersigned water	r treatment plan	nt operator licensed in Floric	la, am the lead/chief or	erator of the water tre	eatment plant identified in Part	I of this report. I certify that the						
information provided in	this report is t	rue and accurate to the best	of my knowledge and l	elief. I certify that a	Il drinking water treatment cher	nicals used at this plant conform to						
NSF International Stand	dard 60 or othe	r applicable standards refere	nced in subsection 62-	555.320(3), F.A.C. I	also certify that the following a	dditional operations records for this						
plant were prepared eac	h day that a lic	ensed operator staffed or vis	sited this plant during t	ne month indicated at	ove: (1) records of amounts of	chemicals used and chemical feed						
rates; and (2) if applical	ttes; and (2) if applicable, appropriate treatment process performance records. Furthermore, I agree to provide these additional operations records to the PWS owner so the PWS											
owner can retain them,	together with o	opies of this report, at a con	venient location for at	east ten years.	*							
Matthew Chandley 9	/5/2024		Matthew D. Chandle	7	C - 24	4587						
Signature and Date Printed or Typed Name License Number												

PWS	PWS Identification Number: 6530692 Plant Name: WTP-1 Well #6													
III. D	aily Da	ta for th	e Month/Ye	ar of: Aug	ust 2024									
Mean	s of Ach	ieving Fo	our-Log Viru	s Inactivation	on/Removal: *		Chlorine		Chlorine	Dioxide		zone	Combin	ed Chlorine (Chloramines)
		Radiatio		her (Describ										
Туре	of Disin	fectant R	esidual Main		istribution Syst		Free Chlo			nbined C		Chlorami	nes)	Chlorine Dioxide
				C	Γ Calculations, or I			our-Log	Virus Inactiv	ation, if Ap				
	Days		-		<u> </u>	CT Calcul					UV	Dose		
	Plant Staffed				Lowest Residual	Disinfectant	Lowest CT Provided						Lowest Residual	
	Of				Disinfectant	Contact Time	Before or						Disinfectant	
	Visited				Concentration	(T) at C	at First			Minimum			Concentration	
i	by	·	Net Quantity		(C) Before or at	Measurement	Customer	Temp.		CT	Operating		at Remote	Emergency or Abnormal Operating
	Operator	Hours	of Finished	n 1 m	First Customer	Point During	During	of	pH of		UV Dose,		Point in	Conditions; Repair or Maintenance Work that
the Month	(Place "X")	Plant in	Water Produced, gal	Peak Flow Rate, gpd	During Peak Flow, mg/L	Peak Flow, minutes	Peak Flow, mg-min/L	Water, °C	Water, if Applicable	mg- min/L	mW- sec/cm ²	mW- sec/cm ²	Distribution System, mg/L	Involves Taking Water System Components Out of Operation
1	X	24	69.000	Nate, gpu	3.7	minutes	mg-mm/L		Аррисавис	HILLIDE	SCC/CIII	Secient	2.1	Out of Operation
2	X	24	- 02,000		2.1								3.1	
3	X	24	_		2.0								2.5	
4	X	24	_		1.7								2.3	
5	X	24			1.5								2.1	
6	X	24	_		1.4								2.0	
7	X	24	15,000	· · · · · · · · · · · · · · · · · · ·	1.3			ļ					2.1	
8	X	24	186,000		1.2								2.5	
9	X	24 24	7,000		1.5								2.0	
10	X	24	7,000 18,000		1.5								1.9	
12	X	24	61,000		1.4								2.1	
13	X	24	372,000		1.6								2.3	
14	X	24	361,000		2.0								2.5	
15	X	24	365,000		2.1								2.3	
16	X	24	402,000		2.3								2.4	
17	X	24	401,000											
18	X	24	433,000		2.2								2.6	
19	X	24	472,000		2.1			ļ					2.5	
20	X	24	413.000		2.3			-					2.4	
21	X	24 24	406,000 452,000		3.1			 					2.8	
23	X	24	340,000		3.3			 					2.5	
24	X	24	450,000		3.1			 					2.3	
25	X	24	451,000		J.1								2.7	
26	X	24	382,000		3.2								2.5	
27	X	24	372,000		2.5								2.4	
28	X	24	347,000		2.6								2.5	
29	X	24	364,000		2.4								2.3	
30	X	24	-											
31	X	24	338,000		2.8			<u> </u>					2.4	
Total			7,477,000											

472,000

Maximum

^{*} Refer to the instructions for this report to determine which plants must provide this information.

PWS	PWS Identification Number: 6530692 Plant Name: WTP-2 Well #10													
III. Daily Data for the Month/Year of: August 2024														
	Means of Achieving Four-Log Virus Inactivation/Removal: *													
	Ultraviolet Radiation Other (Describe):													
					istribution Syst	em:	Free Chlo	orine	ПСоі	nbined C	hlorine (Chlorami	nes)	Chlorine Dioxide
- 7 19 -					Γ Calculations, or									
	Days					CT Calcul				•		Dose		
!	Plant					ı	Lowest CT						Lowest	
	Staffed				Lowest Residual	Disinfectant	Provided						Residual	
	or Visited				Disinfectant Concentration	Contact Time (T) at C	Before or at First			Minimum	Lowest	Minimum	Disinfectant Concentration	
	by		Net Quantity		(C) Before or at	Measurement	Customer	Temp.		CT	Operating		at Remote	Emergency or Abnormal Operating
Day of	Operator	Hours	of Finished		First Customer	Point During	During	of	pH of		UV Dose,	Required.	Point in	Conditions; Repair or Maintenance Work that
the	(Place	Plant in	Water	Peak Flow	During Peak	Peak Flow,	Peak Flow.	Water,	Water, if	mg-	mW-	mW-	Distribution	Involves Taking Water System Components
Month	"X")	Operation	Produced, gal	Rate, gpd	Flow, mg/L	minutes	mg-min/L	°C	Applicable	min/L	sec/cm ²	sec/cm ²	System, mg/L	Out of Operation
1	X	24	354,000		2.5								2.0	
2	X	24	252,000		3.1								2.8	
3	X	24	422,000		2.8								2.5	
4	X	24	294,000		3.1								2.4	
5	X	24	330,000		2.2								2.4	
6 7	X	24 24	338,000		2.1			ļ					2.4	
8	<u>X</u> X	24	337,000		2.1								2.4	
9	X	24	397,000 73,000		2.5								2.1	
10	X	24	403,000		2.4								2.1	
11	X	24	291,000		2.4								2.0	
12	X	24	291,000		2.6			 					2.3	
13	X	24	307,000		2.4								2.5	
14	X	24	2,000		2.1								2.3	
15	X	24	11.000		1.8								2.5	
16	X	24	-		1.9								2.5	
17	X	24	-											
18	X	24	_		1.7								2.5	
19	X	24	-		1.6			<u> </u>					2.3	
20	X	24	-		1,5								2.5	
21	X	24	-		2.9				ļ				2.5	
22	X	24	-		1.9								2.0	
23	X	24	-		2.1								2.4	
24	X	24	-		2.2								2.5	
25	X	24	-		2.1								2.5	
26 27	X	24	_		2.1								2.5 2.6	
28	X	24	_		2.0								2.3	
29	X	24	1,000		2.1			1	-				2.5	
30	X	24	55,000		1.3								2.3	
31	X	24	376,000		2.1								2.6	
Total			4,606,000				I		1	1	1	1		<u></u>
Averag	e		143,938											

422,000

Maximum

PWS Identification Number: 6530692	Plant Name: WTP-1 Well #6 WTP-2 Well #10
IV. Summary of Use of Polymer Containing Acry	lamide, Polymer Containing Epichlorohydrin, and Iron or Manganese Sequestrant for the Year: * August 2024
A. Is any polymer containing the monomer <u>acrylamide</u> follows:	e used at the water treatment plant? 🛛 No 🔲 Yes, and the polymer dose and the acrylamide level in the polymer are as
Polymer Dose, ppm =	Acrylamide Level, % [†] =
B. Is any polymer containing the monomer <u>epichloroh</u> polymer are as follows:	ydrin used at the water treatment plant? No Yes, and the polymer dose and the epichlorohydrin level in the
Polymer Dose, ppm =	Epichlorohydrin Level, % [†] =
C. Is any iron or manganese sequestrant used at the wa	ater treatment plant? No Yes, and the type of sequestrant, sequestrant dose, etc., are as follows:
Type of Sequestrant (polyphosphate or sodium silicate	e):
Sequestrant Dose, mg/L of phosphate as PO ₄ or mg/L	of silicate as SiO ₂ =
If sodium silicate is used, the amount of added plus na	uturally occurring silicate, in mg/L as SiO ₂ =

Page 4 DEP Form 62-555.900(3)Alternate

^{*} Complete and submit Part IV of this report only with the monthly operation report for December of each year and only for water treatment plants using polymer containing acrylamide, polymer containing epichlorohydrin, and/or an iron and manganese sequestrant.

† Acrylamide and epichlorohydrin levels may be based on the polymer manufacturer's certification or on third-party certification.

MONTHLY OPERATION REPORT FOR SUMMATION OF FINISHED-WATER PRODUCTION BY CWSs THAT HAVE MULTIPLE TREATMENT PLANTS

	-Water Production			August	2024						
Community Wat	ter System (CWS) N	Vame: Grenelefe R	Resort								
Public Water Sy	stem (PWS) Identif										
	Plant 1 Name:	Plant 2 Name:	Plant 3 Name:	Plant 4 Name:	Plant 5 Name:	Plant 6 Name:	Plant 7 Name:	Plant 8 Name:	Plant 9 Name:	Plant 10 Name:	
	Well #6	Well #10		<u> </u>							Total
			Pern	nitted Maximum	Day Operating Ca	apacity of Each Pla	nt, gallons per day	7	т		
	1080000	1080000									
Day of Month		000000		Net Quantity o	1 Finished Water I	Produced by Each I	'lant, gallons	1			Total
1		280000									280,000
2		280000									280,000
3		393000									393,000
4	321000	114000									435,000
5	383000	114000									497,000
6	218000	114000									332,000
7	355000	114000									469,000
8	354000	114000									468,000
9	428000									·	428,000
10	358000										358,000
11	313000										313,000
12	359000										359,000
13	272000										272,000
14	336000	0									336,000
15	345000	0									345,000
16	345000	0									345,000
17	325000	0									325,000
18	0	287000									287,000
19	0	332000									332,000
20	0	303000									303,000
21		417000									417,000
22		271000									271,000
23		270000									270,000
24	0	238000									238,000
25	27000	299000									326,000
26	239000	13000									252,000
27	284000	0									284,000
28	156000										156,000
29	447000										447,000
30	447000										447,000
31											0
Total	6,312,000	3,953,000									10,265,000
Avg.	263,000	179,682									331,129
Max.	447,000	417,000	and the same of th								497,000

Response to Staff Data Request #5, ITEM #25

ALTERNATIVES ANALYSIS FOR TREATMENT PLANT EXPANSION AND UPGRADE

For

GRENELEFE RESORT

WASTEWATER TREATMENT PLANT

POLK COUNTY, FLORIDA
Wastewater Facility ID:FLA013016

Prepared For:

GRENELEFE WATER UTILITIES 3271 CAMELOT DRIVE HAINES CITY FL 33844

JUNE 27, 2024

Prepared By:

McDonald Group International, Inc.

9030 S. BRITTANY PATH INVERNESS, FLORIDA 34452 C.A.-7580

DRAFT 6-27-2024

ALTERNATIVES ANALYSIS FOR WASTEWATER TREATMENT PLANT EXPANSION AND UPGRADE

Table of Contents

1.0.	Genera	1	. 4
	1.1	Authorization and Purpose	. 4
	1.2_	Source Data	. 4
	1.3	General Service Area Description	. 4
	1.4	Basic Facility Information and Capacities	. 5
	1.5	Related Reports and Work Effort by Others	
	1.6	Basin Management Action Plan Requirements	. 8
	1.6.1	Administrative Order and BMAP	. 8
	1.6.2	Requirements to Meet Reclaimed Standards	. 9
	1.7	Treatment Plant Historical Background	10
2.0	Current	t Wastewater Flow	12
	<u>2.1</u>	Plant Flow Characteristics	12
3.0	Future	Conditions - Wastewater Flow Projection	13
	3.1	Smokey Groves	13
	<u>3.2</u>	Long Term Flow Projection	
	3.3	Owner Specified Design Capacity	13
5.0 Wa	stewater	Plant Modification and Expansion	15
	5.1	<u>Processes for the Reduction of Nitrogen and Phosphorus</u>	
	5.1.1	Nitrogen Reduction - General	
	5.1.2	Existing Wastewater Plant Nitrogen Reduction	
	<u>5.1.3</u>	Alternate Methods of Reducing Total Nitrogen	17
		<u>Predenitrification</u>	
	<u>5.1.3.2</u>	Pre and Post Denitrification	18
	5.1.3.3		
	<u>5.1.3.4</u>	Phased Isolation or Cyclical Aeration	19
	<u>5.1.2</u>	Control of Total Phosphorus	20
	<u>5.2</u>	Requirements for Restoration of Reclaimed Water System and System	
		<u>Capacity</u>	
	<u>5.3</u>	Plant Alternatives Considered	
	<u>5.3.1</u>	Alternate 1, Restore and Modify Existing Plant	
	<u>5.3.2</u>	Alternate Two: Construct New Flow Train	
	<u>5.3.3</u>	Alternative 3 SBR Conversion	26
6.0	Evaluat	tion of Alternatives	28
	<u>6.1</u>	Methods of Obtaining Cost Data	
	<u>6.2</u>	Limitations of Cost Data	
	6.3	Overall Comparisons of Cost Opinions	29
	64	Operational Considerations	30

Figures

Figure 1.1 Street Location Map
Tables Table 1.4 WWTF Capacity Effluent Limitation Standards Grenelefe Resort
APPENDIX
EXHIBITS
Existing Treatment Plant Process
Alternative One Modification of Existing Tankage
Alternative Two New Precast Paclage Flow Train
Alternative Three Sequencing Batch Reactor

1.0. General

Grenelefe Water Utilities is required by changes in State regulation to increase the level of treatment provided by its wastewater treatment plant located in Polk County Florida. In addition, additional treatment capacity is needed for proposed new development. These upgrades generally concern improvements to meet advanced nitrogen removal, and improvements to provide the components necessary for facility reliability and to meet reclaimed water production standards. This report examines alternatives for achieving these objectives.

There are two regulatory factors which drive having to make process modifications.

The first is compliance with the Florida Department of Environmental Protection's Lake Okeechobee Basin Management Action Plan (BMAP). Secondary treated effluent is presently disposed of at the existing rapid rate land application system (infiltration basins). Advanced nitrogen removal is required by the BMAP for all methods of effluent reuse or disposal

The second is that in addition the utility will need to meet its future capacity requirements by the provision of reclaimed water for irrigation. This requires compliance with standards for High Level Disinfection and Class I reliability.

The Grenelefe Wastewater Treatment Plant are located in Polk County, Florida. The wastewater plant is located at Abbey Street in Grenelefe, near Haines City in Polk County Florida; A location map and USGS quad map are provided in Figures 1.1 and 1.2, respectively.

1.1 Authorization and Purpose

Grenelefe Water Utilities has retained McDonald Group International Inc. to evaluate the utilities historical flows, service area characteristics, and future treatment requirements of the Grenelefe wastewater treatment plants. This work is co-ordinated Andreyev Engineering who is responsible for the hydrogeologic analysis of the existing and proposed reuse and rapid rate land application systems.

1.2 Source Data

This report is based on flow, performance and other technical data as found in public records of the Florida Department of Environmental Protection, operating records of the Grenelefe wastewater plant, and information supplied by the owner. Proposed equipment performance and cost information is obtained from historic bids, vendor and contractor information. The accuracy of the data presented in this report and conclusions depend on the reliability of the source data.

1.3 General Service Area Description

The treatment facility serves Grenelefe Resort and Conference Center. This area consists of approximately 1400 + residential units at present. Future additional residential development and redevelopment is planned, as further discussed in this report.

1.4 Basic Facility Information and Capacities

The Wastewater Treatment Plant is presently permitted for the flow capacity and discharge limitation standards in the following table:

Table 1.4 WWTF Capacity Effluent Limitation Standards Grenelefe Resort

- 1. Maximum flow capacity 0.340 MGD (3 month basis, treatment) 0.340 MGD (annual average basis, RRLA)
- 2. BOD and TSS maximum concentrations -

20 mg/L annual average 30 mg/L monthly average 45 mg/L weekly average 60 mg/L any one sample

- 3. pH range 6.00 to 8.50
- 4. Fecal Coliform -

200 #/100 annual average 800 #/100 maximum

- 5. Minimum Cl₂ conc. 0.5 mg/L
- 6. Nitrate

12 mg/L max

- 7. Total Nitrogen 10 mg/L annual average
- 8. Total Phosphorus 6 mg/L annual average

The wastewater plant permit clarifies that the wastewater plant has a theoretical capacity of 0.680 MGD, but is limited to 0.340 MGD by the effluent disposal system and with half the treatment plant not in service.

Process

The wastewater plant is an activated sludge waste treatment facility operating in the extended aeration mode. The treatment process comprises the following: aeration (by floating, mechanically mixed surface aerators), dual final settling tanks, filtration, disinfection, and sludge digestion.

1.5 Related Reports and Work Effort by Others

Related to this report is "Structural Evaluation of the Grenelefe Resort WWTP" May 13, 2024 by Key Engineering Associates. At this writing a geotechnical investigation of the existing rapid infiltration basins and hyrogeologic assessment of golf course areas for future application of reclaimed water is being carried out by Andreyev Engineering.

Figure 1.1 Street Location Map

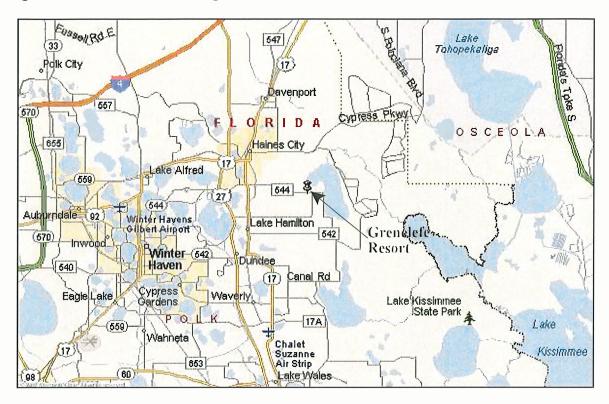
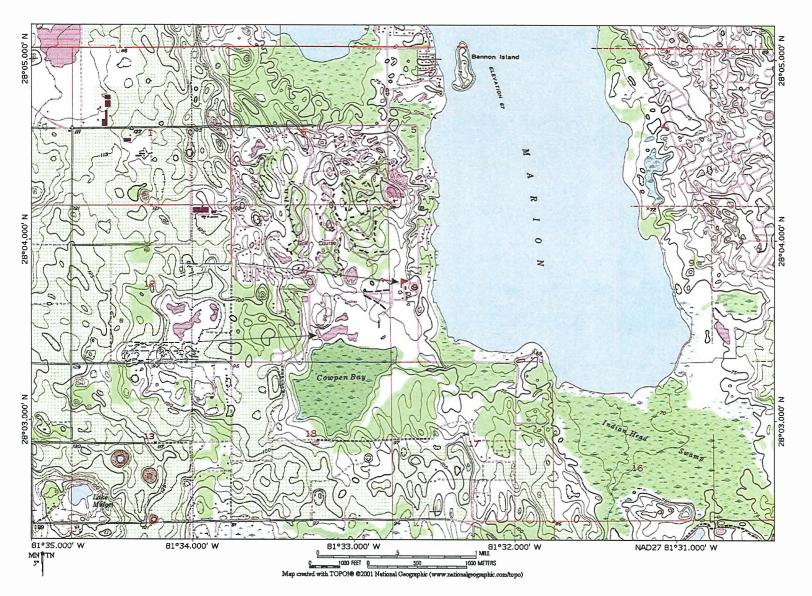



Figure 1.2 USGS Map

1.6 Basin Management Action Plan Requirements

The requirements of the Basin Management Action Plan are implemented through an attachment to the permit the State Department of Environmental Protection issues to the plant owner for operation called an Administrative Order. The order requires the permittee to comply with the new discharge limits and to carry out certain activities per a schedule that is made a part of the facility permit.

1.6.1 Administrative Order and BMAP

The Administrative Order (AO)requires the facility, within a set period of time to comply with the requirements of the Lake Okeechobee BMAP for TN and TP reduction. The specific limits are as contained in the AO are presently:

Total Nitrogen:

"Max 10 Annual Average Lake Okeechobee Basin Management Action

Plan June 2018" for TN

Phosphorus, Total:

Max Report Single Sample mg/L

(Note: FDEP has advised these limits are in error and an AO and permit revision will be coming out).

The required schedule per permit for complying with the BMAP is as follows:

Action Item	Due Date
Collect monthly effluent samples and analyze for TN and TP and report as required by this permit and Discharge Monitoring Report.	First day of the second month following the permit issuance until September 31, 2025
2) Submit a proposal with the most feasible option to bring the TN and TP into compliance with the final limits being 10.0 mg/L and of 6.0 mg/L, respectively. If necessary, schedule a meeting with DEP SWD office to discuss the proposal.	Prior to September 31, 2025
3) Submit a proposal with the necessary modifications to the facility required to meet the treatment and disinfection requirements of 62-610.460, F.A.C., giving the facility the option to dispose of the effluent via a Part III Slow-Rate public	Prior to September 31, 2025

access reuse system (Irrigation). If necessary, schedule a meeting with DEP SWD office to discuss the proposal.	
4) Obtain the Department's approval for the proposal.	Prior to September 31, 2025
5) Implement the proposal.	Within twelve months of DEP approval and after obtaining a permit modification, if required.
6) Comply with the final limit for TN and TP or obtain Department approved regulatory relief	Within three months of completion of any modification if required.
7) Meet the facility classification and operator staffing requirement in accordance to Rule 62-699.310 (2) (a)1., F.A.C as a Category I, Type III, Class C facility.	Upon the date of completion for item 6.

It should be noted there are some differences in the text of the AO and the text of the BMAP with respect to Nitrogen and Phosphorus required reduction, which in turn were found to have been issued by FDEP in error. The following table is from the June of 2020 Lake Okeechobee BMAP:

Table 19. TP effluent limits

mgd = Million gallons per day			
Permitted Average Daily Flow (mgd)	TP Concentration Limits for Direct Surface Discharge (mg/L)	TP Concentration Limits for RRLA Effluent Disposal System (mg/L)	TP Concentration Limits for All Other Disposal Methods, Including Reuse (mg/L)
Greater than or equal to 0.5	1	1	6
Less than 0.5 and greater than or equal to 0.1	1	3	6
Less than 0.1	6	6	6

Table 20. TN effluent limits

mgd = Million gallons per day			
Permitted Average Daily Flow (mgd)	TN Concentration Limits for Direct Surface Discharge (mg/L)	TN Concentration Limits for RRLA Effluent Disposal System (mg/L)	TN Concentration Limits for All Other Disposal Methods, Including Reuse (mg/L)
Greater than or equal to 0.5	3	3	10
Less than 0.5 and greater than or equal to 0.1	3	6	10
Less than 0.1	10	10	10

The facility is currently permitted for a capacity of 0.340 MGD; according to the BMAP the standard is 6 mg/L TN and 3 mg/L TP for a facility of this size using rapid rate land application, whereas the permit and AO is for 10 mg/L TN and "report" for TP.

From communication with FDEP at the Southwest District in Tampa, it appears the Administrative Order is in error; FDEP is likely to make a Department initiated revision (and would be expected to do so anyway in any future permit application.) In future permitting where reclaimed water reuse is proposed, the FDEP has communicated they will issue a modified permit which will require TN of 6 mg/L when discharging to a rapid rate system, and 10 mg/L when discharging to a 10 mg/L. They will not issue however a permit requiring only 10 mg/L with intermittent discharge to a rapid rate system; any discharge to a rapid rate system from wet weather, reject water diversion, unavailability of the reuse system etc will have to meet a 6 mg/. The treatment plant cannot be designed or operated to change treatment level at the throw of a switch, so the plant will have to meet a 6 mg/L TN standard.

The permit or AO itself does not provide guidance as to what the standards would be if the facility was expanded to over 0.5 MGD capacity, but the BMAP indicates it would be 3 mg/L TN and 1 mg/L TP with effluent discharged to rapid rate systems as opposed to reuse systems.

The current treatment plant has been permitted to only a meet a 12 mg/L Nitrate standard, which is but one form of nitrogen of several that can be present in the plant effluent. The current treatment plant was not designed to reduce phosphorus.

1.6.2 Requirements to Meet Reclaimed Standards

The requirements to meet reclaimed water standards fall into two categories, one is the level of treatment required, and the other are facility design and equipment upgrades required.

With respect to treatment, the facility will be sampled with an increased sampling schedule when providing reclaimed water and any one sample cannot contain more than 5 mg/L Total Suspended Solids.

The level of chlorine present must be greater than 1 mg/L.

Fecal coliform content may not exceed 25 counts per 100 mL and must average less than 1.

There are multiple design requirements which the current facility may not possess or partially possess:

- 1) Class I Reliability; this means that:
 - Components like clarifiers (settling tanks) chlorine contact tanks, filters must be able to have the largest one removed from service while the remaining can still take 75% of the flow; the chlorine contact volume required for reclaimed water production is greater than what is required for rapid infiltration.
 - Multiple process tanks are required, with the ability to bypass them if needed
- 2) Standby power is required
- 3) Online turbidity and chlorine residual monitoring is required
- 4) Auto Diversion of reject water is required in case of treatment fault detected by loss of chlorine residual and increase in turbidity
- 5) Effective Filtration

1.7 Treatment Plant Historical Background

The treatment plant was constructed through three phases. The first was constructed around or after 1976 and appears to have had a capacity of 0.170 MGD. A few years later the structure was "mirrored" with the same unit processes and volumes: both parallel plants flow trains had a capacity of 0.340 MGD. Around 1986 a second plant similar in process and operation was built next to the first two phases.

Technically the Grenelefe treatment plant consists of three plants, two of 0.170 MGD capacity and one of 0.340 MGD treatment capacity. Each flow train consists of aeration - which was delivered by both mechanical and diffused aeration processes; settling of process sludge occurs in rectangular settling tanks with waste sludge digesters. Effluent from each flow train is combined in a common sand filter system, and then disinfected in a single chlorine contact tank

In the 1990s the treatment system was permitted for a capacity of 0.680 MGD. Effluent was pumped to golf course pond from which water was withdrawn to irrigate the resort 's South golf course.

On September 12, 2000, the reuse of reclaimed water was halted by the Florida Department of Environmental Protection owing to the facility lacking a number of the features required of treatment plants that provide reclaimed water for reuse (outlined in section 1.5.2 of this report).

Shutting down the reuse system meant all the effluent water had to be directed to existing unlined water storage ponds. Up until 2000 these were considered to be holding ponds and did not have a capacity assigned to them. However, once they were placed into use as infiltration basins and appeared to work successfully, FDEP assigned the 4 ponds that make up that system a nominal capacity of 0.340 MGD

The mechanical equipment in the original 1970s era plant flow trains deteriorated and both flow trains were placed out of service by the early 2000s rather than repaired and maintained.

Owing to limitations in the effluent disposal system and with 50% of the plant's flow trains being out of service, capacity is limited to 0.340 MGD. The current permit does recognize that the concrete tankage in place could yield a treatment capacity of 0.680 MGD if it was all mechanically restored. The permit does not recognize any historic reclaimed water reuse capacity.

Halting the pumpage of effluent to the holding pond which sent water to the South golf course created an issue with the SWFWMD: using water from the pond without reuse water augmentation was a violation of the Water Use Permit at the time.

Attempts thereafter to permit a restart of the system with the FDEP caused the DEP staff to reassess the holding pond it was sent to, and they concluded that any overflow from that pond to others would cause a surface water discharge which could not be permitted. Workarounds to transmit the reuse water directly to the South Golf course pump station avoiding direct discharge to the pond were designed and permitted, but never constructed. Permit approval was continued by request to the FDEP by the prior owner through subsequent permit renewals. However approval lapsed in 2022.

2.0 Current Wastewater Flow

In this section, data and analysis is presented regarded historic wastewater plant flow.

2.1 Plant Flow Characteristics

Ten years of flow data from Discharge Monitoring Reports (DMRs) were reviewed to assess the present plant flow characteristics.

Figure 2.2.1 graphically illustrates the month average, rolling three month and annual average flow for the past ten years:

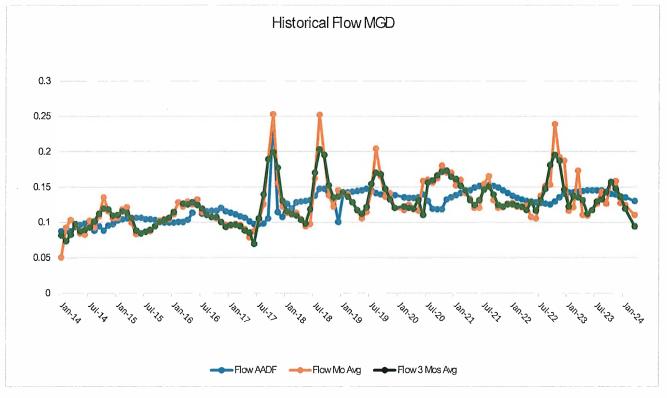


Figure 2.2.1 Wastewater Flow Chart

The flow pattern exhibits typical winter season increases in flow which subside later in the year.

Typically in assessing actual used treatment plant capacity, a three year look back is made to assess the flow against permit statistical metrics:

March 2021 to March 2024

Parameter	Result	Unit	Permit Limit
Max Flow AADF	0.153	MGD	0.34
Max Mo Flow	0.239	MGD	report
Max 3 Mos Flow	0.195	MGD	0.34

The plant is permitted on a maximum three month basis for treatment and on an annual average basis for effluent disposal. For treatment, the plant is operating at 57% of capacity based on then highest three month average flow in the past three years. For disposal of effluent, it is operating at 45% of permitted capacity.

3.0 Future Conditions - Wastewater Flow Projection

3.1 Smokey Groves

A short term flow projection is based on the proposed development called Smokey Groves . This is a single family home addition of approximately 426 units.

The projected flow from this can be based on 1) for a high estimate, the level of service described by the County for new development, at 260 gpd per unit or 2) for a low end estimate, based on the assumption that population, occupancy and usage patterns will match the existing service area.

In the former case, the expected flow is 110,760 gpd, which added to the current .195 MGD would yield 0.306 MGD in flow, or bring the plant to 90% of permitted treatment capacity.

In the latter case, with 1400 presently served units, the flow per unit is about 140 gpd each; 426 more would be another 0.060 MGD, for a total flow to the plant of 0.255 MGD, and would places the plant at 75% of treatment capacity.

3.2 Long Term Flow Projection

At this writing, plans for redevelopment of Grenelefe and the addition of other properties is at a conceptual development stage. Detailed projected unit counts and a reasonable timeline for their progressive addition remains under development by others. In general it is expected that over ten or more years wastewater flow may increase to 1 MGD.

3.3 Owner Specified Design Capacity

The owner has directed that the plant should be modified to meet BMAP and reuse treatment level requirements and be expanded to 0.5 MGD. Future capacity when required would be developed from the construction of a parallel treatment plant.

The selected capacity provides ample additional capacity over what is necessary to serve Smokey Groves. Depending on actual flow that results from that development, the 0.5 MGD plant provides 0.194 to 0.245 MGD available capacity for additional development

Once conceptual development plans are more refined, it would be beneficial to prepare a Master Wastewater Service Plan. This will guide how quickly the available capacity from a 0.5 MGD plant may be depleted by future development and set the time table and design requirements of the next plant expansion phase.

5.0 Wastewater Plant Modification and Expansion

5.1 Processes for the Reduction of Nitrogen and Phosphorus

To develop alternative means of reducing nitrogen and phosphorus required by the AO (and BMAP), it is necessary to understand what the general theory and practice for reducing these nutrients is.

5.1.1 Nitrogen Reduction - General

Total Nitrogen has several forms: ammonia, organic nitrogen, nitrate and nitrite. Reduction of nitrogen typically consists of two consecutive processes which address the different forms nitrogen is present in.

Almost all of the incoming raw wastewater to a treatment plant is in the form of ammonia and organic nitrogen. The first process in reducing nitrogen is the conversion of the combined ammonia and organic nitrogen (together called TKN) to nitrate. The second process is the reduction of nitrate (and a very small amount of nitrite) to nitrogen gas.

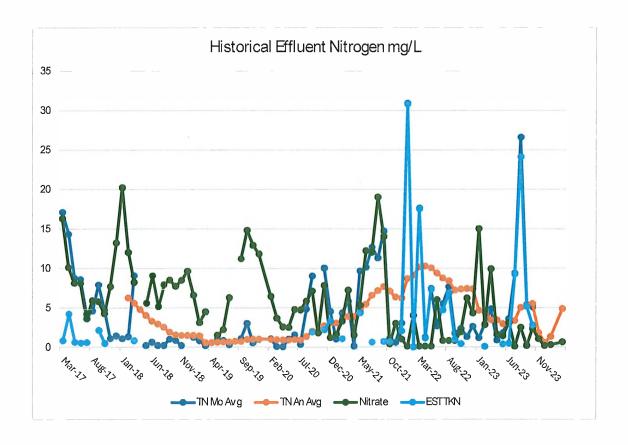
The first step is called nitrification, the second is called denitrification.

Nitrification

This is process by which the incoming ammonia and organic nitrogen is oxidized, using aeration, to nitrate. Nitrification design is based around 1) determining the time wastewater needs to be retained in the plant long enough to ensure complete nitrification to occur (typically about 24 hours) and 2) to ensure that adequate oxygen is supplied by the aeration system. Often tankage is needed with a total process volume more or less equal to the design capacity

Denitrification

Denitrification is a biological process by which the micro organisms in the plant liquid break down nitrate, releasing nitrogen gas which bubbles to atmosphere. Nitrate is a molecule consisting of a nitrogen and oxygen. The micro organisms can get the oxygen that is bound up with nitrate when several conditions are present: 1) they are in a tank or a zone of where there is low dissolved oxygen (called an anoxic zone); 2) there is nitrate present and 3) they have an adequate carbon source to use for energy to break down nitrate. Depending on level of denitrification needed, placement of tankage, the anoxic volume needed is 25 to 40 percent of the total process volume.


In summary, the design process for this plant for the selected design capacity is to ensure that: existing and any new tankage can hold and aerate the incoming wastewater sufficiently; and that there is a means of creating zones, either with dedicated tanks or inducing anoxic conditions in aerated portions of the plant through aerator control to break down nitrate.

5.1.2 Existing Wastewater Plant Nitrogen Reduction

During normal operation, most wastewater plants may have nitrification and denitrification processes happening as aerators turn on and off. How much nitrogen reduction occurs can vary with the equipment used, volumes available and operating practice.

The Grenlefe treatment plant effluent has been tested for a number of years for total nitrogen and nitrate content;. TKN is not tested, but it is possible to subtract nitrate from Total Nitrogen to get a close estimate. With this data, is possible to assess how the existing plant as is performs.

The chart below shows how well the treatment plant as is reduces nitrogen and in what forms remain in the plant effluent:

The raw test data (contained in the appendix) and the chart above show some issues.

For successful nitrogen reduction, TKN should be low, generally less than 2 mg/L. In the last few years, TKN will has often been between 7.5 and 15.

When successfully reducing Total Nitrogen, Nitrate will be higher than TKN and Total Nitrogen

will be slightly higher Nitrate.

With successful nitrogen reduction, the TN will be less than 10 mg/L (AO as written [in error]) or 6 mg/L (as the BMAP is written for rapid rate effluent disposal).

In the historical data, where nitrate is very low and TKN is very high, the plant was not oxidizing ammonia and organic nitrogen well. This may result from long aerator off times or aerator out of service events.

When nitrate is subtracted from total nitrogen in the same month, the result is an estimate of the amount of TKN that is in the effluent: it should not be negative, however frequently the estimated TKN is negative in the available test data.

Nitrate is usually a fairly reliable laboratory result, but Total Nitrogen is actually a computation of results from several tests. Where negative TKN results, the TN result may not have been reliably determined (A negative TKN result indicates the TN was potentially higher than was determined).

Looking back at the past three years, results can be summarized as:

Summary March 2021 to March 2024

TN Max Month	30.9	mg/L
TN Max An Avg	10.25	mg/L
Max Nitrate Month	15	mg/L
Max Mo TKN	30.808	mg/L
Min Mo TKN	-13.84	mg/L

In summary the plant at times appears able to get below 10 but not consistently; 6 mg/L is out of reach. Elevated effluent TKN (above 2 mg/L) indicates there are months the facility does not oxidize ammonia and organic nitrogen to the low levels it needs to. The negative TKN results from back computation indicate TN may not have been reliably determined.

5.1.3 Alternate Methods of Reducing Total Nitrogen

Almost all of the technologies used for reducing nitrogen focus on first completely nitrifying the incoming ammonia and organic nitrogen in the raw wastewater to nitrate. Removing nitrate requires that anoxic conditions be created somewhere in the process to allow biological denitrification. As indicated in 5.1.1 anoxic conditions can be created with dedicated special tankage or induced with aerator cycling. Typical configurations are as follows:

5.1.3.1 Predenitrification

A common nitrogen removal configuration is to place what is called an anoxic tank at the head of the process.

This can either be a new tank or can be a converted existing tank. An anoxic tank receives nitrate rich liquid from the aerated portion of the treatment plant via a recirculation pumping system. The liquid is mixed with raw wastewater and return sludge. The biomass in the anoxic tank is kept in suspension with a mixer. In this environment, the conditions exist for biological denitrification.

Typically this process can produce an effluent with 10 mg/L total nitrogen but not always lower reliably. Depending how configured, it may be a difficult process to modify when for example, the treatment plant is expanded and it is necessary to meet a lower standard.

Rather than develop this alternative, a refinement of this option is was considered: pre and post denitrification.

5.1.3.2 Pre and Post Denitrification

A more common approach to meet as low TN standard is to use a multi stage process, where raw wastewater enters an initial pre-anoxic tank, then goes to aeration as above. However exiting aeration, a second anoxic tank is used to further reduce the nitrate to low levels. A this stage there it is usually necessary to add a chemical supplement such as sugar water to support the biology in the second anoxic tank to effectively continue denitrification. Follow the second anoxic tank the plant liquid goes to a re-aeration tank (to improve settling), then goes to final settling.

The existing plant configuration and availability of tankage lends itself well to this process, and is considered in both Alternative One and Alternative Two (described further in this report)

5.1.3.3 Denitrification Filtration

Denitrification filters are sand and anthracite filters intended for polishing clarifier effluent that is partially reduced in nitrogen content in order to get the final effluent down to a low level.

They differ from more conventional effluent filters in several ways:

- They use deep beds in order to promote the growth of micro organisms on the media and create anoxic conditions within the media
- They require a supplemental carbon source dosed to the incoming effluent in order to develop an efficient reaction
- In addition to a normal filter backwash cycle, they have what they call a "bump" cycle to release nitrogen gas that builds up inside the filter.

As a polishing process, denitrification filters can be effective; as a primary means of controlling nitrate (and total nitrogen) they may be less effective. In small plants they are not difficult to construct, but in large plants like this one denitrification filters are complex assemblies, often built by specialty manufacturers and are priced in the millions of dollars. They also require ancillary systems for backwashing with clearwell, pumps and may or may not be able to be dosed by gravity.

For these reasons, denitrification filtration was not considered as viable alternative for this project.

5.1.3.4 Phased Isolation or Cyclical Aeration

This process has been used by many smaller wastewater plants in Florida for years in order to meet a 12 mg/L nitrate limit. This is also the method by which Grenelefe controls nitrate. As practiced at many small wastewater plants and at Grenelefe, a timer is used to control the operation of the wastewater plant aerators so that the liquid in the plant goes through periods of being aerated and then periods where it is not aerated. By this means all or parts of the aeration tankage become temporary anoxic zones in which biological denitrification occurs.

Its generally recognized that cyclical aeration reliably reduces nitrates to 12 mg/L or less. A number of plants have been successful in getting below 10, but not all. As indicated in 5.1.2, Grenelefe has not had consistent success as is for getting Total Nitrogen below 10 mg/L, let alone 6 mg/L.

The duration of time normally aerated tanks in a flow through tanks like Grenelefe can stay anoxic is limited. During prolonged aerator off time in a plant like Grenelefe, wastewater is still passing through the plant, and this leads to an increase in the amount of ammonia in the effluent. The test data indicates this sometimes happens.

That said there are some technological refinements possible to this process.

What some vendors term "phased isolation" is a more sophisticated approach which can make use of proprietary aeration and aeration control systems. This involves inducing anoxic zones or conditions in some but not all tanks, using mixers to maintain liquid in suspension during aerator off time. Aerator and mixers may also be controlled by software monitoring the amount of dissolved oxygen in the plant and other parameters.

This alternative was investigated with Veolia Kruger, a wastewater technology vendor which has a proprietary monitoring and control package. Their analysis of the tankage available and the number of tanks and aerators to control indicated this was not a practical approach for Grenelefe. There were too many tanks, aerators to monitor and control, not all tanks were suitable for mixer' installation because of size and shallow depth, the sludge biomass had to be thinned out (meaning more sludge had to be hauled from the plant) to work with the existing plants shallow rectangular clarifiers,. Finally their preliminary modelling effort showed marginal reduction of nitrogen possible with their package.

For this reason, trying to modify the existing plant with this type of equipment was ruled out.

There is however an alternative system using Sequencing Batch Reactor (SBR) technology which potentially offers advantages (but some disadvantages) and lends itself well to this type of nitrogen control reduction.

In an SBR plant raw wastewater is sequentially pumped to three parallel process tanks. Each tank

is sequentially dosed with raw wastewater. When not dosed, the SBR control system aerates the water to grow a biomass, then sequentially ceases aeration and allows it to go into an anoxic state. Following a brief reaeration period, the water is allowed to settle in the tank and a proprietary mechanical system is used to draw off the settled liquid.

As to how well such systems perform in meeting low levels of TN, Florida SBR performance was summarily reviewed at three facilities. When required to meet low levels of TN and operated to do so, they are able to deliver. (See Appendix Two) SBRs are not the most common process in Florida but there are many installations,

The advantage the system offers over more conventional systems is that a lot of components don't have to be constructed: these include anoxic tanks, settling tanks, return sludge pump stations and recirculation pump stations. Theoretically they should be a lower cost alternative.

This disadvantage is that at Grenelefe, an SBR would require construction of special tankage with the depth and geometry needed to work; existing tankage at Grenelefe cannot be reused except for flow equalization, disinfection and sludge digestion purposes.

Nonetheless, this was deemed an appropriate alternative to develop and was considered as Alternative Three (evaluated further in this report)

5.1.2 Control of Total Phosphorus

Phosphorus can be controlled either biologically or is easily controlled with chemical treatment.

Biologically dedicated tankage is needed in which the contents are allowed to go completely anaerobic - which differs from anoxic tankage (in an anoxic tank oxygen is present in the form of nitrate which the bacteria can consume).

Because of proximity of the plant to residential areas (and the potential for odor from an open anaerobic tank), the need for special tankage, additional complexity of operation, biological phosphorus reduction was not considered a good alternative to develop

For chemical treatment, dosing with a solution of alum is a common approach and is very effective. This is the means of phosphorus control that will be present in all plant improvement alternatives. The control is elementary: solution is pulled from a solution drum by a simple chemical feed pump and dosed in the liquid passing from (re)aeration to final settling.

5.2 Requirements for Restoration of Reclaimed Water System and System Capacity

As indicated in 1.5.2, the physical requirements at the treatment plant to meet reclaimed water production standards are:

1) Class I Reliability; this means that:
Components like clarifiers (settling tanks) chlorine contact tanks, filters must be able to have the largest one removed from service while the remaining can still take 75% of the

flow

Multiple process tanks are required, with the ability to bypass them if needed

- 2) Standby power is required
- 3) Online turbidity and chlorine residual monitoring is required
- 4) Auto Diversion of reject water is required in case of treatment fault detected by loss of chlorine residual and increase in turbidity
- 5) Effective filtration

The existing plant lacks dual chlorine contact tanks. There is a clear well tank next to the chlorine contact tank but it is used to supply filtered water to backwash the bank of 1980s era gravity sand filters.

With no water going to reuse at present, these filters are not necessary, but with reuse, they must be capable of meeting a 5 mg/L standard in any sample.

Since the filters are in use, we can review historical performance over the past three years to see how effective they are:

TSS Max An Avg	5.200	mg/L
TSS Max Month	8.2	mg/L
TSS Max	10	mg/L

Backwash water is withdrawn from the clearwell, and after passing through the filters, goes to a collection tank called a mudwell where the water can be repumped back into the treatment process. The Grenelefe mudwell was constructed of masonry and as indicated in the plant structural engineering evaluation report has issues that would need to be addressed if the filters were maintained.

Given that the filters no longer meet the 5 mg/L TSS standard, that the clearwell is better served to provide a Class I reliable chlorination tank system, and problems with the mudwell would warrant tank repair, it is considered best to eliminate the use of the multi parallel sand filters, demolish/filll in the mudwell, and repurpose the clearwell. (It would be repurposed as a chlorine contact tank: the existing plant only has one tank).

Filtration to the standard required is more practically met with manufactured Disk filters, which have low head loss, take up less area, provide effective treatment, and have low rates of return backwash water.

The installation of continuous online turbidity and chlorine residual monitors is required. These will have to communicate with an operator call out system and most importantly, an Auto Diversion valve for reject water in case of treatment fault detected by loss of chlorine residual and increase in turbidity. This prevents substandard water from going to reuse and would sent it instead to the rapid infiltration basins.

In all alternatives the plants power requirements will change. An electrical engineering designer will need to evaluate total loads, service capacity, and size an appropriate permanent site standby

generator.

5.3 Plant Alternatives Considered

The following alternatives have been developed to size components, prepare basic schematics of, and develop opinion of potential costs for:

- GrenelefeW WTF, Alternate 1, Restore and Modify Existing Plant
- Grenelefe WWTF Alternate 2, Construct New Flow Train
- Grenelefe WWTF, Alternate 3, Convert to SBR Process

In all alternatives certain improvements would be common:

Headworks and Flow Equalization

Processes that reduce nitrogen biologically generally require flow equalization. Most of the tankage in the existing treatment plant was set up for aeration with mechanical aerators and is not well suited for conversion. However the 1970s era plant has two long chambers of adequate volume aerated with diffused aerators, and are a better fit. Rather than construct new tanks, these would be reused.

The expected rate of inflow to the headworks (300 gpm+ from existing development, 600 gpm+ from proposed) would overwhelm the bar screen and flow splitter box present. This would be demolished however the covered structure currently used for grit removal would be retained to support two hydrostatic screens.

Improvements would include clearing and emptying of the existing tankage, cleaning tank interior walls, recoating and necessary external tank repair, as recommended in the Key Engineering report. New air supply and distribution would be provided, along with surge pumps, controls and flow regulator box.

A rectangular chamber in the 1970s plant would be repurposed for grit removal with new aeration.

Filtration and Disinfection

As in 5.2, new Disk Filters and conversion of existing clearwell to chlorine contact tank and demolition of mudwell will be carried out. New turbidity and chlorine residual monitors would be installed, with automatic flow diversion to reject water ponds.

Phosphorus Reduction

An alum chemical feed will be used to reduce phosphorus in all alternatives.

Electrical

New plant controls for new components are installed. Permanent standby power of sufficient

capacity will be installed.

5.3.1 Alternate 1, Restore and Modify Existing Plant

This alternative was selected as it makes extensive use of existing tankage. See attached Exhibits, Alternative One Process Plan which illustrates the tankage layout and how it is repurposed.

Main features of this alternative are:

It uses the Anoxic Aeration Post Anoxic Rearation process (pre and post anoxic), described in 5.1.3.2.

The existing aeration tanks in the 1986 flow train remain in service without modification, apart from tank bypasses necessary to provide Class I reliability.

The mechanically aerated tanks in the 1970s plant would be repurposed, two as pre anoxic tanks, one as post anoxic, and one tank is maintained for reaeration. Reuse of this tankage requires some tank repair and recoating of the interior to prevent external weeps and internal wall degradation.

The above result in a single flow train rather than a triple flow train as the plant exists now.

As a single flow train none of the clarifers which are different sizes, two in one plant and two in the other, can be combined or piped in a practical matter to hydraulically balance the incoming flow from a single flow train, and provide class I reliability; they are rectangular which are not as efficient as circular clarifiers, and they rely on air operated sludge recycle, which is not well compatible with a nitrogen removal processes. The existing clarifiers are better served for sludge digestion or other purposes. This is especially the case for the clarifiers in the 1970s plant which require a complete mechanical rebuilt in order to be usable anyway. For all these reasons, the existing clarifiers will be repurposed and two new circular clarifiers would be constructed, with electric driven return sludge pumps.

All improvements in 5.3 would be made.

Modelling of the process in Clemson University Simulation of Single Stage Sludge Processes computer model indicates the system would readily achieve either 10 or 6 mg/L reduction of Total Nitrogen.

Modelling also indicates that by adjustment of a few operational parameters (rate of internal recirculation increased, dosage of chemical supplement like sugar water increased) the process should be able to get down to 3 mg/TN.

The table below summarizes the major unit process capacities of this alternative

Parameter	Result	Unit	Remarks
Flow	0.5	MGD	Design

Parameter Flow Equalization Percent of Flow Anoxic Aeration 2nd Anoxic Reaeration Volume Hydraulic Residence	Result 91940 18% 104100 369096 52050 52050 577296 27.7	Unit gal gal gal gal gal hours	Remarks Existing Existing Existing Existing Existing Existing Existing
Clarifiers Surface Area,Total	2 1257	each sf	new new
Filters Capacity, ea	2 0.375	Ea MGD	new
CCC 1 CCc 2	25000 19457	gal gal	existing existing
Aerobic Digestion	171574	gal	existing
Class I Assessment 75% Flow Peak Factor after FEQ HRT, CC2	0.375 1.5 50	MGD minutes.	Class I
Peak Settling 1 Clarifier	448	gpd/sf	Class I
Single Filter Capacity	0.375	MGD	Class I

5.3.2 Alternate Two: Construct New Flow Train

This alternative tests the idea that salvaging and repurposing existing tankage is a less costly endeavor than simply building a new process flow train.

The process used in the new flow train is identical to that described in 5.3.1, with pre and post anoxic chambers.

In this alternative, the improvements proposed for the older 1976 plant to improve the headworks, repurpose existing tankage for flow equalization and make concrete repairs to that tankage only would still be carried out.

The new process flow train would be a precast, rather than poured in place concrete package design, which can be constructed by companies such as Marolf Environmental and Mack Concrete. Compared to alternative one, the package is more compact than what is existing. The package eliminates the conversion of the 1970s flow trains to anoxic and rearation tankage and

most of the repair work to that system. It does

Neither company makes a precast circular clarifier, so there would still be two new circular clarifiers and Disk filters would be part of the project. The existing clearwell would be converted to a chlorine contact tank. The remainder of the work described in 5.3 would be carried out.

Alternative Two is depicted in the attached exhibits.

Like alternative on, this process was modeled in the Clemson University SSSP model and found to achieve similar nitrogen reduction as does Alternative One.

Process Volume available in this alternative are as follows:

Parameter Flow	Result 0.5	Unit MGD	Remarks Design
Flow Equalization Percent of Flow	91940 18%	gal	Existing
Anoxic	129591	gal	New
Aeration	259182	gal	New
2nd Anoxic	73042.2	gal	New
Reaeration	<u>56548.8</u>	gal	New
Volume	518364	gal	
Hydraulic Residence	24.9	hours	
Clarifiers	2	each	new
Surface Area,Total	1257	sf	new
Filters	2	Ea	new
Capacity, ea	0.375	MGD	
CCC 1	25000	gal	existing
CCc 2	19457	gal	existing
Aerobic Digestion	151514	gal	existing
Class I Assessment			
75% Flow	0.375	MGD	
Peak Factor after FEQ	1.5	•	C1 I
HRT, CC2	50	minutes.	Class I
Peak Settling 1 Clarifier	448	gpd/sf	Class I
Single Filter Capacity	0.375	MGD	Class I

5.3.3 Alternative 3 SBR Conversion

In this alternative, work to convert existing tankage to flow equalization is carried out as in the other alternatives, the headworks are upgraded as discussed in 5.3. Disc Filters are installed and the existing filter clearwell is converted to a chlorine contact tank.

Use of Sequencing Batch Reactor technology eliminates equipment required in the other alternatives: new clarifiers, return sludge pumps, recirculation pumps.

As in the other alternatives, existing tankage in the 1970s flow trains is repurposed for flow equalization. One aeration tank (or more if needed) in the 1986 flow train is retained for waste sludge digestion as is with little modification. No mixers need be installed in the 1970s tank for anoxic purposes as in alternative two.

While this saves a lot of work and cost, what is constructed are 19 to 20 ft tall process tank(s) with three compartments or reactors. Three reactors are used to assure meeting Class I reliability requirements. In each tank is installed SBR equipment package which provides aeration to the tank, mixing when required, and the ability to decant settled water (remove treated water above the plant sludge layer). Each SBR compartment combines aeration, anoxic denitrification and settling in the same compartment or reactor. The equipment is furnished as a package with blowers (aeration is by diffused aeration) mixing equipment and decant device.

Operation of an SBR is operated in "batches" as opposed to more conventional plants where the flow in and out of them is continuous. Incoming wastewater is initially received in a flow equalization tank and is then pumped to fill each SBR compartment in turn. As the volume dosed per cycle is fairly large, the depth of water in the SBR compartment is has to be able too accommodate the incoming volume of of wastewater in each cycle or batch. It is not feasible to convert the shallow existing tanks to an SBR process.

Because of the height of the tanks required, thicker concrete walls are needed, and during the development of this report, it was found the cost for poured in place concrete in treatment plant construction is double the cost of what it was a few short years ago. Initial cost estimates of the concrete needed for an SBR structure was \$4.5 million. For this reason, other means of tank construction were looked at, and the use of glass fused to steel tanks were considered. These tanks are very common in use; they do not last as long as concrete, typically having perhaps a 25-30 year life span, but they are a fraction of the cost compared to concrete in the current market.

The process is outlined in the exhibits as Alternative Three

Process modelling calculations (and cost information) was provided by one vendor of SBR technology. Using three batch reactors, the plant was able to achieve 6 mg/L TN reduction. With three reactors and adjusted operating parameters, 3 mg/L should be achievable. As discussed in other sections of this report, other SBR plants in Florida can meet this standard.

The SBR process potentially offers one advantage for the long term.

Process Volumes available in this alternative are:

Parameter Flow	Result 0.5	Unit MGD	Remarks Design
Flow Equalization Percent of Flow	91940 18%	gal	Existing
SBR 1	184322	gal	New
SBR 2	184322	gal	New
SBR 3	184322	gal	New
		gal	New
Volume	552966	gal	
Hydraulic Residence	26.5	hours	
Filters	2	Ea	new
Capacity, ea	0.375	MGD	
CCC 1	25000	gal	existing
CCc 2	19457	gal	existing
Aerobic Digestion	151514	gal	existing
Class I Assessment 75% Flow Peak Factor after FEQ	0.375 1.5	MGD	
HRT, CC2	50	minutes.	Class I
11111, 002	50	minutes.	C1033 1
(2) SBRs HRT	24	hours	Class I
Single Filter Capacity	0.375	MGD	Class I

The process is readily expandable by adding more batch reactors.

There have however been recent advances in SBR technology which have resulted in the development of something called Granular Activated Sludge.

Granular Activated Sludge uses proprietary methods for developing an activated sludge biomass that is more like dense granules rather than the cotton like floc normally seen in conventional treatment plants. Granular Activated Sludge is being deployed in SBR plants to best take advantage of the fast settling rate of the granules. The granules also contain micro zones within them that are aerobic and anoxic. Because of these properties, Granular Activated Sludge is reported effective at nitrogen reduction and is able to treat the wastewater flow in a reduced process volumes.

What this may mean for future expansion is that future conversion to Granular Activated Sludge

may be able to rerate the plant to a higher permitted capacity.

It should be emphasized that Granular Activated Sludge is a relatively new technology; there are very few installations in the United States so there is not a lot of track record data to inform of system reliability, cost or challenges to operation. However by the time Grenelefe needs an expansion beyond 0.5 MGD, and if SBRs are selected, GAS technology will be worth a comprehensive assessment.

6.0 Evaluation of Alternatives

6.1 Methods of Obtaining Cost Data

Cost data for construction used in developing opinions of cost for the alternatives came from a variety of sources (where bid data is used, data was not the low bid price)

- For construction of clarifiers, return pump station, other pumps Disk filters, recent bid to rehabilitate a privately owned 0.495 plant in north Florida
- For electrical power distribution and generator improvement costs, recent bid to rehabilitate a privately owned 0.495 plant in north Florida
- For concrete repair to interior of existing tanks, cost data from a recent project to rehab a 1960s concrete tank on a 0.250 MGD plant in central Florida
- For external patch and repair work to external portion of existing tankage, recent bid data to rehabilitate a 0.495 MGD plant in north Florida.
- For modification of existing tankage to reconstruct a headworks with new screens, repurpose existing tankage for flow equalization with necessary installed equipment, budget quotation from Marolf Environmental
- For alternative two construction of package flow train consisting ot precast concrete walls, anoxic, aeraton, 2nd anoxic and re aeration chambers, budget quotation from Marolf Environmental
- For alternative three, cost of SBR equipment, equipment cost data was furnished by MKT Environmental
- For alternative three, cost of SBR glass fused to steel tankage furnished by Florida Aquastore.

6.2 Limitations of Cost Data

Compared to costs in previous years, pricing is possibly double what it was pre Pandemic. According to suppliers, costs for materials used are up but only about 17%. Most of the pricing costs we see today appear to be in contractor markup, labor overhead, profit in a bid

environment that has ample work to bid on. As an example a simple 3 Hp self priming return sludge pump system with 3 pumps, valves and controls probably has less than \$100,000 in actual equipment cost had multiple bids averaging \$400,000 for the installed pump station.

Costs appear to be mainly market driven as opposed to equipment cost driven; contractors are charging high costs because in the current market, they can. In particular costs of concrete construction and electrical systems installation have been singled out as areas where subcontractor costs have risen more dramatically. This makes preparing an opinion of cost for different alternatives a challenge.

6.3 Overall Comparisons of Cost Opinions

In the appendix of this report, are detailed list items of how project costs were arrived at for each alternative.

The table below provides an overall summary:

	GRENELEF WWTF, ALTERNATE 1, RESTORE AND MODIFY EXISTING	ALTERNATE 2, CONSTRUCT	GRENELEF WWTF, ALTERNATE 3, CONVERT TO
	PLANT	NEW FLOW TRAIN	SBR PROCESS
Headworks, FEQ, Upgrade	\$2,004,481	\$1,806,481	\$1,806,481
Process Upgrades	\$3,819,211	\$6,611,387	\$3,238,755
Site and Electrical Work	\$1,614,829	\$1,822,363	\$1,552,552
Contractor Bonds	\$153,707	\$205,591	\$138,138
subtotal	\$7,438,520	\$8,417,867	<i>\$5,045,236</i>
Reuse Components	\$861,667	\$861,667	\$861,667
subtotal	\$8,300,187	\$9,279,534	\$5,906,902
Contingencies Allownace	\$1,245,028	\$1,696,123	\$1,139,639
Engineering & Permitting	\$676,312	\$904,599	\$607,807
Total	\$10,375,234	\$13,908,210	\$9,345,039

Towards the top of the table, costs are broken to show the potential cost of upgrading the headworks and flow equalization tankage, the cost of constructing or modifying the process tankage, followed by an allowance for contractor performance and payment bonds. The cost of construction of the reuse components (filters, effluent pumps, monitoring and auto diversion equipment) has been kept separate to illustrate the impact on cost those components have.

The subtotal below Reuse Components represents the sum of all directly related construction costs

An allowance for contingencies has been provided. Costs shown are not hard dollar bid numbers. Costs are developed on the basis of conceptual, not final design. Actual bid numbers based on a complete, permitted and bid ready design may vary significantly.

Costs for engineering and permitting are based on typical large firm percentage based design.

Overall the total projected opinion of potential project costs ranges from 10 to 14 million dollars

The least cost alternative is alternative three, construction of an SBR plant, with rehabilitation and conversion of the existing plant a close second.

6.4 Operational Considerations

Operating staff time will increase. The current permit will require an increase in operating staff just from the conversion to advanced nitrogen control:

- I. Before Modification to meet the Total Nitrogen Limit: A Class C or higher operator 3 hours/day for 5 days/week and one weekend visit.
- II. After Modification to meet the Total Nitrogen Limit: A Class C or higher operator 6 hours/day for 5 days/week and one visit on each weekend day.

With reuse there will be additional changes in staffing. If reclaimed water is provided to the reuse system 24 hours a day, they may require 24 hour operating time. However this is often reduced during permitting with consideration of means of remote monitoring and other operational techniques, however, staffing time may still be 8-12 hours a day. The facility may be staffed with a contract service or permanent staff employee. However the facility has to be staffed at the times required and it may be more practical to continue to use a contract service

Because of the additional time on site, the current operator hut may have to be reassessed and a larger more appropriate modular or site built operator office needed.

With an advance nitrogen removal process, there is significant increase in the number of pumps, motors that have to be looked and replaced. Depending on different factors, the service life on the equipment tends to be short, most usually 3-7 years from observation and experience

The most equipment to be maintained is in Alternative One and Two. Equipment used in those alternatives that would not be present in Alternative Three are (3) return and waste sludge pumps, (3) recirculation pumps, (2) surface aerators, (2) clarifier drives and mechanisms, and about 6-10 mixers. Offsetting that to a limited extent in the pumps and aerators used in the SBR package.

The complexity of operation will be a challenge, however Alternatives One and Two will be more familiar to most operators than the SBR in Alternative three.

6.5 Headworks Improvements

In all alternatives the same basic headworks improvements are proposed. According to FDEP these may be implemented with a minor modification permit application. Construction costs are opinioned to be \$1.8 to \$2 million for the work described in this report.

APPENDIX

Appendix One Effluent Nitrogen Content

	TN Mo Av g	TN An Avg	Nitrate	EST TKN	TP	TP An Avg
Mar-17	17.1		16.3	0.8	6.06	
Apr-17	14.3		10.1	4.2	2.94	
May-17	8.73		8.11	0.62	7.2	
Jun-17	8.59		8.09	0.5	5.36	
Jul-17	4.15		3.58	0.57	2.08	
Aug-17	4.57		5.86	-1.29	0.127	
Sep-17	7.88		5.76	2.12	0.702	
Oct-17	4.71		4.25	0.46	0.461	
Nov-17	1.09		7.66	-6.57	2.52	
Dec-17	1.41		13.2	-11.79	0.54	
Jan-18	1.07		20.2	-19.13	3.6	
Feb-18	1.3	6.24	12	-10.7	5.98	3.1
Mar-18	9.04	5.57	8.22	0.82	2.9	2.9
Apr-18		4.78			DNP	2.9
May-18	0.2	4.00	5.58	-5.38	0.105	2.2
Jun-18	0.636	3.28	9.07	-8.434	3.3	2.0
Jul-18	0.2	2.92	5.15	-4.95	0.787	1.9
Aug-18	0.2	2.52	7.9	-7.7	0.136	1.9
Sep-18	1.01	1.90	8.49	-7.48	3.01	2.1
Oct-18	0.846	1.55	7.72	-6.874	2.97	2.3
Nov-18	0.2	1.46	8.46	-8.26	1.25	2.2
Dec-18		1.47	9.61	-9.61	DNP	2.4
Jan-19	1.23	1.49	6.58	-5.35	2.33	2.3
Feb-19	0.812	1.44	3.1	-2.288	0.883	1.8
Mar-19	0.2	0.55	4.47	-4.27	0.04	1.5
Apr-19		0.55			DNP	1.5
May-19	0.995	0.63	1.51	-0.515	3.54	1.8
Jun-19	0.845	0.65	2.21	-1.365	0.608	1.6
Jul-19	0.294	0.66	6.26	-5.966	0.225	1.5
Aug-19		0.71			DNP	1.7
Sep-19	1.1	0.72	11.2	-10.1	3.54	1.7
Oct-19	3.01	0.97	14.8	-11.79	0.372	1.4
Nov-19	0.535	1.00	12.9	-12.365	3.69	1.7
Dec-19	0.988	1.00	11.8	-10.812	3.19	1.8
Feb-20	1.04	0.98	6.42	-5.38	0.232	1.6
Mar-20	0.069	0.91	3.65	-3.581	1.04	1.6
Apr-20	0.05	0.89	2.55	-2.5	1.12	1.8
May-20	0.994	0.90	2.47	-1.476	1.02	1.7
Jun-20	1.53	0.95	4.76	-3.23	0.394	1.4

	TN Mo Av g	TN An Avg	Nitrate	EST TKN	TP	TP An Avg
Jul-20	0.32	0.90	4.69	-4.37	0.31	1.4
Aug-20	4.8	1.31	5.81	-1.01	6.7	2.0
Sep-20	9	1.95	7.1	1.9	4.3	2.2
Oct-20		2.03	1.8	-1.8	OTH	2.0
Nov-20	10	2.67	7.8	2.2	4.1	2.4
Dec-20	4.5	3.03	1.2	3.3	2.8	2.3
Jan-21	1	3.03	1.6	-0.6	0.42	2.0
Feb-21	4.3	3.32	3.25	1.05	2.3	2.2
Mar-21	5.8	3.84	7.2	-1.4	4.2	2.5
Apr-21	0.12	3.85	1.5	-1.38	2	2.6
May-21	9.65	4.64	5.3	4.35	4.9	2.9
Jun-21	10.1	5.42	12.187	-2.087	5	3.4
Jul-21	12.642	6.54	12	0.642	4.4	3.7
Aug-21	11.3	7.13	19	-7.7	3.4	3.4
Sep-21	14.7	7.65	14	0.7	4.7	3.5
Oct-21	1.051	7.10	0.4	0.651	3	3.4
Nov-21	0.58	6.31	3	-2.42	3	3.3
Dec-21	3.03	6.19	1	2.03	0.62	3.2
Jan-22	30.9	8.68	0.092	30.808	0.48	3.2
Feb-22		9.08	4	- 4	ANC	3.2
Mar-22	17.6	10.15	0.092	17.508	0.74	2.9
Apr-22	1.22	10.25	0.092	1.128	1.3	2.9
May-22	7.39	10.05	0.092	7.298	4.6	2.84
Jun-22	2.64	9.37	6	-3.36	5.4	2.88
Jul-22	5.5	<i>8.72</i>	0.8	4.7	2	2.66
Aug-22	7.64	8.39	0.8	6.84	0.51	2.40
Sep-22	1.75	7.21	0.8	0.95	0.59	2.02
Oct-22	2.32	7.32	1.9	0.42	0.15	1.76
Nov-22	1.3	7.39	6.2	-4.9	1.7	1.64
Dec-22	2.62	7.35	4.3	-1.68	0.18	1.60
Jan-23	1.16	4.65	15	-13.84	0.22	1.58
Feb-23	2.89	4.50	2.8	0.09	0.24	1.47
Mar-23	4.82	3.44	9.9	-5.08	1.9	1.57
Apr-23	0.88	3.41	1.6	-0.72	1.2	1.56
May-23	1.79	2.94	1.4	0.39	1.1	1.27
Jun-23	3.56	3.02	3.1	0.46	3.4	1.10
Jul-23	9.36	3.34	0.1	9.26	1.3	1.04
Aug-23	26.6	5	2.5	24.1	10	2
Sep-23	5.34	5.3	0.2	5.14	0.16	1.9
Oct-23	5.07	5.5	2.3	2.77	1.1	1.9
Nov-23		1.84	1.04		DNP	0.969

	TN Mo Av g	TN An Avg	Nitrate	EST TKN	TP	TP An Avg
Dec-23		0.575	0.185		1.04	1.04
Jan-24		1.31	0.3		2.07	2.07
Mar-24		4.865	0.64		6	6

Appendix Two Select Existing FL SBR Performance Information

Project Name	Product	City	Permit No	Capacity MGD	TN Permit Limits	DMR Result	DMR Date
Auburndale, FL	SBR	Auburndale	FLA016559	4	report. Mg/L	17	Apr-24
Monterey, FL	SBR	Jacksonville	FL0023604	3.6	report (lb/yr limit)	2.88, 3.22 qtly	May-24
Mulberry, FL	SBR	Mulberry	FL0020338	0.75	3 mg/L	2.3 An Avg	May of 2024

Also:City of Marathon Area 4 WWTP (FLA550973) operates a 3 batch SBR, capacity of 0.4 MGD,

Has been averaging under 3 mg/L TN (annual basis) with 0.3 MGD in flow.

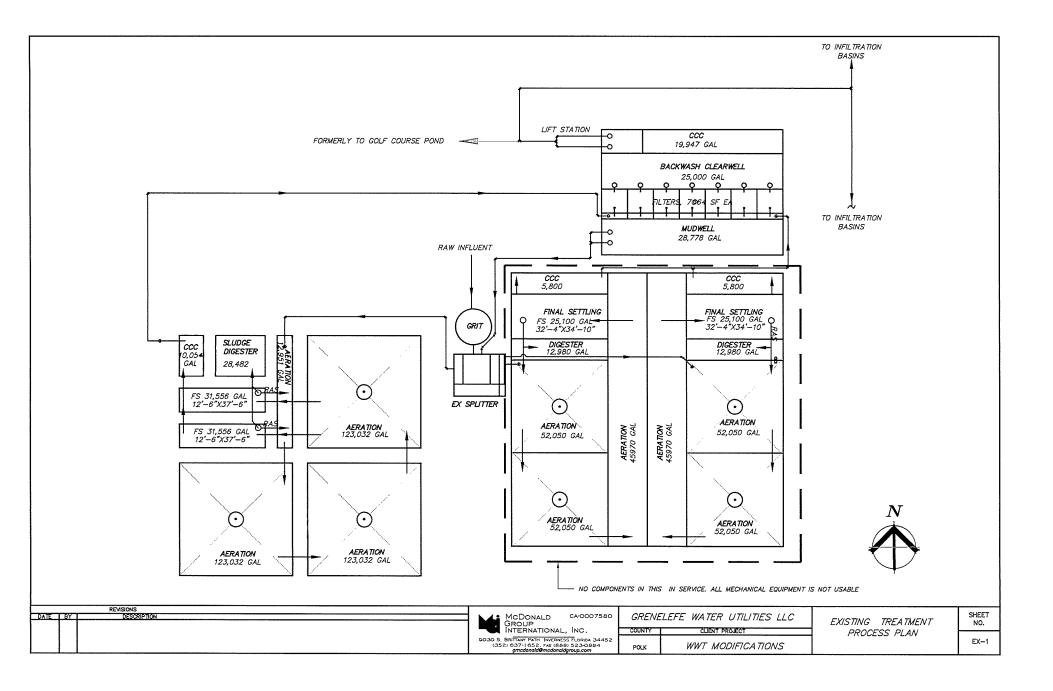
Appendix Three Alternative Opinions of Cost Basis

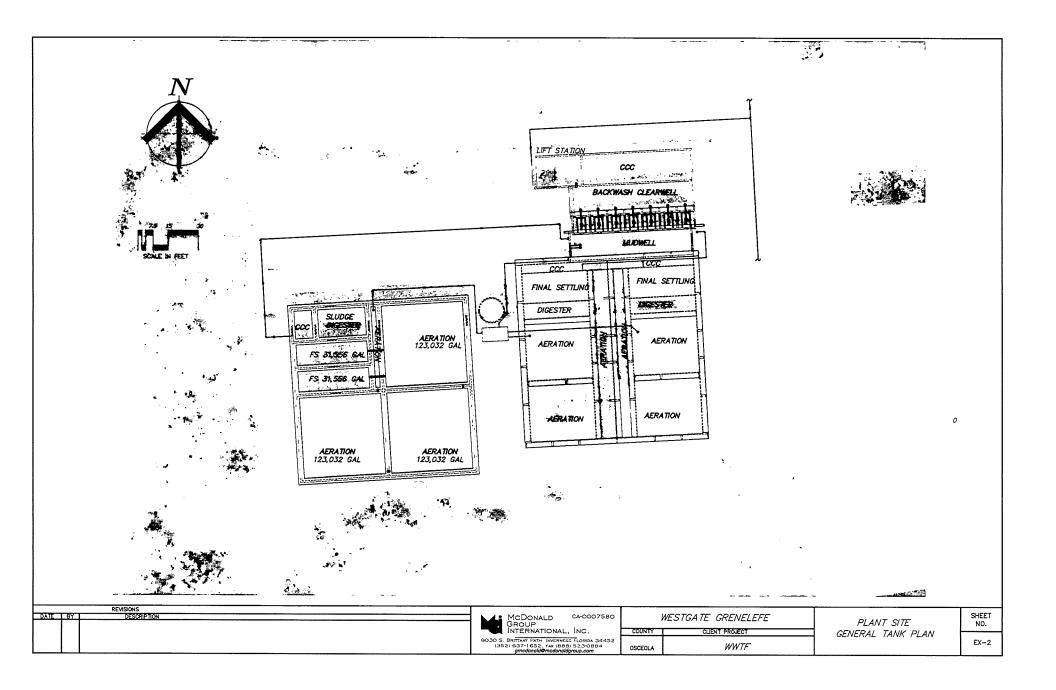
GRENELEFE WWTF, ALTERNATE 1, RESTORE AND MODIFY EXISTING PLANT

ITEM NO	<u>DESCRIPTION</u>	LUMP SUM COST
1.1	DEMOLISH EXISTING CONCRETE FLOW SPLITTER BOX AND BAR SCREEN	\$16,000
1.2.1	PUMP WATER OUT OF PLANT NOT IN SERVICE: RAINWATER TO INFILTRATION BASINS; SLUDGE TO BE REMOVED BY OWNER SLUDGE HAULER; REMOVE VEGETATION AND DEBRIS	\$36,000
1.2.2	REMOVE FROM PLANT NOT IN SERVICE ALL MECHANICAL EQUIPMENT	\$36,000
1.3	PUMP WATER OUT OF MUDWELL AND FILL WITH BUILDER SAND TO GRADE	\$16,000
1.4	INTERIOR WALLS OF TANKS IN OUT OF SERVICE PLANT DESIGNATED FOR REUSE AS FEQ AND GRIT CHAMBER TO BE SPC-SP13 "SURFACE PREPARATION OF CONCRETE" AND ALLOWED TO COMPLETELY DRY. INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIM-EMT PRIMER AND SPECPATCH 30, SHERWIN-WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA-PLATE 2300, OR APPROVED EQUAL	\$145,200
1.5	REMAINDER OF TANKS IN OUT OF SERVICE PLANT TO BE SPC-SP13 "SURFACE PREPARATION OF CONCRETE" AND ALLOWED TO COMPLETELY DRY. INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIMEMT PRIMER AND SPECPATCH 30, SHERWIN-WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA-PLATE 2300, OR APPROVED EQUAL	\$198,000
1.6	REPAIR CONC WALKWAYS AND SECURE ALL HAND RAILS	\$48,000
1.7	IN SERVICE PLANT EXTERIOR CONCRETE REPAIRS	\$298,861
1.8	REPAINT EXTERIOR	\$346,000
2.1	INSTALL NEW SURGE TANK BLOWERS AND CONTROLS	\$176,384
2.2	INSTALL NEW HYDROSTATIC SCREEN ATOP EX GRIT CHAMBER ROOF SLAB	\$277,842
2.3	INSTALL NEW AIR HEADERS AS SHOWN	\$81,538
2.4	INSTALL NEW SURGE PUMPS, CONTROLS AND SPLITER BOX AS SHOWN.	\$328,656
PART B:		
3	INSTALL NEW MIXERS, RECIRCULATION PUMPS, REPLACE SURFACE	E AERATOR:
3.1 3.2	INSTALL NEW MIXERS INSTALL NEW RECIRCULATION PUMPS	\$420,000 \$192,000

ITEM NO	<u>DESCRIPTION</u>	LUMP SUM COST
3.3	REPLACE IN OUT OF SERVICE PLANT SURFACE AERATOR AND STAYS	\$80,000
4	CONSTRUCT NEW CLARIFIERS AND RAS/WAS PUMP STATION, D	ISK FILTERS
4.1	CONSTRUCT NEW CLARIFIERS	\$2,111,111
4.2	CONSTRUCT RAS/WAS STATION	\$386,500
4.3	INSTALL NEW DISK FILTERS	\$535,667
4.4	REPLACE EFF PUMPS, INSTALL TURBIDITY, TRC MONITORS	\$326,000
5	CONNECT PIPING TO NEW DISC FILTERS AND CCCS AND ALL YARD PIPING SHOWN	\$629,600
		¢1 000 000
6	SITE ELECTRICAL COSTS	\$1,000,000
7	GENERAL SITE WORK AND RESTORATION	\$614,829
8	BONDS	<u>\$153,707</u>
	TOTAL CONSTRUCTION	\$8,453,894
9	Contingencies at 15%	\$1,268,084
10	ENGINEERING (STRUCTURAL, ELECTRICAL, MECH PROCESS)	\$676,312
	TOTAL PROJECT COST	\$10,398,290

GRENELEFE WWTF, ALTERNATE 2, CONSTRUCT NEW FLOW TRAIN


ITEM NO	<u>DESCRIPTION</u>	LUMP SUM COST
1.1	DEMOLISH EXISTING CONCRETE FLOW SPLITTER BOX AND BAR SCREEN	\$16,000
1.2.1	PUMP WATER OUT OF PLANT NOT IN SERVICE: RAINWATER TO INFILTRATION BASINS; SLUDGE TO BE REMOVED BY OWNER SLUDGE HAULER; REMOVE VEGETATION AND DEBRIS	\$36,000
1.2.2	REMOVE FROM PLANT NOT IN SERVICE ALL MECHANICAL EQUIPMENT	\$36,000
1.3	PUMP WATER OUT OF MUDWELL AND FILL WITH BUILDER SAND TO GRADE	\$16,000
1.4	INTERIOR WALLS OF TANKS IN OUT OF SERVICE PLANT DESIGNATED FOR REUSE AS FEQ AND GRIT CHAMBER TO BE SPC-SP13 "SURFACE PREPARATION OF CONCRETE" AND ALLOWED TO COMPLETELY DRY. INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIM-EMT PRIMER AND SPECPATCH 30, SHERWIN- WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA- PLATE 2300, OR APPROVED EQUAL	\$145,200
1.5	NOT REQUIRED	M
1.6	REPAIR CONC WALKWAYS AND SECURE ALL HAND RAILS	\$48,000
1.7	IN SERVICE PLANT EXTERIOR CONCRETE REPAIRS	\$298,861
1.8	REPAINT EXTERIOR	\$346,000
2.1	INSTALL NEW SURGE TANK BLOWERS AND CONTROLS	\$176,384
2.2	INSTALL NEW HYDROSTATIC SCREEN ATOP EX GRIT CHAMBER ROOF SLAB	\$277,842
2.3	INSTALL NEW AIR HEADERS AS SHOWN	\$81,538
2.4	INSTALL NEW SURGE PUMPS, CONTROLS AND SPLITER BOX AS SHOWN.	\$328,656
PART B:		
3	CONSTRUCT NEW DUAL TRAN ANOXIC AER- POST AX REAR TRAIN, INFL ALL EQUIPMENT	\$3,612,719
4.1	RESERVED	
4.2	RESERVED	
4.3	RESERVED	
5	CONSTRUCT NEW CLARIFIERS AND RAS/WAS PUMP STATION, DISK F	FILTERS
5.1	CONSTRUCT NEW CLARIFIERS	\$2,111,111
5.2	CONSTRUCT RAS/WAS STATION	\$386,500
5.3	INSTALL NEW DISK FILTERS	\$535,667
5.4	REPLACE EFF PUMPS, INSTALL TURBIDITY, TRC MONITORS	\$326,000
6	CONNECT PIPING TO NEW DISC FILTERS AND CCCS AND ALL YARD PIPING SHOWN	\$501,057
7	SITE ELECTRICAL COSTS	\$1,000,000


ITEM NO	<u>DESCRIPTION</u>	LUMP SUM COST
8 9	GENERAL SITE WORK AND RESTORATION BONDS	\$822,363 \$205,591
	TOTAL CONSTRUCTION 0Contingencies at 15% 1ENGINEERING (STRUCTURAL, ELECTRICAL, MECH PROCESS)	\$11,307,487 \$1,696,123 \$904,599
	TOTAL PROJECT COST	\$13,908,210

GRENELEF WWTF, ALTERNATE 3, CONVERT TO SBR PROCESS

ITEM NO	<u>DESCRIPTION</u>	LUMP SUM COST
1.1	DEMOLISH EXISTING CONCRETE FLOW SPLITTER BOX AND BAR SCREEN	\$16,000
1.2.1	PUMP WATER OUT OF PLANT NOT IN SERVICE: RAINWATER TO INFILTRATION BASINS; SLUDGE TO BE REMOVED BY OWNER SLUDGE HAULER; REMOVE VEGETATION AND DEBRIS	\$36,000
1.2.2	REMOVE FROM PLANT NOT IN SERVICE ALL MECHANICAL EQUIPMENT	\$36,000
1.3	PUMP WATER OUT OF MUDWELL AND FILL WITH BUILDER SAND TO GRADE	\$16,000
1.4	INTERIOR WALLS OF TANKS IN OUT OF SERVICE PLANT DESIGNATED FOR REUSE AS FEQ AND GRIT CHAMBER TO BE SPC- SP13 "SURFACE PREPARATION OF CONCRETE" AND ALLOWED TO COMPLETELY DRY, INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIM-EMT PRIMER AND SPECPATCH 30, SHERWIN-WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA-PLATE 2300, OR APPROVED EQUAL	\$145,200
1.5	NOT REQUIRED	NR
1.6	REPAIR CONC WALKWAYS AND SECURE ALL HAND RAILS	\$48,000
1.7 1.8 2.1 2.2	IN SERVICE PLANT EXTERIOR CONCRETE REPAIRS REPAINT EXTERIOR INSTALL NEW SURGE TANK BLOWERS AND CONTROLS INSTALL NEW HYDROSTATIC SCREEN ATOP EX GRIT CHAMBER ROOF SLAB	\$298,861 \$346,000 \$176,384 \$277,842
2.3 2.4	INSTALL NEW AIR HEADERS AS SHOWN INSTALL NEW SURGE PUMPS, CONTROLS AND SPLITER BOX AS SHOWN.	\$81,538 \$328,656
PART B: 3 4.1	CONSTRUCT (3) SBR CHAMBERS SBR EQUIPMENT SBR INSTALL ATION	\$1,250,000 \$1,068,750
4.2 4.3	SBR INSTALLATION NOT REQUIRED	\$534,375 NR
5	NOT REQUIRED	NR
5.1	NOT REQUIRED	NR
5.2	NOT REQUIRED	NR
5.3	INSTALL NEW DISK FILTERS	\$535,667
5.4 6	REPLACE EFF PUMPS, INSTALL TURBIDITY, TRC MONITORS CONNECT PIPING TO NEW DISC FILTERS AND CCCS AND ALL YARD PIPING SHOWN	\$326,000 \$385,630
7	SITE ELECTRICAL COSTS	\$1,000,000
8	GENERAL SITE WORK AND RESTORATION	\$552,552
9	BONDS	<u>\$138,138</u>

ITEM NO DESCRIPTION	LUMP SUM COST
TOTAL CONSTRUCTION	\$7,597,592
10Contingencies at 15%	\$1,139,639
HENGINEERING (STRUCTURAL, ELECTRICAL, MECH PROCESS)	\$607,807
TOTAL PROJECT COST	\$9,345,039

SURGE PUMP SPECIFICATION: (3) GORMAN RUPP MODEL T3 PUMPS (5) HP EACH 350 GPM EA AT 20 FT

RECIRCULATION PUMP SPECIFICATION: (3) GORMAN RUPP MODEL T4 PUMPS (7.5) HP EA 600 GPM AT 12 FT

RAS/WAS PUMP SPECIFICATION: (2) GORMAN RUPP MODEL T3 PUMPS (3) HP EACH 260 GPM AT 14 FT

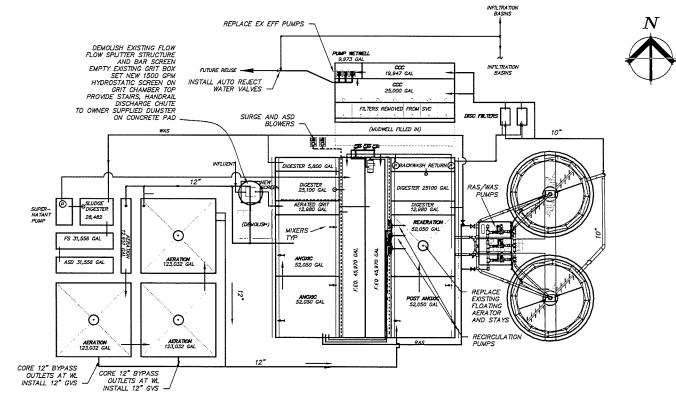
MIXERS SPECIFICATION: (5) SUBMERSIBLE TYPE, SULZER OR EQ 7.5 HP EACH MAX MLSS 6000 MG/1

SURGE & ASD BLOWER SPECIFICATION (2) UNITS, 1 RUNNING, 1 RESERVE FLOW 645 SCFM AT 5 PSI GARDNER DENVER MODEL 7M 1090 RPM, 20 HP

FLOATING SURFACE AERATOR 1 UNIT, EVOQUA AEROLATER 7.5 HP

DESCRIPTION OF IMPROVEMENTS

PART A


1.1 DEMOLISH EXISTING CONCRETE FLOW SPLITTER BOX AND BAR SCREEN 1.2.1 PUMP WATER OUT OF PLANT NOT IN SERVICE: RAINWATER TO INFILTRATION BASINS; SLUDGE TO BE

REMOVED BY OWNER SLUDGE HAULER; REMOVE VEGETATION AND DEBRIS REMOVE FROM PLANT NOT IN SERVICE ALL MECHANICAL FOUIPMENT 1.3 PUMP WATER OUT OF MUDWELL AND FILL WITH BUILDER SAND TO GRADE BUILDER SAND TO GRADE
1.4 INTERIOR WALLS OF TANKS IN OUT OF SERVICE
PLANT DESIGNATED FOR REUSE AS FEQ AND GRIT
CHAMBER TO BE SPC-SP13 SURFACE PREPARATION OF CONCRETE AND ALLOWED TO COMPLETELY
DRY, INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIM-EMT PRIMER AND SPECPATCH 30, SHERWIN-WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA-PLATE 2300, OR SHERWIN-WILLIAMS DURA-PLATE 2300, OR APPROVED EQUIAL 1.5 REMAINDER OF TANKS IN OUT OF SERVICE PLANT TO BE SPC-SPS1 "SURFACE PREPARATION OF CONCRETE" AND ALLOWED TO COMPLETELY DRY, INTERIOR COATING OF ALL EXISTING TANKS TO BE RECONDITIONED WITH CIM-1000-TDS WITH CIVIL SELVEN TO SERVEN T CIM-EMT PRIMER AND SPECPATCH 30, SHERWIN-WILLIAMS DURA-PLATE 6000 WITH SHERWIN-WILLIAMS DURA-PLATE 2300, OR APPROVED EQUAL 1.6 REPAIR CONC WALKWAYS AND SECURE ALL HAND

1.7 IN SERVICE PLANT EXTERIOR CONCRETE REPAIRS
1.8 REPAINT EXTERIOR2.1INSTALL NEW SURGE TANK
BLOWERS AND CONTROLS

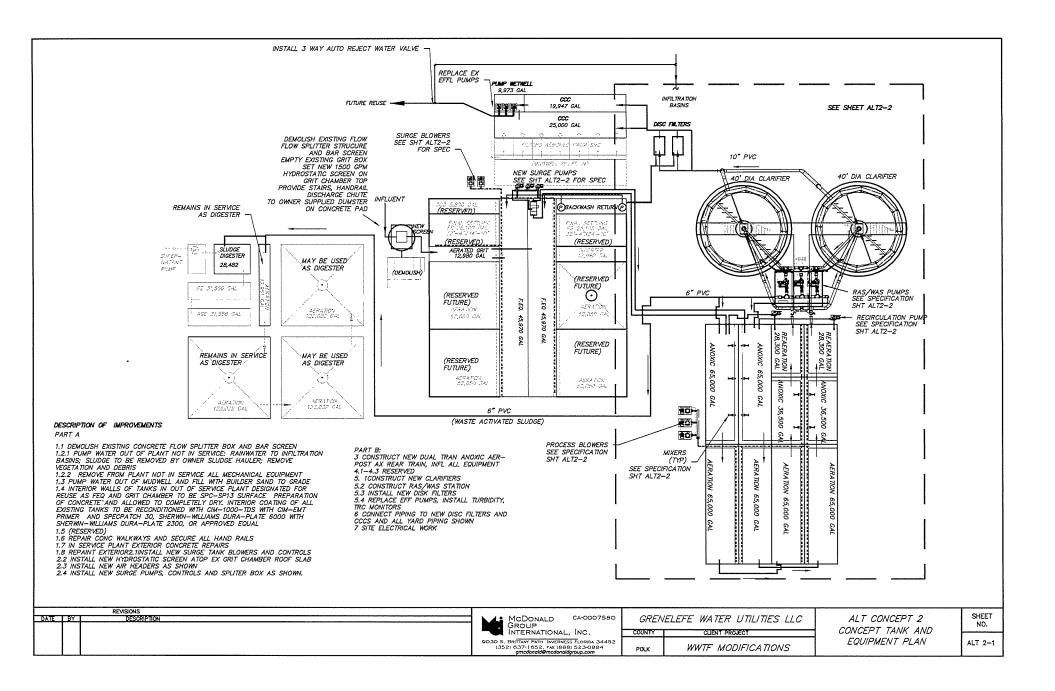
2.2 INSTALL NEW HYDROSTATIC SCREEN ATOP EX GRIT CHAMBER ROOF SLAB

2.3 INSTALL NEW AIR HEADERS AS SHOWN 2.4 INSTALL NEW SURGE PUMPS, CONTROLS AND SPLITER BOX AS SHOWN.

PART B

3. INSTALL NEW MIXERS, RECIRCULATION PUMPS, REPLACE SURFACE AERATOR 4.1 INSTALL NEW MIXERS
4.2 INSTALL NEW RECIRCULATION PUMPS

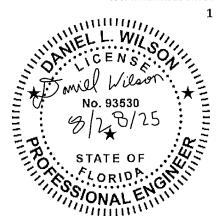
REPLACE IN OUT OF SERVICE PLANT SURFACE AERATOR AND STAYS


CONSTRUCT NEW CLARIFIERS 5.2 CONSTRUCT RAS/WAS STATION

5.3 INSTALL NEW DISK FILTERS

5.5 INSTALL NEW JEFF PUMPS, CHLORINE RESIDUAL AND TURBDITY MONITORS 5.4 INSTALL NEW JEFF PUMPS, CHLORINE RESIDUAL AND TURBDITY MONITORS 6. CONNECT PIPMS TO NEW DISC FILENCE AND ALL YARD PIPMS SHOWN 7. UPGRADE SERVICE, PROVIDE POWER DISTRIBUTION, UPGRADE GENERATOR

8. SITE AND RESTORATION WORK


	REVISIONS					T
DATE BY	Y DESCRIPTION	McDonald ca-0007580 Group	GREN	IELEFE WATER UTILITIES LLC	PROPOSED ALT 1	SHEET NO.
1 1	1	INTERNATIONAL, INC.	COUNTY	CLIENT PROJECT	PROCESS PLAN	
		9030 S. BRITTANY PATH INVERNESS FLORIDA 34452 (352) 637-1652, FAX (888) 523-0884 gmcdonald@mcdonaldgroup.com	POLK	WWTF MODIFICATIONS		ALT 1-1

Response to Staff Data Request #5, ITEM #27

Daniel Wilson, PE - Vice President of Engineering Cell: (854) 276-8710 Email: daniel@tankcare.net www.tankcare.net

Aug vat 28, 1/125

Winter Havett, Florida

Re: இதும் இத்திlon Well #10 Hydropneumatic Water Storage Tank Washout Inspection Report

Winzew.gamen:

Southern in preciates the opportunity to serve your water system by completing the washout in pections and engineering evaluations for the above-referenced water storage tank.

Pursuant to Rule 62-555.350(2), Florida Administrative Code (FAC), this letter and the attached reports document the required 5-year engineering inspections.

The wirig of all inspections were performed under the responsible charge of the late Michael L. Douglas, PE (R. PL #82868), Vice President of Engineering at Southern Corrosion, Inc. Following his passing and the resability to access his engineering records, the field inspection findings were thoroughly reviewed by the undersigned Professional Engineer.

Findings

- ** Pro active Coatings: The interior and exterior coatings of the tank are in need of renovations of this time to continue protecting the steel surfaces from corrosion and deterioration.
- #1 Section and Biogrowth Removal: During the washout process, loose sediment, biogrowth, and an increase of the control of the
- 😻 🌭 htural Integrity: Based on the inspector's observations and subsequent engineering
- 🚃 evaluation, the structural components of each tank—including shells, roofs, floors,
- 🦋 ್ರಾರ್ dations, weld seams, and appurtenances (ladders, hatches, piping supports)—were found
- 👊 to be in satisfactory condition. No significant corrosion, cracking, deformation, or other
- structural defects that would compromise the tanks' integrity were observed.

Recommendations

At this time, the tank is in need of interior and exterior coating rehabilitations. No immediate structural repairs are recommended beyond routine maintenance and continued periodic inspections in accordance with Rule 62-555.350(2), FAC. Southern Corrosion recommends an interior and exterior renovation at this time and continued monitoring of all tank components during future inspections and prompt addressing of any future deficiencies that may develop.

These findings and this letter are issued under the responsible charge of the undersigned Florida-licensed Professional Engineer.

We appreciate the opportunity to assist Winter Haven in maintaining the safety, integrity, and regulatory compliance of your water storage facilities. Please do not hesitate to contact us with any questions or if additional assistance is needed.

Thanks again,

Daniel Wilson, PE

Vice President of Engineering

Dund & Wila

WATER STORAGE TANK 5 YEAR - WASHOUT INSPECTION REPORT

Winter Haven, FL - Ben Tech

25,000 Gallon Well #10 Water Storage Tank

Water System Contact: Nathan Eckstein, Work: 863-632-7529

Date of Inspection: 3/27/2025

2025

Inspector Signature Logan Harrup

CORPORATE OFFICE: 524 NC-125, ROANOKE RAPIDS, NC 27870 OFFICE: (252)535-1777 FAX: (252) 535-3215 www.tankcare.net

WATER TANK INSPECTION REPORT

This inspection report documents the current condition of the structure, attached components, the applied protective coating systems, and regulatory compliance with common regulatory standards.

The protective coating systems applied to the exterior and interior of the structure are further evaluated based on the types of deficiencies observed, the extent of those deficiencies, and the degree in which the deficiencies affect those coated surfaces.

Our inspection procedures adhere to SSPC, NACE, and AWWA standards relating to inspecting and maintaining water storage structures. This report is not a structural analysis or a guarantee of compliance with all state or federal regulations.

Should you have any questions about the observations and recommendations outlined in this inspection report, please contact your Area Representative or call our main office at (252) 535-1777.

INSPECTION DATA:

Date of Inspection: 3/27/2025 Water Tank Owner: Ben Tech

Water System Contact: Nathan Eckstein, Mobile: 863-632-7529

Tank Inspector: Logan Harrup, NACE/AMPP Coating Inspector Level 1 - Certified, Cert. No. 108446,

Work: 252-535-1777, Email: logan@tankcare.net, Certified Southern Corrosion Inspector

STORAGE TANK DATA:

A washout inspection was performed on the water tank identified as the: 25,000 Gallon Well #10 Hydro-Pneumatic Water Storage Tank (150 Palm View Ct, Haines City, FL 33844)

EXTERIOR STRUCTURE & COMPONENTS

EXTERIOR INSPECTION OBSERVATIONS

The exterior of the structure, its components, and the protective coating system was evaluated based on three basic criteria: (1.) Condition. (2.) Protection. (3.) Durability.

PROTECTIVE COATING SYSTEM - The types of deficiencies observed affecting the exterior protective coating system is:

- Chalk Erosion Gradual thinning of the finish coat to expose the undercoat. Cause: Degradation of
 coating resin by ultraviolet light (sunlight) leaving coating residue on its surface.
- Fading Color changes or irregularities. Cause: Ultraviolet light degrade: or moisture behind the paint film.
- Irregular Shape Corrosion Deterioration at edges, corners, crevices, channels, etc. Cause: Difficult to coat surfaces; or configurations where a coating thins from service degradation.

The degree of those deficiencies affecting the overall coating system is estimated to be:

Proportional - The observed deficiencies are proportional to the impact of the environment.

INSPECTOR OBSERVATIONS

The exterior of the tank is in fair condition. The following deficiencies were observed within the exterior coating system:

- Chalking Observed on most tank surfaces.
- Fading Observed on most tank surfaces.
- Irregular Shape Corrosion Observed on the piping hardware covering less than 5% of total surfaces.

INSPECTION PICTURES INCLUDED.

INTERIOR WET STRUCTURE & COMPONENTS

INTERIOR WET INSPECTION OBSERVATIONS

The interior wet of the structure, its components, and the protective coating system was evaluated based on three basic criteria: (1.) Condition. (2.) Protection. (3.) Durability.

PROTECTIVE COATING SYSTEM - The types of deficiencies observed affecting the interior wet protective coating system is:

- Discoloration / Staining Organic build up on the surface of the coating causing a discoloration.
 Cause: Iron, manganese deposits in the water, micro-organism growth.
- Undercutting —Blistering and/or peeling of paint where exposed steel is rusting. Cause: Corrosion
 products formed where steel is exposed, undermining and lifting surrounding paint.
- Peeling Between Coats Peeling of heavy paint buildup from the substrate. Cause: Stress from weathering (a contraction of total system) exceeds adhesion to the substrate.

The degree of those deficiencies affecting the overall coating system is estimated to be:

Proportional – The observed deficiencies are proportional to the age of the coating and the impact of the environment.

INSPECTOR OBSERVATIONS

At the time of inspection, a washout procedure was performed and all sediment and debris were removed. The interior coatings are in poor condition. The following deficiencies were observed within the interior (wet) coating system:

- **Discoloration/staining** Observed on all interior surfaces.
- Undercutting Observed on the roof of the tank.
- Adhesion Failure Observed throughout the interior on the floor, end caps, and roof.

INSPECTION PICTURES INCLUDED.

STRUCTURE COMPONENTS

STRUCTURE COMPONENTS

Components are integral parts of the structure and its day to day operation. The components are also evaluated based on the four basic criteria: (1.) Condition. (2.) Protection. (3.) Durability.

STRUCTURE AND COMPONENTS

Foundation: Satisfactory

Inspection Criteria: Evaluate the condition of the surface of the foundation(s) that is visible.

Support Structure: Satisfactory

Inspection Criteria: Depending upon the design of the water tank, evaluate the condition of the legs, rods, beams, bell, stem, and catwalk components.

Storage Structure: Satisfactory

Inspection Criteria: Depending upon the design of the water tank, evaluate the bowl, sidewall, dome, or roof of the storage structure.

Hatches: Satisfactory

Inspection Criteria: Evaluate all hatches that access the interior dry or interior wet spaces for condition and compliance.

Overflow Components: Satisfactory

Inspection Criteria: Evaluate the pipe, standoffs, welds, penetration point, vertex preventer, and termination flap or screen for condition and compliance.

Level Indicator Structure: Satisfactory

Inspection Criteria: Inspect the components of the indicator structure and test the movement of the indicator.

Vent Structure: Satisfactory

Inspection Criteria: Evaluate vent components (base, cover, and screen) for condition, proper operation, and compliance.

INSPECTOR OBSERVATIONS AND TANK FEATURES:

- The tank rests on two (2) steel saddles, which appeared to be in good condition.
- The concrete foundations appear to be in good condition. Minor gouging can be observed.
- The tank features a clamp style manway.
- One end cap features a sight glass.

COMPLIANCE REPORT

COMPLIANCE REPORT

The compliance report documents the inspection and its compliance with State Health and Environmental Control regulations related to water storage facilities. Please note that this report does not guarantee water quality or compliance with all related regulations.

Site Accessibility - N/A

* Compliance Criteria: All storage tanks shall be readily accessible at all times for inspection and maintenance.

Trespass Prevention - N/A

* Compliance Criteria: Fencing, locks on access manholes, and other manholes and other necessary precautions shall be provided to prevent trespassing, vandalism, and sabotage.

Overflow Pipe Design - N/A

* Compliance Criteria: All atmospheric storage structures shall be provided with an overflow. The termination of the pipe should be covered by a screen or flap.

Access Hatch - Compliant

* Compliance Criteria: Any access hatch should meet AWWA design standards and the cover secured with a lock.

Vent Design and Condition - N/A

* Compliance Criteria: All finished water atmospheric storage structures shall be vented. A vent structure shall be capped and all openings covered with a screen.

SITE ACCESSIBILITY

TRESPASS PREVENTION

OVERFLOW PIPE DESIGN

N/A N/A N/A

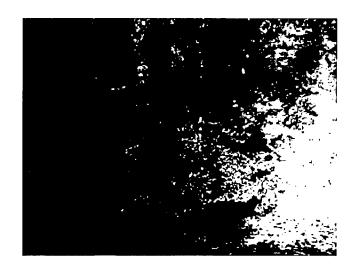
VENT DESIGN AND CONDITION

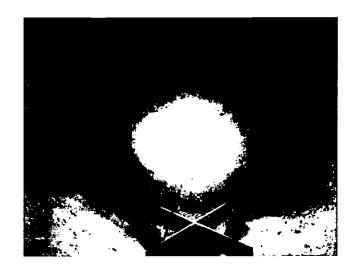

N/A

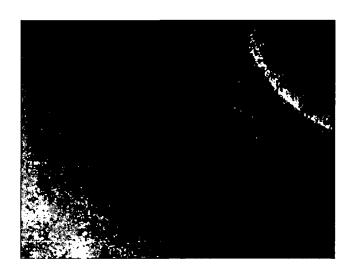
CORPORATE OFFICE: 738 THELMA ROAD ROANOKE RAPIDS, NC 27870 OFFICE: (252) 535-1777 FAX: (252) 535-3215

www.tankcare.net

Interior Photos Before Washout







Interior Photos After Washout

PROPOSAL

524 NC Hwy 125, Roanoke Rapids, NC 27870 Phone: (800) 828-0876 Fax: (252) 535-1777 www.tankcare.net

Date: 8/12/2025

Proposed Submitted To:

Project & Job Location:

Grenelefe Resort Lakeland, FL

25,000 Gallon Well #6 Water Tank Wash-out Inspection

Southern Corrosion Inc. agrees to provide all the labor, equipment, and materials needed to complete the following:

1) Washout Interior & Inspection:

- a) Wash-out tank interior to remove accumulated sediment. Clean interior floor surfaces and shell wall surfaces that can be reached from the floor using 4,000 psi pressure washers or higher.
- b) The water tank will be disinfected using AWWA C652-92 Disinfection Method #2, spray method. Obtaining water samples and testing will be the responsibility of others.
- c) Provide an inspection report of the tank interior and exterior accompanied by photographs. The report will detail all findings and will include an estimate of percentage of corrosion and paint breakdown, evaluation of the tank appurtances, address sanitary issues, address security issues, and provide paint thickness measurements. The inspection will be performed based on ANSI / AWWA D101-53 standards for inspecting water tanks.
- d) Inspection report will be reviewed and stamped by one of our Florida Engineers.

Three Thousand One Hundred Twenty-Five Dollars andxx/100		Total -	\$3,1	25.00
All work to be completed in a workman like manner according to standard practices. Any alteration or deviation from specifications quoted involving extra cost will be executed only upon written orders, and will become an extra charge over and above the estimate. All	Southern Corrosion Inc.			
agreements contingent upon strikes, accidents, or delays beyond our control. Owner to carry sufficient property insurance. Southern Corrosion Inc. will supply workman's compensation insurance, general insurance, builders risk insurance, and pollution liability insurance	Pricing Good For:	30 Days	Payment Terms:	Net 30 days
Acceptance of Proposal – The above price, specifications, and c Corrosion Inc. is hereby authorized to do work as specified. Ple				
Authorized Signature & Title: Print Name:			Date of Accep	tance:
			,	

Response to Staff Data Request #5, ITEM #29

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose to replace (20) fire hydrants including watch valves and piping. Implementing a Quarterly inspection program: including the exercising of the valves and flushing of the fire hydrants to ensure proper operation at time when needed.

The cost to provide the above is \$298,000.00

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose the refurbishing of Lift Station #1 will need a new control panel, Along with two New 15 HP Submersible pumps provided by Barney's Pumps. This will include all piping and replacing of all check valves, installing all high and low voltage wiring, controls, and components. SCADA system controls are needed for real time monitoring of pumps and float controls. Resurfacing of concrete structure is also needed in Lift Station Hole and Surrounding area for control panel and valve compartment.

The cost to provide the above is \$263,000.00

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose the refurbishing of Lift Station #2 will need a new control panel, Along with two New 15 HP Submersible pumps provided by Barney's Pumps. This will include all piping and replacing of all check valves, installing all high and low voltage wiring, controls, and components. SCADA system controls are needed for real time monitoring of pumps and float controls. Resurfacing of concrete structure is also needed in Lift Station Hole and Surrounding area for control panel and valve compartment.

The cost to provide the above is \$252,000.00

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose the refurbishing of Lift Station #3 will need a new control panel,
Along with two New 10 HP Submersible pumps provided by Barney's Pumps.
This will include all piping and replacing of all check valves, installing all high
and low voltage wiring, controls, and components. SCADA system controls
are needed for real time monitoring of pumps and float controls.
Resurfacing of concrete structure is also needed in Lift Station Hole and
Surrounding area for control panel and valve compartment. All piping will be provided by
Ferguson Waterworks.

The cost to provide the above is \$182,630.00

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose the refurbishing of Lift Station #4 will need a new control panel,
Along with two New 7.5 HP Submersible pumps provided by Barney's Pumps.
This will include all piping and replacing of all check valves, installing all high
and low voltage wiring, controls, and components. SCADA system controls
are needed for real time monitoring of pumps and float controls.
Resurfacing of concrete structure is also needed in Lift Station Hole and
Surrounding area for control panel and valve compartment. All piping will be provided by
Ferguson Waterworks.

The cost to provide the above is \$210,000.00

July 25, 2025

NC Real Estate Grenelefe Resorts 3426 Turnberry Drive Lakeland, FL 33803 (704) 996-4543

We propose the refurbishing of Lift Station #5 will need a new control panel,
Along with two New 5 HP Submersible pumps provided by Barney's Pumps.
This will include all piping and replacing of all check valves, installing all high and low voltage wiring, controls, and components. SCADA system controls are needed for real time monitoring of pumps and float controls.
Resurfacing of concrete structure is also needed in Lift Station Hole and Surrounding area for control panel and valve compartment. All piping will be provided by Empire Piping.

The cost to provide the above is \$178,600.00

Response to Staff Data Request #5, ITEM #32

PRELIMINARY DESIGN ENGINEERING REPORT

FOR

Grenelefe Water Utilities

Wastewater Treatment Plant

Polk County, Florida

ID: FLA013016 Permit No.: FLA013016 Expires: November 15, 2027

Prepared For:

NC Real Estate Projects LLC 3425 Turnberry Dr Lakeland, Florida,33803

October 24, 2024

Prepared By:

McDonald Group International, Inc.

9030 S. Brittany Path
Inverness, Florida 34452

PRELIMINARY DESIGN ENGINEERING

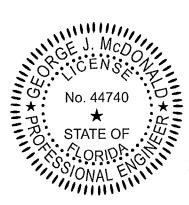
REPORT

FOR

Grenelefe Water Utilities

Wastewater Treatment Plant

Polk County, Florida


The information contained in this report was prepared in accordance with sound engineering principals, and the recommendations contained within have been discussed with the permittee

Digitally signed by George J McDonald Date: 2024.10.28 13:23:12 -04'00'

George J. McDonald, P.E., FL PROFESSIONAL ENGINEER NO. 44740 9030 S. Brittany Path, Inverness, Florida 34452 (352)-637-1652

Date: 10/28/2024

This item has been digitally signed and sealed by George J McDonald PE on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

PRELIMINARY ENGINEERING

Report FOR

Grenelefe Water Utilities WASTEWATER TREATMENT PLANT

Section	
	1.0 <u>I</u> NTRODUCTION
	1.1 Authorization
	1.2 Related Reports and Documents
	Figure 1.1 Location / USGS Map
	1.3 Basin Management Action Plan Requirements
	1.4 Treatment Plant Historical Background
	2.0 DESIGN WASTEWATER FLOW, PHYSICAL AND CHEMICAI
	PROPERTIES12
	2.1 Plant Flow Characteristics
	2.2 Unit Flow Rates
	3.0 FUTURE CONDITIONS - WASTEWATER FLOW PROJECTION 13
	3.1 <u>Smokey Groves</u>
	3.2 Long Term Flow Projection
	3.3 Owner Specified Design Capacity
	3.4 Peak Hour Flow
	3.5 Physical and Chemical Characteristics
	3.6 Summary, Projected Flow and Organic Loading
	3.0 FACILITY ENVIRONMENTAL CONSIDERATIONS 1'
	3.1 Stormwater Management and Flood Protection 1
	3.2 Environmental Effects of Project
	3.2.1 Proximity to Residential Areas
	3.2.2 Odor
	3.2.3 Noise
	3.2.4 Public Accessibility
	3.2.5 Lighting
	3.2.6 Aerosol Drift
	4.0 TECHNICAL INFORMATION AND DESIGN CRITERIA 20
	4.1 Effluent Disposal/Reuse Method
	4.2 Required Levels of Treatment
	4.3 Historical Nutrient Reduction Performance
	4.3.1 Reduction of Total Nitrogen
	4.3.2 Phosphorus Reduction
	4.4 Design Capacity and Facility Hydraulic/Organic Loadings 23
	4.4 Process Selection
	4.7 Proposed Facility Modifications and Process Flow Diagrams 24
	4.7.1 Treatment Facility Phases and Unit Process Capacities
	4.8 The SBR Process
	4.8.1 SBR Treatment Steps

	4.8.3 BOD Removal	3
	4.8.4 TSS Removal	3
	4.8.5 Phase 5 Denitrification Filtration	3
	4.8.6 Phosphorus Reduction	
	4.8.7 SBR Control System3	
	4.9 SBR Aeration System	7
	4.10 SBR Recirculation Flow	7
	<u>4.11 Chemicals Used</u>	7
	4.12 Pretreatment, Influent and Decant Equalization, Chlorination, Sludg	<u>e</u>
	<u>Digestion</u>	8
	4.12.1 Pretreament-Screening	8
	4.12.2. Pretreatment Grit Removal	8
	4.12.3 Influent Flow Equalization	9
	4.12.4 Decant Flow Equalization	9
	4.12.5 Chlorine Doses, Residuals and Contact Times	0
	4.13 Biosolids Storage, Treatment, and Disposal Plan	0
	4.14 Operational and Control Strategies	1
	4.15 Prevention of Upsets	2
	4.16 General Construction Features	
	4.17 Flow Metering and Measuring	4
	4.18 Reliability Classification	4
5.0	OUTFALLS	
6.0	EFFLUENT DISPOSAL OR REUSE SYSTEM 4	
	6.1 Project Area Features and Land Use4	
	6.2 Local Water Wells	
	<u>6.3 Site Soils</u>	
	6.4 Site Hydrogeology, System Loading and Proposed Capacity 4	
	6.5 Ground Water Monitoring Plan	
	6.6 Construction Features	
	6.7 Conceptual Phase 5 Effluent Reuse/Disposal	0

Appendix

SBR design Calculations Sidestream Unit Process Design Calculations Denitrificaton Filter Design Calculations Parkson Corporation Design Calculations/Modelling

Exhibits

Hydrogeology & Geotechnical Report (Andreyev Engineering) Permit Drawings

PRELIMINARY ENGINEERING REPORT

1.0 INTRODUCTION

The Florida Department of Environmental Protection(FDEP) requires that a preliminary engineering report be submitted to the Department with a permit application to construct a new or substantially modify a wastewater treatment plant. It should be prepared substantially to conform with the submittal requirements of the guideline document published as a companion to rule 62-620.

This preliminary engineering report is submitted to the FDEP by McDonald Group International, Inc., George J. McDonald, P.E., consultant engineer for NC Real Estate Projects LLC, the owner and operator of the Grenelefe Water Utilities Wastewater Treatment Plant located in Polk County, Florida in order to comply with these requirements.

The facility is located 4501 Abbey Ct. AUSGS quad map are provided in Figures 1.1.

Grenelefe Water Utilities is required by changes in State regulation to increase the level of treatment provided by its wastewater treatment plant located in Polk County Florida. In addition, additional treatment capacity is needed for proposed new development. These upgrades generally concern improvements to meet advanced nitrogen and phosphorus removal.

The regulatory factor driving the needs for these is compliance with the Florida Department of Environmental Protection's Lake Okeechobee Basin Management Action Plan (BMAP). Secondary treated effluent is presently disposed of at the existing rapid rate land application system (infiltration basins). Advanced nitrogen removal is required by the BMAP for all methods of effluent reuse or disposal.

As further described in this report the owner and developer of the Grenelefe Resort has forecasted a short term need of a permitted capacity for treatment and effluent reuse of 0.495 MGD. Longer term, the owner forecasts the need for eventual capacity of 1 MGD.

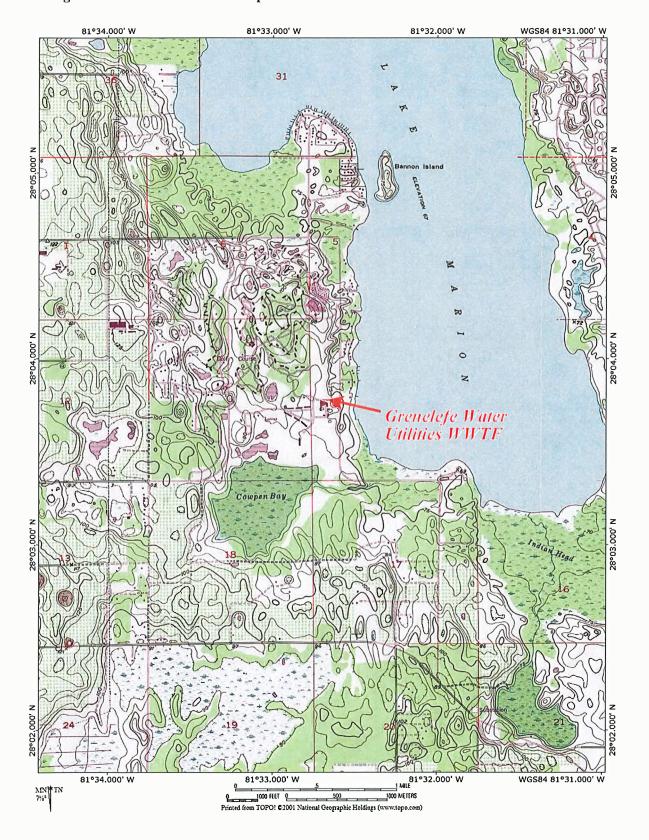
The existing treatment plant is a 0.680 MGD extended aeration treatment plant with 0.340 MGD in permitted effluent disposal capacity (land application reuse) in four rapid infiltration basins. The existing treatment plant was constructed in three phases beginning in the 1970s. The first two phases are no longer in operation. Only the third phase, constructed in the 1980s is in operation, and is a complete flow train of 0.340 MGD capacity.

This report will document a proposed expansion plan:

- Construction of a Sequencing Batch Reactor (SBR) system incorporating Biological Nitrogen Removal (BNR) along side the existing plant; re-purposing of various existing tanks both in an out of service, to essential side stream unit processes, in phases.
- Expansion and consolidation of the existing four rapid infiltration basins into a system of two enlarged rapid infiltration basins with a combined effluent reuse or disposal capacity of 0.5 MGD.
- The construction of the SBR and expansion/consolidation of the rapid infiltration system are intended to allow a complete permitted treatment and reuse system of 0.495 MGD.
- The report and accompanying exhibits will document how the plant can be expanded to 1 MGD capacity and will request permit approval for future construction. Future expansion of the reuse system to 1 MGD will be a future permit application.

1.1 Authorization

NC Real Estate Projects LLC has retained George J. McDonald, P.E., of McDonald Group International, to study the existing conditions at the Grenelefe Water Utilities Wastewater Treatment Plant in order to prepare the documentation which supports this application.


1.2 Related Reports and Documents

Accompanying this report are:

- FDEP Forms 1 and 2A for a domestic wastewater treatment plant.
- Permit drawings of the proposed facility; the drawings themselves include a hydraulic profile, process diagram, as well as tankage layout, and other illustrative details.

 Additional information is thus contained in the accompanying plans and documents.
- Accompanying this report also is a geotechnical report on the hydrogeology of the proposed rapid infiltration system modifications and expansion by Andreyev Engineering.

Figure 1.1 Location / USGS Map

1.3 Basin Management Action Plan Requirements

The requirements of the Basin Management Action Plan are implemented through an attachment to the permit the State Department of Environmental Protection issues to the plant owner for operation called an Administrative Order. The order requires the permittee to comply with the new discharge limits and to carry out certain activities per a schedule that is made a part of the facility permit.

The Administrative Order (AO)requires the facility, within a set period of time to comply with the requirements of the Lake Okeechobee BMAP for TN and TP reduction. The specific limits in the AO are:

Total Nitrogen: Max 10 Annual Average Lake Okeechobee Basin Management

Action Plan June 2018

Phosphorus, Total: Max Report Single Sample mg/L

The required schedule is as follows:

Action Item	Due Date
Collect monthly effluent samples and analyze for TN and TP and report as required by this permit and Discharge Monitoring Report.	First day of the second month following the permit issuance until September 31, 2025
2) Submit a proposal with the most feasible option to bring the TN and TP into compliance with the final limits being 10.0 mg/L and of 6.0 mg/L, respectively. If necessary, schedule a meeting with DEP SWD office to discuss the proposal.	Prior to September 31, 2025
3) Submit a proposal with the necessary modifications to the facility required to meet the treatment and disinfection requirements of 62-610.460, F.A.C., giving the facility the option to dispose of the effluent via a Part III Slow-Rate public	Prior to September 31, 2025

access reuse system (Irrigation). If necessary, schedule a meeting with DEP SWD office to discuss the proposal.	
4) Obtain the Department's approval for the proposal.	Prior to September 31, 2025
5) Implement the proposal.	Within twelve months of DEP approval and after obtaining a permit modification, if required.
6) Comply with the final limit for TN and TP or obtain Department approved regulatory relief	Within three months of completion of any modification if required.
7) Meet the facility classification and operator staffing requirement in accordance to Rule 62-699.310 (2) (a)1., F.A.C as a Category I, Type III, Class C facility.	Upon the date of completion for item 6.

It should be noted there are some differences in the text of the AO and the text of the BMAP with respect to Nitrogen and Phosphorus required reduction. The following table is from the June of 2020 Lake Okeechobee BMAP:

Table 19. TP effluent limits

mgd = Million gallons per day			
	TP Concentration Limits for Direct	TP Concentration Limits for RRLA Effluent Disposal	TP Concentration Limits for All Other Disposal Methods,
Permitted Average Daily Flow	Surface Discharge	System	Including Reuse
(mgd)	(mg/L)	(mg/L)	(mg/L)
Greater than or equal to 0.5	1	1	6
Less than 0.5 and greater than or equal to 0.1	1	3	6

Table 20. TN effluent limits

6

mad =	Million	oallone	per day

Less than 0.1

ad m Million gallong nag day

Permitted Average Daily Flow (mgd)	TN Concentration Limits for Direct Surface Discharge (mg/L)	TN Concentration Limits for RRLA Effluent Disposal System (mg/L)	TN Concentration Limits for All Other Disposal Methods, Including Reuse (mg/L)
Greater than or equal to 0.5	3	3	10
Less than 0.5 and greater than or equal to 0.1	3	6	10
Less than 0.1	10	10	10

The facility is currently permitted for a capacity of 0.340 MGD; according to the BMAP the standard is 6 mg/L TN and 3 mg/L TP for a facility of this size using rapid rate land application, whereas the permit and AO is for 10 mg/L TN and "report" for TP.

From communication with FDEP at the Southwest District in Tampa, it appears the Administrative Order is in error; FDEP is likely to make a Department initiated revision.

The permit or AO itself does not provide guidance as to what the standards would be if the facility was expanded to over 0.5 MGD capacity, but the BMAP indicates it would be 3 mg/L TN and 1 mg/L TP with effluent discharged to rapid rate systems as opposed to reuse systems.

The current treatment plant has been permitted to only a meet a 12 mg/L Nitrate standard, which is but one form of nitrogen of several that can be present in the plant effluent. The current treatment plant was not designed to reduce phosphorus.

1.4 Treatment Plant Historical Background

The treatment plant was constructed through three phases. The first, Phase 1, was constructed around or after 1976 and appears to have had a capacity of 0.170 MGD. A few years Phase 2 was constructed, in which the structure was "mirrored" with the same unit processes and volumes: both parallel plants flow trains would have had a capacity of 0.340 MGD. Around 1986 a Phase 3 flow train similar in process and operation was built next to the first two phases.

Technically the Grenelefe treatment plant consists of three plants, two of 0.170 MGD capacity and one of 0.340 MGD treatment capacity. Each flow train consists of aeration - which was delivered by both mechanical and diffused aeration processes; settling of process sludge occurs in rectangular settling tanks with waste sludge digesters. Effluent from each flow train is combined in a common sand filter system, and then disinfected in a single chlorine contact tank

Historically the treatment system was permitted for a capacity of 0.680 MGD. In the 1990s effluent was pumped to a golf course pond from which water was withdrawn to irrigate the resort's South golf course.

On September 12, 2000, the reuse of reclaimed water on the golf course was halted by the Florida Department of Environmental Protection owing to the facility lacking a number of the features required of treatment plants that provide reclaimed water for reuse.

Shutting down the reuse system meant all the effluent water had to be directed to existing unlined water storage ponds. Up until 2000 these appear to have been considered holding ponds and did not have a capacity assigned to them. However, once they were placed into use as infiltration basins and appeared to work successfully, the 4 ponds or infiltration basins that make up that system were given a nominal capacity of 0.340 MGD/

The mechanical equipment in the original 1970s era Phase 1 and Phase 2 plant flow trains deteriorated and both Phase 1 and 2 flow trains were placed out of service by the early 2000s rather than repaired and maintained. Only the phase 3 flow train is presently in operation.

Owing to limitations in the effluent disposal system and with 50% of the plant's flow trains being out of service, capacity is limited to 0.340 MGD. The current permit does recognize that the concrete tankage in place could yield a treatment capacity of 0.680 MGD if it was all mechanically restored. The permit does not recognize any historic reclaimed water reuse capacity.

2.0 DESIGN WASTEWATER FLOW, PHYSICAL AND CHEMICAL PROPERTIES

Wastewater historic, present and projected flow, annual patterns, and projected influent loading, is discussed in this section.

2.1 Plant Flow Characteristics

Ten years of flow data from Discharge Monitoring Reports (DMRs) were reviewed to assess the present and historical plant flow characteristics.

Figure 2.2.1 graphically illustrates the month average, rolling three month and annual average flow for the past ten years:

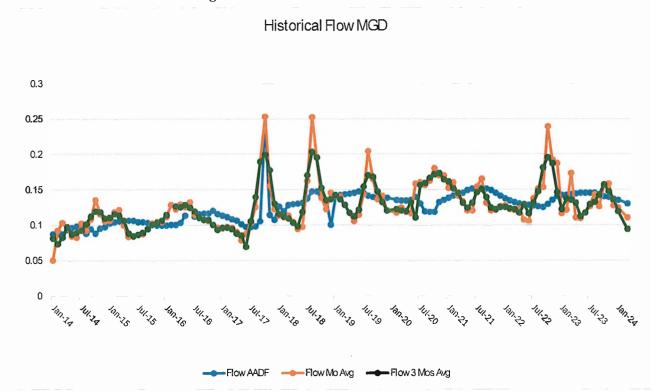


Figure 2.2.1 Wastewater Flow Chart

The flow pattern exhibits typical winter season increases in flow which subside later in the year.

Typically in assessing present used treatment plant capacity, a three year look back is made to assess the flow against permit statistical metrics:

March	2021	to March	2024
wiarch	2021	to warch	ZUZ4

Parameter	Result	Unit	Permit Limit
Max Flow AADF	0.153	MGD	0.34
Max Mo Flow	0.239	MGD	report
Max 3 Mos Flow	0.195	MGD	0.34

The plant is permitted on a maximum three month basis for treatment and on an annual average basis for effluent disposal. For treatment, the plant is operating at 57% of capacity based on the highest three month average flow in the past three years. For disposal of effluent, it is operating at 45% of permitted capacity.

2.2 Unit Flow Rates

The service area comprises a mix of family homes, townhouses, and condominiums.

There are a number of commercial accounts, which are associated with the resort conference center and golf course. The resort conference center and golf course are closed. There are no industrial wastewater contributors.

There is presently a total of about 1400 served units. Based on the annual average flow, the flow per unit is about 109 gpd each or 139 gpd on a three month basis.

3.0 FUTURE CONDITIONS - WASTEWATER FLOW PROJECTION

3.1 <u>Smokey Groves</u>

The short term flow projection is based on the proposed development called Smokey Groves. This is a single family home addition of approximately 426 units.

The projected flow from this can be based on 1) for a high estimate, the level of service described by the County for new development, at 260 gpd per unit or 2) for a low end estimate, based on the assumption that population, occupancy and usage patterns will match the existing service area.

In the former case, the expected flow is 110,760 gpd (426 x 260), which added to the current 0.195 MGD would yield 0.306 MGD in flow, or bring the existing plant to 90% of permitted treatment capacity.

In the latter case, with 1400 presently served units, the flow per unit is about 139 gpd each; 426 more would be another 0.059 MGD, for a total flow to the plant of 0.254 MGD, and would places the existing plant at 75% of treatment capacity.

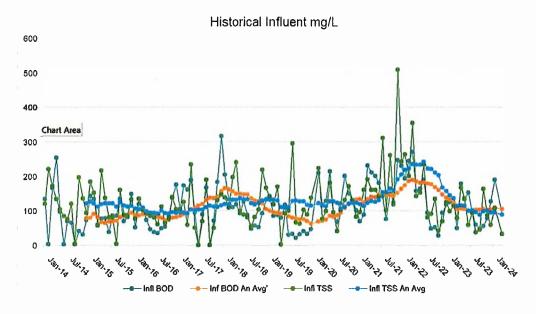
3.2 Long Term Flow Projection

At this writing, plans for redevelopment of Grenelefe and the addition of other properties in the area is at a conceptual development stage. Detailed projected unit counts and a reasonable timeline for their progressive addition remains under development by others. In general it is expected that the short term capacity of 0.495 MGD should be sufficient for 5 to 10 years, after which wastewater flow may increase to 1 MGD.

3.3 Owner Specified Design Capacity

The owner has directed that the plant should be modified to meet BMAP and reuse treatment level requirements and be expanded to 0.0.495MGD, with planning and permit level design for expansion of the treatment plant to 1 MGD.

The selected capacity provides ample additional capacity over what is necessary to serve Smokey Groves. Depending on actual flow that results from that development, the 0.495 MGD plant provides 0.189 to 0.240 MGD available capacity for additional development.


3.4 Peak Hour Flow

Peak hour flows were estimated by consideration of the characteristics of the service area and plant performance. Based on this, the peak hour factor is estimated to be more or less 3 times the average daily flow.

3.5 Physical and Chemical Characteristics

The major parameters used to evaluate influent strength are influent BOD, TSS, TKN. Other significant parameters assessed include COD, pH, and alkalinity.

The chart below indicates graphically the historical, available influent test data.

Based on available test and variable test data, the influent strength for BOD and TSS is considered to be as follows:

Table 2.3
Influent Strength

	BOD	TSS
3 Year Avg	137	148
Std Deviation	66	99
Avg + St Dev	203	248

(For aeration basin and aeration system sizing, the higher estimate is used. For nitrogen removal analysis, the lower average will be used to assess the need for a carbon supplement).

Other design parameters have been selected as follows:

Infl Soluble BOD	67	mg/L
Infl COD	406	mg/L
Infl Soluble COD	134	mg/L
Total Suspended Solids:	248	mg/L
Total Kjeldahl Nitrogen:	40	mg/L

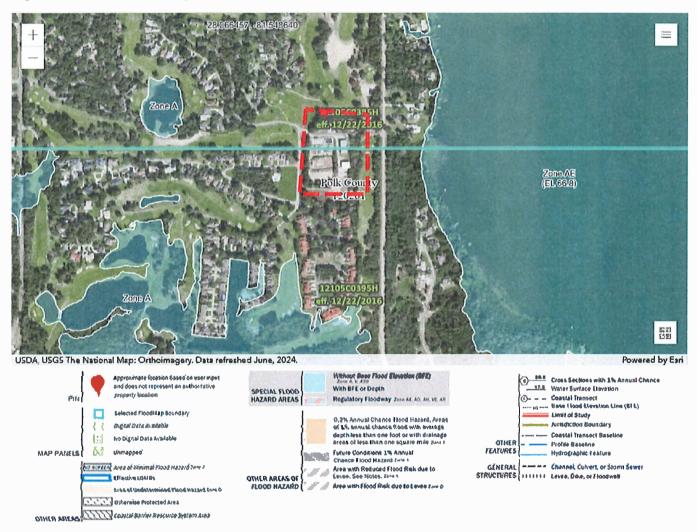
3.6 Summary, Projected Flow and Organic Loading

The historical annual pattern of flow in terms of the ratios of maximum three month, annual average, and maximum months are expected to continue as the overall quantity of flow increases. BOD, TKN and TSS are expected to be randomly variable on a day to day basis, but to overall maintain the historical averages reviewed.

A summary of the projected design flow and loading conditions is as follows:

\sim	
Org	anic
O.S	amo

BOD	203 mg/L
TKN	40 mg/L
TSS	248 mg/L


Hydraulic

Annual Average 0.495 MGD
Long Term AADF 1 MGD
Peak Hour 3 x AADF

3.0 FACILITY ENVIRONMENTAL CONSIDERATIONS

3.1 Stormwater Management and Flood Protection

According to FEMA mapping, the existing treatment plant, proposed plant improvements, and proposed rapid infiltration basin system improvements, are outside the limits of a flood zone A or AE. (The northern part of the plant and the north R.I.B are located on community panel 12105C0385H, and the southern part of the plant and southern R.I.N. are found on community panel 12105C039H; excerpt below).

No significant additional runoff is expected to be generated by this facility. Rainfall on the open air process tankage will largely fall into the treatment plant. Only incidental, incremental runoff from the tops of the walls plant structure is created.

Direct rainfall elsewhere on the site falls into the effluent disposal system infiltration basins and percolates below. The infiltration basin berms are designed to prevent the entry of runoff.

3.2 Environmental Effects of Project

3.2.1 Proximity to Residential Areas

This treatment plant is existing, was originally intended to serve the Grenelefe resort community and is located within the community it serves. The proposed improvements take place partly within the existing structure. The structural addition has been located on the side of the plant furthest away from the served community and within Grenelefe's original maintenance office and warehouse area.

3.2.2 Odor

Normally, odor from this project is expected to be minimal. The liquid in the process SBR tankage is aerated/treated, and normally has no objectionable odor associated with it.

The major source of potential odor will be from the flow equalization tankage and the sludge digester(s).

Raw wastewater piping from the pretreatment screening will be designed to minimize direct contact with air entering the tankage

The surge tank is aerated to prevent septic conditions from developing.

Digesters can be sources of odor when the air is left off too long for decanting and upon re aerating releases entrained gas. The digester is intended to be aerated 24/7, with incidental short periods during operator attendance for decanting, which should preclude the likelihood of poor odor. Control of digester odors will be covered in the facility O&M manual.

3.2.3 Noise

The electric driven pumps used at this plant are quiet in operation. The major source of noise will be from the new facility blowers. The existing treatment plant uses a mix of mechanical surface aerators and centrifugal blower unit.

New blowers for the SBR will be located between the existing plant and the new SBR structure on the east side away from the homes in Grenelefe. These blowers will be a special noise reduction model, enclosed in a manufacture supplied weather and sound deadening enclosure.

3.2.4 Public Accessibility

The treatment plant and modified/expand rapid infiltration basin will be fenced: no public access is allowed.

3.2.5 Lighting

Lighting at the treatment plant site will be limited to lighting for service workers and the operator; lighting will be provided at the SBRs and SBR mechanical pumps and blowers with

outlets to connect portable, temporary lighting.

3.2.6 Aerosol Drift

In the SBR treatment plant, adequate free board (two feet) is provided to minimize loss of liquid or any aerosols over the side of the plant. Aeration is induced at the bottom of the liquid held, so there is no splashing of liquid at the surface..

The effluent disposal system is a rapid infiltration basin system, not a spray system, and the discharge of aerosols from the disposal is not expected.

4.0 TECHNICAL INFORMATION AND DESIGN CRITERIA

The facility design criteria are based on what effluent discharge standards have to be met. These in turn are based on how the treated effluent is disposed of or reused and also depend on the permitted capacity of the treatment system.

The treatment process is then selected with consideration to the current plant performance, the projected waste strength and flow, and the discharge standards that have to be met.

Information presented in this section discuses the applicable discharge standards, reviews the flow and loading projected, outlines with reference to the process flow diagrams how existing unit processes and tankage will be integrated with new components in order to yield the capacity required, and how this is constructed in phases.

4.1 Effluent Disposal/Reuse Method

The method of effluent reuse will be by disposal to rapid infiltration basins. The geo-hydraulics and ground water monitoring plan are discussed in the accompanying geotechnical report. The physical construction features are discussed in section 6.0 of this report and are shown in the accompanying permit drawings.

4.2 Required Levels of Treatment

As required by this method of effluent disposal or reuse, the wastewater plant will have to achieve the following technology based levels of treatment (TBELs):

Grenelefe Water Utilities Wastewater Treatment Plant Permit TBELS

Disposal to rapid rate systems

- 1. BOD and TSS maximum concentrations 20 mg/L annual average 30 mg/L monthly average 45 mg/L weekly average 60 mg/L any one sample
- 2. pH range 6.00 to 8.50
- 3. Fecal Coliform -

200 #/100 annual average 800 #/100 maximum

4. Minimum Cl₂ conc. - 0.5 mg/L

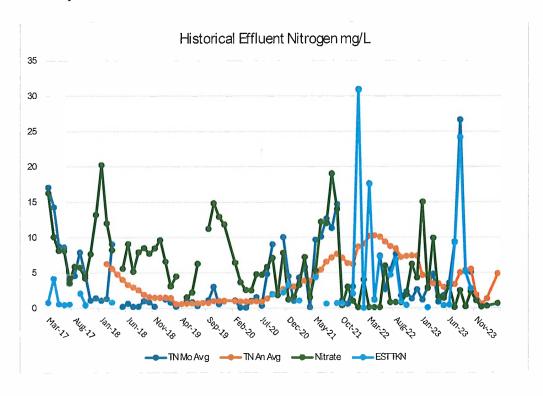
Nutrient Reduction Requirements based on Capacity

- 6. TN for Capacity of 0.495 MGD 6 mg/L annual average
- 7. TN for Capacity of 1 MGD 3 mg/L annual average
- 8. TP for Capacity of 0.495 MGD 3 mg/L annual average
- 9. TP for Capacity of 1 MGD 1 mg/L annual average

4.3 Historical Nutrient Reduction Performance

Consideration is given with respect to how well the existing treatment plant meets the required level of treatment for reduction of nutrients. The existing treatment process is extended aeration.

4.3.1 Reduction of Total Nitrogen


Total Nitrogen has several forms: ammonia, organic nitrogen, nitrate and nitrite. Reduction of nitrogen typically consists of two consecutive processes which address the different forms nitrogen is present in.

Almost all of the incoming raw wastewater to a treatment plant is in the form of ammonia and organic nitrogen. The first process in reducing nitrogen is the conversion of the combined ammonia and organic nitrogen (together called TKN) to nitrate, called nitrification. The second process is the reduction of nitrate (and a very small amount of nitrite) to nitrogen gas, called denitrification.

During normal operation, most wastewater plants may have nitrification and denitrification processes happening as aerators turn on and off. How much nitrogen reduction occurs can vary with the equipment used, volumes available and operating practice.

The Grenlefe treatment plant effluent has been tested for a number of years for total nitrogen and nitrate content;. TKN is not tested, but it is possible to subtract nitrate from Total Nitrogen to get an estimate. With this data, is possible to assess how the existing plant as is performs.

The chart below shows how well the treatment plant as is reduces nitrogen and in what forms remain in the plant effluent:

For successful nitrogen reduction, TKN should be low, generally less than 2 mg/L. In the last few years, TKN will has often been between 7.5 and 15.

In the historical data, where nitrate is very low and TKN is very high, the plant was not oxidizing (nitrifiying) ammonia and organic nitrogen well. This may result from long aerator off times or aerator out of service events.

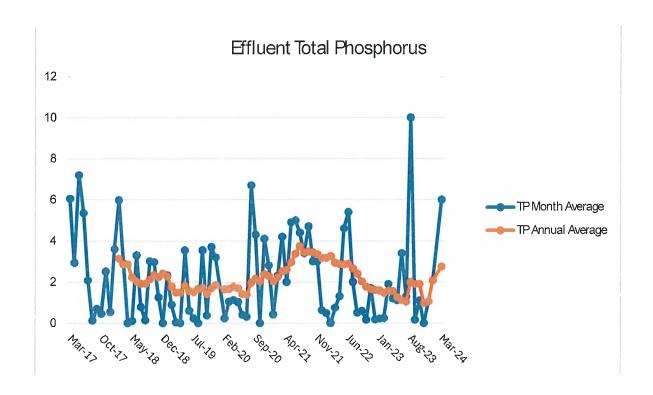
When successfully reducing Total Nitrogen, Nitrate will be higher than TKN in the effluent and Total Nitrogen will be slightly higher than Nitrate.

With successful nitrogen reduction (denitrification), the TN will be less than the BMAP requirement.

Looking back at the past three years, results can be summarized as:

Table 4.3
Existing Treatment Plant Performance

Summary March 2021 to March 2024


TN Max Month	30.9	mg/L
TN Max An Avg	10.25	mg/L
Max Nitrate Month	15	mg/L
Max Mo TKN	30.1	mg/L
Min Mo TKN	-13.84	mg/L

(The negative TKN resulting from back computation indicates TN may not have been reliably determined in the month tested and is considered anomalous).

In summary the plant at times appears able to get below 10 TN but not consistently; 6 mg/L or lower cannot be achieved with the existing plant as is. Elevated effluent TKN (above 2 mg/L) indicates there are months the facility does not oxidize ammonia and organic nitrogen to the low levels it needs to.

4.3.2 Phosphorus Reduction

The following chart depicts the treatment plants historical performance with the total phosphorus content of the effluent:

Results can be summarized as follows:

Summary March 2021 to March 2024

TP Max Month	10	mg/L
TP Max An Avg	3.7	mg/L

In many months, the effluent TP annual average is less than 3, but it is not consistent. The treatment plant has no chemical biological process for reducing TP so months where its meeting the 3 mg/L TP standard in the BMAP (for a capacity of 0.495 MGD) likely reflects a low influent TP loading. The treatment plant as is will not meet a 1 mg/L TP limit at 1 MGD.

4.4 Design Capacity and Facility Hydraulic/Organic Loadings

<u>Organic</u>		
	BOD	203 mg/L
	TKN	40 mg/L
	TSS	248 mg/L
<u>Hydraulic</u>		
	Annual Average	0.495 MGD (initial expansion)
	Annual Average	1 MGD (final expansion)
	Peak Hour	3 x AADF

Organic loadings on the individual unit processes and an evaluation of the overall efficiency of the process in terms of relevant criteria are provided in section 4.8 of this report.

4.4 Process Selection

In developing the proposed SBR treatment process and phasing, several alternatives were evaluated:

- Grenelefe WWTF, Alternate 1, Restore and Modify Existing Plant; This involved restoring the existing phase 1 and phase 2 treatment plants, then combining the phase 1 and 2 treatment plants with the in service phase 3 plant to provide a sequential pre anoxic, aeration, post aeration second anoxic process followed by reaeration. The restorative and modification work was costly, requiring the construction of new clarifiers, and while it could yield a capacity of 0.495 MGD, expansion to 1 MGD was not practical without a building another separate process flow train. Alternative 1 was rejected due to cost and complexity.
- Grenelefe WWTF Alternate 2, Construct New Flow Train; this alternative was to construct a new conventional BNR treatment plant with anoxic tankage, new settling tanks with some reuse of the existing treatment plant tankage for sidestream processes. Alternative was rejected because of the cost of constructing the new tankage, clarifiers and all the mixing, recirculation, and recycle pumping systems required.
- Grenelefe WWTF, Alternate 3, Convert to Sequencing Batch Reactor Process.

 Use of Sequencing Batch Reactor technology eliminates equipment required in the other alternatives such as new clarifiers, return sludge and recirculation pumps. The batch reactor process uses system controls to induce anoxic times necessary for denitrification to occur within the same tankage used for aeration; it eliminates the need to construct separate dedicated anoxic denitrification tankage. Components of the existing plant could be retained with some modification for unit processes such as flow equalization, sludge digestion and disinfection. Overall the SBR process presented as the simplest and least cost approach. In addition, in Florida there are now a significant number of SBR plants in operation operating BNR modes; this is established developed technology.

Alternative 3 was selected for development.

4.7 Proposed Facility Modifications and Process Flow Diagrams

This section describes the specific modifications proposed and references the process flow diagrams provided in the accompanying permit drawings.

4.7.1 Treatment Facility Phases and Unit Process Capacities

The following describes the existing and proposed facility phases and existing or proposed unit process capacities:

Treatment plant phasing notes:

1&2. Phase 1 and 2, original treatment plant constructed in the 1970s. Not in service 2024.

<u>Phase 1</u> components consist of (2) 52050 gallon mechanically aerated aeration compartments, and a 45970 gallon diffused aeration compartment. Settling was in a 25,100 gallon final settling tank (remains existing, not in service). There is a 12,980 gallon sludge digester compartment and a 5800 gallon chlorine contact tank

<u>Phase 2</u> is a mirror image of phase 1: components consist of (2) 52050 gallon mechanically aerated aeration compartments, and a 45970 gallon diffused aeration compartment. Settling was in a 25,100 gallon final settling tank (remains existing, not in service). There is a 12,980 gallon sludge digester compartment and a 5800 gallon chlorine contact tank

3. **Phase 3**: existing treatment plant in service 2024

Phase 3 consists of (3) 123,032 gallon mechanically mixed aeration tanks, (1) 12,591 gallon diffused aeration compartment, (2) 31,556 gallon final settling tanks, a 28,842 gallon sludge digester, a 10,054 gallon chlorine contact tank. Effluent is filtered by (7) 64 SF downflow sand filters, which drain into a 25,000 gallon clearwell. The clearwell drains to a 19,947 gallon post filter chlorine contact tank, then to a pump tank which sends the water to the(4) existing rapid infiltration basins. Backwash water flows to a 28,778 gallon mudwell and then is pumped back into the phase 3 diffused aeration compartments

The process flow diagram for phases 1,2 and 3 are shown on sheet C2 of the accompanying permit drawings.

The combined capacity of phase 1, 2 and 3 is 0.680 MGD for treatment, but, since phases 1 and 2 are not in service and since the effluent reuse/disposal capacity is limited to 0.340 MGD, usable plant capacity is 0.340 MGD.

The following describes proposed improvements

4. **Phase 4** Improvements include upgrades the plant headworks, conversion of existing tankage for influent flow equalization and SBR decant effluent flow equalization. Construction of a three basin Sequencing Batch Reactor treatment system, and conversion of select phase 3 aeration tanks to sludge digestion and reconstruction of the rapid infiltration basin system,

Phase 4 is broken down into two phases:

Phase 4A: proposed replacement of the headworks screen, and conversion of the phase 2 diffused aeration tank to 45970 gallons in flow equalization. All phase 3 components

remain in use as currently configured. Plant capacity remains 0.340 MGD.

The process flow diagram for phase 4A is shown on sheet C3 of the accompanying permit drawings.

Phase 4B has extensive modifications as follows:

- Conversion of the phase 2 digester tank into a grit removal compartment of 9248 gallons capacity;
- Conversion of the phase 1 diffused aeration chamber into a raw wastewater flow equalization chamber of 45970 gallons;
- Conversion of one of the phase 1 mechanical aeration tanks, the phase 1 digester, and the phase 1 settling tank, and the phase 1 CCC into a decant flow equalization unit process of 95,930 gallons total volume.
- Conversion of one phase 3 mechanical aeration zone, one diffused aeration zone, and consolidation with the existing sludge digester to provide 164,465 gallons in sludge digestion volume.
- Construction of a (3) Sequencing Batch Reactors, each with a volume of 250,000 gallons
- The existing Phase 3 (7) 64 SF each filters, 25,000 gallon clearwell, 19,947 gallon CCC and 28,778 gallon mudwell, remain in service.
- Expansion, modification and consolidation the (4) existing rapid infiltration basins into two basins, designated the North and South rapid infiltration basin.

Plant treatment and reuse disposal capacity will be 0.495 MGD. Sheet C4 in the accompanying drawings depicts the process flow diagram for this phase.

Note: the improvements proposed for phase 4A and the grit chamber conversion of phase 4B are presently being separately permitted under a minor modification for this facility in order to expedite this work getting into construction.

- 5. **Phase** 5: Increases the treatment capacity to 1 MGD. Unit Process additions and modifications include the following:
- Construction of additional (3) 250,000 gallon each SBR chamber (Total of 6).
- Conversion of (1) Phase 1 aeration chamber to decant equalization, providing a total decant equalization available volume of 147,980 gallons
- Conversion of (2) Phase 2 aeration tanks to raw wastewater flow equalization use, provide a total FEQ unit process capacity of 196,040 gallons
- Conversion of (2) phase 3 aeration chambers to sludge digestion, providing a total
- sludge digestion capacity of 410,529 gallons.
- Demolition of the phase 3 sand filters and mudwell
- Conversion of the existing phase 3 25,000 gallon filter clearwell into a chlorine contact tank
- Construction of (3) denitrification filters of 150 SF each.

Sheet C5 of the accompanying permit drawings depicts the process flow of the phase 5 treatment plant.

4.8 The SBR Process

A Sequencing Batch Reactor (SBR) treatment system is activated sludge system like a conventional continuous flow treatment plant. In both systems, raw wastewater is aerated to induce aerobic conditions, nitrifying influent ammonia and organic nitrogen into nitrate, and grows a biomass which consumes BOD, and which is then separated from the treated water through settling. In both systems, it is possible to induce anoxic conditions for nitrate reduction. The difference though is flow through a conventional treatment plant is continuous, passing through all the anoxic and aeration basins such a plant may have 24 hours a day, flowing continuously into a settling tank where the biomass separates from the treated wastewater, with settled water flowing continuously out of the settling tank.

An SBR plant will receive a fixed volume of wastewater first in one tank, which it will then process as a batch volume through aeration and anoxic steps in the same tank, building up a biomass. Following processing steps, the biomass settles in the same tank, leaving treated effluent above the settled biomass. The effluent is removed by a decant device which draws off the treated water. Meanwhile, wastewater is still entering the plant, but, the wastewater enters the next SBR basin in sequence, while processing the batch(es) of wastewater that arrived earlier in the other basins. As each batch completes processing, raw wastewater will flow again to the basin that has completed its batch. Each basin will have several such batch fill and treat cycles during the day.

For phase 4B, The plant will include three 250,000 gallon independent SBR basins capable of processing 0.495 MGD. For phase 5, the plant have six 250,000 gallon basins, all capable of independent operation and operating in parallel.

The equipment used in each SBR is relatively basic. Influent is admitted to each basin via an automated control valve which directs the liquid to disperse through the basin via a submerged manifold. Air supply to each basin comes from a dedicated blower, which sends air to a submerged jet aeration diffusion manifold. Mixing of the liquid in the basin is supplied by a dedicated recirculation or motive pump which recirculates biomass out from and back into the tank through a mixing manifold. Effluent is removed by a floating decant device. Waste biomass is removed by a valved drain pipe, sending waste biomass to the plant sludge digester.

4.8.1 SBR Treatment Steps

The SBR batch process in each basin typically consists of the following steps:

FILL - In the FILL mode, a motor actuated valve on the SBR fill line opens, and screened and degritted wastewater flows from surge pumps pulling raw wastewater from the flow equalization tankage, sending it into the SBR basin. The plant process control system is set up to insure that at least one SBR is in the FILL mode at all times. The FILL mode can be further broken down into two sub steps:

- 1a) The ANOXIC FILL step: During ANOXIC FILL, raw wastewater enters the SBR basin and makes contact with the MLSS in the basin. The anoxic fill step acts to initiate the reduction of the nitrate component of total nitrogen present.
- The AERATED FILL step: during the AERATED FILL mode, screened sewage continues to enter the SBR while the SBR recirculation or "motive" pump is activated, and air is supplied to the SBR by a blower. Both the mixed liquor from the recirculation pump and the air from the blower are forced into the SBR through nozzle jet aerators. The jet aerators discharge the mixed liquor/air mixture into the basin as a high energy plume which results in an efficient oxygen transfer rate mixing within the SBR The aeration reduces both BOD and oxidizes (nitrifies) influent ammonia and organic nitrogen.
- 2) REACT The REACT step is similar to AERATED FILL except that the SBR has completed filling and screened sewage flow has been directed to the next basin in sequence. The REACT step itself has two sub steps:
- 2a) ANOXIC REACT: during the prior aerated step, incoming ammonia and organic nitrogen are nitrified. The Anoxic React step is an additional nitrate reduction step in which anoxic conditions in the basin are induced. During this step, the supply of air is off but the recirculation or motive pump system is in operation to keep the MLSS mixed.
- 2b) AERATED REACT: Following anoxic react,, the air supply to the basin is turned back on. The remaining BOD within the basin is metabolized and overall settleability of the MLSS in the plant is improved. It is during REACT that the SBR functions similar to a typical conventional aeration basin.
- 3) SETTLE During SETTLE, the recirculation or motive pump and the basin air supply is deactivated. The biomass is permitted to separate from the treated water and settle to the bottom of the basin. The SBR basin functions as a clarifier with a zero flowrate entering or exiting the basin during this step.
- 4) DECANT Once the biomass has settled sufficiently, a motor actuated valve in the SBR effluent piping opens, allowing the effluent to flow out of the SBR. The effluent enters the effluent piping through a decanting mechanism which is suspended within the clear fluid in the basin.
- 5) IDLE During the IDLE step, excess biomass (sludge) is wasted from the SBRs while waiting to begin the treatment cycle again at the FILL mode. It is anticipated that the duration of the IDLE periods may vary depending on the peak flows into the facility, the raw wastewater strength, and the mass of biomass grown.

4.8.2 Nitrogen Removal

The following discussion provides an overview of the design methodology for reduction of total nitrogen.

Nitrogen removal consists of two processes, the first is the conversion of ammonia and organic nitrogen (together called TKN) to nitrate, and then the reduction of nitrate to nitrogen gas. The first is called nitrification, the second is called denitrification.

Nitrogen control in extended aeration processes can be obtained in accordance with recommendations contained in the Water Pollution Control Federation Manuals of Practice on Nutrient Control (MOP FD-7), Wastewater Treatment Plant Design (MOP 8), as well as the USEPA manual, Nitrogen Control.

Nitrification

In order to denitrify biologically it necessary to first nitrify. Nitrification design is based around determining a process solids retention time that is long enough to ensure complete nitrification and to ensure that adequate oxygen is supplied. In Florida average temps and considering a normal strength wastewater, generally 6-7 days is needed; an appropriate safety factor is applied to this.

Since the biological process design (see design table in the appendix) has 1) a longer SRT then the nitrification design, even with a safety factor of two, and 2) the capacity of the air supply system has been sized to supply sufficient oxygen for oxidizing TKN, complete nitrification would be expected with the tank sizes proposed.

Denitrification

Denitrification occurs in an environment where there is little or no dissolved oxygen present but nitrate is available, and is called an anoxic condition. Biological denitrification is accomplished by creating anoxic zones in the nitrified mixed liquor. In the absence of free dissolved oxygen, the biota of the mixed liquor will turn to the molecular oxygen contained in nitrate. During anoxic conditions, micro organisms in the plant biomass will turn to the oxygen that is chemically bound to nitrate. As they consume the oxygen in nitrate, nitrogen gas is released and bubbles away.

In SBRs, anoxic conditions are induced, by cycling the air supply on and off long enough for anoxic conditions to develop. While the air is off, mixing is maintained by the recirculation or motive pumps for each basin.

In this case, the SBR batch cycle has been developed in a roughly analogous manner as to how a conventional treatment plant, using a Bardenpho like process, would operate: first, with a predenitrification anoxic zone at the head of the process (corresponding to the Anoxic Fill step of the SBR); and second, with a post aeration anoxic zone downstream after aeration (corresponding to the Anoxic React step of the SBR).

This operating scenario is expected to reliably reduce the nitrate produced by the complete nitrification of incoming TKN to less than 6 mg/L TN for Phase 4B with its capacity of 0.495 MGD. As further discussed in the next section, the SBR vendor's operating scenario estimates the effluent total nitrogen can be reduced to 3 mg/L. Its an ambitious target for this technology, and owner and operator will have ample opportunity to try to operate the SBR to achieve 3 mg/L during Phase 4B; In the event the result cannot be consistently be achieved, the planned

phase 5 will include a polishing set of three denitrification fitlers (discussed further in this report) to assure meeting the 3 mg/L TN standard required of the Phase 5 1 MGD plant.

Modeling and Calculations

Two calculations sets or models were used to validate the SBR's expected performance.

Reference is made to the appendix of this report which provides a spreadsheet style table of design calculations used to size the SBR, determine the lengths of processing time for each Step in a batch, and select operating parameters to meet TN reduction requirements. These calculations are developed by the Engineer of Record (EOR).

The SBR equipment and process design is proprietary; this permit application is based on using the EcoCycleTM SBR system by the Parkson Corporation. In addition to the spreadsheet calculations, the selected vendor of the SBR equipment has provided modelling calculations to likewise provide recommended operating parameters for the duration of each Step in a batch.

To meet a 6 mg/L TN standard, the EOR calculations provide for the following operating characteristics of the steps in the SBR cycle:

Flow	MGD	0.5	1
Influent Flow per hr	CFH	2785	5570
Influent Flow Per Fill Time/cycle	CF	8356	16711
Fill Events per Day, all basins		8	8
Cycles per Day per basin		2.67	1.33
Duration of Each Cycle	hours	9	18
Fill time	hours	3	3
React	hours/cycle	4.41	13.41
Settling Time	hours/cycle	0.75	0.75
Decant Time	hours/cycle	0.75	0.75
Idle/SludgeWaste	hours/cycle	0.09	0.09
Percent time of Fill time Aerated		20%	20%
Percent of Fill Time Mixed		80%	80%
Aeration Time in Fill	hours	0.6	0.6
Anoxic Time In Fill	hours	2.4	2.4
Percent time of React time Aerated		60%	60%
Percent of React Time Mixed		40%	40%
Aerated Time In React	Hours	2.65	8.05
Anoxic Time In React Mixed	Hours	1.76	5.36
Total Time Aerated/cycle	hours	3.25	8.65
Total Mxed Time /Cycle	hours	4.16	7.76

The EOR calculations provide for 3 hours of fill time to each basin, 2.67 batch cycles per basin, with 4 hours of anoxic time per batch per basin, and 9 hours total cycle time, to reduce TN in the effluent to less than 6 mg/L.

The Parkson Corporation develops the operating cycle a little differently to meet a 3 mg/L standard:

	CYCLE TIM	ES	
Batches per day Complete Cycle time	4.00 6.00	per SBI hrs. pe	
Fill time at ADF	2.00	hrs.	
Anoxic Fill time Aerated Fill	1.50 0.50	hrs. hrs.	75 % of FILL is anoxic.
React time	1.81	hrs.	39 % of cycle is aerated.
Denite time	0.50	hrs.	
Settle Time	1.00	hrs.	3.7 hrs. anoxic per cycle
Decant time	0.60	hrs.	
Idle time	0.09	hrs.	2.3 hrs. aerated per cycle

Their recommendation is for a 6 hour cycle. 4 per day per basin, with 3.7 hours of anoxic time per basin per cycle.

The SBR cycle is entirely adjustable and customizable, which provides flexibility to optimize the process and adjust for changing conditions or performance requirements. The key conclusion is that however the cycle is operated, the selected process volumes, 750,000 gallons of gross tankage per half a million gallons per day in flow, is sufficient to meet the discharge requirements.

Denitrification-Adequacy of Carbon Source

Biological denitrification is accomplished by creating anoxic conditions in the nitrified mixed liquor. In the absence of free dissolved oxygen, the biota of the mixed liquor will turn to the molecular oxygen contained in nitrate. To access the oxygen bound in the nitrate, and be assured that biological denitrification can occur, there needs to be an adequate carbon substrate.

The adequacy of the substrate is typically checked by noting the ratio of COD to TKN. Denitrification is expected to occur most efficiently at ratios of 14 and above.

In the instant case, for the domestic wastewater plant, a normal domestic wastewater is anticipated with a design BOD of 203 mg/L, a corresponding COD of 406 mg/L, and a TKN of 40 mg/L. (406/40 = 10.1)

It is deemed that the domestic wastewater influent will not have adequate carbon for denitrification. Based on the foregoing, a carbon supplement is deemed needed.

Methanol has been commonly used in the past, but due to safety and handling issues and the wide success of glycerin as a substitute, a glycerin (sugar water) feed will be provided to the SBRs

Noting that while the influent can reach 203 mg/L BOD, which is an important consideration for sizing the air supply system, it averages closer to 137 mg/L. This in turn indicates a potentially low COD of 274 mg/ and greater need for a carbon supplement..

Total carbon supplement feed is estimated as follows per half million gallons per day in flow:

Supplemental Carbon Requirement		
Flow	MGD	0.5
(1) soluble COD required = 8 x No3-N load	mg/L	263
(1) Total COD required, from nitrate load	mg/L	798
(2) Total COD = TKN x 14	mg/L	560
Design COD =	mg/L	798
Design Soluble COD	mg/L	263
Available Total COD	mg/L	274
Soluble COD available	mg/L	90
Deficit =	mg/L	173
Lbs per Day Supplemental COD needed	mg/L	720
mg/L COD in 50% sugar solution	#/day	685000
gal/day required		126

(Twice the gallons per day is indicated potentially needed at 1 MGD)

Process Alkalinity

The process of nitrification consumes alkalinity. As alkalinity is consumed, the mixed liquor becomes progressively more acidic. The influent alkalinity data and the analysis below shows that addition of alkalinity is likely necessary to ensure a stable pH in the mixed liquor. Calculatons and usage estimates are as follows:

Alkalinity			
Flow Rate (MGD) =	MGD	0.500	1.000
Influent Alkalinity:	mg/L	200	200
Influent TKN:	mg/L	40	40
Target Effluent NO3-N:	mg/L	2	2
Alkalinity consumed by nitrification:	mg/L	149	149
Residual Alkalinity	mg/L	50.9	50.9
Target Desired Residual Alkalinity	mg/L	100	100
Deficit of Alklinity	mg/L	49.1	49.1
Required Dose NaOH mg/L/mg/L deficit		0.799	0.799
Requred Dose, NaOH	mg/L	39.2	39.2
# NaOH needed/day	#/day	164	327
Estimated Liquid Vol gal/day	gpd	25.01	50.03

This is resupplied with liquid sodium hydroxide (or alternatively, soda ash solution).

4.8.3 BOD Removal

From the table of design calculations in the appendix of this report, the loadings on the proposed SBR should produce an effluent less than 20 mg/L BOD. The long solids retention time coupled with adequate air supply used in this process tends to produce a fast settling sludge, with a clear supernatant, and very low in soluble BOD.

4.8.4 TSS Removal

From the table of design calculations in the appendix of this report, loadings on the SBR should produce an effluent less than 20 mg/L TSS in effluent removed during the Decant Step. The long solids retention time used in this process tends to produce a fast settling sludge, with a clear supernatant, very low in solids content.

The existing treatment plant has (7) gravity sand filters. These were originally installed for the purpose of meeting a 5 mg/L TSS standard when the effluent was reused on the South Golf Course in the 1990s. They are still in use. These will be maintained as an additional treatment step in Phase 4B.

In Phase 5, these will be replaced with (3) dentrification filters to assure the plant is capable of meeting a 3 mg/L TN standard. The filters used will also produce a low TSS.

4.8.5 Phase 5 Denitrifcation Filtration

The SBR process is expected to meet a 6 mg/L TN standard as required for the permitted 0.495 MGD treatment plant. The SBR equipment manufacturer indicates their equipment can be operated to produce an effluent of less than 3 mg/L TN. Between the time the Phase 4B plant is placed into operation and before the Phase 5 plant will be in operation, there will be ample opportunity to optimize the operation of the SBR to produce an effluent with TN as low as possible without the need for additional treatment steps.

In the event the plant does not consistently meet a 3 mg/L target, the proposed permitted design for Phase 5 includes the addition of denitrification filters to ensure the effluent meets a 3 mg/L standard.

Denitrification filters are multi media filters intended for polishing fully nitrified effluent with a moderate level of nitrate remaining in order to get the final effluent down to a low level.

Theoretically capable of removing 15-20 mg/L nitrate, more reliable, consistent operation is expected when they are used to polish a lower nitrate load, 6-10 mg/L.

In the phase 5 plant, decanted effluent flows to decant flow equalization unit process, from which pumps will pull water to alternately dose three parallel denitrification filters.

While similar in many respects to a conventional gravity sand filter for TSS removal, there are

important differences. The media is deeper and selected for denitrification. The hydraulic design maintains parts of the media to remain saturated. A glycerin feed is provided to enhance denitrification. In addition to a standard air scour and water backwash cycle, a dentrification filter has a bump cycle (water flow only) to release entrained nitrogen gas. Filtered water flows to a the chlorine contact chambers, which are arranged and valved so water can be retained for filter bump and backwash cycles.

Water enters each filter over a laminar flow baffle to induce smooth, non turbulent flow of water downward. The purpose of this is to avoid entrainment of air in the water.

As the water flows into the media, it will pond, the depth of ponding increasing as more solids are captured, which increases filter headloss. During the start of the filter run (a filter run is the time water is loaded into the filter and when the filter needs to be back washed to eliminate captured solids, reduce head loss and depth of ponded water), water will pond a few inches. Over several hours, this may increase to over a foot or more.

Part of the media is designed to remain permanently saturated. This induces anoxic conditions in the pore spaces of the filter. A denitrification reaction will then start, causing bubbles of nitrogen gas to form in the media.

Water drains from the filters into a manifold at the bottom of the filter, then to the chlorine contact chambers.

A filter bump cycle is necessary to purge the filter of entrained nitrogen gas. The operation is automatic. When a bump cycle is called for, the pump or pumps sending water to the filter being bumped is shut down, and the other filter pumps will send water to the other filters. A backwash pump is started to send water to the filter being bumped. This sends a reverse flow of water up from the bottom of the media, slightly expanding the bed and releasing nitrogen gas. Backwash water exits the top of the filter via an overflow and then drains by gravity to the mudwell tank.

The backwashing of the filters is also controlled automatically and can also be triggered manually. Backwash also shuts down the dose pump feeding the filter being back washed. At the start of the cycle, the filter is air scoured for several minutes. This is then followed by water backwash pumped by the backwash pump, As with the bump cycle, backwash water exits the filter overflow and runs into the mud well tank.

As the mudwell tank fills, smaller transfer pumps return the water to the plant flow equalization tankage.

The denitrification filters used will be of a proprietary, manufactured design, by Leopold or equal.

Sizing calculations are provided in the appendix titled "Denitrification Filter Calculations".

Denitrification in denitrification filters requires there be an adequate level of organic carbon in

the influent water for use as a substrate. Since following treatment upstream all the organic carbon has been used, a carbon supplement is deemed needed. As with the supplement used in the SBRs, a glycerin feed will be dosed into the feed going to the filters. The feed will use typical peristaltic chemical to dose solution to the filters.

4.8.6 Phosphorus Reduction

In both Phase 4B (0.495 MGD) and Phase 5 (1 MGD), phosphorus will be reduce by chemical precipitation. Theoretically the batch cycle in an SBR can be configured to induce anaerobic conditions needed for phosphorus reduction; after the phase 4B plant is constructed, it may be useful to program a custom cycle to try that, however, for simplicity and reliability, a chemical alum feed is designed to dose each batch in the SBR for the reduction of phosphorus. Estimated dosage is as follows

Design Flow	MGD	0.5	1
Influent TP	mg/L	6	6
Effluent TP	mg/L	3	1
Influent P - Effluent P	mg/L	3	5
Dosage, 1.3 mg Al per 1 mg P removed	mg/L	3.9	6.5
Consumption, Alum	#/day	16.3	54.2
AlPO4 Produced:	mg/L	11.8	19.7
Al(OH)3 Produced:	mg/L	3.9	6.4
Total Produced:	mg/L	15.7	26.1
Estimated Liquid Vol gal/day	gpd	2.49	8.29

4.8.7 SBR Control System

The SBR control system will be furnished as a manufactured unit with the SBR equipment by the SBR equipment manufacturer. The proprietary name of the selected control system is the Parkson DynaPhaseTM Controls package.

The SBR controls will all be housed in a single cabinet adjacent to the SBR plant structure. Sheet M13 of the accompanying permit drawings provides the general arrangement of controls within the cabinet. It should be noted there will be one control cabinet for the (3) SBR chambers associated with Phase 4B and one control cabinet for the (3) SBR chambers that are added to the plant in Phase 5. In this manner, two phases operate in parallel with one another.

The operator can select each SBR to be in either Manual or Automatic. When an SBR is in automatic, the control system will call each automatic valve to open or close as required and call each pump and blower to run or not run based on the current treatment step. When an SBR is in manual mode, the control system will not call any valve to open or any pump or blower to run.

Each mechanical pump, blower and motorized valve has a corresponding Hand Off Automatic control selector in the control panel.

For the majority of its operating time, the SBR is expected to be in automatic mode.

In automatic mode, the operator can select certain parameters to control the duration of time or depth of water that is associated with the batch reactor Step.

The following discussion is taken in large measure from Parkson's controls system overview documentation.

Selection of parameters is through the plant HMI panel in the control cabinet. Parameters in some cases relate to level of water in the SBR (sensed through a level transducer and some are time based. These parameters are as follows:

Maximum Fill

The operator selects the maximum number of minutes the control system will allow for fill (Anoxic Static Fill, Anoxic Mixed Fill, and Aerated Fill) by adjusting the Maximum Fill Time set point. There are separate Maximum Fill Time set points for two-tank, and three-tank operation.

Anoxic Static Fill Percent

The operator has the ability to separate the anoxic fill into Anoxic Static Fill and Anoxic Mixed Fill. In single tank mode, Continuous Feed % determines the percent of the calculated anoxic fill time that will be static (no mixing). The remaining anoxic fill time will be Anoxic Mixed Fill. In sequencing mode, Tank % determines the percent of the calculated anoxic fill time that will be static (no mixing). The remaining anoxic fill time will be Anoxic Mixed Fill. Each tank has an individual set point, allowing the operator the flexibility to select different anoxic static fill times for each tank.

Aeration Setpoint/Operation

Once the anoxic time is complete, the tank will enter aeration, which is split into Aerated Fill and React. An operator can shift aeration time into Aerated Fill by adjusting the Maximum Anoxic Fill set point. The system calculates the required aeration time based on the current percent of design flow and the aeration set points entered by the operator. Aerated Fill is the time remaining after completion of Anoxic Fill and will last until the Maximum Fill time expires, calculated air time expires or the level reaches Top Water Level (TWL). Once one of these three conditions has been met, the SBR enters React and attempts to remain in React until the required aeration time or minimum react time is complete. The second anoxic Step, is set by the operator through the HMI for timed operation.

Settle Set Point

The Settle set point allows the operator to adjust the duration of the settle step. The time that the operator has entered into the Settle set point begins at the beginning of Settle Prep. The actual settle prep duration falls within the settle step. For example, if the operator enters a five minute settle prep and a 45 minute settle, mixing will occur for the first five minutes of settle and will be off for the remaining 40 minutes (45-5).

Decant Set Points

Decant is not, by design, a timed treatment step. When an SBR tank enters decant, the control system will monitor the water level in the tank. When the water level reaches the bottom water

level (BWL) set point, decant is terminated

Idle or Wasting Duration

The operator can enter set points for the number of minutes (Waste Sludge Time) and the volume (Waste Sludge Volume) to waste sludge from each SBR. Individual set points are provided for each tank, allowing the operator the flexibility to select different waste sludge times and volumes. Both the time and volume set point will always be utilized.

See also section 4.15, prevention of upsets, which discusses the control system's response to a component failuure.

4.9 SBR Aeration System

Air supply to the SBR basins is provided by air compressors. Aeration required is calculated in the appendix of this report, both by EOR (357 SCFM per basin) and the Parkson Corporation (359 SCFM per basin). Air supply specified is 359 SCFM per basin.

There are four blowers connected to a common manifold. Three blowers are provided, one for each basin, with one redundant backup. Air is admitted to each basin by a motorized valve operated by the SBR control system. The air distribution system in the SBR basins is a proprietary jet aeration system by the Parkson Corporation.

4.10 SBR Recirculation Flow

The biomass in each SBR has to be mixed and kept in suspension, particularly during anoxic denitrification and aeration Steps. A motive pump for each basin is used to withdrawn biomass from the basin and recirculate it back into the basin through a jet distribution system.

The Jet aeration and mixing system is a proprietary system; Parkson's calculations for this system are provided in the appendix, and call for each motive pump to have a capacity of 1465 gpm at 17 feet TDH.

4.11 Chemicals Used

The following chemicals will be used by this facility:

- glycerin, as a carbon feed supplement to the treatment process (see 4.8.2)
- Sodium Hydroxide, to balance pH and restore alkalinity (see 4.8.2)
- alum, used to precipitate phosphorus (see 4.8.6)
- Chlorine solution as a disinfectant (see 4.12)

Calculations for the dosages are included/referenced in the calculations provided in the appendix

All chemicals used will be in the solution form, commercially mixed and delivered to the site by chemical supplier. Solution will be stored in polyethylene containers, with drain and level markings, and set on appropriately sized secondary containment pads. Solution is administered

by peristaltic feed pumps.

Sodium hydroxide (or soda ash) will be dosed into the raw wastewater pumped to the SBRs when the surge pumps are turned on.

The alum and glycerin feeds will be initiated by the SBR control system

Chlorine will be dosed into the water pumped to the chlorine contact tank and initiated with the pump engagement.

4.12 Pretreatment, Influent and Decant Equalization, Chlorination, Sludge Digestion

This section describes the design basis of the side stream and supporting unit processes.

4.12.1 Pretreament-Screening

At this writing a minor modification permit application is under review to modify the headworks of the treatment plant, provide grit removal, and flow equalization.

As described in the letter report supporting the minor modification, the short term loading on the existing Phase 3 headworks coarse bar rack is 300 gpm more or less from existing development lift stations, plus will be 600 gpm more from short term proposed development. The existing bar rack cannot handle this. The bar screen will be replaced with a new hydrostatic screen with a flow thru capacity of 1500 gpm in Phase 4A.

For Phase 5, 1 MGD, peak rates of inflow are forecast to be as high as 2000 gpm: a second parallel screen will be added at that time to provide a total of 3000 gpm in screening capacity.

4.12.2. Pretreatment Grit Removal

The conversion of the grit chamber is covered in the current minor modification of facility permit application under review. The following describes the work to be performed.

The existing grit chamber is a 10 foot diameter circular wet well, which does not function as a grit chamber so much as it functions as a trash trap. In Phase 4A, the well would be pumped out, internal components removed, and then reused to support the platform for a hydrostatic screen.

While grit removal is desirable in the existing plant, it has heightened importance in Phase 4B and Phase 5.

A rectangular digester chamber in the 1970s plant (from Phase 2) would be repurposed for grit removal with new aeration to promote grit settling and removal with suitable eductors or direct pumping by sludge haulers. The interior of the tank would be partially grout filled and formed to create a grit collection hopper.

The accompanying drawings sheet M4 depict how the conversion is to be carried out.

Calculations sizing the grit chamber are provided in the appendix of this report.

From the grit chamber, wastewater would flow to the flow equalization tankage.

4.12.3 Influent Flow Equalization.

In Phase 4A, where the existing phase 3 treatment plant is still in use, flow equalization is needed to ensure that that peak hour flows from new development do not excessively load the existing final settling tanks.

For Phase 4A, flow equalization is needed to attenuate the load on the existing phase 3 clarifiers and treatment plant. One phase 2 diffused aeration tank of 45,970 gallons is used for this purpose. Two flooded suction dry mount surge pumps are installed to pump to a flow splitter box, which regulates the flow to the Phase 3 plant in service.

For Phase 4B and Phase 5, flow equalization is needed to enhance the reliability of the Sequencing Batch Reactor Process.

For Phase 4B, the design consists of repurposing the diffused aeration chamber of phase 1 and adding it to the converted flow equalization tank in phase 4A. This provides 91,940 gallons in volume to attenuate peak flows of just more than three times the average daily design flow (0.495 MGD) to less than 1.5 times the average daily flow. The spitter box is removed, a third pump is added the two installed in Phase 4A. Pumping rate to the plant is adjustable with the type of belt driven pump used, and is selected so that the rate pumped to the SBR is not more than 1.5 times the design average flow.

For Phase 5, two out of service aeration tanks in Phase 2 are added to the two equalization tanks already converted in phase 4A and Phase 4B. Each tank is 52,050 gallons and the combined total of equalization volume available is 196,040 gallons.

All flow equalization basins will be aerated to control odors.

Calculations for sizing the chambers, the pumps and aeration needed are provided in the appendix of this report.

4.12.4 Decant Flow Equalization

Decant Flow Equalization is provided in phase 4B and phase 5. Unlike a conventional, continuous flow plant, the effluent discharged from the settling cycle is not continuous but released in batches in large volume over a short period of time. This can cause short circuiting of chlorine contact time, overload existing filters used in Phase 4B and the denitrification filters proposed for Phase 5. Peak rates of decant flow are 1389 gpm in Phase 4B and 2778 gpm in phase 5.

In Phase 4B Existing Phase 1 final settling, digestion and one aeration compartment will be utilized for decant equalization, providing 90,130 gallons in volume. Phase 5, an additional 52050 gallon Phase 1 aeration tank is converted for decant equalization.

Referencing the calculations provided in the appendix, this is more than enough volume to equalize the flow coming out of the SBRs for both phases.

Two 500 gpm flooded suction pumps are used to pull water from decant equalization and transmit to downstream unit processes in Phase 4B. In phase 5 a third pump is added.

4.12.5 Chlorine Doses, Residuals and Contact Times

For phase 4A and 4B, the existing (7) parallel sand filters, clearwell, and chlorine contact tank are maintained in operation. Total volume for phase 4B is 19500 gallons in this un modified part of the plant.

For Phase 5, the existing filters are demolished, the existing mudwell is demolished, and the existing clearwell is converted to a chlorine contact tank, of 25,000 gallons and operates in parallel with the 19500 gallon CCC.

For handling safety and other reasons, chlorine will be used as a disinfectant in its liquid form, rather than as a gas.

Detailed dosage, residual and contact time calculations are provided in the appendix of this report.

The dosage is computed as 8 mg/L, the desired residual is 0.5 mg/L. Minimum chlorine contact time at peak flow exceeds 15 minutes, and exceeds 30 minutes at average flow in both Phase 4B and Phase 5.

4.13 Biosolids Storage, Treatment, and Disposal Plan

Sludge wasted from the SBR process is sent to an aerobic digester. In both Phase 4B and Phase 5, the digester is converted tankage repurposed from the presently in service Phase 3 plant.

For Phase 4B, an existing aeration tank of 123032 gallons, an existing diffused aeration tank of 12951 gallons and the existing 28482 gallons digester (164,465 gallons total) will be used to process waste sludge from the SBR.

For Phase 5, the other two mechanically aerated aeraton chambers of 123032 gallons each will be converted for sludge digestion.

The conversion is fairly elementary: The larger aeration tank will continue to be mixed with its mechanical surface aerator, and the other tanks will use the existing diffused aeration system already installed in them. Tank outlets to former settling tanks will be closed off. Submersible portable electric pumps will be used to remove supernatant and pump to the flow equalization tankage.

The primary purpose of the aerobic digester is sludge holding prior to removal, provide sludge stabilization, and for additional decanting to thicken the sludge and reduce the volume that has to be hauled.

In Phase 4B, the digesters have a total capacity of 164,465 gallons. Referring to the calculations in the appendix of this report, at 0.495 MGD the theoretical waste sludge flow is 9373 gallons per day. Thickening to 1% solids creates a theoretical supernatant flow of 5836 gallons per day. The supernatant from this unit process is returned to the head of the treatment plant and the flow equalization tank.

Considering the volume recovery associated with supernating, the sludge digestion tankage should hold 46 days of waste sludge flow.

For Phase 5, with the additional volume but higher flow rate, the sludge holding capacity is 61 days.

Oxygen requirements for the digester have been determined based on 2 lbs/O2 per lb. of VSS destroyed or 30 scfm per 1000 cf, whichever is greater.

Calculations are provided in the appendix of this report.

Supernatant will be returned using adjustable air eductor and sent to surge. A gravity overflow back to flow equalization will be provided.

Sludge from this facility is and will be removed by A-1 Quality and processed in their biosolids treatment facility.

4.14 Operational and Control Strategies

An O&M manual is to be provided which will cover all aspects of plant operation, including normal operation, preventative maintenance, problem diagnosis and recovery.

The primary control strategies from the site operators point of view are:

- Setting the flow equalization pump rates and controls to maximize flow attenuation on downstream unit processes
- Field testing mixed liquor for dissolved oxygen, settleability, and the effluent for pH, chlorine residuals and nitrogen species as discussed in 4.8.2.
- Adjusting the plant aeration react times as testing and manufacturer O&M direction indicates needed, wasting sludge to the digester to maintain an appropriate sludge volume in the plant, and adjusting all chemical dosage and operation to assure meeting treatment and disinfection standards.
- Logging daily activities as required by permit in a logbook.
- Carrying out necessary repairs and routine preventative maintenance to essential mechanical and control equipment

- The SBR cycles and operating sequence can be validated and optimized using suitable field test kits to measure
 - 1) plant dissolved oxygen,
 - 2) effluent ammonia content
 - 3) effluent nitrate content, and
 - 4) running daily settling tests.

The DO tests confirm the plant oxygen level when the blowers are running, confirm the DO level when anoxic conditions are induced. About 2 mg/L DO is expected during the on cycle, and less than 0.2 mg/L after 15 minutes is expected during the off cycle.

The ammonia test kit is to check to make sure that complete nitrification occurs. Results of less than 1 mg/L ammonia shoud be expected. If significantly high ammonia test results are encountered, aerator "on" time must be increased

The nitrate test kit will check the adequacy of the denitrification cycles. Typical results will normally be in the 4-6 mg/L range, and the operator should strive for 3 mg/L as deemed practical by the SBR equipment supplier.

After initial plant startup to develop a biomass, field testing should be daily to establish trends and adjustments made to the batch cycle.

4.15 Prevention of Upsets

Only domestic wastewater flows to this treatment plant, so upsets from industrial sources are not expected.

Most important in the prevention of upsets is the ability to prevent hydraulic overloads and maintaining the plant biomass volume within an acceptable range, and to assure its settle-ability by proper aeration control.

This plant is to be equipped with a surge or flow equalization tank to prevent hydraulic overload. Additional information on the features of this tank are covered in section 4.12.3

The contracted operator will have appropriate test equipment for measuring sludge volume, plant DO and effluent field testing as described in the foregoing sections.

In addition, the SBR control system has operator selectable automatic protocols that are followed during the detection of faults. The following is taken from information furnished by the Parkson Corporation:

The operator can choose for an automatic component failure response to be either disabled or enabled for each SBR. If disabled, the control system will generate an alarm and continue to cycle the SBR when an alarm occurs. If enabled, the control system will decide if the alarm is critical or non critical and take the appropriate response.

If a critical alarm is detected, the control system will sound an alarm and indicate which piece(s) of equipment has failed. The operator has five minutes to correct the problem or to disable failure response for that tank. If the operator has not cleared the alarm or disabled failure response within five minutes, that tank will be taken out of service (Failed Off) until the operator clears the alarm and places the tank back into service. The only exception to this is if the tank with the failure is the only tank in operation. The control system will not automatically take all tanks out of service.

To put a tank back into service that has failed off, the following sequence must be performed:

- 1. The alarm must be cleared
- 2. The tank selector must be turned to Manual
- 3. The tank selector must be turned to Auto

Typical critical alarms are influent valve failure, air valve failures, effluent valve failures, and blower failures.

If a non-critical alarm is detected the control system will sound an alarm and indicate which piece(s) of equipment has failed. The tank will continue to cycle and the alarm will be cleared once the alarm has been acknowledged and the failure no longer exists.

4.16 General Construction Features

New tankage is to be constructed from poured in place concrete for durability, low maintenance and longevity.

Liquid piping will be generally be PVC schedule 40, except where steel or ductile iron is specified or required.

Aeration will be supplied via diffused aeration from compressors, using the SBR manufacturer's proprietary jet aeration system. Air transfer piping is sized to keep velocities low so that head loss is limited to 1 psi.

Aeration transfer piping will be fabricated steel or galvanized schedule 40 steel for service life in the sun and coated for protection from corrosion.

Multiple positive displacement blowers are provided for redundancy, each equipped with a motor and pulley system to set proper blower speed.

Control systems will be in weather proof control panels, NEMA 4 rated. Motor controls include HOA switches for manual or automatic operation. Controls include protection from transient voltage surge and lightning strike suppression.

Tank grating and walks between or over tanks and access stairs of aluminum construction are provided where equipment access may be required.

Specified pumps will all be solids handling pumps, designed for use with wastewater solids and

raw wastewater.

Additional remarks are provided below in section 4.18

4.17 Flow Metering and Measuring

Flows to this facility are presently measured and will continue to be measured by an effluent flow meter measuring the rate and cumulative volume of flow per day pumped from the plant pump tank to the rapid infiltration basin for all Phases.

4.18 Reliability Classification

Flow Equalization

Flow equalization is used to control the hydraulic loads on downstream unit processes.

The basic concept is to be able to accept incoming instant rates of flow in excess of 300% of design capacity, then store and equalize the flow so that only 150% is discharged to downstream unit processes, and ensure those units processes can handle 150% of design flow

The surge tanks and pump systems are often inline with the flow. Two pumps are installed in Phase 4A which pump to a flow regulator box. Normally one pump at a time is running, the other is a redundant backup. For phase 4B and phase 5, a third pump is added. Up to two pumps are needed, with the third a redundant backup. All will be setup to alternate duty points.

In phase 4A, a splitter box is used to send a measured amount of flow forward into the Phase 3 treatment works and a certain amount is returned to the surge tank. This method provides a more continuous, controllable way of feeding the treatment plant. This is not required in Phase 4B and phase 5.

The surge tank is aerated to help control odors.

Only one surge tank is required to meet Class III reliable criteria. The dual surge pumps, each 100% redundant, meet the class III reliability requirement.

Pretreatment

The purpose of pretreatment facilities such as screens is to prevent the entry of objects into the treatment process that would adversely effect plant operation such as by causing pumps to clog, etc. For this purpose, a single hydrostatic screen is proposed for Phase 4A ad phase 4B, and two screens each capable of handling at least 50% of the flow is provided in Phase 5.

Multiple racks are not required for Class III reliable systems, but a bypass is provided. The proposed screening system is Class III reliable.

Aeration/Bioprocess Tankage

New aeration or bioprocess tankage consists of (3) SBR basns in Phase 4B and (6) in Phase 5. .

Aeration/Process Tankage having multiple independent tankage, meets or exceeds Class III reliability

Air supply for the aeration process, is diffused aeration with supply for air compressors. Four are provided in Phase 4B, with one redundant, each valved to the main header, are provided for reliability. For Phase 5, there will be (8) compressors, two of which will be redundant backps

Air compressors, considering size, horsepower, and future requirements are of the positive displacement type. Intake and discharge silencers are to be required. Compressors are belt driven. Air volume is controllable by varying the drive pulley size. Operating at low noise level with sound insulating house will be required.

Aeration Supply Compressors meet or exceed Class III reliability

Filters

Effluent filtration prior to disinfection is provide, although not required for effluent disposal to a rapid rate system. The existing plant has (7) sand filter units which will not be modified in Phase 4A and Phase 4B. Any unit can be removed from service and still maintain filtration.

For Phase 5, these will be demolished and (3) new denitrification filters will be provided. Any one can be removed from service and the remaining units capable of handling at least 50% of the total flow.

Decanted flow into the decant equalization unit process which has (2) pumps phase 4B and (3) pumps in Phase 5 to send the water to the filters. Any one can be removed from service and 100% flow maintained. Filters are backwashed by one of two alternating pumps, either of which can be removed from service and maintain backwash capacity 100%.

The Phase 5 filters provided meet or exceed Class III reliable criteria.

Chlorine Contact Tanks

Settled water is to be disinfected prior to discharge to the reuse/disposal system.

For Phase 4A and 4B, there is no modification proposed of the existing system which has a single chlorine contact in series with a clearwell tank.

For Phase 5, the clearwell tank is converted to a parallel chlorine contact tank.

The chlorine contact chambers for the Phase 5 treatment plant therefore consists of two chambers, each sized to at a minimum, provide adequate contact time at peak flow for, at a

minimum, 50% of the flow.

The chlorine contact chambers provided meet or exceed Class III reliable criteria.

Standby Power

This facility electrical design will include provision of a permanent generator to to provide power to the entire plant in the even of power outage.

5.0 OUTFALLS

This facility has no existing or proposed surface water outfalls.

6.0 EFFLUENT DISPOSAL OR REUSE SYSTEM

Effluent from the existing treatment plant is disposed or reused by (4) existing rapid infiltration basins with net permitted capacity of 0.340 MGD. These basins are numbered 1 to 4; their general location and arrangement is shown on sheet C1 of the accompanying permit drawings.

It is proposed to eliminate existing basin no 4, expand basin 3, and consolidate and expand basins 1 and 2 into one basin, so the facility has a net reuse / disposal capacity of 0.495 MGD.

Sheet C7 provides an overview of the proposed rapid infiltration basin expansion and configuration. The expanded and consolidated infiltration basins are designated North R.I.B., and South R.I.B.

6.1 Project Area Features and Land Use

Land Use

The area proposed for the treatment plant is the current treatment plant site: construction of new tankage occurs in an area immediately adjacent and was used for general maintenance purposes, with a couple of unused offices and warehouse buildings which will be removed.

The South Rapid Infiltration Basin is in the same area immediately south of the plant and presently encompasses the existing number one and two infiltration basins.

The North Rapid Infiltration Basin encompasses the number 3 infiltration basin and will also use existing cleared area that was formerly used as a golf course (currently not in use and at this writing not expected to be a golf couse in the vicinity of the North RIB.

Setbacks

Reference is also made to the construction drawings- see sheet C7, Reuse Plan, which shows the setbacks to various features with a combined furnished survey and aerial view. Setbacks are provided to residential property lines and occupied buildings of at least 100 feet and to ROWs of more than 50'. Setbacks of 500' to known private domestic wells, as identified by the geotechnical consulting engineer (reference geotechnical report).

Flood Plain and Site Drainage

As discussed in section 3.1 of this report, the existing treatment plant, proposed plant improvements, and proposed rapid infiltration basin system improvements, are outside the limits of a flood zone A or AE. (The northern part of the plant and the north R.I.B are located on community panel 12105C0385H, and the southern part of the plant and southern R.I.N. are found on community panel 12105C039H.

All construction occurs largely within an existing grassy are. In the southern basin, there is necessary removal of a building and some asphalt. Clearing of trees or vegetation around

existing basins 1,2, and 3 will be minimized to help keep the area screened. The effluent infiltration basins are designed so that any rainfall that falls within the basins remains entirely within the basin and the basin berms are graded in a way to prevent the entrance of stormwater.

Topography

Terrain at the project site is more or less level with a slight overall slope from West to East. From available topographic mapping it appears to vary between elevation 80 and 74, with much of the site outside the limits of existing infiltration basins around 75.

Vegetative Community

The proposed effluent reuse disposal modification or expansion is largely planted with grass at this time; in the north RIB area this somewhat overgrown former golf course turf. As noted above, clearing of trees is limited to what surrounds the existing basin preserving as much as possible.

Wetlands

There are no wetlands within the proposed construction area that would be subject to grading, cut or fill earthwork operation.

According to the National Wetland Inventory mapping, there is circular area on the former golf course west of the North Rapid infiltration basin site designated as an emergent wetland. No impacts to this area are proposed by this application.

6.2 Local Water Wells

Refer to the accompanying geotechnical report which identifies drinking water wells in the vicinity of the proposed effluent disposal system.

Homes within Grenelefe are served by the public water system operated at Grenelefe. The private utility has two supply wells. Referring to the mapping in the geotechnical report, the southernmost one is located approximately 2400 feet to the west/northwest of the Northern R.I.B. The northernmost supply well is located about 3900 feet to the North/Northwest.

East of the project area and east of Lake Marion Rd there are a couple of homes on private wells. The well locations were located by Andreyev Engineering using the Florida Department of Health database, and were field checked by Tract Engineering. Well locations are depicted in the geotechnical report (figure 9), and also shown on sheet C7 (containing Tract Engineerin's field locates). The set back circles of 500' centered on each well are depicted; the proposed rapid infiltration basin system is at least 500 feet from known private wells.

6.3 Site Soils

See the accompanying hydrogeologic report for data and information about site soils.

6.4 Site Hydrogeology, System Loading and Proposed Capacity

See the accompanying hydrogeologic report for data and information about site hydrogeology, subsurface characteristics and hydraulic modelling.

The expanded and reconfigured rapid infiltration basins are intended to have a design capacity consistent with the objective of the Phase 4B expansion, 0.495 MGD.

The four existing effluent disposal basins ponds are rated for 340,000 gpd capacity on 100,188 sf of area, a loading rate of 3.39 gpd/sf.

The reconfigured system will have the Northern RIB at 2.593 acres of designed bottom area, and the Southern RIB at 2.37 acres of bottom area. Loading rate at 0.495 MGD on 216,188 SF is 2.29 gpd/sf (lower rate than as presently permitted).

6.5 Ground Water Monitoring Plan

See the accompanying hydrogeologic report for data and information about the proposed groundwater monitoring plan. The engineering permit drawings also show the location and construction features of the proposed monitor wells.

6.6 Construction Features

Effluent Rapid Infiltration Basins

Two ponds are proposed, to facilitate loading and resting on a 7 day load, 7 day rest cycle. Loading and resting will be accomplished with manually excercized valve operators.

Total pond depth is 6', based on the geotechnical engineering report bottom elevation of 75, and a top elevation of 81 to preclude entry of surface stormwater. The depth provides at least 1' in normal working depth, and in excess of 3' of freeboard above that as required by rule.

There is proposed an interbasin overflow pipe which interconnects the two basins, at elevation 78. Normally this would not be used unless one basin ponded to a depth of more than 3 feet.

Each basin also has an emergency overflow device located one foot below the top of each basin at elevation 80. Actually comprising two overflow pipes, one from each cell, any emergency overflow will be directed to the lower terrain off to the east.

All pond berms will be graded with 3:1 side slopes and sodded. Width across the top level berm is 8 feet.

Each basin has been designed with an effluent distribution system to discharge water at various points in each basin to spread the water out. (See sheet C7A and C7C of the accompanying permit drawings).

The rapid infiltration basins site will be fenced with warning signs posted to restrict public access.

Transfer Pumping

Efflient is currently pumped to the existing rapid infiltration basin; as water leaves the chlorine contact tank, it it drains to an effluent pump station. No changes are proposed for this system, except that existing effluent main piping will be connected to the proposed distribution piping within each expanded and reconfigured basin.

6.7 Conceptual Phase 5 Effluent Reuse/Disposal

This permit application is intended to permit treatment plant expansion through Phase 5 (1 MGD) capacity but proposed effluent reuse expansion is to be limited to Phase 4B (0.495 MGD).

Referencing the accompanying geotechnical report, "In addition to the evaluation of the existing RIBs in the general vicinity of the plant, two additional areas were assessed for potential additional RIB sites. The locations of these potential RIB sites were identified on portions of the defunct golf courses, which were in the western portions of the Grenelefe development substantially separate from the existing plant area."

These two areas were investigated to assess their soil and groundwater conditions. As the reconfiguration of the existing infiltration basin system was:

- 1) sufficient to handle foreseen needs through 0.495 MGD,
- 2) the need to provide 1 MGD in disposal capacity is conceptual only based on the developer's long term forecast of potential development, and;
- 3) use of these areas would require construction of a new effluent transmission system, it

It was determined to not develop a complete designed system of these areas at this time, and to do so at such time as clear definitive development plans and timetable warranted permitting same.

APPENDIX

SBR Design Calculations

<u>Parameter</u>	<u>Unit</u>	<u>Result Phase</u> <u>Re</u> <u>4B</u>	<u>sult Phase</u> <u>5</u>
I. Influent Parameters		<u>7D</u>	2
Influent Fllow, MGD	MGD	0.5	1
Influent Flow CF	CF	66845	133690
Bio/Chem Oxygen Demand:	mg/L	203	203
Infl Soluble BOD	mg/L	66.99	66.99
Infl COD	mg/L	406	406
Infl Soluble COD	mg/L	134	133.98
Total Suspended Solids:	mg/L	248	248
Total Kjeldahl Nitrogen:	mg/L	40	40
Total Phosphorus	mg/L	6	6
1	C		
II. Effluent Parameters			
Effluent TKN	mg/L	1	1
Effluent Nitrate	mg/L	2	2 3
Efflkunt TN		3	
Effluent BOD	mg/L	20	20
Effluent Soluble BOD	mg/L	2	2
Effluent TSS	mg/L	20	20
Effluent TP	mg/L	3	1
III Basin Geometry			
Flow	MGD	0.5	1
No of basins		3	6
freeboard	ft	1.5	1.5
Length	ft	42.5	42.5
Width	ft	42.5	42.5
Min Water Depth	ft	13.1	13.1
Max Water Depth	ft	18.5	18.5
Min Wet Vol Ea Basin	cf	23662	23662
Max Wet Vol Ea Basin	cf	33416	33416
Min Wet Vol Ea Basin	MGAL	0.177	0.177
Max Wet Vol Ea Basin	MGAL	0.250	0.250
Total Min Vol All Basins	MGAL	0.531	1.062
Total Max Vol All Basins	MGAL	0.75	1.50
IV SBR Cycle			
Flow	MGD	0.5	1
Influent Flow per hr	CFH	2785	5570
Influent Flow Per Fill Time/cycle	CF	8356	16711
Fill Events per Day, all basins		8	8
Cycles per Day per basin		2.67	1.33
Duration of Each Cycle	hours	9	18

<u>Parameter</u>	<u>Unit</u>	Result Phase	<u>Result Phase</u>
		<u>4B</u>	<u>5</u>
Fill time	hours	3	3
React	hours/cycle	4.41	13.41
Settling Time	hours/cycle	0.75	0.75
Decant Time	hours/cycle	0.75	0.75
Idle/SludgeWaste	hours/cycle	0.09	0.09
Percent time of Fill time Aerated		20%	20%
Percent of Fill Time Mixed		80%	80%
Aeration Time in Fill	hours	0.6	0.6
Anoxic Time In Fill	hours	2.4	2.4
Percent time of React time Aerated		60%	60%
Percent of React Time Mixed		40%	40%
Aerated Time In React	Hours	2.65	8.05
Anoxic Time In React Mixed	Hours	1.76	5.36
Total Time Aerated/cycle	hours	3.25	8.65
Total Mxed Time /Cycle	hours	4.16	7.76
·			
V. Decanter			
Decant Cyclers per Day		8.00	8.00
Volume Per Decant Cycle	gal	62500	125000
Decant Time per Cycle	hours	0.75	0.75
Decant Flow Rate	gpm	1389	2778
Total cycle duration	hours/day	3.0	3.0
Time Between Decant Flow Rate	hours	2.3	2.3
Min Requried Outflow Rate	gpm	463	926
Max Flow Rate to CCCs	gpm	521	1042
Selected Pump Rate to CCCs	gpm	500	1000
VI BioProcess Design:			
Process Mode		SBR	SBR
Temp		20	20
MLSS mg/L		3310	3310
SRT days		40	40
Yeild Coefficient		0.62	0.62
Total Required SBR volume		0.75	1.50
Food, BOD #/day	#/day	1034.16	2068.32
Mass, # MLSS	#	20699	41398
F:M		0.050	0.050
BOD Loading, #/1000 cf		10.32	10.32
Total V/Q, hrs.	hours	36.0	36.0
Min Required Time In Aeration			
Eqn			
V/(Q)=Delta BOD * yield * Min. SRT/MLSS		0.9	0.9
Total Aerated Time/cycle		3.2	8.6

<u>Parameter</u>	<u>Unit</u>	<u>Result Phase</u> <u>I</u> <u>4B</u>	Result Phase <u>5</u>
VII Sludge Wasting			
WAS, Ib/day	Lb/day	517	. 1035
Settling and thickening Factor	•	2	2
Settled Sludge Concentration	mg/L	6620	6620
Vol/wasted per day	gpd	9373	18746
Y Of Tradical per day	Бри	7070	10, 10
VIII Nitrification Design			
Data:			
Min. Monthly Temperature =	degrees C	20	20
Min. Month M.L. pH		6.8	6.8
b decay	d-I	0.1	0.1
mu -a =		0.48	0.48
from eqn:			
$mu-a = (a*exp(-b/(273+T)))/(1+(c/10^{-pH})+(10^{-pH})/d))$			
a= 4.70*10^14			
b= 9.98*10^3			
c= 2.05*10^-9			
d= 1.66*10^-7			
(Antoniou et alia)			
TargetSnH			
KnH=	nnm	1	1
	ppm		_
Target So= 1.0 ppm	ppm	0.4	0.4
KO,a =	ppm	1	1
	ppm	0.4	0.4
eqn.:			
1/SRT min = mu-a * (Snh/(Knh+Snh))*(So/(Ko,a+So)-b deca	ıy	A 1.4	
1/SRT=		0.147	0.147
SRT=	days	6.78	6.78
MLVSS/MLSS =		0.75	0.75
N Content of Sludge =	%	7	7
Eqn:	70	,	,
N produced in SLudge = Yield*Delta BOD*MLVSS/MLSS*N	J Content in Sludge		
In produced in Schage — Field, Delta BOD, MICASS/MICSS, 1	Content in Studge		
N in Waste Activated Sludge	mg/L	6.52	6.52
Eqn			
= N in Sludge - MLVSS/MLSS*(N Content of Sludge)*TSS	mg/L	6.46	6.46
Aerobic Digester SRT	mg/L	30	30
Process SRT	days	40	40
Total BioProcess SRT =	days	70	70
Yield @ Total SRT =		0.562	0.562
N Solubilized in Digester:			
eqn (Y-Y@total SRT)* (WAS N normal)		0.36	0.36

<u>Parameter</u>	<u>Unit</u>	<u>Result Phase</u> <u>R</u>	esult Phase <u>5</u>
TKN Oxidized = Infl TKN - Eff. TKN - N in WAS + N in Digester	mg/L	32.90	32.90
Effluent TKN	mg/L	1	1
IX Denitrication Design			
Nitrateload on Anoxic Process Eqn	II. C. NIO2		
N03-N Load = TKN Oxidized - effl. NO3+ So as NO3		32.90	32.90
TKN oxidized Effl Nitrate	mg/L	32.90 2	32.90
En Nurale So as NO3 = 0.3478 x So	mg/L	0.3478	0.3478
Infl Nitrate	mg/L	0.3478	0.3478
NO3N Load on Anoxic Cycle:	mg/L mg/L	31.24	31.24
NOSN Load on Anoxic Cycle.	mg/L	31.24	31.24
Adequacy of Substrate			
Infl Soluble COD/ NO3-N = $\frac{1}{2}$	(8 Min.)	4.3	4.3
infl tot. COD/infl. TKN =	(14 Min.)	10.15	10.15
Supplemental Carbon Requirement			
(1) soluble COD required = 8 x No3-N load		263	263
(1) Total COD required, from nitrate load	mg/L	798	798
(2) Total COD = TKN x 14	mg/L	560	560
Design COD =	mg/L	798	798
Design Soluble COD	mg/L	263	263
Avsailable COD in Raw wastewater	mg/L	406	406
Soluble COD available	mg/L	134	134
Deficit =	mg/L	129	129
Lbs per Day Supplemental COD needed	mg/L	539	1077
mg/L COD in 50% sugar solution	#/day	685000	685000
gal/day required		94	189
Dentrication Rate Constants			
Rsdn g NO3-N/(g MLVSS d)=	Phase 1 fast rate with adequate substrate	0.07300	0.07300
Redn g NO3-N/(g MLVSS d) (not used) =	Phase 2 slow rate with < adequate substrate	0.01536	0.01536
Anoxic Time, Fill cycle,	assequate buobil ate	2.4	2.4
Anoxic Time, Tim cycle, Anoxic Time, React Cycle	Hours/Cycle	1.8	5.4
Total Anoxic Time, Hour Cycle	Hours/Cycle	4.2	7.8
Eqn:	•		:
(Volume /Q) = NO3-N Reduced/(Rsdn * MLVSS)	hours	4.14	4.14

Remarks:

Total Available Anoxic Time > Reqd Anoxic Time

<u>Parameter</u>	<u>Unit</u>	<u>Result Phase</u> <u>4B</u>	<u>Result Phase</u> <u>5</u>
Effuent Nitrate	mg/L	2	2
Alkalinity			
Flow Rate (MGD) =	MGD	0.500	1.000
Influent Alkalinity:	mg/L	200	200
Influent TKN:	mg/L	40	40
Target Effluent NO3-N:	mg/L	2	2
Alkalinity consumed by nitrification:	mg/L	149	149
Residual Alkalinity	mg/L	50.9	50.9
Target Desired Resdual Alkalinity	mg/L	100	100
Deficit of Alklainity	mg/L	49.1	49.1
Required Dose NaOH mg/L/mg/L deficit		0.799	0.799
Requred Dose, NaOH	mg/L	39.2	39.2
# NaOH needed/day	#/day	164	327
Estimated Liquid Vol gal/day	gpd	25.01	50.03
X. Phosphorus Reduction			
Design Flow	MGD	0.5	1
Influent TP	mg/L	6	6
Effluent TP	mg/L	3	1
Influent P - Effluent P	mg/L	3	5
Dosage, 1.3 mg Al per 1 mg P removed	mg/L	3.9	6.5
Consumption, Alum	#/day	16.3	54.2
AIPO4 Produced:	mg/L	11.8	19.7
Al(OH)3 Produced:	mg/L	3.9	6.4
Total Produced:	mg/L	15.7	26.1
Estimated Liquid Vol gal/day	gpd	2.49	8.29
XI SBR Aeration			
Influent BOD	mg/l	203	203
Influent TKN	mg/L	40	40
Effluent BOD	mg/L (soluble)	20	20
Effluent TKN	mg/L	1	1
Effluent Nitrate	mg/L	2.00	2.00
Q, MGD	mgd	0.500	1.000
eqn:			
O2 lb/day = Q * 8.34 * [F*(So-S) + 4.6* delta TKN]			
F=	(ref MOP8)	1.43	1.43
O2 #/d for BOD	lb/day	1095	2189
O2 #/hr for BOD	lb/hr	45.61	91.21
O2 #/d for TKN	lb/day	748	1496
O2 \$/hr for TKN	lb/hr	31.17	62.34
Nitrate Reduction credit			
TKN oxidized (TKN In - TKN eff)	mg/L	39.0	39.0

Parameter Parameter	<u>Unit</u>	Result Phase	<u>Result Phase</u>
		<u>4B</u>	<u>5</u>
O2 Released = 8.34 *Q* (2.86 *(TKN oxidized-Eff NO3N)	#/day	441.3	882.5
O2 Released, #/hr	#.hr	18.4	36.8
Total O2 =O2 BOD red+O2 TKN oxidation-O2 denite credit	lb/hr	58.4	116.8
N1 = O2 lb/day=	lb/hr	58.4	116.8
$N1/N2 = (beta \ x \ Csw-CL)/Csxalphax \ theta \ (T-20)$			
alpha		0.85	0.85
beta		0.95	0.95
Csw		9	9
Co=	target DO	1.5	1.5
Cs		9.17	9.17
theta =	(Std)	1.024	1.024
T =	deg C	20	20
N1/N2 =		0.65	0.65
N2=	lb/hr	89	179
Diffuser Efficiency		0.08	0.08
SCFM Needed	SCFM	1070	2140
Process O2, lb/day		2820	5639
Process O2/kg/day		1280	2560
Diffuser Efficiency, %		8	8
Air Rqd., SCFM	SCFM	1070	2140
Air Reqired/Liters/sec		505	1010
Air supply, CF/# BOD		1820	1820
No of Basins		3	6
Air Flow per Basin	SCFM	357	357
Water Depth	ft	17.5	17.5
Air losses	psi	0.5	0.5
Compressor Discharge Pressure	psi	8.1	8.1

Sidestream Flow Equalization Other Processes Calculations

		Existing Plant Phase 4A	Ph 4B 0.5 MG	Ph 5 1 MGD
Aerated Grit Chamber				
Design Flow	MGD	0.34	0.	5 I
Overeall length	ft	31.67	31.6	7 31.67
Cross Section Area	sf	37.39	37.3	9 37.39
Volume	gal	8857	885	7 8857
Influent Flow Rate	gpm	1000	114	3 2143
HRT	minutes	8.86	7.7	5 4.13
Horizontal Velocty	fps	0.06	0.0	7 0.13
Air reqd	cfm/ft	5.5	5.	5 5.5
Air required	SCFM	174	17	4 174
Diffuser Capacity	SCFM	5-50	5-5	0 5-50
No of drops		5		5 5
No of Diffuser		10	1	0 10
Flow per diffusor		17	1	7 17
Air Header Dia	inches	4		4 4
Velocity	fpm	2661	266	1 2661
Flow Equalization Tank				
Design Flow	MGD	0.34	0.	5 1
Volume of Tank	Gal	91940	9194	0 196040
Vs/Q		0.270	0.18	4 0.196
10 States Peak Factor:				
equiv pop, thousands		3		5 10
Calc'd peak factor		3.4	3.	2 3.0
Design Peak Factor		3.4	· 3	2 3
Design - OutFlow Peak		1.5	1.	5 1.5
Peak Inflow to Plant	gpm	803	111	1 2083
Theoretical Minimum Vs	Gal	65732	8666	5 153330
Fwd Flow to Plant	gpm	354	52	1 1042
Pumping Rate Rqd	gpm	521	52	1 1042
No of Pumps in Use		1		1 2
Total Pumps		2		3 3
Splitter Box Forward Flow	gpm	354	n	'a n/a
Return Flow	gpm	167	n	'a n/a
Air required	SCFM/1000 gal	1.25-2	1.25-	2 1.25-2
Low Range	SCFM	115	11	5 245
Upper Range	SCFM	184	18	4 392
Selected Flow	SCFM/1000 gal	2.00	2.0	0 2.00
SCFM/1000 CF		15	1	5 15
Aeration Per Tank:				
Tank 1	Vol, Gal	45970	4597	0 45970
Air Required	SCFM	92	9	2 92

		Existing Plant Phase 4A	Ph 4B 0.5 MG	Ph 5 1 MGD
Tank 2	Vol, Gal	45970	45970	45970
Air Required	SCFM	92	92	92
Tank 3	Vol, Gal	0	(52050
Air Required	SCFM	0.0	0.0	83.3
Tank 4	Vol, Gal	0	(52050
Air Required	SCFM	0.0	0.0	83.3
Tank 1, no of drops		•	7 5	5 5
No of Diffuser		14	10	10
Flow per diffusor	SCFM	7	Ģ	9
Tank 1 and 2 header Size	Inches			
Air Header Dia	inches	4	4	4
Velocity	fpm	1054	1054	1054
Post Settling Decant Equalization				
Decant Cyclers per Day		N/A	48	8
Volume Per Decant Cycle	gal		62500	125000
Decant Time per Cycle	hours		0.75	0.75
Decant Flow Rate	gpm		1389	2778
Total cycle duration	hours/day		3	3
Time Between Decant Flow Rate	hours		2.3	2.3
Min Requried Outflow Rate	gpm		463	926
Max Flow Rate to CCCs	gpm		521	1042
Selected Pump Rate to CCCs	gpm		500	1000
Start EQ Volume	gal		(0
Vol in during Fill	gal		62500	125000
Vol Out during Fill	gal		22500	45000
Max Volume In EQ End Fill	gal		40000	80000
Time Remaining Till Next Fill	hours		2	
Time Rqd To Pump Rem Vol Out	hours		1.33	
Decant Volume Avalable	gallons		90130	132180
Chlorine Contact				
Basin Volume	gal		19947	
HRT at Post Settling FEQ	minutes		40	
Flow Rate if all Pumps running	gpm		1000	
Peak HRT	minutes		19.9	
Cl2 Residual, mg/L			0.5	
Cl2 Dose, mg/L			8	
Consumption, lb/day			33.4	66.7
Hypochlorination System				
Est. Sodium Hypochlorite strength, %			12.5	
Dose required, mg/L			}	
Available Chlorine, lb/gal			1.04	
dose, #/gal			0.00006675	0.00006675

Avg dose, #/day 33 67 Avg dose, gal/day 32 64 Residual * Detention 10 240 Aerobic Sludge Digestion: WAS Flow, gpd 9373 18746 Was Flow M^3/day 35.5 71.0
Residual * Detention 10 240 Aerobic Sludge Digestion: WAS Flow, gpd 9373 18746 Was Flow M^3/day 35.5 71.0
Aerobic Sludge Digestion: WAS Flow, gpd 9373 18746 Was Flow M^3/day 35.5 71.0
WAS Flow, gpd 9373 18746 Was Flow M^3/day 35.5 71.0
Was Flow M^3/day 35.5 71.0
•
Total Solids,#/day 517.48 1034.96
Total Solids kg/day 234.94 469.87
WAS, mg/L 6620 6620
% Volatile 75 75
WASv, mg/L 4965 4965
Total VSS,#/d 388 776
VSS, #/Digester cf/day 0.02 0.01
Thick Solids,% 1.3 1.3
Digester Vol, gal 164465 410529
Digester Vol, M^3 622.50 1553.85
Initial Est.SRT, days 31 40
Temp, Degrees C 20 20
VSS Destroyed, % 34.52 38.92
Avg. Solids, mg/L 9100 9100
Supernatant Solids,mg/L 300 300
WAS Fraction Not Destroyed 0.74 0.71
WAS Fraction in Digester 0.38 0.36
Supernatant, gpd 5836 11987
Vol ASD /(Qwas in - Q super out), d 46 61
TSS in Digester, # 12482 31157
Total SS Removed, #/d 398 763
Supernatant TSS,#/d 14.6 30.0
Sludge Discharge,#/d 384 733
Sludge Rem/year, DTR 70.0 133.7
Sludge Discharge,gpd 3537 6759
Slidge Diischarged, M^3/d 13.4 25.6
Digester SRT, days 31.4 40.8
Sludge Stabiliz. Class SBB
Digester HRT, days 17.5 21.9
O2 Rqd, VSS, #/d 268 604
O2 Rqd kg/day 122 274
Air, SCFM 222 501
Diffuser Effic.,% 5
Air Rqd. Mixing, SCFM 660 1647
Design SCFM 660 1647
Design Air, 1/s 311 777

Denitrification Filter Design

(Phase 5 only)

```
1.0 General Dosing and Sizing
```

```
Total Flow, MGD
  1.5
              = Peak Inflow Rate
  3
               =number of filters
  2
                = number used
333333
               =flow rate, single filter, gallon day
 694
               =design average flow rate into dose tank, gpm
 1042
                 =design max inflow rate to dose tank, gpm
520.8
              =selected pump rate, gpm, each filter
 150
              =area each filter,SF
                =load rate single filter, pump running gpm/sf
 3.47
```

1.1Filter Surface Loading

```
Solids, SLR

1 = Total Flow, MGD

20 =normal effluent TSS

300 =Total Filter Surface Area Loaded

0.556 = SLR, #/sf/day

1.2 Hydraulic Loading, QLR

3.472 =QLR, gpm/sf
```

1.3 Estimated Head Loss

Reynolds Number of Sand

Eqn Nr =grain diameter x filter flow velocity/ kinematic velocity

```
2
               =d, grain diameter, mm
   0.002
                      = d, grain diameter meters
                   flow rate, gpm sf
    3.47
                      flow rate, Liters/ M^2-min
   138.89
0.138888889
                  flow rate m<sup>3</sup>/min
  0.00231
                     velocity, m/s
                     kinematic velocity at 20 d C
0.000001003
    4.62
                   =Nr
```

Drag Co Efficient

9.82

eqn Cd = $24/Nr+3(Nr^0.5)+0.34$

6.94 = Cd

eqn HI = $1.067/(Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times Cd \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times (1/(porosity^4) \times Filter Depth / (Shape Factor) \times (1/(porosity^4) \times (1/(poros$ (grain diameter) x fitration rate^2/accel due gravity 1 shape factor 6.94 =Cd0.4 =porosity filter depth, ft 6 filter depth, meters 1.875 =grain diameter, meters 0.002 0.00231 = filtration velocity, m/s

= accel due to gravity, m^2/s

```
0.148 = head loss, meter
0.473 = head loss, feet
```

2.0 Backwash Frequency and Filter Bumping

2.1 Formula: $SSL \times 517 / (TSS \text{ in - TSS out}) \times Q = Backwash Fequency$

```
0.556 =SLR, solids loading, lbs/SF
517 = conversion factor
20 = TSS in
1 =TSS out (operational target)
1 = Q, MGD
```

= Backwash Interval hours

2.2 Backwash Cycle

Steps

- 1 start air scour, run for 150 seconds
- 2 start backwash pump, continue to run air until water reaches overflow; stop bower, duration, 120 seconds
- 3 continue to run backwash pump for 600 seconds
- = total pump run time, minutes

Air Required

- 3.6 =rate. SCFM/SF of filter area
- = SCFM per filter

Flow Required

6.0 = gpm/sf of filter area 900 gpm

2.2 Filter Bump Frequency

```
= NO3-in
       10
        1
                       =NO3-out, operational target
                      =QLR, gpm/sf
     3.472
     0.375
                  = [no3-in - no3out] \times 8.34 \times QLR / (10^6) \times 1440 = Lbs NO3 per sf per day
                      = max denite specific filter capacity before bumping, lbs NO3-N/SF
      0.1
      3.75
                     bumps per day
      900
                         =flow rate, gpm, per filter
Bump Cycle
                     drain down, minutes
                2 pump duration, minutes
```

2.3 Head Loss in Media during backwash

eqn $hI = (depth \ of \ bed) \ x [1 - avg \ porosity \ fraction] \ x [S.G. \ of \ media - S.G. \ of \ water]$

```
6 =depth of bed
0.4 =avg media porosity
2.7 =specific gravity of the media
```

drain down, minutes

6.12 feet

3.0 Carbon Source Feed Source For Denitrification

3.1 Formula: $Cm = 2.47 \times (NO3-in) + 1.53 \times (Nitrite\ in) + 0.87\ Do$

6 = NO3-N 0 = Nitrite

1 = dissoved oxygen in

15.69 = CM mg/L Carbon source as methanol

Check: if CM < 4x NO3-in

2.62 = ratio, CM:NO3-n

result is less than 4

3.2 For Glycerin Dosing

1188000 mg/L COD in methanol
685000 mg/L COD in 50% sugar solution
1.73 ratio Methanol COD/ Sugar Soln COD
27.2 Dosing, Carbon Source as Glycerin, mg/L
226.9 #/day required
50 percent commercial soln strength
54.4 gal/day required

4.0 Media Design

Anthracite ft, 'Depth Anthracite 2 3.65 size particles, mm 3/16 to 3/32 inches, effective size range uniformity coefficient 1.6 hardness not less than, MOH scale 2.7 1.5 specific gravity acid solubility, shall be less than, tested per AWWA B100 5% Filter Sand 4 ft, filter sand 2-3 mm. size particles 1.4 uniformity co-efficient sphericity 0.8 6-7 hardness, MOH scale specific gravity 2.6 acid solubility, shall be less than, tested per AWWA B100 5%

18 inches graded gravel, depth

Gravel

 size
 depth

 1/2x1/4
 4
 top

 1/4x1/8
 4

 1/2x1/4
 4

3/4x1/2 2 1 1/2x3/4 4 bottom

Grenelefe Resort - FL

Three Tank SBR Rev. 2 - 3mg/I TN Designer: Date: AT 14-Aug

Flow (ADF)	0.50	MGD average	1,893 m^3/d
Flow (PDF)	1.50	MGD	5,678 m^3/d

IN	FLUENT CH.	ARACTERISTICS	
	mg/l	lbs/d	kg/d
BOD	203	847	384
* COD	406	1,693	768
TSS	248	1,034	469
TKN	40	167	76
NH4-N	27	111	50
* TN	40	167	76
Р	5.8	24	11
* TDS	500	2,085	946
* Inert TSS	fraction	40 %	6

	EFFLUENT REQUIREMENTS					
		mg/l	lbs/d	kg/d		
	BOD	10	42	18.9		
	COD	NR	NR	NR		
	TSS	10	42	18.9		
Į	TKN	NR	NR	NR		
	NH3-N Sum	1.0	4	1.9		
	NH3-N Win	1.0	4	1.9		
	TN	3.0	13	5.7		
**	Р	NR	NR	NR		
	** Alum or fe	rric chlor	ide additio	n rea'd		

SITE CONDITIONS				
Winter WW Temperature (min.)	15 °C	59 °F		
Summer WW Temperature (max)	27 °C	81 °F		
Average WW Temperature	21 °C	70 °F		
Elevation	150 ft	46 m		
Average barometric pressure	14.61 psia*	101 kPa		
Winter Air Temperature	0 °C	32 °F		
Summer Air Temperature	38 °C	100 °F		

PROCESS DESIGN PARAMETERS				
Design MLSS 3,310 mg/l @ TWL				
Design MLSS	3,972 mg/l	@ BWL		
Hydr. Retention Time provided	1.50 days	36.0 hou rs		
Aerobic Sludge Age (SRTox)	9.9 days			
System SRT	25.8 days			
Biosolids growth rate	0.22	gVSS/gCODr/d		
_	0.45	gVSS/gBODr/d		
F:M (adjusted for aeration %)	0.21	gCOD/gMLSS/d		
, ,	0.11	gBOD/gMLSS/d		
System F:M	0.04	gBOD/gMLSS/d		
Avg biosolids yield	372	lbs./day*	169 kg/d	
Avg net sludge yield (bio+inerts)	743	lbs/d based on CODr*	337 kg/d	
,	802	lbs/d based on BODr*	364 kg/d	
Mass aerobic MLSS reg'd	7,969	lbs	3,614 kgs	
Mass aerobic volume reg'd	0.29	MG	1,093 m^3	
Aerated portion of day	38.5	%		
Required total SBR volume	0.75	MG	2,838 m^3	

	BASIN DIMENSIONS	
Number of SBR basins	3	
Rectangular Dimensions:		
Length/Width Ratio	1.0:1	
Length	42.5 ft.	12.95 m
Width	42.5 ft.	12.95 m
Round Dimensions		
Diameter	48 ft.	14.62 m
Top Water Level	18.5 ft.	5.64 m
Bottom Water Level	15.4 ft.	4.70 m
TWL at Design Average Flow	18.5 ft.	5.64 m
Total Volume in SBR's	0.75 MG	2,838 m^3
Total Retention Time in SBR	36.0 hrs.	

	AERATION SYSTE	M SIZ	ING	
First Estimate :				
lbs. O2/lb. BOD removed	1.25		kg O2/kg BOD removed	ł
lbs. O2/lb. TKN oxidized	4.6		kg O2/kg TKN oxidized	
lbs. O2/lb. NO₃x denitrified	-2.86			
Denitrification Credit	50 %			
Actual Oxygen Req'd, AOR	1,460		lbs. O2/day	662 kg/d
Second Estimate :				
AOR = CODi -	CODw - CODes +	4.6*	TKNox - 2.86*NO3Ndn	
where : COD		=	1,693 lbs./day	768 kg/d
CODw	/ wasted	=	446 lbs./day	202 kg/d
CODes	eff soluble	=	271 lbs./day	123 kg/d
TKNox**	oxidized	=	135 lbs./day	61 kg/d
NO₃Ndn	n denitrified	=	61 lbs./day	28 kg/d
Mass ba	lance AOR		1,424 lbs./day	646 kg/d
Use highest estimate DESIGN AOR	= 1,460 l	bs/da	ry	662 kg/d
Conversion Formula from ASCE Ma	anual of Practice		SOR =	AOR * Cs
			а * (ßCsd - D	AOR * Cs (O) * Ø^(T-20)
Cs = DO saturation at Stnd Conditions	Csd	=	DO saturation at design	conditions
= 9.092*(1+0.4*D/34)	Cst	=	DO saturation@liquid 1	
= 11.07 mg/l	where:	=	Cst*(Fe+0.4*D/34)	
		=	7.95 mg/l	
ElevFactor Fe = 0.99	Therefore, Csd	=	9.62 mg/l	
Alpha, a 0.85 *	SWD, D		18.5 ft	
D.O., mg/l 2.0 mg/l	Beta, ß		0.95 *	
WW Temp T 27 °C	Theta, Ø		1.024	
Standard Oxygen Required, SOR	= 2,257		lbs. O2/day	1,025 kg/d
SOR Peaking Factor			lbs. O2/dav	1,025 kg/d
DESIGN SOR				

	CYCLE TIM	ES	
Batches per day Complete Cycle time	4.00	per SBI hrs. pe	
Fill time at ADF	2.00		i pasiii
Anoxic Fill time	1.50	hrs.	75 % of FILL is anoxic.
Aerated Fill React time	0.50 1.81	hrs. hrs.	39 % of cycle is aerated.
Denite time Settle Time	0.50 1.00	hrs. hrs.	3.7 hrs. anoxic per cycle
Decant time	0.60	hrs.	·
Idle time	0.09	hrs.	2.3 hrs. aerated per cycle

JET AERATION SYSTEM SIZING				
Aerator elevation	2.5	ft.	0.76 m	
Nozzle Angle	25	•		
Avg aerator submergence	15.9	ft.	4.85 m	
Total aeration time	2.31	hrs./cycle		
	9.2	hrs./basin/day		
SOR	81	lbs./hr/basin	37 kg/hr	
Normal gassing rate at ADF	44.9	SCFM / jet	1.27 m^3/min/jet	
Max gassing rate	88.0	SCFM / jet	2.49 m^3/min/jet	
Oxygen transfer efficiency (ADF)	21.9	%	· · · · ·	
Design air flow	359	SCFM	10 m^3/m	
Jets required per basin	8.0	Model 44 A Jets	•	
Add'l jets for mixing	0			
Total jets per basin	8.0			
Jet headers per basin	1	Type: D	D = Dual, S = Single	
Jets per header	8	Model 44 A Jets		

BLOWER SIZING DETAILS					
Operating blowers	=	. 1	per aerating basin		
Type of Blowers:	=	1	1=PD, 2=Centrifugal,	3=Turbo	
Total Number of Blowers	=	4	including a spare		
Air flow per blower	=	359	SCFM	610 m^3	3/hr
Inlet losses	=	0.3	psig *	2.07 kPa	•
Net inlet pressure	=	14.31	psia (absolute)	98.67 kPa	0.98 bar
Discharge piping losses	=	0.7	psig *	4.83 kPa	0.05 bar
Losses at aerator	=	0.1	psig	0.69 kPa	0.01 bar
Total discharge pressure	=	7.99	psig average	55.09 kPa	0.55 bar
		8.03	psig maximum	55.34 kPa	0.55 bar
		6.69	psig minimum	46.14 kPa	0.46 bar
Site air flow required	=	391	ICFM average	11.08 m^3	3/min
Assumed blower efficiency	=	60	% *		
BHp per blower	=	18.6	BHp/Blower	13.9 BkV	/
				14.7 kW	@ 94% ME
Blower BHp/aerating basin	=	18.6	BHp/Basin	13.9 BkV	Ī
				14.7 kW	@ 94% ME

JET MOTIVE PUMPS				
Number of pumps	1	per basin		
Type of Pumps :	1	1=Dry pit, 2=Subme	ersible, 3=Axial flow	
Total number of pumps	3			
Design pressure at nozzle	17	ft.	5.2 m	
Flow per nozzle	183	GPM	11.5 l/s	
Flow per pump	1,465	GPM	92.4 l/s	
System headloss	4	ft.*	1.2 m	
Total pump head	21	ft.	6.4 m	
Assumed pump efficiency	75	% *	'	
BHp per pump	10.4	BHp/Pump	7.7 BkW	
		• • • •	8.2 kW @ 94% ME	
Total pump BHp/basin	10.4	BHp/Basin	7.7 BkW	
		·	8.2 kW @ 94% ME	

	DECANTERS	
Cycles per day	12	
Avg TWL to BWL volume	41,667 Gallons	158 cubic meters
Max TWL to BWL volume	41,667 Gallons	158 cubic meters
Decant time	0.60 hrs.	36 minutes
Average decant flow	1,157 GPM	73 liters per second
Number of decanters per basin	1	·
Average flow per decanter	1,157 GPM	73 liters per second

	SLUDGE WASTING	
Dry solids (BOD estimate) Solids concentration in WAS	802 lbs/day 0.85 %	364 kg/d
Total volume wasted per day Wasting frequency	11,312 gallons per day 4 per tank per day	43 m3 / day
Volume wasted each period Length of each wasting period	943 gallons 9.4 minutes	4 m3
WAS pump rate	100 gpm	6 liters per second
WAS pump discharge head	15 ft	4.6 meters
WAS pump efficiency	40 %	
WAS pump BHp	0,9 BHp	0.7 kW

		POWER SUMMARY			
Equipment	BHp/basin	Hours/day operating		kW hr/day	kW hr/annual
SBR blowers SBR jet pumps	18.6 10.4	27.72 33.72		384 260	140,174 95,078
Cost of power per kWhr **Annual power cost	0.05 \$11,763		Total	645	235,252
** does not include corrections for motor efficiency, VFD losses, V-belt losses, or power factor					

^{*}Denotes parameters assumed by Parkson. These parameters to be confirmed by Owner or Owner's representative

Denitrification Kinetics Calculation

Design Calculations to Determine Required Time to Denitrify Wastewater

Design Parameters		
MLSS 3,310 0.65	mg/l	Mixed Liquor Suspended Solids volatile fraction of mixed liquor solids
MLVSS 2,152	mg/l	Mixed Liquor Volatile Suspended Solids
D.O. 0.1	mg/l	Dissolved Oxygen Concentration in the Anoxic Zone
T 15	° C	Basin Liquid Temperature
(NO ₃) _o 32	mg/l	Design Influent Nitrate Nitrogen concentration
(NO₃) _e 3	mg/l	Design Effluent Nitrate Nitrogen concentration

1 Determine Rate of Denitrification Corrected for Temperature

0.058 g NO₃-N/g VSS-day

```
\begin{split} R_{DN(T)} = R_{DN(20)} * K^{(T-20)} * (1-D.O.) \\ \text{where:} \\ R_{DN(T)} = \text{Rate of denitrification at the design temperature} \\ R_{DN(20)} = & 0.1 = \text{Rate of denitrification at } 20^{\circ} \text{ C} \\ K = & 1.09 = 1.03 \text{ to } 1.1 \text{ (1.09 commonly used)} \end{split}
```

2 Determine the Time Required for Denitrification

 $R_{DN(T)} =$

```
t = [(NO_3)_o - (NO_3)_e]/[R_{DN}*X_V]
where:
(NO_3)_o = \text{Influent Nitrate Nitrogen, (mg/l)}
(NO_3)_e = \text{Effluent Nitrate Nitrogen, (mg/l)}
X_V = \text{MLVSS concentration, (mg/l)}
t = \text{Anoxic Time, (days)}
t = 0.233 \text{ days}
= 5.6 \text{ hours required}
= 24.0 \text{ hours provided}
```